WO2023189743A1 - 微生物担体及び水処理方法 - Google Patents

微生物担体及び水処理方法 Download PDF

Info

Publication number
WO2023189743A1
WO2023189743A1 PCT/JP2023/010639 JP2023010639W WO2023189743A1 WO 2023189743 A1 WO2023189743 A1 WO 2023189743A1 JP 2023010639 W JP2023010639 W JP 2023010639W WO 2023189743 A1 WO2023189743 A1 WO 2023189743A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
carrier
phosphorus
denitrification
microbial
Prior art date
Application number
PCT/JP2023/010639
Other languages
English (en)
French (fr)
Inventor
久典 後藤
朋樹 川岸
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to JP2023523221A priority Critical patent/JP7416335B1/ja
Publication of WO2023189743A1 publication Critical patent/WO2023189743A1/ja
Priority to JP2023190941A priority patent/JP2024010204A/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/08Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer
    • C12N11/089Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C12N11/096Polyesters; Polyamides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to microbial carriers and water treatment methods.
  • This application claims priority based on Japanese Patent Application No. 2022-059131 filed with the Japan Patent Office on March 31, 2022, the contents of which are incorporated herein.
  • a method using a two-step reaction using microorganisms is known as a method for treating water containing ammonia nitrogen.
  • This method involves a nitrification reaction that converts ammonia into nitric acid using microorganisms that have the ability to nitrify (hereinafter sometimes referred to as "nitrifying bacteria"), and a nitrification reaction that uses microorganisms that have the ability to denitrify (hereinafter sometimes referred to as "denitrifying bacteria”). It is an environmentally friendly nitrogen removal method because the generated nitrogen is released into the air.
  • Patent Document 1 proposes a biological denitrification method in which a biodegradable resin is added to the water to be treated instead of methanol. Since biodegradable resin has a sustained release property of a carbon source, it has an advantage in that denitrification ability can be sustained without requiring precise control of the amount added. However, denitrification efficiency such as denitrification rate and denitrification amount has not reached a sufficient level. In recent years, emission standards for nitrate nitrogen have become stricter from the perspective of environmental protection, and there is a need to develop denitrification treatment methods with even higher denitrification efficiency.
  • denitrifying bacteria are known to be activated by nutrients such as phosphates, mineral activators, and the like.
  • Patent Document 2 proposes a microbial carrier combined with a mineral activator and the like.
  • the details of element types, concentrations, etc. suitable for improving denitrification efficiency are still unknown.
  • denitrifying bacteria colonize the surface of the carrier and form a biofilm.
  • carrier a microbial carrier
  • the carbon source necessary for denitrification is mainly supplemented from the biodegradable resin that constitutes the carrier, but here, in addition to the carbon source, nutrients such as phosphates and activators such as minerals are used. Replenishment is also necessary.
  • iron is an essential component for efficient denitrification because denitrifying bacteria form a biofilm by efficiently colonizing the carrier.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a microbial carrier that stabilizes and improves denitrification efficiency, and a water treatment method using the same.
  • the present inventors conducted extensive studies and found that the only iron that denitrifying bacteria can take in is iron that exists near the surface of the carrier, so iron can be efficiently supplied to denitrifying bacteria.
  • iron that exists near the surface of the carrier, so iron can be efficiently supplied to denitrifying bacteria.
  • an iron-containing carrier containing iron in a biodegradable resin is effective.
  • we found more suitable conditions for the type of iron compound and the combination with the phosphorus compound we found more suitable conditions for the type of iron compound and the combination with the phosphorus compound.
  • a microbial carrier carrying microorganisms having denitrification ability an iron-containing carrier containing a biodegradable resin and iron;
  • a microbial carrier, wherein the iron content of the iron-containing carrier is 1.0 ⁇ 10 -4 mass % or more and less than 2.0 mass % based on the mass of the iron-containing carrier.
  • a water treatment method using a microbial carrier carrying microorganisms having denitrification ability includes an iron-containing carrier containing a biodegradable resin and iron,
  • a water treatment method wherein the iron content of the iron-containing carrier is 1.0 ⁇ 10 -4 mass % or more and less than 2.0 mass % based on the mass of the iron-containing carrier.
  • the microbial carrier further includes a phosphorus-containing carrier containing a biodegradable resin and phosphorus,
  • FIG. 1 is a schematic diagram showing an example of a denitrification treatment system.
  • Denitrifying bacteria means microorganisms that have the ability to denitrify.
  • Degrading bacteria means microorganisms that have the ability to decompose biodegradable resins.
  • Microorganisms refer to microorganisms including denitrifying bacteria and decomposing bacteria.
  • the denitrifying bacteria and the decomposing bacteria may be the same type of microorganism. In other words, there may be microorganisms that are both denitrifying bacteria and decomposing bacteria.
  • the low-molecular-weight organic component refers to an organic component that has a low molecular weight due to the decomposition of a biodegradable resin by microorganisms.
  • Carrier A means an iron-containing carrier containing a biodegradable resin and iron. Carrier A may further contain phosphorus.
  • Carrier B means a phosphorus-containing carrier containing a biodegradable resin and phosphorus. Support B may further contain iron.
  • Microbial carrier means a carrier containing one or more carriers A. The microbial carrier may further include one or more carriers B.
  • Total organic carbon (TOC) refers to the concentration of organic matter present in water. TOC is measured using a combustion-type TOC analyzer, "TOC-300V" manufactured by Nitto Seiko Analytech. Total iron refers to soluble and non-soluble iron contained in water. Total iron is measured by ICP emission spectrometry described in JIS K0102 57.4.
  • Total phosphorus refers to soluble and non-soluble phosphorus contained in water. Total phosphorus is measured by molybdenum blue spectrophotometry described in JIS K0102 46.3.1-3. " ⁇ " indicating a numerical range means that the numerical values written before and after it are included as lower and upper limits. The numerical range disclosed in this specification can be set as a new numerical range by arbitrarily combining the lower limit value and the upper limit value.
  • the microbial carrier is a microbial carrier that supports microorganisms having denitrification ability.
  • the microbial carrier contains at least one carrier A.
  • the microbial carrier may contain two or more carriers A.
  • the microbial carrier may further contain one or more carriers B.
  • a microbial carrier contains two or more types of carriers, it is an aggregate of those carriers.
  • the microbial carrier is preferably a microbial carrier that supports microorganisms that have the ability to decompose the biodegradable resin.
  • Iron is derived from an iron compound, and is preferably contained in the carrier A in the form of an iron compound.
  • iron compounds that are insoluble in water in the neutral pH range of 6 to 8 are preferable, and the types of iron compounds include iron oxide (III), which contains trivalent iron, and iron oxide (II). , III), iron(III) hydroxide, etc.
  • the carrier A contains these iron compounds, the pH near the surface of the carrier A in the water to be treated is maintained in a pH range suitable for the activity of microorganisms colonized on the carrier surface. Therefore, after iron is replenished from carrier A, the effect of promoting denitrification is efficiently exhibited. Furthermore, when microorganisms decompose the biodegradable resin and perform denitrification, the trivalent iron in carrier A is reduced to divalent iron by the action of the microorganisms and taken into the microorganisms, or It is taken up by microorganisms in the iron state.
  • iron will not be dissociated from carrier A other than being taken up by microorganisms, and excess iron will not be released and remain in the water to be treated, so the iron necessary for denitrification by microorganisms can be efficiently Can be replenished well.
  • the iron that microorganisms can take in is mainly divalent iron.
  • divalent iron makes the treated water acidic due to its elution. Under acidic conditions, divalent iron is oxidized to trivalent iron, making it impossible for microorganisms to efficiently take in iron.
  • trivalent iron the treated water is neutral, and the action of microorganisms reduces trivalent iron to divalent iron, allowing the microorganisms to efficiently take in iron.
  • the iron content C (Fe) of the carrier A is preferably 1.0 ⁇ 10 -4 mass% or more and less than 2.0 mass%, and 2.0 ⁇ 10 -4 mass% or more 1. It is more preferably 8% by mass or less, even more preferably 5.0 ⁇ 10 -4 % by mass or more and 1.5% by mass or less, particularly 1.5 ⁇ 10 -3 % by mass or more and 8.0 ⁇ 10 -1 % by mass or less. preferable.
  • the degrading bacteria decomposes and consumes the biodegradable resin into low-molecular organic components on the surface of carrier A, and at the same time consumes dissolved oxygen near the surface, thereby inducing an environment near the surface of carrier A to be close to anoxic. do.
  • the denitrifying bacteria takes in and utilizes the iron in carrier A, thereby performing denitrification.
  • the iron content of carrier A is within the above range, the decomposing bacteria will efficiently produce and consume low-molecular organic components, and a good anoxic environment will be formed, so denitrification will be quickly stabilized and good.
  • the iron content of carrier A is 1.0 ⁇ 10 ⁇ 4 mass % or more, iron is sufficiently replenished by carrier A, resulting in improved denitrification efficiency.
  • the iron content of carrier A is less than 2.0% by mass, low-molecular organic components are consumed by decomposing bacteria and at the same time an anoxic environment is formed, denitrification is stabilized and denitrification efficiency is improved.
  • the iron content is 2.0% by mass or more, during the process of forming a biofilm on the surface of carrier A, the biofilm will aggregate when iron ions are eluted from carrier A, resulting in a decrease in denitrification performance. It is assumed that.
  • phosphorus is also an important nutrient source for denitrifying bacteria to colonize carrier A and efficiently consume low-molecular organic components. Containing phosphorus in the microbial carrier is effective in efficiently replenishing phosphorus to denitrifying bacteria.
  • the molar ratio (phosphorus/iron) X of phosphorus and iron contained in carrier A is greater than 0 and less than or equal to 0.5 (0 ⁇ X ⁇ 0.5); It is preferably 1 or less, more preferably 0.05 or less. If the molar ratio X of phosphorus/iron in carrier A is within the above range, iron and phosphorus are efficiently replenished to microorganisms, so denitrification efficiency is improved.
  • carrier A When the molar ratio X of phosphorus/iron in carrier A exceeds a predetermined value, iron becomes a compound such as iron (III) phosphate that is difficult to be taken up by living organisms.
  • Carrier A is a carrier that contains more iron than phosphorus, and replenishes iron to microorganisms.However, in an anaerobic environment where denitrifying bacteria become active, some of the trivalent iron is converted to divalent iron by microorganisms. It is presumed that some of the iron (III) phosphate is also taken up by microorganisms.
  • carrier A does not contain phosphorus
  • carrier B containing a biodegradable resin and phosphorus in combination with carrier A, it is expected that denitrification efficiency will be improved by supplementing iron and phosphorus.
  • the mixing ratio is preferably carrier A/carrier B at a mass ratio of 10/90 or more. Within this range, iron and phosphorus are efficiently replenished to the microorganisms, so that the microorganisms colonize carrier A and carrier B well, and the denitrification efficiency improves.
  • the phosphorus content of carrier B is not particularly limited, but is preferably 0.002 to 0.5% by mass, more preferably 0.005 to 0.1% by mass, based on the weight of carrier B.
  • phosphorus content is within the above range, phosphorus is efficiently replenished to the microorganisms. Therefore, the colonization of microorganisms on the microorganism carrier becomes better, and the denitrification efficiency improves.
  • the molar ratio Y of iron and phosphorus contained in carrier B is greater than 0 and less than or equal to 0.1 (0 ⁇ Y ⁇ 0.1), and 0. It is preferable that it is 05 or less. If the molar ratio Y of iron/phosphorus in carrier B is within the above range, iron and phosphorus are efficiently replenished to the microorganisms, thereby improving the denitrification efficiency.
  • carrier B does not contain iron
  • Carrier B is a carrier that contains more phosphorus than iron, and carrier B replenishes phosphorus to microorganisms in any of the aerobic, anaerobic, and anoxic environments, but it does not replenish phosphorus in the aerobic environment. , trivalent iron is not reduced, and iron(III) phosphate remains in a state that is difficult to be taken up by living organisms. Therefore, under an anaerobic or anoxic environment in which carrier A easily replenishes iron, iron (III) phosphate is relatively easily taken up by microorganisms.
  • carrier B can replenish phosphorus in any of an aerobic environment, an anaerobic environment, and an anoxic environment, but iron (III) phosphate is difficult to be taken up by microorganisms in an aerobic environment. Therefore, the upper limit of the molar ratio X of phosphorus to iron in carrier A is considered to be larger than the upper limit of the molar ratio Y of iron to phosphorus in carrier B.
  • the phosphorus contained in carrier A and carrier B is not particularly limited, and examples thereof include calcium compounds and magnesium compounds such as calcium phosphate and magnesium phosphate.
  • the iron content C (Fe) (mass %) and phosphorus content C (P) (mass %) of carrier A and carrier B are measured by the following methods (I) to (VII).
  • (I) Measure 10 g of carrier A or carrier B and 30 ml of 2 mol/l aqueous sodium hydroxide solution into a pressure-resistant tube with a capacity of 50 to 100 ml, and tightly cover the tube.
  • (II) After heating at 105°C for 12 hours, cool to around 20°C with city water.
  • the iron contained in carrier A is preferably an iron compound that is insoluble in water with a pH of 6 to 8. If carrier A contains an iron compound that is soluble in water in the neutral pH range of 6 to 8, when carrier A is immersed in water, the soluble iron compound will be released from carrier A into the water. and the pH near the surface of carrier A decreases to less than 5. Therefore, the colonization of the microorganisms on the carrier A and the activity of the microorganisms are significantly reduced.
  • carrier A and carrier B are not particularly limited, and may be any shape such as columnar, spherical, cylindrical, chip-like, etc. Considering the ease of filling the denitrification tank, the shapes of carrier A and carrier B are preferably cylindrical, spherical, cylindrical, or the like.
  • the microbial carrier of the present invention contains a biodegradable resin.
  • a low molecular weight organic component produced by hydrolysis of this biodegradable resin is used as a carbon source necessary for denitrification.
  • the biodegradable resin is a biodegradable polyester.
  • biodegradable polyesters include PLA (polylactic acid), PBS (polybutylene succinate), PCL (poly caprolactone), and PHBH (poly-3-hydroxybutyrate-co-3-hydr). roxyhexanoate) and PHBV (poly-3 PHB (poly hydroxybutyrate) series such as -hydroxybutyrate-co-3-hydroxyvalerate), PHA (polyhydroxy alkanoate) series, P3HA (poly-3-hydroxylate) series, PBAT (polybutylene adipate/terephthalate), poly (terephthalate/succinate), etc.
  • biodegradable polyesters having constitutional units derived from dicarboxylic acids are preferred, and biodegradable polyesters having constitutional units derived from dicarboxylic acids and diols are more preferred. If the biodegradable resin is biodegradable polyester, denitrifying bacteria can more efficiently take in the iron contained in carrier A into the body, thereby stabilizing the growth and activity of denitrifying bacteria and increasing denitrifying efficiency. will improve.
  • dicarboxylic acids examples include oxalic acid, malonic acid, succinic acid, adipic acid, glutaric acid, suberic acid, azelaic acid, sebacic acid, terephthalic acid, isophthalic acid, and phthalic acid.
  • the biodegradable resin has two or more types of structural units derived from dicarboxylic acids.
  • the denitrification rate is faster and higher denitrification performance than when using a biodegradable resin that has one type of dicarboxylic acid-derived structural unit. There is a tendency to show that
  • the biodegradable resin is preferably one having a structural unit derived from succinic acid.
  • a polybutylene succinate (PBS)-based biodegradable resin having mainly butylene succinate units is preferred.
  • PBS-based biodegradable resins include, for example, polybutylene succinate, poly(butylene succinate/adipate) (PBSA), poly(butylene succinate/carbonate), and poly(butylene adipate/terephthalate) (PBAT). , poly(ethylene terephthalate/succinate).
  • PBSA is particularly preferred from the viewpoint of high biodegradability and from the viewpoint of being able to supply the carbon source necessary for denitrification in a sustained release manner. Furthermore, since PBSA is more easily decomposed than other biodegradable resins such as PHB-based resins, the production of low molecular weight organic components is improved. Since low molecular weight organic components are produced and dissolved oxygen is consumed at the same time, the vicinity of the biodegradable resin becomes almost anoxic, creating an anoxic environment that is effective for denitrifying bacteria to carry out denitrification reactions. . Further, a low molecular weight organic component derived from PBSA is preferable as a substrate or a hydrogen donor for the growth and proliferation of denitrifying bacteria.
  • the biodegradable resin may be a mixture of a biodegradable polyester having a structural unit derived from a carboxylic acid and a resin such as polylactic acid, PHA, polyvinyl alcohol, or cellulose.
  • a biodegradable resin having a structural unit derived from a dicarboxylic acid By mixing a biodegradable resin having a structural unit derived from a dicarboxylic acid with these resins having different biodegradability, the biodegradable resin can be used as a carbon source for a long period of time.
  • the microorganism carrier of the present invention may further contain resin other than the biodegradable resin, as long as the effects of the present invention are not impaired.
  • resins include polyvinyl alcohol, polyethylene, polypropylene, polyethylene terephthalate, polybutylene terephthalate, polyacetic acid, polyvinyl chloride, polystyrene, and the like.
  • the method for containing iron in carrier A is not particularly limited, but for example, a masterbatch is prepared by kneading and dispersing iron and/or iron compounds in a biodegradable resin at a high concentration, and then An example is a method of supplying the buster batch and the biodegradable resin to a shaft or twin-screw kneading extruder or the like to melt and contain the biodegradable resin.
  • the method of containing phosphorus and/or a phosphorus compound in carrier B is not particularly limited.
  • a masterbatch is prepared by kneading and dispersing phosphorus and phosphorus compounds at a high concentration into a biodegradable resin, and then the buster batch and the biodegradable resin are mixed into a single-screw or twin-screw kneading extruder.
  • An example of this method is to supply, melt and contain.
  • the denitrifying bacteria supported on the microbial carrier of the present invention are not particularly limited. Although any known bacteria having denitrifying ability can be appropriately selected and used, heterotrophic denitrifying bacteria are preferable.
  • the microbial carrier of the present invention preferably supports microorganisms (hereinafter sometimes simply referred to as "degrading bacteria") that have the ability to decompose biodegradable resins.
  • the degrading bacteria attach to the microbial carrier and decompose the biodegradable resin contained in the microbial carrier.
  • more carbon sources are supplied to the denitrifying bacteria than in the case where the decomposing bacteria are not supported on the microbial carrier, and the growth or activity of the denitrifying bacteria is promoted.
  • the degrading bacteria are not particularly limited, but known bacteria having the ability to decompose biodegradable resins can be used as appropriate.
  • the water to be treated that is the target of the purification treatment using microbial carriers is not particularly limited as long as it contains nitrite nitrogen and/or nitrate nitrogen.
  • the water to be treated may be water for breeding aquatic organisms as described above, or may be wastewater such as livestock wastewater, food wastewater, sewage, or septic tank wastewater. Furthermore, the water to be treated may be fresh water or seawater.
  • “Seawater” means water containing salt at a concentration of 3.2% by mass or more.
  • “Brackish water” means water containing salt at a concentration of 0.05% by mass or more and less than 3.2% by mass.
  • fresh water may be water that does not contain any salt at all, or may be water that contains salt at a concentration lower than that of brackish water.
  • the nitrate nitrogen concentration of the water to be treated is not particularly limited, but is preferably 10 mg-N/L or higher, more preferably 20 mg-N/L or higher, even more preferably 50 mg-N/L or higher, and particularly preferably 100 mg-N/L. /L or more, preferably 5000 mg-N/L or less, more preferably 2000 mg-N/L or less. If the nitrate nitrogen concentration of the water to be treated is within the above range, denitrification will proceed efficiently.
  • the concentration of iron in the water to be treated is not particularly limited, but is preferably 0 mg-Fe/L or higher, more preferably 0.01 mg-Fe/L or higher, even more preferably 0.1 mg-Fe/L or higher, particularly preferably It is 0.5 mg-Fe/L or more, and preferably 1 mg-Fe/L or less. If the iron concentration of the water to be treated is within the above range, denitrification will proceed efficiently.
  • the concentration of phosphorus in the water to be treated is not particularly limited, but preferably 0.01 mg-P/L or more, more preferably 0.1 mg-P/L or more, even more preferably 1.0 mg-P/L or more, especially It is preferably 5.0 mg-P/L or more, more preferably 20 mg-P/L or less, and more preferably 10 mg-P/L or less. If the phosphorus concentration of the water to be treated is within the above range, denitrification will proceed efficiently.
  • the water treatment method relates to a denitrification treatment method using the microbial carrier of the embodiment described above.
  • a microbial carrier containing one or more carriers A is used as a microbial carrier supporting microorganisms capable of denitrifying. More specifically, the water treatment method involves supplying water to be treated to a denitrification tank filled with a microbial carrier carrying denitrifying bacteria, and removing nitrite nitrogen and/or nitrate nitrogen from the water to be treated. It includes a denitrification process in which denitrification is performed by converting into nitrogen through a nitrification reaction.
  • the method of supplying the water to be treated to the denitrification tank filled with microbial carriers is not particularly limited.
  • a method of supplying water to be treated to a denitrification tank using a circulation type, overflow type, intermittent type, or batch type denitrification treatment system is preferable to use.
  • FIG. 1 is a schematic diagram showing an example of a denitrification treatment system.
  • the denitrification treatment system shown in FIG. 1 includes a water storage tank 101, a pump 102, a supply tube 103, a denitrification column 105 filled with microbial carriers 104, and a return tube 106.
  • water to be treated is put into a water storage tank 101 and is supplied to a denitrification column 105 through a supply tube 103 by a pump 102, and after contacting microbial carriers 104, is passed through a return tube 106.
  • the water is circulated by being returned to the water storage tank 101.
  • the temperature of the water to be treated may be within the temperature range that the environment can take in nature, and is 0°C or higher, preferably 10°C or higher, more preferably 20°C or higher, and preferably 40°C or lower. is 35°C or lower, more preferably 30°C or lower.
  • the water to be treated contains nitrate nitrogen, and may also contain ammonia nitrogen and nitrite nitrogen. Moreover, the water to be treated may also contain organic components derived from other than biodegradable resins.
  • a suitable example of the water to be treated is breeding water used for cultivating aquatic organisms.
  • the water treatment method is suitably used for carrying microorganisms and stably and promoting the activity of denitrifying bacteria in the denitrification treatment of rearing water containing nitrate nitrogen after nitrification treatment.
  • the cyclic denitrification treatment system may include various other elements not shown in FIG.
  • Such elements include, for example, a transfer means, such as a siphon, for transferring the water to be treated so that the water to be treated is supplied to the denitrification tank; and adjusting the temperature of the water to be treated to a temperature suitable for the denitrification reaction.
  • a transfer means such as a siphon
  • adjusting the temperature of the water to be treated to a temperature suitable for the denitrification reaction a heater and/or cooler for the treatment
  • the water treatment method may be incorporated into a water treatment method that uses a two-step reaction: a nitrification reaction that converts ammonia into nitric acid, and a denitrification reaction that decomposes nitric acid into nitrogen.
  • water treatment methods include methods for purifying breeding water for aquatic organisms such as salmon, trout, sweetfish, char, eel, crab, and shrimp.
  • the breeding water for aquatic organisms contains ammonia nitrogen
  • the breeding water is supplied to a nitrification tank equipped with a nitrification carrier carrying nitrifying bacteria to convert ammonia nitrogen into nitrite nitrogen and/or nitrate nitrogen.
  • Rearing water that has passed through a nitrification tank and contains nitrite nitrogen and/or nitrate nitrogen is subjected to a denitrification treatment process.
  • the nitrification tank and the denitrification tank may be provided as separate tanks or may be the same tank.
  • a nitrification carrier carrying nitrifying bacteria and a microbial carrier carrying denitrifying bacteria are placed in one tank, and the nitrification carrier and the microbial carrier are connected to fibers. It may be partitioned with a manufactured separator, filter paper, etc.
  • the nitrification tank, nitrifying bacteria, nitrification carrier, fiber separator, filter paper, etc. can be appropriately selected from known ones and used.
  • the activity of the microorganisms colonized on the microbial carrier allows the hydrolysis of the biodegradable resin constituting the microbial carrier to progress favorably, and Since a biofilm is well formed on the microbial carrier, the denitrification efficiency is stabilized and improved.
  • iron is efficiently replenished to microorganisms containing denitrifying bacteria colonized on the iron-containing carrier during denitrification treatment, thereby suppressing iron deficiency and denitrification. becomes good.
  • Carriers A1 to A14, carrier a1, carrier a2, carriers B1 to B4, and carrier c were produced by the method shown below.
  • PBSA pelleted poly(butylene succinate/adipate)
  • PTFE dish a heat-resistant PTFE universal container 120 ⁇ (Freon Chemical Co., Ltd.).
  • powdered iron (III) oxide red manufactured by Hayashi Pure Chemical Industries, Ltd.
  • powdered tricalcium phosphate manufactured by Kanto Kagaku
  • the amount of iron compound added to 200g of PBSA (g ) was added to 200g of PBSA (g )" and the amount (g) described in the column "Additional amount (g) of phosphorus compound to 200 g of PBSA”.
  • PTFE rod a PTFE rod (diameter 12 mm, length 300 mm) (hereinafter referred to as PTFE rod)
  • the total amount of added iron (III) oxide and tricalcium phosphate was mixed with PBSA. Ta. Thereafter, the PBSA was heated together with the PTFE plate at 125° C.
  • a carrier A1 for 30 minutes in a constant temperature bath to melt the PBSA. Thereafter, the molten PBSA and iron oxide were kneaded together using a PTEF rod. Thereafter, the PBSA was heated again at 125° C. for 30 minutes together with the PTFE dish to melt it. Thereafter, the entire amount of the molten PBSA was transferred onto a heat-resistant PTFE plate (50 mm x 50 mm) and crushed with a PTEF rod to form a plate with a thickness of 3 mm and approximately 3000 mm x 300 mm. Thereafter, it was cut into chips with a width of 10 mm, a width of 10 mm, and a thickness of 3 mm using scissors to prepare a carrier A1.
  • Support A2 was produced in the same manner as support A1 except that iron oxide (II, III) was added instead of iron (III) oxide.
  • Carrier A6 was produced in the same manner as carrier A1 except that iron (II) sulfate heptahydrate was added instead of iron (III) oxide.
  • Carriers A7, A9 to A13, and carrier a2 were produced in the same manner as carrier A1 except that tricalcium phosphate was not added.
  • Carrier A8 was produced in the same manner as carrier A1, except that iron oxide (II, III) was added instead of iron (III) oxide, and tricalcium phosphate was not added.
  • Carrier A14 was produced in the same manner as carrier A1, except that iron (II) sulfate heptahydrate was added instead of iron (III) oxide and tricalcium phosphate was not added.
  • Carrier B1 was produced in the same manner as carrier A1 except that iron (III) oxide was not added.
  • Carrier c was produced in the same manner as carrier A1 except that iron (III) oxide and tricalcium phosphate were not added.
  • nitrate nitrogen, phosphorus, magnesium ions, sodium ions, and calcium ions are 100 mg-N/L, 5 mg-P/L, 8.8 mg-Mg/L, 1.03 mg-Na/L, and 0.57 mg, respectively.
  • -Ca/L sodium nitrate (NaNO 3 ), dipotassium hydrogen phosphate (K 2 HPO 4 ), magnesium sulfate heptahydrate (MgSO 4.7H 2 O), disodium ethylenediaminetetraacetate (EDTA)
  • a simulated wastewater was prepared by dissolving calcium chloride dihydrate (CaCl 2 H 2 O) in pure water.
  • Examples 1 to 1 were prepared by combining a denitrification column 105 with an inner diameter of 3.5 mm, a length of 450 mm, and an effective volume of 300 mL at the mixing ratio shown in the "Microbial carrier" column shown in Table 2 below. 24 and 200 g of the microbial carriers of Comparative Examples 1 to 6 were added.
  • the water to be treated in the water storage tank 101 is supplied into the denitrification column 105 from the supply inlet at the bottom of the denitrification column through the supply tube 103, and then The water was discharged from the upper return outlet and returned to the water storage tank 101 through the return tube 106, thereby circulating through the denitrification treatment system.
  • the nitrate nitrogen concentration C (mg/L) on the 10th day from the start of the test was measured using a compact nitrate ion meter (manufactured by Horiba, Ltd.: "LAQUAtwin NO3-11").
  • Table 2 below shows the nitrate nitrogen concentration after the denitrification test.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

本発明は、脱窒効率が安定化し良好となる微生物担体、及びこれを用いた水処理方法を提供する。 本発明の微生物担体は、脱窒能力を有する微生物を担持する微生物担体である;本発明の微生物担体は、生分解性樹脂と鉄とを含有する鉄含有担体を含む;鉄含有担体中のリンと鉄とのモル比(リン/鉄)Xは、前記鉄含有担体がリンを含有する場合、0<X≦0.5である;鉄含有担体がリンを含有しない場合、X=0である;鉄含有担体の鉄含有率は、鉄含有担体の質量に対して1.0×10-4質量%以上2.0質量%未満である。

Description

微生物担体及び水処理方法
 本発明は、微生物担体及び水処理方法に関する。
 本願は、2022年3月31日に、日本国特許庁に出願された特願2022-059131号に基づき優先権を主張し、その内容をここに援用する。
 アンモニア態窒素を含有する被処理水の処理方法として、微生物を用いた2段階の反応を用いる方法が知られている。当該方法は、硝化する能力を有する微生物(以下、「硝化菌」という場合もある)を用いてアンモニアを硝酸に変換する硝化反応と、脱窒する能力を有する微生物(以下、「脱窒菌」という場合もある)を用いて硝酸を窒素に分解する脱窒反応とからなり、発生する窒素が空気中に放出されるため、環境調和型の窒素除去方法である。
 脱窒反応に用いられる脱窒菌の多くは従属栄養細菌であるため、脱窒反応には炭素源を要する。代表的な炭素源としては、メタノールが知られているが、メタノールは毒性を有し、作業の安全上問題がある。また、安定した脱窒能を得るためには、硝酸態窒素の濃度に応じた量のメタノールを被処理水に供給する必要があるところ、その供給量のコントロールは容易ではない。さらに、例えば水生生物の飼育水の脱窒処理を行う場合は、消費されずに残存したメタノールが水生生物に害を及ぼすといった問題があった。
 このような問題を解決する方法として、特許文献1には、メタノールに代え、生分解性樹脂を被処理水に添加する生物学的脱窒法が提案されている。生分解性樹脂は、炭素源の徐放性を有するため、添加量の精密なコントロールを要することなく、脱窒能を持続させることができる点でメリットがある。しかしながら、脱窒速度、脱窒量等の脱窒効率は十分なレベルには至っていない。近年、環境保護の観点から硝酸性窒素の排出基準が厳しくなってきており、さらに脱窒効率の高い脱窒処理方法の開発が求められている。
 脱窒効率を高める手段としては、脱窒菌の増殖、活性化等を促進することが考えられる。ここで、脱窒菌は、リン酸塩等の栄養剤、ミネラルの活性化剤等により活性化することが知られている。特許文献2には、ミネラルの活性化剤等を複合させた微生物担体が提案されている。しかしながら、脱窒効率の向上に適切な元素種、濃度等の詳細は未だ不明である。
特開2004-175848号公報 特開2004-008923号公報
 生分解性樹脂を含有する微生物担体(以下、単に「担体」という場合がある)を用いた生物学的脱窒処理では、脱窒菌は担体の表面に定着してバイオフィルムを形成する。そして、脱窒に必要な炭素源は、主に担体を構成する生分解性樹脂から補われるが、ここでは炭素源の他に、リン酸塩等の栄養剤や、ミネラル等の活性化剤の補充も必要である。特に、鉄は、脱窒菌が担体に効率よく定着することでバイオフィルムを形成するため、効率よく脱窒するために必須な成分である。
 よって、脱窒反応においては、脱窒菌が良好に鉄を取り込めることが重要である。鉄成分を補うために、予め被処理水に鉄または鉄化合物を添加し補充する方法が考えられるが、脱窒菌が活性を保つことができるpH中性付近では、鉄は酸素により速やかに酸化されることで3価の鉄として存在する。3価の鉄は、主に難溶解性の水酸化鉄となって沈殿する。このため、被処理水中の鉄濃度が低下し易く、脱窒菌が良好に鉄を取り込めないとの課題があった。
 本発明は、上記事情に鑑みてなされたものであり、脱窒効率が安定化し良好となる微生物担体、及びこれを用いた水処理方法を提供することを課題とする。
 上記課題を解決するために、本発明者らは鋭意検討した結果、脱窒菌が取り込むことができる鉄は担体表面の近傍に存在する鉄のみであることから、脱窒菌に鉄を効率よく供給するためには、生分解性樹脂に鉄を含有した鉄含有担体が有効であることを見出した。さらに、脱窒が良好となるために、より適した、鉄化合物の種類、リン化合物との組み合わせ方の条件を見出した。
 本発明は以下の構成を有する。
[1] 脱窒能力を有する微生物を担持する微生物担体であって、
 生分解性樹脂と鉄とを含有する鉄含有担体を含み、
 前記鉄含有担体中のリンと鉄とのモル比(リン/鉄)Xは、
 前記鉄含有担体がリンを含有する場合、0<X≦0.5であり、
 前記鉄含有担体がリンを含有しない場合、X=0であり、
 前記鉄含有担体の鉄含有率が、鉄含有担体の質量に対して1.0×10-4質量%以上2.0質量%未満である、微生物担体。
[2] 生分解性樹脂とリンとを含有するリン含有担体をさらに含み、
 前記リン含有担体中の鉄とリンとのモル比(鉄/リン)Yは、
 前記リン含有担体が鉄を含有する場合、0<Y≦0.1であり、
 前記リン含有担体が鉄を含有しない場合、Y=0である、[1]に記載の微生物担体。
[3] 前記鉄含有担体が、三価の鉄を含有する、[1]または[2]に記載の微生物担体。
[4] 前記生分解性樹脂が、生分解性ポリエステルである、[1]~[3]のいずれかに記載の微生物担体。
[5] 前記生分解性ポリエステルが、ジカルボン酸由来の構成単位を2種類以上含む、[4]に記載の微生物担体。
[6] 前記微生物担体が、さらに前記生分解性樹脂を分解する能力を有する微生物を担持する微生物担体である、[1]~[5]のいずれかに記載の微生物担体。
[7] 脱窒能力を有する微生物を担持する微生物担体を用いる水処理方法であって、
 前記微生物担体は、生分解性樹脂と鉄とを含有する鉄含有担体を含み、
 前記鉄含有担体中のリンと鉄とのモル比(リン/鉄)Xは、
 前記鉄含有担体がリンを含有する場合、0<X≦0.5であり、
 前記鉄含有担体がリンを含有しない場合、X=0であり、
 前記鉄含有担体の鉄含有率が、鉄含有担体の質量に対して1.0×10-4質量%以上2.0質量%未満である、水処理方法。
[8] 前記微生物担体が、生分解性樹脂とリンとを含有するリン含有担体をさらに含み、
 前記リン含有担体中の鉄とリンとのモル比(鉄/リン)Yは、
 前記リン含有担体が鉄を含有する場合、0<Y≦0.1であり、
 前記リン含有担体が鉄を含有しない場合、Y=0である、[7]に記載の水処理方法。
 本発明の微生物担体及び水処理方法によれば、脱窒効率が安定化し良好となる。
図1は、脱窒処理システムの一例を示す模式図である。
 以下、本発明のいくつかの実施形態について詳細に説明するが、以下の説明は、実施形態の代表例であり、本発明はこれらの内容に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 用語の意味は、以下の通りである。
 脱窒菌とは、脱窒する能力を有する微生物を意味する。
 分解菌とは、生分解性樹脂を分解する能力を有する微生物を意味する。
 微生物とは、脱窒菌および分解菌を含む微生物を意味する。脱窒菌と分解菌とは、同一種の微生物である場合もある。つまり、脱窒菌および分解菌の両方に該当する微生物が存在し得る。
 低分子有機分とは、微生物により生分解性樹脂が分解されることで、低分子量化した有機分を意味する。
 担体Aとは、生分解性樹脂と鉄とを含有する鉄含有担体を意味する。担体Aは、リンをさらに含有していてもよい。
 担体Bとは、生分解性樹脂とリンとを含有するリン含有担体を意味する。担体Bは、鉄をさらに含有していてもよい。
 微生物担体とは、1以上の担体Aを含む担体を意味する。微生物担体は、1以上の担体Bもさらに含んでいてもよい。
 全有機炭素(TOC:Total Organic Carbon)は、水中に存在する有機物の濃度を意味する。TOCは、日東精工アナリテック社製「TOC-300V」を用いて、燃焼式のTOC分析装置を用いて測定される。
 全鉄とは、水中に含まれる溶解性及び非溶解性の鉄を意味する。全鉄は、JIS K0102 57.4に記載のICP発光分光分析法により測定される。
 全リンとは、水中に含まれる溶解性及び非溶解性のリンを意味する。全リンは、JIS K0102 46.3.1~3に記載のモリブデン青吸光光度法により測定される。
 数値範囲を示す「~」は、その前後に記載された数値を下限値および上限値として含むことを意味する。本明細書に開示の数値範囲は、その下限値および上限値を任意に組み合わせて新たな数値範囲とすることができる。
<微生物担体>
 一実施形態に係る微生物担体について、詳細に説明する。
 微生物担体は、脱窒能力を有する微生物を担持する微生物担体である。
 微生物担体は、少なくとも1つの担体Aを含む。微生物担体は2以上の担体Aを含んでいてもよい。微生物担体は、担体Aに加えて、さらに、1以上の担体Bを含んでいてもよい。微生物担体は、2種以上の担体を含む場合、それらの担体の集合体である。
 微生物担体は、生分解性樹脂を分解する能力を有する微生物を担持する微生物担体であることが好ましい。
 鉄は、鉄化合物に由来するものであり、鉄化合物の状態で担体Aに含有されることが好ましい。また、pH6~8の中性域の水に対し、不溶解性の性質をもつ鉄化合物が好ましく、鉄化合物の種類としては、三価の鉄が含まれる酸化鉄(III)、酸化鉄(II、III)、水酸化鉄(III)等が挙げられる。
 これらの鉄化合物を含有する担体Aであれば、被処理水中において、担体Aの表面近傍におけるpHが、担体表面に定着した微生物が活動するのに適したpH域で保たれる。そのため、担体Aから鉄が補充された後に、脱窒促進の効果が効率よく発揮される。また、微生物が生分解性樹脂を分解して脱窒を行う際に、担体Aの三価の鉄は、微生物の働きにより二価の鉄に還元されて微生物に取り込まれるか、または、三価の鉄の状態で微生物に取り込まれる。
 したがって、微生物によって取り込まれること以外で、担体Aから鉄が解離することがなく、被処理水中側に余剰な鉄が放出されて残留することがないため、微生物による脱窒に必要な鉄を効率よく補充することができる。
 一般的に、微生物が取り込める鉄は、主に二価の鉄である。しかし、二価の鉄は溶出により処理水を酸性にする。酸性下において、二価の鉄は三価に酸化されてしまうため、微生物が鉄を効率的に取り込むことができない。三価の鉄の場合、処理水は中性を示し、微生物の働きによって三価の鉄が二価に還元され、微生物が鉄を効率的に取り込むことができる。
 担体Aの鉄含有率C(Fe)は、担体Aの質量に対し、1.0×10-4質量%以上2.0質量%未満が好ましく、2.0×10-4質量%以上1.8質量%以下がより好ましく、5.0×10-4質量%以上1.5質量%以下がさらに好ましく、1.5×10-3質量%以上8.0×10-1質量%以下が特に好ましい。分解菌は、担体Aの表面において、生分解性樹脂を低分子有機分に分解し消費すると同時に、表面近傍の溶存酸素も消費することで、担体Aの表面近傍を無酸素に近い環境に誘導する。その後、脱窒菌が、担体Aの鉄を取り込み利用することで、脱窒を行う。担体Aの鉄含有率が上記の範囲内であれば、分解菌が低分子有機分を効率よく生成し消費し、無酸素環境が良好に形成されるため、脱窒が速やかに安定化し良好となる。担体Aの鉄含有率が1.0×10-4質量%以上であれば、担体Aによる鉄の補充が十分になされ、脱窒効率が良くなる。担体Aの鉄含有率が2.0質量%未満であれば、分解菌により低分子有機分が消費されると同時に無酸素環境が形成され、脱窒が安定化し、脱窒効率が良くなる。鉄含有率が2.0質量%以上では、バイオフィルムを担体Aの表面に形成する過程で、担体Aから鉄イオンが溶出する際にバイオフィルムが凝集することで、脱窒性能の低下を招くと推測される。
 また、脱窒菌が担体Aに定着し、低分子有機分を効率よく消費するためには、リンも重要な栄養源である。微生物担体がリンを含有することは、脱窒菌に対してリンを効率よく補充するのに有効である。
 担体Aがリンを含有する場合、担体Aに含有されるリンと鉄とのモル比(リン/鉄)Xは、0超0.5以下(0<X≦0.5)であり、0.1以下であることが好ましく、0.05以下がより好ましい。担体Aにおいてリン/鉄のモル比Xが上記範囲であれば、鉄及びリンが効率よく微生物に補充されるため、脱窒効率が改善する。
 担体Aにおいてリン/鉄のモル比Xが所定値以上になると、鉄はリン酸鉄(III)のような生物が取り込みにくい化合物になる。担体Aは、リンより鉄が多く含有される担体であり、微生物に鉄を補充するが、脱窒菌の活動が活発になる嫌気性環境下では、三価の鉄の一部が微生物により二価の鉄に還元され、リン酸鉄(III)も一部が微生物に取り込まれるようになると推察される。
 担体Aがリンを含有しない場合、リンと鉄とのモル比(リン/鉄)Xは、0(X=0)である。
 また、担体Aに対し、生分解性樹脂とリンとを含有する担体Bを組み合わせて使用することで、鉄及びリンの補充による脱窒効率の改善が期待できる。担体Aと担体Bとを組み合わせる場合の混合比は、質量比で担体A/担体Bが10/90以上であることが好ましい。この範囲であれは、鉄及びリンが効率よく微生物に補充されるため、担体Aおよび担体Bへの微生物の定着が良好になり、脱窒効率が改善する。
 担体Bのリン含有率は、特に制限はないが、担体Bの重量に対し、0.002~0.5質量%が好ましく、0.005~0.1質量%がより好ましい。リン含有率が上記範囲であれば、リンが効率よく微生物に補充される。そのため、微生物担体への微生物の定着が良好になり、脱窒効率が改善する。
 担体Bが鉄を含有する場合、担体Bに含有される鉄とリンとのモル比(鉄/リン)Yは、0超0.1以下(0<Y≦0.1)であり、0.05以下であることが好ましい。担体Bにおいて鉄/リンのモル比Yが上記範囲であれば、鉄及びリンが効率よく微生物に補充されるため、脱窒効率が改善する。
 担体Bが鉄を含有しない場合、鉄とリンとのモル比(鉄/リン)Yは、0(Y=0)である。
 担体Bは、鉄よりもリンが多く含有される担体であり、担体Bは好気性環境下、嫌気性環境下、無酸素環境下のいずれでも微生物にリンを補充するが、好気性環境下では、三価の鉄は還元されず、リン酸鉄(III)は生物に取り込まれにくいままの状態となる。よって、担体Aが鉄を補充しやすい嫌気性環境下又は無酸素環境下では、リン酸鉄(III)は比較的微生物に取り込まれやすい。これに対して、担体Bは好気性環境下、嫌気性環境下、無酸素環境下のいずれでもリンを補充できるが、好気性環境下では、リン酸鉄(III)は微生物に取り込まれにくい。このため、担体Aの鉄に対するリンのモル比Xの上限は、担体Bのリンに対する鉄のモル比Yの上限よりも大きくなると考えられる。
 担体Aおよび担体Bに含有されるリンとしては、特に制限はないが、例えば、リン酸カルシウム、リン酸マグネシウム等のカルシウム化合物やマグネシウム化合物が挙げられる。
 担体A、担体Bの鉄含有率C(Fe)(質量%)、リン含有率C(P)(質量%)は、以下の(I)~(VII)の方法で測定される。
(I)担体Aまたは担体Bを10gと、2mol/lの水酸化ナトリウム水溶液を30mlとを、容量50~100mlの耐圧チューブ内に測り取り、しっかりと蓋をする。
(II)105℃で12時間加熱した後、20℃付近まで市水等で冷却する。
(III)冷却後、耐圧チューブ内に存在する水溶液αを全量取り出し、200mlのガラスビーカーへと移す。
(IV)2mol/lの塩酸を用いて、水溶液αのpHを7.0に調整する。
(V)pH調整した水溶液αを100mlメスフラスコに移し、さらに純水を加えて水溶液αの体積を100mlに調整する。
(VI)水溶液αのTOCα(mg/l)、全鉄α(mg/l)、全リンα(mg/l)を上述した測定方法によって測定する。
(VII)以下の式1により、鉄含有率C(Fe)が求められる。また、以下の式2により、リン含有率C(P)が求められる。
 C(Fe)(質量%)=全鉄α(mg/l)÷TOCα(mg/l)×100 …式1
 C(P)(質量%)=全リンα(mg/l)÷TOCα(mg/l)×100 …式2
 担体Aに含有される鉄は、pH6~8の水に対し、不溶解性の性質をもつ鉄化合物が好ましい。担体Aに、pH6~8の中性域の水に対し、溶解性の性質をもつ鉄化合物が含有される場合、担体Aを水中に浸漬した際に、溶解性の鉄化合物が担体Aから水中へ速やかに溶出し、担体Aの表面近傍のpHが5未満に低下する。このため、担体Aへの微生物の定着、および微生物の活性が著しく低下する。
 担体A及び担体Bの形状は、特に限定されず、円柱状、球状、円筒状、チップ状等、いずれの形状であってよい。脱窒槽への充填のし易さを考慮すると、担体A及び担体Bの形状は、円柱状、球状、円筒状等であることが好ましい。
 本発明の微生物担体は、生分解性樹脂を含有する。この生分解性樹脂の加水分解によって生成される低分子量有機成分が、脱窒に必要な炭素源として利用される。
 生分解性樹脂は、生分解性ポリエステルであることが好ましい。生分解性ポリエステルとしては、例えば、PLA(polylactic acid)系、PBS(polybutylene succinate)系、PCL(poly caprolactone)系、PHBH(poly-3-hydroxybutyrate-co-3-hydroxyhexanoate)やPHBV(poly―3-hydroxybutyrate―co―3-hydroxyvalerate)等のPHB(poly hydroxybutyrate)系、PHA(polyhydroxy alkanoate)系、P3HA(poly-3-hydroxyrate)系、PBAT(polybutylene adipate/terephthalate)、poly(terephthalate/succinate)、等が挙げられる。
 生分解性ポリエステルの中でも、ジカルボン酸由来の構成単位を有する生分解性ポリエステルが好ましく、ジカルボン酸由来の構成単位とジオール由来の構成単位とを有する生分解性ポリエステルがより好ましい。生分解性樹脂が生分解性ポリエステルであれば、担体Aに含有される鉄を脱窒菌がより効率的に体内に取り入れることができ、それにより脱窒菌の増殖及び活性が安定し、脱窒効率が改善する。
 ジカルボン酸としては、例えば、シュウ酸、マロン酸、コハク酸、アジピン酸、グルタル酸、スベリン酸、アゼライン酸、セバシン酸、テレフタル酸、イソフタル酸、フタル酸等が挙げられる。生分解性樹脂は、ジカルボン酸由来の構成単位を2種以上有することが好ましい。ジカルボン酸由来の構成単位を2種以上有する生分解性樹脂を用いた場合、ジカルボン酸由来の構成単位を1種類有する生分解性樹脂を用いた場合よりも脱窒速度が速く、高い脱窒性能を示す傾向がある。
 生分解性樹脂としては、上述したジカルボン酸のうち、コハク酸由来の構成単位を有するものが好ましい。ブチレンサクシネート単位を主に有するポリブチレンサクシネート(PBS)系の生分解性樹脂が好ましい。好適なPBS系の生分解性樹脂としては、例えば、ポリブチレンサクシネート、ポリ(ブチレンサクシネート/アジペート)(PBSA)、ポリ(ブチレンサクシネート/カーボネート)、ポリ(ブチレンアジペート/テレフタレート)(PBAT)、ポリ(エチレンテレフタレート/サクシネート)が挙げられる。これらの中でも、特に、生分解性が高い点から、また、脱窒に必要な炭素源を徐放的に供給できる点から、PBSAが好ましい。さらに、PBSAは、PHB系等、その他の生分解性樹脂よりも分解し易いため、低分子量有機成分の生成が良好になる。そして、低分子量有機成分を生成すると同時に溶存酸素も消費するため、生分解性樹脂近傍が無酸素に近い状態になり、脱窒菌が脱窒反応を行うのに有効な無酸素環境が形成される。また、PBSA由来の低分子量有機成分は、脱窒菌が生育、増殖する上での基質あるいは水素供与体として好ましい。
 生分解性樹脂は、カルボン酸由来の構成単位を有する生分解性ポリエステルと、ポリ乳酸、PHA、ポリビニルアルコール、セルロース等の樹脂との混合物であってもよい。ジカルボン酸由来の構成単位を有する生分解性樹脂と、生分解性が異なるこれらの樹脂とを混合することで、生分解性樹脂を炭素源として長期間にわたって使用することができる。
 本発明の微生物担体は、本発明の効果を損なわない範囲で、生分解性樹脂以外の他の樹脂をさらに含有していてもよい。他の樹脂としては、例えば、ポリビニルアルコール、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリ酢酸、ポリ塩化ビニル、ポリスチレン等が挙げられる。
 担体Aに鉄を含有する方法は、特に限定はないが、例えば、生分解性樹脂に予め鉄および/または鉄化合物を高濃度で混錬し、分散させたマスターバッチを調製し、その後、単軸または2軸混錬押出機等にバスターバッチと生分解性樹脂とを供給して、溶融し含有させる方法が挙げられる。
 担体Bにリンおよび/またはリン化合物を含有する方法は、特に限定されない。例えば、生分解性樹脂に予めリンおよびリン化合物を高濃度で混錬し、分散させたマスターバッチを調製し、その後、単軸または2軸混錬押出機等にバスターバッチと生分解性樹脂とを供給して、溶融し含有させる方法が挙げられる。
 本発明の微生物担体に担持される脱窒菌としては、特に制限されない。脱窒能を有する公知の菌から適宜選択して用いることができるが、従属栄養性脱窒菌であることが好ましい。
 また、本発明の微生物担体は、生分解性樹脂の分解能力を有する微生物(以下、単に「分解菌」と記載する場合もある)を担持することが好ましい。分解菌は、微生物担体に付着して、微生物担体に含有される生分解性樹脂を分解する。これにより、微生物担体に分解菌が担持されない場合よりも多くの炭素源が脱窒菌に供給され、脱窒菌の増殖又は活動が促進される。この結果、脱窒速度及び脱窒量が向上する。分解菌としては、特に限定されないが、生分解性樹脂の分解能を有する公知の菌を適宜用いることができる。
 微生物担体による浄化処理の処理対象となる被処理水は、亜硝酸態窒素及び/又は硝酸態窒素を含むものであれば、特に制限されない。被処理水は上述した水生生物の飼育水であってもよく、畜産排水、食品排水、下水、浄化槽排水等の排水であってもよい。また、被処理水は、淡水であってもよく、海水であってもよい。
 「海水」とは、塩分を3.2質量%以上の濃度で含有する水を意味する。
 「汽水」とは、塩分を0.05質量%以上3.2質量%未満の濃度で含有する水を意味する。
 一方、「淡水」とは、塩分を全く含まない水であってもよく、塩分を汽水の塩分濃度未満の濃度で含有する水であってもよい。
 被処理水の硝酸態窒素濃度は、特に制限されないが、好ましくは10mg-N/L以上、より好ましくは20mg-N/L以上、さらに好ましくは50mg-N/L以上、特に好ましくは100mg-N/L以上、また、好ましくは5000mg-N/L以下、より好ましくは2000mg-N/L以下である。被処理水の硝酸態窒素濃度が上記範囲内であれば、効率よく脱窒が進行する。
 被処理水の鉄の濃度は、特に制限されないが、好ましくは0mg-Fe/L以上、より好ましくは0.01mg-Fe/L以上、さらに好ましくは0.1mg-Fe/L以上、特に好ましくは0.5mg-Fe/L以上、また好ましくは1mg-Fe/L以下である。被処理水の鉄の濃度が上記範囲内であれば、効率よく脱窒が進行する。
 被処理水のリンの濃度は、特に制限されないが、好ましくは0.01mg-P/L以上、より好ましくは0.1mg-P/L以上、さらに好ましくは1.0mg-P/L以上、特に好ましくは5.0mg-P/L以上、また、好ましくは20mg-P/L以下、より好ましくは10mg-P/L以下である。被処理水のリンの濃度が上記範囲内であれば、効率よく脱窒が進行する。
<水処理方法>
 一実施形態に係る水処理方法について、詳細に説明する。
 水処理方法は、上述した実施形態の微生物担体を用いた脱窒処理方法に関する。水処理方法では、1以上の担体Aを含む微生物担体を、脱窒する能力を有する微生物を担持する微生物担体として用いる。
 より詳細には、水処理方法は、脱窒菌が担持された微生物担体が内部に充填された脱窒槽に被処理水を供給し、被処理水中の亜硝酸態窒素及び/又は硝酸態窒素を脱窒反応により窒素に変換することで脱窒を行う脱窒処理工程を含む。
(脱窒処理工程)
 水処理方法において、微生物担体が充填された脱窒槽に被処理水を供給する方法は特に制限されない。例えば、循環式、オーバーフロー式、間欠式、又は回分式の脱窒処理システムを用いて脱窒槽に被処理水を供給する方法が挙げられる。これらのうち、循環式脱窒処理システムを用いることが好ましい。
 図1は、脱窒処理システムの一例を示す模式図である。図1に示す脱窒処理システムは、貯水タンク101、ポンプ102、供給チューブ103、微生物担体104が充填された脱窒カラム105、及び返送チューブ106を備える。この循環式脱窒処理システムにおいて、貯水タンク101に入れられた被処理水は、ポンプ102により供給チューブ103を通って脱窒カラム105に供給され、微生物担体104に接触した後、返送チューブ106を通って貯水タンク101に返送されることで循環する。
 脱窒処理工程において、被処理水の温度は、自然界で環境が取り得る温度範囲であればよく、0℃以上、好ましくは10℃以上、より好ましくは20℃以上、また、40℃以下、好ましくは35℃以下、さらに好ましくは30℃以下である。被処理水は、硝酸態窒素を含み、アンモニア態窒素、亜硝酸態窒素、を含んでもよい。また、被処理水は、生分解性樹脂以外に由来する有機成分も含んでよい。被処理水としては、水生生物の養殖に用いる飼育水が好適な例として挙げられる。水処理方法は、硝酸態窒素を含有する硝化処理後の飼育水の脱窒処理において、微生物を担持し、脱窒菌の活性を安定かつ促進することに、好適に用いられる。
 循環式脱窒処理システムは、図1に示されていないその他の種々の要素を有していてもよい。該要素としては、例えば、サイフォンのように、被処理水が脱窒槽に供給されるよう被処理水を移送するための移送手段;被処理水の温度を脱窒反応に適した温度に調整するためのヒーター及び/又は冷却器;被処理水がアンモニア態窒素を含む場合に、アンモニア態窒素を硝酸に変換するための硝化菌が担持された硝化担体;等が挙げられる。
 水処理方法は、アンモニアを硝酸に変える硝化反応、及び硝酸を窒素に分解する脱窒反応の2段階の反応を用いた水処理方法に組み込んで使用してもよい。このような水処理方法としては、例えば、サケ、マス、アユ、イワナ、ウナギ、カニ、エビ等の水生生物の飼育水の浄化方法が挙げられる。この場合、水生生物の飼育水には、アンモニア態窒素が含まれるため、硝化菌が担持された硝化担体を備える硝化槽に飼育水を供給してアンモニア態窒素を亜硝酸態窒素及び/又は硝酸態窒素に変換し、硝化槽を通過して亜硝酸態窒素及び/又は硝酸態窒素を含むものとなった飼育水(水処理方法に適用可能な被処理水)を脱窒処理工程に供すればよい。
 硝化槽と脱窒槽とは、別々の槽として設けられていてもよく、同一の槽であってもよい。硝化槽と脱窒槽とが同一の槽である場合、一つの槽中に硝化菌が担持された硝化担体と、脱窒菌が担持された微生物担体とが配置され、硝化担体と微生物担体とが繊維製セパレータ、ろ紙等で仕切られていてもよい。硝化槽、硝化菌、硝化担体、繊維製セパレータ、ろ紙等としては、公知のものから適宜選択して使用することができる。
 以上説明したように、本発明の微生物担体及び水処理方法によれば、微生物担体に定着した微生物の活動により、当該微生物担体を構成する生分解性樹脂の加水分解が良好に進み、かつ、当該微生物担体にバイオフィルムが良好に形成されるため、脱窒効率が安定化し、良好となる。
 また、本発明の微生物担体及び水処理方法によれば、脱窒処理において、鉄含有担体に定着した脱窒菌を含む微生物に鉄が効率よく補充されることで、鉄不足が抑制され、脱窒が良好となる。
 本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 以下、実施例により本発明をさらに詳細に説明するが、本発明の範囲が、以下の実施例で示す態様に限定されない。
<実施例1~24、比較例1~6>
(微生物担体の作製)
 以下に示す方法により、担体A1~A14、担体a1、担体a2、担体B1~B4、及び担体cを作製した。
「担体A1の作製」
 ペレット状のポリ(ブチレンサクシネート/アジペート)(PBSA;PTT MCC バイオケム社製;短径約3mm;長径約6mm)(以下、PBSAと記載する)200gを耐熱性のPTFE万能容器120φ(フロンケミカル社製)(以下、PTFE皿と記載する。)に投入した。さらに粉末状の酸化鉄(III)赤色(林純薬工業製)、及び粉末状のリン酸三カルシウム(関東化学製)を、以下の表1に記載の「PBSA200gに対する鉄化合物の添加量(g)」の欄、及び「PBSA200gに対するリン化合物の添加量(g)」の欄に記載した量(g)だけ添加した。PTFE製の棒(径12mm、長さ300mm)(以下、PTFE棒と記載する)を用いて撹拌混合することで、添加した酸化鉄(III)とリン酸三カルシウムとの全量をPBSAと混ぜ合わせた。その後、恒温槽にてPTFE皿ごと、PBSAを125℃で30分間加熱し、PBSAを溶融させた。その後、PTEF棒で溶融したPBSAと酸化鉄を練り合わせた。その後、再度、PTFE皿ごと、PBSAを125℃で30分間加熱し、溶融させた。その後、溶融したPBSAを、耐熱性のPTFE板(50mm×50mm)の上に全量移し、PTEF棒で押しつぶして厚さ3mmで、おおよそ横3000mm×横300mmの板状に成形した。その後、ハサミで、横10mm×横10mm×厚さ3mmのチップ状に裁断し、担体A1を作製した。
「担体A3~A5、担体a1、担体B2~B4の作製」
 酸化鉄(III)およびリン酸三カルシウムの添加量を、表1に記載の各担体の「PBSA200gに対する鉄化合物の添加量(g)」の欄に記載した量とすること以外、担体A1と同様の方法で、担体A3~A5、担体a1、担体B2~B4を作製した。
「担体A2の作製」
 酸化鉄(III)の代わりに、酸化鉄(II、III)を添加すること以外、担体A1と同様の方法で、担体A2を作製した。
「担体A6の作製」
 酸化鉄(III)の代わりに、硫酸鉄(II)・七水和物を添加すること以外、担体A1と同様の方法で、担体A6を作製した。
「担体A7、A9~A13、担体a2の作製」
 リン酸三カルシウムを添加しないこと以外、担体A1と同様の方法で、担体A7、A9~A13、担体a2を作製した。
「担体A8の作製」
 酸化鉄(III)の代わりに、酸化鉄(II、III)を添加すること、及びリン酸三カルシウムを添加しないこと以外、担体A1と同様の方法で、担体A8を作製した。
「担体A14の作製」
 酸化鉄(III)の代わりに、硫酸鉄(II)・七水和物を添加すること、及びリン酸三カルシウムを添加しないこと以外、担体A1と同様の方法で、担体A14を作製した。
「担体B1の作製」
 酸化鉄(III)を添加しないこと以外、担体A1と同様の方法で、担体B1を作製した。
「担体cの作製」
 酸化鉄(III)及びリン酸三カルシウムを添加しないこと以外、担体A1と同様の方法で、担体cを作製した。
Figure JPOXMLDOC01-appb-T000001
(馴養汚泥の調整)
 養殖場の飼育水の浄化処理設備の脱窒槽から懸濁水を採取し、3000rpmで5分間遠心分離にかけ濃縮し、活性汚泥浮遊物質(MLSS)が3600mg/Lの汚泥を作製した。
(脱窒試験)
 硝酸態窒素、リン、マグネシウムイオン、ナトリウムイオン、カルシウムイオンの濃度が、それぞれ100mg-N/L、5mg-P/L、8.8mg-Mg/L、1.03mg-Na/L、0.57mg-Ca/Lとなるよう、硝酸ナトリウム(NaNO)、リン酸水素二カリウム(KHPO)、硫酸マグネシウム七水和物(MgSO・7HO)、エチレンジアミン四酢酸二ナトリウム(EDTA)、塩化カルシウム・二水和物(CaCl・HO)を純水に溶解させることで、模擬排水を調製した。
 次いで、図1に示す循環式脱窒処理システムを用いて、脱窒試験を行った。
 まず、内径3.5mm、長さ450mm、及び有効容積300mLの脱窒カラム105に、以下の表2中に示す「微生物担体」の欄に示すような混合比率で組み合わせて作製した実施例1~24、及び比較例1~6の微生物担体を200g投入した。
 次に、処理対象水2000mLを容量2.2Lの貯水タンク101中で種汚泥20mLと混合し、ポンプ102により通水速度10mL/minで送液し、処理対象水を循環させた。
 図1に示すように、脱窒試験では、貯水タンク101中の処理対象水は、供給チューブ103を通って脱窒カラム下部の供給入口から脱窒カラム105内部に供給され、その後、脱窒カラム上部の返送出口から排出され、返送チューブ106を通って貯水タンク101内に返送されることで、脱窒処理システムを循環した。
 貯水タンク101中の被処理水について、試験開始から10日目の硝酸態窒素濃度C(mg/L)をコンパクト硝酸イオンメータ(堀場製作所社製:「LAQUAtwin NO3-11」)により測定した。以下の表2に、脱窒試験後の硝酸態窒素濃度を示す。
Figure JPOXMLDOC01-appb-T000002
 表1及び表2に示すように、担体Aに含有されるリンと鉄とのモル比(リン/鉄)Xの値が0.5以下(実施例1~24)の場合、0.5より大きい比較例1、3に比較して、脱窒試験後の被処理水の硝酸態窒素の値が低い。高い脱窒効率が確認された。
 鉄含有担体の鉄含有率が鉄含有担体の質量に対して2.0質量%未満である実施例は、鉄含有担体の鉄含有率が鉄含有担体の質量に対して2.0質量%である比較例6に比べ、脱窒試験後の被処理水の硝酸態窒素の値が低く、高い脱窒効率を示すことが確認された。
 また、鉄化合物が三価の鉄を含有する実施例1~21の場合、より高い脱窒効率が確認された。
 さらに、担体Aに含有されるリンと鉄とのモル比(リン/鉄)Xの値が0.05以下(実施例1~16)である場合、特に高い脱窒効率が確認された。
 比較例2、4、5では、担体Aを含まない微生物担体を用いた。この場合、脱窒に必要な鉄が微生物に補充されなかったため、脱窒が停滞し、被処理水の硝酸態窒素が低下しなかったと考えられる。
 以上より、生解性樹脂と鉄とを含有し、リンと鉄とのモル比(リン/鉄)Xが0.5以下である鉄含有担体を含む微生物担体を用いることで、高い脱窒効率を実現できることが確認された。
 本発明の微生物担体及び水処理方法によれば、脱窒効率が安定化し良好となる。
101…貯水タンク
102…ポンプ
103…供給チューブ
104…微生物担体
105…脱窒カラム
106…返送チューブ

Claims (8)

  1.  脱窒能力を有する微生物を担持する微生物担体であって、
     生分解性樹脂と鉄とを含有する鉄含有担体を含み、
     前記鉄含有担体中のリンと鉄とのモル比(リン/鉄)Xは、
     前記鉄含有担体がリンを含有する場合、0<X≦0.5であり、
     前記鉄含有担体がリンを含有しない場合、X=0であり、
     前記鉄含有担体の鉄含有率が、鉄含有担体の質量に対して1.0×10-4質量%以上2.0質量%未満である、微生物担体。
  2.  生分解性樹脂とリンとを含有するリン含有担体をさらに含み、
     前記リン含有担体中の鉄とリンとのモル比(鉄/リン)Yは、
     前記リン含有担体が鉄を含有する場合、0<Y≦0.1であり、
     前記リン含有担体が鉄を含有しない場合、Y=0である、請求項1に記載の微生物担体。
  3.  前記鉄含有担体が、三価の鉄を含有する、請求項1に記載の微生物担体。
  4.  前記生分解性樹脂が、生分解性ポリエステルである、請求項1に記載の微生物担体。
  5.  前記生分解性ポリエステルが、ジカルボン酸由来の構成単位を2種類以上含む、請求項4に記載の微生物担体。
  6.  前記微生物担体が、さらに前記生分解性樹脂を分解する能力を有する微生物を担持する微生物担体である、請求項1~5のいずれか一項に記載の微生物担体。
  7.  脱窒能力を有する微生物を担持する微生物担体を用いる水処理方法であって、
     前記微生物担体は、生分解性樹脂と鉄とを含有する鉄含有担体を含み、
     前記鉄含有担体中のリンと鉄とのモル比(リン/鉄)Xは、
     前記鉄含有担体がリンを含有する場合、0<X≦0.5であり、
     前記鉄含有担体がリンを含有しない場合、X=0であり、
     前記鉄含有担体の鉄含有率が、鉄含有担体の質量に対して1.0×10-4質量%以上2.0質量%未満である、水処理方法。
  8.  前記微生物担体が、生分解性樹脂とリンとを含有するリン含有担体をさらに含み、
     前記リン含有担体中の鉄とリンとのモル比(鉄/リン)Yは、
     前記リン含有担体が鉄を含有する場合、0<Y≦0.1であり、
     前記リン含有担体が鉄を含有しない場合、Y=0である、請求項7に記載の水処理方法。
PCT/JP2023/010639 2022-03-31 2023-03-17 微生物担体及び水処理方法 WO2023189743A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023523221A JP7416335B1 (ja) 2022-03-31 2023-03-17 微生物担体及び水処理方法
JP2023190941A JP2024010204A (ja) 2022-03-31 2023-11-08 微生物担体及び水処理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022059131 2022-03-31
JP2022-059131 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023189743A1 true WO2023189743A1 (ja) 2023-10-05

Family

ID=88201100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010639 WO2023189743A1 (ja) 2022-03-31 2023-03-17 微生物担体及び水処理方法

Country Status (2)

Country Link
JP (2) JP7416335B1 (ja)
WO (1) WO2023189743A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10296284A (ja) * 1997-04-30 1998-11-10 Takeda Chem Ind Ltd 微生物固定化用担体およびその製造法
JPH10327850A (ja) * 1997-05-29 1998-12-15 Res Dev Corp Of Japan 微量要素・無機栄養塩類拡散型菌体培養用担体
JP2004008923A (ja) 2002-06-06 2004-01-15 Taiho Ind Co Ltd 金属担持微生物固定化担体及び含窒排水処理方法
JP2004136182A (ja) * 2002-10-16 2004-05-13 Dainippon Plastics Co Ltd 汚水処理用の生分解性微生物担体、その製造方法及びそれを用いる汚水処理方法
JP2004175848A (ja) 2002-11-25 2004-06-24 Taiho Ind Co Ltd 脱窒作用を有する生分解性樹脂成形体
JP2007125460A (ja) * 2005-11-01 2007-05-24 Hitachi Plant Technologies Ltd 包括固定化担体及びその製造方法
CN109294948A (zh) * 2018-10-08 2019-02-01 北京交通大学 一种反硝化菌固定化颗粒及其制备方法
CN111072132A (zh) * 2020-01-09 2020-04-28 北京恩菲环保股份有限公司 一种硫铁自养反硝化悬浮填料及其制备方法
JP2021186805A (ja) * 2020-06-03 2021-12-13 湖北▲匯▼▲農▼生物科技有限公司 自動化汚水処理システム及び生物担体の製造方法
JP2022059131A (ja) 2020-10-01 2022-04-13 株式会社三洋物産 遊技機

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109096525B (zh) 2018-08-07 2021-07-06 华东理工大学 一种可生物降解发泡材料及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10296284A (ja) * 1997-04-30 1998-11-10 Takeda Chem Ind Ltd 微生物固定化用担体およびその製造法
JPH10327850A (ja) * 1997-05-29 1998-12-15 Res Dev Corp Of Japan 微量要素・無機栄養塩類拡散型菌体培養用担体
JP2004008923A (ja) 2002-06-06 2004-01-15 Taiho Ind Co Ltd 金属担持微生物固定化担体及び含窒排水処理方法
JP2004136182A (ja) * 2002-10-16 2004-05-13 Dainippon Plastics Co Ltd 汚水処理用の生分解性微生物担体、その製造方法及びそれを用いる汚水処理方法
JP2004175848A (ja) 2002-11-25 2004-06-24 Taiho Ind Co Ltd 脱窒作用を有する生分解性樹脂成形体
JP2007125460A (ja) * 2005-11-01 2007-05-24 Hitachi Plant Technologies Ltd 包括固定化担体及びその製造方法
CN109294948A (zh) * 2018-10-08 2019-02-01 北京交通大学 一种反硝化菌固定化颗粒及其制备方法
CN111072132A (zh) * 2020-01-09 2020-04-28 北京恩菲环保股份有限公司 一种硫铁自养反硝化悬浮填料及其制备方法
JP2021186805A (ja) * 2020-06-03 2021-12-13 湖北▲匯▼▲農▼生物科技有限公司 自動化汚水処理システム及び生物担体の製造方法
JP2022059131A (ja) 2020-10-01 2022-04-13 株式会社三洋物産 遊技機

Also Published As

Publication number Publication date
JP7416335B1 (ja) 2024-01-17
JP2024010204A (ja) 2024-01-23
JPWO2023189743A1 (ja) 2023-10-05

Similar Documents

Publication Publication Date Title
US10584046B2 (en) Nitrogen removal method, nitrification-reaction promoting agent for water treatment, and water treatment method
JP5890374B2 (ja) 生物学的窒素除去装置及び水処理システム
WO2011148949A1 (ja) 嫌気性アンモニア酸化反応を利用した生物学的窒素除去方法
CN1347851A (zh) 利用生物养殖设备的高浓度有机废水的处理方法
CN102753487A (zh) 同时缺氧生物除磷和氮
CN1789169A (zh) 包含有机硫磺化合物的排水的处理装置
US11396466B2 (en) Water treatment method
JP2023021429A (ja) 水の浄化方法、水の浄化装置及び低水温下における該浄化装置の使用
JP2024050967A (ja) 脱窒処理方法および脱窒処理装置
JP7416335B1 (ja) 微生物担体及び水処理方法
KR100390633B1 (ko) 무산소·혐기형 연속회분식 반응장치와 이를 이용하는 생물학적 질소·인 제거방법
Zhang et al. Sustainable treatment of antibiotic wastewater using combined process of microelectrolysis and struvite crystallization
JP2011092811A (ja) 排水処理装置及び排水処理方法
JP5909836B2 (ja) 電子供与体供給剤および、それを用いた環境浄化方法
JP2022153873A (ja) 微生物担体及び脱窒処理方法
KR100983829B1 (ko) 메탄발효조를 이용하는 유기물의 부식화에 의한 폐수의처리방법
US20120152176A1 (en) Microbial mediated chemical sequestering of phosphate in a closed-loop recirculating aquaculture system
Luo et al. Effects of Nitrate Concentration on Heterotrophic Denitrification in Wastewater Using Poly (butylene succinate) as a Carbon Source and Carrier
JP2006320844A (ja) 排水処理方法および装置
JP2023111655A (ja) 水処理装置、及び水処理方法
WO2019150229A1 (en) Integrated water body treatment systems and methods thereof
JP2000153290A (ja) 汚水処理方法及びそれを用いた汚水浄化槽
Wang et al. Ammonia conversion characteristics in a closed recirculating aquaculture system
JP2020163244A (ja) 排水処理装置、排水処理方法
Shi et al. Preparation of Hydroxyapatite (Hap) from Waste Eggshells for Enhancing the Granulation and Decontamination of Aerobic Granular Sludge: Deciphering the Performance and Mechanisms

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023523221

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779759

Country of ref document: EP

Kind code of ref document: A1