WO2023189487A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2023189487A1
WO2023189487A1 PCT/JP2023/009637 JP2023009637W WO2023189487A1 WO 2023189487 A1 WO2023189487 A1 WO 2023189487A1 JP 2023009637 W JP2023009637 W JP 2023009637W WO 2023189487 A1 WO2023189487 A1 WO 2023189487A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
oxide semiconductor
insulating layer
semiconductor layer
semiconductor device
Prior art date
Application number
PCT/JP2023/009637
Other languages
English (en)
French (fr)
Inventor
創 渡壁
将志 津吹
俊成 佐々木
尊也 田丸
Original Assignee
株式会社ジャパンディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンディスプレイ filed Critical 株式会社ジャパンディスプレイ
Publication of WO2023189487A1 publication Critical patent/WO2023189487A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices

Definitions

  • One embodiment of the present invention relates to a semiconductor device.
  • one embodiment of the present invention relates to a semiconductor device using an oxide semiconductor as a channel.
  • a semiconductor device using an oxide semiconductor for a channel has a simple structure and can be formed using a low-temperature process, like a semiconductor device using amorphous silicon for a channel. It is known that a semiconductor device using an oxide semiconductor for the channel has higher mobility than a semiconductor device using amorphous silicon for the channel.
  • JP 2021-141338 Publication Japanese Patent Application Publication No. 2014-099601 JP 2021-153196 Publication Japanese Patent Application Publication No. 2018-006730 Japanese Patent Application Publication No. 2016-184771 JP 2021-108405 Publication
  • an insulating layer formed under conditions containing more oxygen contains many defects. As a result of this, an abnormality in the characteristics of the semiconductor device or a characteristic variation in a reliability test occurs, which is thought to be caused by electrons being trapped in the defect. On the other hand, if an insulating layer with few defects is used, the amount of oxygen contained in the insulating layer cannot be increased. Therefore, oxygen cannot be sufficiently supplied from the insulating layer to the oxide semiconductor layer. As described above, there is a need to realize a structure that can repair oxygen vacancies formed in an oxide semiconductor layer while reducing defects in an insulating layer that cause variations in characteristics of a semiconductor device.
  • a semiconductor device with high mobility can be obtained by relatively increasing the proportion of indium contained in the oxide semiconductor layer.
  • oxygen vacancies are likely to be formed in the oxide semiconductor layer. Therefore, in order to achieve high mobility while maintaining high reliability, it is necessary to devise a configuration of the insulating layer around the oxide semiconductor layer.
  • One of the objects of an embodiment of the present invention is to provide a semiconductor device with high mobility and high reliability.
  • a semiconductor device includes a metal oxide layer on an insulating surface, an oxide semiconductor layer on the metal oxide layer, and an insulating layer on the oxide semiconductor layer, the insulating layer includes a first region overlapping with the oxide semiconductor layer, and the first aluminum concentration in the first region is 1 ⁇ 10 17 atoms/cm 3 or more.
  • FIG. 1 is a cross-sectional view schematically showing a semiconductor device according to an embodiment of the present invention.
  • 1 is a plan view showing an outline of a semiconductor device according to an embodiment of the present invention.
  • FIG. 2 is a sequence diagram showing a method for manufacturing a semiconductor device according to an embodiment of the present invention.
  • 1 is a cross-sectional view showing a method for manufacturing a semiconductor device according to an embodiment of the present invention.
  • 1 is a cross-sectional view showing a method for manufacturing a semiconductor device according to an embodiment of the present invention.
  • 1 is a cross-sectional view showing a method for manufacturing a semiconductor device according to an embodiment of the present invention.
  • 1 is a cross-sectional view showing a method for manufacturing a semiconductor device according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing a method for manufacturing a semiconductor device according to an embodiment of the present invention.
  • 1 is a cross-sectional view showing a method for manufacturing a semiconductor device according to an embodiment of the present invention.
  • 1 is a cross-sectional view showing a method for manufacturing a semiconductor device according to an embodiment of the present invention.
  • 1 is a cross-sectional view showing a method for manufacturing a semiconductor device according to an embodiment of the present invention.
  • 1 is a cross-sectional view showing a method for manufacturing a semiconductor device according to an embodiment of the present invention.
  • 1 is a plan view showing an outline of a display device according to an embodiment of the present invention.
  • FIG. 1 is a block diagram showing a circuit configuration of a display device according to an embodiment of the present invention.
  • FIG. 1 is a circuit diagram showing a pixel circuit of a display device according to an embodiment of the present invention.
  • 1 is a cross-sectional view showing an outline of a display device according to an embodiment of the present invention.
  • FIG. 2 is a plan view of a pixel electrode and a common electrode of a display device according to an embodiment of the present invention.
  • FIG. 1 is a circuit diagram showing a pixel circuit of a display device according to an embodiment of the present invention. 1 is a cross-sectional view showing an outline of a display device according to an embodiment of the present invention.
  • 5 is a graph showing measurement results of SIMS analysis of a channel region of an oxide semiconductor layer of a semiconductor device.
  • 3 is a graph showing measurement results of SIMS analysis of a source region or a drain region of an oxide semiconductor layer of a semiconductor device.
  • 3 is a graph showing electrical characteristics of a semiconductor device.
  • 3 is a graph showing a reliability test of a semiconductor device.
  • the direction from the substrate toward the oxide semiconductor layer is referred to as upward. Conversely, the direction from the oxide semiconductor layer toward the substrate is referred to as downward or downward.
  • the terms “upper” and “lower” are used in the description; however, for example, the vertical relationship between the substrate and the oxide semiconductor layer may be arranged in a direction different from that shown in the drawings.
  • the expression “an oxide semiconductor layer on a substrate” merely explains the vertical relationship between the substrate and the oxide semiconductor layer as described above; Other members may also be arranged.
  • Upper or lower refers to the stacking order in a structure in which multiple layers are stacked, and when expressed as a pixel electrode above a transistor, it means a positional relationship in which the transistor and pixel electrode do not overlap in plan view. It's okay. On the other hand, when expressed as a pixel electrode vertically above a transistor, it means a positional relationship in which the transistor and the pixel electrode overlap in plan view.
  • Display device refers to a structure that displays images using an electro-optic layer.
  • the term display device may refer to a display panel that includes an electro-optic layer, or may refer to a structure in which display cells are equipped with other optical components (e.g., polarizing components, backlights, touch panels, etc.).
  • the "electro-optic layer” may include a liquid crystal layer, an electroluminescent (EL) layer, an electrochromic (EC) layer, and an electrophoretic layer, unless a technical contradiction arises. Therefore, the embodiments to be described later will be explained by exemplifying a liquid crystal display device including a liquid crystal layer and an organic EL display device including an organic EL layer as display devices. It can be applied to a display device including an optical layer.
  • includes A, B or C
  • includes any one of A, B and C
  • includes one selected from the group consisting of A, B and C
  • includes multiple combinations of A to C, unless otherwise specified.
  • these expressions do not exclude cases where ⁇ includes other elements.
  • a semiconductor device according to an embodiment of the present invention will be described with reference to FIGS. 1 to 12.
  • semiconductor devices in addition to transistors used in display devices, semiconductor devices according to the embodiments described below can be used in integrated circuits (ICs) such as microprocessors (Micro-Processing Units: MPUs), or memory circuits. Good too.
  • ICs integrated circuits
  • MPUs Micro-Processing Units
  • FIG. 1 is a cross-sectional view schematically showing a semiconductor device according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing an outline of a semiconductor device according to an embodiment of the present invention.
  • the semiconductor device 10 is provided above the substrate 100.
  • the semiconductor device 10 includes a gate electrode 105, gate insulating layers 110 and 120, a metal oxide layer 130, an oxide semiconductor layer 140, a gate insulating layer 150, a gate electrode 160, insulating layers 170 and 180, a source electrode 201, and a drain electrode 203. including.
  • the source electrode 201 and the drain electrode 203 are not particularly distinguished, they may be collectively referred to as the source/drain electrode 200.
  • the gate electrode 105 is provided on the substrate 100. Gate insulating layer 110 and gate insulating layer 120 are provided on substrate 100 and gate electrode 105. A metal oxide layer 130 is provided on the gate insulating layer 120. Metal oxide layer 130 is in contact with gate insulating layer 120. The oxide semiconductor layer 140 is provided on the metal oxide layer 130. The oxide semiconductor layer 140 is in contact with the metal oxide layer 130. Among the main surfaces of the oxide semiconductor layer 140, the surface in contact with the metal oxide layer 130 is referred to as a lower surface 142. The end of the metal oxide layer 130 substantially coincides with the end of the oxide semiconductor layer 140.
  • no semiconductor layer or oxide semiconductor layer is provided between the metal oxide layer 130 and the substrate 100.
  • this embodiment exemplifies a configuration in which the metal oxide layer 130 is in contact with the gate insulating layer 120 and the oxide semiconductor layer 140 is in contact with the metal oxide layer 130
  • the present invention is not limited to this configuration.
  • Other layers may be provided between the gate insulating layer 120 and the metal oxide layer 130.
  • Another layer may be provided between the metal oxide layer 130 and the oxide semiconductor layer 140.
  • the sidewalls of the metal oxide layer 130 and the sidewalls of the oxide semiconductor layer 140 are aligned on a straight line, but the configuration is not limited to this.
  • the angle of the sidewall of the metal oxide layer 130 with respect to the main surface of the substrate 100 may be different from the angle of the sidewall of the oxide semiconductor layer 140.
  • the cross-sectional shape of the sidewall of at least one of the metal oxide layer 130 and the oxide semiconductor layer 140 may be curved.
  • the gate electrode 160 faces the oxide semiconductor layer 140.
  • Gate insulating layer 150 is provided between oxide semiconductor layer 140 and gate electrode 160.
  • the gate insulating layer 150 is in contact with the oxide semiconductor layer 140.
  • the surface in contact with the gate insulating layer 150 is referred to as an upper surface 141.
  • the surface between the upper surface 141 and the lower surface 142 is referred to as a side surface 143.
  • Insulating layers 170 and 180 are provided on gate insulating layer 150 and gate electrode 160. Openings 171 and 173 reaching the oxide semiconductor layer 140 are provided in the insulating layers 170 and 180.
  • Source electrode 201 is provided inside opening 171 .
  • the source electrode 201 is in contact with the oxide semiconductor layer 140 at the bottom of the opening 171.
  • Drain electrode 203 is provided inside opening 173.
  • the drain electrode 203 is in contact with the oxide semiconductor layer 140 at the bottom of the opening 173.
  • the gate electrode 105 has a function as a bottom gate of the semiconductor device 10 and a function as a light shielding film for the oxide semiconductor layer 140.
  • the gate insulating layer 110 has a function as a barrier film that blocks impurities that diffuse from the substrate 100 toward the oxide semiconductor layer 140.
  • the gate insulating layers 110 and 120 have a function as a gate insulating layer for the bottom gate.
  • the metal oxide layer 130 is a layer containing a metal oxide mainly composed of aluminum, and has a function as a gas barrier film that blocks gases such as oxygen and hydrogen.
  • the oxide semiconductor layer 140 is divided into a source region S, a drain region D, and a channel region CH.
  • the channel region CH is a region of the oxide semiconductor layer 140 that is vertically below the gate electrode 160.
  • the source region S is a region of the oxide semiconductor layer 140 that does not overlap with the gate electrode 160 and is a region closer to the source electrode 201 than the channel region CH.
  • the drain region D is a region of the oxide semiconductor layer 140 that does not overlap with the gate electrode 160 and is a region closer to the drain electrode 203 than the channel region CH.
  • the oxide semiconductor layer 140 in the channel region CH has physical properties as a semiconductor.
  • the oxide semiconductor layer 140 in the source region S and drain region D has physical properties as a conductor.
  • the gate electrode 160 has a function as a light shielding film for the top gate of the semiconductor device 10 and the oxide semiconductor layer 140.
  • the gate insulating layer 150 has a function as a gate insulating layer for the top gate, and has a function of releasing oxygen through heat treatment in the manufacturing process.
  • the insulating layers 170 and 180 have a function of insulating the gate electrode 160 and the source/drain electrode 200 and reducing the parasitic capacitance between them.
  • the operation of the semiconductor device 10 is mainly controlled by the voltage supplied to the gate electrode 160. An auxiliary voltage is supplied to the gate electrode 105.
  • the gate electrode 105 when the gate electrode 105 is simply used as a light shielding film, a specific voltage may not be supplied to the gate electrode 105 and the gate electrode 105 may be in a floating state. In other words, the gate electrode 105 may simply be called a "light shielding film".
  • the semiconductor device 10 may be a bottom-gate transistor in which the gate electrode is provided only below the oxide semiconductor layer, or a top-gate transistor in which the gate electrode is provided only above the oxide semiconductor layer. good.
  • the above configuration is just one embodiment, and the present invention is not limited to the above configuration.
  • the planar pattern of the metal oxide layer 130 is substantially the same as the planar pattern of the oxide semiconductor layer 140 in plan view.
  • a lower surface 142 of the oxide semiconductor layer 140 is covered with a metal oxide layer 130.
  • the entire lower surface 142 of the oxide semiconductor layer 140 is covered with the metal oxide layer 130.
  • the width of the gate electrode 105 is larger than the width of the gate electrode 160.
  • the D1 direction is a direction that connects the source electrode 201 and the drain electrode 203, and is a direction that indicates the channel length L of the semiconductor device 10.
  • the length in the D1 direction of the region where the oxide semiconductor layer 140 and the gate electrode 160 overlap (channel region CH) is the channel length L
  • the width of the channel region CH in the D2 direction is the channel width W. be.
  • the present embodiment illustrates a configuration in which the entire lower surface 142 of the oxide semiconductor layer 140 is covered with the metal oxide layer 130
  • the present invention is not limited to this configuration.
  • a portion of the lower surface 142 of the oxide semiconductor layer 140 does not need to be in contact with the metal oxide layer 130.
  • the entire lower surface 142 of the oxide semiconductor layer 140 in the channel region CH is covered with the metal oxide layer 130, and all or part of the lower surface 142 of the oxide semiconductor layer 140 in the source region S and the drain region D is covered with the metal oxide layer. 130 may not be covered. That is, all or part of the lower surface 142 of the oxide semiconductor layer 140 in the source region S and drain region D does not need to be in contact with the metal oxide layer 130.
  • a part of the lower surface 142 of the oxide semiconductor layer 140 in the channel region CH is not covered with the metal oxide layer 130, and the other part of the lower surface 142 is in contact with the metal oxide layer 130. Good too.
  • Gate insulating layer 150 may be patterned.
  • the gate insulating layer 150 may be patterned to expose the oxide semiconductor layer 140 in the source region S and drain region D. That is, the gate insulating layer 150 in the source region S and drain region D may be removed, and the oxide semiconductor layer 140 and the insulating layer 170 may be in contact with each other in these regions.
  • FIG. 2 illustrates a configuration in which the source/drain electrode 200 does not overlap the gate electrode 105 and the gate electrode 160 in plan view
  • the configuration is not limited to this.
  • the source/drain electrode 200 may overlap with at least one of the gate electrode 105 and the gate electrode 160.
  • the above configuration is just one embodiment, and the present invention is not limited to the above configuration.
  • a rigid substrate having light-transmitting properties is used, such as a glass substrate, a quartz substrate, a sapphire substrate, or the like. If the substrate 100 needs to have flexibility, a substrate containing resin, such as a polyimide substrate, an acrylic substrate, a siloxane substrate, a fluororesin substrate, etc., is used as the substrate 100.
  • a substrate containing a resin is used as the substrate 100, impurities may be introduced into the resin in order to improve the heat resistance of the substrate 100.
  • the semiconductor device 10 is a top-emission type display, the substrate 100 does not need to be transparent, so an impurity that reduces the transparency of the substrate 100 may be used.
  • the substrate 100 may be a semiconductor substrate such as a silicon substrate, a silicon carbide substrate, a compound semiconductor substrate, or a conductive substrate such as a stainless steel substrate. A substrate without this is used.
  • General metal materials are used for the gate electrode 105, the gate electrode 160, and the source/drain electrodes 200.
  • these materials include aluminum (Al), titanium (Ti), chromium (Cr), cobalt (Co), nickel (Ni), molybdenum (Mo), hafnium (Hf), tantalum (Ta), and tungsten (W). ), bismuth (Bi), silver (Ag), copper (Cu), and alloys thereof or compounds thereof are used.
  • the above materials may be used in a single layer or in a stacked layer.
  • gate electrode 160 and the source/drain electrodes 200 may be made of the same metal material or may be made of different metal materials.
  • the gate electrode 160 may not contain aluminum, and the source/drain electrodes 200 may contain aluminum.
  • a general insulating material is used for the gate insulating layers 110 and 120 and the insulating layers 170 and 180.
  • these insulating layers include silicon oxide (SiO x ), silicon oxynitride (SiO x N y ), silicon nitride (SiN x ), silicon nitride oxide (SiN x O y ), aluminum oxide (AlO x ), and silicon oxide.
  • Inorganic insulating layers such as aluminum nitride (AlO x N y ), aluminum nitride oxide (AlN x O y ), and aluminum nitride (AlN x ) are used.
  • SiO x N y and AlO x N y are silicon compounds and aluminum compounds containing nitrogen (N) in a smaller proportion (x>y) than oxygen (O).
  • SiN x O y and AlN x O y are silicon and aluminum compounds containing a smaller proportion of oxygen than nitrogen (x>y).
  • an insulating layer containing oxygen among the above insulating layers is used.
  • an inorganic insulating layer such as silicon oxide (SiO x ) or silicon oxynitride (SiO x N y ) is used.
  • the gate insulating layer 120 an insulating layer having a function of releasing oxygen through heat treatment is used.
  • the temperature of the heat treatment at which the gate insulating layer 120 releases oxygen is 600° C. or lower, 500° C. or lower, 450° C. or lower, or 400° C. or lower. That is, for example, when a glass substrate is used as the substrate 100, the gate insulating layer 120 releases oxygen at the heat treatment temperature performed in the manufacturing process of the semiconductor device 10.
  • the gate insulating layer 150 an insulating layer with few defects is used.
  • the gate insulating layer The oxygen composition ratio in No. 150 is closer to the stoichiometric ratio for the insulating layer than the oxygen composition ratio in the other insulating layer.
  • silicon oxide ( SiOx ) is used for each of the gate insulating layer 150 and the insulating layer 180
  • the composition ratio of oxygen in the silicon oxide used as the gate insulating layer 150 is the same as that of the oxide used as the insulating layer 180.
  • a layer in which no defects are observed when evaluated by electron spin resonance (ESR) may be used as the gate insulating layer 150.
  • a metal oxide containing aluminum as a main component is used as the metal oxide layer 130 and the metal oxide layer 190 used in the manufacturing process as described later.
  • the metal oxide layer 130 (or the metal oxide layer 190) may be made of aluminum oxide (AlO x ), aluminum oxynitride (AlO x N y ), aluminum nitride oxide (AlN x O y ), aluminum nitride (AlN x ), or the like.
  • An inorganic insulating layer is used.
  • a metal oxide layer containing aluminum as a main component means that the ratio of aluminum contained in the metal oxide layer 130 (or metal oxide layer 190) is 1% or more of the entire metal oxide layer 130 (or metal oxide layer 190). It means something.
  • the proportion of aluminum contained in the metal oxide layer 130 may be 5% or more and 70% or less, 10% or more and 60% or less, or 30% or more and 50% or less of the entire metal oxide layer 130. good.
  • the above ratio may be a mass ratio or a weight ratio.
  • the aluminum concentration detected in a region 50 nm or less from the surface of the gate insulating layer 150 is preferably 1 ⁇ 10 17 atoms/cm 3 or more.
  • the semiconductor device 10 Since the metal oxide layer 190 is removed during the manufacturing process, the semiconductor device 10 does not include the metal oxide layer 190. However, since aluminum diffused from the metal oxide layer 190 remains in the gate insulating layer 150, by measuring the aluminum concentration in the gate insulating layer 150, the semiconductor device 10 manufactured by the manufacturing method described later can be It can be inferred that. In particular, when the aluminum concentration in the gate insulating layer 150 is 1 ⁇ 10 17 atoms/cm 3 or more, it can be inferred that oxidation annealing using the metal oxide layer 190 is effectively performed.
  • the aluminum concentration in the gate insulating layer 150 is about that of an impurity. That is, the aluminum concentration in the gate insulating layer 150 is, for example, 1 ⁇ 10 21 atoms/cm 3 or less, preferably 1 ⁇ 10 20 atoms/cm 3 or less, and more preferably 1 ⁇ 10 19 atoms/cm 3 or less. 3 or less.
  • the semiconductor device 10 has high mobility and high reliability.
  • the oxide semiconductor layer 140 a metal oxide having semiconductor characteristics is used.
  • an oxide semiconductor containing two or more metals including indium (In) is used as the oxide semiconductor layer 140.
  • the ratio of indium to two or more metals is 50% or more.
  • gallium (Ga), zinc (Zn), aluminum (Al), hafnium (Hf), yttrium (Y), zirconia (Zr), and lanthanoid are used for the oxide semiconductor layer 140. Elements other than the above may be used for the oxide semiconductor layer 140.
  • the oxide semiconductor layer 140 may be amorphous or crystalline.
  • the oxide semiconductor layer 140 may be a mixed phase of amorphous and crystal. As described below, oxygen vacancies are likely to be formed in the oxide semiconductor layer 140 in which the ratio of indium is 50% or more. Oxygen vacancies are less likely to be formed in a crystalline oxide semiconductor than in an amorphous oxide semiconductor. Therefore, the oxide semiconductor layer 140 as described above is preferably crystalline.
  • the oxide semiconductor layer 140 for example, the gate insulating layers 110 and 120
  • hydrogen is released from layers provided closer to the substrate 100 than the oxide semiconductor layer 140 (for example, the gate insulating layers 110 and 120) in the heat treatment step of the manufacturing process.
  • the oxide semiconductor layer 140 oxygen vacancies occur in the oxide semiconductor layer 140.
  • the occurrence of oxygen vacancies is more pronounced as the pattern size of the oxide semiconductor layer 140 becomes larger.
  • the upper surface 141 of the oxide semiconductor layer 140 is affected by a process (for example, a patterning process or an etching process) after the oxide semiconductor layer 140 is formed.
  • the lower surface 142 of the oxide semiconductor layer 140 (the surface of the oxide semiconductor layer 140 on the substrate 100 side) is not affected as described above.
  • the number of oxygen vacancies formed near the top surface 141 of the oxide semiconductor layer 140 is greater than the number of oxygen vacancies formed near the bottom surface 142 of the oxide semiconductor layer 140.
  • oxygen vacancies in the oxide semiconductor layer 140 do not exist uniformly in the thickness direction of the oxide semiconductor layer 140, but exist in a non-uniform distribution in the thickness direction of the oxide semiconductor layer 140. are doing.
  • the number of oxygen vacancies in the oxide semiconductor layer 140 decreases toward the lower surface 142 of the oxide semiconductor layer 140, and increases toward the upper surface 141 of the oxide semiconductor layer 140.
  • the oxygen vacancies necessary for repairing the oxygen vacancies formed on the upper surface 141 side of the oxide semiconductor layer 140 are When a certain amount of oxygen is supplied, oxygen is excessively supplied to the lower surface 142 side of the oxide semiconductor layer 140. As a result, on the lower surface 142 side, defect levels different from oxygen vacancies are formed due to excess oxygen. As a result, phenomena such as characteristic fluctuations or decreases in field effect mobility occur during reliability tests. Therefore, in order to suppress such a phenomenon, it is necessary to supply oxygen to the upper surface 141 side of the oxide semiconductor layer 140 while suppressing oxygen supply to the lower surface 142 side of the oxide semiconductor layer 140.
  • the above problem is a problem that was newly recognized in the process of developing the present invention, and is not a problem that has been recognized from the past.
  • the characteristics change due to the reliability test. There was a trade-off relationship.
  • the above problems are solved, and good initial characteristics and reliability tests of the semiconductor device 10 can be obtained.
  • FIG. 3 is a sequence diagram showing a method for manufacturing a semiconductor device according to an embodiment of the present invention.
  • 4 to 12 are cross-sectional views showing a method for manufacturing a semiconductor device according to an embodiment of the present invention.
  • a method of manufacturing the semiconductor device 10 in which aluminum oxide is used as the metal oxide layers 130 and 190 will be described.
  • a gate electrode 105 is formed as a bottom gate on the substrate 100, and gate insulating layers 110 and 120 are formed on the gate electrode 105 ("Bottom" in step S2001 in FIG. 3).
  • GI/GE formation For example, silicon nitride is formed as the gate insulating layer 110.
  • silicon oxide is formed as the gate insulating layer 120.
  • the gate insulating layers 110 and 120 are formed by a CVD (Chemical Vapor Deposition) method. One or both of the gate insulating layers 110 and 120 may be referred to as a "first insulating layer".
  • the gate insulating layer 110 can block impurities that diffuse toward the oxide semiconductor layer 140 from the substrate 100 side, for example.
  • the silicon oxide used as the gate insulating layer 120 is silicon oxide that has a physical property of releasing oxygen through heat treatment.
  • a metal oxide layer 130 and an oxide semiconductor layer 140 are formed on the gate insulating layer 120 ("OS/AlOx film formation" in step S2002 in FIG. 3).
  • gate insulating layers 110 and 120 may be formed on the substrate 100, and a metal oxide layer 130 may be formed on the gate insulating layers 110 and 120.
  • the metal oxide layer 130 may be formed over the substrate 100, and the oxide semiconductor layer 140 may be formed over the metal oxide layer 130.
  • the oxide semiconductor layer 140 is formed so as to be in contact with the metal oxide layer 130.
  • the metal oxide layer 130 and the oxide semiconductor layer 140 are formed by sputtering or atomic layer deposition (ALD).
  • the thickness of the metal oxide layer 130 is 1 nm or more and 100 nm or less, 1 nm or more and 50 nm or less, 1 nm or more and 30 nm or less, or 1 nm or more and 10 nm or less.
  • aluminum oxide is used as the metal oxide layer 130.
  • Aluminum oxide has high gas barrier properties.
  • aluminum oxide used as the metal oxide layer 130 blocks hydrogen and oxygen released from the gate insulating layer 120 and suppresses the released hydrogen and oxygen from reaching the oxide semiconductor layer 140. do.
  • the thickness of the oxide semiconductor layer 140 is 10 nm or more and 100 nm or less, 15 nm or more and 70 nm or less, or 20 nm or more and 40 nm or less.
  • an oxide containing indium (In) and gallium (Ga) is used as the oxide semiconductor layer 140.
  • the oxide semiconductor layer 140 before heat treatment (OS annealing) described below is amorphous.
  • the oxide semiconductor layer 140 after film formation and before OS annealing is preferably in an amorphous state (a state in which the crystalline component of the oxide semiconductor is small).
  • the conditions for forming the oxide semiconductor layer 140 are preferably such that the oxide semiconductor layer 140 immediately after being formed does not crystallize as much as possible.
  • the oxide semiconductor layer 140 is formed by a sputtering method, the oxide semiconductor layer 140 is formed while the temperature of the object to be formed (the substrate 100 and the structure formed thereon) is controlled. Filmed.
  • the temperature of the object to be film-formed increases with the film-forming process.
  • microcrystals are included in the oxide semiconductor layer 140 immediately after film-forming. The microcrystals inhibit crystallization during subsequent OS annealing.
  • film formation may be performed while cooling the object to be film-formed.
  • the temperature of the surface of the object to be film-formed (hereinafter referred to as "film-forming temperature”) is 100°C or lower, 70°C or lower, 50°C or lower, or 30°C or lower.
  • the object to be film-formed may be cooled from the surface opposite to the surface to be film-formed.
  • the oxide semiconductor layer 140 containing few crystal components can be formed immediately after the film formation.
  • a pattern of the oxide semiconductor layer 140 is formed ("OS pattern formation" in step S2003 in FIG. 3).
  • a resist mask is formed over the oxide semiconductor layer 140, and the oxide semiconductor layer 140 is etched using the resist mask.
  • Wet etching may be used to etch the oxide semiconductor layer 140, or dry etching may be used.
  • etching may be performed using an acidic etchant.
  • oxalic acid or hydrofluoric acid may be used as the etchant.
  • oxide semiconductor layer 140 After patterning the oxide semiconductor layer 140, heat treatment (OS annealing) is performed on the oxide semiconductor layer 140 ("OS annealing" in step S2004 in FIG. 3). In this embodiment, the oxide semiconductor layer 140 is crystallized by this OS annealing.
  • a pattern of the metal oxide layer 130 is formed ("AlOx pattern formation" in step S2005 in FIG. 3).
  • the metal oxide layer 130 is etched using the oxide semiconductor layer 140 patterned in the above process as a mask. Wet etching or dry etching may be used to etch the metal oxide layer 130. For example, diluted hydrofluoric acid (DHF) is used for wet etching.
  • DHF diluted hydrofluoric acid
  • a gate insulating layer 150 is formed on the oxide semiconductor layer 140 ("GI formation" in step S2006 in FIG. 3).
  • silicon oxide is formed as the gate insulating layer 150.
  • Gate insulating layer 150 is formed by a CVD method.
  • the gate insulating layer 150 may be formed at a film forming temperature of 350° C. or higher.
  • the thickness of the gate insulating layer 150 is 50 nm or more and 300 nm or less, 60 nm or more and 200 nm or less, or 70 nm or more and 150 nm or less.
  • a process of implanting oxygen into a part of the gate insulating layer 150 may be performed.
  • the gate insulating layer 150 is sometimes referred to as a "second insulating layer.”
  • a metal oxide layer 190 is formed on the gate insulating layer 150 (“AlOx film formation” in step S2007 in FIG. 22).
  • Metal oxide layer 190 is formed by a sputtering method. The deposition of metal oxide layer 190 implants oxygen into gate insulating layer 150 .
  • the thickness of the metal oxide layer 190 is 5 nm or more and 100 nm or less, 5 nm or more and 50 nm or less, 5 nm or more and 30 nm or less, or 7 nm or more and 15 nm or less.
  • aluminum oxide is used as the metal oxide layer 190.
  • Aluminum oxide has high gas barrier properties.
  • aluminum oxide used as the metal oxide layer 190 suppresses outward diffusion of oxygen implanted into the gate insulating layer 150 during the formation of the metal oxide layer 190.
  • the process gas used in sputtering remains in the metal oxide layer 190.
  • Ar may remain in the metal oxide layer 190. The remaining Ar can be detected by SIMS analysis of the metal oxide layer 190.
  • Oxygen released from the gate insulating layer 120 by oxidation annealing is blocked by the metal oxide layer 130. Therefore, oxygen is difficult to be supplied to the lower surface 142 of the oxide semiconductor layer 140. Oxygen released from the gate insulating layer 120 diffuses into the gate insulating layer 150 provided on the gate insulating layer 120 from the region where the metal oxide layer 130 is not formed, and passes through the gate insulating layer 150 to the oxide semiconductor. Layer 140 is reached. As a result, oxygen released from the gate insulating layer 120 is difficult to be supplied to the lower surface 142 of the oxide semiconductor layer 140 and is mainly supplied to the side surfaces 143 and the upper surface 141 of the oxide semiconductor layer 140.
  • oxygen released from the gate insulating layer 150 is supplied to the top surface 141 and side surfaces 143 of the oxide semiconductor layer 140 by the oxidation annealing.
  • hydrogen may be released from the gate insulating layers 110 and 120 by the above oxidation annealing, the hydrogen is blocked by the metal oxide layer 130.
  • the oxidation annealing process suppresses the supply of oxygen to the bottom surface 142 of the oxide semiconductor layer 140 where the amount of oxygen vacancies is small, while suppressing the supply of oxygen to the top surface 141 and the bottom surface 142 of the oxide semiconductor layer 140 where the amount of oxygen vacancies is large.
  • Oxygen can be supplied to the side surface 143.
  • oxygen implanted into the gate insulating layer 150 is blocked by the metal oxide layer 190. Therefore, the release of the oxygen into the atmosphere is suppressed. Therefore, by the oxidation annealing, the oxygen is efficiently supplied to the oxide semiconductor layer 140, and oxygen vacancies are repaired.
  • the metal oxide layer 190 is etched (removed) ("AlOx removal" in step S2009 in FIG. 3).
  • Wet etching or dry etching may be used to etch the metal oxide layer 190.
  • DHF diluted hydrofluoric acid
  • the metal oxide layer 190 formed on the entire surface is removed.
  • the removal of the metal oxide layer 190 is performed without using a mask.
  • the etching removes all of the metal oxide layer 190 in the region overlapping with the oxide semiconductor layer 140 formed in one pattern, at least in plan view.
  • a gate electrode 160 is formed on the gate insulating layer 150 ("GE formation" in step S2010 in FIG. 3).
  • the gate electrode 160 is formed by a sputtering method or an atomic layer deposition method, and is patterned through a photolithography process. As described above, the gate electrode 160 is formed so as to be in contact with the gate insulating layer 150 exposed by removing the metal oxide layer 190.
  • the gate insulating layer 150 When etching the gate electrode 160, a portion of the gate insulating layer 150 may also be etched. That is, the gate insulating layer 150 includes regions with different thicknesses. Specifically, the gate insulating layer 150 includes a first region that overlaps with the gate electrode 160 and a second region that does not overlap with the gate electrode 160. The first region overlaps with the channel region CH of the oxide semiconductor layer 140. The second region overlaps with the source region S or drain region D of the oxide semiconductor layer 140. The thickness of the second region is smaller than the thickness of the first region.
  • the aluminum concentration in the first region is 1 ⁇ 10 17 atoms/cm 3 or more, , the aluminum concentration in the second region is lower than the aluminum concentration in the first region.
  • the resistance of the source region S and drain region D of the oxide semiconductor layer 140 is reduced (“SD resistance reduction” in step S2011 in FIG. 3).
  • impurities are implanted into the oxide semiconductor layer 140 from the gate electrode 160 side through the gate insulating layer 150 by ion implantation.
  • argon (Ar), phosphorus (P), and boron (B) are implanted into the oxide semiconductor layer 140 by ion implantation.
  • Oxygen vacancies are formed in the oxide semiconductor layer 140 by ion implantation, so that the resistance of the oxide semiconductor layer 140 is reduced. Since the gate electrode 160 is provided above the oxide semiconductor layer 140 functioning as the channel region CH of the semiconductor device 10, impurities are not implanted into the oxide semiconductor layer 140 in the channel region CH.
  • insulating layers 170 and 180 are formed as interlayer films on the gate insulating layer 150 and the gate electrode 160 ("interlayer film formation" in step S2012 in FIG. 3).
  • the insulating layers 170 and 180 are formed by CVD.
  • silicon nitride is formed as the insulating layer 170
  • silicon oxide is formed as the insulating layer 180.
  • the materials used for the insulating layers 170 and 180 are not limited to those described above.
  • the thickness of the insulating layer 170 is 50 nm or more and 500 nm or less.
  • the thickness of the insulating layer 180 is 50 nm or more and 500 nm or less.
  • openings 171 and 173 are formed in the gate insulating layer 150 and the insulating layers 170 and 180 ("contact opening" in step S2013 in FIG. 3).
  • the oxide semiconductor layer 140 in the source region S is exposed through the opening 171.
  • the oxide semiconductor layer 140 in the drain region D is exposed through the opening 173.
  • the semiconductor shown in FIG. The device 10 is completed.
  • the mobility is 50 cm 2 /Vs or more in the range where the channel length L of the channel region CH is 2 ⁇ m or more and 4 ⁇ m or less, and the channel width of the channel region CH is 2 ⁇ m or more and 25 ⁇ m or less. , 55 cm 2 /Vs or more, or 60 cm 2 /Vs or more can be obtained.
  • the mobility in this embodiment is the field effect mobility in the saturation region of the semiconductor device 10.
  • the mobility is determined by the potential difference (Vd) between the source electrode and the drain electrode being the value obtained by subtracting the threshold voltage (Vth) of the semiconductor device 10 from the voltage (Vg) supplied to the gate electrode ( Vg ⁇ Vth) means the maximum value of field effect mobility in a region larger than Vg ⁇ Vth).
  • FIG. 13 is a plan view showing an outline of a display device according to an embodiment of the present invention.
  • the display device 20 includes an array substrate 300, a seal portion 310, a counter substrate 320, a flexible printed circuit board 330 (FPC 330), and an IC chip 340.
  • the array substrate 300 and the counter substrate 320 are bonded together by a seal portion 310.
  • a plurality of pixel circuits 301 are arranged in a matrix.
  • the liquid crystal region 22 is a region that overlaps a liquid crystal element 311, which will be described later, in plan view.
  • the seal area 24 in which the seal part 310 is provided is an area around the liquid crystal area 22.
  • the FPC 330 is provided in the terminal area 26.
  • the terminal area 26 is an area where the array substrate 300 is exposed from the counter substrate 320, and is provided outside the seal area 24.
  • the outside of the seal area 24 means the outside of the area where the seal part 310 is provided and the area surrounded by the seal part 310.
  • IC chip 340 is provided on FPC 330.
  • the IC chip 340 supplies signals for driving each pixel circuit 301.
  • FIG. 14 is a block diagram showing a circuit configuration of a display device according to an embodiment of the present invention.
  • a source driver circuit 302 is provided at a position adjacent to the liquid crystal region 22 in the D1 direction (column direction) in which the pixel circuit 301 is arranged, and
  • a gate driver circuit 303 is provided at an adjacent position (in the row direction).
  • the source driver circuit 302 and the gate driver circuit 303 are provided in the seal area 24 described above.
  • the area where the source driver circuit 302 and the gate driver circuit 303 are provided is not limited to the seal area 24, but may be any area outside the area where the pixel circuit 301 is provided.
  • a source wiring 304 extends from the source driver circuit 302 in the D1 direction, and is connected to a plurality of pixel circuits 301 arranged in the D1 direction.
  • a gate wiring 305 extends from the gate driver circuit 303 in the D2 direction, and is connected to the plurality of pixel circuits 301 arranged in the D2 direction.
  • a terminal section 306 is provided in the terminal region 26.
  • the terminal portion 306 and the source driver circuit 302 are connected by a connection wiring 307.
  • the terminal portion 306 and the gate driver circuit 303 are connected by a connection wiring 307.
  • the semiconductor device 10 shown in the first embodiment is used as a transistor included in a pixel circuit 301, a source driver circuit 302, and a gate driver circuit 303.
  • FIG. 15 is a circuit diagram showing a pixel circuit of a display device according to an embodiment of the present invention.
  • the pixel circuit 301 includes elements such as a semiconductor device 10, a storage capacitor 350, and a liquid crystal element 311.
  • the semiconductor device 10 has a gate electrode 160, a source electrode 201, and a drain electrode 203.
  • Gate electrode 160 is connected to gate wiring 305.
  • Source electrode 201 is connected to source wiring 304.
  • Drain electrode 203 is connected to storage capacitor 350 and liquid crystal element 311.
  • the electrode designated by the symbol "201" is referred to as a source electrode
  • the electrode designated by the symbol "203" is referred to as a drain electrode.
  • An electrode that functions as an electrode and is designated by the symbol "203" may function as a source electrode.
  • FIG. 16 is a cross-sectional view of a display device according to an embodiment of the present invention.
  • the display device 20 is a display device using the semiconductor device 10.
  • the semiconductor device 10 may be used in a peripheral circuit including the source driver circuit 302 and the gate driver circuit 303.
  • the configuration of the semiconductor device 10 is the same as the semiconductor device 10 shown in FIG. 1, so the description will be omitted.
  • An insulating layer 360 is provided on the source electrode 201 and drain electrode 203.
  • a common electrode 370 that is commonly provided to a plurality of pixels is provided on the insulating layer 360.
  • An insulating layer 380 is provided on the common electrode 370.
  • An opening 381 is provided in the insulating layers 360 and 380.
  • a pixel electrode 390 is provided on the insulating layer 380 and inside the opening 381. Pixel electrode 390 is connected to drain electrode 203.
  • a wiring layer 162 is provided as the same layer as the gate electrode 160.
  • the wiring layer 162 includes the same material as the gate electrode 160.
  • the wiring layer 162 is provided on an insulating layer corresponding to the gate insulating layer 150.
  • a metal oxide layer 190 is also formed on the insulating layer, and oxidation annealing is performed. Therefore, the aluminum concentration in the region of the insulating layer overlapping with the wiring layer 162 is preferably 1 ⁇ 10 17 atoms/cm 3 or more. Furthermore, the aluminum concentration in the region of the insulating layer that does not overlap with the wiring layer 162 is lower than the aluminum concentration in the region of the insulating layer that overlaps with the wiring layer 162.
  • FIG. 17 is a plan view of a pixel electrode and a common electrode of a display device according to an embodiment of the present invention.
  • the common electrode 370 has an overlapping region that overlaps with the pixel electrode 390 in plan view and a non-overlapping region that does not overlap with the pixel electrode 390.
  • a voltage is supplied between the pixel electrode 390 and the common electrode 370, a transverse electric field is formed from the pixel electrode 390 in the overlapping region toward the common electrode 370 in the non-overlapping region.
  • the gradation of the pixel is determined by operating the liquid crystal molecules included in the liquid crystal element 311 due to this horizontal electric field.
  • FIGS. 18 and 19 A display device using a semiconductor device according to an embodiment of the present invention will be described with reference to FIGS. 18 and 19.
  • a configuration will be described in which the semiconductor device 10 described in the first embodiment is applied to a circuit of an organic EL display device.
  • the outline and circuit configuration of the display device 20 are the same as those shown in FIGS. 13 and 14, so a description thereof will be omitted.
  • FIG. 18 is a circuit diagram showing a pixel circuit of a display device according to an embodiment of the present invention.
  • the pixel circuit 301 includes elements such as a drive transistor 11, a selection transistor 12, a storage capacitor 210, and a light emitting element DO.
  • the drive transistor 11 and the selection transistor 12 have the same configuration as the semiconductor device 10.
  • a source electrode of the selection transistor 12 is connected to a signal line 211, and a gate electrode of the selection transistor 12 is connected to a gate line 212.
  • the source electrode of the drive transistor 11 is connected to the anode power supply line 213, and the drain electrode of the drive transistor 11 is connected to one end of the light emitting element DO.
  • the other end of the light emitting element DO is connected to a cathode power line 214.
  • the gate electrode of the drive transistor 11 is connected to the drain electrode of the selection transistor 12.
  • the storage capacitor 210 is connected to the gate electrode and drain electrode of the drive transistor 11.
  • the signal line 211 is supplied with a gradation signal that determines the light emission intensity of the light emitting element DO.
  • the gate line 212 is supplied with a signal for selecting a pixel row in which the above-mentioned gradation signal is to be written.
  • FIG. 19 is a cross-sectional view of a display device according to an embodiment of the present invention.
  • the configuration of the display device 20 shown in FIG. 19 is similar to the display device 20 shown in FIG. 16, but the structure above the insulating layer 360 of the display device 20 of FIG. The structure is different from that above 360.
  • the configuration of the display device 20 in FIG. 19 a description of the same configuration as the display device 20 in FIG. 16 will be omitted, and differences between the two will be described.
  • the display device 20 has a pixel electrode 390, a light emitting layer 392, and a common electrode 394 (light emitting element DO) above the insulating layer 360.
  • the pixel electrode 390 is provided on the insulating layer 360 and inside the opening 381.
  • An insulating layer 362 is provided on the pixel electrode 390.
  • An opening 363 is provided in the insulating layer 362. The opening 363 corresponds to the light emitting area. That is, the insulating layer 362 defines pixels.
  • a light emitting layer 392 and a common electrode 394 are provided on the pixel electrode 390 exposed through the opening 363.
  • a pixel electrode 390 and a light emitting layer 392 are provided individually for each pixel.
  • the common electrode 394 is provided in common to a plurality of pixels. Different materials are used for the light emitting layer 392 depending on the display color of the pixel.
  • the semiconductor device described in the first embodiment is applied to a liquid crystal display device and an organic EL display device
  • the semiconductor device may be applied to a self-luminous display device or an electronic paper type display device other than an EL display device.
  • the semiconductor device described above can be applied to anything from small to medium-sized display devices to large-sized display devices without any particular limitation.
  • the semiconductor device 10 described in the first embodiment was manufactured, and the semiconductor device 10 was evaluated. Further, as a comparative example, a semiconductor device was manufactured in which the metal oxide layer 130 in contact with the oxide semiconductor layer 140 was not provided.
  • an aluminum oxide layer was formed as the metal oxide layer 190 by a sputtering method, and after oxidation annealing was performed, the aluminum oxide layer was removed.
  • the metal oxide layer 190 was not formed and oxidation annealing was not performed.
  • FIG. 20 is a graph showing measurement results of SIMS analysis of a channel region of an oxide semiconductor layer of a semiconductor device.
  • FIG. 21 is a graph showing measurement results of SIMS analysis of a source region or a drain region of an oxide semiconductor layer of a semiconductor device.
  • the vertical axis represents the aluminum concentration (Al concentration)
  • the horizontal axis represents the depth in the stacking direction of the semiconductor device.
  • FIGS. 20 and 21 show the laminated structures of the example and the comparative example in the lamination direction.
  • the symbols SiNx, SiOx, GI, GE, OS, and MO represent a silicon nitride layer, a silicon oxide layer, a gate insulating layer, a gate electrode, an oxide semiconductor layer, and a metal oxide layer, respectively.
  • the silicon nitride layer SiNx and the silicon oxide layer SiOx in contact with the silicon oxide layer SiOx correspond to the gate insulating layers 110 and 120, respectively.
  • the metal oxide layer MO, the oxide semiconductor layer OS, the gate insulating layer GI, and the gate electrode GE correspond to the metal oxide layer 130, the oxide semiconductor layer 140, the gate insulating layer 150, and the gate electrode 160, respectively.
  • silicon oxide was used for the gate insulating layer GI, similarly to the silicon oxide layer SiOx.
  • the SIMS analysis used so-called SSDP-SIMS, which measures from the substrate side. Furthermore, in FIGS. 20 and 21, the aluminum concentration in the silicon oxide layer SiOx and the gate insulating layer GI is quantified using a SiO 2 standard sample (quantification range in the figure). That is, in FIGS. 20 and 21, the aluminum concentrations in each of the silicon oxide layer SiOx and the gate insulating layer GI can be compared in absolute value. On the other hand, the aluminum concentrations in other layers can be compared in terms of magnitude, but cannot be compared in terms of absolute values.
  • the gate insulating layer GI of the example in the channel region, had a higher aluminum concentration than the gate insulating layer GI of the comparative example (dotted line).
  • the aluminum concentrations of the gate insulating layer GI in the example and comparative example were 2 ⁇ 10 17 atoms/cm 3 and 6 ⁇ 10 16 atoms/cm 3 , respectively.
  • the aluminum concentration of the gate insulating layer GI of the example was higher than that of the gate insulating layer GI of the comparative example in the source region or the drain region.
  • the aluminum concentration of the gate insulating layer GI in the example and comparative example is 1.5 ⁇ 10 17 atoms/cm 3 and 6 ⁇ 10 16 atoms/cm, respectively. It was 3 . Therefore, in the example, it was found that aluminum in the aluminum oxide formed as the metal oxide layer 190 diffused into the gate insulating layer GI by the heat treatment of oxidation annealing.
  • FIG. 22 is a graph showing the electrical characteristics of the semiconductor device 10. The measurement conditions for the electrical characteristics shown in FIG. 22 are as shown in Table 1.
  • FIG. 22 shows the electrical characteristics (Id-Vg characteristics) and mobility of the semiconductor device 10. As shown by the arrow in FIG. 22, the vertical axis for the drain current (Id) is shown on the left side of the graph, and the vertical axis for the mobility calculated from the drain current is shown on the right side of the graph. has been done.
  • the electrical characteristics of the semiconductor device 10 exhibit so-called normally-off (enhancement type) characteristics in which the drain current Id starts flowing when the gate voltage Vg is higher than 0V.
  • the mobility calculated from the electrical characteristics is about 59 cm 2 /Vs.
  • FIG. 23 is a graph showing a reliability test of the semiconductor device 10.
  • the measurement conditions for the reliability test shown in FIG. 23 are as shown in Table 2. That is, as a reliability test, reliability was evaluated using Positive Bias Temperature Stress (PBTS) and Negative Bias Temperature Illumination Stress (NBTIS).
  • PBTS Positive Bias Temperature Stress
  • NTIS Negative Bias Temperature Illumination Stress
  • the results of evaluating the electrical characteristics of the semiconductor device 10 before stress application (0 sec) and after stress application (3600 sec) are displayed in an overlapping manner.
  • the electrical characteristics before stress application (0 sec) are shown by a dotted line
  • the electrical characteristics after stress application (3600 sec) are shown by a solid line.
  • the electrical characteristics before and after stress application hardly change in both the NBTIS test and the PBTS test.
  • the semiconductor device 10 not only has high mobility but also stable reliability.
  • the semiconductor device 10 having such high mobility and high reliability can be obtained by crystallizing the oxide semiconductor layer 140 and supplying sufficient oxygen to the oxide semiconductor layer 140. Therefore, in the method for manufacturing the semiconductor device 10, OS annealing and oxidation annealing are important.
  • the oxidation annealing heat treatment is performed with the metal oxide layer 130 provided below the oxide semiconductor layer 140 and the metal oxide layer 190 further formed over the gate insulating layer 150.
  • the metal oxide layers 130 and 190 can prevent hydrogen from entering the oxide semiconductor layer 140.
  • the side surfaces 143 and top surface 141 of the oxide semiconductor layer 140 are in contact with the gate insulating layer 150, and oxygen from the gate insulating layer 150 is efficiently delivered to the side surfaces 143 and top surface 141 of the oxide semiconductor layer 140, which have a large amount of oxygen vacancies. Since oxygen is supplied, oxygen vacancies in the oxide semiconductor layer 140 can be repaired.
  • the metal oxide layer 190 is removed in the subsequent AlOx removal process, but the aluminum contained in the metal oxide layer 190 is diffused into the gate insulating layer 150 by oxidation annealing and remains. Therefore, aluminum can be detected by analyzing the composition of the gate insulating layer 150 of the manufactured semiconductor device 10. Note that it can be understood from the graphs shown in FIGS. 22 and 23 that the aluminum remaining in the gate insulating layer 150 does not deteriorate the electrical characteristics and reliability.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Thin Film Transistor (AREA)

Abstract

半導体装置は、絶縁表面の上の酸化金属層と、酸化金属層の上の酸化物半導体層と、酸化物半導体層の上の絶縁層と、を含み、絶縁層は、酸化物半導体層と重畳する第1領域を含み、第1領域の第1アルミニウム濃度が、1×1017atoms/cm3以上である。第1領域は、酸化物半導体層の反対側に位置する絶縁層の表面から50nm以下の領域であってもよい。

Description

半導体装置
 本発明の一実施形態は、半導体装置に関する。特に、本発明の一実施形態は、チャネルとして酸化物半導体が用いられた半導体装置に関する。
 近年、アモルファスシリコン、低温ポリシリコン、及び単結晶シリコンに替わり、酸化物半導体がチャネルに用いられた半導体装置の開発が進められている(例えば、特許文献1~6参照)。酸化物半導体がチャネルに用いられた半導体装置は、アモルファスシリコンがチャネルに用いられた半導体装置と同様に、単純な構造かつ低温プロセスで形成することができる。酸化物半導体がチャネルに用いられた半導体装置は、アモルファスシリコンがチャネルに用いられた半導体装置よりも高い移動度を有することが知られている。
 酸化物半導体がチャネルに用いられた半導体装置が安定した動作をするために、その製造工程において酸化物半導体層に酸素を供給し、酸化物半導体層に形成された酸素欠損を低減することが重要である。例えば、酸化物半導体層に酸素を供給する方法の一つとして、絶縁層が酸素をより多く含む条件で、酸化物半導体層を覆う絶縁層を形成する技術が開示されている。
特開2021-141338号公報 特開2014-099601号公報 特開2021-153196号公報 特開2018-006730号公報 特開2016-184771号公報 特開2021-108405号公報
 しかしながら、酸素をより多く含む条件で形成された絶縁層は欠陥を多く含む。その影響で、その欠陥に電子がトラップされることが原因と考えられる半導体装置の特性異常又は信頼性試験における特性変動が発生する。一方、欠陥の少ない絶縁層を用いると、絶縁層に含まれる酸素を多くすることができない。したがって、絶縁層から酸化物半導体層に十分に酸素を供給することができない。このように、半導体装置の特性変動の原因となる絶縁層中の欠陥を低減しつつ、酸化物半導体層に形成された酸素欠損を修復することができる構造を実現することが要求されている。
 さらに、酸化物半導体層に含まれるインジウムの比率を相対的に高くすることで、高い移動度を有する半導体装置が得られることが知られている。ただし、酸化物半導体層に含まれるインジウムの比率が高い場合、酸化物半導体層に酸素欠損が形成されやすい。したがって、高い信頼性を維持したまま高い移動度を実現するためには、酸化物半導体層の周囲の絶縁層の構成を工夫する必要がある。
 本発明の一実施形態は、高移動度かつ信頼性が高い半導体装置を提供することを目的の一つとする。
 本発明の一実施形態に係る半導体装置は、絶縁表面の上の酸化金属層と、酸化金属層の上の酸化物半導体層と、酸化物半導体層の上の絶縁層と、を含み、絶縁層は、酸化物半導体層と重畳する第1領域を含み、第1領域の第1アルミニウム濃度が、1×1017atoms/cm以上である。
本発明の一実施形態に係る半導体装置の概要を示す断面図である。 本発明の一実施形態に係る半導体装置の概要を示す平面図である。 本発明の一実施形態に係る半導体装置の製造方法を示すシーケンス図である。 本発明の一実施形態に係る半導体装置の製造方法を示す断面図である。 本発明の一実施形態に係る半導体装置の製造方法を示す断面図である。 本発明の一実施形態に係る半導体装置の製造方法を示す断面図である。 本発明の一実施形態に係る半導体装置の製造方法を示す断面図である。 本発明の一実施形態に係る半導体装置の製造方法を示す断面図である。 本発明の一実施形態に係る半導体装置の製造方法を示す断面図である。 本発明の一実施形態に係る半導体装置の製造方法を示す断面図である。 本発明の一実施形態に係る半導体装置の製造方法を示す断面図である。 本発明の一実施形態に係る半導体装置の製造方法を示す断面図である。 本発明の一実施形態に係る表示装置の概要を示す平面図である。 本発明の一実施形態に係る表示装置の回路構成を示すブロック図である。 本発明の一実施形態に係る表示装置の画素回路を示す回路図である。 本発明の一実施形態に係る表示装置の概要を示す断面図である。 本発明の一実施形態に係る表示装置の画素電極及び共通電極の平面図である。 本発明の一実施形態に係る表示装置の画素回路を示す回路図である。 本発明の一実施形態に係る表示装置の概要を示す断面図である。 半導体装置の酸化物半導体層のチャネル領域におけるSIMS分析の測定結果を示すグラフである。 半導体措置の酸化物半導体層のソース領域又はドレイン領域におけるSIMS分析の測定結果を示すグラフである。 半導体装置の電気特性を示すグラフである。 半導体装置の信頼性試験を示すグラフである。
 以下に、本発明の各実施の形態について、図面を参照しつつ説明する。以下の開示はあくまで一例にすぎない。当業者が、発明の主旨を保ちつつ、実施形態の構成を適宜変更することによって容易に想到し得る構成は、当然に本発明の範囲に含有される。説明をより明確にするため、図面は、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合がある。しかし、図示された形状は、あくまで一例であって、本発明の解釈を限定しない。本明細書と各図において、既出の図に関して前述した構成と同様の構成には、同一の符号を付して、詳細な説明を適宜省略することがある。
 本発明の各実施の形態において、基板から酸化物半導体層に向かう方向を上又は上方という。逆に、酸化物半導体層から基板に向かう方向を下又は下方という。このように、説明の便宜上、上方又は下方という語句を用いて説明するが、例えば、基板と酸化物半導体層との上下関係が図示と異なる向きに配置されてもよい。以下の説明で、例えば基板上の酸化物半導体層という表現は、上記のように基板と酸化物半導体層との上下関係を説明しているに過ぎず、基板と酸化物半導体層との間に他の部材が配置されていてもよい。上方又は下方は、複数の層が積層された構造における積層順を意味するものであり、トランジスタの上方の画素電極と表現する場合、平面視において、トランジスタと画素電極とが重ならない位置関係であってもよい。一方、トランジスタの鉛直上方の画素電極と表現する場合は、平面視において、トランジスタと画素電極とが重なる位置関係を意味する。
 「表示装置」とは、電気光学層を用いて映像を表示する構造体を指す。例えば、表示装置という用語は、電気光学層を含む表示パネルを指す場合もあり、又は表示セルに対して他の光学部材(例えば、偏光部材、バックライト、タッチパネル等)を装着した構造体を指す場合もある。「電気光学層」には、技術的な矛盾が生じない限り、液晶層、エレクトロルミネセンス(EL)層、エレクトロクロミック(EC)層、電気泳動層が含まれ得る。したがって、後述する実施形態について、表示装置として、液晶層を含む液晶表示装置、及び有機EL層を含む有機EL表示装置を例示して説明するが、本実施形態における構造は、上述した他の電気光学層を含む表示装置へ適用することができる。
 本明細書において「αはA、B又はCを含む」、「αはA,B及びCのいずれかを含む」、「αはA,B及びCからなる群から選択される一つを含む」、といった表現は、特に明示が無い限り、αがA~Cの複数の組み合わせを含む場合を排除しない。さらに、これらの表現は、αが他の要素を含む場合も排除しない。
 なお、以下の各実施形態は、技術的な矛盾を生じない限り、互いに組み合わせることができる。
<第1実施形態>
 図1~図12を参照して、本発明の一実施形態に係る半導体装置について説明する。例えば、以下に示す実施形態の半導体装置は、表示装置に用いられるトランジスタの他に、マイクロプロセッサ(Micro-Processing Unit:MPU)などの集積回路(Integrated Circuit:IC)、又はメモリ回路に用いられてもよい。
[半導体装置10の構成]
 図1及び図2を参照して、本発明の一実施形態に係る半導体装置10の構成について説明する。図1は、本発明の一実施形態に係る半導体装置の概要を示す断面図である。図2は、本発明の一実施形態に係る半導体装置の概要を示す平面図である。
 図1に示すように、半導体装置10は基板100の上方に設けられている。半導体装置10は、ゲート電極105、ゲート絶縁層110、120、酸化金属層130、酸化物半導体層140、ゲート絶縁層150、ゲート電極160、絶縁層170、180、ソース電極201、及びドレイン電極203を含む。ソース電極201及びドレイン電極203を特に区別しない場合、これらを併せてソース・ドレイン電極200という場合がある。
 ゲート電極105は基板100の上に設けられている。ゲート絶縁層110及びゲート絶縁層120は基板100及びゲート電極105の上に設けられている。酸化金属層130はゲート絶縁層120の上に設けられている。酸化金属層130はゲート絶縁層120に接している。酸化物半導体層140は酸化金属層130の上に設けられている。酸化物半導体層140は酸化金属層130に接している。酸化物半導体層140の主面のうち、酸化金属層130に接する面を下面142という。酸化金属層130の端部は、酸化物半導体層140の端部と略一致している。
 本実施形態では、酸化金属層130と基板100との間に、半導体層又は酸化物半導体層は設けられていない。
 本実施形態では、酸化金属層130がゲート絶縁層120に接し、酸化物半導体層140が酸化金属層130に接している構成が例示されているが、この構成に限定されない。ゲート絶縁層120と酸化金属層130との間に他の層が設けられていてもよい。酸化金属層130と酸化物半導体層140との間に他の層が設けられていてもよい。
 図1では、酸化金属層130の側壁と酸化物半導体層140の側壁とが直線上に並んでいるが、この構成に限定されない。基板100の主面に対する酸化金属層130の側壁の角度が酸化物半導体層140の側壁の角度と異なっていてもよい。酸化金属層130及び酸化物半導体層140の少なくともいずれか一方の側壁の断面形状が湾曲していてもよい。
 ゲート電極160は酸化物半導体層140に対向している。ゲート絶縁層150は、酸化物半導体層140とゲート電極160との間に設けられている。ゲート絶縁層150は酸化物半導体層140に接している。酸化物半導体層140の主面のうち、ゲート絶縁層150に接する面を上面141という。上面141と下面142との間の面を側面143という。絶縁層170、180はゲート絶縁層150及びゲート電極160の上に設けられている。絶縁層170、180には、酸化物半導体層140に達する開口171、173が設けられている。ソース電極201は開口171の内部に設けられている。ソース電極201は開口171の底部で酸化物半導体層140に接している。ドレイン電極203は開口173の内部に設けられている。ドレイン電極203は開口173の底部で酸化物半導体層140に接している。
 ゲート電極105は、半導体装置10のボトムゲートとしての機能及び酸化物半導体層140に対する遮光膜としての機能を備える。ゲート絶縁層110は、基板100から酸化物半導体層140に向かって拡散する不純物を遮蔽するバリア膜としての機能を備える。ゲート絶縁層110、120は、ボトムゲートに対するゲート絶縁層としての機能を備える。酸化金属層130は、アルミニウムを主成分とする酸化金属を含む層であり、酸素や水素などのガスを遮蔽するガスバリア膜としての機能を備える。
 酸化物半導体層140は、ソース領域S、ドレイン領域D、及びチャネル領域CHに区分される。チャネル領域CHは、酸化物半導体層140のうちゲート電極160の鉛直下方の領域である。ソース領域Sは、酸化物半導体層140のうちゲート電極160と重ならない領域であって、チャネル領域CHよりもソース電極201に近い側の領域である。ドレイン領域Dは、酸化物半導体層140のうちゲート電極160と重ならない領域であって、チャネル領域CHよりもドレイン電極203に近い側の領域である。チャネル領域CHにおける酸化物半導体層140は、半導体としての物性を備えている。ソース領域S及びドレイン領域Dにおける酸化物半導体層140は、導電体としての物性を備えている。
 ゲート電極160は半導体装置10のトップゲート及び酸化物半導体層140に対する遮光膜としての機能を備える。ゲート絶縁層150は、トップゲートに対するゲート絶縁層としての機能を備え、製造プロセスにおける熱処理によって酸素を放出する機能を備える。絶縁層170、180はゲート電極160とソース・ドレイン電極200とを絶縁し、両者間の寄生容量を低減する機能を備える。半導体装置10の動作は、主にゲート電極160に供給される電圧によって制御される。ゲート電極105には補助的な電圧が供給される。ただし、ゲート電極105を単に遮光膜として用いる場合、ゲート電極105に特定の電圧が供給されず、ゲート電極105がフローティング状態であってもよい。つまり、ゲート電極105は単に「遮光膜」と呼ばれてもよい。
 本実施形態では、半導体装置10として、ゲート電極が酸化物半導体層の上方及び下方の両方に設けられたデュアルゲート型トランジスタが用いられた構成を例示するが、この構成に限定されない。例えば、半導体装置10として、ゲート電極が酸化物半導体層の下方のみに設けられたボトムゲート型トランジスタ、又はゲート電極が酸化物半導体層の上方のみに設けられたトップゲート型トランジスタが用いられてもよい。上記の構成はあくまで一実施形態に過ぎず、本発明は上記の構成に限定されない。
 図2に示すように、平面視において、酸化金属層130の平面パターンは、酸化物半導体層140の平面パターンと略同一である。図1及び図2を参照すると、酸化物半導体層140の下面142は酸化金属層130によって覆われている。特に、本実施形態では、酸化物半導体層140の下面142の全てが、酸化金属層130によって覆われている。D1方向において、ゲート電極105の幅はゲート電極160の幅より大きい。D1方向は、ソース電極201とドレイン電極203とを結ぶ方向であり、半導体装置10のチャネル長Lを示す方向である。具体的には、酸化物半導体層140とゲート電極160とが重なる領域(チャネル領域CH)におけるD1方向の長さがチャネル長Lであり、当該チャネル領域CHのD2方向の幅がチャネル幅Wである。
 本実施形態では、酸化物半導体層140の下面142の全てが酸化金属層130によって覆われた構成を例示したが、この構成に限定されない。例えば、酸化物半導体層140の下面142の一部が酸化金属層130と接していなくてもよい。例えば、チャネル領域CHにおける酸化物半導体層140の下面142の全てが酸化金属層130によって覆われ、ソース領域S及びドレイン領域Dにおける酸化物半導体層140の下面142の全て又は一部が酸化金属層130によって覆われていなくてもよい。つまり、ソース領域S及びドレイン領域Dにおける酸化物半導体層140の下面142の全て又は一部が酸化金属層130と接していなくてもよい。ただし、上記の構成において、チャネル領域CHにおける酸化物半導体層140の下面142の一部が酸化金属層130によって覆われておらず、当該下面142のその他の部分が酸化金属層130と接していてもよい。
 本実施形態では、ゲート絶縁層150が全面に形成され、ゲート絶縁層150に開口171、173が設けられた構成を例示したが、この構成に限定されない。ゲート絶縁層150がパターニングされていてもよい。例えば、ソース領域S及びドレイン領域Dの酸化物半導体層140を露出するようにゲート絶縁層150がパターニングされていてもよい。つまり、ソース領域S及びドレイン領域Dのゲート絶縁層150が除去され、これらの領域で酸化物半導体層140と絶縁層170とが接していてもよい。
 図2では、平面視において、ソース・ドレイン電極200がゲート電極105及びゲート電極160と重ならない構成が例示されているが、この構成に限定されない。例えば、平面視において、ソース・ドレイン電極200がゲート電極105及びゲート電極160の少なくともいずれか一方と重なっていてもよい。上記の構成はあくまで一実施形態に過ぎず、本発明は上記の構成に限定されない。
[半導体装置10の各部材の材質]
 基板100として、ガラス基板、石英基板、及びサファイア基板など、透光性を有する剛性基板が用いられる。基板100が可撓性を備える必要がある場合、基板100として、ポリイミド基板、アクリル基板、シロキサン基板、フッ素樹脂基板など、樹脂を含む基板が用いられる。基板100として樹脂を含む基板が用いられる場合、基板100の耐熱性を向上させるために、上記の樹脂に不純物が導入されてもよい。特に、半導体装置10がトップエミッション型のディスプレイである場合、基板100が透明である必要はないため、基板100の透明度を低下させる不純物が用いられてもよい。表示装置ではない集積回路に半導体装置10が用いられる場合は、基板100としてシリコン基板、炭化シリコン基板、化合物半導体基板などの半導体基板、又は、ステンレス基板などの導電性基板のように、透光性を備えない基板が用いられる。
 ゲート電極105、ゲート電極160、及びソース・ドレイン電極200として、一般的な金属材料が用いられる。例えば、これらの部材として、アルミニウム(Al)、チタン(Ti)、クロム(Cr)、コバルト(Co)、ニッケル(Ni)、モリブデン(Mo)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)、ビスマス(Bi)、銀(Ag)、銅(Cu)、及びこれらの合金又はこれらの化合物が用いられる。ゲート電極105、ゲート電極160、及びソース・ドレイン電極200として、上記の材料が単層で用いられてもよく積層で用いられてもよい。
 なお、ゲート電極160とソース・ドレイン電極200とは、同じ金属材料が用いられてもよく、異なる金属材料が用いられてもよい。例えば、ゲート電極160がアルミニウムを含まず、ソース・ドレイン電極200がアルミニウムを含んでいてもよい。
 ゲート絶縁層110、120及び絶縁層170、180として、一般的な絶縁性材料が用いられる。例えば、これらの絶縁層として、酸化シリコン(SiO)、酸化窒化シリコン(SiO)、窒化シリコン(SiN)、窒化酸化シリコン(SiN)、酸化アルミニウム(AlO)、酸化窒化アルミニウム(AlO)、窒化酸化アルミニウム(AlN)、窒化アルミニウム(AlN)などの無機絶縁層が用いられる。
 上記のSiO及びAlOは、酸素(O)よりも少ない比率(x>y)の窒素(N)を含有するシリコン化合物及びアルミニウム化合物である。SiN及びAlNは、窒素よりも少ない比率(x>y)の酸素を含有するシリコン化合物及びアルミニウム化合物である。
 ゲート絶縁層150として、上記の絶縁層のうち酸素を含む絶縁層が用いられる。例えば、ゲート絶縁層150として、酸化シリコン(SiO)、酸化窒化シリコン(SiO)などの無機絶縁層が用いられる。
 ゲート絶縁層120として、熱処理によって酸素を放出する機能を備える絶縁層が用いられる。例えば、ゲート絶縁層120が酸素を放出する熱処理の温度は、600℃以下、500℃以下、450℃以下、又は400℃以下である。つまり、例えば、ゲート絶縁層120は、基板100としてガラス基板が用いられた場合において、半導体装置10の製造工程で行われる熱処理温度で酸素を放出する。
 ゲート絶縁層150として、欠陥が少ない絶縁層が用いられる。例えば、ゲート絶縁層150における酸素の組成比と、ゲート絶縁層150と同様の組成の絶縁層(以下、「他の絶縁層」という)における酸素の組成比と、を比較した場合、ゲート絶縁層150における酸素の組成比の方が当該他の絶縁層における酸素の組成比よりも当該絶縁層に対する化学量論比に近い。具体的には、ゲート絶縁層150及び絶縁層180の各々に酸化シリコン(SiO)が用いられる場合、ゲート絶縁層150として用いられる酸化シリコンにおける酸素の組成比は、絶縁層180として用いられる酸化シリコンにおける酸素の組成比に比べて、酸化シリコンの化学量論比に近い。例えば、ゲート絶縁層150として、電子スピン共鳴法(ESR)で評価したときに欠陥が観測されない層が用いられてもよい。
 酸化金属層130及び後述するように製造工程で用いられる酸化金属層190として、アルミニウムを主成分とする酸化金属が用いられる。例えば、酸化金属層130(又は酸化金属層190)として、酸化アルミニウム(AlO)、酸化窒化アルミニウム(AlO)、窒化酸化アルミニウム(AlN)、窒化アルミニウム(AlN)などの無機絶縁層が用いられる。「アルミニウムを主成分とする酸化金属層」とは、酸化金属層130(又は酸化金属層190)に含まれるアルミニウムの比率が、酸化金属層130(又は酸化金属層190)全体の1%以上であることを意味する。酸化金属層130(又は酸化金属層190)に含まれるアルミニウムの比率は、酸化金属層130全体の5%以上70%以下、10%以上60%以下、又は30%以上50%以下であってもよい。上記の比率は、質量比であってもよく、重量比であってもよい。
 詳細は後述するが、ゲート絶縁層150上に酸化金属層190が成膜され、酸化アニールが行われと、ゲート絶縁層150中に、酸化金属層190に含まれるアルミニウムが拡散される。そのため、ゲート絶縁層150の表面近傍(酸化物半導体層140と反対側の表面近傍)の領域において、例えば、SIMS(Secondary Ion Mass Spectrometry)分析などにより、拡散されたアルミニウムを検出することができる。後述する製造方法において製造された半導体装置10では、ゲート絶縁層150の表面から50nm以下の領域において検出されるアルミニウム濃度は、好ましくは1×1017atoms/cm以上である。酸化金属層190は、製造工程において除去されるため、半導体装置10は酸化金属層190を含まない。しかしながら、ゲート絶縁層150中には酸化金属層190から拡散されたアルミニウムが残留しているため、ゲート絶縁層150中のアルミニウム濃度を測定することで、後述する製造方法によって製造された半導体装置10であることを推測することができる。特に、ゲート絶縁層150中のアルミニウム濃度が1×1017atoms/cm以上であるとき、酸化金属層190を用いた酸化アニールが効果的に行われていると推測することができる。
 また、ゲート絶縁層150中に残留するアルミニウムは主成分ではないため、ゲート絶縁層150中のアルミニウム濃度は不純物程度である。すなわち、ゲート絶縁層150中のアルミニウム濃度は、例えば、1×1021atoms/cm以下であり、好ましくは1×1020atoms/cm以下であり、さらに好ましくは1×1019atoms/cm以下である。
 なお、ゲート絶縁層150中に残留するアルミニウムは電気特性及び信頼性を低下させるものでないため、半導体装置10は、高移動度かつ高信頼性を有する。
 酸化物半導体層140として、半導体の特性を有する酸化金属が用いられる。例えば、酸化物半導体層140として、インジウム(In)を含む2以上の金属を含む酸化物半導体が用いられる。酸化物半導体層140において、2以上の金属に対するインジウムの比率は50%以上である。酸化物半導体層140として、インジウムに加えて、ガリウム(Ga)、亜鉛(Zn)、アルミニウム(Al)、ハフニウム(Hf)、イットリウム(Y)、ジルコニア(Zr)、ランタノイドが用いられる。酸化物半導体層140として、上記以外の元素が用いられてもよい。
 酸化物半導体層140はアモルファスであってもよく、結晶性であってもよい。酸化物半導体層140はアモルファスと結晶の混相であってもよい。下記のように、インジウムの比率が50%以上である酸化物半導体層140では、酸素欠損が形成されやすい。結晶性の酸化物半導体は、アモルファスの酸化物半導体に比べて酸素欠損が形成されにくい。したがって、上記のような酸化物半導体層140は結晶性であることが好ましい。
[本発明に至る過程で新たに認識された課題]
 酸化物半導体層140におけるインジウムの比率が50%以上であることで、高移動度の半導体装置10が実現される。一方、このような酸化物半導体層140では、酸化物半導体層140に含まれる酸素が還元されやすいため、酸化物半導体層140に酸素欠損が形成されやすい。
 半導体装置10では、製造プロセスの熱処理工程において、酸化物半導体層140よりも基板100側に設けられる層(例えば、ゲート絶縁層110、120)から水素が放出される。その水素が酸化物半導体層140に到達することで、酸化物半導体層140に酸素欠損が発生する。この酸素欠損の発生は、酸化物半導体層140のパターンサイズが大きいほど顕著である。このような酸素欠損の発生を抑制するために、酸化物半導体層140の下面142に水素が到達することを抑制する必要がある。上記の内容が一つ目の課題である。
 上記の課題とは別に、以下に示す二つ目の課題がある。酸化物半導体層140の上面141は、酸化物半導体層140が形成された後の工程(例えば、パターニング工程又はエッチング工程)の影響を受ける。一方、酸化物半導体層140の下面142(酸化物半導体層140の基板100側の面)は、上記のような影響を受けない。
 したがって、酸化物半導体層140の上面141付近に形成される酸素欠損は、酸化物半導体層140の下面142付近に形成される酸素欠損より多い。つまり、酸化物半導体層140中の酸素欠損は、酸化物半導体層140の厚さ方向に一様に存在しているのではなく、酸化物半導体層140の厚さ方向に不均一な分布で存在している。具体的には、酸化物半導体層140中の酸素欠損は、酸化物半導体層140の下面142側ほど少なく、酸化物半導体層140の上面141側ほど多い。
 上記のような酸素欠損分布を有する酸化物半導体層140に対して、一様に酸素供給処理を行う場合、酸化物半導体層140の上面141側に形成された酸素欠損を修復するために必要な量の酸素を供給すると、酸化物半導体層140の下面142側には酸素が過剰に供給される。その結果、下面142側では、過剰酸素によって酸素欠損とは異なる欠陥準位が形成されてしまう。その結果、信頼性試験における特性変動、又は電界効果移動度の低下などの現象が発生する。したがって、このような現象を抑制するためには、酸化物半導体層140の下面142側への酸素供給を抑制しつつ、酸化物半導体層140の上面141側へ酸素を供給する必要がある。
 上記の課題は、本発明に至る過程で新たに認識された課題であり、従来から認識されていた課題ではない。従来の構成及び製造方法では、酸化物半導体層への酸素供給処理によって、半導体装置の初期特性が改善されても、信頼性試験による特性変動が発生するという、初期特性と信頼性試験との間にトレードオフの関係があった。しかし、本実施形態に係る構成によって、上記の課題が解決され、半導体装置10の良好な初期特性及び信頼性試験を得ることができる。
[半導体装置10の製造方法]
 図3~図12を参照して、本発明の一実施形態に係る半導体装置の製造方法について説明する。図3は、本発明の一実施形態に係る半導体装置の製造方法を示すシーケンス図である。図4~図12は、本発明の一実施形態に係る半導体装置の製造方法を示す断面図である。以下の製造方法の説明では、酸化金属層130、190として酸化アルミニウムが用いられた半導体装置10の製造方法について説明する。
 図3及び図4に示すように、基板100の上にボトムゲートとしてゲート電極105が形成され、ゲート電極105の上にゲート絶縁層110、120が形成される(図3のステップS2001の「Bottom GI/GE形成」)。例えば、ゲート絶縁層110として、窒化シリコンが形成される。例えば、ゲート絶縁層120として、酸化シリコンが形成される。ゲート絶縁層110、120はCVD(Chemical Vapor Deposition)法によって成膜される。ゲート絶縁層110、120の一方又は両方を「第1絶縁層」という場合がある。
 ゲート絶縁層110として窒化シリコンが用いられることで、ゲート絶縁層110は、例えば基板100側から酸化物半導体層140に向かって拡散する不純物をブロックすることができる。ゲート絶縁層120として用いられる酸化シリコンは、熱処理によって酸素を放出する物性を備えた酸化シリコンである。
 図3及び図5に示すように、ゲート絶縁層120の上に酸化金属層130及び酸化物半導体層140を形成する(図3のステップS2002の「OS/AlOx成膜」)。この工程について、基板100の上にゲート絶縁層110、120を形成し、ゲート絶縁層110、120の上に酸化金属層130を形成する、という場合がある。又は、基板100の上に酸化金属層130を形成し、酸化金属層130の上に酸化物半導体層140を形成する、という場合がある。具体的には、酸化物半導体層140は酸化金属層130に接するように形成される。酸化金属層130及び酸化物半導体層140は、スパッタリング法又は原子層堆積法(ALD:Atomic Layer Deposition)によって成膜される。
 例えば、酸化金属層130の厚さは、1nm以上100nm以下、1nm以上50nm以下、1nm以上30nm以下、又は1nm以上10nm以下である。本実施形態では、酸化金属層130として酸化アルミニウムが用いられる。酸化アルミニウムはガスに対する高いバリア性を備えている。本実施形態において、酸化金属層130として用いられた酸化アルミニウムは、ゲート絶縁層120から放出された水素及び酸素をブロックし、放出された水素及び酸素が酸化物半導体層140に到達することを抑制する。
 例えば、酸化物半導体層140の厚さは、10nm以上100nm以下、15nm以上70nm以下、又は20nm以上40nm以下である。本実施形態では、酸化物半導体層140として、インジウム(In)及びガリウム(Ga)を含む酸化物が用いられる。後述する熱処理(OSアニール)前の酸化物半導体層140はアモルファスである。
 後述するOSアニールによって、酸化物半導体層140を結晶化する場合、成膜後かつOSアニール前の酸化物半導体層140はアモルファス状態(酸化物半導体の結晶成分が少ない状態)であることが好ましい。つまり、酸化物半導体層140の成膜条件は、成膜直後の酸化物半導体層140ができるだけ結晶化しない条件であることが好ましい。例えば、スパッタリング法によって酸化物半導体層140が成膜される場合、被成膜対象物(基板100及びその上に形成された構造物)の温度が制御された状態で酸化物半導体層140が成膜される。
 スパッタリング法によって被成膜対象物に対して成膜を行うと、プラズマ中で発生したイオン及びスパッタリングターゲットによって反跳した原子が被成膜対象物に衝突する。そのため、成膜処理に伴い被成膜対象物の温度が上昇する。成膜処理中の被成膜対象物の温度が上昇すると、成膜直後の状態で酸化物半導体層140に微結晶が含まれる。当該微結晶によって、その後のOSアニールによる結晶化が阻害される。上記のように被成膜対象物の温度を制御するために、例えば、被成膜対象物を冷却しながら成膜を行ってもよい。例えば、被成膜対象物の被成膜面(表面)の温度(以下、「成膜温度」という。)が100℃以下、70℃以下、50℃以下、又は30℃以下になるように、被成膜対象物を当該被成膜面の反対側の面から冷却してもよい。上記のように、被成膜対象物を冷却しながら酸化物半導体層140の成膜を行うことで、成膜直後の状態で結晶成分が少ない酸化物半導体層140を成膜することができる。
 図3及び図6に示すように、酸化物半導体層140のパターンを形成する(図3のステップS2003の「OSパターン形成」)。図示しないが、酸化物半導体層140の上にレジストマスクを形成し、当該レジストマスクを用いて酸化物半導体層140をエッチングする。酸化物半導体層140のエッチングとして、ウェットエッチングが用いられてもよく、ドライエッチングが用いられてもよい。ウェットエッチングとして、酸性のエッチャントを用いてエッチングを行ってもよい。例えば、エッチャントとして、シュウ酸又はフッ酸を用いてもよい。
 酸化物半導体層140のパターン形成の後に酸化物半導体層140に対して熱処理(OSアニール)が行われる(図3のステップS2004の「OSアニール」)。本実施形態では、このOSアニールによって、酸化物半導体層140が結晶化する。
 図3及び図7に示すように、酸化金属層130のパターンを形成する(図3のステップS2005の「AlOxパターン形成」)。酸化金属層130は、上記の工程でパターニングされた酸化物半導体層140をマスクとしてエッチングされる。酸化金属層130のエッチングとして、ウェットエッチングが用いられてもよく、ドライエッチングが用いられてもよい。例えば、ウェットエッチングとして、希釈フッ酸(DHF)が用いられる。上記のように、酸化物半導体層140をマスクとして酸化金属層130をエッチングすることで、フォトリソグラフィ工程を省略することができる。
 図3及び図8に示すように、酸化物半導体層140の上にゲート絶縁層150を成膜する(図3のステップS2006の「GI形成」)。例えば、ゲート絶縁層150として、酸化シリコンが形成される。ゲート絶縁層150はCVD法によって形成される。例えば、ゲート絶縁層150として上記のように欠陥が少ない絶縁層を形成するために、350℃以上の成膜温度でゲート絶縁層150を成膜してもよい。例えば、ゲート絶縁層150の厚さは、50nm以上300nm以下、60nm以上200nm以下、又は70nm以上150nm以下である。ゲート絶縁層150を成膜した後に、ゲート絶縁層150の一部に酸素を打ち込む処理を行ってもよい。ゲート絶縁層150を「第2絶縁層」という場合がある。ゲート絶縁層150の上に酸化金属層190を成膜する(図22のステップS2007の「AlOx成膜」)。酸化金属層190は、スパッタリング法によって成膜される。酸化金属層190の成膜によって、ゲート絶縁層150に酸素が打ち込まれる。
 例えば、酸化金属層190の厚さは、5nm以上100nm以下、5nm以上50nm以下、5nm以上30nm以下、又は7nm以上15nm以下である。本実施形態では、酸化金属層190として酸化アルミニウムが用いられる。酸化アルミニウムはガスに対する高いバリア性を備えている。本実施形態において、酸化金属層190として用いられた酸化アルミニウムは、酸化金属層190の成膜時にゲート絶縁層150に打ち込まれた酸素が外方拡散することを抑制する。
 例えば、酸化金属層190をスパッタリング法で形成した場合、酸化金属層190の膜中にはスパッタリングで用いられたプロセスガスが残存する。例えば、スパッタリングのプロセスガスとしてArが用いられた場合、酸化金属層190の膜中にはArが残存することがある。残存したArは酸化金属層190に対するSIMS分析で検出することができる。
 酸化物半導体層140の上にゲート絶縁層150が成膜され、ゲート絶縁層150の上に酸化金属層190が成膜された状態で、酸化物半導体層140へ酸素を供給するための熱処理(酸化アニール)が行われる(図3のステップS2008の「酸化アニール」)。換言すると、上記のようにパターニングされた酸化金属層130及び酸化物半導体層140に対して熱処理(酸化アニール)が行われる。酸化物半導体層140が成膜されてから酸化物半導体層140の上にゲート絶縁層150が成膜されるまでの間の工程で、酸化物半導体層140の上面141及び側面143には多くの酸素欠損が発生する。上記の酸化アニールによって、ゲート絶縁層120、150から放出された酸素が酸化物半導体層140に供給され、酸素欠損が修復される。
 酸化アニールによってゲート絶縁層120から放出された酸素は、酸化金属層130によってブロックされる。したがって、酸化物半導体層140の下面142には酸素が供給されにくい。ゲート絶縁層120から放出された酸素は、酸化金属層130が形成されていない領域からゲート絶縁層120の上に設けられたゲート絶縁層150に拡散し、ゲート絶縁層150を介して酸化物半導体層140に到達する。その結果、ゲート絶縁層120から放出された酸素は、酸化物半導体層140の下面142には供給されにくく、主に酸化物半導体層140の側面143及び上面141に供給される。さらに、酸化アニールによって、ゲート絶縁層150から放出された酸素が酸化物半導体層140の上面141及び側面143に供給される。上記の酸化アニールによって、ゲート絶縁層110、120から水素が放出される場合があるが、当該水素は酸化金属層130によってブロックされる。
 上記のように、酸化アニールの工程によって、酸素欠損の量が少ない酸化物半導体層140の下面142への酸素の供給を抑制しつつ、酸素欠損の量が多い酸化物半導体層140の上面141及び側面143への酸素供給を行うことができる。
 同様に、上記の酸化アニールにおいて、ゲート絶縁層150に打ち込まれた酸素は、酸化金属層190によってブロックされる。したがって、当該酸素が大気中に放出されることが抑制される。したがって、当該酸化アニールによって、当該酸素が効率よく酸化物半導体層140に供給され、酸素欠損が修復される。
 図3及び図9に示すように、酸化アニールの後に、酸化金属層190はエッチング(除去)される(図3のステップS2009の「AlOx除去」)。酸化金属層190のエッチングとして、ウェットエッチングが用いられてもよく、ドライエッチングが用いられてもよい。例えば、ウェットエッチングとして、希釈フッ酸(DHF)が用いられる。当該エッチングによって、全面に形成された酸化金属層190が除去される。換言すると、酸化金属層190の除去はマスクを用いずに行われる。さらに換言すると、当該エッチングによって、少なくとも平面視において、ある1つのパターンに形成された酸化物半導体層140と重なる領域の全ての酸化金属層190が除去される。
 酸化アニールが行われると、酸化金属層190に含まれるアルミニウムがゲート絶縁層150に拡散される。そのため、酸化金属層190が除去されても、ゲート絶縁層150中には、酸化金属層190から拡散されたアルミニウムが残留している。
 図3及び図10に示すように、ゲート絶縁層150の上にゲート電極160を成膜する(図3のステップS2010の「GE形成」)。ゲート電極160は、スパッタリング法又は原子層堆積法によって成膜され、フォトリソグラフィ工程を経てパターニングされる。上記のように、ゲート電極160は、酸化金属層190が除去されることで露出したゲート絶縁層150と接するように形成される。
 ゲート電極160のエッチングの際、ゲート絶縁層150の一部もエッチングされる場合がある。すなわち、ゲート絶縁層150は、膜厚の異なる領域を含む。具体的には、ゲート絶縁層150は、ゲート電極160と重畳する第1領域及びゲート電極160と重畳しない第2領域を含む。第1領域は、酸化物半導体層140のチャネル領域CHと重畳している。第2領域は、酸化物半導体層140のソース領域S又はドレイン領域Dと重畳している。第2領域の膜厚は、第1領域の膜厚よりも小さい。この場合、第2領域では、酸化金属層190から拡散されたアルミニウムを含む領域の一部がエッチングされているため、第1領域のアルミニウム濃度が1×1017atoms/cm以上であっても、第2領域のアルミニウム濃度は、第1領域のアルミニウム濃度よりも小さくなる。
 ゲート電極160がパターニングされた状態で、酸化物半導体層140のソース領域S及びドレイン領域Dの低抵抗化が行われる(図3のステップS2011の「SD低抵抗化」)。具体的には、イオン注入によって、ゲート電極160側からゲート絶縁層150を介して酸化物半導体層140に不純物が注入される。例えば、イオン注入によって、アルゴン(Ar)、リン(P)、ボロン(B)が酸化物半導体層140に注入される。イオン注入によって酸化物半導体層140に酸素欠損が形成されることで、酸化物半導体層140が低抵抗化する。半導体装置10のチャネル領域CHとして機能する酸化物半導体層140の上方にはゲート電極160が設けられているため、チャネル領域CHの酸化物半導体層140には不純物は注入されない。
 図3及び図11に示すように、ゲート絶縁層150及びゲート電極160の上に層間膜として絶縁層170、180を成膜する(図3のステップS2012の「層間膜成膜」)。絶縁層170、180はCVD法によって成膜される。例えば、絶縁層170として窒化シリコンが形成され、絶縁層180として酸化シリコンが形成される。絶縁層170、180として用いられる材料は上記に限定されない。絶縁層170の厚さは、50nm以上500nm以下である。絶縁層180の厚さは、50nm以上500nm以下である。
 図3及び図12に示すように、ゲート絶縁層150及び絶縁層170、180に開口171、173を形成する(図3のステップS2013の「コンタクト開孔」)。開口171によってソース領域Sの酸化物半導体層140が露出されている。開口173によってドレイン領域Dの酸化物半導体層140が露出されている。開口171、173によって露出された酸化物半導体層140の上及び絶縁層180の上にソース・ドレイン電極200を形成することで(図3のステップS2014の「SD形成」)、図1に示す半導体装置10が完成する。
 上記の製造方法で作製した半導体装置10について、チャネル領域CHのチャネル長Lが2μm以上4μm以下、かつ、チャネル領域CHのチャネル幅が2μm以上25μm以下の範囲において、移動度が50cm/Vs以上、55cm/Vs以上、又は60cm/Vs以上の電気特性を得ることができる。本実施形態における移動度とは半導体装置10の飽和領域における電界効果移動度である。具体的には、当該移動度は、ソース電極とドレイン電極との間の電位差(Vd)が、ゲート電極に供給される電圧(Vg)から半導体装置10の閾値電圧(Vth)を引いた値(Vg-Vth)より大きい領域における電界効果移動度の最大値を意味する。
<第2実施形態>
 図13~図17を参照して、本発明の一実施形態に係る半導体装置を用いた表示装置について説明する。以下に示す実施形態では、上記の第1実施形態で説明した半導体装置10が液晶表示装置の回路に適用された構成について説明する。
[表示装置20の概要]
 図13は、本発明の一実施形態に係る表示装置の概要を示す平面図である。図13に示すように、表示装置20は、アレイ基板300、シール部310、対向基板320、フレキシブルプリント回路基板330(FPC330)、及びICチップ340を有する。アレイ基板300及び対向基板320はシール部310によって貼り合わせられている。シール部310に囲まれた液晶領域22には、複数の画素回路301がマトリクス状に配置されている。液晶領域22は、後述する液晶素子311と平面視において重なる領域である。
 シール部310が設けられたシール領域24は、液晶領域22の周囲の領域である。FPC330は端子領域26に設けられている。端子領域26はアレイ基板300が対向基板320から露出された領域であり、シール領域24の外側に設けられている。シール領域24の外側とは、シール部310が設けられた領域及びシール部310によって囲まれた領域の外側を意味する。ICチップ340はFPC330上に設けられている。ICチップ340は各画素回路301を駆動させるための信号を供給する。
[表示装置20の回路構成]
 図14は、本発明の一実施形態に係る表示装置の回路構成を示すブロック図である。図14に示すように、画素回路301が配置された液晶領域22に対してD1方向(列方向)に隣接する位置にはソースドライバ回路302が設けられており、液晶領域22に対してD2方向(行方向)に隣接する位置にはゲートドライバ回路303が設けられている。ソースドライバ回路302及びゲートドライバ回路303は、上記のシール領域24に設けられている。ただし、ソースドライバ回路302及びゲートドライバ回路303が設けられる領域はシール領域24に限定されず、画素回路301が設けられた領域の外側であれば、どの領域でもよい。
 ソースドライバ回路302からソース配線304がD1方向に延びており、D1方向に配列された複数の画素回路301に接続されている。ゲートドライバ回路303からゲート配線305がD2方向に延びており、D2方向に配列された複数の画素回路301に接続されている。
 端子領域26には端子部306が設けられている。端子部306とソースドライバ回路302とは接続配線307で接続されている。同様に、端子部306とゲートドライバ回路303とは接続配線307で接続されている。FPC330が端子部306に接続されることで、FPC330が接続された外部機器と表示装置20とが接続され、外部機器からの信号によって表示装置20に設けられた各画素回路301が駆動する。
 第1実施形態に示す半導体装置10は、画素回路301、ソースドライバ回路302、及びゲートドライバ回路303に含まれるトランジスタとして用いられる。
[表示装置20の画素回路301]
 図15は、本発明の一実施形態に係る表示装置の画素回路を示す回路図である。図15に示すように、画素回路301は半導体装置10、保持容量350、及び液晶素子311などの素子を含む。半導体装置10はゲート電極160、ソース電極201、及びドレイン電極203を有する。ゲート電極160はゲート配線305に接続されている。ソース電極201はソース配線304に接続されている。ドレイン電極203は保持容量350及び液晶素子311に接続されている。本実施形態では、説明の便宜上、符号「201」で示された電極をソース電極といい、符号「203」で示された電極をドレイン電極というが、符号「201」で示された電極がドレイン電極として機能し、符号「203」で示された電極がソース電極として機能してもよい。
[表示装置20の断面構造]
 図16は、本発明の一実施形態に係る表示装置の断面図である。図16に示すように、表示装置20は、半導体装置10が用いられた表示装置である。本実施形態では、半導体装置10が画素回路301に用いられた構成を例示するが、半導体装置10がソースドライバ回路302及びゲートドライバ回路303を含む周辺回路に用いられてもよい。以下の説明において、半導体装置10の構成は図1に示す半導体装置10と同様なので、説明を省略する。
 ソース電極201及びドレイン電極203の上に絶縁層360が設けられている。絶縁層360の上に、複数の画素に共通して設けられる共通電極370が設けられている。共通電極370の上に絶縁層380が設けられている。絶縁層360、380には開口381が設けられている。絶縁層380の上及び開口381の内部に画素電極390が設けられている。画素電極390はドレイン電極203に接続されている。
 表示装置20では、ゲート電極160と同一の層として、配線層162が設けられている。配線層162は、ゲート電極160と同一の材料を含む。配線層162は、ゲート絶縁層150に対応する絶縁層上に設けられている。当該絶縁層上にも、酸化金属層190が成膜され、酸化アニールが行われている。そのため、配線層162と重畳する絶縁層の領域のアルミニウム濃度は、好ましくは1×1017atoms/cm以上である。また、配線層162と重畳しない絶縁層の領域のアルミニウム濃度は、配線層162と重畳する絶縁層の領域のアルミニウム濃度よりも小さい。
 図17は、本発明の一実施形態に係る表示装置の画素電極及び共通電極の平面図である。図17に示すように、共通電極370は、平面視で画素電極390と重なる重畳領域と、画素電極390と重ならない非重畳領域とを有する。画素電極390と共通電極370との間に電圧を供給すると、重畳領域の画素電極390から非重畳領域の共通電極370に向かって横電界が形成される。この横電界によって液晶素子311に含まれる液晶分子が動作することで、画素の階調が決定される。
<第3実施形態>
 図18及び図19を参照して、本発明の一実施形態に係る半導体装置を用いた表示装置について説明する。本実施形態では、上記の第1実施形態で説明した半導体装置10が有機EL表示装置の回路に適用された構成について説明する。表示装置20の概要及び回路構成は図13及び図14に示す概要及び構成と同様なので、説明を省略する。
[表示装置20の画素回路301]
 図18は、本発明の一実施形態に係る表示装置の画素回路を示す回路図である。図18に示すように、画素回路301は駆動トランジスタ11、選択トランジスタ12、保持容量210、及び発光素子DOなどの素子を含む。駆動トランジスタ11及び選択トランジスタ12は半導体装置10と同様の構成を備えている。選択トランジスタ12のソース電極は信号線211に接続され、選択トランジスタ12のゲート電極はゲート線212に接続されている。駆動トランジスタ11のソース電極はアノード電源線213に接続され、駆動トランジスタ11のドレイン電極は発光素子DOの一端に接続されている。発光素子DOの他端はカソード電源線214に接続されている。駆動トランジスタ11のゲート電極は選択トランジスタ12のドレイン電極に接続されている。保持容量210は駆動トランジスタ11のゲート電極及びドレイン電極に接続されている。信号線211には、発光素子DOの発光強度を決める階調信号が供給される。ゲート線212には、上記の階調信号を書き込む画素行を選択する信号が供給される。
[表示装置20の断面構造]
 図19は、本発明の一実施形態に係る表示装置の断面図である。図19に示す表示装置20の構成は、図16に示す表示装置20と類似しているが、図19の表示装置20の絶縁層360よりも上方の構造が図16の表示装置20の絶縁層360よりも上方の構造と相違する。以下、図19の表示装置20の構成のうち、図16の表示装置20と同様の構成については説明を省略し、両者の相違点について説明する。
 図19に示すように、表示装置20は、絶縁層360の上方に画素電極390、発光層392、及び共通電極394(発光素子DO)を有する。画素電極390は絶縁層360の上及び開口381の内部に設けられている。画素電極390の上に絶縁層362が設けられている。絶縁層362には開口363が設けられている。開口363は発光領域に対応する。つまり、絶縁層362は画素を画定する。開口363によって露出した画素電極390の上に発光層392及び共通電極394が設けられている。画素電極390及び発光層392は、各画素に対して個別に設けられている。一方、共通電極394は、複数の画素に共通して設けられている。発光層392は、画素の表示色に応じて異なる材料が用いられる。
 第2実施形態及び第3実施形態では、第1実施形態で説明した半導体装置を液晶表示装置及び有機EL表示装置に適用した構成について例示したが、これらの表示装置以外の表示装置(例えば、有機EL表示装置以外の自発光型表示装置又は電子ペーパ型表示装置)に当該半導体装置を適用してもよい。また、中小型の表示装置から大型の表示装置まで、特に限定することなく上記半導体装置の適用が可能である。
 実施例として、第1実施形態で説明した半導体装置10を作製し、半導体装置10の評価を行った。また、比較例として、酸化物半導体層140に接する酸化金属層130が設けられていない半導体装置を作製した。
 さらに、実施例では、ゲート電極GEを形成する前に、酸化金属層190として酸化アルミニウム層をスパッタリング法によって成膜し、酸化アニールを行った後で酸化アルミニウム層を除去した。一方、比較例では、酸化金属層190の成膜及び酸化アニールを行わなかった。
[1.SIMS分析]
 図20は、半導体装置の酸化物半導体層のチャネル領域におけるSIMS分析の測定結果を示すグラフである。また、図21は、半導体装置の酸化物半導体層のソース領域又はドレイン領域におけるSIMS分析の測定結果を示すグラフである。図20及び図21において、縦軸はアルミニウム濃度(Al濃度)を示し、横軸は半導体装置の積層方向における深さを示す。また、図20及び図21には、積層方向の実施例及び比較例の積層構造が示されている。符号SiNx、SiOx、GI、GE、OS、及びMOは、それぞれ、窒化シリコン層、酸化シリコン層、ゲート絶縁層、ゲート電極、酸化物半導体層、及び酸化金属層を表す。酸化シリコン層SiOxと接する窒化シリコン層SiNx及び酸化シリコン層SiOxは、それぞれ、ゲート絶縁層110及び120に対応する。また、酸化金属層MO、酸化物半導体層OS、ゲート絶縁層GI、及びゲート電極GEは、それぞれ、酸化金属層130、酸化物半導体層140、ゲート絶縁層150、及びゲート電極160に対応する。なお、ゲート絶縁層GIには、酸化シリコン層SiOxと同様に、酸化シリコンを用いた。
 SIMS分析は基板側から測定を行う、いわゆるSSDP-SIMSを用いた。また、図20及び図21では、SiO標準試料を用いて、酸化シリコン層SiOx及びゲート絶縁層GIにおけるアルミニウム濃度が定量化されている(図中の定量範囲)。すなわち、図20及び図21において、酸化シリコン層SiOx及びゲート絶縁層GIの各々の中のアルミニウム濃度を絶対値で比較することができる。一方、他の層の中のアルミニウム濃度は、大小で比較することはできるが、絶対値での比較はできない。
 図20に示すように、チャネル領域では、実施例(実線)のゲート絶縁層GIは、比較例(点線)のゲート絶縁層GIよりも、アルミニウム濃度が大きくなった。ゲート電極GEとゲート絶縁層GIとの界面近傍において、実施例及び比較例のゲート絶縁層GIのアルミニウム濃度は、それぞれ、2×1017atoms/cm及び6×1016atoms/cmであった。また、図21に示すように、ソース領域又はドレイン領域でも、実施例のゲート絶縁層GIは、比較例のゲート絶縁層GIよりも、アルミニウム濃度が大きくなった。窒化シリコン層SiNxとゲート絶縁層GIとの界面近傍において、実施例及び比較例のゲート絶縁層GIのアルミニウム濃度は、それぞれ、1.5×1017atoms/cm及び6×1016atoms/cmであった。したがって、実施例においては、酸化金属層190として成膜した酸化アルミニウム中のアルミニウムが、酸化アニールの熱処理によってゲート絶縁層GIに拡散することがわかった。
[2.電気特性]
 図22は、半導体装置10の電気特性を示すグラフである。図22に示す電気特性の測定条件は表1のとおりである。
Figure JPOXMLDOC01-appb-T000001
 図22では、半導体装置10の電気特性(Id-Vg特性)及び移動度が示されている。図22の中の矢印で示されているように、ドレイン電流(Id)に対する縦軸はグラフの左側に示されており、当該ドレイン電流から計算された移動度に対する縦軸はグラフの右側に示されている。
 図22に示すように、半導体装置10の電気特性は、ゲート電圧Vgが0Vよりも高い電圧でドレイン電流Idが流れ始める、いわゆるノーマリオフ(エンハンスメント型)の特性を示す。当該電気特性から計算された移動度は約59cm/Vsである。
[3.信頼性試験]
 図23は、半導体装置10の信頼性試験を示すグラフである。図23に示す信頼性試験の測定条件は表2のとおりである。すなわち、信頼性試験として、Positive Bias Temperature Stress(PBTS)及びNegative Bias Temperature Illumination Stress(NBTIS)による信頼性の評価を行った。
Figure JPOXMLDOC01-appb-T000002
                           
 図23に示すように、ストレス印加前(0sec)及びストレス印加後(3600sec)に、半導体装置10の電気特性を評価した結果が重ねて表示されている。図23において、ストレス印加前(0sec)の電気特性は点線で示されており、ストレス印加後(3600sec)の電気特性は実線で示されている。
 ストレス印加前及びストレス印加後の半導体装置10の電気特性の測定条件は表3のとおりである。
Figure JPOXMLDOC01-appb-T000003
 図23に示すように、半導体装置10では、NBTIS試験及びPBTS試験の両方において、ストレス印加前後の電気特性がほとんど変化しない。
 以上、半導体装置10の電気特性及び信頼性試験からわかるように、半導体装置10は、高い移動度を有するだけでなく、安定した信頼性も有する。このような高移動度かつ高信頼性を有する半導体装置10は、酸化物半導体層140を結晶化させるとともに、酸化物半導体層140に十分な酸素を供給することによって得ることができる。そのため、半導体装置10の製造方法においては、OSアニール及び酸化アニールが重要である。特に、酸化アニールでは、酸化物半導体層140の下方に酸化金属層130を設け、さらにゲート絶縁層150上に酸化金属層190を成膜した状態で熱処理が行われる。酸化金属層130、190は、酸化物半導体層140への水素の侵入を防止することができる。また、酸化物半導体層140の側面143及び上面141がゲート絶縁層150と接し、ゲート絶縁層150からの酸素が、酸素欠損の量が多い酸化物半導体層140の側面143及び上面141に効率よく供給されるため、酸化物半導体層140中の酸素欠損を修復することができる。
 酸化金属層190は、その後のAlOx除去の工程で除去されるが、酸化金属層190に含まれるアルミニウムは酸化アニールによってゲート絶縁層150中に拡散し、残留する。そのため、製造された半導体装置10のゲート絶縁層150の組成分析によって、アルミニウムを検出することが可能である。なお、ゲート絶縁層150に残留するアルミニウムが電気特性及び信頼性を低下させるものでないことは、図22及び図23に示したグラフからも理解することができる。
 本発明の実施形態として上述した各実施形態は、相互に矛盾しない限りにおいて、適宜組み合わせて実施することができる。また、各実施形態を基にして、当業者が適宜構成要素の追加、削除もしくは設計変更を行ったもの、又は、工程の追加、省略もしくは条件変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。
 上述した各実施形態の態様によりもたらされる作用効果とは異なる他の作用効果であっても、本明細書の記載から明らかなもの、又は、当業者において容易に予測し得るものについては、当然に本発明によりもたらされるものと解される。
10:半導体装置、 11:駆動トランジスタ、 12:選択トランジスタ、 20:表示装置、 22:液晶領域、 24:シール領域、 26:端子領域、 100:基板、 105、160:ゲート電極、 110、120、150:ゲート絶縁層、 130、190:酸化金属層、 140:酸化物半導体層、 141:上面、 142:下面、 143:側面、 162:配線層、 170、180:絶縁層、 171、173:開口、 200:ソース・ドレイン電極、 201:ソース電極、 203:ドレイン電極、 210:保持容量、 211:信号線、 212:ゲート線、 213:アノード電源線、 214:カソード電源線、 220:レジストマスク、 300:アレイ基板、 301:画素回路、 302:ソースドライバ回路、 303:ゲートドライバ回路、 304:ソース配線、 305:ゲート配線、 306:端子部、 307:接続配線、 310:シール部、 311:液晶素子、 320:対向基板、 330:フレキシブルプリント回路基板(FPC)、 340:ICチップ、 350:保持容量、 360、362:絶縁層、 363、381:開口、 370:共通電極、 380:絶縁層、 390:画素電極、 392:発光層、 394:共通電極

Claims (7)

  1.  絶縁表面の上の酸化金属層と、
     前記酸化金属層の上の酸化物半導体層と、
     前記酸化物半導体層の上の絶縁層と、を含み、
     前記絶縁層は、前記酸化物半導体層と重畳する第1領域を含み、
     前記第1領域の第1アルミニウム濃度が、1×1017atoms/cm以上である、半導体装置。
  2.  前記第1領域は、前記酸化物半導体層の反対側に位置する前記絶縁層の表面から50nm以下の領域である、請求項1に記載の半導体装置。
  3.  さらに、前記絶縁層の上のゲート電極を含み、
     前記第1領域は、前記ゲート電極と重畳する、請求項1又は請求項2に記載の半導体装置。
  4.  前記絶縁層は、さらに、前記ゲート電極と重畳しない第2領域を含み、
     前記第2領域の第2アルミニウム濃度は、前記第1アルミニウム濃度よりも小さい、請求項3に記載の半導体装置。
  5.  さらに、前記絶縁層の上に、前記ゲート電極と同一の層として設けられる配線層を含み、
     前記絶縁層は、前記配線層と重畳する第3領域を含み、
     前記第3領域の第3アルミニウム濃度が、1×1017atoms/cm以上である、請求項3又は請求項4に記載の半導体装置。
  6.  前記ゲート電極は、アルミニウムを含まない、請求項3乃至請求項5のいずれか一項に記載の半導体装置。
  7.  前記酸化金属層は、酸化アルミニウムを含む、請求項1乃至請求項6のいずれか一項に記載の半導体装置。
     
PCT/JP2023/009637 2022-03-30 2023-03-13 半導体装置 WO2023189487A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-057458 2022-03-30
JP2022057458 2022-03-30

Publications (1)

Publication Number Publication Date
WO2023189487A1 true WO2023189487A1 (ja) 2023-10-05

Family

ID=88200905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009637 WO2023189487A1 (ja) 2022-03-30 2023-03-13 半導体装置

Country Status (1)

Country Link
WO (1) WO2023189487A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130146862A1 (en) * 2011-12-08 2013-06-13 Inpria Corporation Array substrate including thin film transistor and method of fabricating the same
JP2017228560A (ja) * 2016-06-20 2017-12-28 株式会社ジャパンディスプレイ 半導体装置
JP2019079986A (ja) * 2017-10-26 2019-05-23 株式会社ジャパンディスプレイ 表示装置及びその製造方法
WO2020066287A1 (ja) * 2018-09-28 2020-04-02 株式会社ジャパンディスプレイ 薄膜トランジスタ、表示装置及び薄膜トランジスタの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130146862A1 (en) * 2011-12-08 2013-06-13 Inpria Corporation Array substrate including thin film transistor and method of fabricating the same
JP2017228560A (ja) * 2016-06-20 2017-12-28 株式会社ジャパンディスプレイ 半導体装置
JP2019079986A (ja) * 2017-10-26 2019-05-23 株式会社ジャパンディスプレイ 表示装置及びその製造方法
WO2020066287A1 (ja) * 2018-09-28 2020-04-02 株式会社ジャパンディスプレイ 薄膜トランジスタ、表示装置及び薄膜トランジスタの製造方法

Similar Documents

Publication Publication Date Title
JP5404963B2 (ja) 薄膜トランジスタおよび表示装置
US11189734B2 (en) Semiconductor device and display device
CN110246900B (zh) 半导体装置及其制造方法
US20200287054A1 (en) Semiconductor device and method for producing the same
WO2023189487A1 (ja) 半導体装置
WO2023189489A1 (ja) 半導体装置
WO2023189491A1 (ja) 半導体装置
WO2023189493A1 (ja) 半導体装置
WO2023228616A1 (ja) 半導体装置
WO2023189550A1 (ja) 半導体装置
WO2023189549A1 (ja) 半導体装置及び半導体装置の製造方法
TWI841307B (zh) 半導體裝置之製造方法
JP2023149086A (ja) 半導体装置の製造方法
JP2023149085A (ja) 半導体装置の製造方法
WO2023238746A1 (ja) 半導体装置及び半導体装置の製造方法
US20240105819A1 (en) Method for manufacturing semiconductor device
US20240088302A1 (en) Semiconductor device
WO2023223657A1 (ja) 半導体装置の製造方法
WO2024029429A1 (ja) 積層構造体及び薄膜トランジスタ
US20240021695A1 (en) Semiconductor device
WO2023189002A1 (ja) 薄膜トランジスタ及び電子機器
US20240176196A1 (en) Display device
WO2023189004A1 (ja) 酸化物半導体膜、薄膜トランジスタ、及び電子機器
WO2023189003A1 (ja) 薄膜トランジスタ及び電子機器
TW202414609A (zh) 半導體裝置之製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779507

Country of ref document: EP

Kind code of ref document: A1