WO2023187848A1 - 光ビーム送信装置 - Google Patents

光ビーム送信装置 Download PDF

Info

Publication number
WO2023187848A1
WO2023187848A1 PCT/JP2022/014759 JP2022014759W WO2023187848A1 WO 2023187848 A1 WO2023187848 A1 WO 2023187848A1 JP 2022014759 W JP2022014759 W JP 2022014759W WO 2023187848 A1 WO2023187848 A1 WO 2023187848A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
optical
section
laser light
transmission line
Prior art date
Application number
PCT/JP2022/014759
Other languages
English (en)
French (fr)
Inventor
智浩 秋山
俊行 安藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023511548A priority Critical patent/JP7325685B1/ja
Priority to PCT/JP2022/014759 priority patent/WO2023187848A1/ja
Publication of WO2023187848A1 publication Critical patent/WO2023187848A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2/00Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light
    • G02F2/02Frequency-changing of light, e.g. by quantum counters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating

Definitions

  • the present disclosure relates to a light beam transmitter.
  • the communicable distance can be extended by transmitting a plurality of phase-synchronized laser lights in an array. Since the wavelength of the light wave is a short wavelength of about 1 ⁇ m, in order to synchronize the phases of a plurality of laser beams, it is necessary to stabilize the optical path length fluctuation of each laser to below the order of micrometers.
  • the optical beam transmitter includes an optical demultiplexer that demultiplexes laser light output from a laser light source into a plurality of optical fibers, and a plurality of optical phase modulators that modulate the phase of the laser light passing through each optical fiber.
  • a beam reference flat plate for obtaining a combined light of a laser beam and a reference beam after phase modulation by each optical phase modulator.
  • the optical beam transmitter also includes a plurality of photoelectric conversion units that convert each combined light into an electrical signal and output each electrical signal, and a plurality of photoelectric conversion units that convert each combined light into an electrical signal, and a plurality of photoelectric conversion units that convert each combined light into an electrical signal, and a plurality of photoelectric conversion units that convert each combined light into an electrical signal, and a plurality of photoelectric conversion units that output each electrical signal. and an arithmetic circuit that detects the phase difference between the laser beam and the reference beam, and controls the amount of phase modulation by each optical phase modulator based on the respective phase differences.
  • the light beam transmitting device disclosed in Patent Document 1 needs to have as many photoelectric conversion units as the number of laser beams output to the outside. Therefore, there is a problem in that as the number of laser beams outputted to the outside increases, the number of photoelectric conversion sections to be mounted increases.
  • the present disclosure has been made to solve the above-mentioned problems, and it is possible to align the phases of multiple laser beams using a smaller number of photoelectric conversion units than the number of laser beams output to the outside.
  • the purpose is to obtain a light beam transmitter.
  • the optical beam transmitter includes an optical distribution unit that distributes laser light output from a laser light source to a plurality of transmission lines, and a plurality of different frequency shift amounts for the laser light that has passed through each transmission line.
  • a frequency addition unit that includes a frequency shift amount as a detection frequency that is separated from the frequency of the laser light that has passed through each transmission line by the respective frequency shift amount and that is added to the laser light that passes through each transmission line.
  • the optical beam transmitter includes a laser beam demultiplexer that extracts a part of the laser beam that has passed through each transmission line, and a laser beam demultiplexer that collects a plurality of laser beams extracted by the laser beam demultiplexer.
  • the optical beam transmitter includes a deviation amount calculation unit that calculates the deviation amount of the frequency of the laser beam that has passed through each transmission line based on the plurality of detection frequencies included in the electric signal; and an optical frequency shift section that shifts the frequency of the laser light passing through the transmission line by the shift amount calculated by the shift amount calculation section.
  • the phases of a plurality of laser beams can be aligned using a smaller number of photoelectric conversion units than the number of laser beams output to the outside.
  • FIG. 1 is a configuration diagram showing a light beam transmitter 2 according to Embodiment 1.
  • FIG. 2 is an explanatory diagram showing the frequency of the laser beam (N+m) and the detection frequency F d, N+m .
  • FIG. 1 is a configuration diagram showing a light beam transmitter 2 according to the first embodiment.
  • the optical beam transmitting device 2 shown in FIG. It includes a shift amount calculation section 18 and a shift amount control section 19.
  • a laser light source 1 is provided outside the optical beam transmitting device 2. As shown in FIG. However, this is just an example, and the laser light source 1 may be provided inside the light beam transmitter 2.
  • the optical frequency shifter 12 includes N optical frequency converters 12a-1 to 12a-N.
  • N is an integer of 2 or more.
  • the frequency adding section 13 includes N optical frequency modulators 13a-1 to 13a-N.
  • the optical amplification section 14 includes N optical amplifiers 14a-1 to 14a-N.
  • the collimator array 15 includes N collimators 15a-1 to 15a-N.
  • the transmission line 10-n is realized by, for example, an optical fiber or an optical waveguide.
  • the laser light source 1 is connected to the optical distribution section 11 of the optical beam transmitter 2 by a transmission line.
  • the transmission line is realized by, for example, an optical fiber or an optical waveguide.
  • Laser light source 1 outputs laser light to optical distribution section 11 of optical beam transmitter 2 via a transmission line.
  • the wavelength of the laser light output from the laser light source 1 is on the order of micrometers. However, the wavelength of the laser beam is not limited to the micrometer order, and may be shorter or longer than the micrometer order wavelength.
  • the optical beam transmitter 2 performs phase synchronization to align the phases of N laser beams, and outputs the phase-synchronized N laser beams to the outside.
  • the optical distribution unit 11 distributes the laser light output from the laser light source 1 to N transmission lines 10-1 to 10-N.
  • the optical frequency converters 12a-n obtain the first control signals C 1,n from the phase synchronization section 18b-n of the deviation amount calculation section 18.
  • the first control signal C 1,n indicates the amount of shift in the frequency of the laser beam that has passed through the transmission line 10-n.
  • the optical frequency converter 12a-n shifts the frequency of the laser light passing through the transmission line 10-n according to the first control signal C1 ,n .
  • the frequency addition unit 13 sets a frequency that is separated from the frequency of the laser beam passing through the transmission line 10-n by a frequency shift amount f m,n as a detection frequency F d,n , and adds the laser beam passing through the transmission line 10-n. Include in light.
  • the optical frequency modulator 13a-n obtains the second control signal C 2,n from the shift amount controller 19a-n of the shift amount controller 19.
  • the second control signal C 2,n indicates the frequency shift amount f m,n for the laser beam that has passed through the transmission line 10-n.
  • the optical frequency modulator 13a-n sets a frequency that is separated by a frequency shift amount f m,n from the frequency of the laser light that has passed through the transmission line 10-n as a detection frequency F d,n , and adjusts the frequency to the transmission line 10-n. included in the laser light passing through.
  • Optical amplifiers 14a-n amplify the laser beams output from optical frequency modulators 13a-n, and output the amplified laser beams to collimators 15a-n.
  • the collimator array 15 outputs each of the parallel beams 20-1 to 20-N into space.
  • the collimators 15a-n convert the amplified laser beams output from the optical amplifiers 14a-n into parallel beams 20-n.
  • the collimators 15a-n output parallel light 20-n into space.
  • the laser beam demultiplexer 16 outputs the extracted parallel light 20-n to the photoelectric converter 17.
  • the photoelectric conversion unit 17 includes a beam condenser 17a and a photoelectric converter 17b.
  • the photoelectric converter 17 collects the N parallel lights extracted by the laser beam splitter 16 as N laser lights, and converts the collected light into an electrical signal.
  • the photoelectric conversion section 17 outputs an electric signal to the deviation amount calculation section 18.
  • the beam condenser 17a condenses the N parallel beams output from the laser beam demultiplexer 16 onto the photoelectric converter 17b.
  • the photoelectric converter 17b converts the focused light into an electrical signal, and outputs the electrical signal to the frequency discriminator 18a of the deviation amount calculation section 18.
  • the deviation calculation unit 18 includes a frequency discriminator 18a and N phase synchronization units 18b-1 to 18b-N.
  • the frequency discriminator 18a is realized by, for example, a bandpass filter.
  • the frequency discriminator 18a discriminates N detection frequencies F d,1 to F d,N included in the electrical signal output from the photoelectric converter 17b.
  • the frequency discriminator 18a distinguishes between a certain detection frequency F d,1 and a certain one detection frequency F d ,1 among the N detection frequencies F d, 1 to F d,N.
  • the phase synchronization unit 18b-1 outputs a first control signal C 1,1 indicating the frequency shift amount f S in the optical frequency converter 12a-1 to the optical frequency converter 12a-1.
  • the frequency shift amount f S in the optical frequency converter 12a-1 is a constant amount.
  • the phase synchronization unit 18b-n determines the frequency of the laser beam passing through the transmission line 10-n based on the frequency difference ⁇ f(n) detected by the frequency discriminator 18a. Calculate the amount of deviation.
  • the phase synchronization unit 18b-n outputs a first control signal C 1,n indicating the amount of shift in the frequency of the laser beam that has passed through the transmission line 10-n to the optical frequency converter 12a-n.
  • the shift amount control section 19 includes N shift amount controllers 19a-1 to 19a-N.
  • the laser light source 1 outputs laser light to the light distribution section 11 of the light beam transmitter 2 via a transmission line.
  • the frequency of the laser light output from the laser light source 1 to the light beam transmitter 2 is f0 .
  • the optical distribution unit 11 of the optical beam transmitter 2 distributes the laser light output from the laser light source 1 to N transmission lines 10-1 to 10-N.
  • a phase difference ⁇ (n)' may occur between the phase ⁇ (n)' and the phase ⁇ (n)'.
  • f(2) f(1)+ ⁇ f(2) : (1)
  • f(N) f(1)+ ⁇ f(N)
  • f(N) f(1)+ ⁇ f(N)
  • the optical frequency converter 12a-n shifts the frequency of the laser light passing through the transmission line 10-n according to the first control signal C1 ,n .
  • the first control signal C 1,1 output from the phase synchronization section 18b-1 is a control signal indicating the deviation amount f S . Therefore, the frequency f(1) of the laser beam (1) after the frequency shift by the optical frequency converter 12a-1 becomes f 0 +f S as shown in FIG. However, in FIG. 2, since the frequency f(1) of the laser beam (1) is used as a reference, it is assumed that the frequency fluctuation of the laser beam (1) is 0.
  • This is a control signal indicating the amount of deviation f S - ⁇ f(n)' for eliminating the frequency difference ⁇ f(n)', which is the fluctuation in the frequency of the laser beam (n) that has reached ⁇ n. Therefore, the frequency f(n) of the laser beam (n) after frequency shift by the optical frequency converters 12a-n is f 0 +f S + ⁇ f(n)- ⁇ f(n)' as shown in FIG. becomes.
  • the deviation amount f S is a positive deviation amount. However, this is just an example, and the deviation amount f S may be a negative deviation amount.
  • the second control signal C 2,n is a control signal that indicates the frequency shift amount f m,n for the laser beam that has passed through the transmission line 10-n.
  • the optical frequency modulators 13a-n set a frequency that is separated by a frequency shift amount f m,n from the frequency of the laser light (n) that has passed through the transmission line 10-n as a detection frequency f. d and n are included in the laser light (n) passing through the transmission line 10-n.
  • the optical frequency modulator 13a-n outputs the laser light (n) including the detection frequency f d,n to the optical amplifier 14a-n via the transmission line 10-n.
  • the detection frequency f d,1 included in the laser beam (1) output from the optical frequency modulator 13a-1 is f 0 +f S +fm 1 .
  • the detection frequency f d,2 included in the laser beam (2) output from the optical frequency modulator 13a-2 is f 0 +f S + ⁇ f(2) ⁇ f(2)′+fm 2 .
  • the detection frequency f d,N included in the laser light (N) output from the optical frequency modulator 13a-N is f 0 +f S + ⁇ f(N) ⁇ f(N)′+fm N.
  • fm 1 ⁇ fm 2 ⁇ ... ⁇ fm N
  • f d,1 ⁇ f d,2 ⁇ ... ⁇ f d,N .
  • the optical amplifiers 14a-n output the amplified laser light (n) to the collimators 15a-n via the transmission line 10-n.
  • the collimators 15a-n output parallel light 20-n into space.
  • the beam concentrator 17a condenses the N parallel beams 20-1 to 20-N output from the laser beam demultiplexer 16 onto the photoelectric converter 17b.
  • the photoelectric converter 17b converts the light focused by the beam condenser 17a into an electrical signal, and outputs the electrical signal to the frequency discriminator 18a of the deviation amount calculation section 18.
  • the electrical signal includes N detection frequencies F d,1 to F d,N .
  • the N detection frequencies F d,1 to F d,N are f 0 +f S +fm 1 , f 0 +f S + ⁇ f(2)- ⁇ f(2)'+fm 2 ,... , f 0 +f S + ⁇ f(N) ⁇ f(N)′+fm N.
  • the frequency discriminator 18a acquires an electrical signal from the photoelectric converter 17b.
  • the frequency discriminator 18a discriminates N detection frequencies F d,1 to F d,N included in the electrical signal.
  • the frequency discriminator 18a acquires, for example, the detection frequency f d,1 as a certain detection frequency from among the N detection frequencies F d,1 to F d ,N .
  • the frequency discriminator 18a acquires the detection frequency f d,1 as one detection frequency, it selects the detection frequency f from among the N detection frequencies F d,1 to F d,N.
  • Detection frequencies F d,2 to F d,N are acquired as detection frequencies other than d, 1 .
  • the frequency discriminator 18a determines the frequency difference ⁇ f d (2) to ⁇ f between the detection frequency F d,1 and the detection frequency F d,2 to F d,N , as shown in the following equation (3).
  • d (N) is detected.
  • the phase synchronization unit 18b-1 outputs a first control signal C 1,1 indicating the amount of deviation f S to the optical frequency converter 12a-1.
  • a deviation amount f S - ⁇ f(n)' is calculated to eliminate the frequency difference ⁇ f(n)' which is a fluctuation.
  • the fluctuation frequency ⁇ f(n)" is calculated.
  • the frequency difference ⁇ f d (n) is known because it is output from the frequency discriminator 18a. Further, the reference frequency (fm n ⁇ fm 1 ) is known. Therefore, it is possible to calculate the fluctuation frequency ⁇ f(n)''.
  • C 1,n is output to optical frequency converters 12a-n.
  • the amount of deviation f S ⁇ f(n)” is expressed as in the following equation (5).
  • f S ⁇ f(2)” f S ⁇ ( ⁇ f(2) ⁇ f(2)′) :
  • f S ⁇ f(N)” f S ⁇ ( ⁇ f(N) ⁇ f(N)′)
  • the optical frequency converter 12a-1 obtains the first control signal C 1,1 indicating the deviation amount f S from the phase synchronization unit 18b-1.
  • the optical frequency converter 12a-1 shifts the frequency f 0 of the laser beam (1) output from the optical distribution unit 11 by a shift amount f S in accordance with the first control signal C 1,1 .
  • the frequency f(1) of the laser beam (1) is the reference frequency, so if the frequency fluctuation of the laser beam (1) is 0, ) is shifted by the amount of deviation f S , so that when the laser beam (1) reaches the collimator 15a-1, the frequency f 0 of the laser beam (1) becomes f 0 +f S become.
  • the frequency f 0 of the laser beam (n) is shifted by the amount of deviation f S - ⁇ f (n)'', so that the laser beam (n) is shifted by the collimator.
  • 15a-n the frequency f 0 of the laser beam (n) becomes f 0 +f S. In other words.
  • the phases of the laser beams (1) to (N) reaching the N collimators 15a-1 to 15a-N are aligned.
  • the light beam transmitting device 2 is configured to include a frequency adding section 13 that uses distant frequencies as detection frequencies and includes them in the laser light passing through the respective transmission lines.
  • the optical beam transmitter 2 also includes a laser beam demultiplexer 16 that extracts a part of the laser beam that has passed through each transmission line 10-n, and a laser beam demultiplexer 16 that collects a plurality of laser beams extracted by the laser beam demultiplexer 16.
  • the photoelectric conversion unit 17 converts the focused laser light into an electrical signal.
  • the optical beam transmitter 2 calculates the amount of deviation of the frequency of the laser beam that has passed through each transmission line 10-n based on the plurality of detection frequencies included in the electric signal. section 18, and an optical frequency shift section 12 that shifts the frequency of the laser light passing through each transmission line 10-n by the shift amount calculated by the shift amount calculation section 18. Therefore, the light beam transmitter 2 can align the phases of a plurality of laser beams using a smaller number of photoelectric conversion units than the number of laser beams outputted to the outside.
  • Embodiment 2 In the second embodiment, a light beam transmitter 2 including a first subarray 31 and a second subarray 32 will be described.
  • FIG. 3 is a configuration diagram showing a light beam transmitter 2 according to the second embodiment.
  • the optical beam transmitter 2 shown in FIG. 3 includes an optical distribution section 30, a first subarray 31, and a second subarray 32.
  • the first sub-array 31 includes an optical frequency shift section 42, a frequency addition section 43, an optical amplification section 44, a collimator array 45, a laser beam demultiplexing section 46, a photoelectric conversion section 47, a shift amount calculation section 48, and a shift amount control section. 49.
  • the second sub-array 32 includes an optical frequency shift section 52, a frequency addition section 53, an optical amplification section 54, a collimator array 55, a laser beam demultiplexing section 56, a photoelectric conversion section 57, a shift amount calculation section 58, and a shift amount control section. 59.
  • the optical beam transmitter 2 shown in FIG. 3 includes a first subarray 31 and a second subarray 32 as two subarrays. However, this is just an example, and three or more subarrays may include one first subarray 31 and two or more second subarrays 32.
  • the optical frequency shift section 42 includes N optical frequency converters 42a-1 to 42a-N.
  • the frequency adding section 43 includes N optical frequency modulators 43a-1 to 43a-N.
  • the optical amplification section 44 includes N optical amplifiers 44a-1 to 44a-N.
  • the collimator array 45 includes N collimators 45a-1 to 45a-N.
  • the laser beam demultiplexer 46 corresponds to the laser beam demultiplexer 16 shown in FIG.
  • the photoelectric conversion unit 47 includes a beam condenser 47a and a photoelectric converter 47b.
  • the beam collector 47a corresponds to the beam collector 17a shown in FIG. 1
  • the photoelectric converter 47b corresponds to the photoelectric converter 17b shown in FIG.
  • the deviation calculation section 48 includes a frequency discriminator 48a and N phase synchronization sections 48b-1 to 48b-N.
  • the frequency discriminator 48a corresponds to the frequency discriminator 18a shown in FIG. 1
  • the shift amount control section 49 includes N shift amount controllers 49a-1 to 49a-N.
  • the optical frequency shift section 52 includes M optical frequency converters 52a-1 to 52a-M.
  • M is an integer of 2 or more.
  • N M or N ⁇ M may be satisfied.
  • the frequency adding section 53 includes M optical frequency modulators 53a-1 to 53a-M.
  • the optical amplification section 54 includes M optical amplifiers 54a-1 to 54a-M.
  • the optical amplifiers 54a-m (m 1, . . .
  • the collimator array 55 includes M collimators 55a-1 to 55a-M.
  • the collimators 55a-m correspond to the collimators 15a-n shown in FIG.
  • the laser beam demultiplexer 56 corresponds to the laser beam demultiplexer 16 shown in FIG.
  • the photoelectric conversion section 57 includes a beam condenser 57a and a photoelectric converter 57b.
  • the beam collector 57a corresponds to the beam collector 17a shown in FIG. 1
  • the photoelectric converter 57b corresponds to the photoelectric converter 17b shown in FIG.
  • the deviation calculation section 58 includes a frequency discriminator 58a and M phase synchronization sections 58b-1 to 58b-M.
  • the frequency discriminator 58a corresponds to the frequency discriminator 18a shown in FIG.
  • the phase synchronization unit 58b-m outputs a first control signal C1 ,m indicating the amount of shift in the frequency of the laser beam (N+m) to the optical frequency converter 52a-m.
  • the shift amount control section 59 includes M shift amount controllers 59a-1 to 59a-M.
  • the optical distribution unit 30 distributes the laser light output from the laser light source 1 to N+M transmission lines 10-1 to 10-N+M.
  • the laser light source 1 outputs laser light to the light distribution section 30 of the light beam transmitter 2 via a transmission line.
  • the frequency of the laser light output from the laser light source 1 to the light beam transmitter 2 is f0 .
  • the optical distribution unit 30 of the optical beam transmitter 2 distributes the laser light output from the laser light source 1 to N+M transmission lines 10-1 to 10-N+M.
  • the phase synchronization unit 58b-m outputs a first control signal C1 ,m indicating the amount of shift in the frequency of the laser beam (N+m) to the optical frequency converter 52a-m. Therefore, detailed explanations of the respective operations in the first sub-array 31 and the second sub-array 32 will be omitted.
  • FIG. 3 is an explanatory diagram showing the frequency of the laser beam (N+m) after being superimposed and the detection frequencies F d and N+m .
  • the frequency f(1) of the laser beam (1) after the frequency shift by the optical frequency converter 42a-1 included in the optical frequency shifter 42 is expressed as f 0 +f S.
  • the frequency of the laser beam (1) after frequency modulation by the optical frequency modulator 43a-1 included in the optical frequency shifter 42 is expressed as f 0 +f S +fm 1 .
  • the first sub-array 31 having each of the frequency addition section 43, the laser beam demultiplexing section 46, the photoelectric conversion section 47, the deviation amount calculation section 48, and the optical frequency shift section 42, and the frequency
  • the light distribution section 30 includes a second sub-array 32 having each of an addition section 53, a laser beam demultiplexing section 56, a photoelectric conversion section 57, a shift amount calculation section 58, and an optical frequency shift section 52.
  • the optical frequency shift section 42 of the sub-array 41 is connected to the transmission lines 10-1 to 10-N
  • the optical frequency shift section 52 of the second sub-array 32 is connected to the transmission lines 10-N+1 to 10-N+M.
  • the optical beam transmitting device 2 shown in FIG. Therefore, similarly to the light beam transmitter 2 shown in FIG. 1, the light beam transmitter 2 shown in FIG. The phases of can be aligned.
  • the number of laser beams output to the outside increases.
  • the band of the photoelectric converter 17b is limited, it is necessary to narrow the frequency interval of frequency components included in the electrical signal output from the photoelectric converter 17b to the frequency discriminator 18a. Therefore, design requirements for the bandpass filter that realizes the frequency discriminator 18a become stricter.
  • the number of laser beams output to the outside increases, the number of subarrays may be increased, and the number of laser beams output from each subarray to the outside does not change. Therefore, the number of laser beams output to the outside can be easily increased.
  • the present disclosure is suitable for an optical beam transmitter.
  • 1 Laser light source 2 Optical beam transmitter, 10-1 to 10-N, 10-N+1 to 10-N+M transmission line, 11 Optical distribution unit, 12 Optical frequency shift unit, 12a-1 to 12a-N Optical frequency conversion 13 Frequency addition section, 13a-1 to 13a-N optical frequency modulator, 14 Optical amplification section, 14a-1 to 14a-N optical amplifier, 15 Collimator array, 15a-1 to 15a-N collimator, 16 Laser light Demultiplexing unit, 17 Photoelectric conversion unit, 17a Beam concentrator, 17b Photoelectric converter, 18 Deviation amount calculation unit, 18a Frequency discriminator, 18b-1 to 18b-N Phase synchronization unit, 19 Shift amount control unit, 19a -1 to 19a-N shift amount controller, 20-1 to 20-N parallel light, 20-N+1 to 20-N+M parallel light, 30 light distribution unit, 31 first sub-array, 32 second sub-array, 42 light Frequency shift section, 42a-1 to 42a-N optical frequency converter, 43

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optical Communication System (AREA)

Abstract

レーザ光源(1)から出力されたレーザ光を複数の伝送線路(10-1)~(10-N)に分配する光分配部(11)と、それぞれの伝送線路(10-n)(n=1,・・・,N)を通過したレーザ光に対する周波数シフト量として、互いに異なる複数の周波数シフト量が与えられ、それぞれの伝送線路(10-n)を通過したレーザ光の周波数から、それぞれの周波数シフト量だけ離れている周波数を検出用周波数として、それぞれの伝送線路を通るレーザ光に含める周波数追加部(13)とを備えるように、光ビーム送信装置(2)を構成した。また、光ビーム送信装置(2)は、それぞれの伝送線路(10-n)を通過したレーザ光の一部を取り出すレーザ光分波部(16)と、レーザ光分波部(16)により取り出された複数のレーザ光を集光し、集光後のレーザ光を電気信号に変換する光電変換部(17)とを備えている。さらに、光ビーム送信装置(2)は、電気信号に含まれている複数の検出用周波数に基づいて、それぞれの伝送線路(10-n)を通過したレーザ光の周波数の偏移量を算出する偏移量算出部(18)と、それぞれの伝送線路(10-n)を通るレーザ光の周波数を偏移量算出部(18)により算出された偏移量だけ偏移させる光周波数偏移部(12)とを備えている。

Description

光ビーム送信装置
 本開示は、光ビーム送信装置に関するものである。
 レーザ光を用いる光通信において、位相の同期が図られている複数のレーザ光をアレー状に送信すれば、通信可能距離が延びることが知られている。光波の波長は、1μm程度の短い波長であるため、複数のレーザ光間の位相を同期させるためには、それぞれのレーザの光路長変動をマイクロメートルオーダ以下で安定化させる必要がある。
 光路長変動がマイクロメートルオーダ以下でも複数のレーザ光の位相を揃えることができる光ビーム送信装置がある(例えば、特許文献1を参照)。
 当該光ビーム送信装置は、レーザ光源から出力されたレーザ光を複数の光ファイバに分波する光分波器と、それぞれの光ファイバを通るレーザ光の位相を変調させる複数の光位相変調器と、それぞれの光位相変調器による位相変調後のレーザ光と参照光との合波光を得るためのビーム参照用平板とを備えている。また、当該光ビーム送信装置は、それぞれの合波光を電気信号に変換し、それぞれの電気信号を出力する複数の光電変換部と、それぞれの電気信号から、それぞれの光位相変調器による位相変調後のレーザ光と参照光との位相差を検出し、それぞれの位相差に基づいて、それぞれの光位相変調器による位相の変調量を制御する演算回路とを備えている。
特開2011-254028号公報
 特許文献1に開示されている光ビーム送信装置は、外部に出力するレーザ光の数分だけ光電変換部を実装している必要がある。したがって、外部に出力するレーザ光の数が増えるほど、光電変換部の実装数が多くなってしまうという課題があった。
 本開示は、上記のような課題を解決するためになされたもので、外部に出力するレーザ光の数よりも少ない数の光電変換部を用いて、複数のレーザ光の位相を揃えることができる光ビーム送信装置を得ることを目的とする。
 本開示に係る光ビーム送信装置は、レーザ光源から出力されたレーザ光を複数の伝送線路に分配する光分配部と、それぞれの伝送線路を通過したレーザ光に対する周波数シフト量として、互いに異なる複数の周波数シフト量が与えられ、それぞれの伝送線路を通過したレーザ光の周波数から、それぞれの周波数シフト量だけ離れている周波数を検出用周波数として、それぞれの伝送線路を通るレーザ光に含める周波数追加部とを備えている。また、光ビーム送信装置は、それぞれの伝送線路を通過したレーザ光の一部を取り出すレーザ光分波部と、レーザ光分波部により取り出された複数のレーザ光を集光し、集光後のレーザ光を電気信号に変換する光電変換部とを備えている。さらに、光ビーム送信装置は、電気信号に含まれている複数の検出用周波数に基づいて、それぞれの伝送線路を通過したレーザ光の周波数の偏移量を算出する偏移量算出部と、それぞれの伝送線路を通るレーザ光の周波数を偏移量算出部により算出された偏移量だけ偏移させる光周波数偏移部とを備えている。
 本開示によれば、外部に出力するレーザ光の数よりも少ない数の光電変換部を用いて、複数のレーザ光の位相を揃えることができる。
実施の形態1に係る光ビーム送信装置2を示す構成図である。 光周波数変換器12a-nにより周波数偏移された後、周波数変調器13a-nにより周波数シフト量が重畳された後のレーザ光(n)の周波数及び検出用周波数Fd,nのそれぞれを示す説明図である。 実施の形態2に係る光ビーム送信装置2を示す構成図である。 光周波数変換器42a-n(n=1,・・・,N)により周波数偏移された後、周波数変調器43a-nにより周波数シフト量が重畳された後のレーザ光(n)の周波数及び検出用周波数Fd,nと、光周波数変換器52-m(m=1,・・・,M)により周波数偏移された後、周波数変調器53a-mにより周波数シフト量が重畳された後のレーザ光(N+m)の周波数及び検出用周波数Fd,N+mとを示す説明図である。
 以下、本開示をより詳細に説明するために、本開示を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、実施の形態1に係る光ビーム送信装置2を示す構成図である。
 図1に示す光ビーム送信装置2は、光分配部11、光周波数偏移部12、周波数追加部13、光増幅部14、コリメータアレイ15、レーザ光分波部16、光電変換部17、偏移量算出部18及びシフト量制御部19を備えている。
 図1に示す光ビーム送信装置2では、レーザ光源1が光ビーム送信装置2の外部に設けられている。しかし、これは一例に過ぎず、レーザ光源1が光ビーム送信装置2の内部に設けられていてもよい。
 光周波数偏移部12は、N個の光周波数変換器12a-1~12a-Nを備えている。Nは、2以上の整数である。
 周波数追加部13は、N個の光周波数変調器13a-1~13a-Nを備えている。
 光増幅部14は、N個の光増幅器14a-1~14a-Nを備えている。
 コリメータアレイ15は、N個のコリメータ15a-1~15a-Nを備えている。
 光分配部11と光周波数変換器12a-n(n=1,・・・,N)と光周波数変調器13a-nと光増幅器14a-nとは、伝送線路10-nによって接続されている。
 伝送線路10-nは、例えば、光ファイバ、又は、光導波路によって実現される。
 レーザ光源1は、光ビーム送信装置2の光分配部11と伝送線路によって接続されている。当該伝送線路は、例えば、光ファイバ、又は、光導波路によって実現される。
 レーザ光源1は、伝送線路を介して、レーザ光を光ビーム送信装置2の光分配部11に出力する。レーザ光源1から出力されるレーザ光の波長は、マイクロメートルオーダである。ただし、レーザ光の波長は、マイクロメートルオーダに限るものではなく、マイクロメートルオーダの波長よりも短くてもよいし、長くてもよい。
 光ビーム送信装置2は、N個のレーザ光の位相を揃える位相同期を行い、位相同期後のN個のレーザ光を外部に出力する。
 光分配部11は、レーザ光源1から出力されたレーザ光をN本の伝送線路10-1~10-Nに分配する。
 光周波数偏移部12は、伝送線路10-n(n=1,・・・,N)を通るレーザ光の周波数を偏移量算出部18により算出された偏移量だけ偏移させる。
 光周波数変換器12a-n(n=1,・・・,N)は、偏移量算出部18の位相同期部18b-nから、第1の制御信号C1,nを取得する。第1の制御信号C1,nは、伝送線路10-nを通過したレーザ光の周波数の偏移量を示すものである。
 光周波数変換器12a-nは、第1の制御信号C1,nに従って、伝送線路10-nを通るレーザ光の周波数を偏移させる。
 周波数追加部13は、シフト量制御部19から、伝送線路10-n(n=1,・・・,N)を通過したレーザ光に対する周波数シフト量fm,nとして、互いに異なるN個の周波数シフト量fm,1~fm,Nが与えられる。
 周波数追加部13は、伝送線路10-nを通過したレーザ光の周波数から、周波数シフト量fm,nだけ離れている周波数を検出用周波数Fd,nとして、伝送線路10-nを通るレーザ光に含める。
 光周波数変調器13a-nは、シフト量制御部19のシフト量制御器19a-nから、第2の制御信号C2,nを取得する。第2の制御信号C2,nは、伝送線路10-nを通過したレーザ光に対する周波数シフト量fm,nを示すものである。
 光周波数変調器13a-nは、伝送線路10-nを通過したレーザ光の周波数から、周波数シフト量fm,nだけ離れている周波数を検出用周波数Fd,nとして、伝送線路10-nを通るレーザ光に含める。
 光増幅部14は、伝送線路10-n(n=1,・・・,N)を通るレーザ光を増幅し、増幅後のレーザ光をコリメータアレイ15に出力する。
 光増幅器14a-nは、光周波数変調器13a-nから出力されたレーザ光を増幅し、増幅後のレーザ光をコリメータ15a-nに出力する。
 コリメータアレイ15は、光増幅部14による増幅後のそれぞれのレーザ光を平行光20-n(n=1,・・・,N)に変換する。
 コリメータアレイ15は、平行光20-1~20-Nのそれぞれを空間に出力する。
 コリメータ15a-nは、光増幅器14a-nから出力された増幅後のレーザ光を平行光20-nに変換する。
 コリメータ15a-nは、平行光20-nを空間に出力する。
 レーザ光分波部16は、コリメータアレイ15から空間に出力された平行光20-n(n=1,・・・,N)の一部の取り出しを行う。
 レーザ光分波部16は、取り出した平行光20-nを光電変換部17に出力する。
 光電変換部17は、ビーム集光器17a及び光電変換器17bを備えている。
 光電変換部17は、N個のレーザ光として、レーザ光分波部16により取り出されたN個の平行光を集光し、集光後の光を電気信号に変換する。
 光電変換部17は、電気信号を偏移量算出部18に出力する。
 ビーム集光器17aは、レーザ光分波部16から出力されたN個の平行光を光電変換器17bに集光する。
 光電変換器17bは、集光後の光を電気信号に変換し、電気信号を偏移量算出部18の周波数弁別器18aに出力する。
 偏移量算出部18は、周波数弁別器18a及びN個の位相同期部18b-1~18b-Nを備えている。
 偏移量算出部18は、光電変換部17から出力された電気信号に含まれているN個の検出用周波数に基づいて、伝送線路10-n(n=1,・・・,N)を通過したレーザ光の周波数の偏移量を算出する。
 周波数弁別器18aは、例えば、バンドパスフィルタによって実現される。
 周波数弁別器18aは、光電変換器17bから出力された電気信号に含まれているN個の検出用周波数Fd,1~Fd,Nを弁別する。
 周波数弁別器18aは、N個の検出用周波数Fd,1~Fd,Nの中の、或る1つの検出用周波数Fd,1と或る1つの検出用周波数Fd,1以外の検出用周波数Fd,2~Fd,Nとの間の周波数差Δf(n)(n=2,・・・,N)を検出する。
 位相同期部18b-1は、光周波数変換器12a-1における周波数の偏移量fを示す第1の制御信号C1,1を光周波数変換器12a-1に出力する。光周波数変換器12a-1における周波数の偏移量fは、一定量である。
 位相同期部18b-n(n=2,・・・,N)は、周波数弁別器18aにより検出された周波数差Δf(n)に基づいて、伝送線路10-nを通過したレーザ光の周波数の偏移量を算出する。
 位相同期部18b-nは、伝送線路10-nを通過したレーザ光の周波数の偏移量を示す第1の制御信号C1,nを光周波数変換器12a-nに出力する。
 シフト量制御部19は、N個のシフト量制御器19a-1~19a-Nを備えている。
 シフト量制御部19は、伝送線路10-n(n=1,・・・,N)を通過したレーザ光に対する周波数シフト量fm,nとして、互いに異なるN個の周波数シフト量fm,1~fm,Nを周波数追加部13に与える。
 シフト量制御器19a-n(n=1,・・・,N)は、周波数シフト量fm,nを示す第2の制御信号C2,nを光周波数変調器13a-nに出力する。
 次に、図1に示す光ビーム送信装置2について説明する。
 まず、レーザ光源1は、伝送線路を介して、レーザ光を光ビーム送信装置2の光分配部11に出力する。レーザ光源1から光ビーム送信装置2に出力されるレーザ光の周波数は、fである。
 光ビーム送信装置2の光分配部11は、レーザ光源1から出力されたレーザ光をN本の伝送線路10-1~10-Nに分配する。分配後のレーザ光(n)(n=1,・・・,N)は、伝送線路10-nを通って光周波数変換器12a-nに到達する。
 ただし、N本の伝送線路10-1~10-Nの間の僅かな線路長の差異の影響で、光周波数変換器12a-1に到達したレーザ光(1)の位相θ(1)と、光周波数変換器12a-n(n=2,・・・,N)に到達したレーザ光(n)の位相θ(n)との間に、位相差Δθ(n)を生じることがある。
 同様の理由で、コリメータ15a-1に到達したレーザ光(1)の位相θ(1)’と、コリメータ15a-n(n=2,・・・,N)に到達したレーザ光(n)の位相θ(n)’との間に、位相差Δθ(n)’を生じることがある。
 位相θ(n)を微分した値は、周波数f(n)であり、位相差Δθ(n)を微分した値は、周波数差Δf(n)である。したがって、光周波数変換器12a-1に到達したレーザ光(1)の位相θ(1)に対応する周波数がf(1)であるとすれば、光周波数変換器12a-n(n=2,・・・,N)に到達したレーザ光(n)の周波数f(n)は、以下の式(1)のように表される。
f(2)=f(1)+Δf(2)
    :        (1)
f(N)=f(1)+Δf(N)
 また、コリメータ15a-1に到達したレーザ光(1)の位相θ(1)’に対応する周波数がf(1)’であるとすれば、コリメータ15a-n(n=2,・・・,N)に到達したレーザ光(n)の周波数f(n)’は、以下の式(2)のように表される。
f(2)’=f(1)’+Δf(2)’
    :        (2)
f(N)’=f(1)’+Δf(N)’
 光周波数変換器12a-n(n=1,・・・,N)は、位相同期部18b-nから、第1の制御信号C1,nを取得する。
 光周波数変換器12a-nは、第1の制御信号C1,nに従って、伝送線路10-nを通るレーザ光の周波数を偏移させる。
 位相同期部18b-1から出力された第1の制御信号C1,1は、偏移量fを示す制御信号である。このため、光周波数変換器12a-1による周波数偏移後のレーザ光(1)の周波数f(1)は、図2に示すように、f+fとなる。ただし、図2では、レーザ光(1)の周波数f(1)を基準とするため、レーザ光(1)の周波数変動が0であるとしている。
 位相同期部18b-n(n=2,・・・,N)から出力された第1の制御信号C1,nは、コリメータ15a-1に到達したレーザ光(1)の周波数に対する、コリメータ15a-nに到達したレーザ光(n)の周波数の変動である周波数差Δf(n)’を解消するための偏移量f-Δf(n)’を示す制御信号である。このため、光周波数変換器12a-nによる周波数偏移後のレーザ光(n)の周波数f(n)は、図2に示すように、f+f+Δf(n)-Δf(n)’となる。
 図2は、光周波数変換器12a-nにより周波数偏移された後、周波数変調器13a-nにより周波数シフト量が重畳された後のレーザ光(n)の周波数及び検出用周波数Fd,nのそれぞれを示す説明図である。
 図2の例では、偏移量fがプラスの偏移量である。しかし、これは一例に過ぎず、偏移量fがマイナスの偏移量であってもよい。
 光周波数変換器12a-n(n=1,・・・,N)は、伝送線路10-nを介して、周波数偏移後のレーザ光(n)を光周波数変調器13a-nに出力する。
 光周波数変調器13a-n(n=1,・・・,N)は、シフト量制御器19a-nから、第2の制御信号C2,nを取得する。第2の制御信号C2,nは、伝送線路10-nを通過したレーザ光に対する周波数シフト量fm,nを示す制御信号である。
 光周波数変調器13a-nは、図2に示すように、伝送線路10-nを通過したレーザ光(n)の周波数から、周波数シフト量fm,nだけ離れている周波数を検出用周波数fd,nとして、伝送線路10-nを通るレーザ光(n)に含める。
 光周波数変調器13a-nは、伝送線路10-nを介して、検出用周波数fd,nを含むレーザ光(n)を光増幅器14a-nに出力する。
 例えば、光周波数変調器13a-1から出力されたレーザ光(1)が含む検出用周波数fd,1は、f+f+fmである。
 例えば、光周波数変調器13a-2から出力されたレーザ光(2)が含む検出用周波数fd,2は、f+f+Δf(2)-Δf(2)’+fmである。
 例えば、光周波数変調器13a-Nから出力されたレーザ光(N)が含む検出用周波数fd,Nは、f+f+Δf(N)-Δf(N)’+fmである。図2の例では、fm<fm<・・・<fmであり、fd,1<fd,2<・・・<fd,Nである。
 光増幅器14a-n(n=1,・・・,N)は、光周波数変調器13a-nから出力されたレーザ光(n)を増幅する。
 光増幅器14a-nは、伝送線路10-nを介して、増幅後のレーザ光(n)をコリメータ15a-nに出力する。
 コリメータ15a-n(n=1,・・・,N)は、光増幅器14a-nから出力された増幅後のレーザ光(n)を平行光20-nに変換する。
 コリメータ15a-nは、平行光20-nを空間に出力する。
 レーザ光分波部16は、コリメータアレイ15から、N個の平行光20-1~20-Nが空間に出力されると、平行光20-n(n=1,・・・,N)の一部の取り出しを行う。
 レーザ光分波部16は、取り出した平行光20-nを光電変換部17に出力する。
 ビーム集光器17aは、レーザ光分波部16から出力されたN個の平行光20-1~20-Nを光電変換器17bに集光する。
 光電変換器17bは、ビーム集光器17aによる集光後の光を電気信号に変換し、電気信号を偏移量算出部18の周波数弁別器18aに出力する。
 電気信号にはN個の検出用周波数Fd,1~Fd,Nが含まれている。N個の検出用周波数Fd,1~Fd,Nは、図2に示すように、f+f+fm,f+f+Δf(2)-Δf(2)’+fm,・・・,f+f+Δf(N)-Δf(N)’+fmである。
 周波数弁別器18aは、光電変換器17bから、電気信号を取得する。
 周波数弁別器18aは、電気信号に含まれているN個の検出用周波数Fd,1~Fd,Nを弁別する。
 周波数弁別器18aは、N個の検出用周波数Fd,1~Fd,Nの中から、或る1つの検出用周波数として、例えば、検出用周波数fd,1を取得する。
 周波数弁別器18aは、或る1つの検出用周波数として、検出用周波数fd,1を取得すれば、N個の検出用周波数Fd,1~Fd,Nの中から、検出用周波数fd,1以外の検出用周波数として、検出用周波数Fd,2~Fd,Nを取得する。
 周波数弁別器18aは、以下の式(3)に示すように、検出用周波数Fd,1と検出用周波数Fd,2~Fd,Nとの間の周波数差Δf(2)~Δf(N)を検出する。
Δf(2)=Fd,2-Fd,1=(fm-fm)+Δf(2)-Δf(2)’
     :       (3)
Δf(N)=Fd,N-Fd,1=(fm-fm)+Δf(N)-Δf(N)’
 周波数弁別器18aは、周波数差Δf(n)(n=2,・・・,N)を位相同期部18b-nに出力する。
 位相同期部18b-1は、偏移量fを示す第1の制御信号C1,1を光周波数変換器12a-1に出力する。
 位相同期部18b-n(n=2,・・・,N)は、周波数弁別器18aから、周波数差Δf(n)を取得する。
 位相同期部18b-n(n=2,・・・,N)は、コリメータ15a-1に到達したレーザ光(1)の周波数に対する、コリメータ15a-nに到達したレーザ光(n)の周波数の変動である周波数差Δf(n)’を解消するための偏移量f-Δf(n)’を算出する。
 以下、位相同期部18b-n(n=2,・・・,N)による偏移量f-Δf(n)’の算出処理を具体的に説明する。
 位相同期部18b-n(n=2,・・・,N)の内部メモリには、基準周波数として、(fm-fm)が格納されている。
 位相同期部18b-n(n=2,・・・,N)は、以下の式(4)に示すように、周波数差Δf(n)と基準周波数(fm-fm)との差分である変動周波数Δf(n)”を算出する。変動周波数Δf(n)”は、周波数差Δf(n)’(=f(n)’-f(1)’)に相当する。
Δf(2)”=Δf(2)-(fm-fm)=Δf(2)-Δf(2)’
     :       (4)
Δf(N)”=Δf(N)-(fm-fm)=Δf(N)-Δf(N)’
 周波数差Δf(n)は、周波数弁別器18aから出力されたものであるため、既知である。また、基準周波数(fm-fm)は、既知である。したがって、変動周波数Δf(n)”の算出が可能である。
 位相同期部18c-n(n=2,・・・,N)は、変動周波数Δf(n)”を0にするため、偏移量f-Δf(n)”を示す第1の制御信号C1,nを光周波数変換器12a-nに出力する。
 偏移量f-Δf(n)”は、以下の式(5)のように表される。
-Δf(2)”=f-(Δf(2)-Δf(2)’)
     :       (5)
-Δf(N)”=f-(Δf(N)-Δf(N)’)
 光周波数変換器12a-1は、位相同期部18b-1から、偏移量fを示す第1の制御信号C1,1を取得する。
 光周波数変換器12a-1は、第1の制御信号C1,1に従って光分配部11から出力されたレーザ光(1)の周波数fを偏移量fだけ偏移させる。
 図1に示す光ビーム送信装置2では、レーザ光(1)の周波数f(1)が基準の周波数であるため、レーザ光(1)の周波数変動が0であるとすれば、レーザ光(1)の周波数fが偏移量fだけ偏移されることで、レーザ光(1)がコリメータ15a-1に到達した時点で、レーザ光(1)の周波数fが、f+fになる。
 光周波数変換器12a-n(n=2,・・・,N)は、位相同期部18b-nから、偏移量f-Δf(n)”を示す第1の制御信号C1,nを取得する。
 光周波数変換器12a-n(n=2,・・・,N)は、第1の制御信号C1,nに従って光分配部11から出力されたレーザ光(n)の周波数fを偏移量f-Δf(n)”だけ偏移させる。レーザ光(n)の周波数fが偏移量f-Δf(n)”だけ偏移されることで、レーザ光(n)がコリメータ15a-nに到達した時点で、レーザ光(n)の周波数fが、f+fになる。つまり。N個のコリメータ15a-1~15a-Nに到達したレーザ光(1)~(N)の位相が揃えられる。
 以上の実施の形態1では、レーザ光源1から出力されたレーザ光を複数の伝送線路10-1~10-Nに分配する光分配部11と、それぞれの伝送線路10-n(n=1,・・・,N)を通過したレーザ光に対する周波数シフト量として、互いに異なる複数の周波数シフト量が与えられ、それぞれの伝送線路10-nを通過したレーザ光の周波数から、それぞれの周波数シフト量だけ離れている周波数を検出用周波数として、それぞれの伝送線路を通るレーザ光に含める周波数追加部13とを備えるように、光ビーム送信装置2を構成した。また、光ビーム送信装置2は、それぞれの伝送線路10-nを通過したレーザ光の一部を取り出すレーザ光分波部16と、レーザ光分波部16により取り出された複数のレーザ光を集光し、集光後のレーザ光を電気信号に変換する光電変換部17とを備えている。さらに、光ビーム送信装置2は、電気信号に含まれている複数の検出用周波数に基づいて、それぞれの伝送線路10-nを通過したレーザ光の周波数の偏移量を算出する偏移量算出部18と、それぞれの伝送線路10-nを通るレーザ光の周波数を偏移量算出部18により算出された偏移量だけ偏移させる光周波数偏移部12とを備えている。したがって、光ビーム送信装置2は、外部に出力するレーザ光の数よりも少ない数の光電変換部を用いて、複数のレーザ光の位相を揃えることができる。
実施の形態2.
 実施の形態2では、第1のサブアレイ31と第2のサブアレイ32とを備える光ビーム送信装置2について説明する。
 図3は、実施の形態2に係る光ビーム送信装置2を示す構成図である。図3において、図1と同一符号は同一又は相当部分を示すので説明を省略する。
 図3に示す光ビーム送信装置2は、光分配部30、第1のサブアレイ31及び第2のサブアレイ32を備えている。
 第1のサブアレイ31は、光周波数偏移部42、周波数追加部43、光増幅部44、コリメータアレイ45、レーザ光分波部46、光電変換部47、偏移量算出部48及びシフト量制御部49を備えている。
 第2のサブアレイ32は、光周波数偏移部52、周波数追加部53、光増幅部54、コリメータアレイ55、レーザ光分波部56、光電変換部57、偏移量算出部58及びシフト量制御部59を備えている。
 図3に示す光ビーム送信装置2は、2つのサブアレイとして、第1のサブアレイ31と第2のサブアレイ32とを備えている。しかし、これは一例に過ぎず、3つ以上のサブアレイとして、1つの第1のサブアレイ31と、2つ以上の第2のサブアレイ32とを備えるようにしてもよい。
 光周波数偏移部42は、N個の光周波数変換器42a-1~42a-Nを備えている。
 光周波数変換器42a-n(n=1,・・・,N)は、図1に示す光周波数変換器12a-nに相当する。
 周波数追加部43は、N個の光周波数変調器43a-1~43a-Nを備えている。
 光周波数変調器43a-n(n=1,・・・,N)は、図1に示す光周波数変調器13a-nに相当する。
 光増幅部44は、N個の光増幅器44a-1~44a-Nを備えている。
 光増幅器44a-n(n=1,・・・,N)は、図1に示す光増幅器14a-nに相当する。
 コリメータアレイ45は、N個のコリメータ45a-1~45a-Nを備えている。
 コリメータ45a-n(n=1,・・・,N)は、図1に示すコリメータ15a-nに相当する。
 レーザ光分波部46は、図1に示すレーザ光分波部16に相当する。
 光電変換部47は、ビーム集光器47a及び光電変換器47bを備えている。
 ビーム集光器47aは、図1に示すビーム集光器17aに相当し、光電変換器47bは、図1に示す光電変換器17bに相当する。
 偏移量算出部48は、周波数弁別器48a及びN個の位相同期部48b-1~48b-Nを備えている。
 周波数弁別器48aは、図1に示す周波数弁別器18aに相当し、位相同期部48b-n(n=1,・・・,N)は、図1に示す位相同期部18b-nに相当する。
 シフト量制御部49は、N個のシフト量制御器49a-1~49a-Nを備えている。
 シフト量制御器49a-n(n=1,・・・,N)は、図1に示すシフト量制御器19a-nに相当する。
 光周波数偏移部52は、M個の光周波数変換器52a-1~52a-Mを備えている。Mは、2以上の整数である。N=Mであってもよいし、N≠Mであってもよい。
 光周波数変換器52a-m(m=1,・・・,M)は、図1に示す光周波数変換器12a-nに相当する。
 周波数追加部53は、M個の光周波数変調器53a-1~53a-Mを備えている。
 光周波数変調器53a-m(m=1,・・・,M)は、図1に示す光周波数変調器13a-nに相当する。
 光増幅部54は、M個の光増幅器54a-1~54a-Mを備えている。
 光増幅器54a-m(m=1,・・・,M)は、図1に示す光増幅器14a-nに相当する。
 コリメータアレイ55は、M個のコリメータ55a-1~55a-Mを備えている。
 コリメータ55a-m(m=1,・・・,M)は、図1に示すコリメータ15a-nに相当する。
 レーザ光分波部56は、図1に示すレーザ光分波部16に相当する。
 光電変換部57は、ビーム集光器57a及び光電変換器57bを備えている。
 ビーム集光器57aは、図1に示すビーム集光器17aに相当し、光電変換器57bは、図1に示す光電変換器17bに相当する。
 偏移量算出部58は、周波数弁別器58a及びM個の位相同期部58b-1~58b-Mを備えている。
 周波数弁別器58aは、図1に示す周波数弁別器18aに相当する。
 位相同期部58b-m(m=1,・・・,M)は、コリメータ45a-1に到達したレーザ光(1)の周波数に対する、コリメータ55a-mに到達したレーザ光(N+m)(N+m=N+1,・・・,N+M)の周波数の変動である周波数差Δf(N+m)’を解消するための偏移量f-Δf(N+m)’を算出する。
 位相同期部58b-mは、レーザ光(N+m)の周波数の偏移量を示す第1の制御信号C1,mを光周波数変換器52a-mに出力する。
 シフト量制御部59は、M個のシフト量制御器59a-1~59a-Mを備えている。
 シフト量制御器59a-m(m=1,・・・,M)は、図1に示すシフト量制御器19a-nに相当する。
 光分配部30は、光周波数変換器42a-n(n=1,・・・,N)と伝送線路10-nによって接続されている。
 また、光分配部30は、光周波数変換器52a-m(m=1,・・・,M)と伝送線路10-N+mによって接続されている。
 光分配部30は、レーザ光源1から出力されたレーザ光をN+M個の伝送線路10-1~10-N+Mに分配する。
 光分配部30は、伝送線路10-n(n=1,・・・,N)を介して、レーザ光(n)を光周波数変換器42a-nに出力する。また、光分配部30は、伝送線路10-N+m(m=1,・・・,M)を介して、レーザ光(N+m)を光周波数変換器52a-mに出力する。
 次に、図3に示す光ビーム送信装置2について説明する。
 まず、レーザ光源1は、伝送線路を介して、レーザ光を光ビーム送信装置2の光分配部30に出力する。レーザ光源1から光ビーム送信装置2に出力されるレーザ光の周波数は、fである。
 光ビーム送信装置2の光分配部30は、レーザ光源1から出力されたレーザ光をN+M個の伝送線路10-1~10-N+Mに分配する。
 光分配部30は、伝送線路10-n(n=1,・・・,N)を介して、レーザ光(n)を光周波数偏移部42に含まれている光周波数変換器42a-nに出力する。
 また、光分配部30は、伝送線路10-N+m(m=1,・・・,M)を介して、レーザ光(N+m)を光周波数偏移部52に含まれている光周波数変換器52a-mに出力する。
 第1のサブアレイ31の動作は、図1に示す光周波数偏移部12、周波数追加部13、光増幅部14、コリメータアレイ15、レーザ光分波部16、光電変換部17、偏移量算出部18及びシフト量制御部19の動作と同様である。
 また、第2のサブアレイ32の動作は、図1に示す光周波数偏移部12、周波数追加部13、光増幅部14、コリメータアレイ15、レーザ光分波部16、光電変換部17、偏移量算出部18及びシフト量制御部19の動作と同様である。ただし、位相同期部58b-m(m=1,・・・,M)は、コリメータ45a-1に到達したレーザ光(1)の周波数に対する、コリメータ55a-mに到達したレーザ光(N+m)(m=1,・・・,M)の周波数の変動である周波数差Δf(N+m)’を解消するための偏移量f-Δf(N+m)’を算出する。位相同期部58b-mは、レーザ光(N+m)の周波数の偏移量を示す第1の制御信号C1,mを光周波数変換器52a-mに出力する。
 このため、第1のサブアレイ31及び第2のサブアレイ32におけるそれぞれの動作の詳細な説明を省略する。
 図4は、光周波数変換器42a-n(n=1,・・・,N)により周波数偏移された後、周波数変調器43a-nにより周波数シフト量が重畳された後のレーザ光(n)の周波数及び検出用周波数Fd,nと、光周波数変換器52-m(m=1,・・・,M)により周波数偏移された後、周波数変調器53a-mにより周波数シフト量が重畳された後のレーザ光(N+m)の周波数及び検出用周波数Fd,N+mとを示す説明図である。
 光周波数偏移部42に含まれている光周波数変換器42a-1による周波数偏移後のレーザ光(1)の周波数f(1)は、図4に示すように、f+fのように表される。
 光周波数偏移部42に含まれている光周波数変換器42a-n(n=2,・・・,N)による周波数偏移後のレーザ光(n)の周波数f(n)は、図4に示すように、f+f+Δf(n)-Δf(n)’のように表される。
 光周波数偏移部52に含まれている光周波数変換器52a-m(m=1,・・・,M)による周波数偏移後のレーザ光(N+m)の周波数f(N+m)は、図4に示すように、f+f+Δf(N+m)-Δf(N+m)’のように表される。
 光周波数偏移部42に含まれている光周波数変調器43a-1による周波数変調後のレーザ光(1)の周波数は、図4に示すように、f+f+fmのように表される。
 光周波数偏移部42に含まれている光周波数変調器43a-n(n=2,・・・,N)による周波数変調後のレーザ光(n)の周波数は、図4に示すように、f+f+Δf(n)-Δf(n)’+fmである。
 光周波数偏移部52に含まれている光周波数変調器53a-m(m=1,・・・,M)による周波数変調後のレーザ光(N+m)の周波数は、図4に示すように、f+f+Δf(N+m)-Δf(N+m)’+fmN+mである。
 以上の実施の形態2では、周波数追加部43、レーザ光分波部46、光電変換部47、偏移量算出部48及び光周波数偏移部42のそれぞれを有する第1のサブアレイ31と、周波数追加部53、レーザ光分波部56、光電変換部57、偏移量算出部58及び光周波数偏移部52のそれぞれを有する第2のサブアレイ32とを備え、光分配部30が、第1のサブアレイ41が備える光周波数偏移部42と伝送線路10-1~10-Nを介して接続され、第2のサブアレイ32が備える光周波数偏移部52と伝送線路10-N+1~10-N+Mを介して接続されているように、図3に示す光ビーム送信装置2を構成した。したがって、図3に示す光ビーム送信装置2は、図1に示す光ビーム送信装置2と同様に、外部に出力するレーザ光の数よりも少ない数の光電変換部を用いて、複数のレーザ光の位相を揃えることができる。
 図1に示す光ビーム送信装置2では、外部に出力するレーザ光の数が増えると、周波数弁別器18aにより検出される周波数差Δf(n)’の数が増加する。このとき、光電変換器17bの帯域が制限されていれば、光電変換器17bから周波数弁別器18aに出力される電気信号に含まれている周波数成分の周波数間隔を狭くする必要がある。このため、周波数弁別器18aを実現するバンドパスフィルタへの設計要求が厳しくなる。
 図3に示す光ビーム送信装置2では、外部に出力するレーザ光の数が増えれば、サブアレイの数を増やせばよく、それぞれのサブアレイから外部に出力するレーザ光の数自体は変わらない。このため、外部に出力するレーザ光の数を容易に増やすことができる。
 なお、本開示は、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 本開示は、光ビーム送信装置に適している。
 1 レーザ光源、2 光ビーム送信装置、10-1~10-N,10-N+1~10-N+M 伝送線路、11 光分配部、12 光周波数偏移部、12a-1~12a-N 光周波数変換器、13 周波数追加部、13a-1~13a-N 光周波数変調器、14 光増幅部、14a-1~14a-N 光増幅器、15 コリメータアレイ、15a-1~15a-N コリメータ、16 レーザ光分波部、17 光電変換部、17a ビーム集光器、17b 光電変換器、18 偏移量算出部、18a 周波数弁別器、18b-1~18b-N 位相同期部、19 シフト量制御部、19a-1~19a-N シフト量制御器、20-1~20-N 平行光、20-N+1~20-N+M 平行光、30 光分配部、31 第1のサブアレイ、32 第2のサブアレイ、42 光周波数偏移部、42a-1~42a-N 光周波数変換器、43 周波数追加部、43a-1~43a-N 光周波数変調器、44 光増幅部、44a-1~44a-N 光増幅器、45 コリメータアレイ、45a-1~45a-N コリメータ、46 レーザ光分波部、47 光電変換部、47a ビーム集光器、47b 光電変換器、48 偏移量算出部、48a 周波数弁別器、48b-1~48b-N 位相同期部、49 シフト量制御部、49a-1~49a-N シフト量制御器、52 光周波数偏移部、52a-1~52a-M 光周波数変換器、53 周波数追加部、53a-1~53a-M 光周波数変調器、54 光増幅部、54a-1~54a-M 光増幅器、55 コリメータアレイ、55a-1~55a-M コリメータ、56 レーザ光分波部、57 光電変換部、57a ビーム集光器、57b 光電変換器、58 偏移量算出部、58a 周波数弁別器、58b-1~58b-M 位相同期部、59 シフト量制御部、59a-1~59a-M シフト量制御器。

Claims (6)

  1.  レーザ光源から出力されたレーザ光を複数の伝送線路に分配する光分配部と、
     それぞれの伝送線路を通過したレーザ光に対する周波数シフト量として、互いに異なる複数の周波数シフト量が与えられ、それぞれの伝送線路を通過したレーザ光の周波数から、それぞれの周波数シフト量だけ離れている周波数を検出用周波数として、それぞれの伝送線路を通るレーザ光に含める周波数追加部と、
     それぞれの伝送線路を通過したレーザ光の一部を取り出すレーザ光分波部と、
     前記レーザ光分波部により取り出された複数のレーザ光を集光し、集光後のレーザ光を電気信号に変換する光電変換部と、
     前記電気信号に含まれている複数の検出用周波数に基づいて、それぞれの伝送線路を通過したレーザ光の周波数の偏移量を算出する偏移量算出部と、
     それぞれの伝送線路を通るレーザ光の周波数を前記偏移量算出部により算出された偏移量だけ偏移させる光周波数偏移部と
     を備えた光ビーム送信装置。
  2.  前記光電変換部は、
     前記レーザ光分波部により取り出された複数のレーザ光を集光するビーム集光器と、
     前記ビーム集光器による集光後のレーザ光を電気信号に変換する光電変換器とを備えていることを特徴とする請求項1記載の光ビーム送信装置。
  3.  前記偏移量算出部は、
     前記電気信号に含まれている複数の検出用周波数を弁別して、前記複数の検出用周波数の中の、或る1つの検出用周波数と前記或る1つの検出用周波数以外の検出用周波数との間の周波数差を検出する周波数弁別器と、
     前記周波数弁別器により検出された周波数差に基づいて、それぞれの伝送線路を通過したレーザ光の周波数の偏移量を算出し、前記偏移量を示す制御信号を前記光周波数偏移部に出力する複数の位相同期部とを備えていることを特徴とする請求項1記載の光ビーム送信装置。
  4.  それぞれの伝送線路を通るレーザ光を増幅する光増幅部を備えたことを特徴とする請求項1記載の光ビーム送信装置。
  5.  それぞれの伝送線路を通過したレーザ光を平行光に変換し、前記平行光を空間に出力させるコリメータアレイを備え、
     前記レーザ光分波部は、
     前記コリメータアレイから出力されたそれぞれの平行光の一部を取り出し、
     前記光電変換部は、
     前記レーザ光分波部により取り出された複数の平行光を集光し、集光後の光を電気信号に変換することを特徴とする請求項1記載の光ビーム送信装置。
  6.  前記周波数追加部、前記レーザ光分波部、前記光電変換部、前記偏移量算出部及び前記光周波数偏移部のそれぞれを有する第1のサブアレイと、
     前記周波数追加部、前記レーザ光分波部、前記光電変換部、前記偏移量算出部及び前記光周波数偏移部のそれぞれを有する第2のサブアレイとを備え、
     前記光分配部は、
     前記第1のサブアレイが備える前記光周波数偏移部と複数の伝送線路を介して接続され、前記第2のサブアレイが備える前記光周波数偏移部と複数の伝送線路を介して接続されていることを特徴とする請求項1記載の光ビーム送信装置。
PCT/JP2022/014759 2022-03-28 2022-03-28 光ビーム送信装置 WO2023187848A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023511548A JP7325685B1 (ja) 2022-03-28 2022-03-28 光ビーム送信装置
PCT/JP2022/014759 WO2023187848A1 (ja) 2022-03-28 2022-03-28 光ビーム送信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/014759 WO2023187848A1 (ja) 2022-03-28 2022-03-28 光ビーム送信装置

Publications (1)

Publication Number Publication Date
WO2023187848A1 true WO2023187848A1 (ja) 2023-10-05

Family

ID=87563142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014759 WO2023187848A1 (ja) 2022-03-28 2022-03-28 光ビーム送信装置

Country Status (2)

Country Link
JP (1) JP7325685B1 (ja)
WO (1) WO2023187848A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011254028A (ja) * 2010-06-04 2011-12-15 Mitsubishi Electric Corp フェーズドアレーレーザ装置
JP2012119654A (ja) * 2010-11-10 2012-06-21 Mitsubishi Electric Corp 光周波数制御装置
JP2015200822A (ja) * 2014-04-09 2015-11-12 三菱電機株式会社 光周波数制御装置
US20210181310A1 (en) * 2019-03-13 2021-06-17 Shanghai Jiao Tong University Chip-scale silicon-based hybrid-integrated lidar system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101581783B (zh) * 2008-05-16 2013-04-17 深圳市迈测科技有限公司 一种相位测量的校准方法、装置及测距设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011254028A (ja) * 2010-06-04 2011-12-15 Mitsubishi Electric Corp フェーズドアレーレーザ装置
JP2012119654A (ja) * 2010-11-10 2012-06-21 Mitsubishi Electric Corp 光周波数制御装置
JP2015200822A (ja) * 2014-04-09 2015-11-12 三菱電機株式会社 光周波数制御装置
US20210181310A1 (en) * 2019-03-13 2021-06-17 Shanghai Jiao Tong University Chip-scale silicon-based hybrid-integrated lidar system

Also Published As

Publication number Publication date
JPWO2023187848A1 (ja) 2023-10-05
JP7325685B1 (ja) 2023-08-14

Similar Documents

Publication Publication Date Title
JP6705011B2 (ja) 双方向通信モジュール
CN103378906B (zh) 采用相干检测及带外信道识别的光学通信链路及方法
JP7121887B2 (ja) デジタルコヒーレント受信器およびそのスキュー調整方法
US8670665B2 (en) Optical apparatus using polarized orthogonal control
CN100578994C (zh) 在光学传输系统中以极化复用的方式传输至少第一和第二数据信号的方法
JP2015019284A (ja) 多重光通信装置、多重光通信方法及び多重光通信プログラム
US10003430B2 (en) Transceiving system, transmitter, receiver, and control method of transceiving system
WO2023187848A1 (ja) 光ビーム送信装置
JP2016130813A (ja) 光受信モジュール、光送信モジュール、合波器、及び分波器
JP2013101256A (ja) 光路長安定化装置
US11343009B2 (en) Optical communication component, optical transmitter, and control method
US10754224B2 (en) Wavelength conversion device, transmission device, and transmission system
JP6705610B1 (ja) レーザ装置
US12052052B2 (en) Optical demultiplexer and communication device
JP6047056B2 (ja) マルチキャリア光送信器及びマルチキャリア光送信方法
JP4150193B2 (ja) 波長制御装置及び波長制御方法
JP4836839B2 (ja) 光角度変調器
JP5703611B2 (ja) 信号光補正装置及び信号光補正方法
KR20170000882A (ko) 코히어런트 광통신용 광학 위상 다이버시티 수신기
US20130315583A1 (en) Optical switch
JP7408032B2 (ja) 光送信器および光送受信器
WO2015154269A1 (zh) 一种解复用器、光模块以及光线路终端
WO2021098653A1 (zh) 一种频率锁定装置以及频率锁定的方法
JP4076928B2 (ja) 自動分散補償装置
JPWO2023187848A5 (ja)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023511548

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935004

Country of ref document: EP

Kind code of ref document: A1