WO2023188704A1 - Electrolysis electrode - Google Patents

Electrolysis electrode Download PDF

Info

Publication number
WO2023188704A1
WO2023188704A1 PCT/JP2023/001109 JP2023001109W WO2023188704A1 WO 2023188704 A1 WO2023188704 A1 WO 2023188704A1 JP 2023001109 W JP2023001109 W JP 2023001109W WO 2023188704 A1 WO2023188704 A1 WO 2023188704A1
Authority
WO
WIPO (PCT)
Prior art keywords
intermediate layer
layer
conductive substrate
electrode
main surface
Prior art date
Application number
PCT/JP2023/001109
Other languages
French (fr)
Japanese (ja)
Inventor
健太 細井
宜弘 伊藤
直樹 知念
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023188704A1 publication Critical patent/WO2023188704A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/061Metal or alloy
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/061Metal or alloy
    • C25B11/063Valve metal, e.g. titanium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds

Definitions

  • the present disclosure relates to an electrode for electrolysis, and more particularly, to an electrode for electrolysis containing iridium oxide and platinum.
  • Patent Document 1 an electrolytic electrode used to generate chlorine by electrolyzing salt water is known.
  • Patent Document 1 discloses a conductive substrate containing at least titanium, an intermediate layer provided on the conductive substrate and containing platinum, and a catalyst layer provided on the intermediate layer and containing platinum and iridium oxide.
  • An electrode for electrolysis comprising the following is disclosed.
  • An object of the present disclosure is to provide an electrode for electrolysis that can increase the amount of chlorine generated and improve the durability.
  • An electrode for electrolysis includes a conductive substrate, an intermediate layer, and a catalyst layer.
  • the conductive substrate has a first main surface and a second main surface opposite to the first main surface.
  • the conductive substrate includes at least titanium.
  • the intermediate layer is provided on the first main surface of the conductive substrate.
  • the intermediate layer includes platinum.
  • the catalyst layer is provided on the intermediate layer.
  • the catalyst layer contains platinum and iridium oxide.
  • the intermediate layer includes a first intermediate layer provided on the first main surface of the conductive substrate, and a second intermediate layer provided on the first intermediate layer.
  • the first intermediate layer includes platinum.
  • the second intermediate layer contains platinum.
  • the second intermediate layer is a porous layer.
  • the first intermediate layer is denser than the second intermediate layer.
  • FIG. 1 is a cross-sectional view of an electrode for electrolysis according to Embodiment 1.
  • FIG. 2A is an explanatory diagram of main parts of the electrolytic electrode same as above.
  • FIG. 2B is an explanatory diagram of particles contained in the catalyst layer of the electrolytic electrode same as above.
  • FIG. 3 is a cross-sectional SEM image of a sample including a conductive substrate, a first intermediate layer, and a second intermediate layer.
  • FIG. 4 is a cross-sectional view of the electrolysis electrode according to the second embodiment.
  • FIG. 5 is a cross-sectional view of an electrode for electrolysis according to Embodiment 3.
  • FIG. 6 is a plan view showing a first example of the pattern shape of the second intermediate layer in the electrode for electrolysis described above.
  • FIG. 6 is a plan view showing a first example of the pattern shape of the second intermediate layer in the electrode for electrolysis described above.
  • FIG. 7 is a plan view showing a second example of the pattern shape of the second intermediate layer in the electrode for electrolysis described above.
  • FIG. 8 is a plan view showing a third example of the pattern shape of the second intermediate layer in the electrode for electrolysis described above.
  • FIG. 9 is a plan view showing a fourth example of the pattern shape of the second intermediate layer in the electrode for electrolysis described above.
  • FIG. 10 is a cross-sectional view of an electrode for electrolysis according to Embodiment 4.
  • Embodiments 1 to 4 below are schematic diagrams, and the size and thickness ratios of each component in the diagrams do not necessarily reflect the actual dimensional ratios. Not necessarily.
  • Embodiment 1 the electrolysis electrode 1 according to Embodiment 1 will be described based on FIGS. 1, 2A, 2B, and 3.
  • the electrolysis electrode 1 is an electrode used to generate chlorine by electrolyzing salt water.
  • the salt water is, for example, salt water.
  • the electrolytic electrode 1 is used for electrolyzing salt water, for example, by using the electrolytic electrode 1 as the anode of the anode and cathode to which a DC voltage is applied from the power supply, the salt water is electrolyzed to produce chlorine. can be generated, and hypochlorous acid water can be generated by the reaction between this chlorine and water.
  • the electrode for electrolysis 1 includes a conductive substrate 2, an intermediate layer 3, and a catalyst layer 4. Intermediate layer 3 is provided on conductive substrate 2 .
  • the catalyst layer 4 is provided on the intermediate layer 3. That is, the intermediate layer 3 is a layer interposed between the conductive substrate 2 and the catalyst layer 4. Further, the electrolysis electrode 1 further includes a tantalum oxide layer 5 provided on the catalyst layer 4.
  • the plan view shape of the conductive substrate 2 (the outer peripheral shape when the conductive substrate 2 is viewed from the thickness direction of the conductive substrate 2) is rectangular.
  • the thickness of the conductive substrate 2 is, for example, 100 ⁇ m or more and 2 mm or less, and is, for example, 500 ⁇ m.
  • the size of the conductive substrate 2 in plan view is, for example, 25 mm x 60 mm.
  • the conductive substrate 2 has a first main surface 21 and a second main surface 22 opposite to the first main surface 21 . Further, the conductive substrate 2 has an outer circumferential surface 23 .
  • the outer peripheral surface 23 of the conductive substrate 2 includes, for example, four side surfaces connecting the outer edge 210 of the first main surface 21 and the outer edge 220 of the second main surface 22 of the conductive substrate 2, and and does not include the second main surface 22.
  • the conductive substrate 2 contains at least titanium.
  • the conductive substrate 2 is, for example, a titanium substrate.
  • the material of the conductive substrate 2 is titanium or an alloy containing titanium as a main component (hereinafter referred to as titanium alloy).
  • examples of the titanium alloy include titanium-palladium alloy, titanium-nickel-ruthenium alloy, titanium-tantalum alloy, titanium-aluminum alloy, titanium-aluminum-vanadium alloy, and the like.
  • the first main surface 21 of the conductive substrate 2 is preferably a rough surface from the viewpoint of improving the adhesion of the intermediate layer 3.
  • the first main surface 21 of the conductive substrate 2 is roughened before the intermediate layer 3 is provided.
  • the arithmetic mean roughness Ra is, for example, 0.7 ⁇ m
  • the maximum height Rz is 7 ⁇ m.
  • the arithmetic mean roughness Ra and the maximum height Rz are defined in, for example, JIS B 0601-2001 (ISO 4287-1997).
  • the arithmetic mean roughness Ra and the maximum height Rz are, for example, values measured from a cross-sectional SEM image (Cross-sectional Scanning Electron Microscope Image).
  • the intermediate layer 3 is provided on the first main surface 21 of the conductive substrate 2. Therefore, the electrolysis electrode 1 has an interface between the conductive substrate 2 and the intermediate layer 3.
  • the intermediate layer 3 is preferably formed of a material that has higher corrosion resistance to salt water and chlorine than the conductive substrate 2. Moreover, from the viewpoint of increasing the electrical conductivity of the entire electrolytic electrode 1, the material of the intermediate layer 3 is preferably a material having electrical conductivity and high electrical conductivity.
  • the material of the intermediate layer 3 is, for example, a transition metal or a mixture containing a transition metal, such as platinum, a mixture of tantalum, platinum, and iridium.
  • the material of the intermediate layer 3 is platinum, for example.
  • the intermediate layer 3 includes a first intermediate layer 31 provided on the first main surface 21 of the conductive substrate 2 and a second intermediate layer 32 provided on the first intermediate layer 31.
  • the material of the first intermediate layer 31 includes platinum.
  • the material of the second intermediate layer 32 includes platinum.
  • the material of the first intermediate layer 31 and the material of the second intermediate layer are the same, at least one of the first intermediate layer 31 and the second intermediate layer 32 may further contain a material other than platinum.
  • the second intermediate layer 32 is a porous layer.
  • the first intermediate layer 31 is a denser layer than the second intermediate layer 32.
  • the bulk density of the first intermediate layer 31 is greater than the bulk density of the second intermediate layer 32.
  • FIG. 3 is a cross-sectional SEM image of a sample in which a first intermediate layer 31 is formed on the first main surface 21 of the conductive substrate 2, and a second intermediate layer 32 is formed on the first intermediate layer 31.
  • the second intermediate layer 32 is a porous layer
  • the first intermediate layer 31 is a denser layer than the second intermediate layer 32.
  • the second intermediate layer 32 has a plurality of pores 325 each having a size of 0.5 ⁇ m or more.
  • the second intermediate layer 32 is a porous layer having continuous pores in which two or more of the plurality of pores 325 are connected.
  • the first intermediate layer 31 is a non-porous layer, but may contain pores with a size of less than 0.5 ⁇ m.
  • the outer edge 320 of the second intermediate layer 32 is located inside the outer edge 310 of the first intermediate layer 31 and the outer edge 20 of the conductive substrate 2.
  • the thickness of the second intermediate layer 32 is greater than the thickness of the first intermediate layer 31.
  • the thickness of the first intermediate layer 31 is, for example, 0.01 ⁇ m or more and 10 ⁇ m or less.
  • the thickness of the second intermediate layer 32 is, for example, 0.1 ⁇ m or more and 20 ⁇ m or less, preferably 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the catalyst layer 4 is provided on the intermediate layer 3.
  • the electrolytic electrode 1 has an interface between a catalyst layer 4 and an intermediate layer 3. That is, the catalyst layer 4 is provided on the conductive substrate 2 with the intermediate layer 3 interposed therebetween.
  • the catalyst layer 4 contains platinum and iridium oxide.
  • the catalyst layer 4 is a porous layer including a plurality of composite particles 41 and a plurality of pores 42, as shown in FIG. 2A.
  • Each of the plurality of composite particles 41 includes platinum particles 411 and iridium oxide particles 412, as shown in FIG. 2B.
  • a plurality of iridium oxide particles 412 are bonded to one platinum particle 411.
  • iridium oxide is dispersed by platinum. Iridium oxide functions as a catalyst to generate chlorine.
  • the molar ratio of platinum to iridium oxide is, for example, 8:5, but is not limited thereto.
  • the molar amount of iridium oxide is preferably equal to or less than the molar amount of platinum.
  • the catalyst layer 4 may contain iridium in addition to platinum and iridium oxide.
  • iridium particles in addition to the iridium oxide particles 412 may be bonded to the platinum particles 411.
  • the platinum particles 411 may be bonded to each other.
  • the bonding state in the catalyst layer 4 is not particularly limited.
  • the catalyst layer 4 has a plurality of recesses 45 recessed from the main surface 40 on the opposite side to the conductive substrate 2 side.
  • a portion of the catalyst layer 4 is exposed by the plurality of recesses 45.
  • Each of the plurality of recesses 45 is, for example, a crack formed in the catalyst layer 4. More specifically, each of the plurality of recesses 45 is a linear crack when viewed from above in the thickness direction of the catalyst layer 4 .
  • the shapes of the plurality of cracks (recesses 45) are different from each other.
  • Each of the plurality of recesses 45 may be connected to at least one of the plurality of pores 42.
  • each of the plurality of recesses 45 is, for example, 0.1 ⁇ m or more.
  • the depth of each of the plurality of recesses 45 may be a depth that reaches the intermediate layer 3 or may be a depth that does not reach the intermediate layer 3.
  • the plurality of recesses 45 are not formed to penetrate the intermediate layer 3, and the entire first main surface 21 of the conductive substrate 2 is covered with the intermediate layer 3. ing.
  • the width of each of the plurality of recesses 45 is 0.1 ⁇ m or more and 10 ⁇ m or less, and more preferably 0.3 ⁇ m or more and 3 ⁇ m or less.
  • the width of the recess 45 in a plan view from the thickness direction of the conductive substrate 2 is the opening width in the lateral direction (direction perpendicular to the longitudinal direction) on the main surface 40 of the catalyst layer 4.
  • the length of each of the plurality of recesses 45 is shorter than the length of each side of the conductive substrate 2.
  • the thickness of the catalyst layer 4 is, for example, 0.1 ⁇ m to 10 ⁇ m.
  • the area of the main surface 40 of the catalyst layer 4 is set as S1, and the total area of the opening areas of each of the plurality of recesses 45 on the main surface 40 of the catalyst layer 4 is
  • the ratio of S2 to S1+S2 is, for example, 5% to 50%.
  • the ratio of S2 to S1+S2 is preferably 5% or more from the viewpoint of improving chlorine generation efficiency.
  • the ratio of S2 to S1+S2 is preferably 50% or less, more preferably 20% or less, from the viewpoint of suppressing peeling of the catalyst layer 4. That is, it is more preferable that the ratio of S2 to S1+S2 is 5% or more and 20% or less.
  • the tantalum oxide layer 5 has a function of suppressing elution of iridium oxide from the catalyst layer 4.
  • the tantalum oxide layer 5 includes a first portion 51 provided on the main surface 40 of the catalyst layer 4 and an inner surface 451 of at least one recess 45 among the plurality of recesses 45 in the catalyst layer 4. a second portion 52 provided thereon.
  • the tantalum oxide layer 5 has a second portion 52 on the inner surface 451 of each of the plurality of recesses 45 in the catalyst layer 4 .
  • the electrolytic electrode 1 further includes a tantalum oxide portion 43 provided in at least one pore 42 among the plurality of pores 42 of the catalyst layer 4 and in contact with the catalyst layer 4 .
  • the tantalum oxide portion 43 is formed, for example, when the tantalum oxide layer 5 is formed.
  • the tantalum oxide portion 43 is in contact with the composite particles 41 of the catalyst layer 4.
  • a conductive substrate 2 is prepared, and then a surface roughening step, a first intermediate layer forming step, a second intermediate layer forming step, a catalyst layer forming step, and a tantalum oxide layer forming step are performed. Perform the steps sequentially.
  • the first main surface 21 of the conductive substrate 2 is roughened, for example, by immersing the conductive substrate 2 in an oxalic acid aqueous solution.
  • the surface roughening step is not an essential step.
  • the first intermediate layer 31 is formed on the first main surface 21 of the conductive substrate 2.
  • the first intermediate layer 31 is formed by applying a solution that is the source of the first intermediate layer 31, performing heat treatment, and then performing baking.
  • the solution is a solution in which a platinum compound is dissolved in a solvent.
  • the solvent is, for example, a liquid mixture of ethylene glycol monoethyl ether, hydrochloric acid, and ethanol.
  • the platinum compound is, for example, chloroplatinic acid, but is not limited thereto, and may be, for example, platinum chloride.
  • the method for forming the first intermediate layer 31 is not limited to the above-mentioned example, and may be, for example, a vapor deposition method, a sputtering method, a CVD method, a plating method, or the like.
  • the second intermediate layer 32 is formed on the first intermediate layer 31.
  • the second intermediate layer 32 is formed by screen printing.
  • the second intermediate layer 32 made of a porous layer is formed by detaching the binder component that adjusts the viscosity of the material paste used in screen printing.
  • the catalyst layer 4 is formed on the intermediate layer 3 including the first intermediate layer 31 and the second intermediate layer 32.
  • the catalyst layer forming process includes a first step and a second step.
  • the first step of the catalyst layer forming process at least one coating process and at least one drying process are performed to form a catalyst material layer on the intermediate layer 3 on the conductive substrate 2, which will become the source of the catalyst layer 4. form.
  • the number of times of the coating process and the drying process is determined depending on the predetermined thickness of the catalyst layer 4, for example. Regarding the number of times of the coating process and drying process, the thicker the predetermined thickness of the catalyst layer 4, the more the number of times of the coating process and drying process may be increased.
  • the intermediate layer on the conductive substrate 2 is A catalyst material layer that will become the basis of the catalyst layer 4 is formed thereon.
  • a solution (hereinafter referred to as the first solution) containing a platinum compound and an iridium compound that will become the source of the catalyst layer 4 is directly or indirectly deposited on the intermediate layer 3 on the conductive substrate 2. ) is coated (after the coating process is performed), and then a heat treatment (drying process) of heating and drying under the first condition is performed at least once (e.g., 8 times), thereby removing the original structure of the catalyst layer 4. A layer of catalyst material is formed.
  • the first solution is a solution in which a platinum compound and an iridium compound are dissolved in a solvent (hereinafter referred to as a first solvent).
  • the first solvent is, for example, a liquid mixture of ethylene glycol monoethyl ether, hydrochloric acid, and ethanol.
  • the platinum compound is, for example, chloroplatinic acid, but is not limited thereto, and may be, for example, platinum chloride.
  • Chloroplatinic acid is, for example, hexachloroplatinic (IV) acid n-hydrate.
  • the iridium compound is, for example, chloroiridic acid, but is not limited thereto, and may be, for example, iridium chloride or iridium nitrate.
  • Chloroiridic acid is, for example, hexachloroiridic (IV) acid n-hydrate.
  • the metal concentration (total concentration of platinum and iridium) of the first solution is, for example, 50 mg/mL. Further, the amount of the first solution applied is, for example, 2 ⁇ L/cm 2 .
  • the first condition includes a heat treatment temperature and a heat treatment time.
  • the heat treatment temperature under the first condition is, for example, 100°C to 400°C, and is, for example, 220°C. Further, the heat treatment time under the first condition is, for example, 5 minutes to 15 minutes, and is 10 minutes as an example.
  • the catalyst layer 4 and a plurality of cracks (recesses 45) are formed by performing heat treatment to fire the catalyst material layer under predetermined firing conditions.
  • the firing conditions include firing temperature and firing time.
  • the firing temperature is, for example, 500°C to 700°C, and one example is 560°C.
  • the firing time is, for example, 5 minutes to 20 minutes, and is 10 minutes as an example.
  • a tantalum oxide layer 5 is formed on the catalyst layer 4.
  • the tantalum oxide layer forming step includes a first step and a second step.
  • a layer of material that will become the source of the tantalum oxide layer 5 is formed on the catalyst layer 4 by performing at least one coating process and at least one drying process.
  • the number of times of the coating process and the drying process is determined depending on the predetermined thickness of the tantalum oxide layer 5, for example. Regarding the number of times of the coating process and drying process, the thicker the predetermined thickness of the tantalum oxide layer 5, the more the number of times of the coating process and drying process may be increased.
  • the tantalum oxide layer forming step the tantalum oxide layer 5 is formed on the catalyst layer 4 by performing the coating step a second prescribed number of times (for example, once) and the drying step the second prescribed number of times. Form a material layer.
  • a solution containing a tantalum compound (hereinafter referred to as the second solution) that is the source of the tantalum oxide layer 5 is applied onto the catalyst layer 4 (after the application process is performed).
  • the second solution is a solution in which a tantalum compound is dissolved in a solvent (hereinafter referred to as a second solvent).
  • the second solvent is, for example, a liquid mixture of ethylene glycol monoethyl ether, hydrochloric acid, and ethanol.
  • the tantalum compound is, for example, tantalum chloride, but is not limited thereto, and may be, for example, tantalum ethoxide.
  • the metal concentration (tantalum concentration) of the second solution is, for example, 50 mg/L. Further, the amount of the second solution applied is, for example, 1 ⁇ L/cm 2 .
  • the second conditions include heat treatment temperature and heat treatment time.
  • the heat treatment temperature under the second condition is, for example, 100°C to 400°C, and is, for example, 220°C.
  • the heat treatment time under the second condition is, for example, 5 minutes to 15 minutes, and is, for example, 10 minutes.
  • the tantalum oxide layer 5 is formed by performing heat treatment to fire the material layer under predetermined firing conditions.
  • the firing conditions include firing temperature and firing time.
  • the firing temperature is, for example, 500°C to 700°C, and one example is 560°C.
  • the firing time is, for example, 5 minutes to 20 minutes, and is 10 minutes as an example.
  • the tantalum oxide portions 43 within the pores 42 in the catalyst layer 4 are formed in the tantalum oxide layer forming step.
  • the surface roughening step, the first intermediate layer forming step, the second intermediate layer forming step, the catalyst layer forming step, and the tantalum oxide layer forming step are performed by providing a plurality of conductive substrates 2 and forming a plurality of conductive substrates 2.
  • the process may be performed on a multi-chip board that can be removed.
  • a plurality of electrolytic electrodes 1 may be obtained by separating the multi-chip substrate into individual conductive substrates 2 after the tantalum oxide layer forming step.
  • the electrolysis electrode 1 includes a conductive substrate 2, an intermediate layer 3, and a catalyst layer 4.
  • the conductive substrate 2 has a first main surface 21 and a second main surface 22 opposite to the first main surface 21 .
  • Conductive substrate 2 contains at least titanium.
  • Intermediate layer 3 is provided on first main surface 21 of conductive substrate 2 .
  • Intermediate layer 3 contains platinum.
  • the catalyst layer 4 is provided on the intermediate layer 3.
  • Catalyst layer 4 contains platinum and iridium oxide.
  • the intermediate layer 3 includes a first intermediate layer 31 provided on the first main surface 21 of the conductive substrate 2 and a second intermediate layer 32 provided on the first intermediate layer 31.
  • the first intermediate layer 31 contains platinum.
  • the second intermediate layer 32 contains platinum.
  • the second intermediate layer 32 is a porous layer.
  • the first intermediate layer 31 is a denser layer than the second intermediate layer 32. According to the electrolysis electrode 1 according to the first embodiment, it is possible to improve the amount of chlorine generated and to improve the durability. More specifically, in the electrolytic electrode 1, since the second intermediate layer 32 is a porous layer, the charge generated in iridium in the catalyst layer 4 is reduced compared to a case where the entire intermediate layer 3 is a dense layer. , it becomes possible to increase the movement route to the conductive substrate 2. In addition, in the electrolytic electrode 1, since the first intermediate layer 31 is a denser layer than the second intermediate layer 32, the intermediate layer 3 and the conductivity are more dense than the case where the entire intermediate layer 3 is a porous layer.
  • the contact area with the substrate 2 can be increased, and the contact resistance between the intermediate layer 3 and the conductive substrate 2 can be reduced. Therefore, in the electrolytic electrode 1, the charges generated by the iridium in the catalyst layer 4 are easily transferred to the conductive substrate 2, so that the amount of chlorine generated can be improved. Further, in the electrolytic electrode 1, the first intermediate layer 31 of the intermediate layer 3 is provided on the first main surface 21 of the conductive substrate 2, thereby reducing the contact area between the intermediate layer 3 and the conductive substrate 2. Since it can be made larger and its adhesion can be improved, it is possible to improve its durability.
  • the electrolysis electrode 1 according to the first embodiment includes the tantalum oxide layer 5 provided on the catalyst layer 4 containing platinum and iridium oxide, and a part of the catalyst layer 4 is exposed. It becomes possible to improve durability.
  • the catalyst layer 4 can contribute to the generation of chlorine, and the durability is improved compared to the case where the entire main surface 40 of the catalyst layer 4 is in contact with salt water. becomes possible.
  • the electrolytic electrode 1 according to the first embodiment can suppress excessive consumption (elution) of platinum iridium in the catalyst layer 4 during use.
  • the electrolysis electrode 1 according to the first embodiment can suppress aggregation of iridium.
  • the electrolysis electrode 1 according to the first embodiment has tantalum oxide parts 43 provided in the plurality of pores 42 of the catalyst layer 4 and in contact with the catalyst layer 4, thereby increasing the mechanical strength of the catalyst layer 4. In addition, it becomes possible to suppress excessive consumption of iridium oxide, aggregation of iridium oxide, etc.
  • the electrolytic electrode 1A according to the second embodiment has a first intermediate layer 31 provided over the first main surface 21, the outer circumferential surface 23, and the second main surface 22 of the conductive substrate 2. This is different from the electrolysis electrode 1 according to the first embodiment in that the electrode 1 is different from the electrode 1 for electrolysis according to the first embodiment.
  • the same components as those of the electrolysis electrode 1 according to Embodiment 1 are given the same reference numerals, and the description thereof will be omitted.
  • the first intermediate layer 31 includes a portion 311 that covers at least a portion of the outer circumferential surface 23 of the conductive substrate 2 (the entire outer circumferential surface 23 in the example of FIG. It further includes a portion 312 that covers at least a portion of the main surface 22.
  • the portion 312 of the first intermediate layer 31 covers a part of the second main surface 22 of the conductive substrate 2, but does not cover the entire second main surface 22. It's okay.
  • the catalyst layer 4 also covers a portion 311 that covers the outer peripheral surface 23 of the conductive substrate 2 in the first intermediate layer 31, and the catalyst layer 4 also covers the portion 311 that covers the outer circumferential surface 23 of the conductive substrate 2.
  • the outer edge 400 of the main surface 40 of the catalyst layer 4 is located outside the outer edge 310 of the first intermediate layer 31.
  • the tantalum oxide layer 5 covers not only the main surface 40 of the catalyst layer 4 but also the outer peripheral surface 46 of the catalyst layer 4.
  • the electrolysis electrode 1A increases the contact area between the first intermediate layer 31 and the conductive substrate 2 by further including a portion 311 in which the first intermediate layer 31 covers at least a portion of the outer peripheral surface 23 of the conductive substrate 2. It becomes possible to do so.
  • the electrolytic electrode 1A has a structure in which the first intermediate layer 31 further includes a portion 312 that covers at least a portion of the second main surface 22 of the conductive substrate 2, so that the first intermediate layer 31 and the conductive substrate 2 are separated from each other. It becomes possible to further increase the contact area.
  • the electrolytic electrode 1B according to the third embodiment is different from the electrolytic electrode 1B according to the first embodiment in that the second intermediate layer 32 is formed in a predetermined pattern and has a plurality of porous parts 323. Different from electrode 1.
  • the same components as those of the electrolysis electrode 1 according to Embodiment 1 are given the same reference numerals, and the description thereof will be omitted.
  • Each of the plurality of porous parts 323 contains porous platinum.
  • Each of the plurality of porous parts 323 is linear when viewed from the thickness direction of the conductive substrate 2.
  • the plurality of porous portions 323 are arranged in stripes on the first intermediate layer 31. In other words, the second intermediate layer 32 has a striped pattern portion P1.
  • the plurality of porous parts 323 are arranged at equal intervals in the first direction D1.
  • the term "equal intervals" as used herein does not necessarily have to be exactly the same interval, but may be any interval within a prescribed range (80% or more and 120% or less of the prescribed distance).
  • the first direction D1 is a direction perpendicular to the thickness direction of the conductive substrate 2 when viewed from the thickness direction of the conductive substrate 2.
  • the longitudinal direction of the plurality of porous parts 323 is a second direction orthogonal to the thickness direction of the conductive substrate 2 and the first direction D1.
  • the width L1 of each porous portion 323 in the first direction D1 is, for example, 10 ⁇ m or more and 5 mm or less. Further, the distance SP1 between two adjacent porous portions 323 in the first direction D1 is, for example, 10 ⁇ m or more and 100 ⁇ m or less.
  • the second intermediate layer 32 since the second intermediate layer 32 includes the striped pattern portion P1, it is possible to increase the contact area between the intermediate layer 3 and the catalyst layer 4.
  • the second intermediate layer 32 may be formed in any of the pattern shapes shown in FIGS. 6 to 9 as the pattern shape seen from the thickness direction of the conductive substrate 2.
  • the second intermediate layer 32 is hatched with dots, but these hatchings do not represent the cross section, but rather represent the pattern shape of the second intermediate layer 32 on the first intermediate layer 31. It is only added for ease of viewing.
  • the second intermediate layer 32 includes a plurality of porous parts 323 included in the striped pattern part P1 and a rectangular frame-shaped porous part surrounding the striped pattern part P1. 324.
  • the plurality of porous parts 323 are connected to a rectangular frame-shaped porous part 324.
  • the second intermediate layer 32 in the first example shown in FIG. 6 has a rectangular frame-shaped porous portion 324, it may have a configuration that does not have this porous portion 324.
  • the second intermediate layer 32 includes a lattice-shaped pattern portion P2 and a rectangular frame-shaped porous portion 324 surrounding the lattice-shaped pattern portion P2.
  • the pattern portion P2 includes a grid-like porous portion 323.
  • the second intermediate layer 32 in the second example shown in FIG. 7 has a rectangular frame-shaped porous portion 324, it may have a configuration that does not have this porous portion 324.
  • the second intermediate layer 32 includes a pattern portion P3 including a plurality of porous portions 323 arranged in a two-dimensional array, and a rectangular frame-shaped porous portion 324. .
  • each of the plurality of porous parts 323 has a square shape.
  • the length of each side of the plurality of porous parts 323 is 5 ⁇ m or more and 5 mm or less. Further, the distance between two adjacent porous portions 323 is, for example, 10 ⁇ m or more and 100 ⁇ m or less.
  • the second intermediate layer 32 in the third example shown in FIG. 8 has a rectangular frame-shaped porous portion 324, it may have a configuration that does not have this porous portion 324.
  • each of the plurality of porous portions 323 is not limited to a square shape, and may be, for example, circular.
  • the radius of the plurality of porous parts 323 is, for example, 2.5 ⁇ m or more and 2.5 mm or less.
  • the second intermediate layer 32 includes a rectangular pattern portion P0, a pattern portion P1, a pattern portion P2, and a pattern portion P3.
  • pattern portion P0, pattern portion P1, pattern portion P2, and pattern portion P3 are arranged in the order of pattern portion P0, pattern portion P1, pattern portion P2, and pattern portion P3. Not limited to.
  • the electrolytic electrode 1C according to the fourth embodiment has a first intermediate layer 31 provided over the first main surface 21, the outer peripheral surface 23, and the second main surface 22 of the conductive substrate 2. This is different from the electrolysis electrode 1B according to the third embodiment in that the electrode 1B is different from the electrode 1B for electrolysis according to the third embodiment.
  • the same components as those of the electrolysis electrode 1B according to Embodiment 3 are given the same reference numerals, and the description thereof will be omitted.
  • the first intermediate layer 31 includes a portion 311 that covers at least a portion of the outer circumferential surface 23 of the conductive substrate 2 (in the example of FIG. 2 further includes a portion 312 that covers at least a portion of the second main surface 22.
  • the portion 312 of the first intermediate layer 31 covers a part of the second main surface 22 of the conductive substrate 2, but does not cover the entire second main surface 22. It's okay.
  • the catalyst layer 4 also covers a portion 311 covering the outer circumferential surface 23 of the conductive substrate 2 in the first intermediate layer 31, and in a plan view from the thickness direction of the conductive substrate 2. , the outer edge 400 of the main surface 40 of the catalyst layer 4 is located outside the outer edge 310 of the first intermediate layer 31 .
  • the tantalum oxide layer 5 covers not only the main surface 40 of the catalyst layer 4 but also the outer peripheral surface 46 of the catalyst layer 4.
  • the electrolytic electrode 1C further includes a portion 311 in which the first intermediate layer 31 covers at least a portion of the outer peripheral surface 23 of the conductive substrate 2, thereby increasing the contact area between the first intermediate layer 31 and the conductive substrate 2. It becomes possible to do so.
  • the electrolytic electrode 1C has a structure in which the first intermediate layer 31 further includes a portion 312 that covers at least a portion of the second main surface 22 of the conductive substrate 2, so that the first intermediate layer 31 and the conductive substrate 2 are separated from each other. It becomes possible to further increase the contact area.
  • Embodiments 1-4 are just one of various embodiments of the present disclosure. Embodiments 1 to 4 can be modified in various ways depending on the design, etc., as long as the objective of the present disclosure can be achieved.
  • plan view shape of the conductive substrate 2 is not limited to a rectangular shape, but may be, for example, a square shape. Further, the shape of the conductive substrate 2 in plan view is not limited to a rectangular shape (rectangular shape, square shape), and may be any shape, for example, a circular shape.
  • the thickness of the second intermediate layer 32 may be the same as the thickness of the first intermediate layer 31, or the thickness of the second intermediate layer 32 may be It may be thinner than the thickness of the first intermediate layer 31.
  • the outer edge 320 of the second intermediate layer 32, the outer edge 310 of the first intermediate layer 31, and the outer edge 20 of the conductive substrate 2 may overlap.
  • the first intermediate layer 31 includes a portion 311 that covers at least a portion of the outer peripheral surface 23 of the conductive substrate 2 and a portion that covers at least a portion of the second main surface 22 of the conductive substrate 2. 312, but may not include the portion 312 that covers at least a portion of the second main surface 22 of the conductive substrate 2.
  • the catalyst layer 4 is not limited to being a porous layer, and may be a non-porous layer.
  • the shapes of the plurality of recesses 45 may be the same.
  • the plurality of recesses 45 may be formed using etching technology, laser processing technology, or the like. Utilizing these techniques has the advantage of increasing the degree of freedom in designing the layout and size of the plurality of recesses 45, and increasing the reproducibility of the formation positions of the plurality of recesses 45.
  • the plurality of recesses 45 may not be provided in the catalyst layer 4; in this case, for example, the tantalum oxide layer 5 may It suffices to have a plurality of holes (for example, pinholes or cracks) that expose parts.
  • the tantalum oxide layer 5 has a plurality of cracks that expose a part of the catalyst layer 4. may be formed.
  • the thickness of the tantalum oxide layer 5 is 50 nm or more, cracks that expose a part of the catalyst layer 4 in the tantalum oxide layer 5 occur in the second step of the tantalum oxide layer forming process. may be formed.
  • cracks are formed in the tantalum oxide layer 5 in the second step of the tantalum oxide layer forming process, and cracks connected to the cracks in the tantalum oxide layer 5 are formed in the catalyst layer 4. Sometimes it is done.
  • the plurality of holes in the tantalum oxide layer 5 may be formed using etching technology, laser processing technology, or the like.
  • the electrolysis electrodes 1, 1A, 1B, and 1C may include a titanium oxide layer interposed between the conductive substrate 2 and the intermediate layer 3.
  • the tantalum oxide layer 5 may contain tantalum in addition to tantalum oxide.
  • the tantalum oxide layer 5 may be a layer in which tantalum oxide and tantalum are mixed.
  • the electrolytic electrodes 1, 1A, 1B, and 1C are structures including an intermediate layer 3, a catalyst layer 4, and a tantalum oxide layer 5 on the second main surface 22 of the conductive substrate 2 on the first main surface 21 side. It may further include a structure similar to the above.
  • the electrolysis electrode (1; 1A; 1B; 1C) includes a conductive substrate (2), an intermediate layer (3), and a catalyst layer (4).
  • the conductive substrate (2) has a first main surface (21) and a second main surface (22) opposite to the first main surface (21).
  • the conductive substrate (2) contains at least titanium.
  • the intermediate layer (3) is provided on the first main surface (21) of the conductive substrate (2).
  • the intermediate layer (3) contains platinum.
  • the catalyst layer (4) is provided on the intermediate layer (3).
  • the catalyst layer (4) contains platinum and iridium oxide.
  • the intermediate layer (3) includes a first intermediate layer (31) provided on the first main surface (21) of the conductive substrate (2) and a first intermediate layer (31) provided on the first intermediate layer (31). 2 intermediate layers (32).
  • the first intermediate layer (31) contains platinum.
  • the second intermediate layer (32) contains platinum.
  • the second intermediate layer (32) is a porous layer.
  • the first intermediate layer (31) is a denser layer than the second intermediate layer (32).
  • electrolysis electrode (1; 1A; 1B; 1C) According to the electrolysis electrode (1; 1A; 1B; 1C) according to the first aspect, it is possible to improve the amount of chlorine generated and to improve the durability.
  • the second intermediate layer (32) is The outer edge (320) is located inside the outer edge (310) of the first intermediate layer (31) and the outer edge (20) of the conductive substrate (2).
  • the electrolytic electrode (1; 1A; 1B; 1C) according to the second aspect, it is possible to improve the uniformity of the thickness of the second intermediate layer (32), and the second intermediate layer ( 32) It becomes possible to reduce the amount of materials used.
  • the thickness of the second intermediate layer (32) is greater than the thickness of the first intermediate layer (31). big.
  • electrolytic electrode (1; 1A; 1B; 1C) According to the electrolytic electrode (1; 1A; 1B; 1C) according to the third aspect, it is possible to improve durability.
  • the conductive substrate (2) has an outer edge (210 ) and the outer edge (220) of the second main surface (22).
  • the first intermediate layer (31) further includes a portion (311) that covers at least a portion of the outer peripheral surface (23) of the conductive substrate (2).
  • the electrolysis electrode (1A; 1C) according to the fourth aspect, it is possible to increase the contact area between the first intermediate layer (31) and the conductive substrate (2).
  • the first intermediate layer (31) covers at least a portion of the second main surface (22) of the conductive substrate (2). It further includes a covering portion (312).
  • the electrolysis electrode (1A; 1C) according to the fifth aspect, it is possible to further increase the contact area between the first intermediate layer (31) and the conductive substrate (2).
  • the second intermediate layer (32) includes a striped pattern portion (P1).
  • the second intermediate layer (32) includes a lattice-like pattern portion (P2).
  • the electrolysis electrode (1B; 1C) according to the seventh aspect it is possible to increase the contact area between the intermediate layer (3) and the catalyst layer (4).
  • the second intermediate layer (32) includes a plurality of porous layers arranged in a two-dimensional array.
  • the pattern portion (P3) includes a pattern portion (323).
  • a tantalum oxide layer (5) is provided on the catalyst layer (4).
  • the electrolysis electrodes (1; 1A; 1B; 1C) a part of the catalyst layer (4) is exposed.
  • the catalyst layer (4) includes platinum (platinum particles 411) and iridium oxide (iridium oxide particles 412), respectively.
  • the porous layer includes a plurality of composite particles (41) including a plurality of composite particles (41) and a plurality of pores (42).
  • the electrolytic electrode (1; 1A; 1B; 1C) further includes a tantalum oxide part (43) provided in at least one pore (42) among the plurality of pores (42) and in contact with the catalyst layer (4). .
  • the electrolysis electrode (1; 1A; 1B; 1C) according to the tenth aspect, it is possible to improve the chlorine generation efficiency while improving the durability.
  • the catalyst layer (4) has a main surface ( It has a plurality of recesses (45) recessed from 40).
  • the tantalum oxide layer (5) has a first portion (51) provided on the main surface (40) of the catalyst layer (4) and at least one of the plurality of recesses (45) in the catalyst layer (4). a second portion (52) provided on the inner surface (451) of the recess (45).
  • the electrolytic electrode (1; 1A; 1B; 1C) according to the eleventh aspect it is possible to improve the chlorine generation efficiency while improving the durability.
  • the catalyst layer (4) is partially exposed by the plurality of recesses (45). ing.
  • salt water flows into the catalyst layer (4) from the inner surface (451) of the recess (45) exposed by the recess (45). (4) It becomes easier to penetrate in the in-plane direction.
  • the catalyst layer (4) can more easily contribute to chlorine generation, making it possible to improve durability. .
  • the first main surface (21) of the conductive substrate (2) has a rough surface. It is a surface.
  • the electrolysis electrode (1; 1A; 1B; 1C) it is possible to improve the adhesion between the conductive substrate (2) and the intermediate layer (3), and the catalyst layer (4) It becomes possible to suppress peeling from the conductive substrate (2) side, and it becomes possible to improve durability.
  • Electrolysis electrode 2 Conductive substrate 20 Outer edge 21 First main surface 210 Outer edge 22 Second main surface 220 Outer edge 23 Outer peripheral surface 3 Intermediate layer 31 First intermediate layer 310 Outer edge 311 Part 312 Part 32 Second Intermediate layer 320 Outer edge 323 Porous part 4 Catalyst layer 40 Main surface 41 Composite particle 411 Platinum particle 412 Iridium oxide particle 42 Pore 43 Tantalum oxide part 45 Recessed part 451 Inner surface 5 Tantalum oxide layer 51 First part 52 Second part P1 Pattern part P2 Pattern section P3 Pattern section

Abstract

The present invention addresses the problem of providing an electrolysis electrode with which more chlorine can be generated and improved durability can be achieved. An electrolysis electrode (1) comprises a conductive substrate (2), an intermediate layer (3), and a catalyst layer (4). The conductive substrate (2) contains at least titanium. The intermediate layer (3) is provided on a first main surface (21) of the conductive substrate (2). The intermediate layer (3) contains platinum. The catalyst layer (4) is provided on the intermediate layer (3). The catalyst layer (4) contains platinum and iridium oxide. The intermediate layer (3) includes: a first intermediate layer (31) provided on the first main surface (21) of the conductive substrate (2); and a second intermediate layer (32) provided on the first intermediate layer (31). The first intermediate layer (31) contains platinum. The second intermediate layer (32) contains platinum. The second intermediate layer (32) is a porous layer. The first intermediate layer (31) is a denser layer than the second intermediate layer (32).

Description

電解用電極Electrode for electrolysis
 本開示は、電解用電極に関し、より詳細には、酸化イリジウムと白金とを含む電解用電極に関する。 The present disclosure relates to an electrode for electrolysis, and more particularly, to an electrode for electrolysis containing iridium oxide and platinum.
 従来、塩水を電解することで塩素を発生させるために使用される電解用電極が知られている(特許文献1)。 Conventionally, an electrolytic electrode used to generate chlorine by electrolyzing salt water is known (Patent Document 1).
 特許文献1には、少なくともチタンを含む導電性基板と、導電性基板上に設けられており、白金を含む中間層と、中間層上に設けられており、白金と酸化イリジウムとを含む触媒層と、を備える電解用電極が開示されている。 Patent Document 1 discloses a conductive substrate containing at least titanium, an intermediate layer provided on the conductive substrate and containing platinum, and a catalyst layer provided on the intermediate layer and containing platinum and iridium oxide. An electrode for electrolysis comprising the following is disclosed.
 電解用電極では、塩素発生量を向上させ、かつ、耐久性を向上させることが望まれている。 It is desired to improve the amount of chlorine generated and the durability of electrodes for electrolysis.
国際公開第2021/117311号International Publication No. 2021/117311
 本開示の目的は、塩素発生量を向上させ、かつ、耐久性を向上させることが可能な電解用電極を提供することにある。 An object of the present disclosure is to provide an electrode for electrolysis that can increase the amount of chlorine generated and improve the durability.
 本開示の一態様に係る電解用電極は、導電性基板と、中間層と、触媒層と、を備える。前記導電性基板は、第1主面及び前記第1主面とは反対側の第2主面を有する。前記導電性基板は、少なくともチタンを含む。前記中間層は、前記導電性基板の前記第1主面上に設けられている。前記中間層は、白金を含む。前記触媒層は、前記中間層上に設けられている。前記触媒層は、白金と酸化イリジウムとを含む。前記中間層は、前記導電性基板の前記第1主面上に設けられている第1中間層と、前記第1中間層上に設けられている第2中間層と、を有する。前記第1中間層は、白金を含む。前記第2中間層は、白金を含む。前記第2中間層は、多孔質層である。前記第1中間層は、前記第2中間層よりも緻密な層である。 An electrode for electrolysis according to one aspect of the present disclosure includes a conductive substrate, an intermediate layer, and a catalyst layer. The conductive substrate has a first main surface and a second main surface opposite to the first main surface. The conductive substrate includes at least titanium. The intermediate layer is provided on the first main surface of the conductive substrate. The intermediate layer includes platinum. The catalyst layer is provided on the intermediate layer. The catalyst layer contains platinum and iridium oxide. The intermediate layer includes a first intermediate layer provided on the first main surface of the conductive substrate, and a second intermediate layer provided on the first intermediate layer. The first intermediate layer includes platinum. The second intermediate layer contains platinum. The second intermediate layer is a porous layer. The first intermediate layer is denser than the second intermediate layer.
図1は、実施形態1に係る電解用電極の断面図である。FIG. 1 is a cross-sectional view of an electrode for electrolysis according to Embodiment 1. 図2Aは、同上の電解用電極の要部説明図である。図2Bは、同上の電解用電極の触媒層に含まれる粒子の説明図である。FIG. 2A is an explanatory diagram of main parts of the electrolytic electrode same as above. FIG. 2B is an explanatory diagram of particles contained in the catalyst layer of the electrolytic electrode same as above. 図3は、導電性基板と第1中間層と第2中間層とを含むサンプルの断面SEM像図である。FIG. 3 is a cross-sectional SEM image of a sample including a conductive substrate, a first intermediate layer, and a second intermediate layer. 図4は、実施形態2に係る電解用電極の断面図である。FIG. 4 is a cross-sectional view of the electrolysis electrode according to the second embodiment. 図5は、実施形態3に係る電解用電極の断面図である。FIG. 5 is a cross-sectional view of an electrode for electrolysis according to Embodiment 3. 図6は、同上の電解用電極における第2中間層のパターン形状の第1例を示す平面図である。FIG. 6 is a plan view showing a first example of the pattern shape of the second intermediate layer in the electrode for electrolysis described above. 図7は、同上の電解用電極における第2中間層のパターン形状の第2例を示す平面図である。FIG. 7 is a plan view showing a second example of the pattern shape of the second intermediate layer in the electrode for electrolysis described above. 図8は、同上の電解用電極における第2中間層のパターン形状の第3例を示す平面図である。FIG. 8 is a plan view showing a third example of the pattern shape of the second intermediate layer in the electrode for electrolysis described above. 図9は、同上の電解用電極における第2中間層のパターン形状の第4例を示す平面図である。FIG. 9 is a plan view showing a fourth example of the pattern shape of the second intermediate layer in the electrode for electrolysis described above. 図10は、実施形態4に係る電解用電極の断面図である。FIG. 10 is a cross-sectional view of an electrode for electrolysis according to Embodiment 4.
 下記の実施形態1~4等において説明する図1~10は、模式的な図であり、図中の各構成要素の大きさや厚さそれぞれの比が、必ずしも実際の寸法比を反映しているとは限らない。 1 to 10 described in Embodiments 1 to 4 below are schematic diagrams, and the size and thickness ratios of each component in the diagrams do not necessarily reflect the actual dimensional ratios. Not necessarily.
 (実施形態1)
 以下、実施形態1に係る電解用電極1について、図1、2A、2B及び3に基づいて説明する。
(Embodiment 1)
Hereinafter, the electrolysis electrode 1 according to Embodiment 1 will be described based on FIGS. 1, 2A, 2B, and 3.
 (1)概要
 電解用電極1は、塩水を電解することで塩素を発生させるために使用される電極である。ここにおいて、塩水は、例えば、食塩水である。電解用電極1を、塩水を電解する用途で用いる場合には、例えば、電源から直流電圧を印加する陽極と陰極とのうち陽極として電解用電極1を用いることにより、食塩水を電解して塩素を発生させ、この塩素と水との反応により次亜塩素酸水を生成することができる。
(1) Overview The electrolysis electrode 1 is an electrode used to generate chlorine by electrolyzing salt water. Here, the salt water is, for example, salt water. When the electrolytic electrode 1 is used for electrolyzing salt water, for example, by using the electrolytic electrode 1 as the anode of the anode and cathode to which a DC voltage is applied from the power supply, the salt water is electrolyzed to produce chlorine. can be generated, and hypochlorous acid water can be generated by the reaction between this chlorine and water.
 (2)電解用電極の各構成要素
 電解用電極1は、図1に示すように、導電性基板2と、中間層3と、触媒層4と、を備える。中間層3は、導電性基板2上に設けられている。触媒層4は、中間層3上に設けられている。つまり、中間層3は、導電性基板2と触媒層4との間に介在する層である。また、電解用電極1は、触媒層4上に設けられている酸化タンタル層5を更に備える。
(2) Components of Electrolyte for Electrolysis As shown in FIG. 1, the electrode for electrolysis 1 includes a conductive substrate 2, an intermediate layer 3, and a catalyst layer 4. Intermediate layer 3 is provided on conductive substrate 2 . The catalyst layer 4 is provided on the intermediate layer 3. That is, the intermediate layer 3 is a layer interposed between the conductive substrate 2 and the catalyst layer 4. Further, the electrolysis electrode 1 further includes a tantalum oxide layer 5 provided on the catalyst layer 4.
 以下、電解用電極1の各構成要素についてより詳細に説明する。 Hereinafter, each component of the electrolytic electrode 1 will be explained in more detail.
 (2.1)導電性基板
 導電性基板2の平面視形状(導電性基板2を導電性基板2の厚さ方向から見たときの外周形状)は、長方形状である。導電性基板2の厚さは、例えば、100μm以上2mm以下であり、一例として、500μmである。導電性基板2の平面視でのサイズは、例えば、25mm×60mmである。導電性基板2は、第1主面21と、第1主面21とは反対側の第2主面22と、を有する。また、導電性基板2は、外周面23を有する。導電性基板2の外周面23は、例えば、導電性基板2の第1主面21の外縁210と第2主面22の外縁220とをつないでいる4つの側面を含み、第1主面21及び第2主面22を含まない。
(2.1) Conductive Substrate The plan view shape of the conductive substrate 2 (the outer peripheral shape when the conductive substrate 2 is viewed from the thickness direction of the conductive substrate 2) is rectangular. The thickness of the conductive substrate 2 is, for example, 100 μm or more and 2 mm or less, and is, for example, 500 μm. The size of the conductive substrate 2 in plan view is, for example, 25 mm x 60 mm. The conductive substrate 2 has a first main surface 21 and a second main surface 22 opposite to the first main surface 21 . Further, the conductive substrate 2 has an outer circumferential surface 23 . The outer peripheral surface 23 of the conductive substrate 2 includes, for example, four side surfaces connecting the outer edge 210 of the first main surface 21 and the outer edge 220 of the second main surface 22 of the conductive substrate 2, and and does not include the second main surface 22.
 導電性基板2は、少なくともチタンを含む。導電性基板2は、一例として、チタン基板である。導電性基板2の材料は、チタン又はチタンを主成分とする合金(以下、チタン合金という)である。チタン合金は、例えば、チタン-パラジウム合金、チタン-ニッケル-ルテニウム合金、チタン-タンタル合金、チタン-アルミニウム合金、チタン-アルミニウム-バナジウム合金等である。 The conductive substrate 2 contains at least titanium. The conductive substrate 2 is, for example, a titanium substrate. The material of the conductive substrate 2 is titanium or an alloy containing titanium as a main component (hereinafter referred to as titanium alloy). Examples of the titanium alloy include titanium-palladium alloy, titanium-nickel-ruthenium alloy, titanium-tantalum alloy, titanium-aluminum alloy, titanium-aluminum-vanadium alloy, and the like.
 導電性基板2の第1主面21は、中間層3の密着性を高める観点から、粗面であるのが好ましい。実施形態1に係る電解用電極1では、導電性基板2の第1主面21は、中間層3を設ける前に粗面化されている。ここにおいて、導電性基板2の第1主面21の表面粗さに関し、算術平均粗さRaは、例えば、0.7μmであり、最大高さRzは、7μmである。算術平均粗さRa及び最大高さRzについては、例えば、JIS B 0601-2001(ISO 4287-1997)で規定されている。算術平均粗さRa及び最大高さRzは、例えば、断面SEM像(Cross-sectional Scanning Electron Microscope Image)から測定した値である。 The first main surface 21 of the conductive substrate 2 is preferably a rough surface from the viewpoint of improving the adhesion of the intermediate layer 3. In the electrolysis electrode 1 according to the first embodiment, the first main surface 21 of the conductive substrate 2 is roughened before the intermediate layer 3 is provided. Here, regarding the surface roughness of the first main surface 21 of the conductive substrate 2, the arithmetic mean roughness Ra is, for example, 0.7 μm, and the maximum height Rz is 7 μm. The arithmetic mean roughness Ra and the maximum height Rz are defined in, for example, JIS B 0601-2001 (ISO 4287-1997). The arithmetic mean roughness Ra and the maximum height Rz are, for example, values measured from a cross-sectional SEM image (Cross-sectional Scanning Electron Microscope Image).
 (2.2)中間層
 中間層3は、導電性基板2の第1主面21上に設けられている。したがって、電解用電極1は、導電性基板2と中間層3との界面を有する。中間層3は、導電性基板2よりも塩水及び塩素に対する耐食性の高い材料で形成されているのが好ましい。また、電解用電極1全体の電気伝導性を高める観点からは、中間層3の材料は、導電性を有し電気伝導性の高い材料であるのが好ましい。中間層3の材料は、例えば、遷移金属又は遷移金属を含む混合物であり、例えば、白金、タンタルと白金とイリジウムとの混合物である。中間層3の材料は、一例として、白金である。
(2.2) Intermediate layer The intermediate layer 3 is provided on the first main surface 21 of the conductive substrate 2. Therefore, the electrolysis electrode 1 has an interface between the conductive substrate 2 and the intermediate layer 3. The intermediate layer 3 is preferably formed of a material that has higher corrosion resistance to salt water and chlorine than the conductive substrate 2. Moreover, from the viewpoint of increasing the electrical conductivity of the entire electrolytic electrode 1, the material of the intermediate layer 3 is preferably a material having electrical conductivity and high electrical conductivity. The material of the intermediate layer 3 is, for example, a transition metal or a mixture containing a transition metal, such as platinum, a mixture of tantalum, platinum, and iridium. The material of the intermediate layer 3 is platinum, for example.
 中間層3は、導電性基板2の第1主面21上に設けられている第1中間層31と、第1中間層31上に設けられている第2中間層32と、を含む。第1中間層31の材料は、白金を含む。また、第2中間層32の材料は、白金を含む。第1中間層31の材料と第2中間層の材料とは同じであるが、第1中間層31と第2中間層32との少なくとも一方が、白金以外の材料を更に含んでいてもよい。第2中間層32は、多孔質層である。第1中間層31は、第2中間層32よりも緻密な層である。第1中間層31の嵩密度は、第2中間層32の嵩密度よりも大きい。図3は、導電性基板2の第1主面21上に第1中間層31を形成し、第1中間層31上に第2中間層32を形成したサンプルの断面SEM像図である。図3では、第2中間層32が多孔質層であり、第1中間層31が第2中間層32よりも緻密な層であることが分かる。第2中間層32は、図1に示すように、各々のサイズが0.5μm以上の複数の気孔325を有する。第2中間層32は、複数の気孔325のうち2つ以上の気孔325がつながっている連続孔を有する多孔質層である。第1中間層31は、非多孔質層であるが、0.5μm未満のサイズの気孔を含んでいてもよい。 The intermediate layer 3 includes a first intermediate layer 31 provided on the first main surface 21 of the conductive substrate 2 and a second intermediate layer 32 provided on the first intermediate layer 31. The material of the first intermediate layer 31 includes platinum. Further, the material of the second intermediate layer 32 includes platinum. Although the material of the first intermediate layer 31 and the material of the second intermediate layer are the same, at least one of the first intermediate layer 31 and the second intermediate layer 32 may further contain a material other than platinum. The second intermediate layer 32 is a porous layer. The first intermediate layer 31 is a denser layer than the second intermediate layer 32. The bulk density of the first intermediate layer 31 is greater than the bulk density of the second intermediate layer 32. FIG. 3 is a cross-sectional SEM image of a sample in which a first intermediate layer 31 is formed on the first main surface 21 of the conductive substrate 2, and a second intermediate layer 32 is formed on the first intermediate layer 31. In FIG. 3, it can be seen that the second intermediate layer 32 is a porous layer, and the first intermediate layer 31 is a denser layer than the second intermediate layer 32. As shown in FIG. 1, the second intermediate layer 32 has a plurality of pores 325 each having a size of 0.5 μm or more. The second intermediate layer 32 is a porous layer having continuous pores in which two or more of the plurality of pores 325 are connected. The first intermediate layer 31 is a non-porous layer, but may contain pores with a size of less than 0.5 μm.
 導電性基板2の厚さ方向からの平面視で、第2中間層32の外縁320は、第1中間層31の外縁310及び導電性基板2の外縁20よりも内側に位置している。 In plan view from the thickness direction of the conductive substrate 2, the outer edge 320 of the second intermediate layer 32 is located inside the outer edge 310 of the first intermediate layer 31 and the outer edge 20 of the conductive substrate 2.
 電解用電極1では、第2中間層32の厚さが第1中間層31の厚さよりも大きい。第1中間層31の厚さは、例えば、0.01μm以上10μm以下である。第2中間層32の厚さは、例えば、0.1μm以上20μm以下であり、好ましくは0.1μm以上10μm以下である。 In the electrolysis electrode 1, the thickness of the second intermediate layer 32 is greater than the thickness of the first intermediate layer 31. The thickness of the first intermediate layer 31 is, for example, 0.01 μm or more and 10 μm or less. The thickness of the second intermediate layer 32 is, for example, 0.1 μm or more and 20 μm or less, preferably 0.1 μm or more and 10 μm or less.
 (2.3)触媒層
 図1に示すように、触媒層4は、中間層3上に設けられている。電解用電極1は、触媒層4と中間層3との界面を有する。つまり、触媒層4は、中間層3を介して導電性基板2上に設けられている。
(2.3) Catalyst Layer As shown in FIG. 1, the catalyst layer 4 is provided on the intermediate layer 3. The electrolytic electrode 1 has an interface between a catalyst layer 4 and an intermediate layer 3. That is, the catalyst layer 4 is provided on the conductive substrate 2 with the intermediate layer 3 interposed therebetween.
 触媒層4は、白金と酸化イリジウムとを含む。触媒層4は、図2Aに示すように、複数の複合粒子41と、複数の気孔42と、を含む多孔質層である。複数の複合粒子41の各々は、図2Bに示すように、白金粒子411と、酸化イリジウム粒子412と、を含む。複数の複合粒子41の各々では、例えば、1つの白金粒子411に対して複数の酸化イリジウム粒子412が結合されている。触媒層4では、白金により酸化イリジウムが分散されている。酸化イリジウムは、塩素を発生させるための触媒として機能する。触媒層4において、白金と酸化イリジウムとのモル比は、例えば、8:5であるが、これに限らない。電解用電極1の使用による電解用電極1の経時変化に伴うイリジウムの凝集を抑制する観点から、酸化イリジウムのモル量は、白金のモル量以下であるのが好ましい。触媒層4は、白金と酸化イリジウムとの他に、イリジウムを含んでいてもよい。この場合、複合粒子41では、白金粒子411に対して、酸化イリジウム粒子412の他にイリジウム粒子が結合されていてもよい。また、触媒層4では、白金粒子411同士が結合されていてもよい。触媒層4における結合状態は、特に限定されない。 The catalyst layer 4 contains platinum and iridium oxide. The catalyst layer 4 is a porous layer including a plurality of composite particles 41 and a plurality of pores 42, as shown in FIG. 2A. Each of the plurality of composite particles 41 includes platinum particles 411 and iridium oxide particles 412, as shown in FIG. 2B. In each of the plurality of composite particles 41, for example, a plurality of iridium oxide particles 412 are bonded to one platinum particle 411. In the catalyst layer 4, iridium oxide is dispersed by platinum. Iridium oxide functions as a catalyst to generate chlorine. In the catalyst layer 4, the molar ratio of platinum to iridium oxide is, for example, 8:5, but is not limited thereto. From the viewpoint of suppressing the aggregation of iridium that accompanies changes in the electrolytic electrode 1 over time due to use of the electrolytic electrode 1, the molar amount of iridium oxide is preferably equal to or less than the molar amount of platinum. The catalyst layer 4 may contain iridium in addition to platinum and iridium oxide. In this case, in the composite particles 41, iridium particles in addition to the iridium oxide particles 412 may be bonded to the platinum particles 411. Further, in the catalyst layer 4, the platinum particles 411 may be bonded to each other. The bonding state in the catalyst layer 4 is not particularly limited.
 触媒層4は、図1に示すように、導電性基板2側とは反対側の主面40から凹んだ複数の凹部45を有する。電解用電極1では、複数の凹部45によって触媒層4の一部が露出している。複数の凹部45の各々は、例えば、触媒層4に形成されているクラックである。より詳細には複数の凹部45の各々は、触媒層4の厚さ方向からの平面視で線状のクラックである。複数のクラック(凹部45)の形状は、互いに異なる。複数の凹部45の各々は、複数の気孔42の少なくとも1つとつながっていてもよい。 As shown in FIG. 1, the catalyst layer 4 has a plurality of recesses 45 recessed from the main surface 40 on the opposite side to the conductive substrate 2 side. In the electrolysis electrode 1, a portion of the catalyst layer 4 is exposed by the plurality of recesses 45. Each of the plurality of recesses 45 is, for example, a crack formed in the catalyst layer 4. More specifically, each of the plurality of recesses 45 is a linear crack when viewed from above in the thickness direction of the catalyst layer 4 . The shapes of the plurality of cracks (recesses 45) are different from each other. Each of the plurality of recesses 45 may be connected to at least one of the plurality of pores 42.
 複数の凹部45の各々の深さは、例えば、0.1μm以上である。複数の凹部45の各々の深さは、中間層3に達する深さであってもよいし、中間層3に達しない深さであってもよい。実施形態1に係る電解用電極1では、複数の凹部45が中間層3を貫通するようには形成されておらず、導電性基板2の第1主面21の全面が中間層3により覆われている。導電性基板2の厚さ方向からの平面視で、複数の凹部45の各々の幅は、0.1μm以上10μm以下であり、0.3μm以上3μm以下であるのが、より好ましい。導電性基板2の厚さ方向からの平面視での凹部45の幅は、触媒層4の主面40での短手方向(長さ方向に直交する方向)における開口幅である。導電性基板2の厚さ方向からの平面視で、複数の凹部45の各々の長さは、導電性基板2の各辺の長さよりも短い。 The depth of each of the plurality of recesses 45 is, for example, 0.1 μm or more. The depth of each of the plurality of recesses 45 may be a depth that reaches the intermediate layer 3 or may be a depth that does not reach the intermediate layer 3. In the electrolysis electrode 1 according to the first embodiment, the plurality of recesses 45 are not formed to penetrate the intermediate layer 3, and the entire first main surface 21 of the conductive substrate 2 is covered with the intermediate layer 3. ing. In plan view from the thickness direction of the conductive substrate 2, the width of each of the plurality of recesses 45 is 0.1 μm or more and 10 μm or less, and more preferably 0.3 μm or more and 3 μm or less. The width of the recess 45 in a plan view from the thickness direction of the conductive substrate 2 is the opening width in the lateral direction (direction perpendicular to the longitudinal direction) on the main surface 40 of the catalyst layer 4. In plan view from the thickness direction of the conductive substrate 2, the length of each of the plurality of recesses 45 is shorter than the length of each side of the conductive substrate 2.
 触媒層4の厚さは、例えば、0.1μm~10μmである。 The thickness of the catalyst layer 4 is, for example, 0.1 μm to 10 μm.
 また、導電性基板2の厚さ方向からの平面視で、触媒層4の主面40の面積をS1とし、触媒層4の主面40における複数の凹部45の各々の開口面積の合計面積をS2とした場合、S1+S2に対するS2の割合は、例えば、5%~50%である。S1+S2に対するS2の割合は、塩素発生効率の向上を図る観点から5%以上であるのが好ましい。また、S1+S2に対するS2の割合は、触媒層4の剥離等を抑制する観点から50%以下であるのが好ましく、20%以下であるのが、より好ましい。つまり、S1+S2に対するS2の割合は、5%以上20%以下であるのが、より好ましい。 In addition, in plan view from the thickness direction of the conductive substrate 2, the area of the main surface 40 of the catalyst layer 4 is set as S1, and the total area of the opening areas of each of the plurality of recesses 45 on the main surface 40 of the catalyst layer 4 is In the case of S2, the ratio of S2 to S1+S2 is, for example, 5% to 50%. The ratio of S2 to S1+S2 is preferably 5% or more from the viewpoint of improving chlorine generation efficiency. Further, the ratio of S2 to S1+S2 is preferably 50% or less, more preferably 20% or less, from the viewpoint of suppressing peeling of the catalyst layer 4. That is, it is more preferable that the ratio of S2 to S1+S2 is 5% or more and 20% or less.
 (2.4)酸化タンタル層
 酸化タンタル層5は、触媒層4の酸化イリジウムの溶出を抑制する機能を有する。
(2.4) Tantalum Oxide Layer The tantalum oxide layer 5 has a function of suppressing elution of iridium oxide from the catalyst layer 4.
 酸化タンタル層5は、図2Aに示すように、触媒層4における主面40上に設けられている第1部分51と、触媒層4における複数の凹部45のうち少なくとも1つの凹部45の内面451上に設けられている第2部分52と、を含む。酸化タンタル層5は、触媒層4における複数の凹部45の各々の内面451上に第2部分52を有しているのが好ましい。 As shown in FIG. 2A, the tantalum oxide layer 5 includes a first portion 51 provided on the main surface 40 of the catalyst layer 4 and an inner surface 451 of at least one recess 45 among the plurality of recesses 45 in the catalyst layer 4. a second portion 52 provided thereon. Preferably, the tantalum oxide layer 5 has a second portion 52 on the inner surface 451 of each of the plurality of recesses 45 in the catalyst layer 4 .
 (2.5)酸化タンタル部
 電解用電極1は、触媒層4の複数の気孔42のうち少なくとも1つの気孔42に設けられ触媒層4に接している酸化タンタル部43を更に含む。酸化タンタル部43は、例えば、酸化タンタル層5の形成時に形成される。酸化タンタル部43は、触媒層4の複合粒子41に接している。
(2.5) Tantalum Oxide Portion The electrolytic electrode 1 further includes a tantalum oxide portion 43 provided in at least one pore 42 among the plurality of pores 42 of the catalyst layer 4 and in contact with the catalyst layer 4 . The tantalum oxide portion 43 is formed, for example, when the tantalum oxide layer 5 is formed. The tantalum oxide portion 43 is in contact with the composite particles 41 of the catalyst layer 4.
 (3)電解用電極の製造方法
 電解用電極1の製造方法について簡単に説明する。
(3) Method for manufacturing electrode for electrolysis A method for manufacturing electrode for electrolysis 1 will be briefly described.
 電解用電極1の製造方法では、まず、導電性基板2を準備し、その後、粗面化工程、第1中間層形成工程、第2中間層形成工程、触媒層形成工程、及び酸化タンタル層形成工程を順次行う。 In the method for manufacturing the electrolytic electrode 1, first, a conductive substrate 2 is prepared, and then a surface roughening step, a first intermediate layer forming step, a second intermediate layer forming step, a catalyst layer forming step, and a tantalum oxide layer forming step are performed. Perform the steps sequentially.
 粗面化工程では、例えば、導電性基板2をシュウ酸水溶液に浸漬することにより導電性基板2の第1主面21を粗面化する。粗面化工程は、必須の工程ではない。 In the surface roughening step, the first main surface 21 of the conductive substrate 2 is roughened, for example, by immersing the conductive substrate 2 in an oxalic acid aqueous solution. The surface roughening step is not an essential step.
 第1中間層形成工程では、導電性基板2の第1主面21上に第1中間層31を形成する。第1中間層形成工程では、第1中間層31の元になる溶液を塗布してから、熱処理を行い、その後、焼成を行うことにより、第1中間層31を形成する。溶液は、溶媒に白金化合物を溶解させた溶液である。溶媒は、例えば、エチレングリコールモノエチルエーテルと塩酸とエタノールとを混合した液体である。白金化合物は、例えば、塩化白金酸であるが、これに限らず、例えば、塩化白金等であってもよい。第1中間層31の形成方法は、上述の例に限らず、例えば、蒸着法、スパッタ法、CVD法、めっき法等であってもよい。 In the first intermediate layer forming step, the first intermediate layer 31 is formed on the first main surface 21 of the conductive substrate 2. In the first intermediate layer forming step, the first intermediate layer 31 is formed by applying a solution that is the source of the first intermediate layer 31, performing heat treatment, and then performing baking. The solution is a solution in which a platinum compound is dissolved in a solvent. The solvent is, for example, a liquid mixture of ethylene glycol monoethyl ether, hydrochloric acid, and ethanol. The platinum compound is, for example, chloroplatinic acid, but is not limited thereto, and may be, for example, platinum chloride. The method for forming the first intermediate layer 31 is not limited to the above-mentioned example, and may be, for example, a vapor deposition method, a sputtering method, a CVD method, a plating method, or the like.
 第2中間層形成工程では、第1中間層31上に第2中間層32を形成する。第2中間層形成工程では、スクリーン印刷によって第2中間層32を形成する。第2中間層形成工程では、スクリーン印刷で用いる材料ペーストの粘度を調整するバインダ成分が脱離することによって、多孔質層からなる第2中間層32が形成される。 In the second intermediate layer forming step, the second intermediate layer 32 is formed on the first intermediate layer 31. In the second intermediate layer forming step, the second intermediate layer 32 is formed by screen printing. In the second intermediate layer forming step, the second intermediate layer 32 made of a porous layer is formed by detaching the binder component that adjusts the viscosity of the material paste used in screen printing.
 触媒層形成工程では、第1中間層31と第2中間層32とを含む中間層3上に触媒層4を形成する。触媒層形成工程は、第1ステップと、第2ステップと、を有する。 In the catalyst layer forming step, the catalyst layer 4 is formed on the intermediate layer 3 including the first intermediate layer 31 and the second intermediate layer 32. The catalyst layer forming process includes a first step and a second step.
 触媒層形成工程の第1ステップでは、少なくとも1回の塗布工程と少なくとも1回の乾燥工程とを行うことにより、導電性基板2上の中間層3上に触媒層4の元になる触媒材料層を形成する。塗布工程及び乾燥工程の回数は、例えば、触媒層4の所定厚さに応じて決められる。塗布工程及び乾燥工程の回数については、触媒層4の所定厚さが厚いほど、塗布工程及び乾燥工程の回数を増やせばよい。例えば、触媒層形成工程では、第1規定回数(例えば、8回)の塗布工程と上記第1規定回数の乾燥工程とを1回ずつ交互に繰り返すことにより、導電性基板2上の中間層3上に触媒層4の元になる触媒材料層を形成する。 In the first step of the catalyst layer forming process, at least one coating process and at least one drying process are performed to form a catalyst material layer on the intermediate layer 3 on the conductive substrate 2, which will become the source of the catalyst layer 4. form. The number of times of the coating process and the drying process is determined depending on the predetermined thickness of the catalyst layer 4, for example. Regarding the number of times of the coating process and drying process, the thicker the predetermined thickness of the catalyst layer 4, the more the number of times of the coating process and drying process may be increased. For example, in the catalyst layer forming step, the intermediate layer on the conductive substrate 2 is A catalyst material layer that will become the basis of the catalyst layer 4 is formed thereon.
 触媒層形成工程の第1ステップでは、導電性基板2上の中間層3上に直接的又は間接的に触媒層4の元になる白金化合物とイリジウム化合物とを含む溶液(以下、第1溶液という)を塗布してから(塗布工程を行ってから)、第1条件で加熱乾燥させる熱処理(乾燥工程)を行うという処理を少なくとも1回(例えば、8回)行うことにより、触媒層4の元になる触媒材料層を形成する。第1溶液は、溶媒(以下、第1溶媒という)に白金化合物とイリジウム化合物とを溶解させた溶液である。第1溶媒は、例えば、エチレングリコールモノエチルエーテルと塩酸とエタノールとを混合した液体である。白金化合物は、例えば、塩化白金酸であるが、これに限らず、例えば、塩化白金等であってもよい。塩化白金酸は、例えば、ヘキサクロロ白金(IV)酸n水和物である。イリジウム化合物は、例えば、塩化イリジウム酸であるが、これに限らず、例えば、塩化イリジウム、硝酸イリジウムであってもよい。塩化イリジウム酸は、例えば、ヘキサクロロイリジウム(IV)酸n水和物である。第1溶液の金属濃度(白金とイリジウムとの合計濃度)は、例えば、50mg/mLである。また、第1溶液の塗布量は、例えば、2μL/cmである。第1条件は、熱処理温度と、熱処理時間と、を含む。第1条件における熱処理温度は、例えば、100℃~400℃であり、一例として220℃である。また、第1条件における熱処理時間は、例えば、5分~15分であり、一例として10分である。 In the first step of the catalyst layer forming process, a solution (hereinafter referred to as the first solution) containing a platinum compound and an iridium compound that will become the source of the catalyst layer 4 is directly or indirectly deposited on the intermediate layer 3 on the conductive substrate 2. ) is coated (after the coating process is performed), and then a heat treatment (drying process) of heating and drying under the first condition is performed at least once (e.g., 8 times), thereby removing the original structure of the catalyst layer 4. A layer of catalyst material is formed. The first solution is a solution in which a platinum compound and an iridium compound are dissolved in a solvent (hereinafter referred to as a first solvent). The first solvent is, for example, a liquid mixture of ethylene glycol monoethyl ether, hydrochloric acid, and ethanol. The platinum compound is, for example, chloroplatinic acid, but is not limited thereto, and may be, for example, platinum chloride. Chloroplatinic acid is, for example, hexachloroplatinic (IV) acid n-hydrate. The iridium compound is, for example, chloroiridic acid, but is not limited thereto, and may be, for example, iridium chloride or iridium nitrate. Chloroiridic acid is, for example, hexachloroiridic (IV) acid n-hydrate. The metal concentration (total concentration of platinum and iridium) of the first solution is, for example, 50 mg/mL. Further, the amount of the first solution applied is, for example, 2 μL/cm 2 . The first condition includes a heat treatment temperature and a heat treatment time. The heat treatment temperature under the first condition is, for example, 100°C to 400°C, and is, for example, 220°C. Further, the heat treatment time under the first condition is, for example, 5 minutes to 15 minutes, and is 10 minutes as an example.
 触媒層形成工程の第2ステップでは、触媒材料層を所定の焼成条件で焼成する熱処理を行うことにより、触媒層4及び複数のクラック(凹部45)を形成する。焼成条件は、焼成温度と、焼成時間と、を含む。焼成温度は、例えば、500℃~700℃であり、一例として、560℃である。焼成時間は、例えば、5分~20分であり、一例として10分である。 In the second step of the catalyst layer forming process, the catalyst layer 4 and a plurality of cracks (recesses 45) are formed by performing heat treatment to fire the catalyst material layer under predetermined firing conditions. The firing conditions include firing temperature and firing time. The firing temperature is, for example, 500°C to 700°C, and one example is 560°C. The firing time is, for example, 5 minutes to 20 minutes, and is 10 minutes as an example.
 酸化タンタル層形成工程では、触媒層4上に酸化タンタル層5を形成する。酸化タンタル層形成工程は、第1ステップと、第2ステップと、を有する。 In the tantalum oxide layer forming step, a tantalum oxide layer 5 is formed on the catalyst layer 4. The tantalum oxide layer forming step includes a first step and a second step.
 酸化タンタル層工程の第1ステップでは、少なくとも1回の塗布工程と少なくとも1回の乾燥工程とを行うことにより、触媒層4上に酸化タンタル層5の元になる材料層を形成する。塗布工程及び乾燥工程の回数は、例えば、酸化タンタル層5の所定厚さに応じて決められる。塗布工程及び乾燥工程の回数については、酸化タンタル層5の所定厚さが厚いほど、塗布工程及び乾燥工程の回数を増やせばよい。例えば、酸化タンタル層形成工程では、第2規定回数(例えば、1回)の塗布工程と上記第2規定回数の乾燥工程とを行うことにより、触媒層4上に酸化タンタル層5の元になる材料層を形成する。 In the first step of the tantalum oxide layer process, a layer of material that will become the source of the tantalum oxide layer 5 is formed on the catalyst layer 4 by performing at least one coating process and at least one drying process. The number of times of the coating process and the drying process is determined depending on the predetermined thickness of the tantalum oxide layer 5, for example. Regarding the number of times of the coating process and drying process, the thicker the predetermined thickness of the tantalum oxide layer 5, the more the number of times of the coating process and drying process may be increased. For example, in the tantalum oxide layer forming step, the tantalum oxide layer 5 is formed on the catalyst layer 4 by performing the coating step a second prescribed number of times (for example, once) and the drying step the second prescribed number of times. Form a material layer.
 酸化タンタル層形成工程の第1ステップでは、触媒層4上に酸化タンタル層5の元になるタンタル化合物を含む溶液(以下、第2溶液という)を塗布してから(塗布工程を行ってから)、第2条件で加熱乾燥させる熱処理(乾燥工程)を行うという処理を少なくとも1回(例えば、1回)行うことにより、酸化タンタル層5の元になる材料層を形成する。第2溶液は、溶媒(以下、第2溶媒という)にタンタル化合物を溶解させた溶液である。第2溶媒は、例えば、エチレングリコールモノエチルエーテルと塩酸とエタノールとを混合した液体である。タンタル化合物は、例えば、塩化タンタルであるが、これに限らず、例えば、タンタルエトキシド等であってもよい。第2溶液の金属濃度(タンタル濃度)は、例えば、50mg/Lである。また、第2溶液の塗布量は、例えば、1μL/cmである。第2条件は、熱処理温度と、熱処理時間と、を含む。第2条件における熱処理温度は、例えば、100℃~400℃であり、一例として220℃である。また、第2条件における熱処理時間は、例えば、5分~15分であり、一例として10分である。 In the first step of the tantalum oxide layer forming process, a solution containing a tantalum compound (hereinafter referred to as the second solution) that is the source of the tantalum oxide layer 5 is applied onto the catalyst layer 4 (after the application process is performed). By performing heat treatment (drying step) of heating and drying under the second condition at least once (for example, once), a material layer that becomes the source of the tantalum oxide layer 5 is formed. The second solution is a solution in which a tantalum compound is dissolved in a solvent (hereinafter referred to as a second solvent). The second solvent is, for example, a liquid mixture of ethylene glycol monoethyl ether, hydrochloric acid, and ethanol. The tantalum compound is, for example, tantalum chloride, but is not limited thereto, and may be, for example, tantalum ethoxide. The metal concentration (tantalum concentration) of the second solution is, for example, 50 mg/L. Further, the amount of the second solution applied is, for example, 1 μL/cm 2 . The second conditions include heat treatment temperature and heat treatment time. The heat treatment temperature under the second condition is, for example, 100°C to 400°C, and is, for example, 220°C. Further, the heat treatment time under the second condition is, for example, 5 minutes to 15 minutes, and is, for example, 10 minutes.
 酸化タンタル層形成工程の第2ステップでは、材料層を所定の焼成条件で焼成する熱処理を行うことにより、酸化タンタル層5を形成する。焼成条件は、焼成温度と、焼成時間と、を含む。焼成温度は、例えば、500℃~700℃であり、一例として、560℃である。焼成時間は、例えば、5分~20分であり、一例として10分である。 In the second step of the tantalum oxide layer forming process, the tantalum oxide layer 5 is formed by performing heat treatment to fire the material layer under predetermined firing conditions. The firing conditions include firing temperature and firing time. The firing temperature is, for example, 500°C to 700°C, and one example is 560°C. The firing time is, for example, 5 minutes to 20 minutes, and is 10 minutes as an example.
 上述の電解用電極1の製造方法では、触媒層4における気孔42内の酸化タンタル部43は、酸化タンタル層形成工程において形成される。 In the method for manufacturing the electrolytic electrode 1 described above, the tantalum oxide portions 43 within the pores 42 in the catalyst layer 4 are formed in the tantalum oxide layer forming step.
 なお、粗面化工程、第1中間層形成工程、第2中間層形成工程、触媒層形成工程、及び酸化タンタル層形成工程は、複数の導電性基板2を備えて導電性基板2の多数個取りが可能な多数個取り基板に対して行ってもよい。この場合には、例えば、酸化タンタル層形成工程の後に多数個取り基板を個々の導電性基板2に分離することで複数の電解用電極1を得るようにしてもよい。 Note that the surface roughening step, the first intermediate layer forming step, the second intermediate layer forming step, the catalyst layer forming step, and the tantalum oxide layer forming step are performed by providing a plurality of conductive substrates 2 and forming a plurality of conductive substrates 2. The process may be performed on a multi-chip board that can be removed. In this case, for example, a plurality of electrolytic electrodes 1 may be obtained by separating the multi-chip substrate into individual conductive substrates 2 after the tantalum oxide layer forming step.
 (4)まとめ
 実施形態1に係る電解用電極1では、電解用電極1は、導電性基板2と、中間層3と、触媒層4と、を備える。導電性基板2は、第1主面21及び第1主面21とは反対側の第2主面22を有する。導電性基板2は、少なくともチタンを含む。中間層3は、導電性基板2の第1主面21上に設けられている。中間層3は、白金を含む。触媒層4は、中間層3上に設けられている。触媒層4は、白金と酸化イリジウムとを含む。中間層3は、導電性基板2の第1主面21上に設けられている第1中間層31と、第1中間層31上に設けられている第2中間層32と、を有する。第1中間層31は、白金を含む。第2中間層32は、白金を含む。第2中間層32は、多孔質層である。第1中間層31は、第2中間層32よりも緻密な層である。実施形態1に係る電解用電極1によれば、塩素発生量を向上させ、かつ、耐久性を向上させることが可能となる。より詳細には、電解用電極1は、第2中間層32が多孔質層であることにより、中間層3全体が緻密な層である場合と比べて、触媒層4のイリジウムで発生した電荷の、導電性基板2への移動経路を増やすことが可能となる。また、電解用電極1では、第1中間層31が第2中間層32よりも緻密な層であることにより、中間層3全体が多孔質層である場合と比べて、中間層3と導電性基板2との接触面積を大きくできて、中間層3と導電性基板2との接触抵抗を低減できる。よって、電解用電極1は、触媒層4のイリジウムで発生した電荷が導電性基板2へ移動しやすくなるので、塩素発生量を向上させることが可能となる。また、電解用電極1は、導電性基板2の第1主面21上に中間層3の第1中間層31が設けられていることにより、中間層3と導電性基板2との接触面積を大きくでき、密着性を向上させることができるので、耐久性を向上させることが可能となる。
(4) Summary The electrolysis electrode 1 according to the first embodiment includes a conductive substrate 2, an intermediate layer 3, and a catalyst layer 4. The conductive substrate 2 has a first main surface 21 and a second main surface 22 opposite to the first main surface 21 . Conductive substrate 2 contains at least titanium. Intermediate layer 3 is provided on first main surface 21 of conductive substrate 2 . Intermediate layer 3 contains platinum. The catalyst layer 4 is provided on the intermediate layer 3. Catalyst layer 4 contains platinum and iridium oxide. The intermediate layer 3 includes a first intermediate layer 31 provided on the first main surface 21 of the conductive substrate 2 and a second intermediate layer 32 provided on the first intermediate layer 31. The first intermediate layer 31 contains platinum. The second intermediate layer 32 contains platinum. The second intermediate layer 32 is a porous layer. The first intermediate layer 31 is a denser layer than the second intermediate layer 32. According to the electrolysis electrode 1 according to the first embodiment, it is possible to improve the amount of chlorine generated and to improve the durability. More specifically, in the electrolytic electrode 1, since the second intermediate layer 32 is a porous layer, the charge generated in iridium in the catalyst layer 4 is reduced compared to a case where the entire intermediate layer 3 is a dense layer. , it becomes possible to increase the movement route to the conductive substrate 2. In addition, in the electrolytic electrode 1, since the first intermediate layer 31 is a denser layer than the second intermediate layer 32, the intermediate layer 3 and the conductivity are more dense than the case where the entire intermediate layer 3 is a porous layer. The contact area with the substrate 2 can be increased, and the contact resistance between the intermediate layer 3 and the conductive substrate 2 can be reduced. Therefore, in the electrolytic electrode 1, the charges generated by the iridium in the catalyst layer 4 are easily transferred to the conductive substrate 2, so that the amount of chlorine generated can be improved. Further, in the electrolytic electrode 1, the first intermediate layer 31 of the intermediate layer 3 is provided on the first main surface 21 of the conductive substrate 2, thereby reducing the contact area between the intermediate layer 3 and the conductive substrate 2. Since it can be made larger and its adhesion can be improved, it is possible to improve its durability.
 また、実施形態1に係る電解用電極1は、白金と酸化イリジウムとを含む触媒層4上に設けられた酸化タンタル層5を備え、かつ、触媒層4の一部が露出しているので、耐久性を向上させることが可能となる。ここにおいて、実施形態1に係る電解用電極1は、触媒層4を塩素の発生に寄与させることができ、触媒層4の主面40全体が塩水に接する場合と比べて、耐久性を向上させることが可能となる。実施形態1に係る電解用電極1は、酸化タンタル層5及び酸化タンタル部43を備えることにより、使用時の触媒層4での白金イリジウムの過剰な消費(溶出)を抑制することが可能となり触媒層4の急激な構造変化の発生を抑制でき、また、触媒層4の部分的な脱離及び触媒層4の剥離を抑制することが可能となる。また、実施形態1に係る電解用電極1は、イリジウムの凝集を抑制することが可能となる。 Further, the electrolysis electrode 1 according to the first embodiment includes the tantalum oxide layer 5 provided on the catalyst layer 4 containing platinum and iridium oxide, and a part of the catalyst layer 4 is exposed. It becomes possible to improve durability. Here, in the electrolysis electrode 1 according to the first embodiment, the catalyst layer 4 can contribute to the generation of chlorine, and the durability is improved compared to the case where the entire main surface 40 of the catalyst layer 4 is in contact with salt water. becomes possible. By including the tantalum oxide layer 5 and the tantalum oxide portion 43, the electrolytic electrode 1 according to the first embodiment can suppress excessive consumption (elution) of platinum iridium in the catalyst layer 4 during use. It is possible to suppress the occurrence of rapid structural changes in the layer 4, and it is also possible to suppress partial detachment of the catalyst layer 4 and peeling of the catalyst layer 4. Further, the electrolysis electrode 1 according to the first embodiment can suppress aggregation of iridium.
 また、実施形態1に係る電解用電極1は、触媒層4の複数の気孔42内に設けられ触媒層4に接している酸化タンタル部43を備えることにより、触媒層4の機械的な強度を高めることが可能となるとともに、酸化イリジウムの過剰な消費、酸化イリジウムの凝集等を抑制することが可能となる。 Furthermore, the electrolysis electrode 1 according to the first embodiment has tantalum oxide parts 43 provided in the plurality of pores 42 of the catalyst layer 4 and in contact with the catalyst layer 4, thereby increasing the mechanical strength of the catalyst layer 4. In addition, it becomes possible to suppress excessive consumption of iridium oxide, aggregation of iridium oxide, etc.
 (実施形態2)
 実施形態2に係る電解用電極1Aは、図4に示すように、第1中間層31が導電性基板2の第1主面21と外周面23と第2主面22とに亘って設けられている点で、実施形態1に係る電解用電極1と相違する。実施形態2に係る電解用電極1Aに関し、実施形態1に係る電解用電極1と同様の構成要素については、同一の符号を付して説明を省略する。
(Embodiment 2)
As shown in FIG. 4, the electrolytic electrode 1A according to the second embodiment has a first intermediate layer 31 provided over the first main surface 21, the outer circumferential surface 23, and the second main surface 22 of the conductive substrate 2. This is different from the electrolysis electrode 1 according to the first embodiment in that the electrode 1 is different from the electrode 1 for electrolysis according to the first embodiment. Regarding the electrolysis electrode 1A according to Embodiment 2, the same components as those of the electrolysis electrode 1 according to Embodiment 1 are given the same reference numerals, and the description thereof will be omitted.
 電解用電極1Aでは、第1中間層31は、導電性基板2の外周面23の少なくとも一部(図4の例では外周面23の全部)を覆う部分311と、導電性基板2の第2主面22の少なくとも一部を覆う部分312と、を更に含む。図4に示した電解用電極1Aでは、第1中間層31の部分312は、導電性基板2の第2主面22の一部を覆っているが、第2主面22の全部を覆っていてもよい。 In the electrolytic electrode 1A, the first intermediate layer 31 includes a portion 311 that covers at least a portion of the outer circumferential surface 23 of the conductive substrate 2 (the entire outer circumferential surface 23 in the example of FIG. It further includes a portion 312 that covers at least a portion of the main surface 22. In the electrolysis electrode 1A shown in FIG. 4, the portion 312 of the first intermediate layer 31 covers a part of the second main surface 22 of the conductive substrate 2, but does not cover the entire second main surface 22. It's okay.
 また、電解用電極1Aでは、触媒層4が、第1中間層31において導電性基板2の外周面23を覆っている部分311も覆っており、導電性基板2の厚さ方向からの平面視で、触媒層4の主面40の外縁400が第1中間層31の外縁310よりも外側に位置している。 In addition, in the electrolysis electrode 1A, the catalyst layer 4 also covers a portion 311 that covers the outer peripheral surface 23 of the conductive substrate 2 in the first intermediate layer 31, and the catalyst layer 4 also covers the portion 311 that covers the outer circumferential surface 23 of the conductive substrate 2. The outer edge 400 of the main surface 40 of the catalyst layer 4 is located outside the outer edge 310 of the first intermediate layer 31.
 また、酸化タンタル層5は、触媒層4の主面40の他に、触媒層4の外周面46も覆っている。 Further, the tantalum oxide layer 5 covers not only the main surface 40 of the catalyst layer 4 but also the outer peripheral surface 46 of the catalyst layer 4.
 電解用電極1Aは、第1中間層31が導電性基板2の外周面23の少なくとも一部を覆う部分311を更に含むことにより、第1中間層31と導電性基板2との接触面積を増加させることが可能となる。 The electrolysis electrode 1A increases the contact area between the first intermediate layer 31 and the conductive substrate 2 by further including a portion 311 in which the first intermediate layer 31 covers at least a portion of the outer peripheral surface 23 of the conductive substrate 2. It becomes possible to do so.
 また、電解用電極1Aは、第1中間層31が導電性基板2の第2主面22の少なくとも一部を覆う部分312を更に含むことにより、第1中間層31と導電性基板2との接触面積を更に増加させることが可能となる。 Further, the electrolytic electrode 1A has a structure in which the first intermediate layer 31 further includes a portion 312 that covers at least a portion of the second main surface 22 of the conductive substrate 2, so that the first intermediate layer 31 and the conductive substrate 2 are separated from each other. It becomes possible to further increase the contact area.
 (実施形態3)
 実施形態3に係る電解用電極1Bは、図5に示すように、第2中間層32が所定パターンに形成されており、複数の多孔質部323を有する点で、実施形態1に係る電解用電極1と相違する。実施形態3に係る電解用電極1Bに関し、実施形態1に係る電解用電極1と同様の構成要素については、同一の符号を付して説明を省略する。
(Embodiment 3)
As shown in FIG. 5, the electrolytic electrode 1B according to the third embodiment is different from the electrolytic electrode 1B according to the first embodiment in that the second intermediate layer 32 is formed in a predetermined pattern and has a plurality of porous parts 323. Different from electrode 1. Regarding the electrolysis electrode 1B according to Embodiment 3, the same components as those of the electrolysis electrode 1 according to Embodiment 1 are given the same reference numerals, and the description thereof will be omitted.
 複数の多孔質部323の各々は、多孔質白金を含む。複数の多孔質部323の各々は、導電性基板2の厚さ方向から見て、直線状である。複数の多孔質部323は、第1中間層31上でストライプ状に並んでいる。言い換えれば、第2中間層32は、ストライプ状のパターン部P1を有している。複数の多孔質部323は、第1方向D1において等間隔で並んでいる。ここでいう「等間隔」とは、厳密に同じ間隔でなくてもよく、規定範囲(規定距離の80%以上120%以下)内の間隔であればよい。第1方向D1は、導電性基板2の厚さ方向から見て、導電性基板2の厚さ方向に直交する一方向である。複数の多孔質部323の長手方向は、導電性基板2の厚さ方向及び第1方向D1に直交する第2方向である。第1方向D1における各多孔質部323の幅L1は、例えば、10μm以上5mm以下である。また、第1方向D1において隣り合う2つの多孔質部323間の距離SP1は、例えば、10μm以上100μm以下である。 Each of the plurality of porous parts 323 contains porous platinum. Each of the plurality of porous parts 323 is linear when viewed from the thickness direction of the conductive substrate 2. The plurality of porous portions 323 are arranged in stripes on the first intermediate layer 31. In other words, the second intermediate layer 32 has a striped pattern portion P1. The plurality of porous parts 323 are arranged at equal intervals in the first direction D1. The term "equal intervals" as used herein does not necessarily have to be exactly the same interval, but may be any interval within a prescribed range (80% or more and 120% or less of the prescribed distance). The first direction D1 is a direction perpendicular to the thickness direction of the conductive substrate 2 when viewed from the thickness direction of the conductive substrate 2. The longitudinal direction of the plurality of porous parts 323 is a second direction orthogonal to the thickness direction of the conductive substrate 2 and the first direction D1. The width L1 of each porous portion 323 in the first direction D1 is, for example, 10 μm or more and 5 mm or less. Further, the distance SP1 between two adjacent porous portions 323 in the first direction D1 is, for example, 10 μm or more and 100 μm or less.
 実施形態3に係る電解用電極1Bは、第2中間層32がストライプ状のパターン部P1を含むので、中間層3と触媒層4との接触面積を増加させることが可能となる。 In the electrolysis electrode 1B according to the third embodiment, since the second intermediate layer 32 includes the striped pattern portion P1, it is possible to increase the contact area between the intermediate layer 3 and the catalyst layer 4.
 第2中間層32は、導電性基板2の厚さ方向から見たパターン形状として、図6~9のいずれかのパターン形状に形成されていてもよい。図6~9は、第2中間層32にドットのハッチングを付してあるが、これらのハッチングは、断面を表すものではなく、第1中間層31上の第2中間層32のパターン形状を見やすくするために付してあるにすぎない。 The second intermediate layer 32 may be formed in any of the pattern shapes shown in FIGS. 6 to 9 as the pattern shape seen from the thickness direction of the conductive substrate 2. In FIGS. 6 to 9, the second intermediate layer 32 is hatched with dots, but these hatchings do not represent the cross section, but rather represent the pattern shape of the second intermediate layer 32 on the first intermediate layer 31. It is only added for ease of viewing.
 図6に示した第1例では、第2中間層32は、ストライプ状のパターン部P1に含まれる複数の多孔質部323と、ストライプ状のパターン部P1を囲んでいる矩形枠状の多孔質部324と、を有する。複数の多孔質部323は、矩形枠状の多孔質部324とつながっている。図6に示した第1例における第2中間層32は、矩形枠状の多孔質部324を有しているが、この多孔質部324を有していない構成であってもよい。 In the first example shown in FIG. 6, the second intermediate layer 32 includes a plurality of porous parts 323 included in the striped pattern part P1 and a rectangular frame-shaped porous part surrounding the striped pattern part P1. 324. The plurality of porous parts 323 are connected to a rectangular frame-shaped porous part 324. Although the second intermediate layer 32 in the first example shown in FIG. 6 has a rectangular frame-shaped porous portion 324, it may have a configuration that does not have this porous portion 324.
 図7に示した第2例では、第2中間層32は、格子状のパターン部P2と、格子状のパターン部P2を囲んでいる矩形枠状の多孔質部324と、を有する。パターン部P2は、格子状の多孔質部323を含む。図7に示した第2例における第2中間層32は、矩形枠状の多孔質部324を有しているが、この多孔質部324を有していない構成であってもよい。 In the second example shown in FIG. 7, the second intermediate layer 32 includes a lattice-shaped pattern portion P2 and a rectangular frame-shaped porous portion 324 surrounding the lattice-shaped pattern portion P2. The pattern portion P2 includes a grid-like porous portion 323. Although the second intermediate layer 32 in the second example shown in FIG. 7 has a rectangular frame-shaped porous portion 324, it may have a configuration that does not have this porous portion 324.
 図8に示した第3例では、第2中間層32は、2次元アレイ状に配置された複数の多孔質部323を含むパターン部P3と、矩形枠状の多孔質部324と、を有する。導電性基板2の厚さ方向からの平面視で、複数の多孔質部323の各々は、正方形状である。複数の多孔質部323の各辺の長さは、5μm以上5mm以下である。また、隣り合う2つの多孔質部323間の距離は、例えば、10μm以上100μm以下である。図8に示した第3例における第2中間層32は、矩形枠状の多孔質部324を有しているが、この多孔質部324を有していない構成であってもよい。また、複数の多孔質部323の各々は、正方形状に限らず、例えば、円形状でもよい。この場合、複数の多孔質部323の半径は、例えば、2.5μm以上2.5mm以下である。 In the third example shown in FIG. 8, the second intermediate layer 32 includes a pattern portion P3 including a plurality of porous portions 323 arranged in a two-dimensional array, and a rectangular frame-shaped porous portion 324. . In plan view from the thickness direction of the conductive substrate 2, each of the plurality of porous parts 323 has a square shape. The length of each side of the plurality of porous parts 323 is 5 μm or more and 5 mm or less. Further, the distance between two adjacent porous portions 323 is, for example, 10 μm or more and 100 μm or less. Although the second intermediate layer 32 in the third example shown in FIG. 8 has a rectangular frame-shaped porous portion 324, it may have a configuration that does not have this porous portion 324. Further, each of the plurality of porous portions 323 is not limited to a square shape, and may be, for example, circular. In this case, the radius of the plurality of porous parts 323 is, for example, 2.5 μm or more and 2.5 mm or less.
 図9に示した第4例では、第2中間層32は、矩形状のパターン部P0と、パターン部P1と、パターン部P2と、パターン部P3と、を含む。図9に示した第4例では、パターン部P0、パターン部P1、パターン部P2及びパターン部P3が、パターン部P0、パターン部P1、パターン部P2及びパターン部P3の順に並んでいるが、これに限らない。 In the fourth example shown in FIG. 9, the second intermediate layer 32 includes a rectangular pattern portion P0, a pattern portion P1, a pattern portion P2, and a pattern portion P3. In the fourth example shown in FIG. 9, pattern portion P0, pattern portion P1, pattern portion P2, and pattern portion P3 are arranged in the order of pattern portion P0, pattern portion P1, pattern portion P2, and pattern portion P3. Not limited to.
 (実施形態4)
 実施形態4に係る電解用電極1Cは、図10に示すように、第1中間層31が導電性基板2の第1主面21と外周面23と第2主面22とに亘って設けられている点で、実施形態3に係る電解用電極1Bと相違する。実施形態4に係る電解用電極1Cに関し、実施形態3に係る電解用電極1Bと同様の構成要素については、同一の符号を付して説明を省略する。
(Embodiment 4)
As shown in FIG. 10, the electrolytic electrode 1C according to the fourth embodiment has a first intermediate layer 31 provided over the first main surface 21, the outer peripheral surface 23, and the second main surface 22 of the conductive substrate 2. This is different from the electrolysis electrode 1B according to the third embodiment in that the electrode 1B is different from the electrode 1B for electrolysis according to the third embodiment. Regarding the electrolysis electrode 1C according to Embodiment 4, the same components as those of the electrolysis electrode 1B according to Embodiment 3 are given the same reference numerals, and the description thereof will be omitted.
 電解用電極1Cでは、第1中間層31は、導電性基板2の外周面23の少なくとも一部(図10の例では、外周面23の全部)を覆う部分311と、導電性基板2の第2主面22の少なくとも一部を覆う部分312と、を更に含む。図10に示した電解用電極1Cでは、第1中間層31の部分312は、導電性基板2の第2主面22の一部を覆っているが、第2主面22の全部を覆っていてもよい。 In the electrolytic electrode 1C, the first intermediate layer 31 includes a portion 311 that covers at least a portion of the outer circumferential surface 23 of the conductive substrate 2 (in the example of FIG. 2 further includes a portion 312 that covers at least a portion of the second main surface 22. In the electrolysis electrode 1C shown in FIG. 10, the portion 312 of the first intermediate layer 31 covers a part of the second main surface 22 of the conductive substrate 2, but does not cover the entire second main surface 22. It's okay.
 また、電解用電極1Cは、触媒層4が第1中間層31において導電性基板2の外周面23を覆っている部分311も覆っており、導電性基板2の厚さ方向からの平面視で、触媒層4の主面40の外縁400が第1中間層31の外縁310よりも外側に位置している。 In addition, in the electrolysis electrode 1C, the catalyst layer 4 also covers a portion 311 covering the outer circumferential surface 23 of the conductive substrate 2 in the first intermediate layer 31, and in a plan view from the thickness direction of the conductive substrate 2. , the outer edge 400 of the main surface 40 of the catalyst layer 4 is located outside the outer edge 310 of the first intermediate layer 31 .
 また、酸化タンタル層5は、触媒層4の主面40の他に、触媒層4の外周面46も覆っている。 Further, the tantalum oxide layer 5 covers not only the main surface 40 of the catalyst layer 4 but also the outer peripheral surface 46 of the catalyst layer 4.
 電解用電極1Cは、第1中間層31が導電性基板2の外周面23の少なくとも一部を覆う部分311を更に含むことにより、第1中間層31と導電性基板2との接触面積を増加させることが可能となる。 The electrolytic electrode 1C further includes a portion 311 in which the first intermediate layer 31 covers at least a portion of the outer peripheral surface 23 of the conductive substrate 2, thereby increasing the contact area between the first intermediate layer 31 and the conductive substrate 2. It becomes possible to do so.
 また、電解用電極1Cは、第1中間層31が導電性基板2の第2主面22の少なくとも一部を覆う部分312を更に含むことにより、第1中間層31と導電性基板2との接触面積を更に増加させることが可能となる。 Further, the electrolytic electrode 1C has a structure in which the first intermediate layer 31 further includes a portion 312 that covers at least a portion of the second main surface 22 of the conductive substrate 2, so that the first intermediate layer 31 and the conductive substrate 2 are separated from each other. It becomes possible to further increase the contact area.
 (変形例)
 実施形態1~4は、本開示の様々な実施形態の一つに過ぎない。実施形態1~4は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。
(Modified example)
Embodiments 1-4 are just one of various embodiments of the present disclosure. Embodiments 1 to 4 can be modified in various ways depending on the design, etc., as long as the objective of the present disclosure can be achieved.
 例えば、導電性基板2の平面視形状は、長方形状に限らず、例えば、正方形状であってもよい。また、導電性基板2の平面視形状は、四角形状(長方形状、正方形状)に限らず、任意の形状であってもよく、例えば、円形状であってもよい。 For example, the plan view shape of the conductive substrate 2 is not limited to a rectangular shape, but may be, for example, a square shape. Further, the shape of the conductive substrate 2 in plan view is not limited to a rectangular shape (rectangular shape, square shape), and may be any shape, for example, a circular shape.
 また、電解用電極1、1A、1B、1Cでは、第2中間層32の厚さが、第1中間層31の厚さと同じであってもよいし、第2中間層32の厚さが、第1中間層31の厚さよりも薄くてもよい。 Further, in the electrolytic electrodes 1, 1A, 1B, and 1C, the thickness of the second intermediate layer 32 may be the same as the thickness of the first intermediate layer 31, or the thickness of the second intermediate layer 32 may be It may be thinner than the thickness of the first intermediate layer 31.
 また、電解用電極1、1Bでは、導電性基板2の厚さ方向からの平面視で、第2中間層32の外縁320と第1中間層31の外縁310及び導電性基板2の外縁20とが重なってもよい。 In addition, in the electrolytic electrodes 1 and 1B, in a plan view from the thickness direction of the conductive substrate 2, the outer edge 320 of the second intermediate layer 32, the outer edge 310 of the first intermediate layer 31, and the outer edge 20 of the conductive substrate 2 may overlap.
 電解用電極1A、1Cでは、第1中間層31が、導電性基板2の外周面23の少なくとも一部を覆う部分311と、導電性基板2の第2主面22の少なくとも一部を覆う部分312と、を更に含んでいるが、導電性基板2の第2主面22の少なくとも一部を覆う部分312を含んでいない構成であってもよい。 In the electrolysis electrodes 1A and 1C, the first intermediate layer 31 includes a portion 311 that covers at least a portion of the outer peripheral surface 23 of the conductive substrate 2 and a portion that covers at least a portion of the second main surface 22 of the conductive substrate 2. 312, but may not include the portion 312 that covers at least a portion of the second main surface 22 of the conductive substrate 2.
 また、触媒層4は、多孔質層である場合に限らず、非多孔質層であってもよい。 Furthermore, the catalyst layer 4 is not limited to being a porous layer, and may be a non-porous layer.
 また、複数の凹部45の形状は、互いに同じでもよい。この場合、例えば、電解用電極1の製造方法では、複数の凹部45を、エッチング技術、レーザ加工技術等を利用して形成してもよい。これらの技術を利用すれば、複数の凹部45のレイアウト、大きさの設計の自由度が高くなるとともに、複数の凹部45の形成位置の再現性が高くなるという利点がある。 Furthermore, the shapes of the plurality of recesses 45 may be the same. In this case, for example, in the method for manufacturing the electrolysis electrode 1, the plurality of recesses 45 may be formed using etching technology, laser processing technology, or the like. Utilizing these techniques has the advantage of increasing the degree of freedom in designing the layout and size of the plurality of recesses 45, and increasing the reproducibility of the formation positions of the plurality of recesses 45.
 また、電解用電極1、1A、1B、1Cでは、触媒層4に複数の凹部45が設けられていなくてもよく、この場合、例えば、酸化タンタル層5が触媒層4の主面40の一部を露出させる複数の穴(例えば、ピンホール又はクラック)を有していればよい。 Further, in the electrolysis electrodes 1, 1A, 1B, and 1C, the plurality of recesses 45 may not be provided in the catalyst layer 4; in this case, for example, the tantalum oxide layer 5 may It suffices to have a plurality of holes (for example, pinholes or cracks) that expose parts.
 また、電解用電極1、1A、1B、1Cでは、触媒層4に複数の凹部45が設けられている場合であっても、酸化タンタル層5に触媒層4の一部を露出させる複数のクラックが形成されていてもよい。上述の電解用電極1の製造方法では、酸化タンタル層5の厚さが50nm以上の場合、酸化タンタル層形成工程の第2ステップにおいて酸化タンタル層5に触媒層4の一部を露出させるクラックが形成されることがある。また、上述の電解用電極1の製造方法では、酸化タンタル層形成工程の第2ステップにおいて酸化タンタル層5にクラックが形成されるとともに、酸化タンタル層5のクラックとつながるクラックが触媒層4に形成されることもある。酸化タンタル層5の複数の穴は、エッチング技術、レーザ加工技術等を利用して形成してもよい。 Further, in the electrolysis electrodes 1, 1A, 1B, and 1C, even if the catalyst layer 4 is provided with a plurality of recesses 45, the tantalum oxide layer 5 has a plurality of cracks that expose a part of the catalyst layer 4. may be formed. In the method for manufacturing the electrolytic electrode 1 described above, when the thickness of the tantalum oxide layer 5 is 50 nm or more, cracks that expose a part of the catalyst layer 4 in the tantalum oxide layer 5 occur in the second step of the tantalum oxide layer forming process. may be formed. Further, in the method for manufacturing the electrolytic electrode 1 described above, cracks are formed in the tantalum oxide layer 5 in the second step of the tantalum oxide layer forming process, and cracks connected to the cracks in the tantalum oxide layer 5 are formed in the catalyst layer 4. Sometimes it is done. The plurality of holes in the tantalum oxide layer 5 may be formed using etching technology, laser processing technology, or the like.
 電解用電極1、1A、1B、1Cは、導電性基板2と中間層3との間に介在する酸化チタン層を備えていてもよい。 The electrolysis electrodes 1, 1A, 1B, and 1C may include a titanium oxide layer interposed between the conductive substrate 2 and the intermediate layer 3.
 酸化タンタル層5は、酸化タンタル以外にタンタルを含んでいてもよい。言い換えれば、酸化タンタル層5は、酸化タンタルとタンタルとが混在する層であってもよい。 The tantalum oxide layer 5 may contain tantalum in addition to tantalum oxide. In other words, the tantalum oxide layer 5 may be a layer in which tantalum oxide and tantalum are mixed.
 また、電解用電極1、1A、1B、1Cは、導電性基板2の第2主面22上に、第1主面21側の中間層3、触媒層4及び酸化タンタル層5を含む構造体と同様の構造体を更に備えていてもよい。 Further, the electrolytic electrodes 1, 1A, 1B, and 1C are structures including an intermediate layer 3, a catalyst layer 4, and a tantalum oxide layer 5 on the second main surface 22 of the conductive substrate 2 on the first main surface 21 side. It may further include a structure similar to the above.
 (まとめ)
 以上説明した実施形態1~4等から、本明細書には以下の態様が開示されている。
(summary)
From Embodiments 1 to 4 described above, the following aspects are disclosed in this specification.
 第1の態様に係る電解用電極(1;1A;1B;1C)は、導電性基板(2)と、中間層(3)と、触媒層(4)と、を備える。導電性基板(2)は、第1主面(21)及び第1主面(21)とは反対側の第2主面(22)を有する。導電性基板(2)は、少なくともチタンを含む。中間層(3)は、導電性基板(2)の第1主面(21)上に設けられている。中間層(3)は、白金を含む。触媒層(4)は、中間層(3)上に設けられている。触媒層(4)は、白金と酸化イリジウムとを含む。中間層(3)は、導電性基板(2)の第1主面(21)上に設けられている第1中間層(31)と、第1中間層(31)上に設けられている第2中間層(32)と、を含む。第1中間層(31)は、白金を含む。第2中間層(32)は、白金を含む。第2中間層(32)は、多孔質層である。第1中間層(31)は、第2中間層(32)よりも緻密な層である。 The electrolysis electrode (1; 1A; 1B; 1C) according to the first aspect includes a conductive substrate (2), an intermediate layer (3), and a catalyst layer (4). The conductive substrate (2) has a first main surface (21) and a second main surface (22) opposite to the first main surface (21). The conductive substrate (2) contains at least titanium. The intermediate layer (3) is provided on the first main surface (21) of the conductive substrate (2). The intermediate layer (3) contains platinum. The catalyst layer (4) is provided on the intermediate layer (3). The catalyst layer (4) contains platinum and iridium oxide. The intermediate layer (3) includes a first intermediate layer (31) provided on the first main surface (21) of the conductive substrate (2) and a first intermediate layer (31) provided on the first intermediate layer (31). 2 intermediate layers (32). The first intermediate layer (31) contains platinum. The second intermediate layer (32) contains platinum. The second intermediate layer (32) is a porous layer. The first intermediate layer (31) is a denser layer than the second intermediate layer (32).
 第1の態様に係る電解用電極(1;1A;1B;1C)によれば、塩素発生量を向上させ、かつ、耐久性を向上させることが可能となる。 According to the electrolysis electrode (1; 1A; 1B; 1C) according to the first aspect, it is possible to improve the amount of chlorine generated and to improve the durability.
 第2の態様に係る電解用電極(1;1A;1B;1C)では、第1の態様において、導電性基板(2)の厚さ方向からの平面視で、第2中間層(32)の外縁(320)は、第1中間層(31)の外縁(310)及び導電性基板(2)の外縁(20)よりも内側に位置している。 In the electrolytic electrode (1; 1A; 1B; 1C) according to the second aspect, in the first aspect, the second intermediate layer (32) is The outer edge (320) is located inside the outer edge (310) of the first intermediate layer (31) and the outer edge (20) of the conductive substrate (2).
 第2の態様に係る電解用電極(1;1A;1B;1C)によれば、第2中間層(32)の厚さの均一性を向上させることが可能となるとともに、第2中間層(32)の材料使用量を低減することが可能となる。 According to the electrolytic electrode (1; 1A; 1B; 1C) according to the second aspect, it is possible to improve the uniformity of the thickness of the second intermediate layer (32), and the second intermediate layer ( 32) It becomes possible to reduce the amount of materials used.
 第3の態様に係る電解用電極(1;1A;1B;1C)では、第1又は2の態様において、第2中間層(32)の厚さが第1中間層(31)の厚さよりも大きい。 In the electrolysis electrode (1; 1A; 1B; 1C) according to the third aspect, in the first or second aspect, the thickness of the second intermediate layer (32) is greater than the thickness of the first intermediate layer (31). big.
 第3の態様に係る電解用電極(1;1A;1B;1C)によれば、耐久性の向上を図るこが可能となる。 According to the electrolytic electrode (1; 1A; 1B; 1C) according to the third aspect, it is possible to improve durability.
 第4の態様に係る電解用電極(1A;1C)によれば、第1~3の態様のいずれか一つにおいて、導電性基板(2)は、第1主面(21)の外縁(210)と第2主面(22)の外縁(220)とをつないでいる外周面(23)を更に有する。第1中間層(31)は、導電性基板(2)の外周面(23)の少なくとも一部を覆う部分(311)を更に含む。 According to the electrolysis electrode (1A; 1C) according to the fourth aspect, in any one of the first to third aspects, the conductive substrate (2) has an outer edge (210 ) and the outer edge (220) of the second main surface (22). The first intermediate layer (31) further includes a portion (311) that covers at least a portion of the outer peripheral surface (23) of the conductive substrate (2).
 第4の態様に係る電解用電極(1A;1C)によれば、第1中間層(31)と導電性基板(2)との接触面積を増加させることが可能となる。 According to the electrolysis electrode (1A; 1C) according to the fourth aspect, it is possible to increase the contact area between the first intermediate layer (31) and the conductive substrate (2).
 第5の態様に係る電解用電極(1A;1C)では、第4の態様において、第1中間層(31)は、導電性基板(2)の第2主面(22)の少なくとも一部を覆う部分(312)を更に含む。 In the electrolytic electrode (1A; 1C) according to the fifth aspect, in the fourth aspect, the first intermediate layer (31) covers at least a portion of the second main surface (22) of the conductive substrate (2). It further includes a covering portion (312).
 第5の態様に係る電解用電極(1A;1C)によれば、第1中間層(31)と導電性基板(2)との接触面積を更に増加させることが可能となる。 According to the electrolysis electrode (1A; 1C) according to the fifth aspect, it is possible to further increase the contact area between the first intermediate layer (31) and the conductive substrate (2).
 第6の態様に係る電解用電極(1B;1C)では、第1~5の態様のいずれか一つにおいて、第2中間層(32)は、ストライプ状のパターン部(P1)を含む。 In the electrolytic electrode (1B; 1C) according to the sixth aspect, in any one of the first to fifth aspects, the second intermediate layer (32) includes a striped pattern portion (P1).
 第6の態様に係る電解用電極(1B;1C)では、中間層(3)と触媒層(4)との接触面積を増加させることが可能となる。 In the electrolysis electrode (1B; 1C) according to the sixth aspect, it is possible to increase the contact area between the intermediate layer (3) and the catalyst layer (4).
 第7の態様に係る電解用電極(1B,1C)では、第1~6の態様のいずれか一つにおいて、第2中間層(32)は、格子状のパターン部(P2)を含む。 In the electrolysis electrode (1B, 1C) according to the seventh aspect, in any one of the first to sixth aspects, the second intermediate layer (32) includes a lattice-like pattern portion (P2).
 第7の態様に係る電解用電極(1B;1C)では、中間層(3)と触媒層(4)との接触面積を増加させることが可能となる。 In the electrolysis electrode (1B; 1C) according to the seventh aspect, it is possible to increase the contact area between the intermediate layer (3) and the catalyst layer (4).
 第8の態様に係る電解用電極(1B;1C)では、第1~7の態様のいずれか一つにおいて、第2中間層(32)は、2次元アレイ状に配置された複数の多孔質部(323)を有するパターン部(P3)を含む。 In the electrolysis electrode (1B; 1C) according to the eighth aspect, in any one of the first to seventh aspects, the second intermediate layer (32) includes a plurality of porous layers arranged in a two-dimensional array. The pattern portion (P3) includes a pattern portion (323).
 第8の態様に係る電解用電極(1B;1C)では、中間層(3)と触媒層(4)との接触面積を増加させることが可能となる。 In the electrolysis electrode (1B; 1C) according to the eighth aspect, it is possible to increase the contact area between the intermediate layer (3) and the catalyst layer (4).
 第9の態様に係る電解用電極(1;1A;1B;1C)は、第1~8の態様のいずれか一つにおいて、酸化タンタル層(5)を更に備える。酸化タンタル層(5)は、触媒層(4)上に設けられている。電解用電極(1;1A;1B;1C)では、触媒層(4)の一部が露出している。 The electrolytic electrode (1; 1A; 1B; 1C) according to the ninth aspect, in any one of the first to eighth aspects, further includes a tantalum oxide layer (5). A tantalum oxide layer (5) is provided on the catalyst layer (4). In the electrolysis electrodes (1; 1A; 1B; 1C), a part of the catalyst layer (4) is exposed.
 第9の態様に係る電解用電極(1;1A;1B;1C)では、耐久性の向上を図ることが可能となる。 In the electrolysis electrode (1; 1A; 1B; 1C) according to the ninth aspect, it is possible to improve durability.
 第10の態様に係る電解用電極(1;1A;1B;1C)では、第9の態様において、触媒層(4)は、各々が白金(白金粒子411)と酸化イリジウム(酸化イリジウム粒子412)とを含む複数の複合粒子(41)と、複数の気孔(42)と、を含む多孔質層である。電解用電極(1;1A;1B;1C)は、複数の気孔(42)のうち少なくとも1つの気孔(42)に設けられ触媒層(4)に接している酸化タンタル部(43)を更に含む。 In the electrolysis electrode (1; 1A; 1B; 1C) according to the tenth aspect, in the ninth aspect, the catalyst layer (4) includes platinum (platinum particles 411) and iridium oxide (iridium oxide particles 412), respectively. The porous layer includes a plurality of composite particles (41) including a plurality of composite particles (41) and a plurality of pores (42). The electrolytic electrode (1; 1A; 1B; 1C) further includes a tantalum oxide part (43) provided in at least one pore (42) among the plurality of pores (42) and in contact with the catalyst layer (4). .
 第10の態様に係る電解用電極(1;1A;1B;1C)では、耐久性の向上を図りながら、塩素発生効率を向上させることが可能となる。 In the electrolysis electrode (1; 1A; 1B; 1C) according to the tenth aspect, it is possible to improve the chlorine generation efficiency while improving the durability.
 第11の態様に係る電解用電極(1;1A;1B;1C)では、第9又は10の態様において、触媒層(4)は、導電性基板(2)側とは反対側の主面(40)から凹んだ複数の凹部(45)を有する。酸化タンタル層(5)は、触媒層(4)における主面(40)上に設けられている第1部分(51)と、触媒層(4)における複数の凹部(45)のうち少なくとも1つの凹部(45)の内面(451)上に設けられている第2部分(52)と、を含む。 In the electrolysis electrode (1; 1A; 1B; 1C) according to the eleventh aspect, in the ninth or tenth aspect, the catalyst layer (4) has a main surface ( It has a plurality of recesses (45) recessed from 40). The tantalum oxide layer (5) has a first portion (51) provided on the main surface (40) of the catalyst layer (4) and at least one of the plurality of recesses (45) in the catalyst layer (4). a second portion (52) provided on the inner surface (451) of the recess (45).
 第11の態様に係る電解用電極(1;1A;1B;1C)では、耐久性の向上を図りながら、塩素発生効率を向上させることが可能となる。 In the electrolytic electrode (1; 1A; 1B; 1C) according to the eleventh aspect, it is possible to improve the chlorine generation efficiency while improving the durability.
 第12の態様に電解用電極(1;1A;1B;1C)では、第11の態様において、触媒層(4)は、複数の凹部(45)によって触媒層(4)の一部が露出している。 In the twelfth aspect of the electrolysis electrode (1; 1A; 1B; 1C), in the eleventh aspect, the catalyst layer (4) is partially exposed by the plurality of recesses (45). ing.
 第12の態様に係る電解用電極(1;1A;1B;1C)では、触媒層(4)において、凹部(45)により露出している凹部(45)の内面(451)から塩水が触媒層(4)の面内方向に浸入しやすくなる。これにより、第12の態様に係る電解用電極(1;1A;1B;1C)では、触媒層(4)が塩素発生に寄与しやすくなり、耐久性を向上させることが可能となると推考される。 In the electrolysis electrode (1; 1A; 1B; 1C) according to the twelfth aspect, salt water flows into the catalyst layer (4) from the inner surface (451) of the recess (45) exposed by the recess (45). (4) It becomes easier to penetrate in the in-plane direction. As a result, in the electrolysis electrode (1; 1A; 1B; 1C) according to the twelfth aspect, it is assumed that the catalyst layer (4) can more easily contribute to chlorine generation, making it possible to improve durability. .
 第13の態様に係る電解用電極(1;1A;1B;1C)では、第1~12の態様のいずれか一つにおいて、導電性基板(2)の第1主面(21)は、粗面である。 In the electrolysis electrode (1; 1A; 1B; 1C) according to the thirteenth aspect, in any one of the first to twelfth aspects, the first main surface (21) of the conductive substrate (2) has a rough surface. It is a surface.
 第13の態様に係る電解用電極(1;1A;1B;1C)では、導電性基板(2)と中間層(3)との密着性を向上させることが可能となり、触媒層(4)が導電性基板(2)側から剥離するのを抑制することが可能となり、耐久性を向上させることが可能となる。 In the electrolysis electrode (1; 1A; 1B; 1C) according to the thirteenth aspect, it is possible to improve the adhesion between the conductive substrate (2) and the intermediate layer (3), and the catalyst layer (4) It becomes possible to suppress peeling from the conductive substrate (2) side, and it becomes possible to improve durability.
 1、1A;1B;1C 電解用電極
 2 導電性基板
 20 外縁
 21 第1主面
 210 外縁
 22 第2主面
 220 外縁
 23 外周面
 3 中間層
 31 第1中間層
 310 外縁
 311 部分
 312 部分
 32 第2中間層
 320 外縁
 323 多孔質部
 4 触媒層
 40 主面
 41 複合粒子
 411 白金粒子
 412 酸化イリジウム粒子
 42 気孔
 43 酸化タンタル部
 45 凹部
 451 内面
 5 酸化タンタル層
 51 第1部分
 52 第2部分
 P1 パターン部
 P2 パターン部
 P3 パターン部
 
1, 1A; 1B; 1C Electrolysis electrode 2 Conductive substrate 20 Outer edge 21 First main surface 210 Outer edge 22 Second main surface 220 Outer edge 23 Outer peripheral surface 3 Intermediate layer 31 First intermediate layer 310 Outer edge 311 Part 312 Part 32 Second Intermediate layer 320 Outer edge 323 Porous part 4 Catalyst layer 40 Main surface 41 Composite particle 411 Platinum particle 412 Iridium oxide particle 42 Pore 43 Tantalum oxide part 45 Recessed part 451 Inner surface 5 Tantalum oxide layer 51 First part 52 Second part P1 Pattern part P2 Pattern section P3 Pattern section

Claims (13)

  1.  第1主面及び前記第1主面とは反対側の第2主面を有し、少なくともチタンを含む導電性基板と、
     前記導電性基板の前記第1主面上に設けられており、白金を含む中間層と、
     前記中間層上に設けられており、白金と酸化イリジウムとを含む触媒層と、を備え、
     前記中間層は、
      前記導電性基板の前記第1主面上に設けられており、白金を含む第1中間層と、
      前記第1中間層上に設けられており、白金を含む第2中間層と、を有し、
     前記第2中間層は、多孔質層であり、
     前記第1中間層は、前記第2中間層よりも緻密な層である、
     電解用電極。
    a conductive substrate having a first main surface and a second main surface opposite to the first main surface, and containing at least titanium;
    an intermediate layer provided on the first main surface of the conductive substrate and containing platinum;
    a catalyst layer provided on the intermediate layer and containing platinum and iridium oxide,
    The intermediate layer is
    a first intermediate layer provided on the first main surface of the conductive substrate and containing platinum;
    a second intermediate layer provided on the first intermediate layer and containing platinum;
    The second intermediate layer is a porous layer,
    The first intermediate layer is a denser layer than the second intermediate layer.
    Electrode for electrolysis.
  2.  前記導電性基板の厚さ方向からの平面視で、前記第2中間層の外縁は、前記第1中間層の外縁及び前記導電性基板の外縁よりも内側に位置している、
     請求項1に記載の電解用電極。
    In plan view from the thickness direction of the conductive substrate, the outer edge of the second intermediate layer is located inside the outer edge of the first intermediate layer and the outer edge of the conductive substrate.
    The electrode for electrolysis according to claim 1.
  3.  前記第2中間層の厚さが前記第1中間層の厚さよりも大きい、
     請求項1又は2に記載の電解用電極。
    the thickness of the second intermediate layer is greater than the thickness of the first intermediate layer;
    The electrode for electrolysis according to claim 1 or 2.
  4.  前記導電性基板は、前記第1主面の外縁と前記第2主面の外縁とをつないでいる外周面を更に有し、
     前記第1中間層は、前記導電性基板の前記外周面の少なくとも一部を覆う部分を更に含む、
     請求項1~3のいずれか一項に記載の電解用電極。
    The conductive substrate further has an outer peripheral surface connecting an outer edge of the first main surface and an outer edge of the second main surface,
    The first intermediate layer further includes a portion that covers at least a portion of the outer peripheral surface of the conductive substrate.
    The electrode for electrolysis according to any one of claims 1 to 3.
  5.  前記第1中間層は、前記導電性基板の前記第2主面の少なくとも一部を覆う部分を更に含む、
     請求項4に記載の電解用電極。
    The first intermediate layer further includes a portion covering at least a portion of the second main surface of the conductive substrate.
    The electrode for electrolysis according to claim 4.
  6.  前記第2中間層は、ストライプ状のパターン部を含む、
     請求項1~5のいずれか一項に記載の電解用電極。
    The second intermediate layer includes a striped pattern portion.
    The electrode for electrolysis according to any one of claims 1 to 5.
  7.  前記第2中間層は、格子状のパターン部を含む、
     請求項1~6のいずれか一項に記載の電解用電極。
    The second intermediate layer includes a grid pattern part.
    The electrode for electrolysis according to any one of claims 1 to 6.
  8.  前記第2中間層は、2次元アレイ状に配置された複数の多孔質部を有するパターン部を含む、
     請求項1~7のいずれか一項に記載の電解用電極。
    The second intermediate layer includes a pattern portion having a plurality of porous portions arranged in a two-dimensional array.
    The electrode for electrolysis according to any one of claims 1 to 7.
  9.  前記触媒層上に設けられている酸化タンタル層を更に備え、
     前記電解用電極では、前記触媒層の一部が露出している、
     請求項1~8のいずれか一項に記載の電解用電極。
    Further comprising a tantalum oxide layer provided on the catalyst layer,
    In the electrolysis electrode, a part of the catalyst layer is exposed,
    The electrode for electrolysis according to any one of claims 1 to 8.
  10.  前記触媒層は、各々が白金と酸化イリジウムとを含む複数の複合粒子と、複数の気孔と、を含む多孔質層であり、
     前記複数の気孔のうち少なくとも1つの気孔内に設けられ前記触媒層に接している酸化タンタル部を更に含む、
     請求項9に記載の電解用電極。
    The catalyst layer is a porous layer including a plurality of composite particles each containing platinum and iridium oxide and a plurality of pores,
    further comprising a tantalum oxide portion provided in at least one of the plurality of pores and in contact with the catalyst layer;
    The electrode for electrolysis according to claim 9.
  11.  前記触媒層は、前記導電性基板側とは反対側の主面から凹んだ複数の凹部を有し、
     前記酸化タンタル層は、前記触媒層における前記主面上に設けられている第1部分と、前記触媒層における前記複数の凹部のうち少なくとも1つの凹部の内面上に設けられている第2部分と、を含む、
     請求項9又は10に記載の電解用電極。
    The catalyst layer has a plurality of recesses recessed from the main surface opposite to the conductive substrate side,
    The tantalum oxide layer includes a first portion provided on the main surface of the catalyst layer, and a second portion provided on the inner surface of at least one of the plurality of recesses in the catalyst layer. ,including,
    The electrode for electrolysis according to claim 9 or 10.
  12.  前記触媒層では、前記複数の凹部によって前記触媒層の前記一部が露出している、
     請求項11に記載の電解用電極。
    In the catalyst layer, the part of the catalyst layer is exposed by the plurality of recesses,
    The electrode for electrolysis according to claim 11.
  13.  前記導電性基板の前記第1主面は、粗面である、
     請求項1~12のいずれか一項に記載の電解用電極。
     
    the first main surface of the conductive substrate is a rough surface;
    The electrode for electrolysis according to any one of claims 1 to 12.
PCT/JP2023/001109 2022-03-29 2023-01-17 Electrolysis electrode WO2023188704A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-054527 2022-03-29
JP2022054527 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023188704A1 true WO2023188704A1 (en) 2023-10-05

Family

ID=88200219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001109 WO2023188704A1 (en) 2022-03-29 2023-01-17 Electrolysis electrode

Country Status (1)

Country Link
WO (1) WO2023188704A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166384A (en) * 1980-05-23 1981-12-21 Japan Carlit Co Ltd:The Anode coated with lead dioxide
JPS58171589A (en) * 1982-03-31 1983-10-08 Ishifuku Kinzoku Kogyo Kk Electrode for electrolysis and its manufacture
JPS62174394A (en) * 1986-10-31 1987-07-31 Ishifuku Kinzoku Kogyo Kk Production of electrode for electrolysis
JPH02200790A (en) * 1989-01-30 1990-08-09 Ishifuku Kinzoku Kogyo Kk Electrode for electrolysis
JP2009142733A (en) * 2007-12-13 2009-07-02 Ebara Corp Insoluble electrode and electrochemical liquid treatment apparatus
JP2020117780A (en) * 2019-01-24 2020-08-06 パナソニックIpマネジメント株式会社 Electrode for electrolysis and production method of electrode for electrolysis
WO2021117311A1 (en) * 2019-12-13 2021-06-17 パナソニックIpマネジメント株式会社 Electrolysis electrode

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166384A (en) * 1980-05-23 1981-12-21 Japan Carlit Co Ltd:The Anode coated with lead dioxide
JPS58171589A (en) * 1982-03-31 1983-10-08 Ishifuku Kinzoku Kogyo Kk Electrode for electrolysis and its manufacture
JPS62174394A (en) * 1986-10-31 1987-07-31 Ishifuku Kinzoku Kogyo Kk Production of electrode for electrolysis
JPH02200790A (en) * 1989-01-30 1990-08-09 Ishifuku Kinzoku Kogyo Kk Electrode for electrolysis
JP2009142733A (en) * 2007-12-13 2009-07-02 Ebara Corp Insoluble electrode and electrochemical liquid treatment apparatus
JP2020117780A (en) * 2019-01-24 2020-08-06 パナソニックIpマネジメント株式会社 Electrode for electrolysis and production method of electrode for electrolysis
WO2021117311A1 (en) * 2019-12-13 2021-06-17 パナソニックIpマネジメント株式会社 Electrolysis electrode

Similar Documents

Publication Publication Date Title
Chen et al. Corrosion resistance mechanism of a novel porous Ti/Sn-Sb-RuOx/β-PbO2 anode for zinc electrowinning
KR101559604B1 (en) Highly electrically conductive surfaces for electrochemical applications
JP7153887B2 (en) electrode for electrolysis
TWI433964B (en) Multi-layer mixed metal oxide electrode and method for making same
JPS6143436B2 (en)
CN1643621A (en) Electrically conductive glass and photoelectric conversion element using the same
TWI471883B (en) Electrophoretically depositde cathode capacitor
JP2006188742A (en) Insoluble anode
CN1010234B (en) Cathode for electrolysis and process for manufacture of said cathode
JPS591795B2 (en) Denkiyoku no Seizouhou
WO2023188704A1 (en) Electrolysis electrode
EP0955395B1 (en) Electrolyzing electrode and process for the production thereof
JP2011202206A (en) Insoluble electrode and method of producing the same
US7914653B2 (en) Anode for electrochemical reaction
KR20150009755A (en) Menufacture Method of Insoluble Electrode for Electrolysis of Ballast Water
JP3653296B2 (en) Electrode for electrolysis and method for producing the same
JP2020180315A (en) Electrode for electrolysis
WO2020217817A1 (en) Electrode for electrolysis, and method for producing electrode for electrolysis
WO2023188991A1 (en) Electrode for electrolysis and hypochlorous acid generation device
EP2055807B1 (en) Oxygen Evolution Electrode
KR100770736B1 (en) Ceramic Electrode for Water Treatment And Making Method of The Same and Electrode Apparatus using The Same
WO2023188992A1 (en) Electrode for electrolysis and hypochlorous acid generation device
JP2020117780A (en) Electrode for electrolysis and production method of electrode for electrolysis
RU2791363C2 (en) Anode for electrolytic chlorine recovery
JP5159624B2 (en) Electrode plate grid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778743

Country of ref document: EP

Kind code of ref document: A1