WO2023188165A1 - Probe card - Google Patents

Probe card Download PDF

Info

Publication number
WO2023188165A1
WO2023188165A1 PCT/JP2022/016175 JP2022016175W WO2023188165A1 WO 2023188165 A1 WO2023188165 A1 WO 2023188165A1 JP 2022016175 W JP2022016175 W JP 2022016175W WO 2023188165 A1 WO2023188165 A1 WO 2023188165A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
probe pin
pin
guide
hole
Prior art date
Application number
PCT/JP2022/016175
Other languages
French (fr)
Japanese (ja)
Inventor
親臣 森
守 上田
Original Assignee
日本電子材料株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電子材料株式会社 filed Critical 日本電子材料株式会社
Priority to PCT/JP2022/016175 priority Critical patent/WO2023188165A1/en
Publication of WO2023188165A1 publication Critical patent/WO2023188165A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices

Definitions

  • This application relates to a probe card.
  • a probe card is a testing device used to test the electrical characteristics of electronic circuits formed on semiconductor wafers.
  • This probe card is equipped with a large number of probe pins that respectively contact electrodes on the electronic circuit. Characteristics testing of electronic circuits is performed by bringing a semiconductor wafer close to a probe card, bringing the tips of probe pins into contact with electrodes on the electronic circuit, and establishing electrical continuity between the tester device and the electronic circuit via the probe pins.
  • Patent Document 1 proposes cooling the support of the probe pin in order to solve the technical problem caused by the heat generated by the probe pin, but in reality, this is not practical because the configuration of the cooling medium flow path is complicated. It wasn't on point. Therefore, when a probe pin is fused, it is necessary to remove the fused probe pin and replace it with a repair probe pin.
  • the probe pin has two guide plates with holes between its ends, that is, the contact part that contacts the electrode of the test object and the connection part that connects to the electrode of the wiring board of the probe card. There are things that are supported. In this case, when the probe pin is fused between the two guide plates and a metal lump is generated at the fused end, the metal lump becomes larger than the guide hole and becomes an obstacle, causing the probe pin to pass through the guide hole. There was a problem that it became impossible to remove the .
  • the present application discloses a technology for solving the above-mentioned problems, and aims to provide a probe pin and a probe card that can be easily replaced even if the probe pin should melt. It is something.
  • the probe card disclosed in this application includes: A probe card for testing the electrical characteristics of an electronic circuit, comprising a probe pin and a guide having a guide hole into which the probe pin is inserted and guided, The probe pin is provided with a probe through hole that penetrates perpendicularly to the longitudinal direction of the probe pin.
  • FIG. 3 is a diagram schematically showing a test state of an electronic circuit using the probe card according to the first embodiment.
  • FIG. 3 is an enlarged side view of the probe pin according to the first embodiment.
  • FIG. 3 is a diagram showing a state of a probe card in which one probe pin is fused according to the first embodiment.
  • FIG. 3 is an enlarged side view of the fused probe pin according to the first embodiment.
  • FIG. 3 is a diagram showing a schematic configuration of a probe card using probe pins as a comparative example.
  • FIG. 7 is a diagram showing a state of a probe card of a comparative example in which one probe pin is fused.
  • FIG. 7 is a diagram schematically showing a test state of an electronic circuit using a probe card according to a second embodiment.
  • FIG. 3 is an enlarged side view of a probe pin according to Embodiment 2;
  • FIG. 7 is a diagram showing a state of a probe card in which one probe pin is fused according to Embodiment 2;
  • FIG. 7 is an enlarged side view of a fused probe pin according to Embodiment 2;
  • FIG. 7 is a diagram schematically showing a state of testing an electronic circuit using a probe card according to a third embodiment.
  • FIG. 12A is a side view of the probe pin before fusing according to the fourth embodiment.
  • FIG. 12B is a side view of the probe pin after fusing according to the fourth embodiment.
  • FIG. 1 is a diagram schematically showing a test state of an electronic circuit using a probe card 100 according to the first embodiment.
  • the probe card 100 is an inspection device used to inspect the electrical characteristics of an electronic circuit formed on a semiconductor wafer W.
  • the probe card 100 includes a large number of probe pins 20 that are brought into contact with electrodes C on the electronic circuit, respectively.
  • the semiconductor wafer W is brought close to the probe card 100, the lower end of the probe pin 20 is brought into contact with the electrode C on the electronic circuit, and a tester device (not shown) is connected to the semiconductor wafer W via the probe pin 20. This is done by making the tester connection electrode TC conductive.
  • the probe card 100 includes a hollow frame 10, an upper guide 11 attached to the upper end of the frame 10, a lower guide 12 attached to the lower end of the frame 10, a fixing plate 13 for fixing the upper guide 11, and a wiring board 14. Equipped with
  • the upper guide 11 has a plurality of guide holes 11H penetrating in the vertical direction
  • the lower guide 12 provided below the upper guide 11 also has a plurality of guide holes 12H penetrating in the vertical direction.
  • Above the group of guide holes 11H provided in the upper guide 11 is an opening 13H provided in the fixed plate 13.
  • a wiring board 14 is arranged on the upper surface of the fixed plate 13.
  • the wiring board 14 includes a plurality of probe connection pads 14P on its lower surface that contact the upper ends of the probe pins 20.
  • the probe pin 20 is a vertical probe pin arranged perpendicularly to the object to be inspected.
  • FIG. 2 is an enlarged side view of the probe pin 20.
  • the probe pin 20 is made of conductive metal, and a cross section perpendicular to the longitudinal direction is rectangular except for a portion, and has an elongated shape.
  • the central portion is curved, and the upper and lower portions extend vertically in a straight line.
  • the curved central portion is the elastic deformation portion 20m.
  • the upper end (one end) of the probe pin 20 is provided with a terminal portion 20t that is pointed upward.
  • a contact portion 20c is formed at the lower end (other end).
  • the contact portion 20c is a contact portion that is brought into contact with the object to be inspected. Further, the terminal portion 20t is provided at the upper end portion of the probe pin 20, and is pressed against the probe connection pad 14P of the wiring board 14 during inspection.
  • the elastically deformable portion 20m is a portion that easily undergoes buckling deformation when compressive force is applied in the longitudinal direction during so-called overdrive. During overdrive, the elastic deformation portion 20m buckles and deforms in response to the reaction force from the object to be inspected, and the contact portion 20c retreats toward the terminal portion 20t.
  • the probe pin 20 has a part located between the upper guide 11 and the lower guide 12 and near the upper guide 11 at the time of inspection, perpendicular to the buckling direction Z of the probe pin 20 (with respect to the longitudinal direction).
  • a probe through hole 20H having a rectangular cross section is provided which penetrates in the vertical direction. Both sides of the probe through hole 20H in the buckling direction Z are vertically connected by a thin wall portion 20f. Therefore, the probe pin 20 is divided into two parts only at the probe through hole 20H, and is made into one piece at the other parts.
  • the cross-sectional area of the cross section perpendicular to the longitudinal direction of the probe pin 20 is the smallest at the portion where the probe through hole 20H is present, except for the vicinity of the terminal portion 20t.
  • the probe pin 20 is manufactured using so-called MEMS (Micro Electro Mechanical Systems) technology.
  • MEMS technology is a technology for creating fine three-dimensional structures using photolithography technology and sacrificial layer etching technology.
  • Photolithography technology is a fine pattern processing technology using photoresist used in semiconductor manufacturing processes.
  • sacrificial layer etching technology creates a three-dimensional structure by forming a lower layer called a sacrificial layer, forming the layers that make up the structure on top of it, and then removing only the sacrificial layer by etching. It's technology.
  • each layer including the sacrificial layer can be formed using metal ions in the electrolyte.
  • metal ions in the electrolyte can be attached to the substrate surface by immersing a substrate as a cathode and a metal piece as an anode in an electrolyte and applying a voltage between the two electrodes.
  • Such a process is called an electroplating process, and since it is a wet process in which the substrate is immersed in an electrolytic solution, a drying process is performed after the plating process. Further, after this drying process, a flattening process for flattening the laminated surface by polishing process or the like is performed as necessary.
  • FIG. 3 is a diagram showing a state of the probe card 100 in which one probe pin 20 is fused.
  • FIG. 4 is an enlarged side view of the fused probe pin 20.
  • a large current exceeding the allowable current may flow through the power supply probe pin.
  • a current exceeding the rated value may flow to the signal probe pin and cause it to melt.
  • the cross-sectional area of the portion of the probe pin 20 where the probe through-hole 20H is present in the cross section perpendicular to the longitudinal direction is smaller than the cross-sectional area of the other portion of the cross section perpendicular to the longitudinal direction. Therefore, if an overcurrent were to flow through the probe pin 20, the probe pin 20 would definitely melt in the portion where the probe through hole 20H, which has a higher electrical resistance than other portions, is present.
  • FIG. 5 is a diagram showing a schematic configuration of a probe card 100B using probe pins 20B as a comparative example.
  • FIG. 6 is a diagram showing a state of a comparative example probe card 100B in which one probe pin 20B is fused.
  • the cross-sectional area of the probe pin 20B perpendicular to the longitudinal direction is approximately the same over the entire length, except for the terminal portion 20Bt.
  • the probe pin 20 is always fused at the portion where the probe through hole 20H is provided. Even in this case, metal grains Y1 and Y2 are generated in the fused portion. However, even if the metal particles Y1 and Y2 are generated, their size is much smaller than the metal particles YB1 and TB2 generated in one probe pin 20B, and smaller than the guide holes 11H and 12H. Furthermore, since the metal particles Y1 and Y2 adhere to the thin wall portion 20f of the probe through hole 20H, there are no obstacles next to the metal particles Y1 and Y2.
  • the probe pin 20 can be removed outside the frame 10.
  • the probe through hole 20H is provided perpendicularly to the buckling direction Z, but it may be provided in a direction parallel to the buckling direction Z. That is, it only needs to be perpendicular to the longitudinal direction of the probe pin 20.
  • the probe pin 20 and the probe card 100 according to the first embodiment even if the probe pin 20 should be fused due to overcurrent, it can be easily pulled out of the frame 10. Thereby, the time and cost for repairing the probe card 100 can be reduced.
  • FIG. 7 is a diagram schematically showing a test state of an electronic circuit using the probe card 200 according to the second embodiment.
  • FIG. 8 is an enlarged side view of the probe pin 220.
  • FIG. 9 is a diagram showing a state of the probe card 200 in which one probe pin 220 is fused.
  • FIG. 10 is an enlarged side view of the fused probe pin 220.
  • the portion of the probe pin 220 that fits within the guide hole 11H of the upper guide 11 is the upper guide internal storage portion 220g.
  • the upper guide housing portion 220g is provided with a probe through hole 220H having a rectangular cross section and penetrating in a direction perpendicular to the buckling direction Z of the probe pin 20.
  • a locking portion 20k protrudes perpendicularly to the longitudinal direction of the probe pin 220 on the outer circumferential surface of the probe pin 220 above the upper guide housing portion 220g. Therefore, the locking portion 20k of the probe pin 220 is caught on the upper surface of the upper guide 11 and does not fall off downward. Thereby, the upper guide housing portion 220g of the probe pin 220 is always positioned within the guide hole 11H of the upper guide 11.
  • the cross-sectional area of the section perpendicular to the longitudinal direction of the upper guide housing portion 220g which is the portion where the probe through hole 220H is present, is perpendicular to the longitudinal direction of the other portions. smaller than the cross-sectional area of the cross-section. Therefore, in the event that an overcurrent flows through the probe pin 220, the probe pin 20 will definitely be fused in the upper guide housing portion 220g, which has a higher electrical resistance than other portions.
  • the probe pin 20 is always fused in the guide hole 11H of the upper guide 11 at the portion of the upper guide housing portion 220g.
  • metal grains Y1 and Y2 are generated at the fused portion.
  • the probe pin 20 fused by the metal particles Y1 and Y2 will not become stuck in the frame 10.
  • the metal grains YB1 and YB2 of the fused probe pin 20B come into contact with the adjacent probe pins 20B and join together, it is even more difficult to remove them.
  • the probe pin 220 according to the second embodiment is always fused within the guide hole 11H of the upper guide 11, the metal particles Y1 and Y2 generated at the fused portion may be damaged by the adjacent probe. This can prevent contact with the pins 220 and damage to them as well. Thereby, when the probe pin 220 is blown out, the probe card 100 can be restored more easily and at a lower cost.
  • FIG. 11 is a diagram schematically showing a test state of an electronic circuit using the probe card 300 according to the third embodiment.
  • a portion of the probe pin 320 that fits within the guide hole 12H of the lower guide 12 is the lower guide storage portion 20i.
  • the lower guide housing portion 20i is provided with a probe through hole 320H having a rectangular cross section and penetrating in a direction perpendicular to the buckling direction Z of the probe pin 320.
  • the probe pin 320 of this embodiment When an overcurrent flows through the probe pin 320 of this embodiment, the probe pin 320 is always inserted into the guide hole 12H of the lower guide 12 in the lower guide storage section 20i, as in the second embodiment. It melts in some parts. Therefore, the same effects as in the second embodiment are achieved.
  • FIG. 12A is a side view of the probe pin 420 before being fused.
  • FIG. 12B is a side view of the probe pin 420 after being fused.
  • the upper guide housing portion 420g of the probe pin 420 has a probe through hole 420H having a rectangular cross section that penetrates in a direction perpendicular to the buckling direction Z of the probe pin 420. It is provided.
  • the probe through hole 420H is provided with a protrusion T made of an insulating material that protrudes upward in the longitudinal direction of the probe pin 420, that is, toward the wiring board 14 side.
  • the protrusion T protrudes upward from the lower surface 420HL of the probe through hole 420H, and the tip of the protrusion T does not reach the upper surface 420HU of the probe through hole 420H.
  • the protrusion T may be formed simultaneously with the main body of the probe pin 420 using MEMS technology, and its surface may be coated with Diamond Like Carbon.
  • the protrusion T made of an insulating material in the probe through hole 420H even if the upper guide housing portion 420g melts, the probe that receives the reaction force As shown in FIG. 12B, the protrusion T of the pin 420 abuts against the lower surface 420HL of the probe through hole 420H, so that only the portion of the upper guide housing portion 420g is reliably fused, and the melting of the probe pin 420 does not chain. Therefore, the probe pin 420 that has blown out can be easily removed and replaced.
  • the probe card can be easily restored.
  • the protrusion T is configured to protrude upward from the lower surface 420HL of the probe through hole 420H, but the same effect can be achieved even if the protrusion T is configured to protrude downward from the upper surface 420HU.

Abstract

A probe card (100) comprises a probe pin (20), and guides (11, 12) having guide holes (11H, 12H) through which the probe pin (20) is inserted and that guide the probe pin (20), and inspects the electrical characteristics of an electronic circuit, wherein the probe pin (20) comprises a probe through-hole (20H) that passes through the probe pin (20) perpendicular to the longitudinal direction of the probe pin (20).

Description

プローブカードprobe card
 本願は、プローブカードに関するものである。 This application relates to a probe card.
 プローブカードは、半導体ウエハに形成された電子回路の電気的特性を検査するために用いられる検査装置である。このプローブカードは、電子回路上の電極にそれぞれ接触させる多数のプローブピンを備えている。電子回路の特性検査は、プローブカードに半導体ウエハを近づけてプローブピンの先端を電子回路上の電極に接触させ、プローブピンを介してテスタ装置と電子回路を導通させて行われる。 A probe card is a testing device used to test the electrical characteristics of electronic circuits formed on semiconductor wafers. This probe card is equipped with a large number of probe pins that respectively contact electrodes on the electronic circuit. Characteristics testing of electronic circuits is performed by bringing a semiconductor wafer close to a probe card, bringing the tips of probe pins into contact with electrodes on the electronic circuit, and establishing electrical continuity between the tester device and the electronic circuit via the probe pins.
 このとき、電源供給用のプローブピンには、許容電流を超える大電流が流れる場合がある。また、信号用のプローブピンは、プローブピンの高密度化に伴って微細化され、プローブピンの断面積が小さく設定されている。このため、耐電流性能が低下し、定格以上の電流がプローブピンに流れるとプローブピンが溶断するという問題がある。この問題を解決するために、プローブピンを支持する支持体に冷却媒体を流して冷却する技術が提案されていた(例えば、特許文献1参照)。 At this time, a large current exceeding the allowable current may flow through the power supply probe pin. In addition, signal probe pins have been miniaturized as the density of probe pins has increased, and the cross-sectional area of the probe pins has been set to be small. For this reason, there is a problem that the withstand current performance is reduced and the probe pin may melt if a current exceeding the rated value flows through the probe pin. In order to solve this problem, a technique has been proposed in which a cooling medium is caused to flow through a support that supports the probe pin to cool it (see, for example, Patent Document 1).
特開2013‐088257号公報JP2013-088257A
 特許文献1では、プローブピンの発熱によって生じる技術課題を解決するため、プローブピンの支持体を冷却することが提案されているが、実際には冷却媒体の流路の構成が複雑であるため現実的ではなかった。このため、プローブピンが溶断した場合には、溶断したプローブピンを取り除き、修理用のプローブピンに置き換える必要がある。 Patent Document 1 proposes cooling the support of the probe pin in order to solve the technical problem caused by the heat generated by the probe pin, but in reality, this is not practical because the configuration of the cooling medium flow path is complicated. It wasn't on point. Therefore, when a probe pin is fused, it is necessary to remove the fused probe pin and replace it with a repair probe pin.
 プローブピンには、その両端、すなわち被検査物の電極に接触される接触部と、プローブカードの配線基板の電極に接続される接続部との間が、孔の開いた2枚のガイド板によって支持されているものがある。この場合、プローブピンが、2枚のガイド板の間で溶断し、溶断端部に金属塊が生じると、その金属塊が、ガイド孔よりも大きくなって、これが邪魔になって、ガイド孔からプローブピンを抜き取ることができなくなるという問題があった。
 本願は、上記のような課題を解決するための技術を開示するものであり、プローブピンが万一溶断した場合であっても容易に交換可能なプローブピンとプローブカードを提供することを目的とするものである。
The probe pin has two guide plates with holes between its ends, that is, the contact part that contacts the electrode of the test object and the connection part that connects to the electrode of the wiring board of the probe card. There are things that are supported. In this case, when the probe pin is fused between the two guide plates and a metal lump is generated at the fused end, the metal lump becomes larger than the guide hole and becomes an obstacle, causing the probe pin to pass through the guide hole. There was a problem that it became impossible to remove the .
The present application discloses a technology for solving the above-mentioned problems, and aims to provide a probe pin and a probe card that can be easily replaced even if the probe pin should melt. It is something.
 本願に開示されるプローブカードは、
プローブピンと、前記プローブピンを挿入してガイドするガイド孔を有するガイドとを備え、電子回路の電気特性を検査するプローブカードであって、
前記プローブピンは、前記プローブピンの長手方向に対して垂直に貫通するプローブ貫通孔を備えるものである。
The probe card disclosed in this application includes:
A probe card for testing the electrical characteristics of an electronic circuit, comprising a probe pin and a guide having a guide hole into which the probe pin is inserted and guided,
The probe pin is provided with a probe through hole that penetrates perpendicularly to the longitudinal direction of the probe pin.
 本願に開示されるプローブカードによれば、プローブピンが万一溶断した場合であっても容易に交換可能である。 According to the probe card disclosed in the present application, even if the probe pin should melt, it can be easily replaced.
実施の形態1に係るプローブカードによる電子回路の検査状態を概略的に示す図である。FIG. 3 is a diagram schematically showing a test state of an electronic circuit using the probe card according to the first embodiment. 実施の形態1に係るプローブピンの側面拡大図である。FIG. 3 is an enlarged side view of the probe pin according to the first embodiment. 実施の形態1に係る1本のプローブピンが溶断したプローブカードの状態を示す図である。FIG. 3 is a diagram showing a state of a probe card in which one probe pin is fused according to the first embodiment. 実施の形態1に係る溶断したプローブピンの側面拡大図である。FIG. 3 is an enlarged side view of the fused probe pin according to the first embodiment. 比較例としてのプローブピンを使用したプローブカードの概略的な構成を示す図である。FIG. 3 is a diagram showing a schematic configuration of a probe card using probe pins as a comparative example. 1本のプローブピンが溶断した比較例のプローブカードの状態を示す図である。FIG. 7 is a diagram showing a state of a probe card of a comparative example in which one probe pin is fused. 実施の形態2に係るプローブカードによる電子回路の検査状態を概略的に示す図である。FIG. 7 is a diagram schematically showing a test state of an electronic circuit using a probe card according to a second embodiment. 実施の形態2に係るプローブピンの側面拡大図である。FIG. 3 is an enlarged side view of a probe pin according to Embodiment 2; 実施の形態2に係る1本のプローブピンが溶断したプローブカードの状態を示す図である。FIG. 7 is a diagram showing a state of a probe card in which one probe pin is fused according to Embodiment 2; 実施の形態2に係る溶断したプローブピンの側面拡大図である。FIG. 7 is an enlarged side view of a fused probe pin according to Embodiment 2; 実施の形態3に係るプローブカードによる電子回路の検査状態を概略的に示す図である。FIG. 7 is a diagram schematically showing a state of testing an electronic circuit using a probe card according to a third embodiment. 図12Aは、実施の形態4に係る溶断前のプローブピンの側面図である。図12Bは、実施の形態4に係る溶断後のプローブピンの側面図である。FIG. 12A is a side view of the probe pin before fusing according to the fourth embodiment. FIG. 12B is a side view of the probe pin after fusing according to the fourth embodiment.
実施の形態1.
 以下、実施の形態1に係るプローブカードを、図を用いて説明する。なお、本明細書においては、図1の紙面上方を「上」、同紙面下方を「下」として説明する。すなわち、プローブカードから見て、被検査体側を「下」とする。
図1は、実施の形態1に係るプローブカード100による電子回路の検査状態を概略的に示す図である。
Embodiment 1.
The probe card according to Embodiment 1 will be described below with reference to the drawings. Note that, in this specification, the upper side of the page in FIG. 1 is referred to as "top", and the lower side of the page is referred to as "bottom". That is, when viewed from the probe card, the side to be inspected is "down".
FIG. 1 is a diagram schematically showing a test state of an electronic circuit using a probe card 100 according to the first embodiment.
 プローブカード100は、半導体ウエハWに形成された電子回路の電気的特性を検査するために用いられる検査装置である。プローブカード100は、電子回路上の電極Cにそれぞれ接触させる多数のプローブピン20を備えている。電子回路の特性検査は、プローブカード100に半導体ウエハWを近づけて、プローブピン20の下端を電子回路上の電極Cに接触させ、プローブピン20を介して図示しないテスタ装置と半導体ウエハW上のテスタ接続電極TCを導通させて行われる。 The probe card 100 is an inspection device used to inspect the electrical characteristics of an electronic circuit formed on a semiconductor wafer W. The probe card 100 includes a large number of probe pins 20 that are brought into contact with electrodes C on the electronic circuit, respectively. To test the characteristics of an electronic circuit, the semiconductor wafer W is brought close to the probe card 100, the lower end of the probe pin 20 is brought into contact with the electrode C on the electronic circuit, and a tester device (not shown) is connected to the semiconductor wafer W via the probe pin 20. This is done by making the tester connection electrode TC conductive.
 プローブカード100は、中空のフレーム10と、フレーム10の上端に取り付けた上部ガイド11と、フレーム10の下端に取り付けた下部ガイド12と、上部ガイド11を固定する固定板13と、配線基板14とを備える。 The probe card 100 includes a hollow frame 10, an upper guide 11 attached to the upper end of the frame 10, a lower guide 12 attached to the lower end of the frame 10, a fixing plate 13 for fixing the upper guide 11, and a wiring board 14. Equipped with
 上部ガイド11は、上下方向に貫通する複数のガイド孔11Hを有し、上部ガイド11の下方に設けられた下部ガイド12も、上下方向に貫通する複数のガイド孔12Hを有する。上部ガイド11に設けた複数のガイド孔11H群の上方は、固定板13に設けた開口部13Hとなっている。固定板13の上面には、配線基板14が配置されている。配線基板14は、下面にプローブピン20の上端と接触する複数のプローブ接続パッド14Pを備える。 The upper guide 11 has a plurality of guide holes 11H penetrating in the vertical direction, and the lower guide 12 provided below the upper guide 11 also has a plurality of guide holes 12H penetrating in the vertical direction. Above the group of guide holes 11H provided in the upper guide 11 is an opening 13H provided in the fixed plate 13. A wiring board 14 is arranged on the upper surface of the fixed plate 13. The wiring board 14 includes a plurality of probe connection pads 14P on its lower surface that contact the upper ends of the probe pins 20.
 そして、複数のプローブピン20が、それぞれガイド孔12Hおよびガイド孔11H内を通るように挿入されてガイドされる。プローブピン20は、検査対象物に対し垂直に配置される垂直型プローブピンである。 Then, the plurality of probe pins 20 are inserted and guided through the guide holes 12H and 11H, respectively. The probe pin 20 is a vertical probe pin arranged perpendicularly to the object to be inspected.
 図2は、プローブピン20の側面拡大図である。
図2に示すように、プローブピン20は、導電性の金属からなり、長手方向に対して垂直な断面は、一部を除いて矩形であり、細長い形状をしている。中央部は、湾曲しており、上部と下部は、直線状に上下方向に延びている。湾曲した中央部が、弾性変形部20mである。プローブピン20の上端(一端)に、上方に向かって尖った端子部20tを備える。そして、下端(他端)にコンタクト部20cが形成されている。
FIG. 2 is an enlarged side view of the probe pin 20.
As shown in FIG. 2, the probe pin 20 is made of conductive metal, and a cross section perpendicular to the longitudinal direction is rectangular except for a portion, and has an elongated shape. The central portion is curved, and the upper and lower portions extend vertically in a straight line. The curved central portion is the elastic deformation portion 20m. The upper end (one end) of the probe pin 20 is provided with a terminal portion 20t that is pointed upward. A contact portion 20c is formed at the lower end (other end).
 コンタクト部20cは、検査対象物に当接させる当接部である。また、端子部20tは、プローブピン20の上端部に設けられており、検査時において、配線基板14のプローブ接続パッド14Pに圧接される。弾性変形部20mは、いわゆるオーバードライブ時に、その長手方向の圧縮力が加えられることにより、容易に座屈変形する部分である。オーバードライブ時には、検査対象物からの反力に応じて、弾性変形部20mが座屈変形し、コンタクト部20cが、端子部20t側に後退する。 The contact portion 20c is a contact portion that is brought into contact with the object to be inspected. Further, the terminal portion 20t is provided at the upper end portion of the probe pin 20, and is pressed against the probe connection pad 14P of the wiring board 14 during inspection. The elastically deformable portion 20m is a portion that easily undergoes buckling deformation when compressive force is applied in the longitudinal direction during so-called overdrive. During overdrive, the elastic deformation portion 20m buckles and deforms in response to the reaction force from the object to be inspected, and the contact portion 20c retreats toward the terminal portion 20t.
 プローブピン20には、検査時において上部ガイド11と下部ガイド12との間であって、上部ガイドの11の近傍に存在する部分にプローブピン20の座屈方向Zに垂直(長手方向に対して垂直)な方向に貫通する、断面が矩形のプローブ貫通孔20Hが設けられている。プローブ貫通孔20Hの座屈方向Zの両側が薄肉部20fで上下に繋がっている。したがって、プローブピン20は、当該プローブ貫通孔20Hの部分だけ二股に分かれていて、その他の部分では1本になっている。そして、プローブピン20の長手方向に対して垂直な断面の断面積は、端子部20tの近傍を除き、プローブ貫通孔20Hが存在する部分が最も小さくなっている。 The probe pin 20 has a part located between the upper guide 11 and the lower guide 12 and near the upper guide 11 at the time of inspection, perpendicular to the buckling direction Z of the probe pin 20 (with respect to the longitudinal direction). A probe through hole 20H having a rectangular cross section is provided which penetrates in the vertical direction. Both sides of the probe through hole 20H in the buckling direction Z are vertically connected by a thin wall portion 20f. Therefore, the probe pin 20 is divided into two parts only at the probe through hole 20H, and is made into one piece at the other parts. The cross-sectional area of the cross section perpendicular to the longitudinal direction of the probe pin 20 is the smallest at the portion where the probe through hole 20H is present, except for the vicinity of the terminal portion 20t.
 プローブピン20は、いわゆるMEMS(Micro Electro Mechanical Systems)技術を用いて作製される。MEMS技術は、フォトリソグラフィ技術及び犠牲層エッチング技術を利用して、微細な立体的構造物を作成する技術である。フォトリソグラフィ技術は、半導体製造工程などで利用されるフォトレジストを用いた微細パターンの加工技術である。また、犠牲層エッチング技術は、犠牲層と呼ばれる下層を形成し、その上に構造物を構成する層を形成した後、犠牲層のみをエッチングによって除去することにより、立体的な構造物を作成する技術である。 The probe pin 20 is manufactured using so-called MEMS (Micro Electro Mechanical Systems) technology. MEMS technology is a technology for creating fine three-dimensional structures using photolithography technology and sacrificial layer etching technology. Photolithography technology is a fine pattern processing technology using photoresist used in semiconductor manufacturing processes. In addition, sacrificial layer etching technology creates a three-dimensional structure by forming a lower layer called a sacrificial layer, forming the layers that make up the structure on top of it, and then removing only the sacrificial layer by etching. It's technology.
 犠牲層を含む各層の形成処理には、周知のめっき技術を利用することができる。例えば、陰極としての基板と、陽極としての金属片とを電解液に浸し、両電極間に電圧を印加することにより、電解液中の金属イオンを基板表面に付着させることができる。この様な処理は、電気めっき処理と呼ばれ、基板を電解液に浸すウエットプロセスであることから、めっき処理後には、乾燥処理が行われる。また、この乾燥処理後には、研磨処理などによって積層面を平坦化する平坦化処理が必要に応じて行われる。 Well-known plating techniques can be used to form each layer including the sacrificial layer. For example, metal ions in the electrolyte can be attached to the substrate surface by immersing a substrate as a cathode and a metal piece as an anode in an electrolyte and applying a voltage between the two electrodes. Such a process is called an electroplating process, and since it is a wet process in which the substrate is immersed in an electrolytic solution, a drying process is performed after the plating process. Further, after this drying process, a flattening process for flattening the laminated surface by polishing process or the like is performed as necessary.
 図3は、1本のプローブピン20が溶断したプローブカード100の状態を示す図である。
図4は、溶断したプローブピン20の側面拡大図である。
電源供給用のプローブピンには、許容電流を超える大電流が流れる場合がある。また、信号用のプローブピンにも定格以上の電流が流れ溶断する場合がある。上述のように、プローブピン20のプローブ貫通孔20Hが存在する部分の長手方向に対して垂直な断面の断面積は、その他の部分の長手方向に対して垂直な断面の断面積よりも小さい。したがって、プローブピン20に万一、過電流が流れた場合、他の部分よりも電気抵抗が大きなプローブ貫通孔20Hが存在する部分において、プローブピン20が必ず溶断する。
FIG. 3 is a diagram showing a state of the probe card 100 in which one probe pin 20 is fused.
FIG. 4 is an enlarged side view of the fused probe pin 20.
A large current exceeding the allowable current may flow through the power supply probe pin. In addition, a current exceeding the rated value may flow to the signal probe pin and cause it to melt. As described above, the cross-sectional area of the portion of the probe pin 20 where the probe through-hole 20H is present in the cross section perpendicular to the longitudinal direction is smaller than the cross-sectional area of the other portion of the cross section perpendicular to the longitudinal direction. Therefore, if an overcurrent were to flow through the probe pin 20, the probe pin 20 would definitely melt in the portion where the probe through hole 20H, which has a higher electrical resistance than other portions, is present.
 図5は、比較例としてのプローブピン20Bを使用したプローブカード100Bの概略的な構成を示す図である。
図6は、1本のプローブピン20Bが溶断した比較例のプローブカード100Bの状態を示す図である。
図5に示す比較例の場合、プローブピン20Bの長手方向に対して垂直な断面の断面積は、端子部20Btを除き、全長に渡って概略同じである。
FIG. 5 is a diagram showing a schematic configuration of a probe card 100B using probe pins 20B as a comparative example.
FIG. 6 is a diagram showing a state of a comparative example probe card 100B in which one probe pin 20B is fused.
In the case of the comparative example shown in FIG. 5, the cross-sectional area of the probe pin 20B perpendicular to the longitudinal direction is approximately the same over the entire length, except for the terminal portion 20Bt.
 このような、プローブピン20Bに過電流が流れた場合、プローブピン20Bがどこで溶断するかは分からない。図6に示すように、プローブピン20Bが、上部ガイド11と下部ガイド12の間で溶断した場合、溶断部の両側に、金属粒YB1、金属粒YB2が形成される。この金属粒YB1、YB2の大きさが、ガイド孔11H、12Hよりも大きくなると、金属粒YB1、YB2が邪魔になって、2つに溶断したプローブピン20Bをフレーム10内から引き抜けなくなってしまう。 If such an overcurrent flows through the probe pin 20B, it is not known where the probe pin 20B will melt. As shown in FIG. 6, when the probe pin 20B is fused between the upper guide 11 and the lower guide 12, metal grains YB1 and YB2 are formed on both sides of the fused portion. If the size of the metal grains YB1 and YB2 becomes larger than the guide holes 11H and 12H, the metal grains YB1 and YB2 will get in the way, making it impossible to pull out the probe pin 20B, which has been fused into two pieces, from within the frame 10. .
 一方、本実施の形態に係るプローブピン20の場合、図3、図4に示すように、プローブピン20は、必ず、プローブ貫通孔20Hを設けた部分で溶断する。この場合であっても、溶断部に金属粒Y1、Y2は生じる。しかし、金属粒Y1、Y2が生じても、その大きさは、1本のプローブピン20Bに生じる金属粒YB1、TB2に比べると遙かに小さく、ガイド孔11H、12Hよりも小さい。さらに、金属粒Y1、Y2は、プローブ貫通孔20Hの薄肉部20fに付着するので、金属粒Y1、Y2の横には障害物がない。よって、たとえ、プローブピン20の溶断部分の幅が、元のプローブピン20の幅よりも若干大きくなったとしても、上下から溶断したプローブピン20を引き抜くと、金属粒Y1、Y2の根元が変形するので、プローブピン20をフレーム10外に除去可能となる。 On the other hand, in the case of the probe pin 20 according to the present embodiment, as shown in FIGS. 3 and 4, the probe pin 20 is always fused at the portion where the probe through hole 20H is provided. Even in this case, metal grains Y1 and Y2 are generated in the fused portion. However, even if the metal particles Y1 and Y2 are generated, their size is much smaller than the metal particles YB1 and TB2 generated in one probe pin 20B, and smaller than the guide holes 11H and 12H. Furthermore, since the metal particles Y1 and Y2 adhere to the thin wall portion 20f of the probe through hole 20H, there are no obstacles next to the metal particles Y1 and Y2. Therefore, even if the width of the fused portion of the probe pin 20 is slightly larger than the original width of the probe pin 20, when the fused probe pin 20 is pulled out from above and below, the roots of the metal grains Y1 and Y2 will be deformed. Therefore, the probe pin 20 can be removed outside the frame 10.
 なお、本実施の形態1では、プローブ貫通孔20Hを、座屈方向Zに対して垂直に設けたが、座屈方向Zと平行方向であってもよい。すなわち、プローブピン20の長手方向に対して垂直であればよい。 Note that in the first embodiment, the probe through hole 20H is provided perpendicularly to the buckling direction Z, but it may be provided in a direction parallel to the buckling direction Z. That is, it only needs to be perpendicular to the longitudinal direction of the probe pin 20.
 実施の形態1に係るプローブピン20およびプローブカード100によれば、プローブピン20が過電流によって万一溶断したとしても、容易にフレーム10外に引き抜くことができる。これによって、プローブカード100の修理時間、修理コストを短縮できる。 According to the probe pin 20 and the probe card 100 according to the first embodiment, even if the probe pin 20 should be fused due to overcurrent, it can be easily pulled out of the frame 10. Thereby, the time and cost for repairing the probe card 100 can be reduced.
実施の形態2.
 以下、実施の形態2に係るプローブカードを、実施の形態1と異なる部分を中心に説明する。
図7は、実施の形態2に係るプローブカード200による電子回路の検査状態を概略的に示す図である。
図8は、プローブピン220の側面拡大図である。
図9は、1本のプローブピン220が溶断したプローブカード200の状態を示す図である。
図10は、溶断したプローブピン220の側面拡大図である。
Embodiment 2.
The probe card according to the second embodiment will be described below, focusing on the differences from the first embodiment.
FIG. 7 is a diagram schematically showing a test state of an electronic circuit using the probe card 200 according to the second embodiment.
FIG. 8 is an enlarged side view of the probe pin 220.
FIG. 9 is a diagram showing a state of the probe card 200 in which one probe pin 220 is fused.
FIG. 10 is an enlarged side view of the fused probe pin 220.
 プローブピン220のうち、上部ガイド11のガイド孔11H内に収まる部分が、上部ガイド内収納部220gである。上部ガイド内収納部220gには、プローブピン20の座屈方向Zに垂直な方向に貫通する、断面が矩形のプローブ貫通孔220Hが設けられている。 The portion of the probe pin 220 that fits within the guide hole 11H of the upper guide 11 is the upper guide internal storage portion 220g. The upper guide housing portion 220g is provided with a probe through hole 220H having a rectangular cross section and penetrating in a direction perpendicular to the buckling direction Z of the probe pin 20.
 図8に示すように、プローブピン220の外周面であって、上部ガイド内収納部220gの上方に、係止部20kが、プローブピン220の長手方向に対して垂直に突出している。したがって、プローブピン220は、係止部20kが上部ガイド11の上面に引っ掛かり、下方に抜け落ちない。これにより、プローブピン220の上部ガイド内収納部220gは、必ず、上部ガイド11のガイド孔11H内に位置決めされる。 As shown in FIG. 8, a locking portion 20k protrudes perpendicularly to the longitudinal direction of the probe pin 220 on the outer circumferential surface of the probe pin 220 above the upper guide housing portion 220g. Therefore, the locking portion 20k of the probe pin 220 is caught on the upper surface of the upper guide 11 and does not fall off downward. Thereby, the upper guide housing portion 220g of the probe pin 220 is always positioned within the guide hole 11H of the upper guide 11.
 実施の形態1で説明したように、プローブ貫通孔220Hが存在する部分である上部ガイド内収納部220gの長手方向に対して垂直な断面の断面積は、その他の部分の長手方向に対して垂直な断面の断面積よりも小さい。したがって、プローブピン220に万一、過電流が流れた場合、他の部分よりも電気抵抗が大きな上部ガイド内収納部220gにおいて、必ずプローブピン20が溶断する。 As described in the first embodiment, the cross-sectional area of the section perpendicular to the longitudinal direction of the upper guide housing portion 220g, which is the portion where the probe through hole 220H is present, is perpendicular to the longitudinal direction of the other portions. smaller than the cross-sectional area of the cross-section. Therefore, in the event that an overcurrent flows through the probe pin 220, the probe pin 20 will definitely be fused in the upper guide housing portion 220g, which has a higher electrical resistance than other portions.
 また、図9に示すように、プローブピン20は、必ず、上部ガイド11のガイド孔11Hの中で、上部ガイド内収納部220gの部分で溶断する。この場合、溶断部に金属粒Y1、Y2が生じる。しかし、その発生場所は、ガイド孔11Hの中なので、金属粒Y1、Y2によって溶断したプローブピン20が、フレーム10から抜けなくなることはない。 Further, as shown in FIG. 9, the probe pin 20 is always fused in the guide hole 11H of the upper guide 11 at the portion of the upper guide housing portion 220g. In this case, metal grains Y1 and Y2 are generated at the fused portion. However, since the location where this occurs is inside the guide hole 11H, the probe pin 20 fused by the metal particles Y1 and Y2 will not become stuck in the frame 10.
 また、実施の形態1で説明した比較例の場合においては、溶断したプローブピン20Bの金属粒YB1、YB2が隣り合うプローブピン20Bに接触して結合してしまった場合、これらの除去が更に困難になるという問題があったが、本実施の形態2に係るプローブピン220は、必ず上部ガイド11のガイド孔11H内において溶断するので、溶断部で発生する金属粒Y1、Y2が、隣接するプローブピン220に接触し、それらまでも損傷させることを防止できる。これによりプローブピン220の溶断発生時において、プローブカード100の復旧を更に低コストに、容易に実現できる。 Furthermore, in the case of the comparative example described in Embodiment 1, if the metal grains YB1 and YB2 of the fused probe pin 20B come into contact with the adjacent probe pins 20B and join together, it is even more difficult to remove them. However, since the probe pin 220 according to the second embodiment is always fused within the guide hole 11H of the upper guide 11, the metal particles Y1 and Y2 generated at the fused portion may be damaged by the adjacent probe. This can prevent contact with the pins 220 and damage to them as well. Thereby, when the probe pin 220 is blown out, the probe card 100 can be restored more easily and at a lower cost.
実施の形態3.
 以下、実施の形態3に係るプローブカードを、実施の形態1、2と異なる部分を中心に説明する。
図11は、実施の形態3に係るプローブカード300による電子回路の検査状態を概略的に示す図である。
Embodiment 3.
The probe card according to the third embodiment will be described below, focusing on the differences from the first and second embodiments.
FIG. 11 is a diagram schematically showing a test state of an electronic circuit using the probe card 300 according to the third embodiment.
 プローブピン320のうち、下部ガイド12のガイド孔12H内に収まる部分が、下部ガイド内収納部20iである。下部ガイド内収納部20iには、プローブピン320の座屈方向Zに垂直な方向に貫通する、断面が矩形のプローブ貫通孔320Hが設けられている。 A portion of the probe pin 320 that fits within the guide hole 12H of the lower guide 12 is the lower guide storage portion 20i. The lower guide housing portion 20i is provided with a probe through hole 320H having a rectangular cross section and penetrating in a direction perpendicular to the buckling direction Z of the probe pin 320.
 本実施の形態のプローブピン320に過電流が流れた場合は、実施の形態2と同様に、プローブピン320は、必ず、下部ガイド12のガイド孔12Hの中で、下部ガイド内収納部20iの部分で溶断する。したがって、実施の形態2と同様の効果を奏する。 When an overcurrent flows through the probe pin 320 of this embodiment, the probe pin 320 is always inserted into the guide hole 12H of the lower guide 12 in the lower guide storage section 20i, as in the second embodiment. It melts in some parts. Therefore, the same effects as in the second embodiment are achieved.
実施の形態4.
 以下、実施の形態4に係るプローブカードを、実施の形態2と異なる部分を中心に説明する。
図12Aは、溶断前のプローブピン420の側面図である。
図12Bは、溶断後のプローブピン420の側面図である。
実施の形態2のプローブピン420と同様に、プローブピン420の上部ガイド内収納部420gには、プローブピン420の座屈方向Zに垂直な方向に貫通する、断面が矩形のプローブ貫通孔420Hが設けられている。
Embodiment 4.
The probe card according to the fourth embodiment will be described below, focusing on the differences from the second embodiment.
FIG. 12A is a side view of the probe pin 420 before being fused.
FIG. 12B is a side view of the probe pin 420 after being fused.
Similar to the probe pin 420 of the second embodiment, the upper guide housing portion 420g of the probe pin 420 has a probe through hole 420H having a rectangular cross section that penetrates in a direction perpendicular to the buckling direction Z of the probe pin 420. It is provided.
 そして、プローブ貫通孔420Hの中には、プローブピン420の長手方向上方、すなわち、配線基板14側に向かって突出する絶縁物質からなる突起Tを備える。突起Tは、プローブ貫通孔420Hの下面420HLから、上方に突出し、突起のTの先端は、プローブ貫通孔420Hの上面420HUには達していない。なお、突起Tは、MEMS技術によって、プローブピン420の本体と同時に形成し、その表面に、Diamond Like Carbonによってコーティングしてもよい。 The probe through hole 420H is provided with a protrusion T made of an insulating material that protrudes upward in the longitudinal direction of the probe pin 420, that is, toward the wiring board 14 side. The protrusion T protrudes upward from the lower surface 420HL of the probe through hole 420H, and the tip of the protrusion T does not reach the upper surface 420HU of the probe through hole 420H. Note that the protrusion T may be formed simultaneously with the main body of the probe pin 420 using MEMS technology, and its surface may be coated with Diamond Like Carbon.
 ここで、プローブピン420の上部ガイド内収納部420gに過電流が流れ当該部分が高温となって溶融したとする。このとき、半導体ウエハWの電子回路を検査中のプローブピン420は、いわゆるオーバードライブ状態にあり、下部先端のコンタクト部20cが、半導体ウエハWの電子回路上の電極Cに押し当てられ、プローブピン420は、その反力を受けて座屈方向Zに座屈している。突起Tが存在しない場合、上部ガイド内収納部420gに溶融が発生すると、上述の反力によって、プローブピン420が溶断する前に、溶融が連鎖する可能性がある。すると、溶融部分が上部ガイド内収納部420gの範囲を超えて、上下方向に拡大する懸念がある。 Here, it is assumed that an overcurrent flows into the upper guide housing portion 420g of the probe pin 420, and that portion becomes high temperature and melts. At this time, the probe pin 420 that is testing the electronic circuit of the semiconductor wafer W is in a so-called overdrive state, and the contact portion 20c at the lower tip is pressed against the electrode C on the electronic circuit of the semiconductor wafer W, and the probe pin 420 is in an overdrive state. 420 is buckled in the buckling direction Z due to the reaction force. If the protrusion T does not exist and melting occurs in the upper guide housing portion 420g, there is a possibility that the above-mentioned reaction force will cause a chain reaction of melting before the probe pin 420 is melted. In this case, there is a concern that the melted portion may expand in the vertical direction beyond the range of the upper guide internal storage section 420g.
 一方、本実施の形態4のように、プローブ貫通孔420Hの中に絶縁物質からなる突起Tを設けることによって、万一、上部ガイド内収納部420gが溶融したとしても、反力を受けたプローブピン420は、図12Bが示すように、突起Tがプローブ貫通孔420Hの下面420HLに突き当たるので上部ガイド内収納部420gの部分だけが確実に溶断し、プローブピン420の溶融が連鎖しない。したがって、溶断の発生したプローブピン420を容易に除去、交換できる。 On the other hand, as in the fourth embodiment, by providing the protrusion T made of an insulating material in the probe through hole 420H, even if the upper guide housing portion 420g melts, the probe that receives the reaction force As shown in FIG. 12B, the protrusion T of the pin 420 abuts against the lower surface 420HL of the probe through hole 420H, so that only the portion of the upper guide housing portion 420g is reliably fused, and the melting of the probe pin 420 does not chain. Therefore, the probe pin 420 that has blown out can be easily removed and replaced.
 また、溶融部分が、上部ガイド内収納部420gの範囲を超えて長手方向に拡大しないので、溶断時に発生する金属粒が、上部ガイド11と下部ガイド12の間に発生することもない。さらに、溶融部分が、隣り合う他のプローブピン420に接触し、プローブピン420の総称を拡大させることもないので、容易にプローブカードを復旧できる。 Furthermore, since the melted portion does not expand in the longitudinal direction beyond the range of the storage section 420g in the upper guide, metal particles generated during melt cutting will not be generated between the upper guide 11 and the lower guide 12. Further, since the melted portion does not come into contact with other adjacent probe pins 420 and expand the generic name of the probe pins 420, the probe card can be easily restored.
 なお、本実施の形態4では、突起Tをプローブ貫通孔420Hの下面420HLから上方に突出する構成としたが、上面420HUから下方に突出する構成であっても同様の効果を奏する。 Note that in the fourth embodiment, the protrusion T is configured to protrude upward from the lower surface 420HL of the probe through hole 420H, but the same effect can be achieved even if the protrusion T is configured to protrude downward from the upper surface 420HU.
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
Although this application describes various exemplary embodiments and examples, various features, aspects, and functions described in one or more embodiments may be applicable to a particular embodiment. The present invention is not limited to, and can be applied to the embodiments alone or in various combinations.
Therefore, countless variations not illustrated are envisioned within the scope of the technology disclosed herein. For example, this includes cases where at least one component is modified, added, or omitted, and cases where at least one component is extracted and combined with components of other embodiments.
 100,100B,200,300 プローブカード、10 フレーム、11 上部ガイド、11H,12H ガイド孔、12 下部ガイド、13 固定板、13H 開口部、14 配線基板、20,20B,220,320,420 プローブピン、20c コンタクト部、420HU 上面、420HL 下面、20m 弾性変形部、20t,20Bt 端子部、220g,420g 上部ガイド内収納部、20i 下部ガイド内収納部、20k 係止部、20H,220H,320H,420H プローブ貫通孔、C 電極、T 突起、TC テスタ接続電極、W 半導体ウエハ、Y1,Y2,YB1,YB2 金属粒、Z 座屈方向。 100, 100B, 200, 300 probe card, 10 frame, 11 upper guide, 11H, 12H guide hole, 12 lower guide, 13 fixing plate, 13H opening, 14 wiring board, 20, 20B, 220, 320, 420 probe pin , 20c contact part, 420HU top surface, 420HL bottom surface, 20m elastic deformation part, 20t, 20Bt terminal part, 220g, 420g upper guide storage part, 20i lower guide storage part, 20k locking part, 20H, 220H, 320H, 420H Probe through hole, C electrode, T protrusion, TC tester connection electrode, W semiconductor wafer, Y1, Y2, YB1, YB2 metal grain, Z buckling direction.

Claims (3)

  1. プローブピンと、前記プローブピンを挿入してガイドするガイド孔を有するガイドとを備え、電子回路の電気特性を検査するプローブカードであって、
    前記プローブピンは、前記プローブピンの長手方向に対して垂直に貫通するプローブ貫通孔を備えるプローブカード。
    A probe card for testing the electrical characteristics of an electronic circuit, comprising a probe pin and a guide having a guide hole into which the probe pin is inserted and guided,
    The probe card includes a probe through hole in which the probe pin extends perpendicularly to a longitudinal direction of the probe pin.
  2. 前記プローブ貫通孔は、検査時において、前記ガイドの前記ガイド孔内に存在する、前記プローブピンのガイド内収納部に設けられている請求項1に記載のプローブカード。 2. The probe card according to claim 1, wherein the probe through hole is provided in a guide housing portion of the probe pin that is present in the guide hole of the guide during inspection.
  3. 前記プローブ貫通孔の上下の一面から他方の面側に突出し、電気的に絶縁性を有する突起を備える請求項2に記載のプローブカード。 3. The probe card according to claim 2, further comprising an electrically insulating protrusion that protrudes from one surface above and below the other surface of the probe through hole.
PCT/JP2022/016175 2022-03-30 2022-03-30 Probe card WO2023188165A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/016175 WO2023188165A1 (en) 2022-03-30 2022-03-30 Probe card

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/016175 WO2023188165A1 (en) 2022-03-30 2022-03-30 Probe card

Publications (1)

Publication Number Publication Date
WO2023188165A1 true WO2023188165A1 (en) 2023-10-05

Family

ID=88199771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016175 WO2023188165A1 (en) 2022-03-30 2022-03-30 Probe card

Country Status (1)

Country Link
WO (1) WO2023188165A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012173263A (en) * 2011-02-24 2012-09-10 Japan Electronic Materials Corp Electrical contact and electrical contact unit
JP2016024188A (en) * 2014-07-17 2016-02-08 株式会社アイエスシーIsc Co., Ltd. Contactor for inspection and electric inspection socket
WO2017026304A1 (en) * 2015-08-07 2017-02-16 オムロン株式会社 Probe pin and inspection jig provided with same
WO2017217042A1 (en) * 2016-06-17 2017-12-21 オムロン株式会社 Probe pin
JP2018515752A (en) * 2015-03-31 2018-06-14 テクノプローベ エス.ピー.エー. Vertical contact probe for high frequency applications and test head with vertical contact probe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012173263A (en) * 2011-02-24 2012-09-10 Japan Electronic Materials Corp Electrical contact and electrical contact unit
JP2016024188A (en) * 2014-07-17 2016-02-08 株式会社アイエスシーIsc Co., Ltd. Contactor for inspection and electric inspection socket
JP2018515752A (en) * 2015-03-31 2018-06-14 テクノプローベ エス.ピー.エー. Vertical contact probe for high frequency applications and test head with vertical contact probe
WO2017026304A1 (en) * 2015-08-07 2017-02-16 オムロン株式会社 Probe pin and inspection jig provided with same
WO2017217042A1 (en) * 2016-06-17 2017-12-21 オムロン株式会社 Probe pin

Similar Documents

Publication Publication Date Title
US8912811B2 (en) Test contact system for testing integrated circuits with packages having an array of signal and power contacts
KR100366746B1 (en) Assembly of two electronic devices
JP2006302906A (en) Socket for integrated circuit device, and substrate
JP5103566B2 (en) Electrical contact and inspection jig having the same
JP2007101373A (en) Probe sheet bonding holder, probe card, semiconductor inspection device, and method of manufacturing semiconductor device
JP2002005960A (en) Probe card and its manufacturing method
KR20200104061A (en) Guide plate for probe card and probe card having the same
JPH11135582A (en) Wafer cassette for burn-in and manufacture of probe card
WO2023188165A1 (en) Probe card
JPH05267393A (en) Semiconductor device and manufacture thereof
KR100643842B1 (en) Probe Device with Micro-Pin Inserted in Interface Board
JP2008060510A (en) Method for manufacturing semiconductor chip mounted circuit and mounted circuit therefor
JP5048942B2 (en) Probe pin, probe card and probe device
KR101420170B1 (en) Contactor of test socket for semiconductor device and method of manufacturing the same
WO2023188369A1 (en) Probe pin and probe card
WO2024062562A1 (en) Cantilever-type probe for probe card, and probe card
JP2005209419A (en) Connection terminal for electronic component, connector and its manufacturing method
KR102276512B1 (en) Jig for electric inspection and method of manufacturing the same
KR101024098B1 (en) Method for bonding probe
KR102271347B1 (en) Probe-head for led probe device
KR102339327B1 (en) Manufacturing method of probe-head for led probe device
JP2003084040A (en) Manufacturing method for semiconductor inspecting device and semiconductor inspecting device
WO2024018535A1 (en) Anisotropically conductive connector, anisotropically conductive connector having frame, and inspection apparatus
KR100259060B1 (en) Semiconductor chip test socket and method for contactor fabrication
KR100821674B1 (en) Probe assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935310

Country of ref document: EP

Kind code of ref document: A1