WO2023189244A1 - 光源モジュール - Google Patents

光源モジュール Download PDF

Info

Publication number
WO2023189244A1
WO2023189244A1 PCT/JP2023/008362 JP2023008362W WO2023189244A1 WO 2023189244 A1 WO2023189244 A1 WO 2023189244A1 JP 2023008362 W JP2023008362 W JP 2023008362W WO 2023189244 A1 WO2023189244 A1 WO 2023189244A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
source module
cylindrical lens
light source
Prior art date
Application number
PCT/JP2023/008362
Other languages
English (en)
French (fr)
Inventor
勝 加藤
洋 宮入
Original Assignee
日亜化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日亜化学工業株式会社 filed Critical 日亜化学工業株式会社
Publication of WO2023189244A1 publication Critical patent/WO2023189244A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • F21S43/235Light guides
    • F21S43/236Light guides characterised by the shape of the light guide
    • F21S43/237Light guides characterised by the shape of the light guide rod-shaped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2103/00Exterior vehicle lighting devices for signalling purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2103/00Exterior vehicle lighting devices for signalling purposes
    • F21W2103/20Direction indicator lights
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2103/00Exterior vehicle lighting devices for signalling purposes
    • F21W2103/30Hazard lights
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2103/00Exterior vehicle lighting devices for signalling purposes
    • F21W2103/35Brake lights
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2103/00Exterior vehicle lighting devices for signalling purposes
    • F21W2103/45Reversing lights

Definitions

  • the present disclosure relates to a light source module.
  • Patent Document 1 discloses a lamp in which a rod-shaped light guide is curved to match the shape of a lamp body.
  • An embodiment of the present disclosure aims to provide a light source module with improved light extraction efficiency.
  • An embodiment of the present disclosure includes a first light emitting section, a light guiding member, a light reflecting member, a light branching member, and a retroreflecting member, and the light guiding member has a straight portion and a curved portion.
  • the straight portion and the bent portion have a first surface that emits light emitted by the first light emitting portion in a first direction, and a second surface located on the opposite side to the first surface, and the straight portion extends in a second direction perpendicular to the first direction, the bent portion bends from the second direction toward the first direction, and in the straight portion and the bent portion
  • the light reflecting member the light branching member has a third surface
  • the retroreflective member has a fourth surface
  • the third surface is emitted from the first surface.
  • a light source module that reflects a part of light to the fourth surface.
  • an object is to provide a light source module with improved light extraction efficiency.
  • FIG. 2 is a schematic diagram showing a cross section of a first light emitting part in a plane parallel to a first direction and a second direction in FIG. 1.
  • FIG. 2 is a schematic diagram showing a cross section of a light reflecting member in a plane parallel to a first direction and a second direction in FIG. 1.
  • FIG. 5 is an enlarged schematic diagram of a region A surrounded by a broken line in FIG. 4.
  • FIG. 5 is an enlarged schematic diagram of a region B surrounded by a broken line in FIG. 4.
  • FIG. 5 is an enlarged schematic diagram of a region C surrounded by a broken line in FIG. 4.
  • FIG. 5 is another schematic diagram in which the area B surrounded by the broken line in FIG. 4 is enlarged.
  • FIG. FIG. 2 is a schematic diagram showing a side view of a light source module that performs aerial display. It is a schematic diagram which shows the modification of a light source module.
  • FIG. 3 is a schematic diagram showing a cross section of the second light emitting part and the cylindrical lens in a plane parallel to the optical axis direction and the power direction of the cylindrical lens.
  • FIG. 3 is a schematic diagram showing a top view of a second light emitting section.
  • FIG. 7 is a schematic diagram showing another configuration of the second light emitting section and the cylindrical lens.
  • FIG. 2 is a schematic diagram showing a side view of a light source module that performs aerial display.
  • FIG. 2 is a schematic diagram showing a top view of the automobile.
  • FIG. 2 is a schematic diagram showing a side view of an automobile.
  • FIG. 1 is a schematic diagram showing a top view of a light source module 1 according to an embodiment.
  • the light source module 1 includes a first light emitting section 10, a light guiding member 20, and a light reflecting member 30.
  • the light guiding member 20 has a straight portion 21 and a bent portion 22, and the straight portion 21 and the bent portion 22 has first surfaces 21a and 22a that emit light emitted by the first light emitting section 10 in a first direction, and second surfaces 21b and 22b located on the opposite side to the first surfaces 21a and 22a, and has a straight portion.
  • 21 extends in a second direction perpendicular to the first direction, and the curved portion 22 curves from the second direction toward the first direction.
  • the light reflecting member 30 has a first surface 21a, It is arranged closer to the second surfaces 21b and 22b than 22a.
  • FIG. 2 is a schematic diagram showing a top view of the light source module 1.
  • Each arrow represents light emitted by the first light emitting section 10.
  • the light source module 1 according to the embodiment transmits light emitted from the first light emitting section 10 and traveling through the straight portion 21 and the curved portion 22 of the light guiding member 20 by repeating total reflection to the light reflecting member. 30, the light can be extracted from the first surfaces 21a and 22a, so that the light extraction efficiency of the light source module 1 can be improved.
  • FIG. 3 is a schematic diagram showing a cross section of the first light emitting section 10 in a plane parallel to the first direction and the second direction of FIG. An enlarged view of the portion surrounded by the dotted line in FIG. 3 is also shown.
  • the first light emitting unit 10 includes, for example, a light emitting element 11, a substrate 12, a heat dissipating member 13, a rod lens 14, and a holder 15, as shown in FIG.
  • the first light emitting unit 10 is a light source that irradiates the light guide member 20 with light.
  • the first light emitting section 10 includes one or more light emitting elements 11.
  • the light emitting element 11 may be a light emitting diode (LED) or a laser diode (LD).
  • LED light emitting diode
  • LD laser diode
  • the light emitting element 11 when the light emitting element 11 is an LED, the light emitting element 11 includes a first n-side semiconductor layer, a first p-side semiconductor layer, and a first active layer provided between the first n-side semiconductor layer and the first p-side semiconductor layer. may include.
  • the LED also includes a second active layer provided on the first p-side semiconductor layer, a second n-side semiconductor layer, a second p-side semiconductor layer, and between the second n-side semiconductor layer and the second p-side semiconductor layer. That's fine. Thereby, the brightness per unit area can be improved. Furthermore, an intermediate layer may be included between the first p-side semiconductor layer and the second n-side semiconductor layer.
  • the intermediate layer is, for example, a third n-side semiconductor layer, and has a higher n-type impurity concentration than the second n-side semiconductor layer. Thereby, it is possible to form a tunnel junction and improve the brightness per unit area of the light emitting element 11 while reducing the increase in forward voltage.
  • the peak wavelengths of light emitted by the first active layer and the second active layer may be the same or different.
  • the light emitted by the first light emitting section 10 may be visible light. Further, the first light emitting section 10 may emit light of one or more colors among purple, blue, green, red, and infrared light, and may emit light of two or more colors. Note that the first light emitting section 10 may include a plurality of light emitting elements 11 so as to emit light with a plurality of peak wavelengths in the same color range. Note that in this specification, visible light refers to light with a peak wavelength of 380 nm or more and less than 800 nm.
  • violet light refers to light with a peak wavelength of 380 nm or more and less than 435 nm.
  • Blue light refers to light with a peak wavelength of 435 nm or more and 480 nm or less.
  • Green light refers to light with a peak wavelength of 500 nm or more and 560 nm or less.
  • Red light refers to light with a peak wavelength of 610 nm or more and less than 800 nm.
  • Infrared light refers to light with a peak wavelength of 800 nm or more and 1500 nm or less.
  • the light emitting element 11 is arranged on the substrate 12.
  • the board 12 is a wiring board.
  • the substrate 12 is placed on the heat dissipation member 13.
  • the heat dissipation member 13 is a heat sink, and is made of metal such as copper.
  • the rod lens 14 has a main body portion 14a and a flange portion 14b.
  • the light emitted by the light emitting element 11 passes through the rod lens 14 and enters the light guide member 20 .
  • the rod lens 14 emits mixed color light of the light emitted by the plurality of light emitting elements 11 to the light guide member 20. Thereby, color unevenness of the light extracted from the light guide member 20 can be reduced.
  • the main body portion 14a has a tapered shape, and the taper widens toward the collar portion 14b.
  • the flange portion 14b has, for example, a flat plate shape. It is preferable that the main body portion 14a and the collar portion 14b are integrally formed of a translucent material. Examples of the material of the rod lens 14 include glass, polycarbonate, acrylic resin, silicone resin, and epoxy resin.
  • the holder 15 includes a first part 15a and a second part 15b.
  • the inside of the first component 15a is a cavity, and the light emitting element 11 and at least a part of the rod lens 14 are accommodated therein.
  • the first component 15a is fixed to the substrate 12 and the heat dissipation member 13.
  • the first component 15a may be fixed together with the substrate 12 and the heat dissipation member 13 by screws 16.
  • the first component 15a may be fixed by other methods.
  • the interior of the second component 15b is hollow, and a portion including the end surface 23 of the light guide member 20 is accommodated therein.
  • the first component 15a and the second component 15b may be fixed by a threaded portion provided on the first component 15a and a threaded portion provided on the second component 15b.
  • the material of the holder 15 is, for example, molded resin such as polycarbonate or ABS, or metal such as aluminum.
  • FIG. 4 is a schematic diagram showing a cross section of the light reflecting member 30 in a plane parallel to the first direction and the second direction of FIG.
  • the light guide member 20 has a straight portion 21 and a curved portion 22.
  • the straight portion 21 and the bent portion 22 include first surfaces 21a and 22a that emit light emitted by the first light emitting section 10 in a first direction, and second surfaces 21b and 22b that are located on the opposite side of the first surfaces 21a and 22a. has.
  • the material of the light guide member 20 is a translucent material. Examples of the transparent material include polycarbonate, acrylic resin, polyethylene terephthalate, and silica.
  • the straight portion 21 extends in a second direction orthogonal to the first direction. As shown in FIG. 3, the straight portion 21 has an end surface 23 into which the light emitted from the first light emitting section 10 enters. As shown in FIG. 2, the light emitted by the first light emitting section 10 travels through the straight section 21 while repeating total reflection.
  • FIGS. 5A to 5C represent enlarged views of region A, region B, and region C surrounded by dashed lines in FIG. 4.
  • FIG. 5A, 5B, and 5C represent enlarged views of region A, region B, and region C surrounded by dashed lines in FIG. 4.
  • FIG. 5A, 5B, and 5C represent enlarged views of region A, region B, and region C surrounded by dashed lines in FIG. 4.
  • FIG. 5A, 5B, and 5C represent enlarged views of region A, region B, and region C surrounded by dashed lines in FIG. 4.
  • FIG. 5A, 5B, and 5C represent enlarged views of region A, region B, and region C surrounded by dashed lines in FIG. 4.
  • FIG. 5A, 5B, and 5C represent enlarged views of region A, region B, and region C surrounded by dashed lines in FIG. 4.
  • FIG. 5A, 5B, and 5C represent enlarged views of region A, region B, and region C surrounded by das
  • the light reflecting member 30 may be arranged on the second surface 21b, 22b side, or may be arranged on the second surface 21b, 22b. Further, the light reflecting member 30 may be arranged closer to the outer surface of the bend formed by the bent portion 22 than to the inner surface. The light extraction efficiency of the light source module 1 can be improved.
  • the light reflecting member 30 is made of the same material as the light guiding member 20, and the light reflecting member 30 and the light guiding member 20 may be integrally formed. By eliminating the interface between the light reflecting member 30 and the light guide member 20, reflection, refraction, and/or absorption at the interface can be reduced. Therefore, in the light reflecting member 30, the light can be efficiently reflected to the first surfaces 21a and 22a, so that the light extraction efficiency can be improved.
  • the light reflecting member 30 may be, for example, a prism, a reflective sheet, a metal film, or the like.
  • a prism means a structure having a reflective surface that reflects light in a predetermined direction.
  • the light reflecting member 30 is a prism, and a portion of the second surfaces 21b and 22b of the light guide member 20 forms the reflecting surface 31 of the prism. This increases the ratio of the first direction among the light reflection directions, so that not only the light extraction efficiency can be improved but also the light distribution of the light extracted from the first surfaces 21a and 22a can be further controlled.
  • the straight portion 21 of the light guide member 20 has an end surface onto which the light emitted from the first light emitting section 10 enters.
  • the distance between the prisms 30a in the straight portion 21 becomes narrower as it goes in the second direction from the end surface. That is, the distance between the prisms 30a in the straight portion 21 becomes narrower as it goes from the end face toward the curved portion 22.
  • a large amount of light is extracted near the first light emitting section, and the illuminance distribution tends to be biased near the first light emitting section.
  • the illuminance distribution of the first light emitting surfaces is averaged means that the area of the first surfaces 21a, 22a having an illuminance within ⁇ 20% of the average illuminance on the first surfaces 21a, 22a is This means that it is 80% or more of the entire first surface 21a, 22a.
  • the interval between the prisms 30a in the straight portion 21 may become narrower continuously, or may become narrower discontinuously in each predetermined section.
  • the height of the prism 30a in the straight portion 21 increases as it goes from the end face toward the second direction. That is, the height of the prism 30a in the straight portion 21 increases from the end face toward the curved portion 22.
  • the amount of light extracted near the end surface of the straight portion 21 can be reduced and the amount of light directed toward the second direction side can be increased, so that the light extraction efficiency at the first surfaces 21a and 22a is improved.
  • the illuminance distribution on the first light emitting surface is averaged. Note that the height of the prism 30a in the straight portion 21 may increase continuously, or may increase discontinuously in each predetermined section.
  • the height of the prism 30a in the curved portion 22 is lower than the highest prism 30a among the prisms 30a in the straight portion 21.
  • the angle between the reflective surface 31 of the prism 30a and the curved portion 22 is smaller than the angle between the reflective surface 31 of the prism 30a and the straight portion 21.
  • the light traveling through the curved portion 22 is likely to enter the prism 30a at an angle larger than the critical angle, and total reflection will easily occur at the reflecting surface 31. Therefore, with the above configuration, it is possible to efficiently reflect the light traveling through the curved portion 22 to the first surface 22a, and improve the light extraction efficiency at the curved portion 22.
  • the height of the prism 30a at the bent portion 22 may be lowered continuously, or may be lowered discontinuously for each predetermined section. Furthermore, the angle formed by the reflective surface 31 of the prism 30a and the bent portion 22 may become smaller continuously or may become smaller discontinuously in each predetermined section.
  • FIG. 5D is another schematic diagram in which the region B surrounded by the broken line in FIG. 4 is enlarged.
  • the light reflecting member 30 and the light guiding member 20 are integrally formed, which is different from FIG. 5B.
  • the second surfaces 21b and 22b of the light guide member 20 are processed to form the prism 30a.
  • the prism 30a and the light guide member 20 may be integrally formed. Thereby, the interface between the prism 30a and the light guide member 20 can be eliminated, and reflection, refraction, and/or absorption at the interface can be reduced. Therefore, in the prism 30a, the light can be efficiently reflected to the first surfaces 21a and 22a, so that the light extraction efficiency can be improved.
  • the light source module 1 may further include a light branching member 40 and a retroreflective member 50, as shown in FIG.
  • the light extracted in the first direction from the first surfaces 21a and 22a of the light guide member 20 forms an image outside the light source module 1 by the light branching member 40 and the retroreflection member 50, and displays an image in the air. Details will be explained below.
  • the light branching member 40 reflects part of the incident light and transmits part of it.
  • the light branching member 40 has a third surface 40a.
  • the light branching member 40 receives the light emitted from the first surfaces 21a and 22a of the light guide member 20 on the third surface 40a, reflects some of it to the retroreflection member 50, and transmits some of it. Further, a part of the light retroreflected by the retroreflection member 50 is transmitted.
  • a half mirror, acrylic, glass, punched metal, wire grid film, reflective polarizing film, or the like can be used for the light branching member 40.
  • the light branching member 40 may also be generally called a beam splitter.
  • the light branching member 40 may take the shape of a plate, a sheet, a block, or the like.
  • the retroreflective member 50 retroreflects incident light.
  • the retroreflective member 50 has a fourth surface 50a.
  • the retroreflection member 50 receives the light reflected by the third part of the light branching member 40 on the fourth surface 50a, and retroreflects the light.
  • the retroreflected light enters the light branching member 40 again.
  • glass beads, prisms, etc. can be used as the retroreflective member 50.
  • the retroreflective member 50 may be in the form of a sheet, and can be used by being attached to a rigid material such as a sheet metal.
  • FIG. 6 is a schematic diagram showing a side view of the light source module 1 that performs aerial display.
  • the light emitted from the first surfaces 21a and 22a of the light guide member 20 enters the third surface 40a of the light branching member 40 while spreading in free space.
  • a portion of the light incident on the third surface 40a is reflected and travels toward the fourth surface 50a of the retroreflective member 50.
  • the light incident on the fourth surface 50a is retroreflected by the fourth surface 50a and enters the third surface 40a again, and a portion of the light passes through the light branching member 40.
  • the aerial image 60 is normally displayed so as to be plane symmetrical to the light guide member 20 on the third surface 40a of the light branching member 40.
  • An optical member may be provided from the first surfaces 21a, 22a of the light guiding member 20 to the fourth surface 50a of the retroreflective member 50 to lengthen the optical path length.
  • the distance from the light branching member 40 to the aerial image 60 can be increased. That is, the distance from the light branching member 40 to the aerial image 60 can be increased so that the aerial image 60 and the light guide member 20 are asymmetrical with respect to the third surface 40a of the light branching member 40.
  • the bent portion 22 includes a portion having a radius of curvature of 20 mm or more and 200 mm or less. Thereby, the bent portion 22 can be sharply bent in the first direction with respect to the straight portion extending in the second direction. Since the display area changes sharply in the first direction, the aerial image is displayed more three-dimensionally.
  • the radius of curvature of the bent portion 22 may be preferably 20 mm or more and 150 mm or less, more preferably 50 mm or more and 150 mm or less. Aerial images can be displayed more three-dimensionally.
  • FIG. 7 is a schematic diagram showing a light source module 100 that is a modification of the embodiment.
  • the light source module 100 includes a first light emitting section 10, a light guiding member 20, a light reflecting member 30, a light branching member 40, and a retroreflecting member 50. Further, the light source module 100 may further include a second light emitting section 110 and a cylindrical lens 120 disposed on the light emitting surface side of the second light emitting section 110.
  • the first light emitting section 10, the light guiding member 20, the light reflecting member 30, the light branching member 40, the retroreflective member 50, the second light emitting section 110, and the cylindrical lens 120 are housed inside the frame 130a.
  • the second light emitting section 110 and the cylindrical lens 120 are housed in a frame 130b.
  • the material of the frame 130b is, for example, metal such as aluminum or stainless steel, or resin such as polycarbonate or ABS.
  • the frame body 130a is supported by a support body 140.
  • the angle at which the support body 140 supports the frame body 130a can be changed within a predetermined range. By changing the angle at which the support body 140 supports the frame body 130a, the position where the aerial image is displayed can be adjusted.
  • the material of the frame 130a is, for example, metal such as aluminum or stainless steel, or resin such as polycarbonate or ABS.
  • the material of the support body 140 is, for example, metal such as aluminum or stainless steel, or resin such as polycarbonate or ABS.
  • the retroreflective member 50 may have a curved surface. Light scattered without being retroreflected by the fourth surface 50a of the retroreflective member 50 is reflected by the curved surface and can be absorbed by the frame 130a. Ghosts and glare caused by light other than retroreflected light can be reduced.
  • the light source module 100 may further include a second light emitting section 110 and a cylindrical lens 120 disposed on the light emitting surface side of the second light emitting section 110.
  • the aerial image 150 using the second light emitting section 110 as a light source can be displayed independently of the aerial image 60 using the first light emitting section 10 as a light source.
  • FIG. 8A is a schematic diagram showing a cross section of the second light emitting section 110 and the cylindrical lens 120 in a plane parallel to the optical axis direction and the power direction of the cylindrical lens.
  • FIG. 8B is a schematic top view of the second light emitting section 110.
  • the second light emitting section 110 includes one or more light emitting elements 111.
  • FIG. 8B shows a second light emitting section 110 including at least one light emitting element 111R that emits red light, one or more light emitting elements 111G that emits green light, and one or more light emitting elements 111B that emits blue light.
  • Light emitting elements 111R, 111G, and 111B that emit light of different colors are arranged in the no-power direction of the cylindrical lens.
  • the second light emitting sections 110 can be suitably used as a light source for a display.
  • the second light emitting section 110 may further include a light emitting element that emits infrared light, and may serve as a light source for sensing.
  • the cylindrical lens 120 functions as a lens for a component of the light emitted by the second light emitting section 110 in a predetermined direction.
  • the dashed line represents the optical axis of the cylindrical lens.
  • a direction perpendicular to the optical axis is a power direction (a direction parallel to a third direction described later).
  • the cylindrical lens 120 is arranged on the light emitting surface 112 side of the second light emitting section 110.
  • the rear focal point of the cylindrical lens 120 may or may not coincide with the light emitting surface 112 of the second light emitting section 110.
  • the light emitting surface 112 of the second light emitting section 110 is located between the light incident surface 123 of the cylindrical lens 120 and the back focal point. You may place it in Thereby, it is possible to control the light distribution and limit the range of light incident on the light branching member 40.
  • the power direction of the cylindrical lens 120 is parallel to a third direction perpendicular to both the optical axis direction of the cylindrical lens 120 and the second direction. This improves the visibility of the aerial image 150 displayed by the second light emitting section 110.
  • the light distribution of the component in the direction perpendicular to the horizontal plane is controlled by the cylindrical lens 120, while the component in the direction parallel to the horizontal plane is not affected by the cylindrical lens 120. That is, the visibility of the aerial image 150 can be improved while widening the viewing angle of the aerial image 150. Furthermore, by controlling the light distribution in the power direction, the brightness of the aerial image 150 is improved compared to the case where the cylindrical lens 120 is not provided. Furthermore, by controlling the light distribution in the power direction, ghosts and glare are reduced compared to the case where the cylindrical lens 120 is not provided.
  • the power direction of the cylindrical lens 120 is parallel to the third direction includes a case where the power direction of the cylindrical lens 120 is shifted within a range of ⁇ 5 degrees with respect to the third direction. , preferably within a range of ⁇ 1 degree.
  • “perpendicular to the optical axis” includes a case where the optical axis is deviated within a range of ⁇ 5 degrees, and preferably a case where a deviation is within a range of ⁇ 1 degree.
  • “perpendicular to the second direction” includes a case where the position is deviated from the second direction within a range of ⁇ 5 degrees, and preferably a case where the position is deviated within a range of ⁇ 1 degree.
  • the material of the cylindrical lens 120 may be, for example, acrylic, polycarbonate resin, silicone resin, etc.
  • the rear focal point of the cylindrical lens 120 is arranged so as to coincide with the light emitting surface 112 of the second light emitting section 110, and the component in a predetermined direction of the light emitted by the second light emitting section 110 is directed toward the optical axis. They may be parallel.
  • the cylindrical lens 120 includes a plurality of cylindrical lens parts 121.
  • a groove portion 122 is provided between adjacent cylindrical lens portions 121 .
  • the direction in which the groove portion 122 extends, that is, the direction perpendicular to the paper surface is the no-power direction.
  • Each cylindrical lens part 121 is a part that functions as a lens for a component in a predetermined direction of the light emitted by the second light emitting part 110 facing each cylindrical lens part 121.
  • a pair of second light emitting section 110 and cylindrical lens section 121 surrounded by a dotted line frame are shown representatively in the traveling direction of light. As shown in FIG. 8A, among the light emitted by the second light emitting section 110, the light distribution of a component in a predetermined direction is controlled by the cylindrical lens section 121. The same applies to the other second light emitting sections 110 and cylindrical lens sections 121.
  • FIG. 8C is a schematic diagram showing another form of the second light emitting section 110 and the cylindrical lens 120.
  • the configuration is similar to that of FIG. 8A except for the matters to be described.
  • the cylindrical lens 120 may be integrated with the second light emitting unit 110.
  • the distance between the light emitting surface 112 of the second light emitting section 110 and the light incident surface 123 of the cylindrical lens 120 can be shortened, so the proportion of light whose light distribution can be controlled increases, and the light extraction Efficiency can be increased.
  • ghosts and glare can also be reduced.
  • the cylindrical lens 120 may be integrated with the second light emitting section 110 via the intermediate layer 124.
  • the intermediate layer 124 is a sheet made of a translucent material or an adhesive. Examples of the light-transmitting material of the intermediate layer 124 include acrylic resin, polycarbonate, and silicone resin.
  • the cylindrical lens 120 is integrated with the second light emitting section via the intermediate layer 124. Further, a part of the light emitting surface 112 of the second light emitting section 110 is embedded in the intermediate layer 124. That is, part of the light emitting surface 112 and side surface 113 of the second light emitting section 110 is in contact with the intermediate layer 124 .
  • the distance between the light emitting surface 112 of the second light emitting section 110 and the light incident surface 123 of the cylindrical lens 120 can be further shortened. Therefore, the proportion of light whose light distribution can be controlled is further increased, and the light extraction efficiency can be improved.
  • silicone resin may be used as the material for the intermediate layer 124 to increase resistance to the heat generated by the second light emitting section 110.
  • the cylindrical lens 120 may be integrated with the second light emitting section 110 without intervening the intermediate layer 124.
  • the cylindrical lens 120 and the second light emitting section 110 can be integrated without intervening the intermediate layer 124 by a direct bonding method. Examples of the direct bonding method include an optical contact method, a hydroxyl group bonding method, and an atomic diffusion bonding method.
  • the cylindrical lens 120 may be divided into pieces using the groove portions 122 so that a set of the second light emitting portion 110 and the cylindrical lens portion 121 surrounded by dotted lines constitute one unit, thereby forming one light source.
  • the second light emitting section 110 and the cylindrical lens section 121 may be integrated through the intermediate layer 124 or may be integrated without intervening the intermediate layer 124.
  • FIG. 9 is a schematic diagram showing a side view of the light source module 100 that performs aerial display.
  • the cylindrical lens 120 emits the light emitted by the second light emitting section 110 toward the light branching member 40 . That is, the light branching member 40 is located in the direction in which the optical axis of the cylindrical lens 120 extends. A part of the light emitted from the cylindrical lens 120 is reflected by the third surface 40a of the light branching member 40 toward the fourth surface 50a of the retroreflective member 50. The light incident on the fourth surface 50a is retroreflected, enters the light branching member 40 again, and a portion of the light is transmitted. The light transmitted through the light branching member 40 forms an image and displays an aerial image 150.
  • the aerial image 150 is displayed at a position that is plane symmetrical between the second light emitting section 110 and the third surface 40a of the light branching member 40.
  • light is reflected by the third surface 40a and proceeds to the fourth surface 50a, and light is retroreflected by the fourth surface 50a and proceeds to the third surface 40a, transmitting the light branching member 40.
  • the light distribution of the second light emitting section 110 is controlled by a cylindrical lens 120. As described above, by disposing the light emitting surface 112 of the second light emitting section 110 between the light incident surface 123 of the cylindrical lens 120 and the rear focal point, the light branching member 40 is arranged as shown in FIG.
  • the aerial image 150 can be efficiently displayed.
  • the light emitted from the cylindrical lens 120 without controlling the light distribution may be incident on the frame 130a and absorbed, or may be located at a position where the aerial image 150 is formed outside the light source module 100. may proceed to different positions separately. Therefore, by controlling the light distribution of the light emitted by the second light emitting section 110 using the cylindrical lens 120, ghosts and glare caused by the light emitted by the second light emitting section 110 can be reduced.
  • the frame 130a By tilting and arranging the frame 130a, the position where the aerial images 60, 150 are displayed can be changed. For example, as shown in FIG. 9, the frame 130a may be tilted so that the aerial images 60, 150 are parallel to the horizontal direction. At this time, the light distribution of the vertical component of the aerial image 150 is controlled by the cylindrical lens 120, and visibility in the vertical direction is improved.
  • the light source module 100 according to the embodiment can be used, for example, as a lamp for a mobile object, a fixed lighting device, a three-dimensional display, a digital signage, and the like.
  • a moving body will be explained as an example. Examples of the moving object include a car, a motorcycle, and the like.
  • FIG. 10A is a schematic diagram showing a top view of the automobile 200.
  • the automobile 200 shown in FIG. 10A includes the light source module 100 according to the embodiment.
  • the light source module 100 can be used, for example, as a rear lamp of an automobile 200.
  • FIG. 10A shows an example of a position where the light source module 100 is placed.
  • the light source module 100 may be included in the area surrounded by the dotted line.
  • the light emitted from the light source module 100 forms an image outside the vehicle 200 to display aerial images 60 and 150.
  • the shape of the aerial image 60 is displayed such that the shape of the light guide member 20 is plane symmetrical with respect to the third surface 40a of the light branching member 40.
  • the aerial image 150 displays display information such as characters or images displayed by the second light emitting unit 110.
  • the light source modules 100 are arranged on the left and right sides so as to be displayed along the curved surface of the rear part of the automobile 200.
  • FIG. 10B is a schematic diagram showing a side view of the automobile 200.
  • the light source module 100 is arranged at an angle so that the displayed aerial images 60 and 150 are displayed parallel to the traveling direction of the automobile 200.
  • the traveling direction of the automobile 200 is a horizontal direction or an inclination direction of a slope.
  • FIG. 10B illustrates a case where the traveling direction of the automobile 200 is a horizontal direction.
  • Aerial images can be used, for example, for brake lights, backlights, turn signals, or hazard lights. It may also be used as a communication lamp or car body lighting that adds and displays other information.
  • a first light emitting section A light guiding member; A light reflecting member;
  • the light guide member has a straight portion and a bent portion, The straight part and the bent part have a first surface that emits light emitted by the first light emitting part in a first direction, and a second surface located on the opposite side to the first surface, The straight portion extends in a second direction perpendicular to the first direction, The bent portion bends from the second direction toward the first direction, In the straight portion and the bent portion, the light reflecting member is arranged closer to the second surface than the first surface. light source module.
  • the light reflecting member is made of the same material as the light guiding member, The light reflecting member and the light guiding member are integrally formed.
  • the light source module described in Appendix 1. (Additional note 3)
  • the light reflecting member is a prism, A part of the second surface forms a reflective surface of the prism,
  • the light source module according to appendix 1 or 2. (Additional note 4)
  • the straight portion has an end surface on which light emitted from the first light emitting portion enters, The distance between the prisms in the straight portion becomes narrower from the end surface toward the second direction.
  • the light source module according to any one of Supplementary Notes 1 to 4.
  • the bent portion includes a portion having a radius of curvature of 20 mm or more and 200 mm or less.
  • the light source module according to appendix 5.
  • (Appendix 7) a second light emitting section; cylindrical lens, Furthermore, The cylindrical lens is arranged on the light emitting surface side of the second light emitting section, The power direction of the cylindrical lens is parallel to a third direction perpendicular to both the optical axis direction of the cylindrical lens and the second direction, The cylindrical lens emits light emitted by the second light emitting section toward the light branching member.
  • the light source module according to appendix 5 or 6. A mobile body comprising the light source module according to appendix 5, 6, or appendix 7 that cites appendix 5 or 6.
  • Light source module 10 First light emitting part 11 Light emitting element 12 Substrate 13 Heat radiation member 14 Rod lens 14a Main body part 14b Flange part 15 Holder 15a First part 15b Second part 16 Screw 20 Light guiding member 21 Straight part 21a First surface 21b second surface 22 bent portion 22 22a First surface 22b Second surface 23 End surface 30 Light reflecting member 30a Prism 31 Reflecting surface 40 Light branching member 40a Third surface 50 Retroreflective member 50a Fourth surface 60 Aerial image 110 Second light emitting section 111, 111R, 111G, 111B Light emitting element 112 Light emitting surface 113 Side surface 120 Cylindrical lens 121 Cylindrical lens portion 122 Groove portion 123 Light incidence surface 130a, 130b Frame 140 Support 150 Aerial image 200 Automobile

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

第1発光部と、導光部材と、光反射部材と、光分岐部材と、再帰反射部材と、を備え、前記導光部材は直線部および曲がり部を有し、前記直線部および前記曲がり部は、前記第1発光部が発する光を第1方向に出射する第1面と、前記第1面と反対側に位置する第2面を有し、前記直線部は前記第1方向と直交する第2方向へ延び、前記曲がり部は前記第2方向から前記第1方向へ向けて曲がり、前記直線部および前記曲がり部において、前記光反射部材は前記第1面よりも前記第2面の近くに配置され、前記光分岐部材は第3面を有し、前記再帰反射部材は第4面を有し、前記第3面は、前記第1面から出射される光の一部を、前記第4面へ反射する、光源モジュール。

Description

光源モジュール
 本開示は、光源モジュールに関する。
 導光体を用いる灯具は、導光体の形状によって光取り出し効率が変わり得る。例えば、特許文献1は、棒状の導光体が、ランプボディの形状に合わせて湾曲した形状である灯具を開示している。
特開2019-192440号公報
 特許文献1に開示されている灯具は、導光体が湾曲する部分において、導光体中を全反射しながら進行する光が反射面に到達し難く、光取り出し効率が下がる虞がある。
 本開示の一実施形態は、光取り出し効率が向上した光源モジュールを提供することを目的とする。
 本開示の一実施形態は、第1発光部と、導光部材と、光反射部材と、光分岐部材と、再帰反射部材と、を備え、前記導光部材は直線部および曲がり部を有し、前記直線部および前記曲がり部は、前記第1発光部が発する光を第1方向に出射する第1面と、前記第1面と反対側に位置する第2面を有し、前記直線部は前記第1方向と直交する第2方向へ延び、前記曲がり部は前記第2方向から前記第1方向へ向けて曲がり、前記直線部および前記曲がり部において、前記光反射部材は前記第1面よりも前記第2面の近くに配置され、前記光分岐部材は第3面を有し、前記再帰反射部材は第4面を有し、前記第3面は、前記第1面から出射される光の一部を、前記第4面へ反射する、光源モジュールである。
 本開示の一実施形態によれば、光取り出し効率が向上した光源モジュールを提供することを目的とする。
光源モジュールの上面図を示す模式図である。 光源モジュールの上面図を示す模式図である。 図1の第1方向および第2方向に平行な平面における第1発光部の一断面を示す模式図である。 図1の第1方向および第2方向に平行な平面における光反射部材の一断面を示す模式図である。 図4の破線で囲まれた領域Aを拡大した模式図である。 図4の破線で囲まれた領域Bを拡大した模式図である。 図4の破線で囲まれた領域Cを拡大した模式図である。 図4の破線で囲まれた領域Bを拡大した他の模式図である。 空中表示を行う光源モジュールの側面図を示す模式図である。 光源モジュールの変形例を示す模式図である。 シリンドリカルレンズの光軸方向およびパワー方向に平行な平面における第2発光部とシリンドリカルレンズの一断面を示す模式図である。 第2発光部の上面図を示す模式図である。 第2発光部とシリンドリカルレンズの他の構成を表す模式図である。 空中表示を行う光源モジュールの側面図を示す模式図である。 自動車の上面図を表す模式図である。 自動車の側面図を表す模式図である。
 本明細書に記載される数値範囲の上限及び下限は、数値範囲として例示された数値をそれぞれ任意に選択して組み合わせることが可能である。以下、本発明の実施形態を詳細に説明する。ただし、以下に示す実施形態は、本発明の技術思想を具体化するための、光源モジュールを例示するものであって、本発明は、以下に示す光源モジュールに限定されない。
<光源モジュール1>
 図1は、実施形態に係る光源モジュール1の上面図を示す模式図である。光源モジュール1は、第1発光部10と、導光部材20と、光反射部材30と、を備え、導光部材20は直線部21および曲がり部22を有し、直線部21および前記曲がり部22は、第1発光部10が発する光を第1方向に出射する第1面21a、22aと、第1面21a、22aと反対側に位置する第2面21b、22bを有し、直線部21は第1方向と直交する第2方向へ延び、曲がり部22は第2方向から前記第1方向へ向けて曲がり、直線部21および曲がり部22において、光反射部材30は第1面21a、22aよりも第2面21b、22bの近くに配置される。
 図2は光源モジュール1の上面図を示す模式図である。各矢印は第1発光部10が発する光を表す。実施形態に係る光源モジュール1は、図2に示すように、第1発光部10から発せられ、全反射を繰り返して導光部材20の直線部21および曲がり部22を進行する光を光反射部材30によって第1面21a、22aから取り出すことができるので、光源モジュール1の光取り出し効率を向上させることができる。
 (第1発光部10)
 図3は、図1の第1方向および第2方向に平行な平面における第1発光部10の一断面を示す模式図である。また、図3中の点線によって囲まれた部分の拡大図も示されている。第1発光部10は、例えば、図3に示すように、発光素子11と、基板12と、放熱部材13と、ロッドレンズ14と、ホルダ15と、を備える。
 第1発光部10は、導光部材20に光を照射する光源である。第1発光部10は、1以上の発光素子11を含む。発光素子11は、発光ダイオード(LED:Light Emitting Diode)、レーザダイオード(LD:Laser Diode)であってよい。例えば、発光素子11がLEDであるとき、発光素子11は、第1n側半導体層と、第1p側半導体層と、第1n側半導体層および第1p側半導体層の間に設けれる第1活性層を含んでよい。また、LEDは、第1p側半導体層の上に、第2n側半導体層と、第2p側半導体層と、第2n側半導体層および第2p側半導体層の間に設けれる第2活性層を含んでよい。これにより、単位面積あたりの輝度を向上させることができる。さらに、第1p側半導体層と第2n側半導体層との間に中間層を含んでよい。中間層は、例えば、第3n側半導体層であり、第2n側半導体層におけるn型不純物濃度よりもn型不純物濃度が高い。これにより、トンネル接合を形成し、発光素子11の単位面積あたりの輝度を向上させつつ、順方向電圧の増加を低減することができる。第1活性層および第2活性層が発する光のピーク波長は、同じであってもよく、異なっていてもよい。第1発光部10が発する光は可視光であってよい。また、第1発光部10は、紫色、青色、緑色、赤色、および赤外光のうち1以上の色の光を発してよく、2以上の色の光を発してよい。なお、第1発光部10は、同一色の範囲において複数のピーク波長の光を発するように複数の発光素子11を含んでもよい。なお、本明細書において可視光とは、ピーク波長が380nm以上800nm未満の光を指す。また、本明細書において、紫色光とは、ピーク波長が380nm以上435nm未満の光を指す。青色光とは、ピーク波長が435nm以上480nm以下の光を指す。緑色光とは、ピーク波長が500nm以上560nm以下の光を指す。赤色光とは、ピーク波長が610nm以上800nm未満の光を指す。赤外光とは、ピーク波長が800nm以上1500nm以下の光を指す。
 発光素子11は、基板12上に配置されている。基板12は、配線基板である。基板12は、例えば、放熱部材13上に配置されている。放熱部材13は、ヒートシンクであり、例えば銅などの金属からなる。
 図3に示すように、ロッドレンズ14は、本体部14aと、鍔部14bと、を有する。発光素子11が発する光は、ロッドレンズ14を通り、導光部材20へ入射する。複数の発光素子11が基板12上に配置されているとき、ロッドレンズ14は、複数の発光素子11が発する光の混色光を導光部材20へ出射する。これにより導光部材20から取り出される光の色ムラを低減することができる。本体部14aはテーパー状であり、鍔部14bへ向かうにつれて、テーパーが広がる。これにより、発光素子11から入射した光は、本体部14a内において全反射が起こりやすくなり、導光部材20へ入射する光の割合が増加する。鍔部14bは、例えば、平板状である。本体部14aと鍔部14bは、透光性材料により一体形成されていることが好ましい。ロッドレンズ14の材料は、例えば、ガラス、ポリカーボネート、アクリル樹脂、シリコーン樹脂、またはエポキシ樹脂などが挙げられる。
 図3に示すように、ホルダ15は第1部品15aと、第2部品15bと、を有する。第1部品15aの内部は、空洞であり、発光素子11と、少なくともロッドレンズ14の一部が収容される。第1部品15aは基板12と放熱部材13に対して固定される。第1部品15aは、基板12および放熱部材13とともにねじ16により固定されてよい。また、第1部品15aは、他の方法により固定されてもよい。第2部品15bの内部は空洞であり、導光部材20の端面23を含む一部が収容されている。第1部品15aと第2部品15bは、第1部品15aに設けられるねじ形状部分と、第2部品15bに設けられるねじ形状部分により、固定されてよい。ホルダ15の材料は、例えば、ポリカーボネート、ABSなどの成形樹脂、またはアルミニウム等の金属などである。
(導光部材20)
 図4は、図1の第1方向および第2方向に平行な平面における光反射部材30の一断面を示す模式図である。図4に示すように、導光部材20は直線部21と曲がり部22とを有する。直線部21および曲がり部22は、第1発光部10が発する光を第1方向に出射する第1面21a、22aと、第1面21a、22aと反対側に位置する第2面21b、22bを有する。導光部材20の材料は、透光性材料である。透光性材料は、例えば、ポリカーボネート、アクリル樹脂、ポリエチレンテレフタレート、シリカなどが挙げられる。
 直線部21は、第1方向と直交する第2方向に延びる。図3に示すように、直線部21は、第1発光部10から出射される光が入射する端面23を有する。図2に示すように、第1発光部10が発する光は、全反射を繰り返しながら、直線部21を進行する。
 図4に示すように、曲がり部22は、第2方向から第1方向に向けて曲がっている。図2に示すように、直線部21から進行してきた光は、全反射を繰り返し、第2方向から第1方向へ方向を変化させながら進行する。光反射部材30が第1面21a、22aよりも第2面21b、22bに近くに配置されることで、光を効率よく第1面21a、22a側へ反射させ、光取り出し効率を向上させることができる。曲がり部22は、直線部21と連続的に繋がっていてよい。好ましくは、曲がり部22と直線部21とは一体形成されてよい。曲がり部22および直線部21の界面での反射、屈折、および/または吸収を低減することができる。したがって、導光部材20内を進行する光の量が増加し、第1方向へ取り出される光の割合を増加させることができる。
 (光反射部材30)
 次に、光反射部材30について説明する。図5A、図5B、および図5Cは、図4の破線で囲まれた領域A、領域B、および領域Cの拡大図を表す。図5Aから図5Cに示すように、導光部材20の直線部21および曲がり部22において、光反射部材30は第1面21a、22aよりも第2面21b、22bの近くに配置される。光反射部材30は、導光部材20中を進行する光を第1方向へ向けて反射する。曲がり部22が第1方向へ向けて曲がるとき、光反射部材30が第1面21a、22aよりも第2面21b、22bの近くに配置されることで、曲がり部22を進行する光を効率よく第1方向へ反射することができる。これにより、光源モジュール1の光取り出し効率を向上させることができる。光反射部材30は、第2面21b、22b側に配置されてよく、第2面21b、22b上に配置されてもよい。また、光反射部材30は、曲がり部22がつくる曲げの内側面よりも外側面の近くに配置されてよい。光源モジュール1の光取り出し効率を向上させることができる。
 光反射部材30は、導光部材20と同一材料であり、光反射部材30および導光部材20は、一体形成されてよい。光反射部材30および導光部材20との界面をなくし、界面での反射、屈折、および/または吸収を低減することができる。したがって、光反射部材30において、光を効率よく第1面21a、22aへ反射することができるので、光取り出し効率を向上させることができる。光反射部材30は、例えば、プリズム、反射シート、金属膜などであってよい。プリズムとは、所定の方向へ光を反射する反射面を有する構造体を意味する。光反射部材30は、さらに好ましくはプリズムであり、導光部材20の第2面21b、22bの一部がプリズムの反射面31をなす。これにより、光の反射方向のうち、第1方向の割合が増加するので、光取り出し効率の向上だけでなく、第1面21a、22aから取り出される光の配光をさらに制御することができる。
 光反射部材30がプリズム30aである場合について、詳述する。上述したように、導光部材20の直線部21は、第1発光部10から出射される光が入射する端面を有する。図5Aおよび図5Bを比べるとわかるように、直線部21におけるプリズム30aの間隔は、端面から第2方向へ向かうにつれて狭くなる。すなわち、直線部21におけるプリズム30aの間隔は、端面から曲がり部22へ向かうにつれて狭くなる。第1発光部に近い部分では光が多く取り出され、照度分布が第1発光部付近に偏りやすいが、これにより、直線部21の端面23付近で取り出される光の量を低減させ、第2方向側へ向かう光の量を増加させることができるので、第1面21a、22aにおける光取り出し効率が向上し、第1発光面の照度分布を平均化させることができる。なお、「第1発光面の照度分布が平均化される」とは、第1面21a、22aにおける平均照度に対して±20%の範囲の照度を有する第1面21a、22aの面積が、第1面21a、22a全体の80%以上であることを意味する。なお、直線部21におけるプリズム30aの間隔は、連続的に狭くなってもよいし、所定の区間ごとに不連続に狭くなってもよい。
 また、図5Aおよび図5B比べるとわかるように、直線部21におけるプリズム30aの高さは、端面から第2方向に向かうにつれて高くなる。すなわち、直線部21におけるプリズム30aの高さは、端面から曲がり部22へ向かうにつれて高くなる。これにより、直線部21の端面付近で取り出される光の量を低減し、第2方向側へ向かう光の量を増加させることができるので、第1面21a、22aにおける光取り出し効率が向上し、第1発光面の照度分布が平均化される。なお、直線部21におけるプリズム30aの高さは、連続的に高くなってもよいし、所定の区間ごとに不連続に高くなってもよい。
 また、図5Cに示すように、曲がり部22におけるプリズム30aの高さは、直線部21におけるプリズム30aの内、最も高さが高いプリズム30aよりも低い。または、プリズム30aの反射面31と曲がり部22のなす角が、プリズム30aの反射面31と直線部21のなす角よりも小さい。曲がり部22を進行する光は、臨界角よりも大きな角度でプリズム30aに入射しやすく、反射面31で容易に全反射が生じる。したがって、上述のような構成により、曲がり部22を進行する光を効率よく第1面22aへ反射させ、曲がり部22での光取り出し効率を向上させることができる。なお、曲がり部22におけるプリズム30aの高さは、連続的に低くなってもよいし、所定の区間ごとに不連続に低くなってもよい。また、プリズム30aの反射面31と曲がり部22のなす角は、連続的に小さくなってもよいし、所定の区間ごとに不連続に小さくなってもよい。
 図5Dは、図4の破線で囲まれた領域Bを拡大した他の模式図である。図5Dにおいて、光反射部材30および導光部材20は一体形成されており、この点で図5Bと異なる。言い換えると、導光部材20の第2面21b、22bは加工が施され、プリズム30aをなしている。また、図5Dと同様に図5Aから図5Cで示される領域Aおよび領域Cも、プリズム30aおよび導光部材20は一体形成されてよい。これにより、プリズム30aおよび導光部材20との界面をなくし、界面での反射、屈折、および/または吸収を低減することができる。したがって、プリズム30aにおいて、光を効率よく第1面21a、22aへ反射することができるので、光取り出し効率を向上させることができる。
 実施形態に係る光源モジュール1は、図6に示すように、光分岐部材40と、再帰反射部材50とをさらに備えてよい。導光部材20の第1面21a、22aから第1方向に取り出される光は、光分岐部材40および再帰反射部材50によって、光源モジュール1の外部で結像し、空中に像を表示する。以下に詳細を説明する。
(光分岐部材40)
 光分岐部材40は、入射された光の一部を反射し、一部を透過する。光分岐部材40は、第3面40aを有する。光分岐部材40は、導光部材20の第1面21a、22aから出射される光を第3面40aで受けて、一部を再帰反射部材50へ反射し、一部を透過する。また、再帰反射部材50において再帰反射する光の一部を透過する。光分岐部材40は、ハーフミラー、アクリル、ガラス、パンチングメタル、ワイヤグリッドフィルム、または反射型偏光フィルムなどを用いることができる。光分岐部材40は、他にも一般にビームスプリッタと呼ばれるものであってよい。また、光分岐部材40は、板、シート、またはブロックなどの形状をとってもよい。
(再帰反射部材50)
 再帰反射部材50は、入射する光を再帰反射する。再帰反射部材50は、第4面50aを有する。再帰反射部材50は、光分岐部材40の第3で反射される光を第4面50aで受けて、再帰反射する。再帰反射する光は、光分岐部材40に再度入射する。再帰反射部材50は、ガラスビーズ、プリズムなどを用いることができる。再帰反射部材50は、シート状であってよく、板金などの剛性のある材料に貼り付けて用いることができる。
(空中表示)
 図6を参照して空中表示について説明する。図6は空中表示を行う光源モジュール1の側面図を示す模式図である。光源モジュール1において、導光部材20の第1面21a、22aから出射される光は、自由空間中を広がりながら光分岐部材40の第3面40aへ入射する。第3面40aに入射する光の一部は反射され、再帰反射部材50の第4面50aへ向けて進行する。第4面50aに入射する光は、第4面50aで再帰反射されて再び第3面40aへ入射し、その光の一部が光分岐部材40を通過する。なお、わかりやすさのために、第3面40aで反射されて第4面50aへ進む光と、第4面50aで再帰反射されて第3面40aへ進み光分岐部材40を透過する光と、を区別して記載しているが、これらは実際には同じ経路を通る。導光部材20の第1面21a、22aから出射される光は、最終的に光分岐部材40を透過したあと、空中で結像する。導光部材20の第1面21a、22aの各点から出射される光は同様な過程を経てそれぞれ結像し、第1面21a、22aの形状を反映した像を空中に表示する。本明細書において、以後、空中に表示される像を空中像60と呼ぶ。空中像60は、通常、光分岐部材40の第3面40aで導光部材20と面対称となるように表示される。導光部材20の第1面21a、22aから再帰反射部材50の第4面50aまでに光学部材を設け、光路長を長くしてもよい。これにより、光分岐部材40から空中像60までの距離を大きくすることができる。すなわち、空中像60と導光部材20が光分岐部材40の第3面40aに対して非対称となるように、光分岐部材40から空中像60までの距離を大きくすることができる。
 再び図1を用いて空中像について説明する。第1面において、曲がり部22は20mm以上200mm以下の曲率半径を有する部分を含む。これにより、第2方向へ延びる直線部に対して、曲がり部22を急峻に第1方向へ曲げることができる。第1方向に対して表示領域が急峻に変化するので、空中像がより立体的に表示される。第1面において、曲がり部22の曲率半径は、好ましくは20mm以上150mm以下、より好ましくは50mm以上150mm以下であってよい。空中像をより立体的に表示することができる。
(変形例)
 実施形態に係る光源モジュール100の変形例を説明する。以下で説明すること以外は、実施形態と同様な構成を有する。図7は実施形態の変形例である光源モジュール100を示す模式図である。光源モジュール100は、第1発光部10と、導光部材20と、光反射部材30と、光分岐部材40と、再帰反射部材50と、を備える。また、光源モジュール100は、第2発光部110と、第2発光部110の発光面側に配置されるシリンドリカルレンズ120をさらに備えてよい。第1発光部10、導光部材20、光反射部材30、光分岐部材40、再帰反射部材50、第2発光部110、およびシリンドリカルレンズ120は、枠体130aの内部に収容されている。なお、図7において、第2発光部110およびシリンドリカルレンズ120は、枠体130bの中に収容されている。枠体130bの材料は、例えば、アルミニウム、ステンレス等の金属、またはポリカーボネート、ABSなどの樹脂である。
 枠体130aは、支持体140に支えられている。支持体140が枠体130aを支える角度は、所定の範囲で変更することができる。支持体140が枠体130aを支える角度を変更することで、空中像が表示される位置を調整することができる。枠体130aの材料は、例えば、アルミニウム、ステンレス等の金属、またはポリカーボネート、ABSなどの樹脂である。また、支持体140の材料は、例えば、アルミニウム、ステンレス等の金属、またはポリカーボネート、ABSなどの樹脂である。
 光源モジュール100において、再帰反射部材50は曲面を有して良い。再帰反射部材50の第4面50aで再帰反射されずに散乱した光が曲面で反射され、枠体130aで吸収させることができる。再帰反射する光以外の光に起因するゴーストやグレアを低減することができる。
(第2発光部110)
 光源モジュール100は、第2発光部110と、第2発光部110の発光面側に配置されるシリンドリカルレンズ120をさらに備えてよい。第2発光部110を光源とする空中像150を、第1発光部10を光源とする空中像60とは独立に表示することができる。
 図8Aは、シリンドリカルレンズの光軸方向とパワー方向に平行な平面における第2発光部110とシリンドリカルレンズ120の一断面を示す模式図である。図8Bは、第2発光部110の上面図の模式図である。第2発光部110は、1以上の発光素子111を含む。図8Bは、発光素子111として、少なくとも赤色光を発する発光素子111R、緑色光を発する111G、および青色光を発する111Bをそれぞれ1以上備える第2発光部110を示している。異なる色の光を発する発光素子111R、111G、および111Bは、シリンドリカルレンズのノーパワー方向に並ぶ。シリンドリカルレンズのパワー方向に異なる色の光を発する発光素子111R、111G、111Bが並ぶ場合、色ごとに配光が変化し、シリンドリカルレンズから出射される光は色ずれを起こし得る。一方で、異なる色の光を発する発光素子111R、111G、111Bが、シリンドリカルレンズのノーパワー方向に並ぶことで、各発光素子111R、111G、111Bの配光を制御し、さらに、シリンドリカルレンズによる色ずれを低減することができる。また、配光を制御することで、光取り出し効率を向上させることができる。また、発光素子111R、111G、および111Bをそれぞれ1以上備える第2発光部110を、図8Aに示すように複数用いることで、第2発光部110をディスプレイ用光源として好適に利用することができる。また、第2発光部110はさらに赤外光を発する発光素子をさらに含み、センシング用の光源としてもよい。
(シリンドリカルレンズ120)
 シリンドリカルレンズ120は、第2発光部110が発する光のうち、所定の方向の成分に対してレンズの働きをする。図8Aにおいて、1点鎖線はシリンドリカルレンズの光軸を表す。また、光軸と垂直な方向がパワー方向(後述する第3方向と平行な方向)である。シリンドリカルレンズ120は、第2発光部110の発光面112側に配置される。シリンドリカルレンズ120の後側焦点は、第2発光部110の発光面112と一致していても、一致していなくてもよい。シリンドリカルレンズ120の後側焦点が第2発光部110の発光面112と一致していないとき、第2発光部110の発光面112は、シリンドリカルレンズ120の光入射面123と後側焦点との間に配置してよい。これにより、配光を制御して、光分岐部材40に入射する範囲を制限することができる。シリンドリカルレンズ120のパワー方向は、シリンドリカルレンズ120の光軸方向および第2方向の両方に垂直な第3方向と平行である。これにより、第2発光部110が表示する空中像150の視認性が向上する。例えば、空中像150は、水平面に対して垂直方向の成分がシリンドリカルレンズ120によって配光が制御されている一方で、水平面に対して平行方向の成分はシリンドリカルレンズ120の影響を受けない。すなわち、空中像150の視野角を広げつつ、空中像150の視認性を向上させることができる。また、パワー方向の配光を制御することで、シリンドリカルレンズ120を備えない場合と比べて空中像150の輝度が向上する。また、パワー方向の配光を制御することで、シリンドリカルレンズ120を備えない場合と比べてゴーストやグレアが低減する。
 なお、本明細書において「シリンドリカルレンズ120のパワー方向が第3方向に対して平行」とは、シリンドリカルレンズ120のパワー方向が第3方向に対して±5度の範囲でずれている場合も含み、好ましくは±1度の範囲でずれている場合も含む。また、本明細書において「光軸に垂直」とは、光軸に対して±5度の範囲でずれている場合も含み、好ましくは±1度の範囲でずれている場合も含む。また、「第2方向に垂直」とは、第2方向に対して±5度の範囲でずれている場合も含み、好ましくは±1度の範囲でずれている場合も含む。
 シリンドリカルレンズ120の材料は、例えば、アクリル、ポリカーボネート樹脂、シリコーン樹脂などであってよい。なお、シリンドリカルレンズ120の後側焦点は、第2発光部110の発光面112と一致するように配置して、第2発光部110が発する光のうち、所定の方向の成分を光軸に対して平行としてもよい。
 図8Aにおいて、シリンドリカルレンズ120は、複数のシリンドリカルレンズ部121を含む。隣り合うシリンドリカルレンズ部121の間には、溝部122が設けられている。溝部122が延びる方向、すなわち、紙面に垂直な方向はノーパワー方向である。それぞれのシリンドリカルレンズ部121は、それぞれのシリンドリカルレンズ部121と対向する第2発光部110が発する光のうち、所定の方向の成分に対してレンズの働きをする部分である。図8Aでは、点線の枠で囲まれた1組の第2発光部110およびシリンドリカルレンズ部121について、光の進行方向を代表して示している。図8Aに示すように、第2発光部110が発する光のうち、所定の方向の成分の配光が、シリンドリカルレンズ部121により制御される。他の第2発光部110とシリンドリカルレンズ部121も同様である。
 図8Cは、第2発光部110およびシリンドリカルレンズ120の他の形態を表す模式図である。説明する事項以外は、図8Aと同様の構成を備える。図8Cに示すように、シリンドリカルレンズ120は第2発光部110と一体化されてもよい。これにより、第2発光部110の発光面112とシリンドリカルレンズ120の光入射面123との距離を短くすることができるので、配光を制御することが可能な光の割合が増加し、光取り出し効率を高めることができる。また、配光を制御することが可能な光の割合が増加することで、ゴーストやグレアを低減することもできる。
 シリンドリカルレンズ120は、例えば、中間層124を介して第2発光部110と一体化してよい。中間層124は、透光性材料からなるシート、または接着剤である。中間層124の材料である透光性材料は、例えば、アクリル樹脂、ポリカーボネート、シリコーン樹脂が挙げられる。図8Bにおいて、シリンドリカルレンズ120は、中間層124を介して第2発光部と一体化されている。また、第2発光部110の発光面112の一部が中間層124に埋め込まれている。つまり、第2発光部110の発光面112と側面113の一部が中間層124と接触している。これにより、第2発光部110の発光面112と、シリンドリカルレンズ120の光入射面123との間の距離をさらに短くすることができる。したがって、配光を制御することが可能な光の割合がさらに増加し、光取り出し効率を高めることができる。このとき、例えば、中間層124の材料として、シリコーン樹脂を用いることで、第2発光部110が発する熱への耐性を高めてもよい。なお、シリンドリカルレンズ120は、中間層124を介することなく第2発光部110と一体化してもよい。シリンドリカルレンズ120と第2発光部110は、直接接合法により、中間層124を介することなく一体化することができる。直接接合法は、例えば、オプティカルコンタクト法、水酸基接合法、原子拡散接合法が挙げられる。なお、点線で囲まれた1組の第2発光部110およびシリンドリカルレンズ部121が1単位となるように、シリンドリカルレンズ120を溝部122で個片化して、1つの光源としてもよい。この場合も、第2発光部110およびシリンドリカルレンズ部121は、中間層124を介して一体化してもよいし、中間層124を介さず一体化してもよい。
 図9は、空中表示を行う光源モジュール100の側面図を示す模式図である。シリンドリカルレンズ120は第2発光部110が発する光を光分岐部材40へ向けて出射する。すなわち、光分岐部材40は、シリンドリカルレンズ120の光軸が延びる方向に位置する。シリンドリカルレンズ120から出射される光の一部は、光分岐部材40の第3面40aで再帰反射部材50の第4面50aへ向けて反射される。第4面50aへ入射する光は再帰反射され、再度、光分岐部材40へ入射し、その光の一部が透過する。光分岐部材40を透過した光は結像し、空中像150を表示する。空中像150は、第2発光部110と光分岐部材40の第3面40aで面対称となるような位置に表示される。図6での説明と同様に、わかりやすさのために、第3面40aで反射され第4面50aへ進む光と、第4面50aで再帰反射され第3面40aへ進み光分岐部材40を透過する光と、を区別して記載しているが、これらの光は実際には同じ経路を通る。第2発光部110はシリンドリカルレンズ120によって、配光が制御されている。上述したように、第2発光部110の発光面112が、シリンドリカルレンズ120の光入射面123と後側焦点との間に配置されることで、図9に示すように、光分岐部材40が設けられた範囲に効率よく光を集めることができるので、効率よく空中像150を表示することができる。第2発光部110において、配光が制御されずにシリンドリカルレンズ120から出射される光は、枠体130aに入射して吸収されたり、光源モジュール100の外部で空中像150が結像する位置とは異なる位置へばらばらに進行したりする。したがって、第2発光部110が発する光をシリンドリカルレンズ120で配光を制御することにより、第2発光部110が発する光によるゴーストやグレアを低減することができる。
 枠体130aを傾けて配置させることで、空中像60、150が表示される位置を変更することができる。例えば、図9に示すように、水平方向に対して空中像60、150が平行となるように枠体130aを傾けてもよい。このとき、空中像150は、シリンドリカルレンズ120によって、鉛直方向の成分の配光が制御され、鉛直方向の視認性が改善される。
<応用例>
 実施形態に係る光源モジュール100の応用例について説明する。実施形態に係る光源モジュール100は、例えば、移動体の灯具、固定照明、立体ディスプレイ、デジタルサイネージなどに利用することができる。以下では、移動体を例にとって説明する。移動体は、例えば、自動車、自動二輪車などが挙げられる。
 図10Aは、自動車200の上面図を示す模式図である。図10Aに示す自動車200は、実施形態に係る光源モジュール100を含む。光源モジュール100は、例えば、自動車200のリアランプに用いることができる。図10Aには、光源モジュール100が配置される位置が例示されている。点線で囲まれる領域に光源モジュール100が含まれてよい。光源モジュール100から照射される光は、自動車200の外部で結像し、空中像60、150を表示する。空中像60の形状は、導光部材20の形状が、光分岐部材40の第3面40aに対して面対称となるように表示される。空中像150は、第2発光部110で表示される文字または画像などのディスプレイ情報を表示する。図10Aおよび図10Bに示す例では、自動車200の後部の曲面に沿って表示されるように、光源モジュール100が左右のそれぞれに配置されている。図10Bは、自動車200の側面図を示す模式図である。表示される空中像60、150が自動車200の進行方向に対して平行に表示されるように、光源モジュール100が傾いて配置される。なお、自動車200の進行方向とは、水平方向または斜面の傾斜方向である。図10Bでは、自動車200の進行方向が水平方向である場合を例示している。空中像は、例えば、ブレーキランプ、バックライト、方向指示器、またはハザードランプなどに利用することができる。また、その他の情報を付与して表示するコミュニケーションランプ、カーボディライティングとして利用してもよい。
 本実施形態は、以下の態様を含む。
 (付記1)
 第1発光部と、
 導光部材と、
 光反射部材と、を備え、
 前記導光部材は直線部および曲がり部を有し、
 前記直線部および前記曲がり部は、前記第1発光部が発する光を第1方向に出射する第1面と、前記第1面と反対側に位置する第2面を有し、
 前記直線部は前記第1方向と直交する第2方向へ延び、
 前記曲がり部は前記第2方向から前記第1方向へ向けて曲がり、
 前記直線部および前記曲がり部において、前記光反射部材は前記第1面よりも前記第2面の近くに配置される、
光源モジュール。
 (付記2)
 前記光反射部材は前記導光部材と同一材料であり、
 前記光反射部材および前記導光部材は一体形成されている、
付記1に記載の光源モジュール。
 (付記3)
 前記光反射部材は、プリズムであり、
 前記第2面の一部が前記プリズムの反射面をなす、
付記1または2に記載の光源モジュール。
 (付記4)
 前記直線部は前記第1発光部から出射される光が入射する端面を有し、
 前記直線部における前記プリズムの間隔は、前記端面から前記第2方向へ向かうにつれて狭くなる、
付記3に記載の光源モジュール。
 (付記5)
 光分岐部材と、
 再帰反射部材と、
をさらに備え、
 前記光分岐部材は第3面を有し、
 前記再帰反射部材は第4面を有し、
 前記第3面は、前記第1面から出射される光の一部を、前記第4面へ反射する、
付記1から4のいずれか1つに記載の光源モジュール。
 (付記6)
 前記第1面において、前記曲がり部は20mm以上200mm以下の曲率半径を有する部分を含む、
付記5に記載の光源モジュール。
 (付記7)
 第2発光部と、
 シリンドリカルレンズと、
をさらに備え、
 前記シリンドリカルレンズは、前記第2発光部の発光面側に配置され、
 前記シリンドリカルレンズのパワー方向は、前記シリンドリカルレンズの光軸方向および前記第2方向の両方に垂直な第3方向と平行であり、
 前記シリンドリカルレンズは、前記第2発光部が発する光を前記光分岐部材へ向けて出射する、
付記5または6に記載の光源モジュール。
 (付記8)
 付記5、6、または付記5または6を引用する付記7に記載の光源モジュールを備える移動体。
 1、100 光源モジュール
 10 第1発光部
 11 発光素子
 12 基板
 13 放熱部材
 14 ロッドレンズ
 14a 本体部
 14b 鍔部
 15 ホルダ
 15a 第1部品
 15b 第2部品
 16 ねじ
 20 導光部材
 21 直線部
 21a 第1面
 21b 第2面
 22 曲がり部22
 22a 第1面
 22b 第2面
 23 端面
 30 光反射部材
 30a プリズム
 31 反射面
 40 光分岐部材
 40a 第3面
 50 再帰反射部材
 50a 第4面
 60 空中像
 110 第2発光部
 111、111R、111G、111B 発光素子
 112 発光面
 113 側面
 120 シリンドリカルレンズ
 121 シリンドリカルレンズ部
 122 溝部
 123 光入射面
 130a、130b 枠体
 140 支持体
 150 空中像
 200 自動車

 

Claims (7)

  1.  第1発光部と、
     導光部材と、
     光反射部材と、
     光分岐部材と、
     再帰反射部材と、
    を備え、
     前記導光部材は直線部および曲がり部を有し、
     前記直線部および前記曲がり部は、前記第1発光部が発する光を第1方向に出射する第1面と、前記第1面と反対側に位置する第2面を有し、
     前記直線部は前記第1方向と直交する第2方向へ延び、
     前記曲がり部は前記第2方向から前記第1方向へ向けて曲がり、
     前記直線部および前記曲がり部において、前記光反射部材は前記第1面よりも前記第2面の近くに配置され、
     前記光分岐部材は第3面を有し、
     前記再帰反射部材は第4面を有し、
     前記第3面は、前記第1面から出射される光の一部を、前記第4面へ反射する、
    光源モジュール。
  2.  前記光反射部材は前記導光部材と同一材料であり、
     前記光反射部材および前記導光部材は一体形成されている、
    請求項1に記載の光源モジュール。
  3.  前記光反射部材は、プリズムであり、
     前記第2面の一部が前記プリズムの反射面をなす、
    請求項1または2に記載の光源モジュール。
  4.  前記直線部は前記第1発光部から出射される光が入射する端面を有し、
     前記直線部における前記プリズムの間隔は、前記端面から前記第2方向へ向かうにつれて狭くなる、
    請求項3に記載の光源モジュール。
  5.  前記第1面において、前記曲がり部は20mm以上200mm以下の曲率半径を有する部分を含む、
    請求項1から4のいずれか1項に記載の光源モジュール。
  6.  第2発光部と、
     シリンドリカルレンズと、
    をさらに備え、
     前記シリンドリカルレンズは、前記第2発光部の発光面側に配置され、
     前記シリンドリカルレンズのパワー方向は、前記シリンドリカルレンズの光軸方向および前記第2方向の両方に垂直な第3方向と平行であり、
     前記シリンドリカルレンズは、前記第2発光部が発する光を前記光分岐部材へ向けて出射する、
    請求項1から5のいずれか1項に記載の光源モジュール。
  7.  請求項1から6のいずれか1項に記載の光源モジュールを備える移動体。

     
PCT/JP2023/008362 2022-03-31 2023-03-06 光源モジュール WO2023189244A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022060092 2022-03-31
JP2022-060092 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023189244A1 true WO2023189244A1 (ja) 2023-10-05

Family

ID=88201282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008362 WO2023189244A1 (ja) 2022-03-31 2023-03-06 光源モジュール

Country Status (1)

Country Link
WO (1) WO2023189244A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170284621A1 (en) * 2016-03-31 2017-10-05 Hyundai Motor Company Lamp apparatus for vehicle
JP2018506153A (ja) * 2015-02-05 2018-03-01 ヴァレオ ビジョンValeo Vision ガイドに沿った光の漸進的なロスを補償する手段を有する光ガイド
JP2018085187A (ja) * 2016-11-21 2018-05-31 スタンレー電気株式会社 車両用灯具

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018506153A (ja) * 2015-02-05 2018-03-01 ヴァレオ ビジョンValeo Vision ガイドに沿った光の漸進的なロスを補償する手段を有する光ガイド
US20170284621A1 (en) * 2016-03-31 2017-10-05 Hyundai Motor Company Lamp apparatus for vehicle
JP2018085187A (ja) * 2016-11-21 2018-05-31 スタンレー電気株式会社 車両用灯具

Similar Documents

Publication Publication Date Title
US20200263848A1 (en) Motor vehicle headlight module for emitting a light beam
US9169985B2 (en) Lighting apparatus, headlamp, and mobile body
JP6383953B2 (ja) 照明装置およびその照明装置を搭載した自動車
JP4383192B2 (ja) 反射板を備える光ガイド
JP5945857B2 (ja) 車両用前照灯及び導光レンズ
US8919977B2 (en) Lamp comprising a phosphor, radiation source, optical system and heatsink
JP6045834B2 (ja) 車両用前照灯
EP2503224B1 (en) Vehicle lighting unit
CN207080949U (zh) 车辆导光单元
CN109073179B (zh) 车辆用灯具
JP2015005439A (ja) 車両用前照灯及び車両用前照灯に用いられる光ファイババンドル
JP2021061184A (ja) 導光レンズ、レンズ結合体及び車両用灯具
JP6725282B2 (ja) 車両用灯具
JP2014010918A (ja) 照明装置および車両用前照灯
JP2014010917A (ja) 照明装置および車両用前照灯
JP2013093200A (ja) 照明デバイスおよび照明ユニット、ならびに照明装置
JP2022176069A (ja) 前照灯装置用光源分配素子、前照灯装置、及び前照灯モジュール
WO2023189244A1 (ja) 光源モジュール
JP6052599B2 (ja) 車両用前照灯
EP3561374B1 (en) Vehicular lamp
TWI852758B (zh) 用於照明行人穿越道的照明裝置
KR102316356B1 (ko) 도로 시선 유도용 광학계 및 이를 이용한 도로 시선 유도장치
CN221570336U (zh) 远近光一体照明模组、车辆照明装置及车辆
JP7557337B2 (ja) 車両用灯具
EP4328089A1 (en) Light-emitting unit and vehicular lamp

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779273

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024511579

Country of ref document: JP