WO2023185849A1 - 一种纳米纤维纱线及其连续成纱方法 - Google Patents

一种纳米纤维纱线及其连续成纱方法 Download PDF

Info

Publication number
WO2023185849A1
WO2023185849A1 PCT/CN2023/084398 CN2023084398W WO2023185849A1 WO 2023185849 A1 WO2023185849 A1 WO 2023185849A1 CN 2023084398 W CN2023084398 W CN 2023084398W WO 2023185849 A1 WO2023185849 A1 WO 2023185849A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanofiber
yarn
continuous
needle
guide wheel
Prior art date
Application number
PCT/CN2023/084398
Other languages
English (en)
French (fr)
Inventor
刘宇清
杨婷
杨洋
方剑
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2023185849A1 publication Critical patent/WO2023185849A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0076Electro-spinning characterised by the electro-spinning apparatus characterised by the collecting device, e.g. drum, wheel, endless belt, plate or grid
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0092Electro-spinning characterised by the electro-spinning apparatus characterised by the electrical field, e.g. combined with a magnetic fields, using biased or alternating fields
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D7/00Collecting the newly-spun products
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H7/00Spinning or twisting arrangements
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/30Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polycondensation products not covered by indexing codes D10B2331/02 - D10B2331/14
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/62Manufacturing or production processes characterised by the final manufactured product related technologies for production or treatment of textile or flexible materials or products thereof, including footwear

Definitions

  • the invention relates to the field of textile technology, and in particular to a nanofiber yarn and its continuous yarn forming method.
  • the nanofiber structure formed by electrospinning can basically meet the requirements of tissue engineering scaffolds.
  • the nanoscale size also causes the mechanical properties of electrospun fibers to be much worse than those of traditional short fibers and filaments. They are prone to wear and difficulty in forming during the spinning and yarn-forming processes.
  • the current nanofiber yarn production The process is basically intermittent operation, making it difficult to produce continuously.
  • the technical problem to be solved by the present invention is to overcome one or more deficiencies in the prior art and provide a new method for producing nanofiber yarns.
  • This method can not only produce continuously, but also produce nanofiber yarns without the use of Compared with other fiber yarns, the nanofiber yarn can retain the excellent properties of nanofibers to the maximum extent, and at the same time overcome the existing problems of hairiness and poor mechanical strength in the yarn forming process of existing nanofibers.
  • the invention also provides nanofiber yarn produced by the above method.
  • a technical solution adopted by the present invention is as follows: a continuous yarn forming method of nanofiber yarn, the continuous yarn forming method includes the following steps:
  • the electrospinning method is used to spin nanofibers, so that the spun nanofibers are split into n parts under the action of n electric field forces during movement, where n is an integer greater than or equal to 2;
  • a plurality of separately rotatable clustering guide wheels are used to independently collect each corresponding portion of the nanofibers, and each nanofiber is oriented and stretched under the action of the clustering guide wheel to form a layer attached to the clustering guide wheel.
  • Nanofiber yarn Under the action of external force, a continuous nanofiber bundle emerges from the nanofiber aggregate on each bundle guide wheel. Each nanofiber bundle is mixed and twisted after being independently initially twisted, and a continuous bundle is obtained. Nanofiber yarn.
  • the electrospinning method uses a single needle spinning needle to perform electrospinning, and each of the electric field forces is formed between the single needle and each of the cluster guide wheels.
  • the electric field force is capable of passing through the voltage difference between the single-needle spinning needle and each of the bundled guide wheels and/or the single-needle spinning needle and each of the bundled guide wheels.
  • the distance between the wheels is adjusted by the adjustable form of the electric field force.
  • the center of each cluster guide wheel is coplanar and parallel to the horizontal plane
  • the extension line of the outlet direction of the single-needle spinning needle is perpendicular to the horizontal plane
  • the single-needle spinning needle is controlled to The distance between the outlet of the needle spinning needle and the plane formed by the center of each cluster guide wheel is 10-30cm.
  • the cluster guide wheel includes an insulating sleeve that can rotate along its axis and a conductive metal ring wound around the insulating sleeve, and the nanofiber aggregate is attached to the The outside of the conductive metal ring.
  • the radius of the conductive metal ring is 3-10 cm.
  • the preliminary twisting uses a preliminary twisting work roll
  • the mixed twisting uses a mixed twisting work roll
  • the continuous yarn forming method also includes independently controlling by using a control system:
  • the continuous yarn forming method is carried out using the following continuous production device:
  • the continuous production device includes an electrospinning mechanism, a plurality of cluster guide wheels, a plurality of scrapers, a plurality of initial twisting work rollers, a mixing work roller and a yarn continuous collection assembly arranged in sequence, as well as a plurality of pressurized power supplies;
  • the electrospinning mechanism is electrically connected to the positive electrode of one of the pressurized power supplies, each of the clustering guide wheels is independently electrically connected to the negative electrode of one of the pressurized power supplies, and the number of the scrapers is related to the number of the clustering guide wheels.
  • the electrospinning mechanism includes a single-needle spinning needle for spinning nanofibers
  • the cluster guide wheel includes an insulating sleeve that can rotate along its own axis and a conductive metal ring wound around the insulating sleeve;
  • an electric field force is formed between each cluster guide wheel and the electrospinning mechanism, and the nanofibers spun by the single-needle spinning needle split into n pieces under the action of each of the electric field forces. parts, and move toward the corresponding clustering guide wheel and then adhere to the outside of the conductive metal ring to form a nanofiber aggregate. Then, during the rotation of the clustering guide wheel, under the action of each scraper Next, a continuous nanofiber bundle is drawn from the nanofiber aggregate on the corresponding bundle guide wheel. Each nanofiber bundle is independently twisted by the corresponding initial twisting work roller. The mixing and twisting work roller performs mixing and twisting to continuously obtain nanofiber yarns, which are collected by the yarn continuous collecting assembly.
  • the continuous production device also includes a control system, which is respectively connected with the electrospinning mechanism, the plurality of cluster guide wheels, the plurality of initial twisting work rolls, and the The mixing work roller, the yarn continuous collection component, and the plurality of pressurized power supplies are communicatively connected.
  • nanofiber yarn produced by the above-mentioned continuous yarn-forming method of nanofiber yarn.
  • the present invention has the following advantages compared with the prior art:
  • the spun nanofibers can not only be split into multiple parts, but also can be more tightly entangled in the cluster guide wheel under the action of the electric field force.
  • knot and can obtain a certain orientation and draft through the rotating cluster guide wheel, and the shape into nanofiber aggregates attached to the bundling guide wheel, and then the nanofiber bundles are formed under the action of external force.
  • Each nanofiber bundle is mixed and twisted after being initially twisted independently to obtain nanofiber yarn.
  • each sub-component that constitutes the nanofiber yarn can be independently controlled before mixing and twisting, thereby giving each sub-component different properties, so that after mixing and twisting
  • the yarn has special properties, such as giving the yarn a better elastic recovery rate.
  • the nanofiber yarn of the present invention is produced without the help of other fibers, so that the manufactured yarn can retain the nanofibers to the maximum extent. It also avoids the problems of hairiness, insufficient mechanical strength and difficulty in molding during traditional nanofiber yarn-forming process, improves the production efficiency of electrospinning, and provides new ideas for preparing functional yarns, providing a new way for nanofibers to produce functional yarns. Fibers offer more possibilities in industrial applications.
  • Figure 1 is a schematic structural diagram of a continuous production device used in the continuous yarn forming method of nanofiber yarn in the embodiment of the present invention
  • Figure 2 is a schematic structural diagram of the cluster guide wheel used in the embodiment of the present invention.
  • FIG. 3 is a schematic illustration of the spinning distance in an embodiment of the present invention.
  • Figure 4 is a schematic structural diagram of the nanofiber yarn produced in Embodiment 5 of the present invention in different states;
  • Figure 5 is a schematic illustration of the camber height in an embodiment of the present invention.
  • Propulsion assembly 2. Liquid storage syringe; 3. Single-needle spinning needle; 4a/4b/4c, pressurized power supply; 5a/5b, scraper; 6a/6b, cluster guide wheel; 6-1, insulation Sleeve; 6-2, conductive copper strip; 7a/7b, initial twisting work roll; 8, mixed twisting work roll; 9, yarn continuous collection component; h1, spinning distance; h2, arching height.
  • This example provides a nanofiber yarn and its continuous yarn forming method.
  • the raw material used in this example is polysulfone (PSF) particles (purchased from Dongguan Chuanao Engineering Plastic Raw Materials Co., Ltd., brand number: P-1710).
  • the continuous yarn-forming method includes the following steps: using electrospinning to spin nanofibers, causing the spun nanofibers to split into two parts under the action of two electric field forces during movement;
  • the electrospinning stock solution used in electrospinning was prepared as follows: Dissolve 10g of polysulfone (PSF) particles in 90g of dimethylacetamide (DMAc) to obtain a mixed solution, put a magnet in it, and place it in a container. Seal it and place it in a water bath for medium-high heating. The temperature of the water bath is 80°C and the heating time is 2 hours. After heating is completed, take it out and let it stand for 0.5 hours to obtain a transparent and uniform solution with a mass fraction of 10 wt%, which is electrospinning. Original solution.
  • PSF polysulfone
  • DMAc dimethylacetamide
  • the electrospinning method uses a single-needle spinning needle for electrospinning.
  • the spinning parameters are controlled at a voltage of 10kV, a nozzle aperture of 0.5mm, a solution flow rate of 2mL/h, an ambient temperature of 25°C, and a relative humidity of the air. 65%.
  • Two separately rotatable bunching guide wheels are used to independently collect each corresponding nanofiber, and each nanofiber is oriented and stretched under the action of the bunching guide wheel to form nanofibers attached to the bunching guide wheel aggregate;
  • nanofiber bundle emerges from the nanofiber aggregate on each bundle guide wheel.
  • Each nanofiber bundle is independently preliminarily twisted and then mixed and twisted to continuously obtain nanofiber yarn. .
  • each electric field force is formed between the single needle head and each cluster guide wheel.
  • the electric field force can pass through the voltage difference between the single needle spinning needle and each cluster guide wheel and/or the single needle spinning needle and each cluster guide wheel.
  • the electric field force is adjustable by adjusting the distance between the cluster guide wheels.
  • the center of each cluster guide wheel is coplanar and parallel to the horizontal plane.
  • the extension line of the outlet direction of the single-needle spinning needle is perpendicular to the horizontal plane, and the single-needle spinning is controlled.
  • the spinning distance between the plane formed by the outlet of the silk needle and the center of each cluster guide wheel is 20cm.
  • the cluster guide wheel includes an insulating sleeve that can rotate along its own axis and a conductive metal ring wound around the insulating sleeve.
  • the nanofiber aggregate is attached to the outside of the conductive metal ring.
  • the radius of the conductive metal ring is 5 cm.
  • the rotation speed of the two cluster guide wheels is 200r/min, and the applied voltage is -10kV.
  • the initial twisting work roll is used for preliminary twisting
  • the mixed twisting work roll is used for mixed twisting
  • the continuous yarn forming method also includes using a control system to independently control: the rotation speed and temperature of each cluster guide wheel; the twist and temperature of each initial twisting work roll; the twist and temperature of the mixed twisting work roll; and each of the electric field forces.
  • the twist of the two initial twisting work rolls is controlled to be 600T/m
  • the temperature of one of the initial twisting work rolls is 120°C
  • the temperature of the other initial twisting work roll is 180°C
  • the mixed twisting work roll The twisting temperature is 120°C and the twisting degree is 800T/m.
  • the continuous yarn forming method in this example is carried out using the following continuous production device:
  • the continuous production device includes an electrospinning mechanism arranged in sequence, 2 cluster guide wheels (distributed on the left and right sides in this example, marked with 6a and 6b respectively in Figure 1), 2 scrapers (distributed on the left and right sides in this example), and 2 scrapers (distributed on the left and right sides in this example).
  • the left and right sides are marked with 5a and 5b respectively in Figure 1), 2 primary twisting work rolls (in this example, they are arranged on the left and right sides, marked with 7a and 7b respectively in Figure 1), the mixed twisting work roll 8 and the yarn Line continuous collection component 9, and multiple pressurized power supplies (in this example, there are 3, respectively marked with 4a, 4b, 4c in Figure 1, the electrospinning mechanism is electrically connected to the positive electrode of one pressurized power supply, 2 clusters
  • the guide wheels are independently electrically connected to the negative electrode of a pressurized power supply); the scraper is arranged beside the clustered guide wheels;
  • the electrospinning mechanism includes a propulsion component 1 used to adjust the outflow speed of the electrospinning stock solution, a liquid storage syringe 2 used to conduct the electrospinning stock solution, and a single needle used to spin nanofibers and connected to the liquid storage syringe 2 Spinning needle 3;
  • the cluster guide wheel includes an insulating sleeve 6-1 that can rotate along its own axis and an insulating sleeve 6-1 wound around it.
  • conductive metal ring in this example, copper is used to make conductive copper strips 6-2;
  • the centers of the two cluster guide wheels are coplanar and parallel to the horizontal plane, the extension line of the exit direction of the single-needle spinning needle is perpendicular to the horizontal plane, and the outlet of the control single-needle spinning needle is common with the center of each cluster guide wheel
  • the spinning distance h1 between the resulting planes is 20 cm.
  • an electric field force is formed between each cluster guide wheel and the electrospinning mechanism.
  • the nanofibers spun by the single-needle spinning needle are split into n parts under the action of each of the electric field forces and are directed towards The movement of the corresponding cluster guide wheels then attaches to the outside of the conductive metal ring during the rotation of the cluster guide wheels and obtains a certain orientation and draft, forming a nanofiber aggregate, and then Finally, during the rotation of the clustering guide wheel, a continuous nanofiber bundle is formed from the nanofiber aggregate on the corresponding clustering guide wheel under the action of each scraper.
  • Each nanofiber bundle independently passes through its corresponding The initial twisting work roller performs preliminary twisting and is mixed and twisted by the mixed twisting work roller 8 to continuously obtain nanofiber yarn, which is collected by the yarn continuous collecting assembly 9.
  • the continuous production device also includes a control system, which is respectively connected with the electrospinning mechanism, 2 cluster guide wheels, 2 initial twisting work rolls, mixed twisting work rolls, yarn continuous collection components, and 3 pressurizing components. Power communication connection, thereby controlling the operating parameters of each component according to preset programs or real-time input data.
  • the above-mentioned device in this example realizes the transformation from loose nanofiber bundles to spinnable nanofiber yarns.
  • the strength of the yarns is further improved, the nanofiber spinning process is continued, and the surface hairiness is improved.
  • Example 1 Use the homogeneous electrospinning stock solution prepared in Example 1 to spin under the same spinning conditions, and collect it with a single bundled guide wheel.
  • the working parameters of the single bundled guide wheel are the same as those in Example 1, and a control sample 1 is prepared.
  • This example provides a nanofiber yarn and its continuous yarn forming method, which are basically the same as Example 1, with the only difference being:
  • the electrospinning stock solution is obtained as follows: Dissolve 10g of degummed silk fibroin (SF, purchased from Beijing Yongkang Leye Technology Development Co., Ltd., brand: SP110) powder in 90g of hexafluoropropanol (HFIP) , get the mixed solution, put it into the magnet, place it in a container, seal it and heat it in a water bath.
  • the temperature of the water bath is 40°C and the heating time is 5h. After the heating is completed, take it out and let it stand for 1h.
  • the mass fraction is 10wt. % transparent and uniform solution;
  • Electrospinning conditions voltage is 20kV, nozzle aperture is 0.4mm, solution flow rate is 0.5mL/h, and spinning distance h1 is 25cm;
  • Example 2 Use the homogeneous electrospinning stock solution prepared in Example 2 to spin under the same spinning conditions.
  • the wires were collected using a single bundled guide wheel.
  • the working parameters of the single bundled guide wheel were the same as those in Example 2, and a control sample 2 was prepared.
  • This example provides a nanofiber yarn and its continuous yarn forming method, which are basically the same as Example 1, with the only difference being:
  • the electrospinning stock solution is obtained as follows: Dissolve 10g of polyacrylonitrile (PAN, purchased from Shanghai Aladdin Biochemical Technology Co., Ltd., brand: P303197) powder in 90g of dimethylformamide (DMF) to obtain Mix the solution, put it into the magnet, seal it in a container and heat it at high temperature in a water bath. The temperature of the water bath is 70°C and the heating time is 5 hours. After the heating is completed, take it out and let it stand for 1 hour to obtain a mass fraction of 10wt%. Transparent and homogeneous solution;
  • the rotation speed of the left cluster guide wheel is 200r/min, and the radius of the conductive metal ring is 5cm;
  • the rotation speed of the cluster guide wheel on the right is 100r/min, and the radius of the conductive metal ring is 10cm;
  • the twisting temperature of the mixed-twisting work roll is 60°C.
  • Example 3 Use the homogeneous electrospinning stock solution prepared in Example 3 to spin under the same spinning conditions, and collect it with a single bundled guide wheel.
  • the working parameters of the single bundled guide wheel are the same as those in Example 3, and a control sample 3 is prepared.
  • This example provides a nanofiber yarn and its continuous yarn-forming method, which is basically the same as Example 3. The only difference is:
  • the rotation speed of the left cluster guide wheel is 300r/min, the radius of the conductive metal ring is 5cm, and the guide wheel is heated to 80°C;
  • the rotation speed of the cluster guide wheel on the right is 100r/min, and the radius of the conductive metal ring is 15cm;
  • This example provides a nanofiber yarn and its continuous yarn-forming method, which is basically the same as Example 3. The only difference is:
  • the rotation speed of the left cluster guide wheel is 200r/min, the radius of the conductive metal ring is 5cm, and the guide wheel is heated to 60°C;
  • the rotation speed of the cluster guide wheel on the right is 150r/min, the radius of the conductive metal ring is 10cm, and the guide wheel is heated to 50°C;
  • the pre-twisting degree of the left initial twisting work roll is 600T/m
  • the pre-twisting degree of the right initial twisting work roll is 800T/m
  • the temperature of the two initial twisting work rolls is 50°C
  • the yarn on the right has a larger yarn diameter due to the slower bundling speed during the bundling process, which helps it withstand higher winding times in the first twisting zone.
  • the yarn itself will be driven to twist and shrink.
  • the shrinkage change of the yarn on the left at low speed is greater than that of the yarn on the right.
  • the prepared nanofiber yarn The schematic diagram of the structure in the stretched and relaxed states is shown in Figure 4.
  • the arching height h2 of one of the yarn components in the relaxed state is shown in Figure 5.
  • This example provides a nanofiber yarn and its continuous yarn-forming method, which is basically the same as Example 5. The only difference is:
  • the pre-twist of the left initial twisting work roller is 800T/m, and the pre-twisting degree of the right initial twisting work roller is 1000T/m;

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

一种纳米纤维纱线及其连续成纱方法,该连续成纱方法包括:采用静电纺丝方法纺出纳米纤维,使纺出的纳米纤维在运动过程中、在n个电场力作用下分裂为n份;采用多个分别能够转动的集束导轮(6a,6b)独立地收集各自对应的每份纳米纤维,在集束导轮(6a,6b)的作用下使每份纳米纤维进行取向和牵伸,形成附着在集束导轮(6a,6b)上的纳米纤维集聚体;在外力作用下从对应的纳米纤维集聚体中起出一条连续的纳米纤维集束,各条纳米纤维集束在独立地经过初步加捻后进行混合加捻,获得纳米纤维纱线,该方法不借助于其他纤维成纱,不仅连续,而且制成的纳米纤维纱线较好地保留了纳米纤维的优异性能,克服了现有纳米纤维存在的成纱过程易产生毛羽、力学强度差等问题。

Description

一种纳米纤维纱线及其连续成纱方法 技术领域
本发明涉及纺织技术领域,具体涉及一种纳米纤维纱线及其连续成纱方法。
背景技术
随着纳米技术的兴起,20世纪80年代以后,能够纺出纳米纤维的静电纺丝技术受到了广泛的关注,静电纺丝的成型原理是带电荷的高分子溶液或熔体在静电场中流动和变形,当带有相同电荷的液滴之间排斥力大于表面张力时,就能使液滴彼此分离并产生变形,作圆锥状,待溶液蒸发或溶剂冷却后,三维无序液滴经收集可得到纳米级纤维。静电纺丝得到的纤维直径要明显小于常规方式下得到的纤维,这一特点也使单根纤维具有更大的比表面积和吸附能力,通过静电纺丝技术生产的非织造材料能够应用于一些高精密电子器件和过滤防护材料等领域,在生物医学工程中,静电纺丝形成的纳米纤维结构也基本能满足组织工程支架的要求。然而,纳米级尺寸同时也导致静电纺丝纤维的力学性能比传统短纤和长丝差的多,在纺丝和成纱过程中容易发生磨损、不易成型等问题,同时目前纳米纤维的成纱过程基本为间歇式操作,难以连续性生产。
发明内容
本发明所要解决的技术问题是克服现有技术中的一个或多个不足,提供一种新的纳米纤维纱线的生产方法,该方法不仅可以连续生产,而且制成的纳米纤维纱线不借助于其他纤维成纱,使得制成的纳米纤维纱线能够最大化地保留纳米纤维的各项优异性能,同时还克服了现有纳米纤维存在的成纱过程易产生毛羽、力学强度差等问题。
本发明同时还提供了上述方法生产的纳米纤维纱线。
为解决以上技术问题,本发明采取的一种技术方案如下:一种纳米纤维纱线的连续成纱方法,所述连续成纱方法包括如下步骤:
采用静电纺丝方法纺出纳米纤维,使纺出的纳米纤维在运动过程中、在n个电场力作用下分裂为n份,n为大于或等于2的整数;
采用多个分别能够转动的集束导轮独立地收集各自对应的每份纳米纤维,并在所述集束导轮的作用下使每份纳米纤维进行取向和牵伸,形成附着在所述集束导轮上的纳米纤维集聚体;
在外力作用下从每个所述集束导轮上的所述纳米纤维集聚体中起出一条连续的纳米纤维集束,各条纳米纤维集束在独立地经过初步加捻后进行混合加捻,连续获得纳米纤维纱线。
根据本发明的一些优选方面,所述静电纺丝方法采用单针纺丝针头进行静电纺丝,各个所述电场力分别形成在所述单针头与各个所述集束导轮之间。
根据本发明的一些优选方面,所述电场力为能够通过所述单针纺丝针头与各个所述集束导轮之间的电压差和/或所述单针纺丝针头与各个所述集束导轮之间的距离大小进行调节的可调形式电场力。
根据本发明的一些优选且具体的方面,各个所述集束导轮的中心共面且与水平面平行,所述单针纺丝针头的出口方向的延伸线垂直于所述水平面,且控制所述单针纺丝针头的出口与各个所述集束导轮的中心共同形成的平面之间的距离为10-30cm。
根据本发明的一些优选方面,所述集束导轮包括能够沿自身轴心线转动的绝缘套管以及绕设在所述绝缘套管上的导电金属环,所述纳米纤维集聚体附着在所述导电金属环的外侧。
根据本发明的一些优选且具体的方面,所述导电金属环的半径为3-10cm。
根据本发明的一些优选方面,所述初步加捻采用初捻工作辊,所述混合加捻采用混捻工作辊;
所述连续成纱方法还包括通过采用控制系统分别独立地控制:
各个所述集束导轮的转速、温度;
各个所述初捻工作辊的捻度、温度;
所述混捻工作辊的捻度、温度;
各个所述电场力。
根据本发明的一些优选方面,所述连续成纱方法采用如下连续生产装置进行:
所述连续生产装置包括依次设置的静电纺丝机构、多个集束导轮、多个刮刀、多个初捻工作辊、混捻工作辊和纱线连续收集组件,以及多个加压电源;所述静电纺丝机构与一个所述加压电源的正极电连接,每个所述集束导轮分别独立地与一个所述加压电源的负极电连接,所述刮刀的数量与所述集束导轮一一对应且设置在所述集束导轮的旁侧;
所述静电纺丝机构包括用于纺出纳米纤维的单针纺丝针头;
所述集束导轮包括能够沿自身轴心线转动的绝缘套管以及绕设在所述绝缘套管上的导电金属环;
在生产过程中,每个所述集束导轮与所述静电纺丝机构之间均形成一个电场力,由单针纺丝针头纺出的纳米纤维在各个所述电场力的作用下分裂为n份,并朝向各自对应的所述集束导轮运动进而附着在所述导电金属环的外侧,形成纳米纤维集聚体,然后在所述集束导轮转动的过程中,在每个所述刮刀的作用下从对应的所述集束导轮上的纳米纤维集聚体上起出一条连续的纳米纤维集束,各条纳米纤维集束在独立地经过各自对应的所述初捻工作辊进行初步加捻后由所述混捻工作辊进行混合加捻,连续获得纳米纤维纱线,并由所述纱线连续收集组件收集。
根据本发明的一些优选方面,所述连续生产装置还包括控制系统,所述控制系统分别与所述静电纺丝机构、所述多个集束导轮、所述的多个初捻工作辊、所述混捻工作辊、所述纱线连续收集组件、所述的多个加压电源通信连接。
本发明提供的又一技术方案:一种上述所述的纳米纤维纱线的连续成纱方法生产的纳米纤维纱线。
由于以上技术方案的采用,本发明与现有技术相比具有如下优点:
在本发明中,创新性地在静电纺丝过程中引入其它电场力,使纺出的纳米纤维不仅可以分裂成多份,而且还能够在电场力的作用下更加紧密地在集束导轮中缠结,并能够通过转动的集束导轮获得一定取向和牵伸,形 成附着在集束导轮上的纳米纤维集聚体,然后在外力作用下起出纳米纤维集束,各条纳米纤维集束在独立地经过初步加捻后进行混合加捻,获得纳米纤维纱线,该过程不仅实现了纳米纤维纱线的连续生产,而且构成纳米纤维纱线的各子组分在混合加捻前均可以独立地控制,进而可以赋予各子组分不同的性能,从而使得混合加捻后纱线具有特殊性能,例如可以赋予纱线更好的弹性回复率,尤其是本发明纳米纤维纱线的生产过程中并未借助于其它纤维,使得制成的纱线能够最大化地保留纳米纤维的各项优异性能,同时还避免了传统纳米纤维成纱过程易产生毛羽、力学强度不够不易成型等问题,提高了静电纺丝的生产效率,提供了制备功能性纱线的新思路,为纳米纤维在产业用领域提供了更多的可能性。
附图说明
图1为本发明实施例中纳米纤维纱线的连续成纱方法所采用的的连续生产装置的结构示意图;
图2为本发明实施例中采用的集束导轮的结构示意图;
图3为本发明实施例中纺丝距离的示意性图示;
图4为本发明实施例5所制成的纳米纤维纱线不同状态下结构示意图;
图5为本发明实施例中起拱高度的示意性图示;
其中,1、推进组件;2、储液注射器;3、单针纺丝针头;4a/4b/4c、加压电源;5a/5b、刮刀;6a/6b、集束导轮;6-1、绝缘套管;6-2、导电铜条;7a/7b、初捻工作辊;8、混捻工作辊;9、纱线连续收集组件;h1、纺丝距离;h2、起拱高度。
具体实施方式
以下结合具体实施例对上述方案做进一步说明;应理解,这些实施例是用于说明本发明的基本原理、主要特征和优点,而本发明不受以下实施例的范围限制;实施例中采用的实施条件可以根据具体要求做进一步调整,未注明的实施条件通常为常规实验中的条件。
下述中,如无特殊说明,所有的原料基本来自于商购或者通过本领域的常规方法制备而得。
实施例1
本例提供一种纳米纤维纱线及其连续成纱方法。本例采用的原料聚砜(PSF)颗粒(购自东莞市川澳工程塑胶原料有限公司,牌号:P-1710)。
本例中,该连续成纱方法包括如下步骤:采用静电纺丝方法纺出纳米纤维,使纺出的纳米纤维在运动过程中、在2个电场力作用下分裂为2份;
进一步地,静电纺丝采用的静电纺丝原液通过如下方法制备:将聚砜(PSF)颗粒10g溶解于二甲基乙酰胺(DMAc)90g中,得到混合溶液,放入磁子,置于容器中密封处理并置于水浴锅中高温加热,水浴锅温度为80℃,加热时间为2h,加热完毕,取出静置0.5h,获得质量分数为10wt%的透明均一的溶液,即为静电纺丝原液。
同时,本例中,静电纺丝方法采用单针纺丝针头进行静电纺丝,纺丝参数控制在电压为10kV,喷口孔径为0.5mm,溶液流速2mL/h,环境温度25℃,空气相对湿度65%。
采用2个分别能够转动的集束导轮独立地收集各自对应的每份纳米纤维,并在集束导轮的作用下使每份纳米纤维进行取向和牵伸,形成附着在集束导轮上的纳米纤维集聚体;
在外力作用下从每个集束导轮上的纳米纤维集聚体中起出一条连续的纳米纤维集束,各条纳米纤维集束在独立地经过初步加捻后进行混合加捻,连续获得纳米纤维纱线。
本例中,各个电场力分别形成在单针头与各个集束导轮之间,电场力为能够通过单针纺丝针头与各个集束导轮之间的电压差和/或单针纺丝针头与各个集束导轮之间的距离大小进行调节的可调形式电场力,各个集束导轮的中心共面且与水平面平行,单针纺丝针头的出口方向的延伸线垂直于水平面,且控制单针纺丝针头的出口与各个集束导轮的中心共同形成的平面之间的纺丝距离为20cm。进一步地,集束导轮包括能够沿自身轴心线转动的绝缘套管以及绕设在绝缘套管上的导电金属环,纳米纤维集聚体附着在导电金属环的外侧,导电金属环的半径为5cm,2个集束导轮的转速均为200r/min,外加电压为-10kV。
本例中,初步加捻采用初捻工作辊,混合加捻采用混捻工作辊;
该连续成纱方法还包括通过采用控制系统分别独立地控制:各个集束导轮的转速、温度;各个初捻工作辊的捻度、温度;混捻工作辊的捻度、温度;各个所述电场力。进一步地,本例中,控制2个初捻工作辊的捻度均为600T/m,其中一个初捻工作辊的温度为120℃,另一个初捻工作辊的温度为180℃,混捻工作辊的加捻温度为120℃,捻度为800T/m。
下面结合附图对本发明上述连续生产方法进行进一步说明。
具体地,如图1-3所示,本例的连续成纱方法采用如下连续生产装置进行:
该连续生产装置包括依次设置的静电纺丝机构、2个集束导轮(本例中分列于左右两侧,图1中分别采用6a、6b标识)、2个刮刀(本例中分列于左右两侧,图1中分别采用5a、5b标识)、2个初捻工作辊(本例中分列于左右两侧,图1中分别采用7a、7b标识)、混捻工作辊8和纱线连续收集组件9,以及多个加压电源(本例中设置有3个,图1中分别采用4a、4b、4c标识,静电纺丝机构与一个加压电源的正极电连接,2个集束导轮分别独立地与一个加压电源的负极电连接);刮刀设置在集束导轮的旁侧;
其中静电纺丝机构包括用于调节静电纺丝原液流出速度的推进组件1、用于导通静电纺丝原液的储液注射器2、用于纺出纳米纤维且与储液注射器2连通的单针纺丝针头3;
如图2所示,该图示例性地给出了集束导轮的结构示意图,该集束导轮包括能够沿自身轴心线转动的绝缘套管6-1以及绕设在绝缘套管6-1上的导电金属环(本例采用铜,制成导电铜条6-2);
本例中,2个集束导轮的中心共面且与水平面平行,单针纺丝针头的出口方向的延伸线垂直于水平面,且控制单针纺丝针头的出口与各个集束导轮的中心共同形成的平面之间的纺丝距离h1为20cm。
在生产过程中,每个集束导轮与静电纺丝机构之间均形成一个电场力,由单针纺丝针头纺出的纳米纤维在各个所述电场力的作用下分裂为n份,并朝向各自对应的集束导轮运动进而在集束导轮转动的过程中附着在导电金属环的外侧并获得了一定的取向和牵伸,形成纳米纤维集聚体,然 后在集束导轮转动的过程中,在每个刮刀的作用下从对应的集束导轮上的纳米纤维集聚体上起出一条连续的纳米纤维集束,各条纳米纤维集束在独立地经过各自对应的初捻工作辊进行初步加捻后由混捻工作辊8进行混合加捻,连续获得纳米纤维纱线,并由纱线连续收集组件9收集。
进一步地,该连续生产装置还包括控制系统,该控制系统分别与静电纺丝机构、2个集束导轮、2个初捻工作辊、混捻工作辊、纱线连续收集组件、3个加压电源通信连接,进而可以根据预设程序或者实时输入的数据控制各个部件的运行参数。
本例的上述装置实现了从松散的纳米纤维集束到可纺纳米纤维纱线的转变,纱线的强力也进一步得到改善,实现纳米纤维纺纱过程的持续进行,表面毛羽得以改善。
对比例1
用实施例1中制备的均一静电纺丝原液在相同纺丝条件下进行纺丝,用单集束导轮进行收集,单集束导轮同实施例1中工作参数,制备对照样1。
实施例2
本例提供一种纳米纤维纱线及其连续成纱方法,基本同实施例1,其区别仅在于:
(1)静电纺丝原液通过如下方法获得:将经脱胶后的丝素蛋白(SF,购自北京永康乐业科技发展有限公司,牌号:SP110)粉末10g溶解于六氟丙醇(HFIP)90g中,得到混合溶液,放入磁子,置于容器中密封处理并置于水浴锅中加热,水浴锅温度为40℃,加热时间为5h,加热完毕,取出静置1h,获得质量分数为10wt%的透明均一的溶液;
(2)静电纺丝条件:电压为20kV,喷口孔径为0.4mm,溶液流速0.5mL/h,纺丝距离h1为25cm;
(3)2个初捻工作辊的温度为30℃,混捻工作辊的的加捻温度为20℃。
对比例2
用实施例2中制备的均一静电纺丝原液在相同纺丝条件下进行纺 丝,用单集束导轮进行收集,单集束导轮同实施例2中工作参数,制备对照样2。
实施例3
本例提供一种纳米纤维纱线及其连续成纱方法,基本同实施例1,其区别仅在于:
(1)静电纺丝原液通过如下方法获得:将聚丙烯腈(PAN,购自上海阿拉丁生化科技股份有限公司,牌号:P303197)粉末10g溶解于二甲基甲酰胺(DMF)90g中,得到混合溶液,放入磁子,置于容器中密封处理并置于水浴锅中高温加热,水浴锅温度为70℃,加热时间为5h,加热完毕,取出静置1h,获得质量分数为10wt%的透明均一的溶液;
(2)静电纺丝条件:喷口孔径为0.4mm;
(3)左侧集束导轮的转速为200r/min,导电金属环的半径为5cm;
右侧集束导轮的转速为100r/min,导电金属环的半径为10cm;
(4)2个初捻工作辊的温度为50℃;
(5)混捻工作辊的的加捻温度为60℃。
对比例3
用实施例3中制备的均一静电纺丝原液在相同纺丝条件下进行纺丝,用单集束导轮进行收集,单集束导轮同实施例3中工作参数,制备对照样3。
实施例4
本例提供一种纳米纤维纱线及其连续成纱方法,基本同实施例3,其区别仅在于:
(1)左侧集束导轮的转速为300r/min,导电金属环的半径为5cm,导轮加热至80℃;
右侧集束导轮的转速为100r/min,导电金属环的半径为15cm;
(2)混捻工作辊的的加捻温度为70℃。
实施例5
本例提供一种纳米纤维纱线及其连续成纱方法,基本同实施例3,其区别仅在于:
(1)左侧集束导轮的转速为200r/min,导电金属环的半径为5cm,导轮加热至60℃;
右侧集束导轮的转速为150r/min,导电金属环的半径为10cm,导轮加热至50℃;
(2)左侧初捻工作辊的预加捻度为600T/m,右侧初捻工作辊的预加捻度为800T/m,2个初捻工作辊的温度为50℃;
(3)控制初捻工作辊与混捻工作辊之间纱线的牵伸倍数为1.5倍,混捻工作辊的加捻温度为70℃,捻度为500T/m。
本例中,右侧纱线在集束过程中由于较慢的集束速度具有更大的纱线直径,有助于在第一道加捻区中承受更高倍数的卷绕,经牵伸后的右侧纱线与左侧纱线经过第二道加捻区的合并后,会带动纱线自身产生捻缩,低倍速左侧纱线收缩变化较右侧纱线大,制备的纳米纤维纱线在拉伸与松弛状态下的结构示意图如图4所示,松弛状态下其中一个纱线组分的起拱高度h2如图5所示。
实施例6
本例提供一种纳米纤维纱线及其连续成纱方法,基本同实施例5,其区别仅在于:
(1)左侧初捻工作辊的预加捻度为800T/m,右侧初捻工作辊的预加捻度为1000T/m;
(2)控制初捻工作辊与混捻工作辊之间纱线的牵伸倍数为1.2倍,混捻工作辊的捻度为600T/m。
性能测试
将实施例1-4以及对比例1-3所获得的纱线进行如下性能测试,具体结果参见表1所示。
表1

将实施例3、5-6所获得的纱线进行如下性能测试,具体结果参见表2所示。
表2
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围,凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (11)

  1. 一种纳米纤维纱线的连续成纱方法,其特征在于,所述连续成纱方法包括如下步骤:
    采用静电纺丝方法纺出纳米纤维,使纺出的纳米纤维在运动过程中、在n个电场力作用下分裂为n份,n为大于或等于2的整数;
    采用多个分别能够转动的集束导轮独立地收集各自对应的每份纳米纤维,并在所述集束导轮的作用下使每份纳米纤维进行取向和牵伸,形成附着在所述集束导轮上的纳米纤维集聚体;
    在外力作用下从每个所述集束导轮上的所述纳米纤维集聚体中起出一条连续的纳米纤维集束,各条纳米纤维集束在独立地经过初步加捻后进行混合加捻,连续获得纳米纤维纱线;
    其中,所述静电纺丝方法采用单针纺丝针头进行静电纺丝,各个所述电场力分别形成在所述单针头与各个所述集束导轮之间,所述电场力为能够通过所述单针纺丝针头与各个所述集束导轮之间的电压差和/或所述单针纺丝针头与各个所述集束导轮之间的距离大小进行调节的可调形式电场力;
    各个所述集束导轮的中心共面且与水平面平行,所述单针纺丝针头的出口方向的延伸线垂直于所述水平面,且控制所述单针纺丝针头的出口与各个所述集束导轮的中心共同形成的平面之间的距离为10-30cm;
    所述集束导轮包括能够沿自身轴心线转动的绝缘套管以及绕设在所述绝缘套管上的导电金属环,所述纳米纤维集聚体附着在所述导电金属环的外侧。
  2. 一种纳米纤维纱线的连续成纱方法,其特征在于,所述连续成纱方法包括如下步骤:
    采用静电纺丝方法纺出纳米纤维,使纺出的纳米纤维在运动过程中、在n个电场力作用下分裂为n份,n为大于或等于2的整数;
    采用多个分别能够转动的集束导轮独立地收集各自对应的每份纳米纤维,并在所述集束导轮的作用下使每份纳米纤维进行取向和牵伸,形成附着在所述集束导轮上的纳米纤维集聚体;
    在外力作用下从每个所述集束导轮上的所述纳米纤维集聚体中起出一条连续的纳米纤维集束,各条纳米纤维集束在独立地经过初步加捻后进行混合加捻,连续获得纳米纤维纱线。
  3. 根据权利要求2所述的纳米纤维纱线的连续成纱方法,其特征在于,所述静电纺丝方法采用单针纺丝针头进行静电纺丝,各个所述电场力分别形成在所述单针头与各个所述集束导轮之间。
  4. 根据权利要求3所述的纳米纤维纱线的连续成纱方法,其特征在于,所述电场力为能够通过所述单针纺丝针头与各个所述集束导轮之间的电压差和/或所述单针纺丝针头与各个所述集束导轮之间的距离大小进行调节的可调形式电场力。
  5. 根据权利要求3所述的纳米纤维纱线的连续成纱方法,其特征在于,各个所述集束导轮的中心共面且与水平面平行,所述单针纺丝针头的出口方向的延伸线垂直于所述水平面,且控制所述单针纺丝针头的出口与各个所述集束导轮的中心共同形成的平面之间的距离为10-30cm。
  6. 根据权利要求2或3或4或5所述的纳米纤维纱线的连续成纱方法,其特征在于,所述集束导轮包括能够沿自身轴心线转动的绝缘套管以及绕设在所述绝缘套管上的导电金属环,所述纳米纤维集聚体附着在所述导电金属环的外侧。
  7. 根据权利要求6所述的纳米纤维纱线的连续成纱方法,其特征在于,所述导电金属环的半径为3-10cm。
  8. 根据权利要求2所述的纳米纤维纱线的连续成纱方法,其特征在于,所述初步加捻采用初捻工作辊,所述混合加捻采用混捻工作辊;
    所述连续成纱方法还包括通过采用控制系统分别独立地控制:
    各个所述集束导轮的转速、温度;
    各个所述初捻工作辊的捻度、温度;
    所述混捻工作辊的捻度、温度;
    各个所述电场力。
  9. 根据权利要求2所述的纳米纤维纱线的连续成纱方法,其特征在于,所述连续成纱方法采用如下连续生产装置进行:
    所述连续生产装置包括依次设置的静电纺丝机构、多个集束导轮、多个刮刀、多个初捻工作辊、混捻工作辊和纱线连续收集组件,以及多个加压电源;所述静电纺丝机构与一个所述加压电源的正极电连接,每个所述集束导轮分别独立地与一个所述加压电源的负极电连接,所述刮刀的数量与所述集束导轮一一对应且设置在所述集束导轮的旁侧;
    所述静电纺丝机构包括用于纺出纳米纤维的单针纺丝针头;
    所述集束导轮包括能够沿自身轴心线转动的绝缘套管以及绕设在所述绝缘套管上的导电金属环;
    在生产过程中,每个所述集束导轮与所述静电纺丝机构之间均形成一个电场力,由单针纺丝针头纺出的纳米纤维在各个所述电场力的作用下分裂为n份,并朝向各自对应的所述集束导轮运动进而附着在所述导电金属环的外侧,形成纳米纤维集聚体,然后在所述集束导轮转动的过程中,在每个所述刮刀的作用下从对应的所述集束导轮上的纳米纤维集聚体上起出一条连续的纳米纤维集束,各条纳米纤维集束在独立地经过各自对应的所述初捻工作辊进行初步加捻后由所述混捻工作辊进行混合加捻,连续获得纳米纤维纱线,并由所述纱线连续收集组件收集。
  10. 根据权利要求9所述的纳米纤维纱线的连续成纱方法,其特征在于,所述连续生产装置还包括控制系统,所述控制系统分别与所述静电纺丝机构、所述多个集束导轮、所述的多个初捻工作辊、所述混捻工作辊、所述纱线连续收集组件、所述的多个加压电源通信连接。
  11. 一种根据权利要求1-10中任一项权利要求所述的纳米纤维纱线的连续成纱方法生产的纳米纤维纱线。
PCT/CN2023/084398 2022-03-30 2023-03-28 一种纳米纤维纱线及其连续成纱方法 WO2023185849A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210328444.2A CN114717669B (zh) 2022-03-30 2022-03-30 一种纳米纤维纱线及其连续成纱方法
CN202210328444.2 2022-03-30

Publications (1)

Publication Number Publication Date
WO2023185849A1 true WO2023185849A1 (zh) 2023-10-05

Family

ID=82240681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084398 WO2023185849A1 (zh) 2022-03-30 2023-03-28 一种纳米纤维纱线及其连续成纱方法

Country Status (2)

Country Link
CN (1) CN114717669B (zh)
WO (1) WO2023185849A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114717669B (zh) * 2022-03-30 2023-05-26 南通纺织丝绸产业技术研究院 一种纳米纤维纱线及其连续成纱方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100621428B1 (ko) * 2005-06-17 2006-09-07 전북대학교산학협력단 전기방사를 이용한 연속상 필라멘트의 제조방법 및 이로제조된 연속상 필라멘트
GB201215221D0 (en) * 2011-08-29 2012-10-10 Univ Heriot Watt Nanfibres
WO2015169181A1 (zh) * 2014-05-04 2015-11-12 清华大学深圳研究生院 静电纺丝收集装置、方法以及静电纺丝设备
US20160168754A1 (en) * 2014-06-27 2016-06-16 Amrita Vishwa Vidyapeetham Electrospinning apparatus and method for producing multi-dimensional structures and core-sheath yarns
CN106367818A (zh) * 2016-10-21 2017-02-01 上海工程技术大学 一种用于静电纺丝的点阵式接收器及制备纳米纤维的方法
CN107366052A (zh) * 2017-07-21 2017-11-21 东华大学 取向集束装置、静电纺纱设备及纳米纤维纱线制备方法
CN114717669A (zh) * 2022-03-30 2022-07-08 南通纺织丝绸产业技术研究院 一种纳米纤维纱线及其连续成纱方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006123879A1 (en) * 2005-05-18 2006-11-23 Korea Research Institute Of Chemical Technology Filament bundle type nano fiber and manufacturing method thereof
US7799262B1 (en) * 2005-05-02 2010-09-21 Industrial Cooperation Foundation Chonbuk National University Method of manufacturing a continuous filament by electrospinning
KR100702870B1 (ko) * 2005-06-10 2007-04-03 전북대학교산학협력단 전기방사를 이용한 연속상 매트의 제조방법 및 이로 제조된매트
CN100427652C (zh) * 2005-11-11 2008-10-22 东南大学 复合纳米纤维长丝束制备装置及其制备方法
KR101147726B1 (ko) * 2006-03-28 2012-05-25 코오롱패션머티리얼 (주) 나노섬유 웹의 제조방법
KR20110087031A (ko) * 2010-01-25 2011-08-02 한국화학연구원 분리 개섬이 가능한 나노 장섬유 또는 극세사의 제조방법
US8980158B2 (en) * 2010-10-07 2015-03-17 Physical Sciences, Inc. Near field electrospinning system for continuous, aligned fiber tows
CN102912456A (zh) * 2011-08-04 2013-02-06 中国人民解放军装甲兵工程学院 一种在纱线或纤维束表面制备纳米纤维涂层的方法及系统
US10507268B2 (en) * 2012-09-19 2019-12-17 Merit Medical Systems, Inc. Electrospun material covered medical appliances and methods of manufacture
CN203034183U (zh) * 2013-01-11 2013-07-03 武汉纺织大学 一种分束助捻式涡流纺纱器
WO2014160002A1 (en) * 2013-03-14 2014-10-02 Lifenet Health Electrospinning apparatus and methods of use thereof
GB201316577D0 (en) * 2013-09-18 2013-10-30 Isis Innovation Electrospun filaments
CN104562239B (zh) * 2015-01-21 2017-03-22 上海斯瑞科技有限公司 一种纤维牵伸方法
CN104695066A (zh) * 2015-03-31 2015-06-10 上海云同纳米科技中心(普通合伙) 转环型静电纺纳米纤维纱线制备装置及其制备方法
CN104831434B (zh) * 2015-05-05 2017-04-26 东华大学 剪切式牵伸静电纺直纺微米纱装置、方法及用途
CN104831433B (zh) * 2015-05-05 2017-04-26 东华大学 导电溶液的剪切式牵伸静电纺直纺微米纱装置、方法及用途
CN105780152B (zh) * 2016-04-28 2018-05-25 北京化工大学 一种气流集束旋转加捻的纳米捻线制备装置及工艺
CN106337229B (zh) * 2016-09-21 2018-11-06 武汉纺织大学 纳米静电纺丝与短纤维环锭纺纱一体化成纱的方法
CN108034995B (zh) * 2018-01-12 2023-09-26 华南协同创新研究院 一种实心针头静电纺丝设备
CN108221098B (zh) * 2018-01-17 2019-08-20 东华大学 一种纺纱装置及采用该纺纱装置的平行纺纱方法
CN108468116A (zh) * 2018-02-08 2018-08-31 东华大学 纳米纤维纱线加捻卷绕装置及其使用方法
CN108486661A (zh) * 2018-02-08 2018-09-04 东华大学 取向纳米纤维纱线制备装置及其使用方法
CN109537110B (zh) * 2018-12-19 2021-03-12 苏州大学 一种碳纳米管纤维的制备方法
CN109881275A (zh) * 2019-03-11 2019-06-14 国装新材料技术(江苏)有限公司 脆性齐聚物连续熔融纺丝集束装置
CN110106564B (zh) * 2019-05-23 2021-08-31 东华大学 取向纳米纤维纱线组合式静电纺丝装置及其使用方法
CN110644080B (zh) * 2019-09-29 2021-12-07 天津工业大学 一种纳米纤维纱线的连续制备装置及连续制备方法
CN111058101A (zh) * 2019-12-30 2020-04-24 东华大学 一种取向纳米纤维纱线的连续纺纱装置及其使用方法
CN111621886B (zh) * 2020-06-11 2021-02-19 贺海军 用于高效制备纳米纤维纱的静电纺丝装置及方法
CN112095158B (zh) * 2020-09-14 2022-02-25 青岛大学 柔性无机纳米纤维纱线及其制备方法
CN113089144A (zh) * 2021-04-15 2021-07-09 苏州大学 一种多功能羊毛复合纱及其制备方法
CN113388928A (zh) * 2021-06-15 2021-09-14 青岛大学 纺纱牵伸一体化高性能微纳米纤维纱线制备装置及其方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100621428B1 (ko) * 2005-06-17 2006-09-07 전북대학교산학협력단 전기방사를 이용한 연속상 필라멘트의 제조방법 및 이로제조된 연속상 필라멘트
GB201215221D0 (en) * 2011-08-29 2012-10-10 Univ Heriot Watt Nanfibres
WO2015169181A1 (zh) * 2014-05-04 2015-11-12 清华大学深圳研究生院 静电纺丝收集装置、方法以及静电纺丝设备
US20160168754A1 (en) * 2014-06-27 2016-06-16 Amrita Vishwa Vidyapeetham Electrospinning apparatus and method for producing multi-dimensional structures and core-sheath yarns
CN106367818A (zh) * 2016-10-21 2017-02-01 上海工程技术大学 一种用于静电纺丝的点阵式接收器及制备纳米纤维的方法
CN107366052A (zh) * 2017-07-21 2017-11-21 东华大学 取向集束装置、静电纺纱设备及纳米纤维纱线制备方法
CN114717669A (zh) * 2022-03-30 2022-07-08 南通纺织丝绸产业技术研究院 一种纳米纤维纱线及其连续成纱方法

Also Published As

Publication number Publication date
CN114717669B (zh) 2023-05-26
CN114717669A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
Zhuang et al. Solution blowing of submicron-scale cellulose fibers
CN103088478B (zh) 一种取向静电纺纳米纤维纱线连续制备装置
CN109610021B (zh) 一种纳米纤维纱的制备方法及装置
CN106868675B (zh) 一种纳米纤维包芯纱的连续制备装置
CN104060355A (zh) 一种连续纳米纤维纱的生产方法及装置
CN106480518B (zh) 一种静电纺丝收集装置及梯度取向结构纳米纤维的制备方法
WO2023185849A1 (zh) 一种纳米纤维纱线及其连续成纱方法
CN108796682A (zh) 一种连续高效增强纳米纤维成纱的装置及纺纱方法
CN204738069U (zh) 转环型静电纺纳米纤维纱线制备装置
CN100575572C (zh) 聚酰胺6/66共聚物长丝纱的连续静电纺丝方法
CN104695066A (zh) 转环型静电纺纳米纤维纱线制备装置及其制备方法
CN102260930A (zh) 一种收集取向纳米纤维装置及方法
CN102181948A (zh) 一种制备一维有序结构的纳米纤维的静电纺丝方法及装置
CN104711719A (zh) 旋转收集器制备静电纺纳米纤维纱线装置及其制备方法
CN101886301A (zh) 一种将静电纺丝制得的纳米纤维绞成绞线的装置
CN105887223A (zh) 一种一步成型制备纳米纤维纱线的高速离心纺装置及纳米纤维纱线制备方法
CN113388928A (zh) 纺纱牵伸一体化高性能微纳米纤维纱线制备装置及其方法
CN108796687B (zh) 一种自加捻纳米纤维纱线连续制备装置及方法
CN106811845B (zh) 球形对喷刷式批量化纳米纤维纱线加工装置及其使用方法
CN107400934B (zh) 批量化预集束高支纳米纤维纱线的纤维束取向装置及方法
CN101250769B (zh) 高性能的碳纳米管/pbo复合纤维的电纺丝制备方法
CN203112981U (zh) 一种取向静电纺纳米纤维纱线连续制备装置
CN112251868A (zh) 一种连续制备纳米纤维包芯纱的装置及其方法
CN115110188B (zh) 熔融静电纺纳米纤维复合包芯纱及其制备方法和装置
CN101435122B (zh) 具有卷曲二级结构的微纳米纤维及其制备方法和用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778214

Country of ref document: EP

Kind code of ref document: A1