WO2023188734A1 - 液晶材料を用いた電波の反射素子 - Google Patents

液晶材料を用いた電波の反射素子 Download PDF

Info

Publication number
WO2023188734A1
WO2023188734A1 PCT/JP2023/001961 JP2023001961W WO2023188734A1 WO 2023188734 A1 WO2023188734 A1 WO 2023188734A1 JP 2023001961 W JP2023001961 W JP 2023001961W WO 2023188734 A1 WO2023188734 A1 WO 2023188734A1
Authority
WO
WIPO (PCT)
Prior art keywords
common
reflective element
liquid crystal
electrode
bias
Prior art date
Application number
PCT/JP2023/001961
Other languages
English (en)
French (fr)
Inventor
和己 松永
真一郎 岡
光隆 沖田
大一 鈴木
Original Assignee
株式会社ジャパンディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンディスプレイ filed Critical 株式会社ジャパンディスプレイ
Publication of WO2023188734A1 publication Critical patent/WO2023188734A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures

Definitions

  • a reflective element includes common electrodes arranged in a matrix spaced apart in one direction and a direction crossing the one direction, and bias electrodes arranged so as to overlap the common electrodes in a plan view. , a liquid crystal layer between the common electrode and the bias electrode, and a common wiring that connects adjacent common electrodes in the array of common electrodes, and the length of the common wiring is set according to the radio wave of a specific wavelength ⁇ . , has a length that is half the apparent wavelength ⁇ g when a radio wave with a specific wavelength ⁇ propagates through the liquid crystal layer.
  • FIG. 5B is an enlarged plan view showing a part of a reflective element according to an embodiment of the present invention, and is a diagram showing a plurality of common electrodes and a plurality of common wirings.
  • FIG. 5C is an enlarged plan view showing a part of a reflective element according to an embodiment of the present invention, and is a diagram showing a plurality of common electrodes and a plurality of common wirings.
  • FIG. 5D is an enlarged plan view showing a part of a reflective element according to an embodiment of the present invention, and is a diagram showing a plurality of common electrodes and a plurality of common wirings.
  • a member or region when a member or region is said to be “above (or below)" another member or region, it means that it is directly above (or directly below) the other member or region unless otherwise specified. This includes not only the case where the item is located above (or below) another member or area, that is, the case where another component is included in between above (or below) the other member or area. .
  • Adjacent common electrodes 102 are interconnected by common wiring 108.
  • a plurality of adjacent common electrodes 102 are not necessarily connected to each other by the common wiring 108, and may be connected only along the X-axis direction or only along the Y-axis direction.
  • the bias electrodes 104 are arranged so that adjacent ones have a gap between them, and are arranged in a physically separated state.
  • the common electrode 102 is provided on a first substrate 132, and the bias electrode 104 is provided on a second substrate 134.
  • the reflective element 100A is a device that scatters radio waves incident on the incident surface in a predetermined direction, and the first substrate 132 is placed on the side of the incident surface, and the second substrate 134 is placed on the back side of the incident surface. That is, the common electrode 102 is arranged on the incident surface, and the bias electrode 104 is arranged on the back side of the common electrode 102 with the liquid crystal layer 106 in between.
  • the second substrate 134 is provided with a selection signal line 110 extending in the X direction, a bias signal line 112 extending in the Y direction, and a switching element 116.
  • the switching elements 116 are provided in one-to-one correspondence with the bias electrodes 104.
  • the switching operation (on/off state) of the switching element 116 is controlled by a selection signal from the selection signal line 110, and a bias signal (bias voltage) is input from the bias signal line 112.
  • Bias signals are individually input to the bias electrodes 104 by switching elements 116 . That is, bias signals are individually input to the bias electrodes 104 arranged in a matrix by the switching elements 116.
  • the first alignment film 114A and the second alignment film 114B may have any structure as long as they have the function of aligning liquid crystal molecules, and may be made of organic or inorganic materials, for example, polyimide or the like may be used. Further, the orientation direction may be horizontal, vertical, or tilted, but this example shows the case of a horizontally oriented film.
  • the alignment state of liquid crystal molecules in the liquid crystal layer 106 is controlled by the bias electrode 104. Since the bias voltage applied to the bias electrode 104 can be controlled for each unit cell 10A, the alignment state of liquid crystal molecules in the liquid crystal layer 106 can also be controlled for each unit cell 10A.
  • the dielectric constant of the liquid crystal layer 106 changes depending on the alignment state of liquid crystal molecules.
  • the phase of the scattered wave of the reflective element 100A changes depending on the dielectric constant of the liquid crystal layer 106. Therefore, by changing the dielectric constant of the liquid crystal layer 106 for each unit cell 10A, it is possible to generate a phase difference within the plane of the reflective element 100A and control the traveling direction of the scattered waves.
  • the unit cell 10A can also be regarded as a patch antenna in which a patch electrode (common electrode 102) is provided on the top surface of the dielectric (liquid crystal layer 106) and a reflective electrode (bias electrode 104) is provided on the back surface.
  • FIGS. 3 and 4 show details of the unit cell 10A that constitutes the reflective element 100A.
  • FIG. 3 shows a plan view of the unit cell 10A
  • FIG. 4 shows a cross-sectional structure along line CD shown in FIG.
  • the unit cell 10A is arranged such that the common electrode 102, the liquid crystal layer 106, and the bias electrode 104 overlap in plan view.
  • the common electrode 102 is connected to the common wiring 108.
  • the common wiring 108 has a predetermined length and width. One end of the common wiring 108 is connected to the center point of one side of the common electrode 102. In other words, the common wiring 108 is connected such that the center point of one side of the common electrode 102 is included in the width portion of the common wiring 108.
  • the common wiring 108 and the common electrode 102 are formed of the same conductive layer.
  • the common wiring 108 is connected to a power supply circuit (not shown). Alternatively, the common wiring 108 is grounded or connected to a grounded wiring. As shown in FIG. 1, the common wiring 108 connects adjacent common electrodes 102 to each other. Since the common electrodes 102 are connected to each other by the common wiring 108, the common electrodes 102 arranged in a matrix have an equal potential.
  • the bias electrode 104 is formed to have a large area in order to function as a reflecting plate. As shown in FIG. 3, the bias electrode 104 has a larger area than the common electrode 102 in the unit cell 10A. The bias electrode 104 and the common electrode 102 are provided so as to overlap, and at this time, the common electrode 102 is arranged in a region inside the bias electrode 104.
  • the alignment state of liquid crystal molecules is controlled by the bias electrode 104. That is, the alignment state of the liquid crystal molecules in the liquid crystal layer 106 is controlled by the bias signal applied to the bias electrode 104.
  • the bias signal is a DC voltage signal or a polarity inverted DC voltage signal in which a positive DC voltage and a negative DC voltage are alternately reversed.
  • the liquid crystal layer 106 is formed of a liquid crystal material having dielectric anisotropy.
  • the liquid crystal material forming the liquid crystal layer 106 may exhibit liquid crystallinity and have dielectric constant anisotropy, and nematic liquid crystal is particularly preferred.
  • the effect of this embodiment remains the same whether the dielectric anisotropy of the liquid crystal material is positive or negative.
  • this embodiment will be described using a liquid crystal layer 106 having positive dielectric constant anisotropy.
  • the dielectric constant of the liquid crystal layer 106 changes depending on the alignment state of liquid crystal molecules.
  • the alignment state of liquid crystal molecules is controlled by a bias electrode 104.
  • the phase of the scattered wave changes depending on the dielectric constant of the liquid crystal layer.
  • the planarizing layer 128 is formed to planarize unevenness formed by switching elements and the like. Any material may be used as long as it has flatness and insulating properties. For example, organic materials are preferable, and acrylic resins, epoxy resins, polyimide materials, etc. can be used.
  • the common electrode 102, the bias electrode 104, and the common wiring 108 have a function of conducting a signal for driving the liquid crystal and a function of scattering input radio waves.
  • a material with low conductivity is desirable, and for example, aluminum, copper, gold, or an alloy thereof can be used. Further, in order to lower the resistance, it is desirable to make the film thicker than the bias signal line and selection signal line.
  • the first substrate 132 and the second substrate 134 are arranged with a gap between them and are bonded together using a sealing material.
  • the sealing material only needs to have a function of bonding the first substrate 132 and the second substrate 134, and is formed of an organic material such as acrylic resin or epoxy resin, for example.
  • the liquid crystal layer 106 is sealed within a region surrounded by the first substrate 132, the second substrate 134, and the sealant.
  • the gap between the first substrate 132 and the second substrate 134 is approximately 20 ⁇ m to 100 ⁇ m, for example, 40 ⁇ m.
  • a spacer may be provided between the first substrate 132 and the second substrate 134 to maintain a constant distance.
  • common electrodes 102 arranged in a matrix are connected to each other by a common wiring 108, and bias electrodes 104 are connected to a bias signal line 112 via a switching element 116, so that the potential can be individually controlled.
  • the dielectric constant of the liquid crystal layer 106 can be changed for each unit cell 10A.
  • the phase of the scattered waves can be controlled for each unit cell 10A.
  • FIGS. 5A, 5B, 5C, and 5D are enlarged plan views showing a part of a reflective element according to an embodiment of the present invention, in which a plurality of common electrodes 102 and a plurality of common wirings 108 are shown.
  • FIG. 5A, FIG. 5B, FIG. 5C, and FIG. 5D each have a common wiring 108 of a different shape.
  • the common electrode 102A has a length Px in the direction along the X-axis and a length Py in the direction along the Y-axis. The length Px and the length Py are appropriately set according to the frequency of the target radio wave. In the following description, reference will be made to FIG. 5A.
  • the common electrode 102A has a gap Wx between it and the common electrode 102B adjacent to it in the direction along the X-axis, and has a gap Wy between it and the common electrode 102C adjacent to it in the direction along the Y-axis. . It is preferable that the gap Wx and the gap Wy are smaller than the length Px and the length Py. This is because more preferable reflection characteristics can be obtained by arranging a plurality of common electrodes 102 in a reflective element at a high density.
  • the common wiring 108A that connects the common electrode 102A and the common electrode 102B adjacent in the direction along the X-axis has a length Lx.
  • the common wiring 108B that connects the common electrode 102A and the common electrode 102C adjacent to each other in the direction along the Y-axis has a length Ly.
  • the distance through which the current flows from the connection point between the common electrode 102A and the common wiring 108B to the connection point between the common electrode 102C and the common wiring 108B is Ly.
  • the length Lx and the length Ly have a length that is half the apparent wavelength of the target radio wave propagating through the dielectric layer.
  • the apparent wavelength ⁇ g at which the target radio wave propagates through the dielectric layer is calculated based on the dielectric constant ⁇ s of the dielectric layer. , is expressed as the following equation (1).
  • ⁇ g ⁇ /( ⁇ - s ) 1/2 (1)
  • the length Lx and the length Ly have a length of ⁇ g /2.
  • the length Lx and the length Ly have lengths within ⁇ 10% of ⁇ g /2. This is because the liquid crystal layer has dielectric anisotropy, and the apparent wavelength ⁇ g changes with the application of a bias voltage.
  • the dielectric constant of the liquid crystal layer changes from the short axis direction dielectric constant ⁇ ⁇ of the liquid crystal molecules to the long axis direction dielectric constant ⁇ // ( ⁇ ⁇ ⁇ ⁇ // ). Therefore, the length Lx and the length Ly are preferably within the range of ⁇ g /( ⁇ ⁇ ) 1/2 to ⁇ g /( ⁇ // ) 1/2 , and more preferably in the minor axis direction.
  • ⁇ g /( ⁇ ) 1/2 using the average value ⁇ of the permittivity ⁇ ⁇ and the longitudinal permittivity ⁇ // .
  • a liquid crystal molecule has been developed that has dielectric constant anisotropy with a minor axis dielectric constant ⁇ ⁇ of 2.46 and a major axis dielectric constant ⁇ // of 3.53 (Fritzsch, C., Snow, B., Sargent, J., Klass, D., Kaur, S. and Parri, O. (2019), 77-1: Invited Paper: Liquid Crystals beyond Displays: Smart Antennas and Digital Optics. SID Symposium Digest of Technical Papers , 50: 1098-1101.).
  • ⁇ ⁇ and ⁇ // can be expressed as 0.8 ⁇ and 1.2 ⁇ , respectively.
  • the length Lx and the length Ly have design values within the range of 0.9 ⁇ g /2 to 1.1 ⁇ g /2.
  • the length Lx and the length Ly are values determined depending on the wavelength of the scattered radio waves, and are larger than the distance between the gap Wx and the gap Wy.
  • FIG. 5A shows a shape in which the common wiring 108 having a length Lx is bent into a hook shape between the common electrode 102A and the common electrode 102B in a plan view.
  • the common wiring 108A that connects the common electrode 102A and the common electrode 102B has a bent shape having a plurality of bending points between one end and the other end in plan view.
  • the common wiring 108A can be provided in the gap Wx which is narrower than the length Lx.
  • the common wiring 108B also has the same shape as the common wiring 108A, the common wiring 108B can be provided in a gap Wy that is narrower than the length Ly. Note that as long as the lengths Lx and Ly are satisfied, there is no limit to the number of bending points that this bent shape has, and as in the pattern of the common wirings 108A and 108B shown in FIG. It may have.
  • the shapes of the common wirings 108A and 108B are not limited to the shapes shown in FIGS. 5A and 5B.
  • it may have a zigzag pattern in which straight lines are bent alternately, or as shown in FIG. 5D, it may have a curved pattern that draws an arc. It's okay.
  • the common electrode 102A has an asymmetrical shape with respect to the horizontally polarized wave and the vertically polarized wave of the incident radio wave.
  • the lengths Lx and Ly of the common wirings 108A and 108B also have different lengths. That is, assuming that the apparent wavelengths at which the horizontally polarized wave and the vertically polarized wave of the target radio wave propagate through the dielectric layer are ⁇ gx and ⁇ gy , respectively, the length Lx and the length Ly are ⁇ gx /2 and ⁇ It has a length of gy /2.
  • the first state is a state in which the long axis direction of the liquid crystal molecules 130 is aligned substantially horizontally with respect to the surfaces of the common electrode 102 and the bias electrode 104.
  • FIG. 8 schematically shows how the traveling direction of reflected waves changes depending on the first unit cell 10A-1 and the second unit cell 10A-2.
  • a bias signal V1 is applied from the bias signal line 112A to the bias electrode 104A of the first unit cell 10A-1
  • a bias signal V2 is applied from the bias signal line 112B to the bias electrode 104B of the second unit cell 10A-2.
  • the voltage levels of the bias signal V1 and the bias signal V2 are different (V1 ⁇ V2).
  • the common electrodes 102 of the first unit cell 10A-1 and the second unit cell 10A-2 have the same potential, and are set to a common potential, for example.
  • FIG. 8 shows that when radio waves are incident on the first unit cell 10A-1 and the second unit cell 10A-2 with the same phase, different bias signals (V1 ⁇ V2) is applied, the phase change of the scattered wave by the second unit cell 10A-2 is larger than that of the first unit cell 10A-1.
  • the phase of the scattered wave R1 scattered by the first unit cell 10A-1 and the phase of the scattered wave R2 scattered by the second unit cell 10A-2 are different (in FIG. 8, the phase of the scattered wave R2 is different from the phase of the scattered wave R1). ), the direction of propagation of the scattered waves appears to change diagonally.
  • This embodiment shows an example of a reflective element in which the structure of the common electrode and common wiring differs from that of the first embodiment.
  • parts that are different from the first embodiment will be mainly explained, and overlapping parts will be omitted as appropriate.
  • FIG. 9 is an enlarged plan view showing a part of the reflective element according to the second embodiment, and is a diagram showing a plurality of common electrodes having a plurality of cutouts and a plurality of common wirings.
  • the common electrode 102 has a cutout 136 (recess) in a part of its outer shape, and the common wiring 108 is connected to the cutout 136. Thereby, impedance matching can be achieved at the connection point between the common electrode 102 and the common wiring 108, and reflection loss can be further suppressed compared to the structure of the first embodiment.
  • the common electrode 102 is provided on the first substrate 132, and the bias electrode 104 is provided on the second substrate 134.
  • a common electrode 102 is arranged on the incident surface, and a bias electrode 104 is arranged on the back side of the common electrode 102 with a liquid crystal layer 106 in between.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

反射素子は、一方向及び前記一方向に交差する方向に離隔してマトリクス状に配列されたコモン電極と、コモン電極と平面視で重なるように配列されたバイアス電極と、コモン電極とバイアス電極との間の液晶層と、コモン電極の配列の中で隣接するコモン電極を接続するコモン配線とを有し、コモン配線の長さは、特定波長λの電波に対し、特定波長λの電波が前記液晶層を伝搬するときの見かけの波長λgの半分の長さを有する。

Description

液晶材料を用いた電波の反射素子
 本発明の一実施形態は、入射波の散乱方向を制御することのできる液晶材料を用いた電波の反射素子の構造に関する。
 反射素子は、入射波を所望の方向に散乱する機能を有し、例えば、高層ビルの谷間の電波が届きにくい地帯(不感地帯)に電波を散乱させるときに使用される。電波の反射素子として、例えば、メインアレイ素子(ダイポール素子)及びサブアレイ素子(無給電素子)とコモン電極(接地電極)とが誘電体基板を挟んで設けられ、メインアレイ素子にサブアレイ素子が近接して配置された構成(特許文権1)、アレイ素子とコモン電極(接地電極)が誘電体基板を挟む構造において、コモン電極が周期的なループ形状を有する構成(特許文献2)が開示されている。
特開2011-019021号公報 特開2010-226695号公報
 反射素子の誘電体基板に相当する部分を液晶層に置き換えると、液晶材料の誘電率異方性を利用することができ、反射波の指向性を可変にすることが可能となる。誘電率を変化させるためには液晶層に電圧を印加する必要があり、そのためにバイアス電極用の配線及びコモン電極用の配線を設ける必要がある。しかし、コモン電極用の配線を不用意に設けるとコモン電極素子間の電界に影響を及ぼし、意図する反射特性が得られないことが問題となる。
 本発明の一実施形態に係る反射素子は、一方向及び前記一方向に交差する方向に離隔してマトリクス状に配列されたコモン電極と、コモン電極と平面視で重なるように配列されたバイアス電極と、コモン電極とバイアス電極との間の液晶層と、コモン電極の配列の中で隣接するコモン電極を接続するコモン配線とを有し、コモン配線の長さは、特定波長λの電波に対し、特定波長λの電波が前記液晶層を伝搬するときの見かけの波長λgの半分の長さを有する。
図1は、本発明の一実施形態に係る反射素子を示す平面図である。 図2は、図1に示した反射素子のA-B間を示す断面図である。 図3は、本発明の一実施形態に係る反射素子を構成するユニットセルを示す平面図である。 図4は、図3に示したユニットセルのC-D間を示す断面図である。 図5Aは、本発明の一実施形態に係る反射素子の一部を示す拡大平面図であり、複数のコモン電極及び複数のコモン配線を示す図である。 図5Bは、本発明の一実施形態に係る反射素子の一部を示す拡大平面図であり、複数のコモン電極及び複数のコモン配線を示す図である。 図5Cは、本発明の一実施形態に係る反射素子の一部を示す拡大平面図であり、複数のコモン電極及び複数のコモン配線を示す図である。 図5Dは、本発明の一実施形態に係る反射素子の一部を示す拡大平面図であり、複数のコモン電極及び複数のコモン配線を示す図である。 図6は、本発明の一実施形態に係る反射素子の一部を示す拡大平面図であり、複数の長方形のコモン電極及び複数のコモン配線を示す図である。 図7Aは、本発明の一実施形態に係る反射素子を構成するユニットセルの動作を説明する図であり、液晶層にバイアス電圧が印加されない状態を示す図である。 図7Bは、本発明の一実施形態に係る反射素子を構成するユニットセルの動作を説明する図であり、(液晶層にバイアス電圧が印加された状態を示す図である。 図8は、本発明の一実施形態に係る反射素子によって散乱波の進行方向が変化することを模式的に示す図である。 図9は、第2実施形態に係る反射素子の一部を示す拡大平面図であり、複数の切り欠きを有した複数のコモン電極及び複数のコモン配線を示す図である。 図10は、第3実施形態に係る反射素子を示す平面図である。 図11は、図10に示した反射素子のE-F間を示す断面図である。
 以下、本発明の実施の形態を、図面などを参照しながら説明する。但し、本発明は多くの異なる態様で実施することが可能であり、以下に例示する実施の形態の記載内容に限定して解釈されるものではない。図面は説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状などについて模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号(又は数字の後にA、Bなどを付した符号)を付して、詳細な説明を適宜省略することがある。さらに各要素に対する「第1」、「第2」と付記された文字は、各要素を区別するために用いられる便宜的な標識であり、特段の説明がない限りそれ以上の意味を有しない。
 本明細書において、ある部材又は領域が他の部材又は領域の「上に(又は下に)」あるとする場合、特段の限定がない限りこれは他の部材又は領域の直上(又は直下)にある場合のみでなく他の部材又は領域の上方(又は下方)にある場合を含み、すなわち、他の部材又は領域の上方(又は下方)において間に別の構成要素が含まれている場合も含む。
[第1実施形態]
 本実施形態に係る反射素子は、誘電体層として用いられる液晶層を挟んで、コモン電極とバイアス電極とが配置された構造を有する。以下、その詳細について図面を参照して説明する。
1-1.反射素子
 図1は、第1実施形態に係る反射素子100Aの平面図を示し、図2は、図1に示すA-B間に対応する断面構造を示す。以下の説明では、図1及び図2の両方を適宜参照するものとする。
 反射素子100Aは、少なくとも1つのコモン電極102と、少なくとも1つのバイアス電極104と、これらの電極の間に配置された液晶層106と、を含む。図1に示すように、コモン電極102はX軸方向及びY軸方向に配列され、バイアス電極104はコモン電極102に対応するようにX軸方向及びY軸方向にマトリクス状に配列される。したがって、反射素子100Aは、コモン電極102及びバイアス電極104がそれぞれ複数個、マトリクスを形成するように配列された構成を有する。なお、X軸方向及びY軸方向は説明のために用いられ、具体的には図1に表示される方向を示す。X軸方向及びY軸方向は、一方向及び一方向に交差する方向と読み替えることもできる。
 コモン電極102は、隣接するもの同士がコモン配線108により相互に連結される。必ずしも隣接する複数のコモン電極102同士がコモン配線108によって連結されず、X軸方向に沿ってのみ連結してもよいし、Y軸方向に沿ってのみ連結してもよい。これに対し、バイアス電極104は、隣接するもの同士が間隙を有するように配置され、物理的に分離された状態で配置される。コモン電極102は第1基板132に設けられ、バイアス電極104は第2基板134に設けられる。反射素子100Aは入射面に入射した電波を所定の方向に散乱するデバイスであり、第1基板132が入射面側に配置され、第2基板134が入射面の裏側に配置される。すなわち、入射面にコモン電極102が配置され、コモン電極102の背面に液晶層106を挟んでバイアス電極104が配置される。
 反射素子100Aは、コモン電極102、液晶層106、バイアス電極104が平面視で重畳するように配置された構造を有する。また、反射素子100Aは、第1基板132のコモン電極102が設けられた面と、第2基板134のバイアス電極104が設けられた面とが対向するように配置され、その間に液晶層106が配置される。反射素子100Aは、一組のコモン電極102、液晶層106、及びバイアス電極104の積層構造(第1基板132及び第2基板134も含み得る)が基本単位となる。以下においては、この基本単位をユニットセル10Aと呼ぶ。
 第2基板134には、X方向に延伸する選択信号線110と、Y方向に延伸するバイアス信号線112と、スイッチング素子116が設けられる。スイッチング素子116はバイアス電極104に1対1で対応するように設けられる。スイッチング素子116は選択信号線110の選択信号によりスイッチング動作(オン/オフ状態)が制御され、バイアス信号線112からバイアス信号(バイアス電圧)が入力される。バイアス電極104はスイッチング素子116により個別にバイアス信号が入力される。すなわち、マトリクス状に配列されるバイアス電極104は、スイッチング素子116により個別にバイアス信号が入力される。
 第1配向膜114Aが第1基板132に設けられ、第2配向膜114Bが第2基板134に設けられる。第1配向膜114Aはコモン電極102を覆うように設けられ、第2配向膜114Bはバイアス電極104を覆うように設けられる。第1配向膜114A及び第2配向膜114Bは、液晶層106の配向状態を制御するために設けられる。液晶層106は細長い棒状の液晶分子を含む。液晶分子は第1配向膜114A及び第2配向膜114Bによって初期配向状態(電界が作用しない状態の配向状態)が制御される。
 第1配向膜114A及び第2配向膜114Bは液晶分子を配向させる機能を有していればどのような構成でもよく、有機材料、無機材料を問わないが、例えばポリイミドなどを用いることができる。また配向方向も水平配向、垂直配向、チルト配向で問わないが、本実施例は水平配向膜である場合を示す。
 液晶層106の液晶分子の配向状態は、バイアス電極104によって制御される。バイアス電極104に印加されるバイアス電圧は、ユニットセル10Aごとに制御可能であるため、液晶層106の液晶分子の配向状態もユニットセル10Aごとに制御することができる。液晶層106は、液晶分子の配向状態で誘電率が変化する。反射素子100Aの散乱波は、液晶層106の誘電率によって位相が変化する。したがって、ユニットセル10Aごとに液晶層106の誘電率を変化させることで、反射素子100Aの面内で位相差を生じさせ、散乱波の進行方向を制御することが可能となる。
 反射素子100Aは、コモン電極102が配列する面で入射する入射波を散乱するため、コモン電極102は散乱体とも呼ばれる。また、ユニットセル10Aは、誘電体(液晶層106)の上面にパッチ電極(コモン電極102)が設けられ、背面に反射電極(バイアス電極104)が設けられたパッチアンテナとみなすこともできる。
 なお、図1及び図2に図示されないが、第2基板134には選択信号線110に選択信号を出力する駆動回路、バイアス信号線112にバイアス信号を出力する駆動回路が設けられていてもよい。また、これらの駆動回路を駆動する信号及び駆動電力を入力する入力端子が設けられていてもよい。
1-2.ユニットセル
 図3及び図4は、反射素子100Aを構成するユニットセル10Aの詳細を示す。図3はユニットセル10Aの平面図を示し、図4は、図3に示すC-D間の断面構造を示す。図3及び図4に示すように、ユニットセル10Aは、コモン電極102、液晶層106、及びバイアス電極104が平面視で重畳するように配置される。
 本実施形態で用いられるコモン電極102は、入射する電波の垂直偏波及び水平偏波に対して対称な形状を有する。図3は、コモン電極102が正方形である一例を示す。コモン電極102の大きさ(縦及び横の寸法)は、対象とする電波の周波数に応じて適宜設定される。なお、コモン電極102の形状は正方形に限定されず、長方形であってもよいし、他の幾何学的な形状を有していてもよい。
 コモン電極102は、コモン配線108と接続される。コモン配線108は所定の長さと幅を有する。コモン配線108の一端がコモン電極102の一辺の中心点に接続される。別言すれば、コモン配線108は、コモン電極102の一辺の中心点がコモン配線108の幅部分に含まれるように接続される。コモン配線108とコモン電極102との接続構造に限定はないが、例えば、コモン配線108及びコモン電極102は同じ導電層で形成される。コモン配線108は、図示されない電源回路に接続される。または、コモン配線108は接地され、若しくは接地された配線と接続される。図1に示すように、コモン配線108は隣接するコモン電極102同士を接続する。コモン電極102がコモン配線108で相互に接続されることで、マトリクス状に配列されたコモン電極102は等電位を有する。
 バイアス電極104は、反射板としての機能を有するために大面積に形成される。図3に示すように、ユニットセル10Aの中でバイアス電極104はコモン電極102より大きな面積を有する。バイアス電極104とコモン電極102は重畳するように設けられ、このときコモン電極102がバイアス電極104の内側の領域に配置される。
 バイアス電極104はスイッチング素子116を介してバイアス信号線112と接続される。図3及び図4は、スイッチング素子116がトランジスタで形成される一例を示す。トランジスタは、半導体層120、ゲート絶縁層122、及びゲート電極124が積層された構造を有する。ゲート電極124の上には層間絶縁層126が設けられ、その上にバイアス信号線112が設けられる。スイッチング素子116及びバイアス信号線112は平坦化層128で埋められる。バイアス電極104は平坦化層128の上に設けられる。バイアス電極104は、コンタクトホールを介してスイッチング素子(トランジスタ)116の入出力端子(ドレイン)と接続される。また、スイッチング素子(トランジスタ)116のゲート電極124が選択信号線110と接続され、バイアス電極104と接続されない入出力端子(ソース)がバイアス信号線112と接続される。
 液晶層106はバイアス電極104によって液晶分子の配向状態が制御される。すなわち、液晶層106の液晶分子はバイアス電極104に印加されるバイアス信号により配向状態が制御される。バイアス信号は、直流電圧信号又は正の直流電圧と負の直流電圧が交互に反転する極性反転直流電圧信号である。
 液晶層106は誘電率異方性を有する液晶材料で形成される。例えば、液晶層106を形成する液晶材料として、液晶性を示し、誘電率異方性を有していれば良く、特にネマチック液晶が好ましい。液晶材料の誘電率異方性は正でも負でも本実施例における効果は変わらない。以降、本実施例では正の誘電率異方性を持つ液晶層106を用いて説明する。
 液晶層106は液晶分子の配向状態により誘電率が変化する。液晶分子の配向状態は、バイアス電極104によって制御される。入射波がユニットセル10Aで散乱されるとき、液晶層の誘電率に応じて散乱波の位相が変化する。
 反射素子100Aが適用対象とする周波数帯は、超短波(VHF:Very High Frequency)帯、極超短波(UHF:Ultra-High Frequency)帯、マイクロ波(SHF:Super High Frequency)帯、サブミリ波(THF:Tremendously high frequency)、ミリ波(EHF:Extra High Frequency)帯、及びテラヘルツ波帯である。液晶層106の液晶分子はバイアス電極104に印加されるバイアス電圧によって液晶分子の配向が変化するが、コモン電極102に入射する電波の周波数にはほとんど追従しない。液晶分子のこのような特性により、バイアス電極104によって液晶層106の誘電率を変化させつつ、コモン電極102で電波を散乱させ、散乱される電波の位相を制御することができる。
 第1基板132及び第2基板134は、液晶層106を挟持し、配線等を形成するために設けられ、ガラス、樹脂、金属板などの平坦性を有する材料で形成される。このとき、透明性は問わない。また、第1基板132及び第2基板134に設けられる各層は、以下のような材料を用いて形成される。半導体層120はスイッチング素子116を形成するために設けられ、アモルファスシリコン、多結晶シリコンのようなシリコン半導体、酸化インジウム、酸化亜鉛、酸化ガリウムなどの金属酸化物を含む酸化物半導体で形成される。ゲート絶縁層122及び層間絶縁層126、は各配線層を絶縁するために設置されるため、絶縁性を有する材料であれば良く、例えば、酸化シリコン膜、又は窒化シリコン膜、又はその積層構造で形成される。選択信号線110及びゲート電極124は、電気信号を伝えるために設置され、導電性を有する材料が好ましく、金属膜などを用いることができる。例えば、モリブデン(Mo)、タングステン(W)又はこれらの合金で構成される。バイアス信号線112は、電気信号を伝えるために設置され、導電性を有する材料が好ましく、金属膜などを用いることができる。例えば、チタン(Ti)/アルミニウム(Al)/チタン(Ti)の積層構造、又はモリブデン(Mo)/アルミニウム(Al)/モリブデン(Mo)の積層構造で構成される。平坦化層128は、スイッチング素子などで形成される凹凸などを平坦化するために形成される。平坦性と絶縁性を有する材料であればどのようなものでもよく、例えば有機材料が望ましく、アクリル系樹脂やエポキシ系樹脂、ポリイミド材料などを用いることができる。コモン電極102、バイアス電極104及びコモン配線108は、液晶を駆動するための信号を導通させる機能と、入力された電波を散乱する機能を有している。どちらも導電性を有していればよく、金属膜などを用いることができる。特に導電率が低い材料が望ましく、例えば、アルミニウムや銅、金やそれを用いた合金を用いることができる。また抵抗を下げるため、バイアス信号線や選択信号線と比べると、膜厚を厚くすることが望ましい。
 また、図4には示されないが、第1基板132と第2基板134とは間隙を有するように配置され、シール材により貼り合わされる。シール材は、第1基板132と第2基板134を接着させる機能を有していれば良く、例えばアクリル樹脂やエポキシ系樹脂などの有機材料によって形成される。液晶層106は、第1基板132、第2基板134、及びシール材で囲まれる領域内に封入される。第1基板132と第2基板134との間隙は概略20μm~100μmであり、例えば、40μmの間隔を有する。図示されないが、第1基板132と第2基板134との間には、間隔を一定に保つためのスペーサが設けられていてもよい。
 図3に示すように、マトリクス状に配列されたコモン電極102がコモン配線108により相互に接続され、バイアス電極104がスイッチング素子116を介してバイアス信号線112に接続されて個別に電位を制御可能となることで、ユニットセル10Aごとに液晶層106の誘電率を変化させることができる。それにより散乱波の位相をユニットセル10Aごとに制御することができる。
1-3.コモン電極及びコモン配線
 図5A、図5B、図5C及び図5Dは、本発明の一実施形態に係る反射素子の一部を示す拡大平面図であり、複数のコモン電極102及び複数のコモン配線108を示す図である。図5A、図5B、図5C及び図5Dは、それぞれが異なる形状のコモン配線108を有している。コモン電極102Aは、X軸に沿った方向に長さPxを有し、Y軸に沿った方向に長さPyを有している。長さPx及び長さPyは、対象とする電波の周波数に応じて適宜設定される。以下の説明では、図5Aを参照するものとする。
 コモン電極102Aは、X軸に沿った方向に隣接するコモン電極102Bとの間に間隙Wxを有し、Y軸に沿った方向に隣接するコモン電極102Cとの間に間隙Wyを有している。間隙Wx及び間隙Wyは、上記長さPx及び長さPyと比べて小さくした方が望ましい。なぜなら、反射素子に複数のコモン電極102を高密度で配置した方が、より好ましい反射特性を得られるからである。
 コモン電極102Aと、X軸に沿った方向に隣接するコモン電極102Bを接続するコモン配線108Aは、長さLxを有する。別言すれば、コモン電極102Aとコモン配線108Aの接続点から、コモン電極102Bとコモン配線108Aの接続点まで、電流が流れる距離がLxである。コモン電極102Aと、Y軸に沿った方向に隣接するコモン電極102Cを接続するコモン配線108Bは、長さLyを有する。別言すれば、コモン電極102Aとコモン配線108Bの接続点から、コモン電極102Cとコモン配線108Bの接続点まで、電流が流れる距離がLyである。長さLx及び長さLyは、対象とする電波が誘電体層を伝搬する見かけの波長の半分の長さを有する。
 このとき、対象とする電波が空気中で伝搬する波長をλとすると、対象とする電波が誘電体層を伝搬する見かけの波長λgは、誘電体層の比誘電率εをもとに、次式(1)のように表される。
 λ = λ/(ε-1/2   (1)
 つまり、言い換えれば、長さLx及び長さLyはλ/2の長さを有する。
 上記長さLx及び長さLyは、λ/2の±10%以内の長さを有することが望ましい。なぜなら、液晶層は誘電率異方性を有しており、バイアス電圧の印加によって見かけの波長λが変化するためである。液晶層の誘電率は、正の誘電率異方性を有する場合、液晶分子の短軸方向誘電率εから長軸方向誘電率ε//まで変化する(ε<ε//)。したがって、上記長さLx及び長さLyは、λ/(ε1/2からλ/(ε//1/2の範囲に含まれることが望ましく、さらに望ましくは、短軸方向誘電率ε及び長軸方向誘電率ε//の平均値εを用いて、λ/(ε)1/2とするのがよい。例えば、短軸方向誘電率εが2.46、及び長軸方向誘電率ε//が3.53の誘電率異方性を有する液晶分子が開発されている(Fritzsch, C., Snow, B., Sargent, J., Klass, D., Kaur, S. and Parri, O. (2019), 77-1: Invited Paper: Liquid Crystals beyond Displays: Smart Antennas and Digital Optics. SID Symposium Digest of Technical Papers, 50: 1098-1101.)。このとき、誘電率の平均値εを使って、ε及びε//は、それぞれ0.8×ε及び1.2×εと書き表すことができる。液晶層の誘電率を0.8×εから1.2×εの範囲で変化させるとき、見かけの波長はおよそ0.9×λから1.1×λまで変化する。したがって、長さLx及び長さLyは、0.9×λ/2から1.1×λ/2の範囲内に設計値を持たせることが望ましい。この長さLx及び長さLyは散乱する電波の波長に依存して決まる値であり、間隙Wx及び間隙Wyの間隔に比べて大きい値となる。
 図5Aは、長さLxを有するコモン配線108が、平面視において、コモン電極102Aとコモン電極102Bとの間で鉤形に屈曲した形状を示す。別言すれば、コモン電極102Aとコモン電極102Bとを接続するコモン配線108Aは、平面視において、一端と他端の間に複数の屈曲点を有するように折れ曲がった形状を有する。このような屈曲形状を採用することで、長さLxより狭い間隙Wxにコモン配線108Aを設けることができる。コモン配線108Bもコモン配線108Aと同様の形状を有することで、長さLyより狭い間隙Wyにコモン配線108Bを設けることができる。なお、長さLx及びLyを満たす限り、この屈曲形状が有する屈曲点の数に限定はなく、図5Bに示すコモン配線108A、108Bのパターンのように、図5Aに示す例より多くの屈曲点を有していてもよい。
 コモン配線108A、108Bの形状は、図5A及び図5Bに示す形状に限定されない。例えば、図5Cに示すように、直線が交互に折れ曲るジグザグ状のパターンを有していてもよいし、図5Dに示すように、円弧を描くような曲線状の折れ曲がりパターンを有していてもよい。
 また、コモン配線108A及び108Bの形状は180度回転対称を有することが好ましい。コモン配線108A、108Bの形状が180度回転対称性を有することで、コモン電極102Aの回転対称性を乱さないようにすることができる。
 さらに、コモン配線108A、108Bのパターンは、直線となる部分の長さがλ/2の50%以下であることが好ましい。別言すれば、コモン配線108A、108Bは直線部分を含み、この直線部分の長さが見かけの波長λgの四分の一の長さ未満であることが好ましい。これにより、コモン配線108A、108Bが、パッチ電極として作用しないようにすることができ、意図しない散乱波を生じさせないようにすることができる。
 図6は、本発明の一実施形態に係る反射素子の一部を示す拡大平面図であり、複数のコモン電極102及び複数のコモン配線108を示す図である。コモン電極102は長方形であり、Y軸方向に沿って長辺を有している(Px<Py)。
 図6に示すように、コモン電極102Aは入射する電波の水平偏波及び垂直偏波に対して非対称な形状を有する。このとき、コモン配線108A及び108Bの長さLx及びLyも異なる長さを有した方がよい。すなわち、対象とする電波の水平偏波及び垂直偏波が誘電体層を伝搬する見かけの波長をそれぞれλgx及びλgyとすると、上記長さLx及び長さLyは、λgx/2及びλgy/2の長さを有する。
1-4.ユニットセルの動作
 図7A及び図7Bは、ユニットセル10Aの動作を示す。ここで、図7A及び図7Bは、第1配向膜114A及び第2配向膜114Bが水平配向膜である場合を示す。図7Aは、バイアス電極104にバイアス電圧が印加されない状態を示す。別言すれば、図7Bは、バイアス電極104に液晶分子の配向状態を変化させるレベル、すなわち閾値よりも高い電圧が印加されない状態を示す。以下、この状態を「第1の状態」と呼ぶ。図7Aは、第1の状態において、液晶分子130の長軸が第1配向膜114A及び第2配向膜114Bの配向規制力により略水平に配向する状態(初期配向状態)を示す。別言すれば、第1状態は、液晶分子130の長軸方向が、コモン電極102及びバイアス電極104の表面に対し略水平に配向する状態を有する。
 図7Bは、バイアス電極104に、液晶分子130の配向状態を変化させる電圧レベル、すなわち閾値よりも十分に高いバイアス電圧が印加された状態を示す。以下、この状態を「第2の状態」と呼ぶ。第2の状態では、液晶分子130の長軸方向がバイアス電圧によって生成される電界の影響を受けて、コモン電極102及びバイアス電極104の表面に対し略垂直方向に配向する。液晶分子130の長軸が配向する角度は、バイアス電極104に印加するバイアス信号の大きさによって制御することができ、水平と垂直の中間の角度に配向させることもできる。
 液晶分子130が正の誘電率異方性を有する場合、第1の状態(図7A)に対して第2の状態(図7B)の方がZ軸に沿った方向における誘電率が大きくなる。また、液晶分子130が負の誘電率異方性を有する場合、第1の状態(図7A)に対して第2の状態(図7B)の方が見かけ上のZ軸に沿った方向における誘電率が小さくなる。誘電率異方性を有する液晶で形成された液晶層106は可変誘電体層とみなすこともできる。ユニットセル10Aは、液晶層106の誘電率異方性を利用することで、コモン電極102で散乱する電波の位相を遅らせる(又は遅らせない)ように制御することができる。
 図8は、第1ユニットセル10A-1及び第2ユニットセル10A-2によって反射波の進行方向が変化する態様を模式的に示す。第1ユニットセル10A-1のバイアス電極104Aには、バイアス信号線112Aからバイアス信号V1が印加され、第2ユニットセル10A-2のバイアス電極104Bには、バイアス信号線112Bからバイアス信号V2が印加される。ここでバイアス信号V1とバイアス信号V2の電圧レベルは異なっている(V1≠V2)。第1ユニットセル10A-1及び第2ユニットセル10A-2のコモン電極102は同電位であり、例えば共通電位に設定される。
 図8は、第1ユニットセル10A-1と第2ユニットセル10A-2に同じ位相で電波が入射したとき、第1ユニットセル10A-1と第2ユニットセル10A-2に異なるバイアス信号(V1≠V2)が印加されているため、第1ユニットセル10A-1に比べ第2ユニットセル10A-2による散乱波の位相変化が大きいことを模式的に示す。その結果、第1ユニットセル10A-1で散乱した散乱波R1の位相と、第2ユニットセル10A-2で散乱した散乱波R2の位相が異なり(図8では散乱波R2の位相が散乱波R1の位相より進んでいる)、見かけ上、散乱波の進行方向が斜め方向に変化する。
 図8に示すように、反射素子100Aは、入射波に対して散乱波の位相を第1ユニットセル10A-1と第2ユニットセル10A-2とで異ならせることができる。図8は、模式的に2つのユニットセルを示すが、実際にはマトリクス状に配列されるユニットセル10Aを個別に制御することで、反射素子100Aの方向を変えずに、散乱波の進行方向を任意の方向に制御することができる。反射素子100Aの反射面に配置される複数のコモン電極102は一定電位(例えば、接地電位)に保持されており、液晶層106にバイアス電圧を印加するバイアス電極104A、104B、及びバイアス信号線112A、112Bはコモン電極102の背面に配置されるため、反射素子100Aの前面側にバイアス信号線112A、112Bにより生成される電界の影響を及ぼさないようにすることができる。
 このように、本実施形態に係る反射素子100Aは、電波の入射面にコモン電極102が配置され一定電位に保持されるので、バイアス電圧が印加されるバイアス信号線112によって電界が乱されないようにすることができ、散乱波の進行方向を正確に制御することができる。さらに、コモン配線108が対象とする電波が誘電体層を伝搬する見かけの波長の半分の長さを有するため、コモン電極102に生じる電流密度分布が乱されないようにすることができ、反射損失を抑制することができる。
[第2実施形態]
 本実施形態は、コモン電極及びコモン配線の構造が第1実施形態と異なる反射素子の一例を示す。以下の説明では第1実施形態と相違する部分を中心に説明し、重複する分部については適宜省略するものとする。
 図9は、第2実施形態に係る反射素子の一部を示す拡大平面図であり、複数の切り欠きを有した複数のコモン電極及び複数のコモン配線を示す図である。コモン電極102は外形の一部に切り欠き部136(凹部)を有していて、コモン配線108は切り欠き部136に接続される。これにより、コモン電極102とコモン配線108の接続点でインピーダンスのマッチングを取ることができ、実施例1の構造と比較して反射損失をより抑制す
ることができる。
[第3実施形態]
 本実施形態は、反射素子の構造が第1実施形態と異なる一例を示す。以下の説明では第1実施形態と相違する部分を中心に説明し、重複する分部については適宜省略するものとする。
 図10は、第3実施形態に係る反射素子を示す平面図である。図11は、図10に示した反射素子のE-F間を示す断面図である。以下の説明では、図10及び図11の両方を適宜参照するものとする。
 反射素子100Bは、少なくとも1つのコモン電極102と、少なくとも1つのバイアス電極104と、これらの電極の間に配置された液晶層106と、を含む。
 複数のコモン電極102は、隣接するもの同士がコモン配線108によりX軸方向又はY軸方向に沿ってのみ連結している。本実施例では、複数のコモン電極102がY軸方向に沿って、コモン配線108により連結している例を示す。これに対し、バイアス電極104は、X軸方向及びY軸方向に延伸して配置される。
 コモン電極102は第1基板132に設けられ、バイアス電極104は第2基板134に設けられる。入射面にコモン電極102が配置され、コモン電極102の背面に液晶層106を挟んでバイアス電極104が配置される。
 反射素子100Bは、コモン電極102、液晶層106、バイアス電極104が平面視で重畳するように配置された構造を有する。また、反射素子100Aは、第1基板132のコモン電極102が設けられた面と、第2基板134のバイアス電極104が設けられた面とが対向するように配置され、その間に液晶層106が配置される。反射素子100Bは、一組のコモン電極102、液晶層106、及びバイアス電極104の積層構造(第1基板132及び第2基板134も含み得る)が基本単位となる。以下においては、この基本単位をユニットセル10Bと呼ぶ。
 液晶層106の液晶分子の配向状態は、コモン電極102によって制御される。コモン電極102に印加されるコモン電圧は、Y軸方向に沿って連結したユニットセル10Bの列ごとに制御可能であるため、液晶層106の液晶分子の配向状態もユニットセル10Bの列ごとに制御することができる。コモン電極102はコモン配線108によって連結され、コモン配線108は図示されない電源回路に接続される。バイアス電極104は同電位であり、例えば共通電位に設定される。
 図10及び図11に図示されないが、第1基板132及び第2基板134にはコモン電極102に電圧を印加する駆動回路が設けられていてもよい。また、これらの駆動回路を駆動する信号及び駆動電力を入力する入力端子が設けられていてもよい。
 このように、本実施形態に示す反射素子100Bは、コモン配線108が対象とする電波が液晶層を伝搬する見かけの波長の半分の長さを有するため、コモン電極102に生じる電流密度分布が乱されないようにすることができ、反射損失を抑制することができる。
 本発明の一実施形態として例示した反射素子の各種構成は、相互に矛盾しない限り適宜組み合わせることができる。また、本明細書及び図面に開示された反射素子を基にして、当業者が適宜構成要素の追加、削除もしくは設計変更を行ったもの、又は、工程の追加、省略もしくは条件変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。
 本明細書に開示された実施形態の態様によりもたらされる作用効果とは異なる他の作用効果であっても、本明細書の記載から明らかなもの、又は、当業者において容易に予測し得るものについては、当然に本発明によりもたらされるものと解される。
10、10A、10B:ユニットセル、100、100A、100B:反射素子、102:コモン電極、104:バイアス電極、106:液晶層、108:コモン配線、110:選択信号線、112:バイアス信号線、114A:第1配向膜、114B:第2配向膜、116:スイッチング素子、118:絶縁層、120:半導体層、122:ゲート絶縁層、124:ゲート電極、126:層間絶縁層、128:平坦化層、130:液晶分子、132:第1基板、134:第2基板、136:切り欠き部

Claims (11)

  1.  電波を反射する反射素子であって、前記反射素子は、
     一方向及び前記一方向に交差する方向に離隔してマトリクス状に配列されたコモン電極と、
     前記コモン電極と平面視で重なるように配列されたバイアス電極と、
     前記コモン電極と前記バイアス電極との間の液晶層と、
     前記コモン電極の配列の中で隣接するコモン電極を接続するコモン配線と、
    を有し、
     前記コモン配線の長さは、特定波長λの電波に対し、前記特定波長λの電波が前記液晶層を伝搬するときの見かけの波長λの半分の長さを有する
    ことを特徴とする反射素子。
  2.  前記液晶層は正の誘電率異方性を有し、前記液晶層の平均誘電率をεとしたとき、前記見かけの波長λは、
      λ=λ×(ε)1/2   (1)
    で与えられ、
     前記コモン電極の長さLは、
      λg×0.9≦L≦λg×1.1   (2)
    を満たす、請求項1に記載の反射素子。
  3.  前記コモン配線が、前記コモン電極の一辺の中心点に接続されている、請求項1に記載の反射素子。
  4.  前記コモン電極の前記離隔する間隔が、前記コモン電極の前記一方向の長さ及び前記一方向に交差する方向の長さより狭い、請求項1に記載の反射素子。
  5.  前記コモン配線の長さが、前記離隔する間隔より長い、請求項4に記載の反射素子。
  6.  前記コモン配線が、平面視において屈曲したパターンを有する、請求項5に記載の反射素子。
  7.  前記パターンが、180度回転対称性を有する、請求項6に記載の反射素子。
  8.  前記パターンが直線部分を含み、前記直線部分の長さが前記見かけの波長λの四分の一の長さ未満である、請求項6に記載の反射素子。
  9.  前記コモン電極は、前記コモン配線の接続部に隣接して切り欠き部が設けられている、請求項1に記載の反射素子。
  10.  前記マトリクス状に配列されたコモン電極が、前記コモン配線によって前記一方向の配列に沿って接続され、前記一方向に交差する方向の配列に対して接続されていない、請求項1に記載の反射素子。
  11.  前記バイアス電極にバイアス電圧を印加するバイアス信号線と、
     前記バイアス電極と前記バイアス信号線とを接続するスイッチング素子と、を有する、請求項1乃至10のいずれか一項に記載の反射素子。
PCT/JP2023/001961 2022-03-29 2023-01-23 液晶材料を用いた電波の反射素子 WO2023188734A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022054070 2022-03-29
JP2022-054070 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023188734A1 true WO2023188734A1 (ja) 2023-10-05

Family

ID=88200787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001961 WO2023188734A1 (ja) 2022-03-29 2023-01-23 液晶材料を用いた電波の反射素子

Country Status (1)

Country Link
WO (1) WO2023188734A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150062691A1 (en) * 2013-01-30 2015-03-05 Hrl Labroratories, Llc Tunable optical metamaterial
WO2021079709A1 (ja) * 2019-10-24 2021-04-29 株式会社ジャパンディスプレイ 表示装置
JP2022020809A (ja) * 2016-09-14 2022-02-01 カイメタ コーポレイション 開口面アンテナ用のインピーダンス整合

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150062691A1 (en) * 2013-01-30 2015-03-05 Hrl Labroratories, Llc Tunable optical metamaterial
JP2022020809A (ja) * 2016-09-14 2022-02-01 カイメタ コーポレイション 開口面アンテナ用のインピーダンス整合
WO2021079709A1 (ja) * 2019-10-24 2021-04-29 株式会社ジャパンディスプレイ 表示装置

Similar Documents

Publication Publication Date Title
JP7307070B2 (ja) フェーズドアレイアンテナ、表示パネル及び表示装置
WO2020030046A1 (zh) 液晶移相器及其操作方法、液晶天线和通信设备
US11894618B2 (en) Antenna device and phased array antenna device
US20010017577A1 (en) Variable phase shifter
WO2020030135A1 (zh) 液晶移相器及其操作方法、液晶天线和通信设备
JP4466389B2 (ja) アレーアンテナ
CN113728512B (zh) 移相器及天线
CN111273467B (zh) 基于液晶和线栅形超构表面的太赫兹波前相位控制装置
WO2022244676A1 (ja) 電波反射板および電波反射装置
WO2023140243A1 (ja) リフレクトアレイ
CN112164875A (zh) 微带天线、通信设备
CN108321541B (zh) 天线结构及其驱动方法和通信装置
WO2023188734A1 (ja) 液晶材料を用いた電波の反射素子
TWI749987B (zh) 天線結構及陣列天線模組
US20230400747A1 (en) Intelligent reflecting device
WO2023181614A1 (ja) リフレクトアレイ
WO2023188735A1 (ja) 液晶材料を用いた電波の反射素子
WO2023058399A1 (ja) 電波反射装置
WO2024004595A1 (ja) 電波反射装置
WO2024070939A1 (ja) 電波反射装置
WO2024100974A1 (ja) 電波反射装置
WO2022259891A1 (ja) 液晶位相変調装置、移相器、フェーズドアレイアンテナ装置、及び電波反射板
WO2024070207A1 (ja) 電波反射装置
WO2023248584A1 (ja) 電波反射装置
EP4145636B1 (en) Electromagnetic wave transmission structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778773

Country of ref document: EP

Kind code of ref document: A1