WO2023188992A1 - Electrode for electrolysis and hypochlorous acid generation device - Google Patents

Electrode for electrolysis and hypochlorous acid generation device Download PDF

Info

Publication number
WO2023188992A1
WO2023188992A1 PCT/JP2023/005952 JP2023005952W WO2023188992A1 WO 2023188992 A1 WO2023188992 A1 WO 2023188992A1 JP 2023005952 W JP2023005952 W JP 2023005952W WO 2023188992 A1 WO2023188992 A1 WO 2023188992A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
catalyst layer
layer
tantalum oxide
conductive substrate
Prior art date
Application number
PCT/JP2023/005952
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 知念
博史 足立
宜弘 伊藤
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023188992A1 publication Critical patent/WO2023188992A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/061Metal or alloy
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/061Metal or alloy
    • C25B11/063Valve metal, e.g. titanium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/069Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of at least one single element and at least one compound; consisting of two or more compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/097Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds comprising two or more noble metals or noble metal alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features

Definitions

  • the present disclosure relates to an electrolytic electrode and a hypochlorous acid generating device, and more particularly to an electrolytic electrode containing iridium oxide and platinum, and a hypochlorous acid generating device equipped with the electrolytic electrode.
  • Patent Document 1 an electrolytic electrode used to generate chlorine by electrolyzing salt water is known.
  • Patent Document 1 discloses a conductive substrate containing at least titanium, an intermediate layer provided on the conductive substrate and containing platinum, and a catalyst layer provided on the intermediate layer and containing platinum and iridium oxide.
  • An electrode for electrolysis comprising the following is disclosed.
  • An object of the present disclosure is to provide an electrolytic electrode and a hypochlorous acid generating device that can improve durability.
  • An electrolysis electrode includes a conductive substrate, an intermediate layer, a catalyst layer, and a tantalum oxide layer.
  • the conductive substrate has a first main surface and a second main surface opposite to the first main surface.
  • the conductive substrate includes at least titanium.
  • the intermediate layer is provided on the first main surface of the conductive substrate.
  • the intermediate layer includes platinum.
  • the catalyst layer is provided on the intermediate layer.
  • the catalyst layer contains platinum and iridium oxide.
  • the tantalum oxide layer is provided on the catalyst layer. In the electrolysis electrode, a part of the catalyst layer is exposed.
  • the catalyst layer is a porous layer including a plurality of composite particles and a plurality of pores. Each of the plurality of composite particles contains platinum and iridium oxide.
  • the electrolysis electrode further includes a plurality of tantalum oxide parts provided in at least one of the plurality of pores and in contact with the catalyst layer.
  • the concentration of tantalum oxide in the composite layer including the catalyst layer and the plurality of tantalum oxide parts increases as it approaches the conductive substrate from the main surface of the catalyst layer in the thickness direction of the catalyst layer. Contains the area to
  • a hypochlorous acid generating device includes a container into which salt water is placed, and a first electrode and a second electrode arranged in the container so as to be in contact with the salt water. At least one of the first electrode and the second electrode includes the electrolysis electrode.
  • FIG. 1A is a schematic cross-sectional view of an electrode for electrolysis according to an embodiment.
  • FIG. 1B is an explanatory diagram of main parts of the electrolytic electrode same as above.
  • FIG. 2 is an explanatory diagram of particles contained in the catalyst layer of the electrolytic electrode same as above.
  • FIG. 3A is a cross-sectional view of the electrolytic electrode same as above.
  • FIG. 3B is a schematic diagram of the concentration distribution of tantalum oxide in a composite layer including a catalyst layer and a plurality of tantalum oxide parts in the electrolysis electrode described above.
  • FIG. 4 is a schematic diagram of a profile of the amount of tantalum oxide in the depth direction of the electrode for electrolysis.
  • FIG. 1B is an explanatory diagram of main parts of the electrolytic electrode same as above.
  • FIG. 2 is an explanatory diagram of particles contained in the catalyst layer of the electrolytic electrode same as above.
  • FIG. 3A is a cross-sectional view of the electrolytic electrode same as above.
  • FIG. 5 is a schematic diagram of another example of the depth profile of the amount of tantalum oxide in the electrolysis electrode as described above.
  • FIG. 6 is a schematic diagram of still another example of the depth profile of the amount of tantalum oxide in the electrolytic electrode described above.
  • FIG. 7 is a schematic diagram of a hypochlorous acid generating device equipped with the same electrolytic electrode as above.
  • the electrolysis electrode 1 is an electrode used to generate chlorine by electrolyzing salt water.
  • the salt water is, for example, salt water.
  • the electrolytic electrode 1 is used for electrolyzing salt water, for example, by using the electrolytic electrode 1 as the anode of the anode and cathode to which a DC voltage is applied from the power supply, the salt water is electrolyzed to produce chlorine. can be generated, and hypochlorous acid water can be generated by the reaction between this chlorine and water.
  • the electrolytic electrode 1 includes a conductive substrate 2, an intermediate layer 3, a catalyst layer 4, and a tantalum oxide layer 5.
  • Intermediate layer 3 is provided on conductive substrate 2 .
  • the catalyst layer 4 is provided on the intermediate layer 3. That is, the intermediate layer 3 is a layer interposed between the conductive substrate 2 and the catalyst layer 4.
  • Tantalum oxide layer 5 is provided on catalyst layer 4 .
  • the planar shape of the conductive substrate 2 (the outer peripheral shape when the conductive substrate 2 is viewed from the thickness direction of the conductive substrate 2) is, for example, rectangular.
  • the thickness of the conductive substrate 2 is, for example, 100 ⁇ m or more and 2 mm or less, and is, for example, 500 ⁇ m.
  • the size of the conductive substrate 2 in plan view is, for example, 25 mm x 60 mm.
  • the conductive substrate 2 has a first main surface 21 and a second main surface 22 opposite to the first main surface 21 .
  • the conductive substrate 2 contains at least titanium.
  • the material of the conductive substrate 2 includes titanium or an alloy containing titanium as a main component (hereinafter referred to as titanium alloy).
  • the titanium alloy include titanium-palladium alloy, titanium-nickel-ruthenium alloy, titanium-tantalum alloy, titanium-aluminum alloy, titanium-aluminum-vanadium alloy, and the like.
  • the conductive substrate 2 includes a titanium substrate 20 and a titanium oxide layer 24 formed on the titanium substrate 20 and having conductivity.
  • the first main surface 21 of the conductive substrate 2 includes a surface 241 of the titanium oxide layer 24 on the opposite side to the titanium substrate 20 side.
  • the resistivity of the titanium oxide layer 24 is 10 5 ⁇ cm or less, and the smaller the difference from the resistivity of the titanium substrate 20, the better.
  • the first main surface 21 of the conductive substrate 2 is preferably a rough surface from the viewpoint of improving the adhesion of the intermediate layer 3.
  • the first main surface 21 of the conductive substrate 2 is roughened before the intermediate layer 3 is provided.
  • the arithmetic mean roughness Ra is, for example, 0.7 ⁇ m
  • the maximum height Rz is 7 ⁇ m.
  • the arithmetic mean roughness Ra and the maximum height Rz are defined in, for example, JIS B 0601-2001 (ISO 4287-1997).
  • the arithmetic mean roughness Ra and the maximum height Rz are, for example, values measured from a cross-sectional SEM image (Cross-sectional Scanning Electron Microscope Image).
  • the intermediate layer 3 is provided on the first main surface 21 of the conductive substrate 2, as shown in FIG. 1A. Therefore, the electrolysis electrode 1 has an interface between the conductive substrate 2 and the intermediate layer 3. Further, the intermediate layer 3 has a main surface 30 (see FIGS. 3A and 3B) on the opposite side of the intermediate layer 3 to the conductive substrate 2 side.
  • the intermediate layer 3 is preferably formed of a material that has higher corrosion resistance to salt water and chlorine than the conductive substrate 2. Moreover, from the viewpoint of increasing the electrical conductivity of the entire electrolytic electrode 1, it is preferable that the material of the intermediate layer 3 is electrically conductive and has high electrical conductivity.
  • the material of the intermediate layer 3 is, for example, a transition metal or a mixture containing a transition metal, such as platinum, a mixture of tantalum, platinum, and iridium.
  • the material of the intermediate layer 3 is platinum, for example.
  • the thickness of the intermediate layer 3 is, for example, 0.3 ⁇ m or more and 5 ⁇ m or less, and is, for example, 0.6 ⁇ m.
  • the main surface 30 of the intermediate layer 3 on the side opposite to the conductive substrate 2 side maintains the surface roughness of the conductive substrate 2 underlying the intermediate layer 3.
  • the catalyst layer 4 is provided on the intermediate layer 3, as shown in FIG. 1A.
  • the electrolytic electrode 1 has an interface between a catalyst layer 4 and an intermediate layer 3. That is, the catalyst layer 4 is provided on the conductive substrate 2 with the intermediate layer 3 interposed therebetween.
  • the catalyst layer 4 contains platinum and iridium oxide.
  • the catalyst layer 4 is a porous layer including a plurality of composite particles 41 and a plurality of pores 42, as shown in FIGS. 1B and 3A.
  • Each of the plurality of composite particles 41 includes platinum particles 411 and iridium oxide particles 412, as shown in FIG.
  • a plurality of iridium oxide particles 412 are bonded to one platinum particle 411.
  • iridium oxide is dispersed by platinum. Iridium oxide functions as a catalyst to generate chlorine.
  • the catalyst layer 4 may contain iridium in addition to platinum and iridium oxide.
  • iridium particles in addition to the iridium oxide particles 412 may be bonded to the platinum particles 411. Further, in the catalyst layer 4, the platinum particles 411 may be bonded to each other.
  • the bonding state in the catalyst layer 4 is not particularly limited.
  • the catalyst layer 4 has a plurality of recesses 45 recessed from the main surface 40 on the opposite side to the conductive substrate 2 side.
  • a portion of the catalyst layer 4 is exposed by the plurality of recesses 45.
  • Each of the plurality of recesses 45 is, for example, a crack formed in the catalyst layer 4. More specifically, each of the plurality of recesses 45 is a linear crack when viewed from above in the thickness direction of the catalyst layer 4 .
  • the shapes of the plurality of cracks (recesses 45) are different from each other.
  • the depth of each of the plurality of recesses 45 is, for example, 0.1 ⁇ m or more.
  • the depth of each of the plurality of recesses 45 may be a depth that reaches the intermediate layer 3 or may be a depth that does not reach the intermediate layer 3.
  • the plurality of recesses 45 are not formed to penetrate the intermediate layer 3, and the entire first main surface 21 of the conductive substrate 2 is covered with the intermediate layer 3. There is.
  • the width of each of the plurality of recesses 45 is 0.1 ⁇ m or more and 10 ⁇ m or less, and more preferably 0.3 ⁇ m or more and 3 ⁇ m or less.
  • the width of the recess 45 in a plan view from the thickness direction of the conductive substrate 2 is the opening width in the lateral direction (direction perpendicular to the longitudinal direction) on the main surface 40 of the catalyst layer 4.
  • the length of each of the plurality of recesses 45 is shorter than the length of each side of the conductive substrate 2.
  • the thickness of the catalyst layer 4 is, for example, 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the tantalum oxide layer 5 (see FIGS. 1A, 1B, 3A, and 3B) has a function of suppressing elution of at least one of iridium oxide and platinum from the catalyst layer 4.
  • the tantalum oxide layer 5 includes a first portion 51 provided on the main surface 40 of the catalyst layer 4 and an inner surface 451 of at least one recess 45 among the plurality of recesses 45 in the catalyst layer 4. a second portion 52 provided thereon.
  • the tantalum oxide layer 5 has a second portion 52 on the inner surface 451 of each of the plurality of recesses 45 in the catalyst layer 4 .
  • the electrolysis electrode 1 includes tantalum oxide, which is provided in at least one pore 42 among the plurality of pores 42 of the catalyst layer 4 and is in contact with the catalyst layer 4. It further includes a section 43.
  • the tantalum oxide portion 43 is formed, for example, when the tantalum oxide layer 5 is formed.
  • the tantalum oxide portion 43 is in contact with the composite particles 41 of the catalyst layer 4. It is preferable that at least one tantalum oxide part 43 among the plurality of tantalum oxide parts 43 penetrates the intermediate layer 3 and is in contact with the titanium oxide layer 24 .
  • the electrolytic electrode 1 has tantalum oxide as it approaches the conductive substrate 2 from the main surface 40 of the catalyst layer 4 in the thickness direction of the catalyst layer 4. Contains areas of increasing volume. In FIG. 3B, hatching is applied so that the area with more tantalum oxide has a higher dot density. The hatching in FIG. 3B is not hatching indicating a cross section.
  • the amount of tantalum oxide changes stepwise in the thickness direction of the catalyst layer 4, and It includes a region where the amount of tantalum oxide increases as it approaches the first main surface 21 of the conductive substrate 2 from the surface 40.
  • the amount of tantalum oxide increases as the concentration of tantalum oxide in the composite layer including the catalyst layer 4 and the plurality of tantalum oxide parts 43 increases. Therefore, “the amount of tantalum oxide is changing stepwise” can be translated as “the concentration of tantalum oxide in the composite layer including the catalyst layer 4 and a plurality of tantalum oxide parts 43 is changing stepwise”. It's okay. Moreover, “a region where the amount of tantalum oxide increases” may be rephrased as "a region where the concentration of tantalum oxide in the composite layer including the catalyst layer 4 and a plurality of tantalum oxide parts 43 increases.”
  • the inventors of the present invention manufactured a plurality of electrolytic electrodes using the amount of tantalum oxide in the composite layer as a parameter, conducted a durability test on each of the plurality of electrolytic electrodes, and evaluated the initial amount of chlorine generation and deterioration rate. did.
  • the durability test is an accelerated test.
  • two electrolytic electrodes made under the same conditions were used as a pair of electrodes, and the pair of electrodes was immersed in salt water in an electrolytic bath in a durability test facility, and initial aging was performed by energizing the pair of electrodes. Then, each time a pair of electrodes is continuously energized for a predetermined period of time, the pair of electrodes is immersed in salt water in an electrolytic bath for measuring chlorine concentration, and the current is energized for a predetermined period of time (3 minutes). The (average value) of chlorine concentration was measured.
  • the electrolytic cell of the durability test equipment has a salt water inlet and a drain outlet.
  • salt water was added so that the conductivity of the salt water in the electrolytic cell of the durability test equipment was 1650 ⁇ 200 ⁇ S/m.
  • tap water was constantly supplied to the electrolytic cell of the durability test equipment at a flow rate of 2 L/min while draining water.
  • the brine supplied to the electrolytic cell of the durability testing facility is a brine produced by dissolving common salt (sodium chloride) in tap water.
  • the current value of the current applied in the durability test was 400 mA.
  • the salt water in the electrolytic cell for measuring chlorine concentration the salt water produced by dissolving 4.5 g of common salt (sodium chloride) in 800 mL of pure water was used.
  • polarity reversal means reversing the combination of an anode and a cathode in a pair of electrodes.
  • polarity reversal refers to changing the electrode used as an anode and the electrode used as a cathode to become a cathode and an anode, respectively, which is the higher potential side of a pair of electrodes. means.
  • the initial amount of chlorine generated is the amount of chlorine generated per unit time in the durability test when energization of the pair of electrodes is started after initial aging.
  • the deterioration rate is the value obtained by dividing the difference between the initial amount of chlorine generated and the amount of chlorine generated when the durability test time (elapsed time) after initial aging is 200 hours, divided by the initial amount of chlorine generated.
  • a predictive profile showing the relationship between the amount of tantalum oxide and the initial amount of chlorine generation was derived by performing multiple regression analysis on the amount of chlorine generated in durability tests of electrolytic electrodes prepared under various conditions. In addition, multiple regression analysis was performed on the deterioration rates obtained in durability tests of electrolytic electrodes prepared under various conditions, and a predictive profile showing the relationship between the amount of tantalum oxide and the deterioration rate was derived.
  • the electrolytic electrode 1 has a region in which the amount of tantalum oxide increases as it approaches the conductive substrate 2 from the main surface 40 of the catalyst layer 4 in the thickness direction of the catalyst layer 4. is configured to include.
  • the fact that there is a region where the amount of tantalum oxide increases in the thickness direction of the catalyst layer 4 can be found by, for example, performing energy dispersive X-ray analysis in a cross-sectional view. Further, it can be seen from, for example, a composition analysis using XPS (X-ray Photoelectron Spectroscopy) that there is a region where the amount of tantalum oxide increases in the thickness direction of the catalyst layer 4.
  • XPS X-ray Photoelectron Spectroscopy
  • the conductive substrate 2 is prepared, and then a surface roughening step, an intermediate layer forming step, a catalyst layer forming step, and a tantalum oxide layer forming step are sequentially performed.
  • the first main surface 21 of the conductive substrate 2 is roughened, for example, by immersing the conductive substrate 2 in an oxalic acid aqueous solution.
  • the intermediate layer 3 is formed on the first main surface 21 of the conductive substrate 2.
  • a paste material produced by mixing platinum particles or an organic metal component containing platinum with a resin binder component and a solvent is applied onto the first main surface 21 of the conductive substrate 2 by screen printing.
  • the intermediate layer 3 is formed by drying the solvent component at 200 to 300° C., and then performing baking at about 800 to 1000° C. to remove the resin binder component and sinter the platinum particles.
  • the catalyst layer 4 is formed on the intermediate layer 3.
  • the catalyst layer forming process includes a first step and a second step.
  • a layer of catalyst material which is the source of the catalyst layer 4 is formed on the intermediate layer 3 on the conductive substrate 2 by performing a plurality of coating steps and a plurality of drying steps. form.
  • the number of times of the coating process and the drying process is determined depending on, for example, the predetermined thickness of the catalyst layer 4, the thickness of the region where the amount of iridium oxide increases in the thickness direction of the catalyst layer 4, the rate of change in the amount of iridium oxide, etc. It can be decided. Regarding the number of times of the coating process and drying process, the thicker the predetermined thickness of the catalyst layer 4, the more the number of times of the coating process and drying process may be increased.
  • the catalyst layer 4 is formed on the intermediate layer 3 on the conductive substrate 2 by alternately repeating the coating step a first prescribed number of times and the drying step the first prescribed number of times. Form the base catalyst material layer.
  • a solution (hereinafter referred to as the first solution) containing a platinum compound and an iridium compound that will become the source of the catalyst layer 4 is directly or indirectly deposited on the intermediate layer 3 on the conductive substrate 2. ) is applied (after the coating process is performed) and then heat treatment (drying process) is performed under the first condition to form a catalyst material layer that will become the basis of the catalyst layer 4. do.
  • the first solution is a solution in which a platinum compound and an iridium compound are mixed in a solvent (hereinafter referred to as the first solvent).
  • the first solvent is, for example, a liquid mixture of ethylene glycol monoethyl ether, hydrochloric acid, and ethanol.
  • the platinum compound is, for example, chloroplatinic acid, but is not limited thereto, and may be, for example, platinum chloride.
  • Chloroplatinic acid is, for example, hexachloroplatinic (IV) acid n-hydrate.
  • the iridium compound is, for example, chloroiridic acid, but is not limited thereto, and may be, for example, iridium chloride or iridium nitrate.
  • Chloroiridic acid is, for example, hexachloroiridic (IV) acid n-hydrate.
  • the metal concentration (total concentration of platinum and iridium) of the first solution is, for example, 10 to 50 mg/mL.
  • the amount of the first solution applied is, for example, 2 to 5 ⁇ L/cm 2 .
  • the first condition includes a heat treatment temperature and a heat treatment time.
  • the heat treatment temperature under the first condition is, for example, 100°C to 400°C.
  • the heat treatment time under the first condition is, for example, 5 minutes to 15 minutes.
  • the catalyst layer 4 and a plurality of cracks are formed by performing heat treatment to fire the catalyst material layer under predetermined firing conditions.
  • the firing conditions include firing temperature and firing time.
  • the firing temperature is, for example, 300°C to 600°C.
  • the firing time is, for example, 5 minutes to 20 minutes.
  • a tantalum oxide layer 5 is formed on the catalyst layer 4.
  • the tantalum oxide layer forming step includes a first step and a second step.
  • a material layer that becomes the source of the tantalum oxide layer 5 is formed on the catalyst layer 4 by performing at least two coating processes and at least two drying processes.
  • the number of times of the coating process and the drying process is determined depending on the predetermined thickness of the tantalum oxide layer 5, for example. Regarding the number of times of the coating process and drying process, the thicker the predetermined thickness of the tantalum oxide layer 5, the more the number of times of the coating process and drying process may be increased.
  • a material layer that becomes the source of the tantalum oxide layer 5 is formed on the catalyst layer 4 by performing a second specified number of coating steps and a second specified number of drying steps.
  • a solution containing a tantalum compound (hereinafter referred to as the second solution) that is the source of the tantalum oxide layer 5 is applied onto the catalyst layer 4 (after the application process is performed).
  • the second solution is a solution in which a tantalum compound is dissolved in a solvent (hereinafter referred to as a second solvent).
  • the second solvent is, for example, a liquid mixture of ethylene glycol monoethyl ether, hydrochloric acid, and ethanol.
  • the tantalum compound is, for example, tantalum chloride, but is not limited thereto, and may be, for example, tantalum ethoxide.
  • the metal concentration (tantalum concentration) of the second solution is, for example, 10 to 50 mg/L. Further, the amount of the second solution applied is, for example, 1 to 5 ⁇ L/cm 2 .
  • the metal concentration in the second solution applied for the second time needs to be lower than the metal concentration in the second solution applied for the first time (for example, if the metal concentration is 30 mg/L for the first time) (The second metal concentration is 20 mg/L.)
  • the amount of the second solution applied at the second time needs to be smaller than the amount of the second solution applied at the first time (for example, if the amount of the second solution applied at the first time is 2 ⁇ L/ cm2 , The amount of second solution applied for the second time is 1 ⁇ L/cm 2 ).
  • the second conditions include heat treatment temperature and heat treatment time.
  • the heat treatment temperature under the second condition is, for example, 100°C to 400°C.
  • the heat treatment time under the second condition is, for example, 5 minutes to 15 minutes.
  • the tantalum oxide layer 5 is formed by performing heat treatment to fire the material layer under predetermined firing conditions.
  • the firing conditions include firing temperature and firing time.
  • the firing temperature is, for example, 500°C to 600°C.
  • the firing time is, for example, 5 minutes to 20 minutes.
  • the tantalum oxide portions 43 within the pores 42 in the catalyst layer 4 are formed in the tantalum oxide layer forming step.
  • the method for manufacturing the electrolytic electrode 1 by performing the tantalum oxide layer forming step described above, it is possible to create a region where the amount of tantalum oxide increases from the main surface 40 of the catalyst layer 4 toward the conductive substrate 2.
  • the surface roughening step, the intermediate layer forming step, the catalyst layer forming step, and the tantalum oxide layer forming step are performed on a multi-layer substrate that includes a plurality of conductive substrates 2 and is capable of forming a large number of conductive substrates 2.
  • a plurality of electrolytic electrodes 1 may be obtained by separating the multi-chip substrate into individual conductive substrates 2 after the tantalum oxide layer forming step.
  • the electrolysis electrode 1 includes a conductive substrate 2, an intermediate layer 3, a catalyst layer 4, and a tantalum oxide layer 5.
  • the conductive substrate 2 has a first main surface 21 and a second main surface 22 opposite to the first main surface 21 .
  • Conductive substrate 2 contains at least titanium.
  • Intermediate layer 3 is provided on first main surface 21 of conductive substrate 2 .
  • Intermediate layer 3 contains platinum.
  • the catalyst layer 4 is provided on the intermediate layer 3.
  • Catalyst layer 4 contains platinum and iridium oxide. Tantalum oxide layer 5 is provided on catalyst layer 4 .
  • the catalyst layer 4 is a porous layer including a plurality of composite particles 41 and a plurality of pores 42 .
  • Each of the plurality of composite particles 41 includes platinum (platinum particles 411) and iridium oxide (iridium oxide particles 412).
  • the electrolysis electrode 1 includes a plurality of tantalum oxide parts 43 provided in at least one of the plurality of pores 42 of the catalyst layer 4 and in contact with the catalyst layer 4, and includes a plurality of tantalum oxide parts 43 in the thickness direction of the catalyst layer 4. Since the layer 4 includes a region in which the concentration of tantalum oxide in the composite layer including the catalyst layer 4 and a plurality of tantalum oxide parts 43 increases as it approaches the conductive substrate 2 from the main surface 40, durability can be improved. It becomes possible.
  • the electrolytic electrode 1 includes tantalum oxide portions 43 provided in the plurality of pores 42 of the catalyst layer 4 and in contact with the catalyst layer 4, and the catalyst Since the area includes a region where the concentration of tantalum oxide in the composite layer including the catalyst layer 4 and a plurality of tantalum oxide parts 43 increases as it approaches the conductive substrate 2 from the main surface 40 of the layer 4, the initial amount of chlorine generated during use is reduced. It is possible to increase the mechanical strength of the catalyst layer 4 while suppressing a decrease in ), it is possible to improve the adhesion with The durability of the electrolysis electrode 1 can be improved by improving the adhesion between the catalyst layer 4 and the member supporting the catalyst layer 4.
  • the conductive substrate 2 includes a titanium substrate 20 and a titanium oxide layer 24 that is formed on the titanium substrate 20 and has conductivity.
  • the first main surface 21 of the conductive substrate 2 includes a surface 241 of the titanium oxide layer 24 on the opposite side to the titanium substrate 20 side.
  • At least one tantalum oxide part 43 among the plurality of tantalum oxide parts 43 penetrates the intermediate layer 3 and is in contact with the titanium oxide layer 24 .
  • the depth profile of the amount of tantalum oxide in the electrolysis electrode 1 is, for example, as shown in FIG.
  • the profile may include a region where the amount of tantalum oxide increases continuously (linearly in FIG. 5) as it approaches the first main surface 21 of the conductive substrate 2.
  • the depth direction profile of tantalum oxide in the electrolytic electrode 1 is, for example, as shown in FIG.
  • a region where the amount of tantalum oxide increases continuously (in FIG. 6, linearly) as it approaches the surface 21 there is a region where the amount of tantalum oxide is constant at a relatively low value, and a region where the amount of tantalum oxide increases continuously (in FIG. 6, linearly). It may include at least one (in FIG. 6, both) of a region where the value is relatively high and constant.
  • Hypochlorous acid generating device equipped with an electrode for electrolysis according to the embodiment As shown in FIG. It includes a first electrode 101A and a second electrode 101B that are arranged in the container 110 so as to be in contact with each other.
  • both the first electrode 101A and the second electrode 101B include the electrolysis electrode 1, but at least one of the first electrode 101A and the second electrode 101B includes the electrolysis electrode 1. It is sufficient if it contains
  • the hypochlorous acid generating device 100 further includes, for example, a rectangular box-shaped main body case 102.
  • Main body case 102 includes four side walls, a top wall, and a bottom wall.
  • one of the two pairs of side walls facing each other among the four side walls has an air inlet 103, and the upper wall has an outlet 104 for blowing out air containing hypochlorous acid.
  • FIG. 7 a flow path 105 for air that is sucked in from the suction port 103 and blown out from the blow-off port 104 is schematically shown with a border arrow.
  • the container 110 is disposed within the main case 102 at the lower part of the main case 102.
  • the container 110 is a tray (a container without a lid).
  • the hypochlorous acid generating device 100 further includes a water tank 108 disposed within the main body case 102.
  • the water supply tank 108 supplies water W1 in the water supply tank 108 to the container 110.
  • the container 110 and the water tank 108 are detachably attached to the main case 102.
  • hypochlorous acid generating device 100 further includes an operation switch for instructing the start and stop of operation of the hypochlorous acid generating device 100.
  • the operation switch is arranged, for example, on the upper wall of the main body case 102.
  • the hypochlorous acid generating device 100 further includes a blower 106 that blows air from an inlet 103 toward an outlet 104, and a filter 107.
  • the filter 107 is a rotatable tubular (cylindrical) filter, and can be impregnated with electrolyzed water containing hypochlorous acid so that the air passing through the filter 107 comes into contact with the electrolyzed water.
  • the blower 106 is arranged inside the main case 102 at the upper part of the main case 102.
  • the blower 106 includes, for example, a sirocco fan.
  • the water tank 108 is attached to the container 110.
  • the water supply tank 108 includes an opening for water supply and an on-off valve that opens and closes the opening.
  • the opening/closing valve section of the water supply tank 108 opens the opening, so that water W1 in the water supply tank 108 is supplied to the container 110.
  • the opening of the water tank 108 is submerged in the water in the container 110, air cannot enter into the water tank 108, and the on-off valve closes due to the gravity of the water W1 in the water tank 108.
  • the water W1 in the water supply tank 108 is no longer supplied to the container 110.
  • an electrolytic auxiliary agent for example, tablet-shaped sodium chloride
  • an electrolytic auxiliary agent for example, tablet-shaped sodium chloride
  • salt water sodium chloride aqueous solution
  • the filter 107 is arranged at the lower part of the main case 102 so that a part thereof is immersed in the liquid in the container 110.
  • the filter 107 has a cylindrical shape, and is rotated about the central axis of the cylindrical filter 107 so that the portion immersed in the liquid in the container 110 changes. Filter 107 is rotated by a motor.
  • the filter 107 is a filter capable of retaining electrolyzed water generated from the salt water 112 in the container 110 and allowing air to pass therethrough.
  • hypochlorous acid generating device 100 further includes a water level sensor 109 that is disposed inside the container 110 and detects the water level of water or salt water in the container 110 and a drought.
  • the hypochlorous acid generating device 100 further includes a control device 114 that controls the operation of the hypochlorous acid generating device 100, and a humidity sensor 113.
  • An operation switch, a water level sensor 109, and a humidity sensor 113 are connected to the control device 114.
  • the control device 114 is connected to a motor that rotates the filter 107, a blower 106, a first electrode 101A, and a second electrode 101B.
  • the control device 114 controls the filter 107, the blower 106, the first electrode 101A, and the second electrode 101B based on signals from the operation switch, the water level sensor 109, the humidity sensor 113, and the like.
  • the control device 114 controls the voltage applied between the first electrode 101A and the second electrode 101B.
  • the hypochlorous acid generating device 100 can generate electrolyzed water containing hypochlorous acid by electrolyzing the salt water 112.
  • the hypochlorous acid generating device 100 by impregnating the filter 107 with electrolyzed water and then blowing air with the blower 106, the air that has come into contact with the electrolyzed water through the filter 107 can be blown out from the outlet 104.
  • Control device 114 includes, for example, a computer system.
  • a computer system mainly consists of a processor and a memory as hardware. The function of the control device 114 is realized by the processor executing a program recorded in the memory of the computer system.
  • the program may be pre-recorded in the memory of the computer system, may be provided through a telecommunications line, or may be recorded on a non-transitory storage medium readable by the computer system, such as a memory card, optical disc, hard disk drive, etc. may be provided.
  • a processor in a computer system is comprised of one or more electronic circuits including semiconductor integrated circuits (ICs) or large scale integrated circuits (LSIs).
  • ICs semiconductor integrated circuits
  • LSIs large scale integrated circuits
  • the integrated circuits such as IC or LSI referred to herein have different names depending on the degree of integration, and include integrated circuits called system LSI, VLSI (Very Large Scale Integration), or ULSI (Ultra Large Scale Integration).
  • FPGAs Field-Programmable Gate Arrays
  • the plurality of electronic circuits may be integrated into one chip, or may be provided in a distributed manner over a plurality of chips.
  • a plurality of chips may be integrated into one device, or may be distributed and provided in a plurality of devices.
  • the computer system herein includes a microcontroller having one or more processors and one or more memories. Therefore, the microcontroller is also composed of one or more electronic circuits including semiconductor integrated circuits or large-scale integrated circuits.
  • the embodiment is only one of various embodiments of the present disclosure.
  • the embodiments can be modified in various ways depending on the design, etc., as long as the objective of the present disclosure can be achieved.
  • the shape of the conductive substrate 2 in plan view is not limited to a rectangular shape, but may be any shape, for example, a square shape or a circular shape.
  • the shapes of the plurality of recesses 45 may be the same.
  • the plurality of recesses 45 may be formed using etching technology, laser processing technology, or the like. Utilizing these techniques has the advantage of increasing the degree of freedom in designing the layout and size of the plurality of recesses 45, and increasing the reproducibility of the formation positions of the plurality of recesses 45.
  • the catalyst layer 4 does not need to be provided with a plurality of recesses 45.
  • the tantalum oxide layer 5 has a plurality of recesses 45 that expose a part of the main surface 40 of the catalyst layer It is sufficient if it has a hole (for example, a pinhole or a crack).
  • the electrolytic electrode 1 even if the catalyst layer 4 is provided with a plurality of recesses 45, or a plurality of cracks are formed in the tantalum oxide layer 5 that expose a part of the catalyst layer 4, good.
  • the thickness of the tantalum oxide layer 5 is 50 nm or more, cracks that expose a part of the catalyst layer 4 in the tantalum oxide layer 5 occur in the second step of the tantalum oxide layer forming process. may be formed.
  • cracks are formed in the tantalum oxide layer in the second step of the tantalum oxide layer forming process, and cracks connected to the cracks in the tantalum oxide layer are formed in the catalyst layer 4.
  • the plurality of holes in the tantalum oxide layer 5 may be formed using etching technology, laser processing technology, or the like.
  • the tantalum oxide layer 5 may contain tantalum in addition to tantalum oxide.
  • the tantalum oxide layer 5 may be a layer in which tantalum oxide and tantalum are mixed.
  • the electrolytic electrode 1 has a structure similar to the structure on the second main surface 22 of the conductive substrate 2, which includes the intermediate layer 3, the catalyst layer 4, and the tantalum oxide layer 5 on the first main surface 21 side. Further, it may be provided.
  • the electrolysis electrode (1) includes a conductive substrate (2), an intermediate layer (3), a catalyst layer (4), and a tantalum oxide layer (5).
  • the conductive substrate (2) has a first main surface (21) and a second main surface (22) opposite to the first main surface (21).
  • the conductive substrate (2) contains at least titanium.
  • the intermediate layer (3) is provided on the first main surface (21) of the conductive substrate (2).
  • the intermediate layer (3) contains platinum.
  • the catalyst layer (4) is provided on the intermediate layer (3).
  • the catalyst layer (4) contains platinum and iridium oxide.
  • a tantalum oxide layer (5) is provided on the catalyst layer (4). In the electrolysis electrode (1), a part of the catalyst layer (4) is exposed.
  • the catalyst layer (4) is a porous layer containing a plurality of composite particles (41) and a plurality of pores (42).
  • Each of the plurality of composite particles (41) includes platinum (platinum particles 411) and iridium oxide (iridium oxide particles 412).
  • the electrolysis electrode (1) further includes a plurality of tantalum oxide parts (43) provided in at least one of the plurality of pores (42) and in contact with the catalyst layer (4).
  • the electrolytic electrode (1) has a structure in which the catalyst layer (4) and a plurality of tantalum oxide parts move closer to the conductive substrate (2) from the main surface (40) of the catalyst layer (4) in the thickness direction of the catalyst layer (4). (43) including a region of increasing concentration of tantalum oxide in a composite layer comprising (43) and (43).
  • electrolysis electrode (1) According to the electrolysis electrode (1) according to the first aspect, it is possible to suppress changes in characteristics over time.
  • the conductive substrate (2) is formed on the titanium substrate (20) and the titanium substrate (20), and the conductive substrate (2) is formed on the titanium substrate (20).
  • the first main surface (21) of the conductive substrate (2) includes a surface (241) of the titanium oxide layer (24) on the opposite side to the titanium substrate (20) side. At least one tantalum oxide part (43) among the plurality of tantalum oxide parts (43) penetrates the intermediate layer (3) and is in contact with the titanium oxide layer (24).
  • electrolysis electrode (1) according to the second aspect it is possible to improve durability.
  • the first main surface (21) of the conductive substrate (2) is a rough surface.
  • the electrolysis electrode (1) according to the third aspect it is possible to improve the adhesion between the conductive substrate (2) and the intermediate layer (3). As a result, in the electrolysis electrode (1) according to the third aspect, it is possible to suppress the catalyst layer (4) from peeling off from the conductive substrate (2) side, and it is possible to improve the durability. becomes.
  • a hypochlorous acid generating device (100) includes a container (110) containing salt water (112), and a first electrode arranged in the container (110) so as to be in contact with the salt water (112). (101A) and a second electrode (101B). At least one of the first electrode (101A) and the second electrode (101B) includes the electrolysis electrode (1) according to any one of the first to third embodiments.
  • hypochlorous acid generating device (100) According to the hypochlorous acid generating device (100) according to the fourth aspect, it is possible to suppress changes in characteristics over time.
  • Electrode for electrolysis Conductive substrate 21 First main surface 22 Second main surface 3 Intermediate layer 30 Main surface 4 Catalyst layer 40 Main surface 41 Composite particle 411 Platinum particle 412 Iridium oxide particle 42 Pore 43 Tantalum oxide part 45 Recess 451 Inner surface 5 Tantalum oxide layer 51 First part 52 Second part 100 Hypochlorous acid generator 101A First electrode 101B Second electrode 110 Container 112 Salt water

Abstract

The present invention addresses the problem of providing: an electrode for electrolysis, the electrode being capable of achieving improved durability; and a hypochlorous acid generation device. According to the present invention, a catalyst layer (4) in an electrode (1) for electrolysis contains platinum and iridium oxide. A tantalum oxide layer (5) is provided on the catalyst layer (4). With respect to the electrode (1) for electrolysis, a part of the catalyst layer (4) is exposed. The catalyst layer (4) is a porous layer that contains a plurality of composite particles (41) and a plurality of pores (42). Each one of the plurality of composite particles (41) contains platinum and iridium oxide. The electrode (1) for electrolysis comprises a tantalum oxide part (43) which is provided within at least one pore (42) among the plurality of pores (42) of the catalyst layer (4) so as to be in contact with the catalyst layer (4); and the catalyst layer (4) comprises a region wherein the concentration of tantalum oxide in a composite layer, which comprises the catalyst layer (4) and a plurality of tantalum oxide parts (43), increases from a main surface (40) of the catalyst layer (4) toward a conductive substrate (2) in the thickness direction of the catalyst layer (4).

Description

電解用電極及び次亜塩素酸発生機器Electrolytic electrodes and hypochlorous acid generating equipment
 本開示は、電解用電極及び次亜塩素酸発生機器に関し、より詳細には、酸化イリジウムと白金とを含む電解用電極、及び、その電解用電極を備える次亜塩素酸発生機器に関する。 The present disclosure relates to an electrolytic electrode and a hypochlorous acid generating device, and more particularly to an electrolytic electrode containing iridium oxide and platinum, and a hypochlorous acid generating device equipped with the electrolytic electrode.
 従来、塩水を電解することで塩素を発生させるために使用される電解用電極が知られている(特許文献1)。 Conventionally, an electrolytic electrode used to generate chlorine by electrolyzing salt water is known (Patent Document 1).
 特許文献1には、少なくともチタンを含む導電性基板と、導電性基板上に設けられており、白金を含む中間層と、中間層上に設けられており、白金と酸化イリジウムとを含む触媒層と、を備える電解用電極が開示されている。 Patent Document 1 discloses a conductive substrate containing at least titanium, an intermediate layer provided on the conductive substrate and containing platinum, and a catalyst layer provided on the intermediate layer and containing platinum and iridium oxide. An electrode for electrolysis comprising the following is disclosed.
 電解用電極では、耐久性の更なる向上が望まれている。 Further improvement in durability is desired for electrodes for electrolysis.
国際公開第2021/117311号International Publication No. 2021/117311
 本開示の目的は、耐久性の向上を図ることが可能な電解用電極及び次亜塩素酸発生機器を提供することにある。 An object of the present disclosure is to provide an electrolytic electrode and a hypochlorous acid generating device that can improve durability.
 本開示の一態様に係る電解用電極は、導電性基板と、中間層と、触媒層と、酸化タンタル層と、を備える。前記導電性基板は、第1主面及び前記第1主面とは反対側の第2主面を有する。前記導電性基板は、少なくともチタンを含む。前記中間層は、前記導電性基板の前記第1主面上に設けられている。前記中間層は、白金を含む。前記触媒層は、前記中間層上に設けられている。前記触媒層は、白金と酸化イリジウムとを含む。前記酸化タンタル層は、前記触媒層上に設けられている。前記電解用電極では、前記触媒層の一部が露出している。前記触媒層は、複数の複合粒子と、複数の気孔と、を含む多孔質層である。複数の複合粒子の各々は、白金と酸化イリジウムとを含む。前記電解用電極は、前記複数の気孔のうち少なくとも1つの気孔内に設けられ前記触媒層に接している複数の酸化タンタル部を更に含む。前記電解用電極は、前記触媒層の厚さ方向において前記触媒層の主面から前記導電性基板に近づくにつれて前記触媒層と前記複数の酸化タンタル部とを含む複合層における酸化タンタルの濃度が増加する領域を含む。 An electrolysis electrode according to one aspect of the present disclosure includes a conductive substrate, an intermediate layer, a catalyst layer, and a tantalum oxide layer. The conductive substrate has a first main surface and a second main surface opposite to the first main surface. The conductive substrate includes at least titanium. The intermediate layer is provided on the first main surface of the conductive substrate. The intermediate layer includes platinum. The catalyst layer is provided on the intermediate layer. The catalyst layer contains platinum and iridium oxide. The tantalum oxide layer is provided on the catalyst layer. In the electrolysis electrode, a part of the catalyst layer is exposed. The catalyst layer is a porous layer including a plurality of composite particles and a plurality of pores. Each of the plurality of composite particles contains platinum and iridium oxide. The electrolysis electrode further includes a plurality of tantalum oxide parts provided in at least one of the plurality of pores and in contact with the catalyst layer. In the electrolysis electrode, the concentration of tantalum oxide in the composite layer including the catalyst layer and the plurality of tantalum oxide parts increases as it approaches the conductive substrate from the main surface of the catalyst layer in the thickness direction of the catalyst layer. Contains the area to
 本開示の一態様に係る次亜塩素酸発生機器は、塩水が入れられる容器と、前記塩水に接するように前記容器内に配置される第1電極及び第2電極と、を備える。前記第1電極及び前記第2電極の少なくとも一方は、前記電解用電極を含む。 A hypochlorous acid generating device according to one aspect of the present disclosure includes a container into which salt water is placed, and a first electrode and a second electrode arranged in the container so as to be in contact with the salt water. At least one of the first electrode and the second electrode includes the electrolysis electrode.
図1Aは、実施形態に係る電解用電極の概略断面図である。図1Bは、同上の電解用電極の要部説明図である。FIG. 1A is a schematic cross-sectional view of an electrode for electrolysis according to an embodiment. FIG. 1B is an explanatory diagram of main parts of the electrolytic electrode same as above. 図2は、同上の電解用電極の触媒層に含まれる粒子の説明図である。FIG. 2 is an explanatory diagram of particles contained in the catalyst layer of the electrolytic electrode same as above. 図3Aは、同上の電解用電極の断面図である。図3Bは、同上の電解用電極における触媒層と複数の酸化タンタル部とを含む複合層の酸化タンタルの濃度分布の模式図である。FIG. 3A is a cross-sectional view of the electrolytic electrode same as above. FIG. 3B is a schematic diagram of the concentration distribution of tantalum oxide in a composite layer including a catalyst layer and a plurality of tantalum oxide parts in the electrolysis electrode described above. 図4は、同上の電解用電極の酸化タンタルの量の深さ方向プロファイルの模式図である。FIG. 4 is a schematic diagram of a profile of the amount of tantalum oxide in the depth direction of the electrode for electrolysis. 図5は、同上の電解用電極の酸化タンタルの量の深さ方向プロファイルの他の例の模式図である。FIG. 5 is a schematic diagram of another example of the depth profile of the amount of tantalum oxide in the electrolysis electrode as described above. 図6は、同上の電解用電極の酸化タンタルの量の深さ方向プロファイルの更に他の例の模式図である。FIG. 6 is a schematic diagram of still another example of the depth profile of the amount of tantalum oxide in the electrolytic electrode described above. 図7は、同上の電解用電極を備える次亜塩素酸発生機器の概略構成図である。FIG. 7 is a schematic diagram of a hypochlorous acid generating device equipped with the same electrolytic electrode as above.
 下記の実施形態等において説明する図1A~7は、模式的な図であり、図中の各構成要素の大きさや厚さそれぞれの比が、必ずしも実際の寸法比を反映しているとは限らない。 1A to 7 described in the embodiments below are schematic diagrams, and the size and thickness ratios of each component in the diagrams do not necessarily reflect the actual dimensional ratios. do not have.
 (実施形態)
 以下、実施形態に係る電解用電極1について、図1A~4に基づいて説明する。
(Embodiment)
Hereinafter, the electrolysis electrode 1 according to the embodiment will be described based on FIGS. 1A to 4.
 (1)概要
 電解用電極1は、塩水を電解することで塩素を発生させるために使用される電極である。ここにおいて、塩水は、例えば、食塩水である。電解用電極1を、塩水を電解する用途で用いる場合には、例えば、電源から直流電圧を印加する陽極と陰極とのうち陽極として電解用電極1を用いることにより、食塩水を電解して塩素を発生させ、この塩素と水との反応により次亜塩素酸水を生成することができる。
(1) Overview The electrolysis electrode 1 is an electrode used to generate chlorine by electrolyzing salt water. Here, the salt water is, for example, salt water. When the electrolytic electrode 1 is used for electrolyzing salt water, for example, by using the electrolytic electrode 1 as the anode of the anode and cathode to which a DC voltage is applied from the power supply, the salt water is electrolyzed to produce chlorine. can be generated, and hypochlorous acid water can be generated by the reaction between this chlorine and water.
 (2)電解用電極の各構成要素
 電解用電極1は、図1Aに示すように、導電性基板2と、中間層3と、触媒層4と、酸化タンタル層5と、を備える。中間層3は、導電性基板2上に設けられている。触媒層4は、中間層3上に設けられている。つまり、中間層3は、導電性基板2と触媒層4との間に介在する層である。酸化タンタル層5は、触媒層4上に設けられている。
(2) Components of Electrolytic Electrode As shown in FIG. 1A, the electrolytic electrode 1 includes a conductive substrate 2, an intermediate layer 3, a catalyst layer 4, and a tantalum oxide layer 5. Intermediate layer 3 is provided on conductive substrate 2 . The catalyst layer 4 is provided on the intermediate layer 3. That is, the intermediate layer 3 is a layer interposed between the conductive substrate 2 and the catalyst layer 4. Tantalum oxide layer 5 is provided on catalyst layer 4 .
 以下、電解用電極1の各構成要素についてより詳細に説明する。 Hereinafter, each component of the electrolytic electrode 1 will be explained in more detail.
 (2.1)導電性基板
 導電性基板2の平面視形状(導電性基板2を導電性基板2の厚さ方向から見たときの外周形状)は、例えば、長方形状である。導電性基板2の厚さは、例えば、100μm以上2mm以下であり、一例として、500μmである。導電性基板2の平面視でのサイズは、例えば、25mm×60mmである。導電性基板2は、第1主面21と、第1主面21とは反対側の第2主面22と、を有する。
(2.1) Conductive Substrate The planar shape of the conductive substrate 2 (the outer peripheral shape when the conductive substrate 2 is viewed from the thickness direction of the conductive substrate 2) is, for example, rectangular. The thickness of the conductive substrate 2 is, for example, 100 μm or more and 2 mm or less, and is, for example, 500 μm. The size of the conductive substrate 2 in plan view is, for example, 25 mm x 60 mm. The conductive substrate 2 has a first main surface 21 and a second main surface 22 opposite to the first main surface 21 .
 導電性基板2は、少なくともチタンを含む。導電性基板2の材料は、チタン又はチタンを主成分とする合金(以下、チタン合金という)を含む。チタン合金は、例えば、チタン-パラジウム合金、チタン-ニッケル-ルテニウム合金、チタン-タンタル合金、チタン-アルミニウム合金、チタン-アルミニウム-バナジウム合金等である。導電性基板2は、一例として、図3A及び3Bに示すように、チタン基板20と、チタン基板20上に形成されており、導電性を有する酸化チタン層24と、を含む。導電性基板2の第1主面21は、酸化チタン層24におけるチタン基板20側とは反対側の表面241を含む。酸化チタン層24の抵抗率は、105Ωcm以下であり、チタン基板20の抵抗率との差が小さいほど好ましい。 The conductive substrate 2 contains at least titanium. The material of the conductive substrate 2 includes titanium or an alloy containing titanium as a main component (hereinafter referred to as titanium alloy). Examples of the titanium alloy include titanium-palladium alloy, titanium-nickel-ruthenium alloy, titanium-tantalum alloy, titanium-aluminum alloy, titanium-aluminum-vanadium alloy, and the like. For example, as shown in FIGS. 3A and 3B, the conductive substrate 2 includes a titanium substrate 20 and a titanium oxide layer 24 formed on the titanium substrate 20 and having conductivity. The first main surface 21 of the conductive substrate 2 includes a surface 241 of the titanium oxide layer 24 on the opposite side to the titanium substrate 20 side. The resistivity of the titanium oxide layer 24 is 10 5 Ωcm or less, and the smaller the difference from the resistivity of the titanium substrate 20, the better.
 導電性基板2の第1主面21は、中間層3の密着性を高める観点から、粗面であるのが好ましい。実施形態に係る電解用電極1では、導電性基板2の第1主面21は、中間層3を設ける前に粗面化されている。ここにおいて、導電性基板2の第1主面21の表面粗さに関し、算術平均粗さRaは、例えば、0.7μmであり、最大高さRzは、7μmである。算術平均粗さRa及び最大高さRzについては、例えば、JIS B 0601-2001(ISO 4287-1997)で規定されている。算術平均粗さRa及び最大高さRzは、例えば、断面SEM像(Cross-sectional Scanning Electron Microscope Image)から測定した値である。 The first main surface 21 of the conductive substrate 2 is preferably a rough surface from the viewpoint of improving the adhesion of the intermediate layer 3. In the electrolysis electrode 1 according to the embodiment, the first main surface 21 of the conductive substrate 2 is roughened before the intermediate layer 3 is provided. Here, regarding the surface roughness of the first main surface 21 of the conductive substrate 2, the arithmetic mean roughness Ra is, for example, 0.7 μm, and the maximum height Rz is 7 μm. The arithmetic mean roughness Ra and the maximum height Rz are defined in, for example, JIS B 0601-2001 (ISO 4287-1997). The arithmetic mean roughness Ra and the maximum height Rz are, for example, values measured from a cross-sectional SEM image (Cross-sectional Scanning Electron Microscope Image).
 (2.2)中間層
 中間層3は、図1Aに示すように、導電性基板2の第1主面21上に設けられている。したがって、電解用電極1は、導電性基板2と中間層3との界面を有する。また、中間層3は、中間層3における導電性基板2側とは反対側の主面30(図3A及び3B参照)を有する。中間層3は、導電性基板2よりも塩水及び塩素に対する耐食性の高い材料で形成されているのが好ましい。また、電解用電極1全体の電気伝導性を高める観点からは、中間層3の材料は導電性を有し電気伝導性の高い材料であるのが好ましい。中間層3の材料は、例えば、遷移金属又は遷移金属を含む混合物であり、例えば、白金、タンタルと白金とイリジウムとの混合物である。中間層3の材料は、一例として、白金である。
(2.2) Intermediate layer The intermediate layer 3 is provided on the first main surface 21 of the conductive substrate 2, as shown in FIG. 1A. Therefore, the electrolysis electrode 1 has an interface between the conductive substrate 2 and the intermediate layer 3. Further, the intermediate layer 3 has a main surface 30 (see FIGS. 3A and 3B) on the opposite side of the intermediate layer 3 to the conductive substrate 2 side. The intermediate layer 3 is preferably formed of a material that has higher corrosion resistance to salt water and chlorine than the conductive substrate 2. Moreover, from the viewpoint of increasing the electrical conductivity of the entire electrolytic electrode 1, it is preferable that the material of the intermediate layer 3 is electrically conductive and has high electrical conductivity. The material of the intermediate layer 3 is, for example, a transition metal or a mixture containing a transition metal, such as platinum, a mixture of tantalum, platinum, and iridium. The material of the intermediate layer 3 is platinum, for example.
 中間層3の厚さは、例えば、0.3μm以上5μm以下であり、一例として、0.6μmである。 The thickness of the intermediate layer 3 is, for example, 0.3 μm or more and 5 μm or less, and is, for example, 0.6 μm.
 また、中間層3における導電性基板2側とは反対側の主面30は、中間層3の下地の導電性基板2の表面粗さを維持していることが望ましい。 Furthermore, it is desirable that the main surface 30 of the intermediate layer 3 on the side opposite to the conductive substrate 2 side maintains the surface roughness of the conductive substrate 2 underlying the intermediate layer 3.
 (2.3)触媒層
 触媒層4は、図1Aに示すように、中間層3上に設けられている。電解用電極1は、触媒層4と中間層3との界面を有する。つまり、触媒層4は、中間層3を介して導電性基板2上に設けられている。
(2.3) Catalyst Layer The catalyst layer 4 is provided on the intermediate layer 3, as shown in FIG. 1A. The electrolytic electrode 1 has an interface between a catalyst layer 4 and an intermediate layer 3. That is, the catalyst layer 4 is provided on the conductive substrate 2 with the intermediate layer 3 interposed therebetween.
 触媒層4は、白金と酸化イリジウムとを含む。触媒層4は、図1B及び3Aに示すように、複数の複合粒子41と、複数の気孔42と、を含む多孔質層である。複数の複合粒子41の各々は、図2に示すように、白金粒子411と、酸化イリジウム粒子412と、を含む。複数の複合粒子41の各々では、例えば、1つの白金粒子411に対して複数の酸化イリジウム粒子412が結合されている。触媒層4では、白金により酸化イリジウムが分散されている。酸化イリジウムは、塩素を発生させるための触媒として機能する。触媒層4は、白金と酸化イリジウムとの他に、イリジウムを含んでいてもよい。この場合、複合粒子41では、白金粒子411に対して、酸化イリジウム粒子412の他にイリジウム粒子が結合されていてもよい。また、触媒層4では、白金粒子411同士が結合されていてもよい。触媒層4における結合状態は、特に限定されない。 The catalyst layer 4 contains platinum and iridium oxide. The catalyst layer 4 is a porous layer including a plurality of composite particles 41 and a plurality of pores 42, as shown in FIGS. 1B and 3A. Each of the plurality of composite particles 41 includes platinum particles 411 and iridium oxide particles 412, as shown in FIG. In each of the plurality of composite particles 41, for example, a plurality of iridium oxide particles 412 are bonded to one platinum particle 411. In the catalyst layer 4, iridium oxide is dispersed by platinum. Iridium oxide functions as a catalyst to generate chlorine. The catalyst layer 4 may contain iridium in addition to platinum and iridium oxide. In this case, in the composite particles 41, iridium particles in addition to the iridium oxide particles 412 may be bonded to the platinum particles 411. Further, in the catalyst layer 4, the platinum particles 411 may be bonded to each other. The bonding state in the catalyst layer 4 is not particularly limited.
 触媒層4は、図1A、1B及び3Bに示すように、導電性基板2側とは反対側の主面40から凹んだ複数の凹部45を有する。電解用電極1では、複数の凹部45によって触媒層4の一部が露出している。複数の凹部45の各々は、例えば、触媒層4に形成されているクラックである。より詳細には複数の凹部45の各々は、触媒層4の厚さ方向からの平面視で線状のクラックである。複数のクラック(凹部45)の形状は、互いに異なる。 As shown in FIGS. 1A, 1B, and 3B, the catalyst layer 4 has a plurality of recesses 45 recessed from the main surface 40 on the opposite side to the conductive substrate 2 side. In the electrolysis electrode 1, a portion of the catalyst layer 4 is exposed by the plurality of recesses 45. Each of the plurality of recesses 45 is, for example, a crack formed in the catalyst layer 4. More specifically, each of the plurality of recesses 45 is a linear crack when viewed from above in the thickness direction of the catalyst layer 4 . The shapes of the plurality of cracks (recesses 45) are different from each other.
 複数の凹部45の各々の深さは、例えば、0.1μm以上である。複数の凹部45の各々の深さは、中間層3に達する深さであってもよいし、中間層3に達しない深さであってもよい。実施形態に係る電解用電極1では、複数の凹部45が中間層3を貫通するようには形成されておらず、導電性基板2の第1主面21の全面が中間層3により覆われている。導電性基板2の厚さ方向からの平面視で、複数の凹部45の各々の幅は、0.1μm以上10μm以下であり、0.3μm以上3μm以下であるのが、より好ましい。導電性基板2の厚さ方向からの平面視での凹部45の幅は、触媒層4の主面40での短手方向(長さ方向に直交する方向)における開口幅である。導電性基板2の厚さ方向からの平面視で、複数の凹部45の各々の長さは、導電性基板2の各辺の長さよりも短い。 The depth of each of the plurality of recesses 45 is, for example, 0.1 μm or more. The depth of each of the plurality of recesses 45 may be a depth that reaches the intermediate layer 3 or may be a depth that does not reach the intermediate layer 3. In the electrolysis electrode 1 according to the embodiment, the plurality of recesses 45 are not formed to penetrate the intermediate layer 3, and the entire first main surface 21 of the conductive substrate 2 is covered with the intermediate layer 3. There is. In plan view from the thickness direction of the conductive substrate 2, the width of each of the plurality of recesses 45 is 0.1 μm or more and 10 μm or less, and more preferably 0.3 μm or more and 3 μm or less. The width of the recess 45 in a plan view from the thickness direction of the conductive substrate 2 is the opening width in the lateral direction (direction perpendicular to the longitudinal direction) on the main surface 40 of the catalyst layer 4. In plan view from the thickness direction of the conductive substrate 2, the length of each of the plurality of recesses 45 is shorter than the length of each side of the conductive substrate 2.
 触媒層4の厚さは、例えば、0.1μm以上10μm以下である。 The thickness of the catalyst layer 4 is, for example, 0.1 μm or more and 10 μm or less.
 (2.4)酸化タンタル層
 酸化タンタル層5(図1A、1B、3A及び3B参照)は、触媒層4の酸化イリジウム及び白金の少なくとも一方の溶出を抑制する機能を有する。
(2.4) Tantalum Oxide Layer The tantalum oxide layer 5 (see FIGS. 1A, 1B, 3A, and 3B) has a function of suppressing elution of at least one of iridium oxide and platinum from the catalyst layer 4.
 酸化タンタル層5は、図1Bに示すように、触媒層4における主面40上に設けられている第1部分51と、触媒層4における複数の凹部45のうち少なくとも1つの凹部45の内面451上に設けられている第2部分52と、を含む。酸化タンタル層5は、触媒層4における複数の凹部45の各々の内面451上に第2部分52を有しているのが好ましい。 As shown in FIG. 1B, the tantalum oxide layer 5 includes a first portion 51 provided on the main surface 40 of the catalyst layer 4 and an inner surface 451 of at least one recess 45 among the plurality of recesses 45 in the catalyst layer 4. a second portion 52 provided thereon. Preferably, the tantalum oxide layer 5 has a second portion 52 on the inner surface 451 of each of the plurality of recesses 45 in the catalyst layer 4 .
 (2.5)酸化タンタル部
 電解用電極1は、図1B及び3Aに示すように、触媒層4の複数の気孔42のうち少なくとも1つの気孔42に設けられ触媒層4に接している酸化タンタル部43を更に含む。酸化タンタル部43は、例えば、酸化タンタル層5の形成時に形成される。酸化タンタル部43は、触媒層4の複合粒子41に接している。複数の酸化タンタル部43のうち少なくとも1つの酸化タンタル部43は、中間層3を貫通して酸化チタン層24に接しているのが好ましい。
(2.5) Tantalum oxide portion As shown in FIGS. 1B and 3A, the electrolysis electrode 1 includes tantalum oxide, which is provided in at least one pore 42 among the plurality of pores 42 of the catalyst layer 4 and is in contact with the catalyst layer 4. It further includes a section 43. The tantalum oxide portion 43 is formed, for example, when the tantalum oxide layer 5 is formed. The tantalum oxide portion 43 is in contact with the composite particles 41 of the catalyst layer 4. It is preferable that at least one tantalum oxide part 43 among the plurality of tantalum oxide parts 43 penetrates the intermediate layer 3 and is in contact with the titanium oxide layer 24 .
 (2.6)触媒層と複数の酸化タンタル部とを含む複合層
 電解用電極1は、触媒層4の厚さ方向において触媒層4の主面40から導電性基板2に近づくにつれて酸化タンタルの量が増加する領域を含む。図3Bでは、酸化タンタルの多い領域ほどドットの密度が高くなるようにハッチングを施してある。図3Bのハッチングは、断面を示すハッチングではない。電解用電極1では、例えば、図4に示すように、触媒層4の厚さ方向において、酸化タンタルの量が段階的に変化しており、触媒層4の厚さ方向において触媒層4の主面40から導電性基板2の第1主面21に近づくにつれて酸化タンタルの量が増加する領域を含む。ここにおいて、酸化タンタルの量は、触媒層4と複数の酸化タンタル部43とを含む複合層における酸化タンタルの濃度が高いほど酸化タンタルの量が多い。したがって、「酸化タンタルの量が段階的に変化しており」は、「触媒層4と複数の酸化タンタル部43とを含む複合層における酸化タンタルの濃度が段階的に変化しており」と言い換えてもよい。また、「酸化タンタルの量が増加する領域」は、「触媒層4と複数の酸化タンタル部43とを含む複合層における酸化タンタルの濃度が増加する領域」と言い換えてもよい。
(2.6) Composite layer including a catalyst layer and a plurality of tantalum oxide parts The electrolytic electrode 1 has tantalum oxide as it approaches the conductive substrate 2 from the main surface 40 of the catalyst layer 4 in the thickness direction of the catalyst layer 4. Contains areas of increasing volume. In FIG. 3B, hatching is applied so that the area with more tantalum oxide has a higher dot density. The hatching in FIG. 3B is not hatching indicating a cross section. In the electrolytic electrode 1, for example, as shown in FIG. 4, the amount of tantalum oxide changes stepwise in the thickness direction of the catalyst layer 4, and It includes a region where the amount of tantalum oxide increases as it approaches the first main surface 21 of the conductive substrate 2 from the surface 40. Here, the amount of tantalum oxide increases as the concentration of tantalum oxide in the composite layer including the catalyst layer 4 and the plurality of tantalum oxide parts 43 increases. Therefore, "the amount of tantalum oxide is changing stepwise" can be translated as "the concentration of tantalum oxide in the composite layer including the catalyst layer 4 and a plurality of tantalum oxide parts 43 is changing stepwise". It's okay. Moreover, "a region where the amount of tantalum oxide increases" may be rephrased as "a region where the concentration of tantalum oxide in the composite layer including the catalyst layer 4 and a plurality of tantalum oxide parts 43 increases."
 ところで、本願発明者らは、複合層における酸化タンタルの量をパラメータとして複数の電解用電極を作製し、複数の電解用電極それぞれについて耐久性試験を行い、初期の塩素発生量及び劣化率について評価した。 By the way, the inventors of the present invention manufactured a plurality of electrolytic electrodes using the amount of tantalum oxide in the composite layer as a parameter, conducted a durability test on each of the plurality of electrolytic electrodes, and evaluated the initial amount of chlorine generation and deterioration rate. did.
 耐久性試験は、加速試験である。耐久性試験では、同じ条件で作成した2つの電解用電極を一対の電極として、耐久性試験設備の電解槽中の塩水に一対の電極を浸漬させ、一対の電極への通電による初期エージングを行ってから、一対の電極間に予め決めた時間だけ連続的に通電する度に一対の電極を塩素濃度測定用の電解槽に入れた塩水に浸漬させて所定時間(3分)だけ通電したときの塩素濃度(の平均値)を測定した。ここにおいて、耐久性試験設備の電解槽は、塩水の給水口と排水口とを有する。耐久性試験では、耐久性試験設備の電解槽内の塩水の導電率が1650±200μS/mになるように塩水を足している。また、耐久性試験では、耐久性試験設備の電解槽に水道水を流量2L/minで常に供給しながら排水している。耐久性試験設備の電解槽に供給する塩水は、水道水に食塩(塩化ナトリウム)を溶解させて生成した食塩水である。耐久性試験での通電電流の電流値は、400mAである。塩素濃度測定用の電解槽中の塩水としては、800mLの純水に4.5gの食塩(塩化ナトリウム)を溶解させて生成した塩水を用いた。塩素濃度測定での通電電流の電流値は、400mAである。また、初期エージングでは、一対の電極間に所定時間(3分)の通電を行うごとに極性反転を行って、一対の電極に、合計12分の通電を行った。ここにおいて、極性反転とは、一対の電極における陽極と陰極との組み合わせを逆にすることを意味する。言い換えれば、極性反転とは、陽極として使用していた電極、陰極として使用していた電極のそれぞれを、陰極、陽極とするように一対の電極のうち高電位側とする電極を変更することを意味する。 The durability test is an accelerated test. In the durability test, two electrolytic electrodes made under the same conditions were used as a pair of electrodes, and the pair of electrodes was immersed in salt water in an electrolytic bath in a durability test facility, and initial aging was performed by energizing the pair of electrodes. Then, each time a pair of electrodes is continuously energized for a predetermined period of time, the pair of electrodes is immersed in salt water in an electrolytic bath for measuring chlorine concentration, and the current is energized for a predetermined period of time (3 minutes). The (average value) of chlorine concentration was measured. Here, the electrolytic cell of the durability test equipment has a salt water inlet and a drain outlet. In the durability test, salt water was added so that the conductivity of the salt water in the electrolytic cell of the durability test equipment was 1650±200 μS/m. In addition, in the durability test, tap water was constantly supplied to the electrolytic cell of the durability test equipment at a flow rate of 2 L/min while draining water. The brine supplied to the electrolytic cell of the durability testing facility is a brine produced by dissolving common salt (sodium chloride) in tap water. The current value of the current applied in the durability test was 400 mA. As the salt water in the electrolytic cell for measuring chlorine concentration, the salt water produced by dissolving 4.5 g of common salt (sodium chloride) in 800 mL of pure water was used. The current value of the current flowing in the chlorine concentration measurement was 400 mA. In addition, in the initial aging, the polarity was reversed every time the current was applied between the pair of electrodes for a predetermined period of time (3 minutes), and the pair of electrodes was energized for a total of 12 minutes. Here, polarity reversal means reversing the combination of an anode and a cathode in a pair of electrodes. In other words, polarity reversal refers to changing the electrode used as an anode and the electrode used as a cathode to become a cathode and an anode, respectively, which is the higher potential side of a pair of electrodes. means.
 初期の塩素発生量は、耐久性試験において、初期エージング後に一対の電極への通電を開始したときに、単位時間当たりに発生した塩素の量である。劣化率は、初期の塩素発生量と、初期エージング後の耐久性試験時間(経過時間)が200時間のときの塩素発生量と、の差分を初期の塩素発生量で除算した値である。 The initial amount of chlorine generated is the amount of chlorine generated per unit time in the durability test when energization of the pair of electrodes is started after initial aging. The deterioration rate is the value obtained by dividing the difference between the initial amount of chlorine generated and the amount of chlorine generated when the durability test time (elapsed time) after initial aging is 200 hours, divided by the initial amount of chlorine generated.
 種々の条件で作成した電解用電極の耐久性試験で得られた塩素発生量を重回帰分析して酸化タンタルの量と初期の塩素発生量との関係を示す予測プロファイルを導出した。また、種々の条件で作成した電解用電極の耐久性試験で得られた劣化率を重回帰分析して酸化タンタルの量と劣化率との関係を示す予測プロファイルを導出した。 A predictive profile showing the relationship between the amount of tantalum oxide and the initial amount of chlorine generation was derived by performing multiple regression analysis on the amount of chlorine generated in durability tests of electrolytic electrodes prepared under various conditions. In addition, multiple regression analysis was performed on the deterioration rates obtained in durability tests of electrolytic electrodes prepared under various conditions, and a predictive profile showing the relationship between the amount of tantalum oxide and the deterioration rate was derived.
 その結果、酸化タンタルの量が多いほど初期の塩素発生量が少なくなる傾向があることが分かった。また、酸化タンタルの量が多いほど劣化率が大きくなる傾向があることが分かった。 As a result, it was found that the larger the amount of tantalum oxide, the less the initial amount of chlorine generated. It was also found that the higher the amount of tantalum oxide, the higher the rate of deterioration.
 しかしながら、酸化タンタルの量を少なくすると、触媒層4の機械的な強度が低下し、触媒層4が導電性基板2側から剥離しやすくなる。そこで、実施形態に係る電解用電極1は、図4に示すように、触媒層4の厚さ方向において触媒層4の主面40から導電性基板2に近づくにつれて酸化タンタルの量が増加する領域を含むように構成されている。触媒層4の厚さ方向において酸化タンタルの量が増加する領域が有ることは、例えば、断面視でエネルギー分散型X線分析等を行うことによって分かる。また、触媒層4の厚さ方向において酸化タンタルの量が増加する領域が有ることは、例えば、XPS(X-ray Photoelectron Spectroscopy)による組成分析によって分かる。 However, if the amount of tantalum oxide is reduced, the mechanical strength of the catalyst layer 4 will decrease, and the catalyst layer 4 will easily peel off from the conductive substrate 2 side. Therefore, as shown in FIG. 4, the electrolytic electrode 1 according to the embodiment has a region in which the amount of tantalum oxide increases as it approaches the conductive substrate 2 from the main surface 40 of the catalyst layer 4 in the thickness direction of the catalyst layer 4. is configured to include. The fact that there is a region where the amount of tantalum oxide increases in the thickness direction of the catalyst layer 4 can be found by, for example, performing energy dispersive X-ray analysis in a cross-sectional view. Further, it can be seen from, for example, a composition analysis using XPS (X-ray Photoelectron Spectroscopy) that there is a region where the amount of tantalum oxide increases in the thickness direction of the catalyst layer 4.
 (3)電解用電極の製造方法
 電解用電極1の製造方法について簡単に説明する。
(3) Method for manufacturing electrode for electrolysis A method for manufacturing electrode for electrolysis 1 will be briefly described.
 電解用電極1の製造方法では、まず、導電性基板2を準備し、その後、粗面化工程、中間層形成工程、触媒層形成工程、及び酸化タンタル層形成工程を順次行う。 In the method for manufacturing the electrolytic electrode 1, first, the conductive substrate 2 is prepared, and then a surface roughening step, an intermediate layer forming step, a catalyst layer forming step, and a tantalum oxide layer forming step are sequentially performed.
 粗面化工程では、例えば、導電性基板2をシュウ酸水溶液に浸漬することにより導電性基板2の第1主面21を粗面化する。 In the surface roughening step, the first main surface 21 of the conductive substrate 2 is roughened, for example, by immersing the conductive substrate 2 in an oxalic acid aqueous solution.
 中間層形成工程では、導電性基板2の第1主面21上に中間層3を形成する。中間層形成工程では、白金粒子又は白金を含む有機金属成分を樹脂バインダ成分及び溶媒と混合して生成したペースト状材料を、スクリーン印刷により導電性基板2の第1主面21上に塗布してから、溶媒成分の乾燥を200~300℃で行い、その後、樹脂バインダ成分の除去及び白金粒子同士の焼結のため約800~1000℃の焼成を行うことにより、中間層3を形成する。 In the intermediate layer forming step, the intermediate layer 3 is formed on the first main surface 21 of the conductive substrate 2. In the intermediate layer forming step, a paste material produced by mixing platinum particles or an organic metal component containing platinum with a resin binder component and a solvent is applied onto the first main surface 21 of the conductive substrate 2 by screen printing. Then, the intermediate layer 3 is formed by drying the solvent component at 200 to 300° C., and then performing baking at about 800 to 1000° C. to remove the resin binder component and sinter the platinum particles.
 触媒層形成工程では、中間層3上に触媒層4を形成する。触媒層形成工程は、第1ステップと、第2ステップと、を有する。 In the catalyst layer forming step, the catalyst layer 4 is formed on the intermediate layer 3. The catalyst layer forming process includes a first step and a second step.
 触媒層形成工程の第1ステップでは、例えば、複数回の塗布工程と複数回の乾燥工程とを行うことにより、導電性基板2上の中間層3上に触媒層4の元になる触媒材料層を形成する。塗布工程及び乾燥工程の回数は、例えば、触媒層4の所定厚さ及び触媒層4の厚さ方向における酸化イリジウムの量が増加する領域の厚さ、酸化イリジウムの量の変化率等に応じて決められる。塗布工程及び乾燥工程の回数については、触媒層4の所定厚さが厚いほど、塗布工程及び乾燥工程の回数を増やせばよい。例えば、触媒層形成工程では、第1規定回数の塗布工程と上記第1規定回数の乾燥工程とを1回ずつ交互に繰り返すことにより、導電性基板2上の中間層3上に触媒層4の元になる触媒材料層を形成する。 In the first step of the catalyst layer forming process, for example, a layer of catalyst material, which is the source of the catalyst layer 4, is formed on the intermediate layer 3 on the conductive substrate 2 by performing a plurality of coating steps and a plurality of drying steps. form. The number of times of the coating process and the drying process is determined depending on, for example, the predetermined thickness of the catalyst layer 4, the thickness of the region where the amount of iridium oxide increases in the thickness direction of the catalyst layer 4, the rate of change in the amount of iridium oxide, etc. It can be decided. Regarding the number of times of the coating process and drying process, the thicker the predetermined thickness of the catalyst layer 4, the more the number of times of the coating process and drying process may be increased. For example, in the catalyst layer forming step, the catalyst layer 4 is formed on the intermediate layer 3 on the conductive substrate 2 by alternately repeating the coating step a first prescribed number of times and the drying step the first prescribed number of times. Form the base catalyst material layer.
 触媒層形成工程の第1ステップでは、導電性基板2上の中間層3上に直接的又は間接的に触媒層4の元になる白金化合物とイリジウム化合物とを含む溶液(以下、第1溶液という)を塗布してから(塗布工程を行ってから)、第1条件で加熱乾燥させる熱処理(乾燥工程)を行うという処理を複数回行うことにより、触媒層4の元になる触媒材料層を形成する。第1溶液は、溶媒(以下、第1溶媒という)に白金化合物とイリジウム化合物を混合させた溶液である。第1溶媒は、例えば、エチレングリコールモノエチルエーテルと塩酸とエタノールとを混合した液体である。白金化合物は、例えば、塩化白金酸であるが、これに限らず、例えば、塩化白金等であってもよい。塩化白金酸は、例えば、ヘキサクロロ白金(IV)酸n水和物である。イリジウム化合物は、例えば、塩化イリジウム酸であるが、これに限らず、例えば、塩化イリジウム、硝酸イリジウムであってもよい。塩化イリジウム酸は、例えば、ヘキサクロロイリジウム(IV)酸n水和物である。第1溶液の金属濃度(白金とイリジウムとの合計濃度)は、例えば、10~50mg/mLである。また、第1溶液の塗布量は、例えば、2~5μL/cmである。第1条件は、熱処理温度と、熱処理時間と、を含む。第1条件における熱処理温度は、例えば、100℃~400℃である。また、第1条件における熱処理時間は、例えば、5分~15分である。 In the first step of the catalyst layer forming process, a solution (hereinafter referred to as the first solution) containing a platinum compound and an iridium compound that will become the source of the catalyst layer 4 is directly or indirectly deposited on the intermediate layer 3 on the conductive substrate 2. ) is applied (after the coating process is performed) and then heat treatment (drying process) is performed under the first condition to form a catalyst material layer that will become the basis of the catalyst layer 4. do. The first solution is a solution in which a platinum compound and an iridium compound are mixed in a solvent (hereinafter referred to as the first solvent). The first solvent is, for example, a liquid mixture of ethylene glycol monoethyl ether, hydrochloric acid, and ethanol. The platinum compound is, for example, chloroplatinic acid, but is not limited thereto, and may be, for example, platinum chloride. Chloroplatinic acid is, for example, hexachloroplatinic (IV) acid n-hydrate. The iridium compound is, for example, chloroiridic acid, but is not limited thereto, and may be, for example, iridium chloride or iridium nitrate. Chloroiridic acid is, for example, hexachloroiridic (IV) acid n-hydrate. The metal concentration (total concentration of platinum and iridium) of the first solution is, for example, 10 to 50 mg/mL. Further, the amount of the first solution applied is, for example, 2 to 5 μL/cm 2 . The first condition includes a heat treatment temperature and a heat treatment time. The heat treatment temperature under the first condition is, for example, 100°C to 400°C. Further, the heat treatment time under the first condition is, for example, 5 minutes to 15 minutes.
 触媒層形成工程の第2ステップでは、触媒材料層を所定の焼成条件で焼成する熱処理を行うことにより、触媒層4及び複数のクラック(凹部45)を形成する。焼成条件は、焼成温度と、焼成時間と、を含む。焼成温度は、例えば、300℃~600℃である。焼成時間は、例えば、5分~20分である。 In the second step of the catalyst layer forming process, the catalyst layer 4 and a plurality of cracks (recesses 45) are formed by performing heat treatment to fire the catalyst material layer under predetermined firing conditions. The firing conditions include firing temperature and firing time. The firing temperature is, for example, 300°C to 600°C. The firing time is, for example, 5 minutes to 20 minutes.
 酸化タンタル層形成工程では、触媒層4上に酸化タンタル層5を形成する。酸化タンタル層形成工程は、第1ステップと、第2ステップと、を有する。 In the tantalum oxide layer forming step, a tantalum oxide layer 5 is formed on the catalyst layer 4. The tantalum oxide layer forming step includes a first step and a second step.
 酸化タンタル層工程の第1ステップでは、少なくとも2回の塗布工程と少なくとも2回の乾燥工程とを行うことにより、触媒層4上に酸化タンタル層5の元になる材料層を形成する。塗布工程及び乾燥工程の回数は、例えば、酸化タンタル層5の所定厚さに応じて決められる。塗布工程及び乾燥工程の回数については、酸化タンタル層5の所定厚さが厚いほど、塗布工程及び乾燥工程の回数を増やせばよい。例えば、酸化タンタル層形成工程では、第2規定回数の塗布工程と上記第2規定回数の乾燥工程とを行うことにより、触媒層4上に酸化タンタル層5の元になる材料層を形成する。 In the first step of the tantalum oxide layer process, a material layer that becomes the source of the tantalum oxide layer 5 is formed on the catalyst layer 4 by performing at least two coating processes and at least two drying processes. The number of times of the coating process and the drying process is determined depending on the predetermined thickness of the tantalum oxide layer 5, for example. Regarding the number of times of the coating process and drying process, the thicker the predetermined thickness of the tantalum oxide layer 5, the more the number of times of the coating process and drying process may be increased. For example, in the tantalum oxide layer forming step, a material layer that becomes the source of the tantalum oxide layer 5 is formed on the catalyst layer 4 by performing a second specified number of coating steps and a second specified number of drying steps.
 酸化タンタル層形成工程の第1ステップでは、触媒層4上に酸化タンタル層5の元になるタンタル化合物を含む溶液(以下、第2溶液という)を塗布してから(塗布工程を行ってから)、第2条件で加熱乾燥させる熱処理(乾燥工程)を行うという処理を少なくとも2回行うことにより、酸化タンタル層5の元になる材料層を形成する。第2溶液は、溶媒(以下、第2溶媒という)にタンタル化合物を溶解させた溶液である。第2溶媒は、例えば、エチレングリコールモノエチルエーテルと塩酸とエタノールとを混合した液体である。タンタル化合物は、例えば、塩化タンタルであるが、これに限らず、例えば、タンタルエトキシド等であってもよい。第2溶液の金属濃度(タンタル濃度)は、例えば、10~50mg/Lである。また、第2溶液の塗布量は、例えば、1~5μL/cmである。このとき、2回目に塗布する第2溶液中の金属濃度は、1回目に塗布する第2溶液中の金属濃度よりも、小さくする必要がある(例えば1回目の金属濃度30mg/Lにした場合は、2回目の金属濃度を20mg/Lにする。)。または、2回目の第2溶液の塗布量を1回目の第2溶液の塗布量に比べ、少なくする必要がある(例えば1回目の第2溶液の塗布量を2μL/cmにした場合は、2回目の第2溶液の塗布量を1μL/cmにする。)。第2条件は、熱処理温度と、熱処理時間と、を含む。第2条件における熱処理温度は、例えば、100℃~400℃である。また、第2条件における熱処理時間は、例えば、5分~15分である。 In the first step of the tantalum oxide layer forming process, a solution containing a tantalum compound (hereinafter referred to as the second solution) that is the source of the tantalum oxide layer 5 is applied onto the catalyst layer 4 (after the application process is performed). By performing heat treatment (drying step) of heating and drying under the second conditions at least twice, a material layer that will become the basis of the tantalum oxide layer 5 is formed. The second solution is a solution in which a tantalum compound is dissolved in a solvent (hereinafter referred to as a second solvent). The second solvent is, for example, a liquid mixture of ethylene glycol monoethyl ether, hydrochloric acid, and ethanol. The tantalum compound is, for example, tantalum chloride, but is not limited thereto, and may be, for example, tantalum ethoxide. The metal concentration (tantalum concentration) of the second solution is, for example, 10 to 50 mg/L. Further, the amount of the second solution applied is, for example, 1 to 5 μL/cm 2 . At this time, the metal concentration in the second solution applied for the second time needs to be lower than the metal concentration in the second solution applied for the first time (for example, if the metal concentration is 30 mg/L for the first time) (The second metal concentration is 20 mg/L.) Alternatively, the amount of the second solution applied at the second time needs to be smaller than the amount of the second solution applied at the first time (for example, if the amount of the second solution applied at the first time is 2 μL/ cm2 , The amount of second solution applied for the second time is 1 μL/cm 2 ). The second conditions include heat treatment temperature and heat treatment time. The heat treatment temperature under the second condition is, for example, 100°C to 400°C. Further, the heat treatment time under the second condition is, for example, 5 minutes to 15 minutes.
 酸化タンタル層形成工程の第2ステップでは、材料層を所定の焼成条件で焼成する熱処理を行うことにより、酸化タンタル層5を形成する。焼成条件は、焼成温度と、焼成時間と、を含む。焼成温度は、例えば、500℃~600℃である。焼成時間は、例えば、5分~20分である。 In the second step of the tantalum oxide layer forming process, the tantalum oxide layer 5 is formed by performing heat treatment to fire the material layer under predetermined firing conditions. The firing conditions include firing temperature and firing time. The firing temperature is, for example, 500°C to 600°C. The firing time is, for example, 5 minutes to 20 minutes.
 上述の電解用電極1の製造方法では、触媒層4における気孔42内の酸化タンタル部43は、酸化タンタル層形成工程において形成される。電解用電極1の製造方法では、上述の酸化タンタル層形成工程を行うことで、触媒層4の主面40から導電性基板2に近づくにつれて酸化タンタルの量が増加する領域を作り出すことができる。 In the method for manufacturing the electrolytic electrode 1 described above, the tantalum oxide portions 43 within the pores 42 in the catalyst layer 4 are formed in the tantalum oxide layer forming step. In the method for manufacturing the electrolytic electrode 1, by performing the tantalum oxide layer forming step described above, it is possible to create a region where the amount of tantalum oxide increases from the main surface 40 of the catalyst layer 4 toward the conductive substrate 2.
 なお、粗面化工程、中間層形成工程、触媒層形成工程、及び酸化タンタル層形成工程は、複数の導電性基板2を備えて導電性基板2の多数個取りが可能な多数個取り基板に対して行ってもよい。この場合には、例えば、酸化タンタル層形成工程の後に多数個取り基板を個々の導電性基板2に分離することで複数の電解用電極1を得るようにしてもよい。 Note that the surface roughening step, the intermediate layer forming step, the catalyst layer forming step, and the tantalum oxide layer forming step are performed on a multi-layer substrate that includes a plurality of conductive substrates 2 and is capable of forming a large number of conductive substrates 2. You can also go to In this case, for example, a plurality of electrolytic electrodes 1 may be obtained by separating the multi-chip substrate into individual conductive substrates 2 after the tantalum oxide layer forming step.
 (4)まとめ
 実施形態に係る電解用電極1は、導電性基板2と、中間層3と、触媒層4と、酸化タンタル層5と、を備える。導電性基板2は、第1主面21及び第1主面21とは反対側の第2主面22を有する。導電性基板2は、少なくともチタンを含む。中間層3は、導電性基板2の第1主面21上に設けられている。中間層3は、白金を含む。触媒層4は、中間層3上に設けられている。触媒層4は、白金と酸化イリジウムとを含む。酸化タンタル層5は、触媒層4上に設けられている。電解用電極1では、触媒層4の一部が露出している。触媒層4は、複数の複合粒子41と、複数の気孔42と、を含む多孔質層である。複数の複合粒子41の各々は、白金(白金粒子411)と酸化イリジウム(酸化イリジウム粒子412)とを含む。電解用電極1は、触媒層4の複数の気孔42のうち少なくとも1つの気孔42内に設けられ触媒層4に接している複数の酸化タンタル部43を含み、触媒層4の厚さ方向において触媒層4の主面40から導電性基板2に近づくにつれて触媒層4と複数の酸化タンタル部43とを含む複合層における酸化タンタルの濃度が増加する領域を含むので、耐久性の向上を図ることが可能となる。より詳細には、実施形態に係る電解用電極1は、触媒層4の複数の気孔42内に設けられ触媒層4に接している酸化タンタル部43を備え、触媒層4の厚さ方向において触媒層4の主面40から導電性基板2に近づくにつれて触媒層4と複数の酸化タンタル部43とを含む複合層における酸化タンタルの濃度が増加する領域を含むので、使用時の初期の塩素発生量の低下を抑制しつつ、触媒層4の機械的な強度を高めることが可能となるとともに、触媒層4と触媒層4よりも導電性基板2側の部材(導電性基板2と中間層3とを含む)との密着性を向上させることが可能となる。電解用電極1は、触媒層4と触媒層4を支持している部材との密着性の向上により、耐久性を向上させることが可能となる。
(4) Summary The electrolysis electrode 1 according to the embodiment includes a conductive substrate 2, an intermediate layer 3, a catalyst layer 4, and a tantalum oxide layer 5. The conductive substrate 2 has a first main surface 21 and a second main surface 22 opposite to the first main surface 21 . Conductive substrate 2 contains at least titanium. Intermediate layer 3 is provided on first main surface 21 of conductive substrate 2 . Intermediate layer 3 contains platinum. The catalyst layer 4 is provided on the intermediate layer 3. Catalyst layer 4 contains platinum and iridium oxide. Tantalum oxide layer 5 is provided on catalyst layer 4 . In the electrolysis electrode 1, a part of the catalyst layer 4 is exposed. The catalyst layer 4 is a porous layer including a plurality of composite particles 41 and a plurality of pores 42 . Each of the plurality of composite particles 41 includes platinum (platinum particles 411) and iridium oxide (iridium oxide particles 412). The electrolysis electrode 1 includes a plurality of tantalum oxide parts 43 provided in at least one of the plurality of pores 42 of the catalyst layer 4 and in contact with the catalyst layer 4, and includes a plurality of tantalum oxide parts 43 in the thickness direction of the catalyst layer 4. Since the layer 4 includes a region in which the concentration of tantalum oxide in the composite layer including the catalyst layer 4 and a plurality of tantalum oxide parts 43 increases as it approaches the conductive substrate 2 from the main surface 40, durability can be improved. It becomes possible. More specifically, the electrolytic electrode 1 according to the embodiment includes tantalum oxide portions 43 provided in the plurality of pores 42 of the catalyst layer 4 and in contact with the catalyst layer 4, and the catalyst Since the area includes a region where the concentration of tantalum oxide in the composite layer including the catalyst layer 4 and a plurality of tantalum oxide parts 43 increases as it approaches the conductive substrate 2 from the main surface 40 of the layer 4, the initial amount of chlorine generated during use is reduced. It is possible to increase the mechanical strength of the catalyst layer 4 while suppressing a decrease in ), it is possible to improve the adhesion with The durability of the electrolysis electrode 1 can be improved by improving the adhesion between the catalyst layer 4 and the member supporting the catalyst layer 4.
 また、実施形態に係る電解用電極1では、導電性基板2は、チタン基板20と、チタン基板20上に形成されており、導電性を有する酸化チタン層24と、を含む。導電性基板2の第1主面21は、酸化チタン層24におけるチタン基板20側とは反対側の表面241を含む。複数の酸化タンタル部43のうち少なくとも1つの酸化タンタル部43は、中間層3を貫通して酸化チタン層24に接している。これにより、実施形態に係る電解用電極1は、耐久性を更に向上させることが可能となる。 Furthermore, in the electrolysis electrode 1 according to the embodiment, the conductive substrate 2 includes a titanium substrate 20 and a titanium oxide layer 24 that is formed on the titanium substrate 20 and has conductivity. The first main surface 21 of the conductive substrate 2 includes a surface 241 of the titanium oxide layer 24 on the opposite side to the titanium substrate 20 side. At least one tantalum oxide part 43 among the plurality of tantalum oxide parts 43 penetrates the intermediate layer 3 and is in contact with the titanium oxide layer 24 . Thereby, the electrolysis electrode 1 according to the embodiment can further improve durability.
 (5)実施形態の変形例
 電解用電極1における、酸化タンタルの量の深さ方向プロファイルは、例えば、図5に示すように、触媒層4の厚さ方向において触媒層4の主面40から導電性基板2の第1主面21に近づくにつれて酸化タンタルの量が連続的(図5では、直線的)に増加する領域を含むプロファイルであってもよい。
(5) Modification of Embodiment The depth profile of the amount of tantalum oxide in the electrolysis electrode 1 is, for example, as shown in FIG. The profile may include a region where the amount of tantalum oxide increases continuously (linearly in FIG. 5) as it approaches the first main surface 21 of the conductive substrate 2.
 また、電解用電極1における、酸化タンタルの深さ方向プロファイルは、例えば、図6に示すように、触媒層4の厚さ方向において触媒層4の主面40から導電性基板2の第1主面21に近づくにつれて酸化タンタルの量が連続的(図6では、直線的)に増加する領域の他に、酸化タンタルの量が相対的に低い値で一定となる領域と、酸化タンタルの量が相対的に高い値で一定となる領域と、の少なくとも一方(図6では、両方)を含んでいてもよい。 Further, the depth direction profile of tantalum oxide in the electrolytic electrode 1 is, for example, as shown in FIG. In addition to a region where the amount of tantalum oxide increases continuously (in FIG. 6, linearly) as it approaches the surface 21, there is a region where the amount of tantalum oxide is constant at a relatively low value, and a region where the amount of tantalum oxide increases continuously (in FIG. 6, linearly). It may include at least one (in FIG. 6, both) of a region where the value is relatively high and constant.
 (6)実施形態の電解用電極を備える次亜塩素酸発生機器
 図7に示すように、次亜塩素酸発生機器100は、塩水(塩化ナトリウム水溶液)112が入れられる容器110と、塩水112に接するように容器110内に配置される第1電極101A及び第2電極101Bと、を備える。次亜塩素酸発生機器100では、第1電極101A及び第2電極101Bの両方が、電解用電極1を含んでいるが、第1電極101A及び第2電極101Bの少なくとも一方が、電解用電極1を含んでいればよい。
(6) Hypochlorous acid generating device equipped with an electrode for electrolysis according to the embodiment As shown in FIG. It includes a first electrode 101A and a second electrode 101B that are arranged in the container 110 so as to be in contact with each other. In the hypochlorous acid generating device 100, both the first electrode 101A and the second electrode 101B include the electrolysis electrode 1, but at least one of the first electrode 101A and the second electrode 101B includes the electrolysis electrode 1. It is sufficient if it contains
 次亜塩素酸発生機器100は、例えば、矩形箱状の本体ケース102を更に備える。本体ケース102は、4つの側壁と、上壁と、底壁と、を含む。本体ケース102では、4つの側壁のうち互いに対向する2つの側壁の組の一方が、空気の吸込口103を有し、上壁が、次亜塩素酸を含む空気を吹き出す吹出口104を有している。図7には、吸込口103から吸い込まれて吹出口104から吹き出される空気の流路105を縁取り矢印で模式的に示してある。容器110は、本体ケース102の下部において本体ケース102内に配置されている。容器110は、トレイ(蓋がない容器)である。次亜塩素酸発生機器100は、本体ケース102内に配置される給水タンク108を更に備える。給水タンク108は、給水タンク108内の水W1を容器110に給水する。容器110及び給水タンク108は、本体ケース102に対して着脱可能に取り付けられる。 The hypochlorous acid generating device 100 further includes, for example, a rectangular box-shaped main body case 102. Main body case 102 includes four side walls, a top wall, and a bottom wall. In the main body case 102, one of the two pairs of side walls facing each other among the four side walls has an air inlet 103, and the upper wall has an outlet 104 for blowing out air containing hypochlorous acid. ing. In FIG. 7, a flow path 105 for air that is sucked in from the suction port 103 and blown out from the blow-off port 104 is schematically shown with a border arrow. The container 110 is disposed within the main case 102 at the lower part of the main case 102. The container 110 is a tray (a container without a lid). The hypochlorous acid generating device 100 further includes a water tank 108 disposed within the main body case 102. The water supply tank 108 supplies water W1 in the water supply tank 108 to the container 110. The container 110 and the water tank 108 are detachably attached to the main case 102.
 また、次亜塩素酸発生機器100は、次亜塩素酸発生機器100の運転の開始及び停止を指示するための操作スイッチを更に備える。操作スイッチは、例えば、本体ケース102の上壁に配置されている。 In addition, the hypochlorous acid generating device 100 further includes an operation switch for instructing the start and stop of operation of the hypochlorous acid generating device 100. The operation switch is arranged, for example, on the upper wall of the main body case 102.
 次亜塩素酸発生機器100は、吸込口103から吹出口104に向けて空気を流す送風機106と、フィルタ107と、を更に備える。フィルタ107は回転可能な筒形状(円筒状)のフィルタであり、次亜塩素酸を含む電解水を浸み込ませて、フィルタ107を通過する空気に電解水を接触させることができる。 The hypochlorous acid generating device 100 further includes a blower 106 that blows air from an inlet 103 toward an outlet 104, and a filter 107. The filter 107 is a rotatable tubular (cylindrical) filter, and can be impregnated with electrolyzed water containing hypochlorous acid so that the air passing through the filter 107 comes into contact with the electrolyzed water.
 送風機106は、本体ケース102の上部において本体ケース102内に配置されている。送風機106は、例えば、シロッコファンを含む。 The blower 106 is arranged inside the main case 102 at the upper part of the main case 102. The blower 106 includes, for example, a sirocco fan.
 給水タンク108は、容器110に装着される。給水タンク108は、給水用の開口と、開口を開閉する開閉弁部と、を備える。次亜塩素酸発生機器100は、給水タンク108が容器110に装着されると、給水タンク108の開閉弁部が開口を開くので、給水タンク108内の水W1が容器110へ給水される。次亜塩素酸発生機器100では、給水タンク108の開口が容器110内の水に埋没すると、給水タンク108内へ空気が入らなくなり、給水タンク108内の水W1の重力によって開閉弁部が閉じて給水タンク108内の水W1が容器110へ給水されなくなる。 The water tank 108 is attached to the container 110. The water supply tank 108 includes an opening for water supply and an on-off valve that opens and closes the opening. In the hypochlorous acid generating device 100, when the water supply tank 108 is attached to the container 110, the opening/closing valve section of the water supply tank 108 opens the opening, so that water W1 in the water supply tank 108 is supplied to the container 110. In the hypochlorous acid generating device 100, when the opening of the water tank 108 is submerged in the water in the container 110, air cannot enter into the water tank 108, and the on-off valve closes due to the gravity of the water W1 in the water tank 108. The water W1 in the water supply tank 108 is no longer supplied to the container 110.
 次亜塩素酸発生機器100は、容器110内の水に電解補助剤(例えば、タブレット状の塩化ナトリウム)が投入されることによって、電解補助剤が溶解し、容器110内で塩水(塩化ナトリウム水溶液)が生成される。 In the hypochlorous acid generating device 100, an electrolytic auxiliary agent (for example, tablet-shaped sodium chloride) is added to the water in the container 110, so that the electrolytic auxiliary agent is dissolved, and the electrolytic auxiliary agent is dissolved in salt water (sodium chloride aqueous solution) in the container 110. ) is generated.
 フィルタ107は、本体ケース102の下部において一部が容器110内の液体に浸漬されるように配置される。フィルタ107は、円筒状であり、容器110内の液体に浸漬される部分が変わるように、円筒状のフィルタ107の中心軸を回転中心として回転される。フィルタ107は、モータによって回転される。フィルタ107は、容器110内の塩水112から生成された電解水を保水可能であり、かつ、空気を通過可能なフィルタである。 The filter 107 is arranged at the lower part of the main case 102 so that a part thereof is immersed in the liquid in the container 110. The filter 107 has a cylindrical shape, and is rotated about the central axis of the cylindrical filter 107 so that the portion immersed in the liquid in the container 110 changes. Filter 107 is rotated by a motor. The filter 107 is a filter capable of retaining electrolyzed water generated from the salt water 112 in the container 110 and allowing air to pass therethrough.
 また、次亜塩素酸発生機器100は、容器110内に配置され容器110内の水又は塩水の水位、渇水を検知する水位センサ109を更に備える。 In addition, the hypochlorous acid generating device 100 further includes a water level sensor 109 that is disposed inside the container 110 and detects the water level of water or salt water in the container 110 and a drought.
 また、次亜塩素酸発生機器100は、次亜塩素酸発生機器100の動作を制御する制御装置114と、湿度センサ113と、を更に備える。制御装置114には、操作スイッチ、水位センサ109及び湿度センサ113が接続されている。また、制御装置114には、フィルタ107を回転させるモータ、送風機106、第1電極101A及び第2電極101Bが接続されている。制御装置114は、操作スイッチ、水位センサ109及び湿度センサ113等からの信号に基づいて、フィルタ107、送風機106、第1電極101A及び第2電極101Bを制御する。制御装置114は、第1電極101Aと第2電極101Bとの間に印加する電圧を制御する。これにより、次亜塩素酸発生機器100では、塩水112を電気分解させることにより、次亜塩素酸を含む電解水を生成することができる。次亜塩素酸発生機器100では、フィルタ107に電解水を浸み込ませ、その後、送風機106により送風することで、フィルタ107を介して電解水に接触した空気を吹出口104から吹き出すことができる。制御装置114は、例えば、コンピュータシステムを含んでいる。コンピュータシステムは、ハードウェアとしてのプロセッサ及びメモリを主構成とする。コンピュータシステムのメモリに記録されたプログラムをプロセッサが実行することによって、制御装置114としての機能が実現される。プログラムは、コンピュータシステムのメモリに予め記録されてもよく、電気通信回線を通じて提供されてもよく、コンピュータシステムで読み取り可能なメモリカード、光学ディスク、ハードディスクドライブ等の非一時的記録媒体に記録されて提供されてもよい。コンピュータシステムのプロセッサは、半導体集積回路(IC)又は大規模集積回路(LSI)を含む1ないし複数の電子回路で構成される。ここでいうIC又はLSI等の集積回路は、集積の度合いによって呼び方が異なっており、システムLSI、VLSI(Very Large Scale Integration)、又はULSI(Ultra Large Scale Integration)と呼ばれる集積回路を含む。さらに、LSIの製造後にプログラムされる、FPGA(Field-Programmable Gate Array)、又はLSI内部の接合関係の再構成若しくはLSI内部の回路区画の再構成が可能な論理デバイスについても、プロセッサとして採用することができる。複数の電子回路は、1つのチップに集約されていてもよいし、複数のチップに分散して設けられていてもよい。複数のチップは、1つの装置に集約されていてもよいし、複数の装置に分散して設けられていてもよい。ここでいうコンピュータシステムは、1以上のプロセッサ及び1以上のメモリを有するマイクロコントローラを含む。したがって、マイクロコントローラについても、半導体集積回路又は大規模集積回路を含む1ないし複数の電子回路で構成される。 In addition, the hypochlorous acid generating device 100 further includes a control device 114 that controls the operation of the hypochlorous acid generating device 100, and a humidity sensor 113. An operation switch, a water level sensor 109, and a humidity sensor 113 are connected to the control device 114. Further, the control device 114 is connected to a motor that rotates the filter 107, a blower 106, a first electrode 101A, and a second electrode 101B. The control device 114 controls the filter 107, the blower 106, the first electrode 101A, and the second electrode 101B based on signals from the operation switch, the water level sensor 109, the humidity sensor 113, and the like. The control device 114 controls the voltage applied between the first electrode 101A and the second electrode 101B. Thereby, the hypochlorous acid generating device 100 can generate electrolyzed water containing hypochlorous acid by electrolyzing the salt water 112. In the hypochlorous acid generating device 100, by impregnating the filter 107 with electrolyzed water and then blowing air with the blower 106, the air that has come into contact with the electrolyzed water through the filter 107 can be blown out from the outlet 104. . Control device 114 includes, for example, a computer system. A computer system mainly consists of a processor and a memory as hardware. The function of the control device 114 is realized by the processor executing a program recorded in the memory of the computer system. The program may be pre-recorded in the memory of the computer system, may be provided through a telecommunications line, or may be recorded on a non-transitory storage medium readable by the computer system, such as a memory card, optical disc, hard disk drive, etc. may be provided. A processor in a computer system is comprised of one or more electronic circuits including semiconductor integrated circuits (ICs) or large scale integrated circuits (LSIs). The integrated circuits such as IC or LSI referred to herein have different names depending on the degree of integration, and include integrated circuits called system LSI, VLSI (Very Large Scale Integration), or ULSI (Ultra Large Scale Integration). Furthermore, FPGAs (Field-Programmable Gate Arrays), which are programmed after the LSI is manufactured, or logic devices that can reconfigure the connections inside the LSI or reconfigure the circuit sections inside the LSI, may also be used as processors. I can do it. The plurality of electronic circuits may be integrated into one chip, or may be provided in a distributed manner over a plurality of chips. A plurality of chips may be integrated into one device, or may be distributed and provided in a plurality of devices. The computer system herein includes a microcontroller having one or more processors and one or more memories. Therefore, the microcontroller is also composed of one or more electronic circuits including semiconductor integrated circuits or large-scale integrated circuits.
 (変形例)
 実施形態は、本開示の様々な実施形態の一つに過ぎない。実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。
(Modified example)
The embodiment is only one of various embodiments of the present disclosure. The embodiments can be modified in various ways depending on the design, etc., as long as the objective of the present disclosure can be achieved.
 例えば、導電性基板2の平面視形状は、長方形状に限らず、任意の形状であってもよく、例えば、正方形状又は円形状であってもよい。 For example, the shape of the conductive substrate 2 in plan view is not limited to a rectangular shape, but may be any shape, for example, a square shape or a circular shape.
 また、複数の凹部45の形状は、互いに同じでもよい。この場合、例えば、電解用電極1の製造方法では、複数の凹部45を、エッチング技術、レーザ加工技術等を利用して形成してもよい。これらの技術を利用すれば、複数の凹部45のレイアウト、大きさの設計の自由度が高くなるとともに、複数の凹部45の形成位置の再現性が高くなるという利点がある。 Furthermore, the shapes of the plurality of recesses 45 may be the same. In this case, for example, in the method for manufacturing the electrolysis electrode 1, the plurality of recesses 45 may be formed using etching technology, laser processing technology, or the like. Utilizing these techniques has the advantage of increasing the degree of freedom in designing the layout and size of the plurality of recesses 45, and increasing the reproducibility of the formation positions of the plurality of recesses 45.
 また、電解用電極1は、触媒層4に複数の凹部45が設けられていなくてもよく、この場合、例えば、酸化タンタル層5が触媒層4の主面40の一部を露出させる複数の穴(例えば、ピンホール又はクラック)を有していればよい。 Further, in the electrolysis electrode 1, the catalyst layer 4 does not need to be provided with a plurality of recesses 45. In this case, for example, the tantalum oxide layer 5 has a plurality of recesses 45 that expose a part of the main surface 40 of the catalyst layer It is sufficient if it has a hole (for example, a pinhole or a crack).
 また、電解用電極1では、触媒層4に複数の凹部45が設けられている場合であっても、酸化タンタル層5に触媒層4の一部を露出させる複数のクラックが形成されていてもよい。上述の電解用電極1の製造方法では、酸化タンタル層5の厚さが50nm以上の場合、酸化タンタル層形成工程の第2ステップにおいて酸化タンタル層5に触媒層4の一部を露出させるクラックが形成されることがある。また、上述の電解用電極1の製造方法では、酸化タンタル層形成工程の第2ステップにおいて酸化タンタル層にクラックが形成されるとともに、酸化タンタル層のクラックとつながるクラックが触媒層4に形成されることもある。酸化タンタル層5の複数の穴は、エッチング技術、レーザ加工技術等を利用して形成してもよい。 Further, in the electrolytic electrode 1, even if the catalyst layer 4 is provided with a plurality of recesses 45, or a plurality of cracks are formed in the tantalum oxide layer 5 that expose a part of the catalyst layer 4, good. In the method for manufacturing the electrolytic electrode 1 described above, when the thickness of the tantalum oxide layer 5 is 50 nm or more, cracks that expose a part of the catalyst layer 4 in the tantalum oxide layer 5 occur in the second step of the tantalum oxide layer forming process. may be formed. In addition, in the method for manufacturing the electrolytic electrode 1 described above, cracks are formed in the tantalum oxide layer in the second step of the tantalum oxide layer forming process, and cracks connected to the cracks in the tantalum oxide layer are formed in the catalyst layer 4. Sometimes. The plurality of holes in the tantalum oxide layer 5 may be formed using etching technology, laser processing technology, or the like.
 酸化タンタル層5は、酸化タンタル以外にタンタルを含んでいてもよい。言い換えれば、酸化タンタル層5は、酸化タンタルとタンタルとが混在する層であってもよい。 The tantalum oxide layer 5 may contain tantalum in addition to tantalum oxide. In other words, the tantalum oxide layer 5 may be a layer in which tantalum oxide and tantalum are mixed.
 また、電解用電極1は、導電性基板2の第2主面22上に、第1主面21側の中間層3、触媒層4及び酸化タンタル層5を含む構造体と同様の構造体を更に備えていてもよい。 Further, the electrolytic electrode 1 has a structure similar to the structure on the second main surface 22 of the conductive substrate 2, which includes the intermediate layer 3, the catalyst layer 4, and the tantalum oxide layer 5 on the first main surface 21 side. Further, it may be provided.
 (まとめ)
 以上説明した実施形態等から、本明細書には以下の態様が開示されている。
(summary)
Based on the embodiments described above, the following aspects are disclosed in this specification.
 第1の態様に係る電解用電極(1)は、導電性基板(2)と、中間層(3)と、触媒層(4)と、酸化タンタル層(5)と、を備える。導電性基板(2)は、第1主面(21)及び第1主面(21)とは反対側の第2主面(22)を有する。導電性基板(2)は、少なくともチタンを含む。中間層(3)は、導電性基板(2)の第1主面(21)上に設けられている。中間層(3)は、白金を含む。触媒層(4)は、中間層(3)上に設けられている。触媒層(4)は、白金と酸化イリジウムとを含む。酸化タンタル層(5)は、触媒層(4)上に設けられている。電解用電極(1)では、触媒層(4)の一部が露出している。触媒層(4)は、複数の複合粒子(41)と、複数の気孔(42)と、を含む多孔質層である。複数の複合粒子(41)の各々は、白金(白金粒子411)と酸化イリジウム(酸化イリジウム粒子412)とを含む。電解用電極(1)は、複数の気孔(42)のうち少なくとも1つの気孔(42)内に設けられ触媒層(4)に接している複数の酸化タンタル部(43)を更に含む。電解用電極(1)は、触媒層(4)の厚さ方向において触媒層(4)の主面(40)から導電性基板(2)に近づくにつれて触媒層(4)と複数の酸化タンタル部(43)とを含む複合層における酸化タンタルの濃度が増加する領域を含む。 The electrolysis electrode (1) according to the first aspect includes a conductive substrate (2), an intermediate layer (3), a catalyst layer (4), and a tantalum oxide layer (5). The conductive substrate (2) has a first main surface (21) and a second main surface (22) opposite to the first main surface (21). The conductive substrate (2) contains at least titanium. The intermediate layer (3) is provided on the first main surface (21) of the conductive substrate (2). The intermediate layer (3) contains platinum. The catalyst layer (4) is provided on the intermediate layer (3). The catalyst layer (4) contains platinum and iridium oxide. A tantalum oxide layer (5) is provided on the catalyst layer (4). In the electrolysis electrode (1), a part of the catalyst layer (4) is exposed. The catalyst layer (4) is a porous layer containing a plurality of composite particles (41) and a plurality of pores (42). Each of the plurality of composite particles (41) includes platinum (platinum particles 411) and iridium oxide (iridium oxide particles 412). The electrolysis electrode (1) further includes a plurality of tantalum oxide parts (43) provided in at least one of the plurality of pores (42) and in contact with the catalyst layer (4). The electrolytic electrode (1) has a structure in which the catalyst layer (4) and a plurality of tantalum oxide parts move closer to the conductive substrate (2) from the main surface (40) of the catalyst layer (4) in the thickness direction of the catalyst layer (4). (43) including a region of increasing concentration of tantalum oxide in a composite layer comprising (43) and (43).
 第1の態様に係る電解用電極(1)によれば、特性の経時変化を抑制することが可能となる。 According to the electrolysis electrode (1) according to the first aspect, it is possible to suppress changes in characteristics over time.
 第2の態様に係る電解用電極(1)では、第1の態様において、導電性基板(2)は、チタン基板(20)と、チタン基板(20)上に形成されており、導電性を有する酸化チタン層(24)と、を含む。導電性基板(2)の第1主面(21)は、酸化チタン層(24)におけるチタン基板(20)側とは反対側の表面(241)を含む。複数の酸化タンタル部(43)のうち少なくとも1つの酸化タンタル部(43)は、中間層(3)を貫通して酸化チタン層(24)に接している。 In the electrolytic electrode (1) according to the second aspect, in the first aspect, the conductive substrate (2) is formed on the titanium substrate (20) and the titanium substrate (20), and the conductive substrate (2) is formed on the titanium substrate (20). A titanium oxide layer (24) having a titanium oxide layer (24). The first main surface (21) of the conductive substrate (2) includes a surface (241) of the titanium oxide layer (24) on the opposite side to the titanium substrate (20) side. At least one tantalum oxide part (43) among the plurality of tantalum oxide parts (43) penetrates the intermediate layer (3) and is in contact with the titanium oxide layer (24).
 第2の態様に係る電解用電極(1)によれば、耐久性を向上させることが可能となる。 According to the electrolysis electrode (1) according to the second aspect, it is possible to improve durability.
 第3の態様に係る電解用電極(1)は、第1又は2の態様において、導電性基板(2)の第1主面(21)は、粗面である。 In the electrolysis electrode (1) according to the third aspect, in the first or second aspect, the first main surface (21) of the conductive substrate (2) is a rough surface.
 第3の態様に係る電解用電極(1)では、導電性基板(2)と中間層(3)との密着性を向上させることが可能となる。これにより、第3の態様に係る電解用電極(1)では、触媒層(4)が導電性基板(2)側から剥離するのを抑制することが可能となり、耐久性を向上させることが可能となる。 In the electrolysis electrode (1) according to the third aspect, it is possible to improve the adhesion between the conductive substrate (2) and the intermediate layer (3). As a result, in the electrolysis electrode (1) according to the third aspect, it is possible to suppress the catalyst layer (4) from peeling off from the conductive substrate (2) side, and it is possible to improve the durability. becomes.
 第4の態様に係る次亜塩素酸発生機器(100)は、塩水(112)が入れられる容器(110)と、塩水(112)に接するように容器(110)内に配置される第1電極(101A)及び第2電極(101B)と、を備える。第1電極(101A)及び第2電極(101B)の少なくとも一方は、第1~3の態様のいずれか一つの電解用電極(1)を含む。 A hypochlorous acid generating device (100) according to a fourth aspect includes a container (110) containing salt water (112), and a first electrode arranged in the container (110) so as to be in contact with the salt water (112). (101A) and a second electrode (101B). At least one of the first electrode (101A) and the second electrode (101B) includes the electrolysis electrode (1) according to any one of the first to third embodiments.
 第4の態様に係る次亜塩素酸発生機器(100)によれば、特性の経時変化を抑制することが可能となる。 According to the hypochlorous acid generating device (100) according to the fourth aspect, it is possible to suppress changes in characteristics over time.
 1 電解用電極
 2 導電性基板
 21 第1主面
 22 第2主面
 3 中間層
 30 主面
 4 触媒層
 40 主面
 41 複合粒子
 411 白金粒子
 412 酸化イリジウム粒子
 42 気孔
 43 酸化タンタル部
 45 凹部
 451 内面
 5 酸化タンタル層
 51 第1部分
 52 第2部分
 100 次亜塩素酸発生機器
 101A 第1電極
 101B 第2電極
 110 容器
 112 塩水
 
1 Electrode for electrolysis 2 Conductive substrate 21 First main surface 22 Second main surface 3 Intermediate layer 30 Main surface 4 Catalyst layer 40 Main surface 41 Composite particle 411 Platinum particle 412 Iridium oxide particle 42 Pore 43 Tantalum oxide part 45 Recess 451 Inner surface 5 Tantalum oxide layer 51 First part 52 Second part 100 Hypochlorous acid generator 101A First electrode 101B Second electrode 110 Container 112 Salt water

Claims (4)

  1.  第1主面及び前記第1主面とは反対側の第2主面を有し、少なくともチタンを含む導電性基板と、
     前記導電性基板の前記第1主面上に設けられており、白金を含む中間層と、
     前記中間層上に設けられており、白金と酸化イリジウムとを含む触媒層と、
     前記触媒層上に設けられている酸化タンタル層と、を備える電解用電極であって、
     前記電解用電極では、前記触媒層の一部が露出しており、
     前記触媒層は、各々が白金と酸化イリジウムとを含む複数の複合粒子と、複数の気孔と、を含む多孔質層であり、
     前記電解用電極は、
      前記複数の気孔のうち少なくとも1つの気孔内に設けられ前記触媒層に接している複数の酸化タンタル部を更に含み、
     前記電解用電極は、前記触媒層の厚さ方向において前記触媒層の主面から前記導電性基板に近づくにつれて前記触媒層と前記複数の酸化タンタル部とを含む複合層における酸化タンタルの濃度が増加する領域を含む、
     電解用電極。
    a conductive substrate having a first main surface and a second main surface opposite to the first main surface, and containing at least titanium;
    an intermediate layer provided on the first main surface of the conductive substrate and containing platinum;
    a catalyst layer provided on the intermediate layer and containing platinum and iridium oxide;
    An electrode for electrolysis comprising a tantalum oxide layer provided on the catalyst layer,
    In the electrolysis electrode, a part of the catalyst layer is exposed,
    The catalyst layer is a porous layer including a plurality of composite particles each containing platinum and iridium oxide and a plurality of pores,
    The electrolytic electrode is
    further comprising a plurality of tantalum oxide parts provided in at least one of the plurality of pores and in contact with the catalyst layer,
    In the electrolysis electrode, the concentration of tantalum oxide in the composite layer including the catalyst layer and the plurality of tantalum oxide parts increases as it approaches the conductive substrate from the main surface of the catalyst layer in the thickness direction of the catalyst layer. including the area to
    Electrode for electrolysis.
  2.  前記導電性基板は、
      チタン基板と、
      前記チタン基板上に形成されており、導電性を有する酸化チタン層と、を含み、
     前記導電性基板の前記第1主面は、前記酸化チタン層における前記チタン基板側とは反対側の表面を含み、
     前記複数の酸化タンタル部のうち少なくとも1つの酸化タンタル部は、前記中間層を貫通して前記酸化チタン層に接している、
     請求項1に記載の電解用電極。
    The conductive substrate is
    titanium substrate,
    a titanium oxide layer formed on the titanium substrate and having conductivity;
    The first main surface of the conductive substrate includes a surface of the titanium oxide layer on the opposite side to the titanium substrate side,
    At least one tantalum oxide part of the plurality of tantalum oxide parts penetrates the intermediate layer and is in contact with the titanium oxide layer.
    The electrode for electrolysis according to claim 1.
  3.  前記導電性基板の前記第1主面は、粗面である、
     請求項1又は2に記載の電解用電極。
    the first main surface of the conductive substrate is a rough surface;
    The electrode for electrolysis according to claim 1 or 2.
  4.  塩水が入れられる容器と、
     前記塩水に接するように前記容器内に配置される第1電極及び第2電極と、を備え、
     前記第1電極及び前記第2電極の少なくとも一方は、請求項1~3のいずれか一項に記載の電解用電極を含む、
     次亜塩素酸発生機器。
    A container that can hold salt water,
    comprising a first electrode and a second electrode arranged in the container so as to be in contact with the salt water,
    At least one of the first electrode and the second electrode includes the electrolysis electrode according to any one of claims 1 to 3.
    Hypochlorous acid generating equipment.
PCT/JP2023/005952 2022-03-31 2023-02-20 Electrode for electrolysis and hypochlorous acid generation device WO2023188992A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-061182 2022-03-31
JP2022061182 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023188992A1 true WO2023188992A1 (en) 2023-10-05

Family

ID=88200367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005952 WO2023188992A1 (en) 2022-03-31 2023-02-20 Electrode for electrolysis and hypochlorous acid generation device

Country Status (1)

Country Link
WO (1) WO2023188992A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100085476A (en) * 2009-01-20 2010-07-29 한국기계연구원 Mixed metal oxide electrode for making sterilized water with hypochlorous acid and manufacturing method thereof
US20120085571A1 (en) * 2010-10-08 2012-04-12 Water Star, Inc. Multi-layer mixed metal oxide electrode and method for making same
JP2017128806A (en) * 2016-01-19 2017-07-27 株式会社東芝 Electrode, electrochemical cell, electrochemical device, stack, and manufacturing method of electrode
WO2021117311A1 (en) * 2019-12-13 2021-06-17 パナソニックIpマネジメント株式会社 Electrolysis electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100085476A (en) * 2009-01-20 2010-07-29 한국기계연구원 Mixed metal oxide electrode for making sterilized water with hypochlorous acid and manufacturing method thereof
US20120085571A1 (en) * 2010-10-08 2012-04-12 Water Star, Inc. Multi-layer mixed metal oxide electrode and method for making same
JP2017128806A (en) * 2016-01-19 2017-07-27 株式会社東芝 Electrode, electrochemical cell, electrochemical device, stack, and manufacturing method of electrode
WO2021117311A1 (en) * 2019-12-13 2021-06-17 パナソニックIpマネジメント株式会社 Electrolysis electrode

Similar Documents

Publication Publication Date Title
JP7153887B2 (en) electrode for electrolysis
KR20020005480A (en) Coated anode apparatus and associated method
JP2009195884A (en) Apparatus for generating electrolytic water
US9752249B2 (en) Film forming apparatus and film forming method
WO2023188992A1 (en) Electrode for electrolysis and hypochlorous acid generation device
JP2012122097A (en) Electroplating method
WO2023188991A1 (en) Electrode for electrolysis and hypochlorous acid generation device
JP6639638B2 (en) Electrolysis electrode, electrode unit, and electrolyzed water generator
WO2024024625A1 (en) Electrode for electrolysis and hypochlorous acid generation device
TWI257961B (en) Device and method for monitoring an electrolytic process
JP6585176B2 (en) Electrode, electrode unit, and electrolysis device
JP7194911B2 (en) Electrode for electrolysis and method for producing electrode for electrolysis
KR102523503B1 (en) Systems and methods for removing contamination from electroplating systems
TW201947064A (en) Electrode for electrolysis use, and electric device and ozone generating device each provided with same
WO2023188704A1 (en) Electrolysis electrode
JPH0273689A (en) Copper plating method for printed board
JP2007217780A (en) Method for producing electrolytic metal powder
JP7391661B2 (en) AC etching method
KR101709602B1 (en) Method of Aluminium Coating Layer with Anti-oxidation Using Micro arc Electrolytic Oxidation
US20230257893A1 (en) Current Reversal Tolerant Multilayer Material, Method of Making the Same, Use as an Electrode, and Use in Electrochemical Processes
JP2007287362A (en) Fuel cell component and its manufacturing method
JP2005264339A (en) Electrolytic treatment method and apparatus therefor
JP2009204179A (en) Electric water heater
JP2007262456A (en) Copper ball for anode for copper plating, plating apparatus, copper plating method and method of manufacturing printed board
JP6208380B2 (en) Electrode for electrolysis, electrode unit, and electrolysis apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779022

Country of ref document: EP

Kind code of ref document: A1