WO2023185848A1 - 一种复合纱线及其制备方法和应用 - Google Patents

一种复合纱线及其制备方法和应用 Download PDF

Info

Publication number
WO2023185848A1
WO2023185848A1 PCT/CN2023/084397 CN2023084397W WO2023185848A1 WO 2023185848 A1 WO2023185848 A1 WO 2023185848A1 CN 2023084397 W CN2023084397 W CN 2023084397W WO 2023185848 A1 WO2023185848 A1 WO 2023185848A1
Authority
WO
WIPO (PCT)
Prior art keywords
spinning
yarn
nanofibers
guide plate
composite yarn
Prior art date
Application number
PCT/CN2023/084397
Other languages
English (en)
French (fr)
Inventor
刘宇清
岳甜甜
方剑
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2023185848A1 publication Critical patent/WO2023185848A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials
    • D02G3/045Blended or other yarns or threads containing components made from different materials all components being made from artificial or synthetic material
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0069Electro-spinning characterised by the electro-spinning apparatus characterised by the spinning section, e.g. capillary tube, protrusion or pin
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0076Electro-spinning characterised by the electro-spinning apparatus characterised by the collecting device, e.g. drum, wheel, endless belt, plate or grid
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/02Inorganic fibres based on oxides or oxide ceramics, e.g. silicates
    • D10B2101/06Glass
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/30Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polycondensation products not covered by indexing codes D10B2331/02 - D10B2331/14
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2501/00Wearing apparel
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2507/00Sport; Military
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2509/00Medical; Hygiene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/62Manufacturing or production processes characterised by the final manufactured product related technologies for production or treatment of textile or flexible materials or products thereof, including footwear

Definitions

  • the invention relates to the technical field of electrospinning, and in particular to a composite yarn and its preparation method and application.
  • the diameter of nanofibers produced by electrospinning technology is usually in the range of 1nm-100nm. It has the performance advantages of high porosity, large specific surface area, large aspect ratio, high surface energy and activity, but the breaking strength and wear resistance of the fiber It is relatively poor and difficult to meet high-intensity product production.
  • the commonly used improvement method is to combine nanofibers made by electrospinning with fibers or yarns made by traditional spinning methods to make composite yarns.
  • practice shows that there are problems after the nanofibers and yarns are composited. The strength of the material is still poor, and the surface nanofibers are falling off, especially the surface nanofibers are unevenly distributed and prone to hairiness, which seriously limits the practical application of nanofibers.
  • the technical problem to be solved by the present invention is to overcome the deficiencies in the prior art and provide an improved method of combining nanofibers made by electrospinning with fibers or yarns made by conventional spinning methods other than the electrospinning method.
  • the composite yarn prepared by this method not only has the advantages of large specific surface area and good air permeability, but also achieves high strength and hard yarn, especially the hairiness phenomenon is greatly suppressed.
  • the invention also provides a composite yarn prepared by the above method.
  • the present invention also provides an application of the composite yarn prepared by the above method in the preparation of functional clothing, which includes but is not limited to the fields of clothing in biomedicine, safety protection, military and other aspects.
  • the composite yarn includes a first yarn and a second yarn.
  • the first yarn is composed of nanofibers spun by electrospinning.
  • the second yarn is composed of nanofibers other than electrospinning.
  • the preparation method of the composite yarn includes:
  • the short fiber nanofibers spun by the electrospinning mechanism pass through the guide plate formed with a plurality of meshes and are connected with each of the second yarns respectively.
  • the yarns are compounded to form at least one composite primary yarn, and then twisted to form the composite yarn;
  • the second yarn and the short fiber nanofiber are arranged side by side or at an acute angle with each other, and the angle between them is greater than 0° and less than or equal to 10°;
  • the guide plate is located between the electrospinning mechanism and the transmission mechanism.
  • the electrospinning mechanism includes a spinning needle, which is controlled to be relatively close to the spinning needle during the process of spinning out short-fiber nanofibers.
  • the guide plate moves back and forth, and the moving speed of the spinning needle is greater than the conveying speed of the second yarn.
  • fibers spun by other spinning methods other than electrospinning are preferably spun by conventional traditional methods.
  • Specific examples of the fibers include but are not limited to: glass fiber, carbon fiber, polylactic acid fiber. wait.
  • the electrospinning mechanism can realize the production of short fiber nanofibers in a short fiber state by controlling the concentration of the spinning solution, spinning parameters, etc.
  • the diameter can usually be controlled in the range of 1nm-100nm, relying on gravity and external force. Under the action of the action, it can pass through the mesh. After the short fiber nanofibers are formed, according to the position of the spinning needle, they can pass through different meshes of the guide plate. In actual operation, even the lower end of the short fiber nanofibers Without facing the mesh, it can still pass through the mesh under the action of external force such as suction force. In essence, external force such as suction force can guide the short fiber nanofibers to move towards the mesh and finally fall through the mesh.
  • the nanofibers will form a spiral shape after a short distance after being spun (the size of the spiral in the radial direction may be larger than the size of the mesh).
  • the present invention makes it possible to spin the nanofibers under gravity. It is preferable to cooperate with the suction force to make it pass through the mesh.
  • the short fiber nanofibers interact with the mesh when passing through the mesh, and the short fiber nanofibers interact with the mesh when passing through the mesh. After that, it can basically move downward along the extending direction of the mesh, which is beneficial to aligning it with the second yarn side by side or approaching side by side, and obtaining a more regular composite method.
  • the short fiber nanofibers pass through the mesh and interact with the mesh. It is not that the short fiber nanofibers have a large radial size and interfere with the mesh.
  • the electrospinning in the present invention The short fiber nanofibers that are basically nano-sized and basically in a short fiber state are produced. When they pass through the mesh, because they have a part in a spiral state, this part can pass through under the action of gravity and external force such as suction force. The end or even the middle part of the fiber enters the mesh after being bent. At this time, the short fiber nanofibers do not necessarily pass through the mesh along the center of the mesh. They may also enter and pass through the mesh along the inner wall of the mesh.
  • the restricting force exerted by the mesh on the short-fiber nanofibers is to make the short-fiber nanofibers move downward along the extension direction of the mesh, and restrict the part of its spiral state within the mesh, combine with the mesh and cooperate
  • the action of gravity or suction force is expected to break its spiral state and make it stretch as much as possible, which will help it to be arranged side by side or close to the side of the second yarn, thereby obtaining a more regular composite method.
  • the moving speed of the spinning needle is an even multiple of the conveying speed of the second yarn.
  • the moving speed of the spinning needle is 2-10 times the conveying speed of the second yarn. Further, the moving speed of the spinning needle is 4-8 times the conveying speed of the second yarn.
  • the moving speed of the spinning needle is 1-10m/s, further 2-6m/s.
  • the guide plate is arranged horizontally, and the direction in which the spinning needle spins short nanofibers is inclined relative to the extension direction of the guide plate, and the inclination angle is 20°-40°. This setting can better achieve the ideal drafting state of short fiber nanofibers.
  • the guide plate is made of metal, specifically copper.
  • the metal guide plate can be grounded.
  • the plurality of mesh holes are distributed in an array, the aperture of the mesh holes is 0.2-0.6 mm, and the spacing distance between two adjacent mesh holes is 1-0.6 mm. 6mm.
  • the distance between the nozzle of the spinning needle and the guide plate is 5-8cm, and the distance between the guide plate and the transfer mechanism is 5-10cm.
  • a suction device or a blowing device is provided to form a drafting force acting on the short fiber nanofibers, and make the short fiber nanofibers move vertically downward.
  • the guide plate cooperates with the suction device or the blowing device to better enable the short fiber nanofibers to obtain an ideal drafting state.
  • a solid adhesive is attached to the second yarn transmitted through the transmission mechanism, and then in the composite process with short fiber nanofibers Melts and achieves bonding.
  • the electrospinning mechanism includes multiple groups of spinning needle assemblies, each group of the spinning needle assemblies includes two of the spinning needles, and each second yarn corresponds to one. Set the spinning needle assembly;
  • one of the spinning needles moves from the first preset position along the first direction to the second Default position moves straight to reach the second preset position, then stop moving and stop spinning short nanofibers, and then another spinning needle moves from the second preset position to the first preset direction along the second direction.
  • the position moves until it reaches the first preset position, and then the two spinning needles move alternately and spin short fiber nanofibers.
  • the first direction is opposite to the second direction.
  • One of the second directions is a conveying direction of the second yarn.
  • the preparation method of the composite yarn is carried out using the following production device:
  • the production device includes a friction spinning machine, an electrostatic spinning mechanism, a transmission mechanism, a blowing device, a guide plate formed with a plurality of meshes, a heating mechanism, and a solid adhesive for attaching a solid adhesive to the second yarn.
  • the electrospinning mechanism includes multiple groups of spinning needle assemblies arranged above the transmission mechanism. Each group of the spinning needle assemblies includes two spinning needles. The number of the spinning needle assemblies is related to the number of the spinning needle assemblies being transported. The number of second yarns is the same and corresponds one to one. During the process of spinning short-fiber nanofibers, only one of the spinning needle assemblies in each group moves at the same time and spins out the yarn during the movement. Short fiber nanofibers;
  • the conveyor mechanism includes a conveyor belt, the guide plate is disposed between the spinning needle assembly and the conveyor belt, the heating mechanism is disposed on one side of the conveyor belt and is used to make the fiber attached to the second yarn Solid adhesive melts;
  • the blowing device is arranged between the guide plate and the conveyor belt and is used to form a drafting force acting on the short fiber nanofibers and make the short fiber nanofibers move vertically downward;
  • the twisting mechanism and the winding mechanism are arranged in sequence on the output direction side of the conveyor belt;
  • At least one of the second yarns is drawn and refined by the friction spinning machine, and then a solid adhesive is applied by the solid adhesive applying mechanism and attached to the surface, and then passes through the conveyor belt driven by the conveyor belt.
  • the short nanofibers spun by the electrospinning mechanism pass through the mesh and move vertically downward under the action of the blowing device, and then are connected with each of the second fibers respectively.
  • the yarns are compounded to form at least one composite primary yarn, which is then twisted by the twisting mechanism to form the composite yarn, and is then wound up by the winding mechanism.
  • the preparation process can be carried out at an ambient temperature of 15-30°C and an ambient relative humidity of 35-70% RH.
  • the solid adhesive is polyvinylidene fluoride (PVDF), polyurethane powder, etc.
  • the heating temperature of the heating mechanism is 80-200°C for melting the solid adhesive.
  • the electrospinning mechanism also includes a high-voltage generator, a slide rail, a slider, a liquid storage syringe connected to the spinning needle, and a driving assembly.
  • a high-voltage generator for generating high-voltage
  • the spinning needles is connected to the spinning needle.
  • the same or different high-voltage generators are electrically connected, the number of the liquid storage syringes is the same as the number of the spinning needles and corresponds one to one, and each of the spinning needles is independently arranged on a slider and changes accordingly.
  • the number of the slide blocks is the same as the number of the spinning needles and corresponds one to one
  • the slide blocks are slidably arranged on the slide rail and driven by the driving assembly, so The slide block can move back and forth on the slide rail.
  • the moving distance of the slider (distance from the first preset position to the second preset position) is 5-50cm, further 10-30cm.
  • the voltage of the high voltage generator is 10-30kV.
  • the electrospinning mechanism uses a spinning solution with a mass percentage of 10%-25%.
  • the spinning solution is prepared by dissolving the spinning polymer in the spinning solvent and then mixing. become.
  • the mass percentage of spinning polymer in the spinning solution is 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, etc.
  • the spinning polymer includes, but is not limited to, polysulfone amide fiber (PSA), polyvinyl butyral (PVB), polyacrylonitrile (PAN), and the like.
  • PSA polysulfone amide fiber
  • PVB polyvinyl butyral
  • PAN polyacrylonitrile
  • the spinning solvent includes but is not limited to acetone, ethanol, N,N-dimethylformamide (DMF), N,N-dimethylacetamide, and the like.
  • Another technical solution provided by the present invention a composite yarn made by the above-mentioned preparation method.
  • Another technical solution provided by the present invention an application of the above-mentioned composite yarn in the preparation of functional clothing.
  • the present invention has the following advantages compared with the prior art:
  • the invention innovatively allows short-fiber nanofibers spun by an electrospinning mechanism to pass through a specific guide plate with mesh holes. Processing, so that the guide plate acts on the newly spun short fiber nanofibers longitudinally and transversely, changing the spiral state of the freshly spun short fiber nanofibers, making it straighter, and under gravity (preferably combined with other external forces) ) through the mesh, and then can be arranged side by side or close to the second yarn to obtain a more regular composite method.
  • the short Nanofibers are durable and Evenly distributed on the second yarn and obtaining the ideal number of composites, so that the composite yarn made by the method of the present invention not only has the advantages of large specific surface area, good air permeability, etc., but also achieves high strength and harder yarn , especially the hairiness phenomenon is greatly suppressed, and the surface finish is high.
  • Figure 1 is a schematic structural diagram of the production device used in the preparation method of composite yarn according to the embodiment of the present invention
  • Figure 2 is a partial production schematic diagram when multiple second yarns are used in the embodiment of the present invention.
  • Figure 3 is a schematic diagram showing the distribution of each component in the composite virgin yarn made in the embodiment of the present invention.
  • the composite yarn includes a first yarn and a second yarn.
  • the first yarn is composed of nanofibers spun by electrospinning
  • the second yarn is composed of nanofibers other than electrospinning. Composed of fibers spun by other spinning methods.
  • the fibers spun by other spinning methods except electrospinning are glass fibers spun by conventional traditional methods (fineness 0.25mm, purchased from Hangzhou Huiming Composite Materials Co., Ltd., brand pss- 14).
  • Electrospinning uses a spinning solution with a mass percentage of 12%.
  • the spinning solution is made by dissolving the spinning polymer (polysulfone amide fiber (PSA)) into the spinning solvent (N,N-dimethylacetamide). ) and mixed, the spinning voltage is 20kV, the spinning rate is 2mL/h, the ambient temperature is 28°C, and the ambient humidity is 65% RH.
  • the preparation method of the composite yarn includes: in the process of transmitting at least one second yarn through the transmission mechanism, the short fiber nanofibers spun by the electrospinning mechanism pass through a guide plate formed with a plurality of meshes and are separately Composite with each second yarn to form at least one composite primary yarn, and then twisted to form a composite yarn;
  • the guide plate is located between the electrospinning mechanism and the transmission mechanism.
  • the electrospinning mechanism includes a spinning needle, which controls the spinning needle to reciprocate relative to the guide plate during the process of spinning out short-fiber nanofibers, and causes the spinning needle to reciprocate.
  • the moving speed of the needle is greater than the conveying speed of the second yarn.
  • the guide plate is set horizontally, the spinning needle is set at an angle, the direction of spinning short nanofibers intersects with the vertical direction, the included angle is 30°, and the moving speed of the spinning needle is 2m/ s, the transmission speed of the second yarn is 0.5m/s, and the single movement distance of the spinning needle relative to the guide plate is controlled to be 10cm.
  • the guide plate is made of copper, or the guide plate can also be referred to as a copper plate (the copper plate is grounded).
  • the aforementioned multiple meshes are distributed in an array on the copper plate.
  • the aperture of the mesh is 0.5mm.
  • the distance between two adjacent meshes is 5mm.
  • the distance between the nozzle of the spinning needle and the guide plate is controlled.
  • the distance is 6cm, and the distance between the guide plate and the transmission mechanism is 8cm.
  • a blowing device is provided to form a drafting force acting on the short fiber nanofibers, causing the short fiber nanofibers to move vertically downward.
  • a blowing device can be installed on both sides of the guide plate with a wind speed of 8m/s. The guide plate and the blowing device can better achieve the ideal drafting state of the short fiber nanofibers, so that the second The yarns and staple nanofibers are aligned or tend to be aligned side by side.
  • a solid adhesive is attached to the second yarn transmitted through the transmission mechanism, and then melted and bonded during the composite process with short-fiber nanofibers to obtain better
  • the combined effect prevents the nanofibers located in the outer layer from falling off.
  • the electrospinning mechanism includes multiple groups of spinning needle assemblies, each group of spinning needle assemblies includes two spinning needles, and each second yarn corresponds to one group of spinning needle assemblies; when spinning short fiber nano During the fiber spinning process, only one spinning needle in each group of spinning needle components moves at the same time and short fiber nanofibers are spun during the movement. During actual operation, during the process of spinning short-fiber nanofibers, in each group of spinning needle assemblies, one of the spinning needles moves from the first preset position along the first direction to the second preset position until it reaches the second preset position.
  • the first direction is opposite to the second direction.
  • the first direction is the conveying direction of the second yarn
  • the second direction is the opposite direction to the conveying direction of the second yarn.
  • the distance between the first preset position and the second preset position is the single movement distance of the spinning needle relative to the guide plate, specifically 10cm.
  • the spinning needle assembly has 6 corresponding groups and forms 6 composite first yarns, and the 6 composite first yarns are twisted.
  • the twist is 250 twist ⁇ m -1 .
  • the production device includes a friction spinning machine 5 arranged in sequence, a solid adhesive application mechanism 11 for attaching a solid adhesive to the second yarn, a transmission mechanism, a twisting mechanism 17, a yarn guide hook 8 and a winding mechanism, as well as a heating mechanism 7, an electrospinning mechanism, a blowing device 10, and a guide plate formed with a plurality of meshes 13 arranged on one side of the conveyor mechanism; wherein the conveyor mechanism includes a conveyor belt 6; the electrospinning mechanism includes a conveyor belt 6 There are 6 groups of spinning needle assemblies above 6. Each group of spinning needle assemblies includes two spinning needles 4. During the process of spinning short fiber nanofibers, there is only one spinning needle in each group of spinning needle assemblies at the same time. 4 moves and spins short nanofibers during the movement;
  • the material of the guide plate is copper, which can be simply called copper plate 12. Copper plate 12 is arranged between the spinning needle assembly and the conveyor belt 6. The heating mechanism 7 is arranged on one side of the conveyor belt 6 and is used to bond the solid state attached to the second yarn. agent melt;
  • the blowing device 10 is arranged between the copper plate 12 and the conveyor belt 6 and is used to form a drafting force acting on the short fiber nanofibers and make the short fiber nanofibers move vertically downward;
  • the twisting mechanism 17 and the winding mechanism are arranged on the output direction side of the conveyor belt 6 in sequence.
  • the solid adhesive used is polyvinylidene fluoride (PVDF). After the solid adhesive is melted by the heating mechanism 7, the short fiber nanofibers are firmly bonded to each other through better adhesion after melting. On fiberglass.
  • PVDF polyvinylidene fluoride
  • the electrospinning mechanism also includes a high-voltage generator 1, a slide rail, a slider 2, a liquid storage syringe 3 connected to the spinning needle 4, and a driving assembly (not shown).
  • Each spinning The needles 4 are all electrically connected to different high-voltage generators 1.
  • the number of liquid storage syringes 3 is the same as the number of spinning needles 4 and corresponds one to one.
  • Each spinning needle 4 is independently arranged on a slider 2 and changes accordingly. Moves with the movement of the slider 2.
  • the number of the slider 2 is the same as the number of spinning needles 4 and corresponds one to one.
  • the slider 2 is slidably arranged on the slide rail and driven by the driving assembly.
  • the slider 2 can be on the slide rail.
  • the moving speed of the slider 2 is the moving speed of the spinning needle 4, specifically 2m/s, and the moving distance of the slider 2 (from the first preset position to the second The distance at the preset position) is 10cm.
  • the slide rail can include multiple branch rails arranged side by side, and each branch rail is provided with A set of spinning needle components drives the spinning needle 4 to move through the slider 2. Specifically, it drives the liquid storage syringe 3 and the spinning needle 4 to move together.
  • the voltage of the high-voltage generator 1 is the spinning voltage, specifically 20kV.
  • the six second yarns are drawn and thinned by the friction spinning machine 5, and then a solid adhesive is applied through the solid adhesive application mechanism 11 and attached to the surface, and then passed through the copper plate 12 driven by the conveyor belt 6 Below, the short fiber nanofibers spun by the electrospinning mechanism pass through the mesh 13 and move vertically downward under the action of the blowing device 10, and then are composited with each second yarn respectively to form 6 composite primary yarns.
  • the composite yarn is then twisted by the twisting mechanism 17 and then rolled up by the bobbin 9 of the winding mechanism.
  • the distribution diagram of each component in the composite yarn is shown in Figure 3.
  • the upper layer is the first yarn 14
  • the middle layer is the solid adhesive 16
  • the lower layer is the second yarn 15.
  • This example provides a composite yarn and a preparation method thereof, which are basically the same as Example 1, with the only difference being:
  • Electrospinning uses a spinning solution with a mass percentage of 20%.
  • the spinning solution is made by dissolving the spinning polymer (polyvinyl butyral (PVB)) in the spinning solvent (ethanol) and then mixing Made uniformly, the spinning voltage is 30kV, the spinning rate is 3mL/h, the ambient temperature is 26°C, and the ambient humidity is 70% RH;
  • PVB polyvinyl butyral
  • the moving speed of the spinning needle is 3m/s
  • the conveying speed of the second yarn is 0.5m/s
  • the single movement distance of the spinning needle relative to the guide plate is controlled to 15cm
  • the nozzle and guide of the spinning needle are controlled.
  • the distance between the plates is 5cm
  • the wind speed of the blowing device is 9m/s
  • the distance between the guide plate and the transmission mechanism is 7cm;
  • Fibers spun by other spinning methods except electrospinning are carbon fibers spun by conventional traditional methods (fineness is 0.07mm, purchased from Guangdong Teweilong New Material Application Co., Ltd., brand name TWL -2181801), the solid adhesive is polyurethane powder;
  • the twist degree when twisting the six composite virgin yarns is 360 twist ⁇ m -1 .
  • This example provides a composite yarn and a preparation method thereof, which are basically the same as Example 1, with the only difference being:
  • Electrospinning uses a spinning solution with a mass percentage of 10%.
  • the spinning solution is made by dissolving the spinning polymer (polyacrylonitrile (PAN)) in the spinning solvent (N,N-dimethyl formamide (DMF)), the spinning voltage is 15kV, the spinning rate is 1.2mL/h, the ambient temperature is 30°C, and the ambient humidity is 45% RH;
  • PAN polyacrylonitrile
  • DMF N,N-dimethyl formamide
  • the moving speed of the spinning needle is 4m/s, and the conveying speed of the second yarn is 1m/s.
  • the single movement distance of the spinning needle relative to the guide plate is controlled to 20cm, and the nozzle of the spinning needle and the guide plate are controlled. The distance between them is 4cm, and the distance between the guide plate and the transmission mechanism is 8cm;
  • Fibers spun by other spinning methods except electrospinning are polylactic acid fibers spun by conventional traditional methods (fineness is 0.15mm, purchased from Quanzhou Smarting Powerful Supplier, brand name SMD- 202188);
  • the twist degree when twisting the six composite virgin yarns is 160 twist ⁇ m -1 .
  • This example provides a composite yarn and a preparation method thereof, which are basically the same as Example 3, except that no guide plate is added.
  • Example 3 The composite yarns produced in Example 3 and Comparative Example were subjected to the following performance tests. The specific results are shown in Table 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

一种复合纱线及其制备方法和应用,该方法使静电纺丝机构纺出的短纤纳米纤维通过一个特定的具有的网孔的导向板(12)进行处理,对刚纺出的短纤纳米纤维进行纵向和横向的作用,改变短纤纳米纤维刚纺出呈现的螺旋状态,使其更平直,并在重力或重力优选配和其他外力的作用下经过网孔,进而能够与常规纱并排排列或趋近于并排排列,获得更规整的复合方式,同时通过控制纺丝针头(4)、导向板(12)和常规纱的相对运动状态,使得短纤纳米纤维持续且均匀地分布在常规纱上并获得理想的复合数量,从而使得所制成的复合纱线不仅具备了比表面积大、透气性好等优势,而且还实现了高强度、纱线较硬,毛羽现象被极大抑制,表面光洁度高,适于功能性服饰制备。

Description

一种复合纱线及其制备方法和应用 技术领域
本发明涉及静电纺丝技术领域,具体涉及一种复合纱线及其制备方法和应用。
背景技术
通过静电纺丝技术制作的纳米纤维的直径通常在1nm-100nm范围内,具有孔隙率高、比表面积大、长径比大、表面能和活性高等性能优势,但是纤维的断裂强度与耐磨性相对较差,难以满足高强度的产品生产。目前,常用的改善方式是将静电纺丝制成的纳米纤维与传统纺纱方法制成的纤维或纱线复合,进而制成复合纱线,然而,实践表明,存在纳米纤维与纱线复合后的材料强度仍然不佳,表面纳米纤维有脱落的现象,尤其是表面纳米纤维分布不匀,且极易出现毛羽现象,严重限制了纳米纤维的实际应用。
发明内容
本发明所要解决的技术问题是克服现有技术中的不足,提供一种改进的将静电纺丝制成的纳米纤维与除静电纺丝方法以外的常规纺纱方法制成的纤维或纱线进行复合的方法,该方法制备的复合纱线不仅具备了比表面积大、透气性好等优势,而且还实现了高强度、纱线较硬,尤其是毛羽现象被极大抑制。
本发明同时还提供了一种上述方法制备的复合纱线。
本发明同时还提供了一种上述方法制备的复合纱线在制备功能性服饰中的应用,该功能性服饰包括但不限于生物医疗、安全防护、军事等方面的服装领域。
为解决以上技术问题,本发明采取的一种技术方案如下:
一种复合纱线的制备方法,该复合纱线包括第一纱和第二纱,所述第一纱由静电纺丝纺出的纳米纤维构成,所述第二纱包括由除静电纺丝之外的其他纺纱方法纺成的纤维或由除静电纺丝之外的其他纺纱方法纺成的纤维制成的初级纱线,所述复合纱线的制备方法包括:
在将至少一根所述第二纱经传送机构传送的过程中,使静电纺丝机构纺出的短纤纳米纤维穿过形成有多个网孔的导向板并分别与每根所述第二纱复合,形成至少一根复合初纱,然后加捻,制成所述复合纱线;
其中,所述复合初纱中,所述第二纱与所述短纤纳米纤维并排排列或呈相互之间的锐角夹角为大于0°且小于等于10°;
使所述导向板位于所述静电纺丝机构与所述传送机构之间,所述静电纺丝机构包括纺丝针头,控制所述纺丝针头在纺出短纤纳米纤维的过程中相对所述导向板发生往复移动,且使所述纺丝针头的移动速度大于所述第二纱的传送速度。
本发明中,由除静电纺丝之外的其他纺纱方法纺成的纤维优选为通过常规的传统方法纺出制成,该纤维具体例如包括但不限于为:玻璃纤维、碳纤维、聚乳酸纤维等。
本发明中,静电纺丝机构通过控制纺丝溶液的浓度、纺丝参数等可以实现制成短纤状态的短纤纳米纤维,直径通常可以控制在1nm-100nm范围内,依靠重力和配合外力的作用下,其能够穿过网孔,短纤纳米纤维在形成之后,根据纺丝针头的位置,其能够在导向板的不同网孔中穿过,实际操作中,即使短纤纳米纤维的下端部没有正对网孔,在外力例如抽吸力的作用下,其仍然能够穿过网孔,实质上,外力例如抽吸力可以引导短纤纳米纤维朝向网孔运动并最终经由网孔作用后下落;同时,基于静电纺丝的特性,纳米纤维纺出之后在较短的距离之后会形成螺旋状(螺旋状时在径向上的尺寸可能表现出大于网孔的尺寸),本发明使其在重力优选配合抽吸力的作用,可以使其穿过网孔,此时经过网孔限位整合,短纤纳米纤维在穿过网孔时与网孔相互作用,短纤纳米纤维在穿过网孔之后基本可以沿着网孔的延伸方向向下运动,进而有利于使其与第二纱并排排列或趋近于并排排列,获得更规整的复合方式。
本发明中,短纤纳米纤维穿过网孔并与网孔相作用,并非是短纤纳米纤维的径向尺寸很大而与网孔相过盈配合,实质上,本发明中静电纺丝纺出的基本为纳米尺寸且基本为短纤状态的短纤纳米纤维,当其穿过网孔时,由于其具有螺旋状态的一部分,该部分在重力以及外力例如抽吸力的作用下,可以经过其自身端部甚至是中部弯折后进入网孔,此时短纤纳米纤维并非一定是沿着网孔的中心经过该网孔,也有可能是沿着网孔内壁进入并穿过网孔,此时网孔施加在短纤纳米纤维上的限制力,即是使短纤纳米纤维沿着网孔的延伸方向向下运动,并且将其螺旋状态的部分限制在网孔内,结合网孔并配合重力或者抽吸力的作用,有望打破其螺旋状态并使其尽可能伸长伸展,进而有利于使其与第二纱并排排列或趋近于并排排列,从而获得更规整的复合方式。
根据本发明的一些优选方面,使所述纺丝针头的移动速度为所述第二纱的传送速度的偶数倍。
根据本发明的一些优选且具体的方面,使所述纺丝针头的移动速度为所述第二纱的传送速度的2-10倍。进一步地,使所述纺丝针头的移动速度为所述第二纱的传送速度的4-8倍。
在本发明的一些具体实施方式中,所述纺丝针头的移动速度为1-10m/s,进一步为2-6m/s。
根据本发明的一些优选方面,所述导向板水平设置,所述纺丝针头纺出短纤纳米纤维的方向相对所述导向板的延伸方向呈倾斜设置,且倾斜角度为20°-40°。该设置方式可以更好地使短纤纳米纤维获得理想的牵伸状态。
根据本发明的一些优选方面,所述导向板的材质为金属,具体可以为铜。
在本发明的一些实施方式中,金属材质的导向板可以接地。
根据本发明的一些优选方面,所述的多个网孔呈阵列分布,所述网孔的孔径为0.2-0.6mm,两两相邻的两个所述网孔之间的间隔距离为1-6mm。
根据本发明的一些优选方面,控制所述纺丝针头的喷口与所述导向板之间的距离为5-8cm,所述导向板与所述传送机构之间的距离为5-10cm。
根据本发明的一些优选方面,在所述复合纱线的制备过程中,通过设置抽吸装置或吹风装置形成作用于短纤纳米纤维的牵伸力,并使短纤纳米纤维竖直向下运动。进一步地,本发明中,可以优选在所述导向板的两侧分别设置至少一个所述抽吸装置或吹风装置。本发明中,导向板配合抽吸装置或吹风装置可以更好地使短纤纳米纤维获得理想的牵伸状态。
根据本发明的一些优选方面,在所述复合纱线的制备过程中,使经所述传送机构传送的所述第二纱上附着有固态粘合剂,然后在与短纤纳米纤维复合过程中熔化并实现粘接。
根据本发明的一些优选方面,所述静电纺丝机构包括多组纺丝针头组件,每组所述纺丝针头组件包括两个所述纺丝针头,且使每根所述第二纱对应一组所述纺丝针头组件;
在纺出短纤纳米纤维的过程中,每组所述纺丝针头组件中同一时间仅有一个所述纺丝针头发生移动且在移动过程中纺出短纤纳米纤维。
根据本发明的一些优选方面,在纺出短纤纳米纤维的过程中,每组所述纺丝针头组件中,其中一个所述纺丝针头从第一预设位置沿着第一方向向第二预设位置移动直 至到达所述第二预设位置,然后停止移动并停止纺出短纤纳米纤维,然后另一个所述纺丝针头从所述第二预设位置沿着第二方向向所述第一预设位置移动直至到达所述第一预设位置,然后两个所述纺丝针头交替移动并纺出短纤纳米纤维,所述第一方向与所述第二方向相反,所述第一方向、所述第二方向中的一个为所述第二纱的传送方向。
根据本发明的一些优选方面,所述复合纱线的制备方法采用如下生产装置进行:
该生产装置包括摩擦纺纱机、静电纺丝机构、传送机构、吹风装置、形成有多个网孔的导向板、加热机构、用于使所述第二纱上附着有固态粘合剂的固态粘合剂施加机构、加捻机构和收卷机构;
所述静电纺丝机构包括设置在所述传送机构上方的多组纺丝针头组件,每组所述纺丝针头组件包括两个纺丝针头,所述纺丝针头组件的数量与传送的所述第二纱的数量相同且一一对应,在纺出短纤纳米纤维的过程中,每组所述纺丝针头组件中同一时间仅有一个所述纺丝针头发生移动且在移动过程中纺出短纤纳米纤维;
所述传送机构包括传送带,所述导向板设置在所述纺丝针头组件与所述传送带之间,所述加热机构设置在所述传送带一侧且用于使附着在所述第二纱上的固态粘合剂熔化;
所述吹风装置设置在所述导向板与所述传送带之间且用于形成作用于短纤纳米纤维的牵伸力,并使短纤纳米纤维竖直向下运动;
所述加捻机构、所述收卷机构依次设置在所述传送带的输出方向一侧;
至少一根所述第二纱分别经所述摩擦纺纱机牵伸细化后通过所述固态粘合剂施加机构施加固态粘合剂并附着在表面,然后在所述传送带的带动下经过所述导向板的下方,使所述静电纺丝机构纺出的短纤纳米纤维穿过所述网孔并在所述吹风装置的作用下竖直向下运动,然后分别与每根所述第二纱复合,形成至少一根复合初纱,然后通过所述加捻机构加捻后形成所述复合纱线,再由所述收卷机构收卷。
根据本发明的一些具体方面,可以使制备过程在环境温度为15-30℃、环境相对湿度为35-70%RH下进行。
在本发明的一些具体实施方式中,所述固态粘合剂为聚偏氟乙烯(PVDF)、聚氨酯粉末等。
在本发明的一些具体实施方式中,所述加热机构的加热温度为80-200℃,用于使所述固态粘合剂熔化。
根据本发明的一些具体方面,所述静电纺丝机构还包括高压发生器、滑轨、滑块、与所述纺丝针头连通的储液注射器、驱动组件,每个所述纺丝针头均与同一个或不同的高压发生器电连接,所述储液注射器的数量与所述纺丝针头的数量相同且一一对应,每个所述纺丝针头均独立地设置在一个滑块上且随着滑块的移动而移动,所述滑块的数量与所述纺丝针头的数量相同且一一对应,所述滑块滑动地设置在所述滑轨上且通过所述驱动组件驱动,所述滑块可以在所述滑轨上进行往复移动。
在本发明的一些实施方式中,所述滑块的移动距离(从第一预设位置至第二预设位置的距离)为5-50cm,进一步为10-30cm。
在本发明的一些实施方式中,所述高压发生器的电压为10-30kV。
在本发明的一些实施方式中,所述静电纺丝机构采用质量百分含量为10%-25%的纺丝溶液,该纺丝溶液通过将纺丝聚合物溶解于纺丝溶剂后混匀制成。在本发明的一些实施方式中,纺丝溶液中纺丝聚合物的质量百分含量为10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、21%、22%、23%、24%、25%等。
在本发明的一些实施方式中,所述纺丝聚合物包括但不限于聚砜酰胺纤维(PSA)、聚乙烯醇缩丁醛(PVB)、聚丙烯腈(PAN)等。
在本发明的一些实施方式中,所述纺丝溶剂包括但不限于丙酮、乙醇、N,N-二甲基甲酰胺(DMF)、N,N-二甲基乙酰胺等。
本发明提供的又一技术方案:一种上述所述的制备方法制成的复合纱线。
本发明提供的又一技术方案:一种上述所述的复合纱线在制备功能性服饰中的应用。
由于以上技术方案的采用,本发明与现有技术相比具有如下优点:
本发明基于现有纳米纤维在应用过程中存在的强度不高、毛羽现象较为严重等缺陷,创新地使静电纺丝机构纺出的短纤纳米纤维通过一个特定的具有的网孔的导向板进行处理,使导向板对刚纺出的短纤纳米纤维进行纵向和横向的作用,改变短纤纳米纤维刚纺出呈现的螺旋状态,使其更平直,并在重力(优选配和其他外力)的作用下经过网孔,进而能够与第二纱并排排列或趋近于并排排列,获得更规整的复合方式,同时通过控制纺丝针头、导向板和第二纱的相对运动状态,使得短纤纳米纤维持续且 均匀地分布在第二纱上并获得理想的复合数量,从而使得本发明方法制成的复合纱线不仅具备了比表面积大、透气性好等优势,而且还实现了高强度、纱线较硬,尤其是毛羽现象被极大抑制,表面光洁度高。
附图说明
图1为本发明实施例复合纱线的制备方法采用的生产装置的结构示意图;
图2为本发明实施例中第二纱采用多根时的部分生产示意图;
图3为本发明实施例中制成的复合初纱中各成分的分布示意图;
其中,1、高压发生器;2、滑块;3、储液注射器;4、纺丝针头;5、摩擦纺纱机;6、传送带;7、加热机构;8、导纱钩;9、筒管;10、吹风装置;11、固体粘合剂施加机构;12、铜板;13、网孔;14、第一纱;15、第二纱;16、固体粘合剂;17、加捻机构。
具体实施方式
以下结合具体实施例对上述方案做进一步说明;应理解,这些实施例是用于说明本发明的基本原理、主要特征和优点,而本发明不受以下实施例的范围限制;实施例中采用的实施条件可以根据具体要求做进一步调整,未注明的实施条件通常为常规实验中的条件。
下述中,如无特殊说明,所有的原料基本来自于商购或者通过本领域的常规方法制备而得。
实施例1
本例提供一种复合纱线及其制备方法,该复合纱线包括第一纱和第二纱,第一纱由静电纺丝纺出的纳米纤维构成,第二纱由除静电纺丝之外的其他纺纱方法纺成的纤维构成。
本例中,由除静电纺丝之外的其他纺纱方法纺成的纤维为通过常规的传统方法纺出的玻璃纤维(细度0.25mm,购自杭州汇铭复合材料有限公司,牌号pss-14)。静电纺丝采用质量百分含量为12%的纺丝溶液,该纺丝溶液通过将纺丝聚合物(聚砜酰胺纤维(PSA))溶解于纺丝溶剂(N,N-二甲基乙酰胺)后混匀制成,纺丝电压为20kV,纺丝速率为2mL/h,环境温度为28℃,环境湿度为65%RH。
该复合纱线的制备方法包括:在将至少一根第二纱经传送机构传送的过程中,使静电纺丝机构纺出的短纤纳米纤维穿过形成有多个网孔的导向板并分别与每根第二纱复合,形成至少一根复合初纱,然后加捻,制成复合纱线;
其中,使导向板位于静电纺丝机构与传送机构之间,静电纺丝机构包括纺丝针头,控制纺丝针头在纺出短纤纳米纤维的过程中相对导向板发生往复移动,且使纺丝针头的移动速度大于第二纱的传送速度。具体地,本例中,导向板为水平设置,纺丝针头呈倾斜设置且纺出短纤纳米纤维的方向与竖直方向相交,夹角角度为30°,纺丝针头的移动速度为2m/s,第二纱的传送速度为0.5m/s,同时控制纺丝针头相对导向板单次移动的距离为10cm,导向板的材质为铜,也可简称导向板为铜板(该铜板接地),前述的多个网孔呈阵列分布在铜板上,网孔的孔径为0.5mm,两两相邻的两个网孔之间的间隔距离为5mm,控制纺丝针头的喷口与导向板之间的距离为6cm,导向板与传送机构之间的距离为8cm。
本例中,在复合纱线的制备过程中,通过设置吹风装置形成作用于短纤纳米纤维的牵伸力,使短纤纳米纤维竖直向下运动。进一步地,本例中,可以在导向板的两侧分别设置一个吹风装置,风速为8m/s,导向板配合吹风装置可以更好地使短纤纳米纤维获得理想的牵伸状态,使第二纱与短纤纳米纤维并排排列或趋向于并排排列。
本例中,在复合纱线的制备过程中,使经传送机构传送的第二纱上附着有固态粘合剂,然后在与短纤纳米纤维复合过程中熔化并实现粘接,获得更好的结合效果,防止位于外层的纳米纤维出现脱落的现象。
本例中,静电纺丝机构包括多组纺丝针头组件,每组纺丝针头组件包括两个纺丝针头,且使每根第二纱对应一组纺丝针头组件;在纺出短纤纳米纤维的过程中,每组纺丝针头组件中同一时间仅有一个纺丝针头发生移动且在移动过程中纺出短纤纳米纤维。实际操作过程中,在纺出短纤纳米纤维的过程中,每组纺丝针头组件中,其中一个纺丝针头从第一预设位置沿着第一方向向第二预设位置移动直至到达第二预设位置,然后停止移动并停止纺出短纤纳米纤维,然后另一个纺丝针头从第二预设位置沿着第二方向向第一预设位置移动直至到达第一预设位置,然后两个纺丝针头交替移动并纺出短纤纳米纤维,第一方向与第二方向相反,第一方向为第二纱的传送方向,第二方向即为与第二纱的传送方向相反的方向,第一预设位置与第二预设位置的距离即为纺丝针头相对导向板单次移动的距离,具体是10cm。
具体地,本例中,采用了6根并排排列的玻璃纤维同时操作,则相应地,纺丝针头组件具有对应的6组,并形成6根复合初纱,对该6根复合初纱加捻时的捻度为250捻·m-1
下面结合附图对本例的方案做进一步说明,该说明并不对本发明的方案进行限制,仅是为了便于对本例的制备方法进行更直观地了解和认识,下述附图所示结构仅为示例性地设置方式。
具体地,如图1-2所示,本例复合纱线的制备方法采用如下生产装置进行。该生产装置包括依次设置的摩擦纺纱机5、用于使第二纱上附着有固态粘合剂的固态粘合剂施加机构11、传送机构、加捻机构17、导纱钩8和收卷机构,以及设置在传送机构一侧的加热机构7、静电纺丝机构、吹风装置10、形成有多个网孔13的导向板;其中,传送机构包括传送带6;静电纺丝机构包括设置在传送带6上方的6组纺丝针头组件,每组纺丝针头组件包括两个纺丝针头4,在纺出短纤纳米纤维的过程中,每组纺丝针头组件中同一时间仅有一个纺丝针头4发生移动且在移动过程中纺出短纤纳米纤维;
导向板的材质为铜,可以简称为铜板12,铜板12设置在纺丝针头组件与传送带6之间,加热机构7设置在传送带6一侧且用于使附着在第二纱上的固态粘合剂熔化;
吹风装置10设置在铜板12与传送带6之间且用于形成作用于短纤纳米纤维的牵伸力,并使短纤纳米纤维竖直向下运动;
加捻机构17、收卷机构依次设置在传送带6的输出方向一侧。
本例中,采用的固态粘合剂为聚偏氟乙烯(PVDF),加热机构7将该固态粘合剂熔化后通过熔化后较好的粘接性进而将短纤纳米纤维牢牢粘接在玻璃纤维上。
进一步地,在本例中,静电纺丝机构还包括高压发生器1、滑轨、滑块2、与纺丝针头4连通的储液注射器3、驱动组件(未示出),每个纺丝针头4均与不同的高压发生器1电连接,储液注射器3的数量与纺丝针头4的数量相同且一一对应,每个纺丝针头4均独立地设置在一个滑块2上且随着滑块2的移动而移动,滑块2的数量与纺丝针头4的数量相同且一一对应,滑块2滑动地设置在滑轨上且通过驱动组件驱动,滑块2可以在滑轨上进行往复移动,也即本例中,滑块2的移动速度即为纺丝针头4的移动速度,具体是为2m/s,滑块2的移动距离(从第一预设位置至第二预设位置的距离)为10cm。滑轨可以包括并列设置的多个分支轨道,每个分支轨道上设置 一组纺丝针头组件,通过滑块2带动纺丝针头4进行移动,具体是带动储液注射器3和纺丝针头4一起移动,高压发生器1的电压即为纺丝电压,具体是20kV。
本例中的6根第二纱分别经摩擦纺纱机5牵伸细化后通过固态粘合剂施加机构11施加固态粘合剂并附着在表面,然后在传送带6的带动下经过铜板12的下方,使静电纺丝机构纺出的短纤纳米纤维穿过网孔13并在吹风装置10的作用下竖直向下运动,然后分别与每根第二纱复合,形成6根复合初纱,然后通过加捻机构17加捻后形成复合纱线,再由收卷机构的筒管9收卷。
本例中,制成的复合初纱中各组分的分布示意图如图3所示,上层为第一纱14,中间层为固体粘合剂16,下层为第二纱15。
实施例2
本例提供一种复合纱线及其制备方法,其基本同实施例1,区别仅在于:
(1)静电纺丝采用质量百分含量为20%的纺丝溶液,该纺丝溶液通过将纺丝聚合物(聚乙烯醇缩丁醛(PVB))溶解于纺丝溶剂(乙醇)后混匀制成,纺丝电压为30kV,纺丝速率为3mL/h,环境温度为26℃,环境湿度为70%RH;
(2)纺丝针头的移动速度为3m/s,第二纱的传送速度为0.5m/s,同时控制纺丝针头相对导向板单次移动的距离为15cm,控制纺丝针头的喷口与导向板之间的距离为5cm,吹风装置的风速为9m/s,导向板与传送机构之间的距离为7cm;
(3)由除静电纺丝之外的其他纺纱方法纺成的纤维为通过常规的传统方法纺出的碳纤维(细度为0.07mm,购自广东特维隆新材料应用有限公司,牌号TWL-2181801),固态粘合剂为聚氨酯粉末;
(4)对该6根复合初纱加捻时的捻度为360捻·m-1
实施例3
本例提供一种复合纱线及其制备方法,其基本同实施例1,区别仅在于:
(1)静电纺丝采用质量百分含量为10%的纺丝溶液,该纺丝溶液通过将纺丝聚合物(聚丙烯腈(PAN))溶解于纺丝溶剂(N,N-二甲基甲酰胺(DMF))后混匀制成,纺丝电压为15kV,纺丝速率为1.2mL/h,环境温度为30℃,环境湿度为45%RH;
(2)纺丝针头的移动速度为4m/s,第二纱的传送速度为1m/s,同时控制纺丝针头相对导向板单次移动的距离为20cm,控制纺丝针头的喷口与导向板之间的距离为4cm,导向板与传送机构之间的距离为8cm;
(3)由除静电纺丝之外的其他纺纱方法纺成的纤维为通过常规的传统方法纺出的聚乳酸纤维(细度为0.15mm,购自泉州斯马丁实力供应商,牌号SMD-202188);
(4)对该6根复合初纱加捻时的捻度为160捻·m-1
对比例
本例提供一种复合纱线及其制备方法,其基本同实施例3,区别仅在于:不加导向板。
性能测试
1、对实施例1-3所制成的复合纱线进行如下性能测试,具体结果参见表1所示。
表1
2、将实施例3和对比例分别制成的复合纱线进行如下性能测试,具体结果参见表2所示。
表2

上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围,凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (19)

  1. 一种复合纱线的制备方法,该复合纱线包括第一纱和第二纱,所述第一纱由静电纺丝纺出的纳米纤维构成,所述第二纱包括由除静电纺丝之外的其他纺纱方法纺成的纤维或由除静电纺丝之外的其他纺纱方法纺成的纤维制成的初级纱线,其特征在于,所述复合纱线的制备方法包括:
    在将至少一根所述第二纱经传送机构传送的过程中,使静电纺丝机构纺出的短纤纳米纤维穿过形成有多个网孔的导向板并分别与每根所述第二纱复合,形成至少一根复合初纱,然后加捻,制成所述复合纱线;
    其中,所述复合初纱中,所述第二纱与所述短纤纳米纤维并排排列或呈相互之间的锐角夹角为大于0°且小于等于10°;
    使所述导向板位于所述静电纺丝机构与所述传送机构之间,所述静电纺丝机构包括纺丝针头,控制所述纺丝针头在纺出短纤纳米纤维的过程中相对所述导向板发生往复移动,且使所述纺丝针头的移动速度为所述第二纱的传送速度的偶数倍;
    所述导向板水平设置,所述纺丝针头纺出短纤纳米纤维的方向相对所述导向板的延伸方向呈倾斜设置,且倾斜角度为20°-40°;
    所述的多个网孔呈阵列分布,所述网孔的孔径为0.2-0.6mm,两两相邻的两个所述网孔之间的间隔距离为1-6mm;控制所述纺丝针头的喷口与所述导向板之间的距离为5-8cm,所述导向板与所述传送机构之间的距离为5-10cm;
    在所述复合纱线的制备过程中,通过设置抽吸装置或吹风装置形成作用于短纤纳米纤维的牵伸力,并使短纤纳米纤维竖直向下运动;
    在所述复合纱线的制备过程中,使经所述传送机构传送的所述第二纱上附着有固态粘合剂,然后在与短纤纳米纤维复合过程中熔化并实现粘接。
  2. 一种复合纱线的制备方法,该复合纱线包括第一纱和第二纱,所述第一纱由静电纺丝纺出的纳米纤维构成,所述第二纱包括由除静电纺丝之外的其他纺纱方法纺成的纤维或由除静电纺丝之外的其他纺纱方法纺成的纤维制成的初级纱线,其特征在于,所述复合纱线的制备方法包括:
    在将至少一根所述第二纱经传送机构传送的过程中,使静电纺丝机构纺出的短纤纳米纤维穿过形成有多个网孔的导向板并分别与每根所述第二纱复合,形成至少一根复合初纱,然后加捻,制成所述复合纱线;
    其中,所述复合初纱中,所述第二纱与所述短纤纳米纤维并排排列或呈相互之间的锐角夹角为大于0°且小于等于10°;
    使所述导向板位于所述静电纺丝机构与所述传送机构之间,所述静电纺丝机构包括纺丝针头,控制所述纺丝针头在纺出短纤纳米纤维的过程中相对所述导向板发生往复移动,且使所述纺丝针头的移动速度大于所述第二纱的传送速度。
  3. 根据权利要求2所述的复合纱线的制备方法,其特征在于,使所述纺丝针头的移动速度为所述第二纱的传送速度的偶数倍。
  4. 根据权利要求2或3所述的复合纱线的制备方法,其特征在于,使所述纺丝针头的移动速度为所述第二纱的传送速度的2-10倍。
  5. 根据权利要求4所述的复合纱线的制备方法,其特征在于,使所述纺丝针头的移动速度为所述第二纱的传送速度的4-8倍。
  6. 根据权利要求2所述的复合纱线的制备方法,其特征在于,所述导向板水平设置,所述纺丝针头纺出短纤纳米纤维的方向相对所述导向板的延伸方向呈倾斜设置,且倾斜角度为20°-40°。
  7. 根据权利要求2所述的复合纱线的制备方法,其特征在于,所述导向板的材质为铜。
  8. 根据权利要求2所述的复合纱线的制备方法,其特征在于,所述的多个网孔呈阵列分布,所述网孔的孔径为0.2-0.6mm,两两相邻的两个所述网孔之间的间隔距离为1-6mm。
  9. 根据权利要求2所述的复合纱线的制备方法,其特征在于,控制所述纺丝针头的喷口与所述导向板之间的距离为5-8cm,所述导向板与所述传送机构之间的距离为5-10cm。
  10. 根据权利要求2所述的复合纱线的制备方法,其特征在于,在所述复合纱线的制备过程中,通过设置抽吸装置或吹风装置形成作用于短纤纳米纤维的牵伸力,并使短纤纳米纤维竖直向下运动。
  11. 根据权利要求10所述的复合纱线的制备方法,其特征在于,在所述导向板的两侧分别设置至少一个所述抽吸装置或吹风装置。
  12. 根据权利要求2所述的复合纱线的制备方法,其特征在于,在所述复合纱线的制备过程中,使经所述传送机构传送的所述第二纱上附着有固态粘合剂,然后在与短纤纳米纤维复合过程中熔化并实现粘接。
  13. 根据权利要求2所述的复合纱线的制备方法,其特征在于,所述静电纺丝机构包括多组纺丝针头组件,每组所述纺丝针头组件包括两个所述纺丝针头,且使每根所述第二纱对应一组所述纺丝针头组件;
    在纺出短纤纳米纤维的过程中,每组所述纺丝针头组件中同一时间仅有一个所述纺丝针头发生移动且在移动过程中纺出短纤纳米纤维。
  14. 根据权利要求13所述的复合纱线的制备方法,其特征在于,在纺出短纤纳米纤维的过程中,每组所述纺丝针头组件中,其中一个所述纺丝针头从第一预设位置沿着第一方向向第二预设位置移动直至到达所述第二预设位置,然后停止移动并停止纺出短纤纳米纤维,然后另一个所述纺丝针头从所述第二预设位置沿着第二方向向所述第一预设位置移动直至到达所述第一预设位置,然后两个所述纺丝针头交替移动并纺出短纤纳米纤维,所述第一方向与所述第二方向相反,所述第一方向、所述第二方向中的一个为所述第二纱的传送方向。
  15. 根据权利要求2所述的复合纱线的制备方法,其特征在于,所述复合纱线的制备方法采用如下生产装置进行:
    该生产装置包括摩擦纺纱机、静电纺丝机构、传送机构、吹风装置、形成有多个网孔的导向板、加热机构、用于使所述第二纱上附着有固态粘合剂的固态粘合剂施加机构、加捻机构和收卷机构;
    所述静电纺丝机构包括设置在所述传送机构上方的多组纺丝针头组件,每组所述纺丝针头组件包括两个纺丝针头,所述纺丝针头组件的数量与传送的所述第二纱的数量相同且一一对应,在纺出短纤纳米纤维的过程中,每组所述纺丝针头组件中同一时间仅有一个所述纺丝针头发生移动且在移动过程中纺出短纤纳米纤维;
    所述传送机构包括传送带,所述导向板设置在所述纺丝针头组件与所述传送带之间,所述加热机构设置在所述传送带一侧且用于使附着在所述第二纱上的固态粘合剂熔化;
    所述吹风装置设置在所述导向板与所述传送带之间且用于形成作用于短纤纳米纤维的牵伸力,并使短纤纳米纤维竖直向下运动;
    所述加捻机构、所述收卷机构依次设置在所述传送带的输出方向一侧;
    至少一根所述第二纱分别经所述摩擦纺纱机牵伸细化后通过所述固态粘合剂施加机构施加固态粘合剂并附着在表面,然后在所述传送带的带动下经过所述导向板的下方,使所述静电纺丝机构纺出的短纤纳米纤维穿过所述网孔并在所述吹风装置的作用下竖直向下运动,然后分别与每根所述第二纱复合,形成至少一根复合初纱,然后通过所述加捻机构加捻后形成所述复合纱线,再由所述收卷机构收卷。
  16. 根据权利要求15所述的复合纱线的制备方法,其特征在于,所述静电纺丝机构还包括高压发生器、滑轨、滑块、与所述纺丝针头连通的储液注射器、驱动组件,每个所述纺丝针头均与同一个或不同的高压发生器电连接,所述储液注射器的数量与所述纺丝针头的数量相同且一一对应,每个所述纺丝针头均独立地设置在一个所述滑块上且随着所述滑块的移动而移动,所述滑块的数量与所述纺丝针头的数量相同且一一对应,所述滑块滑动地设置在所述滑轨上且通过所述驱动组件驱动,所述滑块在所述滑轨上进行往复移动。
  17. 根据权利要求16所述的复合纱线的制备方法,其特征在于,所述滑块的移动距离为5-50cm;
    所述高压发生器的电压为10-30kV;
    所述静电纺丝机构采用质量百分含量为10-25%的纺丝溶液,该纺丝溶液通过将纺丝聚合物溶解于纺丝溶剂后混匀制成;
    所述纺丝聚合物为选自聚砜酰胺纤维、聚乙烯醇缩丁醛、聚丙烯腈中的一种或多种的组合,所述纺丝溶剂为选自丙酮、乙醇、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺中的一种或多种的组合。
  18. 一种根据权利要求1-17中任一项权利要求所述的制备方法制成的复合纱线。
  19. 一种权利要求18所述的复合纱线在制备功能性服饰中的应用。
PCT/CN2023/084397 2022-03-30 2023-03-28 一种复合纱线及其制备方法和应用 WO2023185848A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210328672.X 2022-03-30
CN202210328672.XA CN114717702B (zh) 2022-03-30 2022-03-30 一种复合纱线及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023185848A1 true WO2023185848A1 (zh) 2023-10-05

Family

ID=82240656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084397 WO2023185848A1 (zh) 2022-03-30 2023-03-28 一种复合纱线及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN114717702B (zh)
WO (1) WO2023185848A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114717702B (zh) * 2022-03-30 2023-05-09 南通纺织丝绸产业技术研究院 一种复合纱线及其制备方法和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6106913A (en) * 1997-10-10 2000-08-22 Quantum Group, Inc Fibrous structures containing nanofibrils and other textile fibers
US20080122142A1 (en) * 2004-11-12 2008-05-29 Kim Hak-Yong Process of Preparing Continuous Filament Composed of Nanofibers
CN102061529A (zh) * 2010-12-17 2011-05-18 多氟多化工股份有限公司 一种静电纺丝用喷头装置
US20130168886A1 (en) * 2010-09-09 2013-07-04 Hiroto Sumida Support structure, nanofiber manufacturing apparatus using the support structure, and nanofiber manufacturing method using the support structure
CN105926054A (zh) * 2016-06-15 2016-09-07 武汉纺织大学 以托网板引导静电纺丝的改善生条质量的设备及使用方法
CN106245166A (zh) * 2016-09-21 2016-12-21 武汉纺织大学 纳米静电纺丝与短纤维摩擦纺纱一体化成纱的方法
CN106337228A (zh) * 2016-09-21 2017-01-18 武汉纺织大学 一种纳微尺度增强纤维成纱的长丝摩擦复合纺纱方法
CN109468701A (zh) * 2018-10-19 2019-03-15 南通纺织丝绸产业技术研究院 静电纺丝装置、取向Fe3O4/Gr/PAN复合导电纳米纤维及其制备方法
CN110373766A (zh) * 2019-06-27 2019-10-25 东华大学 一种等离子风消静电的装置及操作方法
CN114717702A (zh) * 2022-03-30 2022-07-08 南通纺织丝绸产业技术研究院 一种复合纱线及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7228187B2 (ja) * 2019-03-01 2023-02-24 株式会社ナフィアス 建材用ネット及びその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6106913A (en) * 1997-10-10 2000-08-22 Quantum Group, Inc Fibrous structures containing nanofibrils and other textile fibers
US20080122142A1 (en) * 2004-11-12 2008-05-29 Kim Hak-Yong Process of Preparing Continuous Filament Composed of Nanofibers
US20130168886A1 (en) * 2010-09-09 2013-07-04 Hiroto Sumida Support structure, nanofiber manufacturing apparatus using the support structure, and nanofiber manufacturing method using the support structure
CN102061529A (zh) * 2010-12-17 2011-05-18 多氟多化工股份有限公司 一种静电纺丝用喷头装置
CN105926054A (zh) * 2016-06-15 2016-09-07 武汉纺织大学 以托网板引导静电纺丝的改善生条质量的设备及使用方法
CN106245166A (zh) * 2016-09-21 2016-12-21 武汉纺织大学 纳米静电纺丝与短纤维摩擦纺纱一体化成纱的方法
CN106337228A (zh) * 2016-09-21 2017-01-18 武汉纺织大学 一种纳微尺度增强纤维成纱的长丝摩擦复合纺纱方法
CN109468701A (zh) * 2018-10-19 2019-03-15 南通纺织丝绸产业技术研究院 静电纺丝装置、取向Fe3O4/Gr/PAN复合导电纳米纤维及其制备方法
CN110373766A (zh) * 2019-06-27 2019-10-25 东华大学 一种等离子风消静电的装置及操作方法
CN114717702A (zh) * 2022-03-30 2022-07-08 南通纺织丝绸产业技术研究院 一种复合纱线及其制备方法和应用

Also Published As

Publication number Publication date
CN114717702B (zh) 2023-05-09
CN114717702A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
CN109137199B (zh) 一种取向可控的静电纺纳米纤维包芯纱的制备装置及方法
CN109610021B (zh) 一种纳米纤维纱的制备方法及装置
CN104060355B (zh) 一种连续纳米纤维纱的生产方法及装置
WO2023185848A1 (zh) 一种复合纱线及其制备方法和应用
CN105839201B (zh) 一种喂入式纳米级静电环锭纺纱方法
US6110590A (en) Synthetically spun silk nanofibers and a process for making the same
CN108360103B (zh) 一种微纳米纤维包覆纱纺纱工艺及纺纱装置
CN102517704B (zh) 一种电洁纺纱方法
CN106868675B (zh) 一种纳米纤维包芯纱的连续制备装置
CN105862142B (zh) 一种聚丙烯腈/石墨烯复合纳米纤维纱的制备方法
CN102851757A (zh) 一种纺粗旦丝的异形喷丝板
CN101418472A (zh) 蜘蛛丝蛋白/聚乳酸复合纳米纤维纱及其制备方法
CN100575572C (zh) 聚酰胺6/66共聚物长丝纱的连续静电纺丝方法
CN109097842B (zh) 一种聚合物静电纺丝接收网帘的制备方法
CN108796682A (zh) 一种连续高效增强纳米纤维成纱的装置及纺纱方法
CN109056196A (zh) 一种高过滤精度的聚酯纺粘非织造布的制造设备及其方法
WO2005059213A1 (ja) ピッチ系炭素繊維スライバー及び紡績糸の製造方法
CN110079936A (zh) 一种闪纺纤维后处理设备及方法
CN114717704B (zh) 一种抗菌抗静电聚氨酯复合纱线及其制备方法与一体化装置
WO2023185849A1 (zh) 一种纳米纤维纱线及其连续成纱方法
CN202559047U (zh) 玄武岩纺丝成网复合无纺布生产线
CN202139340U (zh) 一种纺粗旦丝的异形喷丝板
CN108796687B (zh) 一种自加捻纳米纤维纱线连续制备装置及方法
CN110373727A (zh) 一种在线式微纳米纤维多级包芯复合纺纱装置及方法
CN107400934B (zh) 批量化预集束高支纳米纤维纱线的纤维束取向装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778213

Country of ref document: EP

Kind code of ref document: A1