WO2023188658A1 - スクロール圧縮機および冷凍装置 - Google Patents

スクロール圧縮機および冷凍装置 Download PDF

Info

Publication number
WO2023188658A1
WO2023188658A1 PCT/JP2022/048408 JP2022048408W WO2023188658A1 WO 2023188658 A1 WO2023188658 A1 WO 2023188658A1 JP 2022048408 W JP2022048408 W JP 2022048408W WO 2023188658 A1 WO2023188658 A1 WO 2023188658A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
movable scroll
floating member
scroll compressor
movable
Prior art date
Application number
PCT/JP2022/048408
Other languages
English (en)
French (fr)
Inventor
仁 武田
弘通 谷和
洋 北浦
義信 除補
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2023188658A1 publication Critical patent/WO2023188658A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents

Definitions

  • the present disclosure relates to a scroll compressor and a refrigeration device.
  • Patent Document 1 discloses a scroll compressor.
  • the scroll compressor described in Patent Document 1 includes a compression mechanism having a fixed scroll and a movable scroll, and a floating member.
  • the floating member is pushed up by supplying high pressure and intermediate pressure to the back side of the floating member. This causes the floating member to press the movable scroll against the fixed scroll.
  • An object of the present disclosure is to suppress deterioration of the bearing reliability of the floating member even if the floating member follows the overturning of the orbiting scroll when the orbiting scroll overturns.
  • the first aspect is directed to a scroll compressor.
  • the scroll compressor includes a compression mechanism (20) having a fixed scroll (21) and a movable scroll (26), and a floating member (50) that supports the movable scroll (26), and the floating member (50) , includes an opposing surface (500) facing the back surface (270) of the movable scroll (26), and the back surface (270) of the movable scroll (26) is one of the opposing surfaces (500) of the floating member (50).
  • a gap (U) exists between the inner portion (501) of the opposing surface (500) and the first portion (271) of the back surface (270).
  • the floating member (50) is tilted following the overturning of the movable scroll (26), so that the outer portion (502) of the opposing surface (500) and the second portion of the back surface (270) are tilted. Even if the portion (272) makes surface contact, oil can be supplied through the gap (U) between the opposing surface (500) of the inclined floating member (50) and the back surface (270) of the movable scroll (26).
  • the dimension of the gap (U) is more axially (Y) than the dimension between the outer part (502) and the second part (272). big.
  • the gap (U) is larger in the axial direction (Y) than the gap between the outer portion (502) and the second portion (272). It can be configured as follows.
  • the inner portion (501) of the opposing surface (500) is relative to the first portion (271) of the back surface (270). It includes an inclined surface (501a) which is inclined so as to be spaced apart from each other.
  • a gap (U) can be formed between the inclined surface (501a) of the floating member (50) and the back surface (270) of the movable scroll (26).
  • the inner portion (501) of the opposing surface (500) is relative to the first portion (271) of the back surface (270). It includes a stepped portion (501b) that is spaced apart in stages.
  • a gap (U) can be formed between the step portion (501b) of the floating member (50) and the back surface (270) of the movable scroll (26).
  • the first portion (271) of the back surface (270) is arranged with respect to the inner portion (501) of the facing surface (500). It includes an inclined surface (271a) which is inclined so as to be spaced apart from each other.
  • a gap (U) can be formed between the opposing surface (500) of the floating member (50) and the inclined surface (271a) of the movable scroll (26).
  • the first portion (271) of the back surface (270) is arranged with respect to the inner portion (501) of the facing surface (500). It includes a stepped portion (271b) that is spaced apart in stages.
  • a gap (U) can be formed between the opposing surface (500) of the floating member (50) and the stepped portion (271b) of the movable scroll (26).
  • the gap (U) between the opposing surface (500) and the back surface (270) is arranged in the scroll compressor (1).
  • the size increases gradually or stepwise toward the center.
  • the outer portion (502) of the opposing surface (500) deforms along the second portion (272), thereby Even if the second portion (272) of the floating member (270) and the outer portion (502) of the opposing surface (500) make surface contact, the opposing surface (500) of the floating member (50) and the back surface of the movable scroll (26) (270) and can form an oil film by supplying oil through the gap (U).
  • the tenth aspect is directed to a refrigeration device.
  • the refrigeration system includes the scroll compressor (1).
  • FIG. 1 is a schematic overall configuration diagram of a scroll compressor according to an embodiment.
  • FIG. 2(a) is a cut end view showing the first embodiment of the configuration of the movable scroll and the floating member.
  • FIG. 2(b) is a partially enlarged view of FIG. 2(a).
  • FIG. 3(a) is a cut end view showing the state of the movable scroll and the floating member when the movable scroll is overturned.
  • FIG. 3(b) is a partially enlarged view of FIG. 3(a).
  • FIG. 4A is a cut end view showing the state of the movable scroll and the floating member when a gas load is applied to the movable scroll when the movable scroll overturns.
  • FIG. 4(b) is a partially enlarged view of FIG. 4(a).
  • FIG. 5 is a cut end view showing a second embodiment of the structure of the movable scroll and the floating member.
  • FIG. 6 is a cut end view showing a third embodiment of the structure of the movable scroll and the floating member.
  • FIG. 7 is a cut end view showing a fourth embodiment of the configuration of the movable scroll and the floating member.
  • the scroll compressor (1) is a device that sucks refrigerant, compresses the sucked refrigerant, and discharges it.
  • the refrigerant is, for example, R32, an HFC refrigerant.
  • R32 is merely an example of the type of refrigerant, and the scroll compressor (1) may be a device that compresses and discharges a refrigerant other than R32.
  • a scroll compressor (1) is used in a refrigeration system.
  • the refrigeration device includes any one of an air conditioning device that adjusts the temperature and humidity of air, a cooling device that cools the inside of the refrigerator, a water heater that generates hot water, and the like.
  • the scroll compressor (1) is mounted, for example, in an outdoor unit of an air conditioner, and forms part of a refrigerant circuit of the air conditioner.
  • the scroll compressor (1) includes a casing (10), a compression mechanism (20), an electric motor (30), a drive shaft (40), a floating member (50), and a frame ( 60).
  • the casing (10) is formed into a vertically long cylindrical shape with both ends closed.
  • a compression mechanism (20) and an electric motor (30) are housed within the casing (10).
  • the compression mechanism (20) and the electric motor (30) are connected by a drive shaft (40) extending in the axial direction (Y) (vertical direction in FIG. 1) inside the casing (10).
  • a partition member (11) is provided at the top inside the casing (10).
  • the partition member (11) partitions the internal space of the casing (10) into two spaces.
  • the space above the partition member (11) constitutes a first space (S1).
  • the space below the partition member (11) constitutes a second space (S2).
  • the casing (10) is provided with a suction pipe (not shown) and a discharge pipe (12).
  • the suction pipe penetrates the body of the casing (10) in the radial direction (X) and communicates with the second space (S2).
  • the suction pipe introduces a low pressure fluid (eg, gas refrigerant) into the second space (S2).
  • the discharge pipe (12) passes through the upper part of the casing (10) in the radial direction (X) and communicates with the first space (S1).
  • the discharge pipe (12) leads the high pressure fluid in the first space (S1) out of the casing (10).
  • the compression mechanism (20) includes a fixed scroll (21) and a movable scroll (26).
  • the fixed scroll (21) is fixed to the frame (60).
  • the movable scroll (26) is arranged between the floating member (50) and the fixed scroll (21).
  • the movable scroll (26) is configured to mesh with the fixed scroll (21) and perform eccentric rotational movement relative to the fixed scroll (21).
  • the fixed scroll (21) is arranged on one side (the upper side in this example) of the frame (60) in the axial direction (Y).
  • the fixed scroll (21) includes a fixed end plate (22), a fixed wrap (23), and an outer peripheral wall (24).
  • the fixed end plate (22) is formed into a generally circular plate shape.
  • the fixed side wrap (23) is formed in the shape of a spiral wall drawing an involute curve, and protrudes from the front surface (in this example, the lower surface) of the fixed side end plate (22).
  • the outer peripheral wall portion (24) is formed to surround the outer peripheral side of the fixed side wrap (23), and protrudes from the front surface of the fixed side mirror plate (22).
  • the distal end surface (in this example, the lower end surface) of the stationary side wrap (23) and the distal end surface of the outer peripheral wall (24) are substantially flush with each other.
  • a suction port (not shown) is formed in the outer peripheral wall (24) of the fixed scroll (21).
  • the suction port communicates with the second space (S2).
  • a discharge port (25) that penetrates the fixed end plate (22) in the thickness direction is formed in the center of the fixed end plate (22) of the fixed scroll (21).
  • the movable scroll (26) has a movable end plate (27), a movable wrap (28), and a boss portion (29).
  • the movable end plate (27) is formed into a generally circular plate shape.
  • the movable side wrap (28) is formed in the shape of a spiral wall drawing an involute curve, and protrudes from the front surface (in this example, the upper surface) of the movable side end plate (27).
  • the boss portion (29) is formed in a cylindrical shape and is arranged at the center of the back surface (270) (lower surface in this example) of the movable end plate (27).
  • the movable wrap (28) of the movable scroll (26) is engaged with the fixed wrap (23) of the fixed scroll (21).
  • a compression chamber (S20) is formed between the fixed scroll (21) and the movable scroll (26).
  • the compression chamber (S20) is a space for compressing fluid.
  • the compression chamber (S20) is configured to compress the fluid sucked in through the suction pipe, the second space (S2), and the suction port, and discharge the compressed fluid through the discharge port (25).
  • the electric motor (30) is housed within the casing (10) and arranged below the compression mechanism (20).
  • the electric motor (30) has a stator (31) and a rotor (32).
  • the stator (31) has a substantially cylindrical shape and is fixed to the casing (10).
  • the rotor (32) is rotatably inserted into the inner periphery of the stator (31).
  • a drive shaft (40) is inserted through and fixed to the inner periphery of the rotor (32).
  • the drive shaft (40) has a main shaft portion (41) and an eccentric shaft portion (42).
  • the main shaft portion (41) extends along the axial direction (Y) (in the present embodiment, the vertical direction).
  • the axial direction (Y) is a direction parallel to the direction in which the axis of the main shaft portion (41) of the drive shaft (40) extends.
  • the eccentric shaft portion (42) is provided at the upper end of the main shaft portion (41).
  • the outer diameter of the eccentric shaft portion (42) is smaller than the outer diameter of the main shaft portion (41).
  • the axial center of the eccentric shaft portion (42) is eccentric from the axial center of the main shaft portion (41) by a predetermined distance.
  • the drive shaft (40) is connected to the movable scroll (26) from the other direction side (Y2) (in this embodiment, the downward side) in the axial direction (Y).
  • the floating member (50) is formed into a substantially cylindrical shape.
  • the floating member (50) is swingably supported.
  • the floating member (50) includes a scroll support section (51), a shaft support section (53), and a connection section (55).
  • the floating member (50) is an example of the thrust bearing of the present invention.
  • the scroll support portion (51) is a substantially cylindrical portion that contacts the back surface (270) of the movable scroll (26).
  • the scroll support section (51) supports the movable scroll (26).
  • a first annular groove (52) in which an O-ring (not shown) is accommodated is formed near the lower end of the outer wall of the scroll support portion (51).
  • the shaft support portion (53) is a substantially cylindrical portion having a smaller inner diameter than the scroll support portion (51).
  • the shaft support portion (53) rotatably supports the main shaft portion (41) of the drive shaft (40).
  • a second annular groove (54) in which an O-ring (not shown) is accommodated is formed near the upper end of the outer wall of the shaft support portion (53).
  • the connecting portion (55) is a substantially ring-shaped portion.
  • the connecting portion (55) connects the lower end of the scroll support (51) and the upper end of the shaft support (53) to each other.
  • the floating member (50), the movable scroll (26), and the fixed scroll (21) move toward one direction (Y1) in the axial direction (Y). 21) are arranged in the following order.
  • the frame (60) is formed into a substantially cylindrical shape.
  • the frame (60) is fixed to the casing (10) in the second space (S2), for example, by press fitting.
  • the frame (60) has a fixed part (61) and a protruding part (62).
  • the fixed part (61) is a substantially cylindrical part.
  • the outer peripheral surface of the fixed part (61) is fixed to the casing (10).
  • a fixed scroll (21) is fixed to the upper surface of the fixed part (61).
  • the protrusion (62) is a substantially cylindrical or ring-shaped portion.
  • the protruding portion (62) protrudes inward in the radial direction (X) from the inner peripheral portion of the fixed portion (61).
  • a third annular groove (63) in which a sealing member (not shown) is accommodated is formed near the inner periphery of the upper surface of the protrusion (62).
  • a through hole (64) is formed inside the protrusion (62) in the radial direction (X).
  • the drive shaft (40) and the shaft support portion (53) are inserted into the through hole (64).
  • the compressed fluid flows from the third annular groove (63) to the first space (the space between the second annular groove (54) and the third annular groove (63)).
  • High pressure is generated in the first space, and the high pressure presses the movable scroll (26) toward the fixed scroll (21) via the floating member (50).
  • the fluid that is being compressed is introduced into the second space (the space between the first annular groove (52) and the third annular groove (63)) from the compression chamber (S20).
  • a slightly high pressure (intermediate pressure) is generated in the second space, and the intermediate pressure presses the movable scroll (26) toward the fixed scroll (21) via the floating member (50).
  • FIG. 2(a) is a cut end view showing a first embodiment of the configuration of the movable scroll (26) and the floating member (50).
  • FIG. 2(a) shows the movable scroll (26) and the floating member (50) when the movable scroll (26) is not overturned.
  • FIG. 2(b) is an enlarged view of a portion (IIb) of FIG. 2(a).
  • the floating member (50) includes an opposing surface (500).
  • the opposing surface (500) is a surface that faces the back surface (270) of the movable end plate (27) in the movable scroll (26).
  • the opposing surface (500) includes an inner portion (501) and an outer portion (502). Each of the inner portion (501) and the outer portion (502) is formed in an annular shape around the drive shaft (40).
  • the inner portion (501) is a portion of the opposing surface (500) located on the inner side in the radial direction (X).
  • the outer portion (502) is a portion of the opposing surface (500) located on the outer side in the radial direction (X).
  • the outer portion (502) is located on the outer side in the radial direction (X) with respect to the inner portion (501).
  • the radial direction (X) is a direction perpendicular to the axis of the main shaft portion (41) (see FIG. 1) of the drive shaft (40) of the scroll compressor (1).
  • the back surface (270) of the movable scroll (26) includes a first portion (271), a second portion (272), and a central portion (273).
  • the first portion (271) faces the inner portion (501) of the floating member (50).
  • the second portion (272) faces the outer portion (502) of the floating member (50).
  • Each of the first portion (271) and the second portion (272) is formed in an annular shape around the drive shaft (40).
  • the second portion (272) is located on the outside in the radial direction (X) with respect to the first portion (271).
  • the central portion (273) is located inside the first portion (271) in the radial direction (X).
  • a drive shaft (40) is connected to the central portion (273).
  • the second portion (272) of the movable scroll (26) and the outer portion (502) of the floating member (50) include planes parallel to each other.
  • the first portion (271) of the movable scroll (26) includes a plane that is flush with the second portion (272).
  • the inner portion (501) of the floating member (50) includes an inclined surface (501a) that is inclined away from the first portion (271) of the movable scroll (26).
  • the inclined surface (501a) of the inner portion (501) increases in the axial direction ( Y) to gradually move away from each other.
  • FIG. 3(a) is a cut end view showing the state of the movable scroll (26) and the floating member (50) when the movable scroll (26) is overturned.
  • FIG. 3(b) is an enlarged view of a portion (IIIb) of FIG. 3(a).
  • the movable scroll (26) tilts with respect to the axial direction (Y) (the axis of the drive shaft (40)) (see FIGS. 2(a) and 3(a)).
  • the floating member (50) tilts to follow the overturning of the movable scroll (26).
  • the outer portion (502) of the floating member (50) and the second portion (272) of the movable scroll (26) come into surface contact.
  • a gap (U) exists between the first portion (271) and the inclined surface (501a) of the floating member (50).
  • the dimension of the gap (U) in the axial direction (Y) gradually increases toward the center of the scroll compressor (1) (towards the drive shaft (40)).
  • the inclined surface (501a) is formed on the floating member (50) so that even if the floating member (50) makes surface contact with the second portion (272), a gap (U) exists.
  • oil can be supplied through the gap (U) and an oil film can be formed between the movable scroll (26) and the floating member (50), so that poor lubrication can be suppressed.
  • the contact portion between the movable scroll (26) and the floating member (50) can be prevented from seizing. Therefore, when the movable scroll (26) overturns, it is possible to suppress the support function of the floating member (50) for the movable scroll (26) from decreasing.
  • FIG. 4(a) shows the relationship between the movable scroll (26) and the floating member (50) when a gas load (load of compressed refrigerant) is applied to the movable scroll (26) when the movable scroll (26) overturns.
  • FIG. FIG. 4(b) is an enlarged view of a portion (IVb) of FIG. 4(a).
  • the movable scroll (26) undergoes pressure deformation and thermal deformation due to the compressed refrigerant load (gas load). This may occur.
  • the pressure and temperature of the refrigerant increases as it moves toward the center (273) of the movable scroll (26), and the pressure and temperature of the refrigerant increase as it moves toward the center (273) of the movable scroll (26).
  • the acting gas load increases.
  • the movable scroll (26) is deformed by the gas load.
  • the back surface (270) of the movable scroll (26) curves so that the center portion (273) of the movable scroll (26) becomes convex toward the floating member (50).
  • FIG. 5 is a sectional view showing a second embodiment of the configuration of the movable scroll (26) and the floating member (50).
  • FIG. 5 shows the state of the movable scroll (26) and the floating member (50) when the movable scroll (26) is not overturned.
  • the configuration of the inner portion (501) of the floating member (50) is different from the first embodiment.
  • differences from the first embodiment will be mainly explained.
  • the inner portion (501) of the floating member (50) includes a stepped portion (501b).
  • the step portion (501b) is spaced apart from the first portion (271) of the movable scroll (26) in stages.
  • the stepped portion (501b) of the inner portion (501) increases in the axial direction ( Y).
  • a gap (U) is formed between the step portion (501b) and the first portion (271) of the movable scroll (26).
  • the dimension of the gap (U) in the axial direction (Y) gradually increases toward the center of the scroll compressor (1).
  • the step portion (501b) is configured with one step, but the present invention is not limited to this, and may be configured with a plurality of steps.
  • the second embodiment ensures that a gap (U) exists between the first portion (271) and the stepped portion (501b) of the floating member (50). can.
  • oil can be supplied through the gap (U) to form an oil film between the movable scroll (26) and the floating member (50), which reduces the support function of the floating member (50) for the movable scroll (26). can be restrained from doing so.
  • FIG. 6 is a cut end view showing a third embodiment of the configuration of the movable scroll (26) and the floating member (50).
  • FIG. 6 shows the state of the movable scroll (26) and the floating member (50) when the movable scroll (26) is not overturned.
  • the configuration of the inner portion (501) of the floating member (50) and the configuration of the first portion (271) of the movable scroll (26) are different. This is different from the first embodiment. Below, differences from the first embodiment will be mainly explained.
  • the inner portion (501) of the floating member (50) includes a plane that is flush with the outer portion (502).
  • the first portion (271) of the movable scroll (26) includes an inclined surface (271a) that is inclined away from the inner portion (501) of the floating member (50).
  • the inclined surface (271a) of the first portion (271) is axially ( Y) to gradually move away from each other.
  • a gap (U) is formed between the inclined surface (271a) and the inner portion (501) of the floating member (50). The dimension of the gap (U) in the axial direction (Y) gradually increases toward the center of the scroll compressor (1).
  • FIG. 7 is a cut end view showing a fourth embodiment of the configuration of the movable scroll (26) and the floating member (50).
  • FIG. 7 shows the state of the movable scroll (26) and the floating member (50) when the movable scroll (26) is not overturned.
  • the configuration of the first portion (271) of the movable scroll (26) is different from the third embodiment.
  • the differences from the third embodiment will be mainly explained.
  • the first portion (271) of the movable scroll (26) includes a step portion (271b).
  • the step portion (271b) is spaced apart from the inner portion (501) of the floating member (50) in stages.
  • the stepped portion (271b) of the movable scroll (26) increases in the axial direction (Y ).
  • a gap (U) is formed between the step portion (271b) and the inner portion (501) of the floating member (50).
  • the dimension of the gap (U) in the axial direction (Y) gradually increases toward the center of the scroll compressor (1).
  • the step portion (271b) is configured with one step, but the present invention is not limited to this, and may be configured with a plurality of steps.
  • the fourth embodiment ensures that a gap (U) exists between the step portion (271b) of the first portion (271) and the floating member (50). can.
  • oil can be supplied through the gap (U) to form an oil film between the movable scroll (26) and the floating member (50), which reduces the support function of the floating member (50) for the movable scroll (26). can be restrained from doing so.
  • Either a stepped portion (271b) or an inclined surface (271a) is formed in the first portion (271) of the movable scroll (26), and further, in the inner portion (501) of the floating member (50). Either an inclined surface (501a) or a stepped portion (501b) may be formed.
  • the present disclosure is useful for scroll compressors and refrigeration equipment.
  • Scroll compressor 20 Compression mechanism 21 Fixed scroll 26 Movable scroll 50 Floating member 270 Back surface 271 First part 271a Inclined surface 271b Step part 272 Second part 500 Opposing surface 501 Inner part 501a Inclined surface 501b Step part 502 Outer part U Gap

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

スクロール圧縮機は、固定スクロール(21)および可動スクロール(26)を有する圧縮機構(20)と、上記可動スクロール(26)を支持するフローティング部材(50)とを備え、上記フローティング部材(50)は、対向面(500)を含み、上記可動スクロール(26)の背面(270)は、第1部分(271)と、第2部分(272)とを含み、上記対向面(500)のうちの内側部分(501)と上記背面(270)の第1部分(271)との間には隙間(U)が存在する。

Description

スクロール圧縮機および冷凍装置
 本開示は、スクロール圧縮機および冷凍装置に関する。
 特許文献1には、スクロール圧縮機が開示されている。特許文献1に記載のスクロール圧縮機は、固定スクロールおよび可動スクロールを有する圧縮機構と、フローティング部材とを備える。フローティング部材の背面側に高圧および中間圧が供給されることで、フローティング部材が押し上げられる。これにより、フローティング部材が可動スクロールを固定スクロールに押し付ける。
特開2020―193576号公報
 しかし、可動スクロールが転覆した場合、可動スクロールの転覆に追従してフローティング部材が傾くのでフローティング部材が可動スクロールに対して隙間なく接触した状態が保持される可能性がある。その結果、可動スクロールとフローティング部材との間に油が流入しにくくなることで潤滑不良に陥り、可動スクロールおよびフローティング部材の接触部が焼き付くことで、フローティング部材の軸受信頼性が低下する可能性があった。
 本開示の目的は、可動スクロールの転覆時において、可動スクロールの転覆にフローティング部材が追従しても、フローティング部材の軸受信頼性が低下することを抑制できるようにすることである。
 第1の態様はスクロール圧縮機を対象とする。スクロール圧縮機は、固定スクロール(21)および可動スクロール(26)を有する圧縮機構(20)と、上記可動スクロール(26)を支持するフローティング部材(50)とを備え、上記フローティング部材(50)は、上記可動スクロール(26)の背面(270)と対向する対向面(500)を含み、上記可動スクロール(26)の背面(270)は、上記フローティング部材(50)の対向面(500)のうちの内側部分(501)と対向する第1部分(271)と、上記フローティング部材(50)の対向面(500)のうちの外側部分(502)と対向する第2部分(272)とを含み、上記対向面(500)のうちの内側部分(501)と上記背面(270)の第1部分(271)との間には隙間(U)が存在する。
 第1の態様では、可動スクロール(26)の転覆時において、可動スクロールの転覆にフローティング部材が追従しても、可動スクロール(26)に対するフローティング部材(50)の支持機能が低下することを抑制できる。
 第2の態様は、第1の態様において、上記可動スクロール(26)が転覆すると、上記隙間(U)が存在した状態で、上記対向面(500)のうちの外側部分(502)と上記背面(270)の第2部分(272)とが面接触する。
 第2の態様では、可動スクロール(26)の転覆に追従してフローティング部材(50)が傾斜することで、対向面(500)のうちの外側部分(502)と上記背面(270)の第2部分(272)とが面接触しても、傾斜したフローティング部材(50)の対向面(500)と可動スクロール(26)の背面(270)との間に隙間(U)を通じて油を供給できる。第3の態様は、第1または第2の態様において、上記隙間(U)の寸法が上記外側部分(502)と上記第2部分(272)との間の寸法よりも軸方向(Y)に大きい。第3の態様では、可動スクロール(26)の非転覆時に、隙間(U)の方が外側部分(502)と第2部分(272)との間の隙間よりも軸方向(Y)に大きくなるように構成できる。
 第4の態様は、第1から第3の態様のいずれか1つにおいて、上記対向面(500)のうちの内側部分(501)は、上記背面(270)の第1部分(271)に対して離間するように傾斜する傾斜面(501a)を含む。
 第4の態様では、フローティング部材(50)の傾斜面(501a)と可動スクロール(26)の背面(270)との間に隙間(U)を形成することができる。
 第5の態様は、第1から第3の態様のいずれか1つにおいて、上記対向面(500)のうちの内側部分(501)は、上記背面(270)の第1部分(271)に対して段階的に離間する段差部(501b)を含む。
 第5の態様では、フローティング部材(50)の段差部(501b)と可動スクロール(26)の背面(270)との間に隙間(U)を形成することができる。
 第6の態様は、第1から第3の態様のいずれか1つにおいて、上記背面(270)の第1部分(271)は、上記対向面(500)のうちの内側部分(501)に対して離間するように傾斜する傾斜面(271a)を含む。
 第6の態様では、フローティング部材(50)の対向面(500)と可動スクロール(26)の傾斜面(271a)との間に隙間(U)を形成することができる。
 第7の態様は、第1から第3の態様のいずれか1つにおいて、上記背面(270)の第1部分(271)は、上記対向面(500)のうちの内側部分(501)に対して段階的に離間する段差部(271b)を含む。
 第7の態様では、フローティング部材(50)の対向面(500)と可動スクロール(26)の段差部(271b)との間に隙間(U)を形成することができる。
 第8の態様は、第1~第7の態様のいずれか1つにおいて、上記対向面(500)と上記背面(270)との間の上記隙間(U)は、上記スクロール圧縮機(1)の中心側へ向かうに従って、徐々にまたは段階的に大きくなる。
 第8の態様では、スクロール圧縮機(1)の中心側が開放された隙間(U)を形成することができる。
 第9の態様は、第1~第8の態様のいずれか1つにおいて、上記背面(270)の第2部分(272)の変形時に上記第2部分(272)に沿うように上記対向面(500)のうちの外側部分(502)が変形する。
 第9の態様では、背面(270)の第2部分(272)の変形時に第2部分(272)に沿うように対向面(500)のうちの外側部分(502)が変形することで、背面(270)の第2部分(272)と対向面(500)のうちの外側部分(502)が面接触しても、フローティング部材(50)の対向面(500)と可動スクロール(26)の背面(270)との間に隙間(U)を通じて油を供給して油膜を構成できる。
 第10の態様は、冷凍装置を対象とする。冷凍装置は、上記スクロール圧縮機(1)を備える。
 第10の態様では、可動スクロール(26)の転覆時に、可動スクロール(26)に対するフローティング部材(50)の支持機能が低下することを抑制できる。
図1は、実施形態に係るスクロール圧縮機の概略の全体構成図である。 図2(a)は、可動スクロールとフローティング部材の構成の第1実施形態を示す切断端面図である。図2(b)は、図2(a)の一部拡大図である。 図3(a)は、可動スクロールが転覆したときの可動スクロールとフローティング部材との状態を示す切断端面図である。図3(b)は、図3(a)の一部拡大図である。 図4(a)は、可動スクロールの転覆時において、可動スクロールにガス荷重がかかったときの可動スクロールとフローティング部材との状態を示す切断端面図である。図4(b)は、図4(a)の一部拡大図である。 図5は、可動スクロールとフローティング部材の構成の第2実施形態を示す切断端面図である。 図6は、可動スクロールとフローティング部材の構成の第3実施形態を示す切断端面図である。 図7は、可動スクロールとフローティング部材の構成の第4実施形態を示す切断端面図である。
 以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本開示は、以下に示される実施形態に限定されるものではなく、本開示の技術的思想を逸脱しない範囲内で各種の変更が可能である。各図面は、本開示を概念的に説明するためのものであるから、理解容易のために必要に応じて寸法、比または数を誇張または簡略化して表す場合がある。
 以下、例示的な実施形態を図面に基づいて詳細に説明する。
 <全体構成>
 図1を参照して、スクロール圧縮機(1)について説明する。スクロール圧縮機(1)は、冷媒を吸入し、吸入した冷媒を圧縮して吐出する装置である。冷媒は、例えばHFC冷媒のR32である。なお、R32は冷媒の種類の例示に過ぎず、スクロール圧縮機(1)は、R32以外の冷媒を圧縮して吐出する装置であってもよい。スクロール圧縮機(1)は、冷凍装置に用いられる。冷凍装置は、空気の温度や湿度を調節する空気調和装置、庫内を冷却する冷却装置、温水を生成する給湯装置等のうちのいずれかを含む。スクロール圧縮機(1)は、例えば、空気調和装置の室外機に搭載され、空気調和装置の冷媒回路の一部を構成する。
 図1に示すように、スクロール圧縮機(1)は、ケーシング(10)と、圧縮機構(20)と、電動機(30)と、駆動軸(40)と、フローティング部材(50)と、フレーム(60)とを備える。
 ケーシング(10)は、両端が閉塞された縦長の円筒状に形成される。ケーシング(10)内には、圧縮機構(20)と電動機(30)とが収容される。ケーシング(10)内を軸方向(Y)(図1の上下方向)に延びる駆動軸(40)によって圧縮機構(20)と電動機(30)とが連結される。
 ケーシング(10)内の上部には、仕切部材(11)が設けられる。仕切部材(11)は、ケーシング(10)の内部空間を2つの空間に仕切る。仕切部材(11)よりも上側の空間が第1空間(S1)を構成する。仕切部材(11)よりも下側の空間が第2空間(S2)を構成する。
 ケーシング(10)には、吸入管(図示せず)と、吐出管(12)とが設けられる。吸入管は、ケーシング(10)の胴部を径方向(X)に貫通して第2空間(S2)と連通する。吸入管は、第2空間(S2)に低圧の流体(例えば、ガス冷媒)を導入する。吐出管(12)は、ケーシング(10)の上部を径方向(X)に貫通して第1空間(S1)と連通する。吐出管(12)は、第1空間(S1)内の高圧の流体をケーシング(10)外に導出する。
 圧縮機構(20)は、固定スクロール(21)と、可動スクロール(26)とを有する。固定スクロール(21)は、フレーム(60)に固定される。可動スクロール(26)は、フローティング部材(50)と固定スクロール(21)との間に配置される。可動スクロール(26)は、固定スクロール(21)に噛み合わされて固定スクロール(21)に対して偏心回転運動を行うように構成される。
 固定スクロール(21)は、フレーム(60)の軸方向(Y)における一方側(この例では、上側)に配置される。固定スクロール(21)は、固定側鏡板(22)と、固定側ラップ(23)と、外周壁部(24)とを有する。
 固定側鏡板(22)は、概ね円形の板状に形成される。固定側ラップ(23)は、インボリュート曲線を描く渦巻き壁状に形成され、固定側鏡板(22)の前面(この例では、下面)から突出している。外周壁部(24)は、固定側ラップ(23)の外周側を囲むように形成され、固定側鏡板(22)の前面から突出している。固定側ラップ(23)の先端面(この例では、下端面)と、外周壁部(24)の先端面とは略面一になっている。
 固定スクロール(21)の外周壁部(24)には、吸入ポート(図示せず)が形成される。吸入ポートは、第2空間(S2)と連通する。固定スクロール(21)の固定側鏡板(22)の中央部には、固定側鏡板(22)を厚さ方向に貫通する吐出口(25)が形成される。
 可動スクロール(26)は、可動側鏡板(27)と、可動側ラップ(28)と、ボス部(29)とを有する。
 可動側鏡板(27)は、概ね円形の板状に形成される。可動側ラップ(28)は、インボリュート曲線を描く渦巻き壁状に形成され、可動側鏡板(27)の前面(この例では、上面)から突出している。ボス部(29)は、円筒状に形成され、可動側鏡板(27)の背面(270)(この例では、下面)の中央部に配置される。可動スクロール(26)の可動側ラップ(28)は、固定スクロール(21)の固定側ラップ(23)と噛み合わされている。
 このような構成により、固定スクロール(21)と可動スクロール(26)との間には、圧縮室(S20)が形成される。圧縮室(S20)は、流体を圧縮するための空間である。圧縮室(S20)は、吸入管、第2空間(S2)、および吸入ポートを通じて吸入された流体を圧縮し、圧縮された流体を吐出口(25)を通じて吐出するように構成される。
 電動機(30)は、ケーシング(10)内に収容され、圧縮機構(20)の下方に配置される。電動機(30)は、固定子(31)と、回転子(32)とを有する。固定子(31)は、実質的に円筒状に形成されてケーシング(10)に固定される。回転子(32)は、固定子(31)の内周に回転可能に挿通される。回転子(32)の内周には、駆動軸(40)が挿通されて固定される。
 駆動軸(40)は、主軸部(41)と、偏心軸部(42)とを有する。主軸部(41)は、軸方向(Y)(本実施形態では、上下方向)に沿って延びる。軸方向(Y)は、駆動軸(40)の主軸部(41)の軸心の延びる方向に対して平行な方向である。偏心軸部(42)は、主軸部(41)の上端に設けられる。偏心軸部(42)の外径は、主軸部(41)の外径よりも小さい。偏心軸部(42)の軸心は、主軸部(41)の軸心に対して所定距離だけ偏心している。駆動軸(40)は、可動スクロール(26)に軸方向(Y)の他方向側(Y2)(本実施形態では、下方向側)から連結される。
 フローティング部材(50)は、実質的に円筒状に形成される。フローティング部材(50)は、揺動自在に支持される。フローティング部材(50)は、スクロール支持部(51)と、軸支持部(53)と、連結部(55)とを有する。フローティング部材(50)は、本発明のスラスト軸受の一例である。
 スクロール支持部(51)は、可動スクロール(26)の背面(270)に接触する実質的に円筒状の部分である。スクロール支持部(51)は、可動スクロール(26)を支持する。スクロール支持部(51)の外壁の下端寄りには、Oリング(図示せず)が収容される第1環状溝(52)が形成される。
 軸支持部(53)は、スクロール支持部(51)よりも小さい内径を有する実質的に円筒状の部分である。軸支持部(53)は、駆動軸(40)の主軸部(41)を回転可能に支持する。軸支持部(53)の外壁の上端寄りには、Oリング(図示せず)が収容される第2環状溝(54)が形成される。
 連結部(55)は、実質的にリング状に形成された部分である。連結部(55)は、スクロール支持部(51)の下端部と、軸支持部(53)の上端部とを互いに連結する。
 フローティング部材(50)、可動スクロール(26)および固定スクロール(21)は、軸方向(Y)の一方向側(Y1)へ向かって、フローティング部材(50)、可動スクロール(26)および固定スクロール(21)の順番に配置される。
 フレーム(60)は、実質的に円筒状に形成される。フレーム(60)は、第2空間(S2)において、例えば圧入によってケーシング(10)に固定される。フレーム(60)は、固定部(61)と、突出部(62)とを有する。
 固定部(61)は、実質的に円筒状に形成された部分である。固定部(61)の外周面は、ケーシング(10)に固定される。固定部(61)の上面には、固定スクロール(21)が固定される。
 突出部(62)は、実質的に円筒状またはリング状に形成された部分である。突出部(62)は、固定部(61)の内周部から径方向(X)の内側に突出している。突出部(62)の上面の内周寄りには、シール部材(図示せず)が収容される第3環状溝(63)が形成される。
 突出部(62)の径方向(X)の内側には、貫通孔(64)が形成される。貫通孔(64)には、駆動軸(40)および軸支持部(53)が挿通される。
 <スクロール圧縮機の動作>
 図1に示すように、電動機(30)に電力が供給されると、電動機(30)の回転子(32)が回転して、駆動軸(40)が回転駆動される。駆動軸(40)が回転駆動することで、駆動軸(40)に連結された可動スクロール(26)が固定スクロール(21)に対して偏心回転運動を行う。これにより、吸入管および第2空間(S2)を介して圧縮室(S20)へ低圧の流体が吸入され、圧縮室(S20)内で圧縮される。圧縮された流体は、吐出口(25)および第1空間(S1)を介して吐出管(12)から吐出される。圧縮された流体は、第3環状溝(63)から第1空間(第2環状溝(54)と第3環状溝(63)の間の空間)。第1空間では高い圧力(高圧)が生じ、当該高圧により、フローティング部材(50)を介して、可動スクロール(26)が固定スクロール(21)側に押し付けられる。第2空間(第1環状溝(52)と第3環状溝(63)の間の空間)には、圧縮室(S20)から圧縮途中の流体が導かれる。第2空間ではやや高い圧力(中間圧)が生じ、当該中間圧によりフローティング部材(50)を介して、可動スクロール(26)が固定スクロール(21)側に押し付けられる。
 <第1実施形態>
 図2(a)~図3(b)を参照して、可動スクロール(26)とフローティング部材(50)の構成の第1実施形態について説明する。図2(a)は、可動スクロール(26)とフローティング部材(50)の構成の第1実施形態を示す切断端面図である。図2(a)は、可動スクロール(26)が転覆していないときの可動スクロール(26)とフローティング部材(50)とを示す。図2(b)は、図2(a)の一部(IIb)拡大図である。
 図2(a)および図2(b)に示すように、フローティング部材(50)は、対向面(500)を含む。対向面(500)は、可動スクロール(26)における可動側鏡板(27)の背面(270)と対向する面である。対向面(500)は、内側部分(501)と、外側部分(502)とを含む。内側部分(501)および外側部分(502)の各々は、駆動軸(40)を中心に環状に形成される。内側部分(501)は、対向面(500)のうち径方向(X)の内側に位置する部分である。外側部分(502)は、対向面(500)のうち径方向(X)の外側に位置する部分である。外側部分(502)は、内側部分(501)に対して径方向(X)の外側に位置する。径方向(X)は、スクロール圧縮機(1)の駆動軸(40)の主軸部(41)(図1参照)の軸心に対して垂直な方向である。
 可動スクロール(26)の背面(270)は、第1部分(271)と、第2部分(272)と、中央部(273)とを含む。第1部分(271)は、フローティング部材(50)の内側部分(501)と対向する。第2部分(272)は、フローティング部材(50)の外側部分(502)と対向する。第1部分(271)および第2部分(272)の各々は、駆動軸(40)を中心に環状に形成される。第2部分(272)は、第1部分(271)に対して径方向(X)の外側に位置する。中央部(273)は、第1部分(271)に対して径方向(X)の内側に位置する。中央部(273)には駆動軸(40)が連結される。
 可動スクロール(26)の第2部分(272)と、フローティング部材(50)の外側部分(502)とは、互いに平行な平面を含む。
 可動スクロール(26)の第1部分(271)は、第2部分(272)と面一となる平面を含む。
 フローティング部材(50)の内側部分(501)は、可動スクロール(26)の第1部分(271)に対して離間するように傾斜する傾斜面(501a)を含む。第1実施形態では、内側部分(501)の傾斜面(501a)は、径方向(X)の内側(駆動軸(40)側)へ向かう程、第1部分(271)に対して軸方向(Y)に徐々に離間するように傾斜する。
 図3(a)は、可動スクロール(26)が転覆しているときの可動スクロール(26)とフローティング部材(50)との状態を示す切断端面図である。図3(b)は、図3(a)の一部(IIIb)拡大図である。
 図3(a)および図3(b)に示すように、例えば、スクロール圧縮機(1)の圧縮室(S20)内に冷媒をインジェクションした場合、インジェクションによる圧縮室(S20)内の圧力上昇に起因して、可動スクロール(26)が転覆することがある。
 可動スクロール(26)は、転覆することで軸方向(Y)(駆動軸(40)の軸心)に対して傾く(図2(a)および図3(a)参照)。可動スクロール(26)が転覆すると、フローティング部材(50)が可動スクロール(26)の転覆に追従して傾く。フローティング部材(50)が可動スクロール(26)の転覆に追従することで、フローティング部材(50)の外側部分(502)と、可動スクロール(26)の第2部分(272)とが面接触するが、第1部分(271)とフローティング部材(50)の傾斜面(501a)との間に隙間(U)が存在した状態となる。隙間(U)は、スクロール圧縮機(1)の中心側(駆動軸(40)側)へ向かうに従って、軸方向(Y)の寸法が徐々に大きくなる。
 可動スクロール(26)が転覆し、さらに、可動スクロール(26)の転覆に追従するようにフローティング部材(50)が傾いた場合、フローティング部材(50)の外側部分(502)と、可動スクロール(26)の第2部分(272)とが面接触しても、隙間(U)が存在するようにフローティング部材(50)に傾斜面(501a)が形成されている。これにより、隙間(U)を通じて油を供給して可動スクロール(26)とフローティング部材(50)との間に油膜を構成できるので、潤滑不良に陥ることを抑制できる。その結果、可動スクロール(26)およびフローティング部材(50)の接触部が焼き付くことを抑制できる。よって、可動スクロール(26)の転覆時に、可動スクロール(26)に対するフローティング部材(50)の支持機能が低下することを抑制できる。
 図4(a)は、可動スクロール(26)の転覆時において、可動スクロール(26)にガス荷重(圧縮された冷媒の荷重)がかかったときの可動スクロール(26)とフローティング部材(50)との状態を示す切断端面図である。図4(b)は、図4(a)の一部(IVb)拡大図である。
 図4(a)および図4(b)に示すように、可動スクロール(26)の転覆時において、圧縮された冷媒の荷重(ガス荷重)によって可動スクロール(26)に圧力変形と熱変形とが生じることがある。この場合、可動スクロール(26)の中央部(273)側に向かうほど冷媒の圧力および温度が高くなることで、可動スクロール(26)の中央部(273)側に向かうほど可動スクロール(26)に作用する上記ガス荷重が大きくなる。その結果、上記ガス荷重により可動スクロール(26)が変形する。詳細には、上記ガス荷重により、可動スクロール(26)の中央部(273)がフローティング部材(50)側へ凸となるように可動スクロール(26)の背面(270)が湾曲する。
 上記ガス荷重により可動スクロール(26)が変形する際、フローティング部材(50)の外側部分(502)が、可動スクロール(26)の第2部分(272)と面接触して、第2部分(272)に沿うように湾曲(変形)する。
 上記ガス荷重により可動スクロール(26)が変形する際、可動スクロール(26)の第1部分(271)がフローティング部材(50)側へ湾曲するが、第1部分(271)とフローティング部材(50)の傾斜面(501a)との間に隙間(U)が存在した状態となる。これにより、可動スクロール(26)の転覆時において、ガス荷重によって可動スクロール(26)が変形しても、隙間(U)を通じて油を供給して可動スクロール(26)とフローティング部材(50)との間に油膜を構成できる。その結果、可動スクロール(26)に対するフローティング部材(50)の支持機能が低下することを抑制できる。
 <第2実施形態>
 図5を参照して、可動スクロール(26)とフローティング部材(50)の構成の第2実施形態について説明する。図5は、可動スクロール(26)とフローティング部材(50)の構成の第2実施形態を示す断面図である。図5は、可動スクロール(26)の非転覆時における可動スクロール(26)とフローティング部材(50)との状態を示している。
 図2(a)および図5に示すように、第2実施形態では、フローティング部材(50)の内側部分(501)の構成が第1実施形態と異なる。以下では、主に第1実施形態と異なる点を説明する。
 図5に示すように、第2実施形態では、フローティング部材(50)の内側部分(501)は、段差部(501b)を含む。段差部(501b)は、可動スクロール(26)の第1部分(271)に対して段階的に離間する。第2実施形態では、内側部分(501)の段差部(501b)は、径方向(X)の内側(駆動軸(40)側)へ向かう程、第1部分(271)に対して軸方向(Y)に段階的に離間する。段差部(501b)と可動スクロール(26)の第1部分(271)との間には、隙間(U)が形成される。隙間(U)は、スクロール圧縮機(1)の中心側へ向かうに従って、軸方向(Y)の寸法が段階的に大きくなる。なお、第2実施形態では、段差部(501b)が1段の段差で構成されるが、本発明はこれに限定されず、複数の段差で構成されていてもよい。
 以上のように構成することで、上記図3(a)に示すように可動スクロール(26)の転覆にフローティング部材(50)が追従した場合、および、上記図4(a)に示すようにガス荷重により可動スクロール(26)が変形した場合、第2実施形態では、第1部分(271)とフローティング部材(50)の段差部(501b)との間に隙間(U)が存在した状態を確保できる。その結果、隙間(U)を通じて油を供給して可動スクロール(26)とフローティング部材(50)との間に油膜を構成できるので、可動スクロール(26)に対するフローティング部材(50)の支持機能が低下することを抑制できる。
 <第3実施形態>
 図6を参照して、可動スクロール(26)とフローティング部材(50)の構成の第3実施形態について説明する。図6は、可動スクロール(26)とフローティング部材(50)の構成の第3実施形態を示す切断端面図である。図6は、可動スクロール(26)の非転覆時における可動スクロール(26)とフローティング部材(50)との状態を示している。
 図2(a)および図6に示すように、第3実施形態では、フローティング部材(50)の内側部分(501)の構成と、可動スクロール(26)の第1部分(271)の構成とが第1実施形態と異なる。以下では、主に第1実施形態と異なる点を説明する。
 図6に示すように、フローティング部材(50)の内側部分(501)は、外側部分(502)と面一となる平面を含む。
 可動スクロール(26)の第1部分(271)は、フローティング部材(50)の内側部分(501)に対して離間するように傾斜する傾斜面(271a)を含む。第3実施形態では、第1部分(271)の傾斜面(271a)は、径方向(X)の内側(駆動軸(40)側)へ向かう程、内側部分(501)に対して軸方向(Y)に徐々に離間するように傾斜する。傾斜面(271a)とフローティング部材(50)の内側部分(501)との間には、隙間(U)が形成される。隙間(U)は、スクロール圧縮機(1)の中心側へ向かうに従って、軸方向(Y)の寸法が徐々に大きくなる。
 以上のように構成することで、上記図3(a)に示すように可動スクロール(26)の転覆にフローティング部材(50)が追従した場合、および、上記図4(a)に示すようにガス荷重により可動スクロール(26)が変形した場合、第3実施形態では、第1部分(271)の傾斜面(271a)とフローティング部材(50)との間に隙間(U)が存在した状態を確保できる。その結果、隙間(U)を通じて油を供給して可動スクロール(26)とフローティング部材(50)との間に油膜を構成できるので、可動スクロール(26)に対するフローティング部材(50)の支持機能が低下することを抑制できる。
 <第4実施形態>
 図7を参照して、可動スクロール(26)とフローティング部材(50)の構成の第4実施形態について説明する。図7は、可動スクロール(26)とフローティング部材(50)の構成の第4実施形態を示す切断端面図である。図7は、可動スクロール(26)の非転覆時における可動スクロール(26)とフローティング部材(50)との状態を示している。
 図6および図7に示すように、第4実施形態では、可動スクロール(26)の第1部分(271)の構成が第3実施形態と異なる。以下では、主に第3実施形態と異なる点を説明する。
 図7に示すように、第4実施形態では、可動スクロール(26)の第1部分(271)は、段差部(271b)を含む。段差部(271b)は、フローティング部材(50)の内側部分(501)に対して段階的に離間する。第4実施形態では、可動スクロール(26)の段差部(271b)は、径方向(X)の内側(駆動軸(40)側)へ向かう程、内側部分(501)に対して軸方向(Y)に段階的に離間する。段差部(271b)とフローティング部材(50)の内側部分(501)との間には、隙間(U)が形成される。隙間(U)は、スクロール圧縮機(1)の中心側へ向かうに従って、軸方向(Y)の寸法が段階的に大きくなる。なお、第4実施形態では、段差部(271b)が1段の段差で構成されるが、本発明はこれに限定されず、複数の段差で構成されていてもよい。
 以上のように構成することで、上記図3(a)に示すように可動スクロール(26)の転覆にフローティング部材(50)が追従した場合、および、上記図4(a)に示すようにガス荷重により可動スクロール(26)が変形した場合、第4実施形態では、第1部分(271)の段差部(271b)とフローティング部材(50)との間に隙間(U)が存在した状態を確保できる。その結果、隙間(U)を通じて油を供給して可動スクロール(26)とフローティング部材(50)との間に油膜を構成できるので、可動スクロール(26)に対するフローティング部材(50)の支持機能が低下することを抑制できる。
 以上、実施形態および変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう(例えば、下記(1))。また、以上の実施形態、変形例、その他の実施形態は、本開示の対象の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。
 (1)可動スクロール(26)の第1部分(271)において段差部(271b)および傾斜面(271a)のうちのいずれかが形成され、さらに、フローティング部材(50)の内側部分(501)において傾斜面(501a)および段差部(501b)のうちのいずれかが形成されてもよい。
 以上に説明したように、本開示は、スクロール圧縮機および冷凍装置について有用である。
     1    スクロール圧縮機
     20   圧縮機構
     21   固定スクロール
     26   可動スクロール
     50   フローティング部材
     270  背面
     271  第1部分
     271a 傾斜面
     271b 段差部
     272  第2部分
     500  対向面
     501  内側部分
     501a 傾斜面
     501b 段差部
     502  外側部分
     U    隙間

Claims (10)

  1.  固定スクロール(21)および可動スクロール(26)を有する圧縮機構(20)と、
     上記可動スクロール(26)を支持するフローティング部材(50)と
     を備えるスクロール圧縮機であって、
     上記フローティング部材(50)は、上記可動スクロール(26)の背面(270)と対向する対向面(500)を含み、
     上記可動スクロール(26)の背面(270)は、上記フローティング部材(50)の対向面(500)のうちの内側部分(501)と対向する第1部分(271)と、上記フローティング部材(50)の対向面(500)のうちの外側部分(502)と対向する第2部分(272)とを含み、
     上記対向面(500)のうちの内側部分(501)と上記背面(270)の第1部分(271)との間には隙間(U)が存在する、
     スクロール圧縮機。
  2.  請求項1において、
     上記可動スクロール(26)が転覆すると、上記隙間(U)が存在した状態で、上記対向面(500)のうちの外側部分(502)と上記背面(270)の第2部分(272)とが面接触する、
     スクロール圧縮機。
  3.  請求項1または請求項2において、
     上記隙間(U)の寸法が上記外側部分(502)と上記第2部分(272)との間の寸法よりも軸方向(Y)に大きい、
     スクロール圧縮機。
  4.  請求項1から請求項3のいずれか1項において、
     上記対向面(500)のうちの内側部分(501)は、上記背面(270)の第1部分(271)に対して離間するように傾斜する傾斜面(501a)を含む、
     スクロール圧縮機。
  5.  請求項1から請求項3のいずれか1項において、
     上記対向面(500)のうちの内側部分(501)は、上記背面(270)の第1部分(271)に対して段階的に離間する段差部(501b)を含む、
     スクロール圧縮機。
  6.  請求項1から請求項3のいずれか1項において、
     上記背面(270)の第1部分(271)は、上記対向面(500)のうちの内側部分(501)に対して離間するように傾斜する傾斜面(271a)を含む、
     スクロール圧縮機。
  7.  請求項1から請求項3のいずれか1項において、
     上記背面(270)の第1部分(271)は、上記対向面(500)のうちの内側部分(501)に対して段階的に離間する段差部(271b)を含む、
     スクロール圧縮機。
  8.  請求項1から請求項7のいずれか1項において、
     上記対向面(500)と上記背面(270)との間の上記隙間(U)は、上記スクロール圧縮機(1)の中心側へ向かうに従って、徐々にまたは段階的に大きくなる、スクロール圧縮機。
  9.  請求項1から請求項8のいずれか1項において、
     上記背面(270)の第2部分(272)の変形時に上記第2部分(272)に沿うように上記対向面(500)のうちの外側部分(502)が変形する、 スクロール圧縮機。
  10.  請求項1から請求項9のいずれか1項に記載のスクロール圧縮機(1)を備える、冷凍装置。
PCT/JP2022/048408 2022-03-29 2022-12-27 スクロール圧縮機および冷凍装置 WO2023188658A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-052881 2022-03-29
JP2022052881A JP7311813B1 (ja) 2022-03-29 2022-03-29 スクロール圧縮機および冷凍装置

Publications (1)

Publication Number Publication Date
WO2023188658A1 true WO2023188658A1 (ja) 2023-10-05

Family

ID=87201073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048408 WO2023188658A1 (ja) 2022-03-29 2022-12-27 スクロール圧縮機および冷凍装置

Country Status (2)

Country Link
JP (1) JP7311813B1 (ja)
WO (1) WO2023188658A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0842470A (ja) * 1994-08-02 1996-02-13 Daikin Ind Ltd スクロール型流体機械
JPH08261174A (ja) * 1995-03-22 1996-10-08 Mitsubishi Electric Corp スクロール圧縮機
JP2005282511A (ja) * 2004-03-30 2005-10-13 Mitsubishi Electric Corp スクロール圧縮機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0842470A (ja) * 1994-08-02 1996-02-13 Daikin Ind Ltd スクロール型流体機械
JPH08261174A (ja) * 1995-03-22 1996-10-08 Mitsubishi Electric Corp スクロール圧縮機
JP2005282511A (ja) * 2004-03-30 2005-10-13 Mitsubishi Electric Corp スクロール圧縮機

Also Published As

Publication number Publication date
JP7311813B1 (ja) 2023-07-20
JP2023145953A (ja) 2023-10-12

Similar Documents

Publication Publication Date Title
US5931650A (en) Hermetic electric scroll compressor having a lubricating passage in the orbiting scroll
US9541083B2 (en) Scroll compressor including communication hole with improved back pressure chamber and back pressure hole locations
EP1851437B1 (en) Capacity varying type rotary compressor
WO2013105368A1 (ja) スクロール圧縮機
US7722341B2 (en) Scroll compressor having variable height scroll
JP2020153295A (ja) スクロール圧縮機
EP2497954A2 (en) Scroll compressor
JP2018048649A (ja) スクロール圧縮機
US20220065251A1 (en) Compressor
JP2000249086A (ja) スクロール型圧縮機
US10502209B2 (en) Scroll compressor and air conditioning apparatus including the same
JP2010248994A (ja) スクロール圧縮機及びその組立方法
WO2023188658A1 (ja) スクロール圧縮機および冷凍装置
US10920775B2 (en) Scroll compressor with different sized gaps formed between inner and outer peripheral surfaces of scroll laps
CN211737453U (zh) 涡旋式压缩机和具有该涡旋式压缩机的制冷装置
JP2004124906A (ja) スクロール型圧縮機
JP2010156249A (ja) スクロール圧縮機
JP2009138641A (ja) 圧縮機
CN218882510U (zh) 涡旋压缩机和空调装置
CN111226037A (zh) 压缩机
US20220065250A1 (en) Scroll compressor and refrigeration apparatus including same
CN219242200U (zh) 涡旋压缩机和空调装置
US6419470B2 (en) Scroll compressor
JP2005163745A (ja) スクロール圧縮機
CN219119449U (zh) 一种具有运行范围保护的涡旋压缩机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935783

Country of ref document: EP

Kind code of ref document: A1