WO2023185771A1 - 一种信号传输方法和装置 - Google Patents

一种信号传输方法和装置 Download PDF

Info

Publication number
WO2023185771A1
WO2023185771A1 PCT/CN2023/084184 CN2023084184W WO2023185771A1 WO 2023185771 A1 WO2023185771 A1 WO 2023185771A1 CN 2023084184 W CN2023084184 W CN 2023084184W WO 2023185771 A1 WO2023185771 A1 WO 2023185771A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency
subcarriers
time
range
Prior art date
Application number
PCT/CN2023/084184
Other languages
English (en)
French (fr)
Other versions
WO2023185771A9 (zh
Inventor
黄煌
马千里
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023185771A1 publication Critical patent/WO2023185771A1/zh
Publication of WO2023185771A9 publication Critical patent/WO2023185771A9/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/103Chirp modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B2001/6912Spread spectrum techniques using chirp

Definitions

  • the present application relates to the field of wireless communication technology, and in particular, to a signal transmission method and device.
  • Integrated sensing and communication is an application scenario of the next generation of wireless communications.
  • Linear frequency modulated continuous wave (FMCW) linear frequency modulated signals such as chirp signals, are used as a waveform in ISAC to achieve communication and sensing functions at the same time.
  • the chirp signal can be obtained by phase-shifting the data signal, performing a general inverse discrete fourier transform (GIDFT) on the phase-shifted data signal, and then performing a time-domain phase shift.
  • GIDFT general inverse discrete fourier transform
  • the time domain phase shift will cause spectrum expansion.
  • the time domain phase offset will increase the bandwidth occupied by the chirp signal compared with the orthogonal frequency division multiplexing (OFDM) signal, thus causing a waste of transmission resources.
  • OFDM orthogonal frequency division multiplexing
  • This application provides a signal transmission method and device to solve the problem of spectrum expansion caused by time domain phase offset and save transmission resources.
  • a signal transmission method may be executed by a device at the sending end, or may be executed by a chip having functions similar to the device at the sending end. It can be understood that the device at the sending end can be a network device or a terminal device.
  • the transmitting end performs chirp modulation on Z data signals within frequency domain resources corresponding to K subcarriers to obtain the first signal.
  • the frequency occupied by the first signal is within the frequency range of the frequency domain resource corresponding to the K subcarriers. Among them, the frequency occupied by each data signal in the data signal modulated by linear frequency modulation changes linearly with time.
  • the z-th data signal among the Z data signals corresponds to M Z time segments, and the slope of the linear change of each time segment in the M Z time segments is the same.
  • M Z >1 the starting frequency of the M Z segment is the lowest frequency of the frequency range, and the end frequency of the M Z -1 segment is the highest frequency of the frequency range.
  • the starting frequency of the M Z -th segment is the highest frequency of the frequency range, and the end frequency of the M Z -1 -th segment is the lowest frequency of the frequency range.
  • K, M Z and Z are integers greater than or equal to 1, and z is taken from 1 through Z.
  • Z is less than or equal to K.
  • M Z and Z are integers greater than or equal to 2.
  • the frequency occupied by the first signal generated by the linear frequency modulation modulation of the data signal at the transmitting end is within the frequency range of the frequency domain resource corresponding to the K subcarriers.
  • the first signal does not need to occupy the frequency of more than K sub-carriers, so the waste of transmission resources can be reduced.
  • the starting frequency of the first time segment is greater than the starting frequency of the second time segment.
  • the starting frequency of the first time segment is less than the starting frequency of the second time segment.
  • the part of the signal with frequency folding corresponds to the first time segment, and the part of the signal without frequency folding corresponds to the second time segment.
  • the first signal is an analog signal
  • the frequency of the first signal is within the first range
  • the first range is Among them
  • k 0 is the subcarrier index corresponding to the subcarrier with the lowest frequency among K subcarriers
  • k 0 is an integer
  • ⁇ f is the subcarrier width.
  • the frequency of the first signal is within the first range, and the first range is Among them, k 0 is the subcarrier index corresponding to the subcarrier with the lowest frequency among K subcarriers, k 0 is an integer, and ⁇ f is the subcarrier width.
  • the transmitting end can constrain the frequency of the first signal within the above-mentioned first range, that is, within the frequency range of frequency domain resources corresponding to K subcarriers, thereby avoiding resource waste caused by spectrum expansion.
  • the first signal is a digital signal.
  • the frequency of the first signal is within the second range, and the second range is [k 0 ,k 0 +K-1].
  • k 0 is the subcarrier index corresponding to the subcarrier with the lowest frequency among the K subcarriers, and k 0 is an integer.
  • the first signal is a digital signal.
  • the frequency of the first signal is within the second range, and the second range is [k 0 +K-1, k 0 ].
  • k 0 is the subcarrier index corresponding to the subcarrier with the lowest frequency among the K subcarriers, and k 0 is an integer.
  • the transmitter can convert the first signal into a digital signal, and can constrain the frequency of the digital signal within the above-mentioned second range, that is, within the frequency range of the frequency domain resources corresponding to K subcarriers, thus avoiding spectrum expansion.
  • the transmitting end can phase shift the data signal. and performing GIDFT on the phase-shifted data signal.
  • the transmitting end can perform time domain phase offset on the data signal after GIDFT.
  • the transmitting end can increase the frequency adjustment amount to the frequency occupied by the data signal after time domain phase offset.
  • the frequency adjustment amount may be an integer multiple of the subcarrier width.
  • the transmitter can generate a signal whose occupied frequency exceeds the frequency range corresponding to K subcarriers through time domain phase offset.
  • the transmitter can increase the frequency occupied by the signal by the frequency adjustment amount to exceed the frequency corresponding to K subcarriers. Partial signals in the range are folded back into the frequency range corresponding to K subcarriers, thus saving transmission resources.
  • the first signal includes a cyclic prefix signal and a non-cyclic prefix signal.
  • the cyclic prefix signal is a signal generated based on Z data signals and cyclic prefix time
  • the acyclic prefix signal is a signal generated based on Z data signals and acyclic prefix time.
  • the transmitting end can generate the first signal including the cyclic prefix signal, which can eliminate interference between signals and improve the transmission performance between the first signals.
  • the transmitting end performs a phase shift on the data signal, and performs K-point GIDFT on the phase-shifted data signal to generate a second signal.
  • the transmitting end performs phase shift on the second signal according to the acyclic prefix time ⁇ n 1 ,...,n 1 +K-1 ⁇ to generate a third signal, and performs K-point GDFT conversion on the third signal to the frequency domain and maps it to K sub-signals
  • the fourth signal is obtained on the carrier, and the transmitting end performs N-point GIDFT conversion on the fourth signal back to the time domain to obtain an N-point acyclic prefix signal.
  • the transmitting end performs phase shift on the second signal according to the cyclic prefix time ⁇ n 2 ,...,n 2 +K-1 ⁇ to generate a fifth signal, and performs K-point GDFT conversion on the fifth signal to the frequency domain and maps it to K subcarriers Got the sixth letter number, the transmitting end performs N-point GIDFT conversion on the sixth signal back to the time domain to obtain an L-point cyclic prefix signal.
  • the time corresponding to point L is L is the length of the cyclic prefix
  • N is the length of the non-cyclic prefix
  • L and N are integers greater than or equal to 0.
  • the transmitter can generate cyclic prefix signals and acyclic prefix signals respectively, and map the cyclic prefix signals and acyclic prefix signals to K subcarriers, that is, the frequencies occupied by the cyclic prefix signals and acyclic prefix signals can be evenly distributed. Within the frequency range corresponding to K subcarriers, resource waste caused by spectrum expansion can be avoided.
  • the cyclic prefix signal and the acyclic prefix signal are continuous in time. Based on the above solution, the interference between non-cyclic prefix signals can be reduced through cyclic prefix signals.
  • the cyclic prefix signal and the acyclic prefix are continuous in time.
  • the starting time of the cyclic prefix signal in the above four cases can be an integer, which is beneficial to mapping the generated cyclic prefix signal and acyclic prefix signal to time domain resources.
  • a signal transmission method may be executed by a device at the receiving end, or by a chip having functions similar to the device at the receiving end. It can be understood that the device at the receiving end can be a network device or a terminal device.
  • the receiving end obtains the first signal on K subcarriers.
  • the frequency occupied by the first signal is within the frequency range of the frequency domain resource corresponding to the K subcarriers.
  • K is an integer greater than or equal to 1.
  • the receiving end uses the frequency range of the frequency resources corresponding to the K subcarriers as the sampling rate to demodulate the first signal to obtain a data signal.
  • the first signal is an analog signal
  • the frequency of the first signal is within the first range
  • the first range is Among them
  • k 0 is the subcarrier index corresponding to the subcarrier with the lowest frequency among the K subcarriers
  • ⁇ f is the subcarrier width.
  • the first signal is an analog signal.
  • the first signal is an analog signal
  • the frequency of the first signal is within the first range
  • the first range is Among them
  • k 0 is the subcarrier index corresponding to the subcarrier with the lowest frequency among K subcarriers
  • k 0 is an integer
  • ⁇ f is the subcarrier width.
  • the first signal is an analog signal.
  • the first signal is a digital signal
  • the frequency of the first signal is within the second range
  • the second range is [k 0 , k 0 +K-1].
  • k 0 is the subcarrier index corresponding to the subcarrier with the lowest frequency among the K subcarriers.
  • the first signal is a digital signal.
  • the first signal is a digital signal
  • the frequency of the first signal is within the second range
  • the second range is [k 0 +K-1, k 0 ].
  • k 0 is the subcarrier index corresponding to the subcarrier with the lowest frequency among the K subcarriers
  • k 0 is an integer.
  • the first signal is a digital signal.
  • the receiving end uses the frequency range of the frequency resources corresponding to the K subcarriers as the sampling rate to sample the first signal, and the receiving end performs GDFT on the sampled first signal.
  • the receiving end performs phase shift on the first signal that has undergone the generalized discrete Fourier transform to obtain a data signal.
  • the first signal includes a cyclic prefix signal and a non-cyclic prefix signal.
  • the cyclic prefix signal is a signal generated based on Z data signals and cyclic prefix time
  • the acyclic prefix signal is a signal generated based on a known data signal among Z data signals and acyclic prefix time.
  • the cyclic prefix signal and the acyclic prefix signal are continuous in time.
  • embodiments of the present application provide a communication device, which may be a device on the sending end, or may be a chip or module used on the device on the sending end.
  • the device has the function of implementing any implementation method of the above-mentioned first aspect. This function can be implemented by hardware, or it can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • embodiments of the present application provide a communication device, which may be a device at the receiving end, or may be a chip or module used in the device at the receiving end.
  • the device has the function of implementing any implementation method of the above second aspect. This function can be implemented by hardware, or it can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the present application provides a communication device, including a processor, the processor is coupled to a memory, the memory is used to store computer programs or instructions, and the processor is used to execute computer programs or instructions to perform the above first to second aspects.
  • a communication device including a processor, the processor is coupled to a memory, the memory is used to store computer programs or instructions, and the processor is used to execute computer programs or instructions to perform the above first to second aspects.
  • the memory may be located within the device or external to the device.
  • the number of processors is one or more.
  • the present application provides a communication device, including: a processor and an interface circuit, the interface circuit is used to communicate with other devices, and the processor is used for each implementation method of the first to second aspects.
  • a communication device in a seventh aspect, includes logic circuits and input and output interfaces.
  • a logic circuit is used to linearly modulate Z data signals within frequency domain resources corresponding to K subcarriers to obtain a first signal.
  • the input and output interface is used for outputting the first signal.
  • the frequency occupied by the first signal is within the frequency range of the frequency domain resource corresponding to the K subcarriers, and the frequency occupied by each of the Z data signals after linear frequency modulation modulation changes linearly with time.
  • the z-th data signal among the Z data signals corresponds to M z time segments, and the slope of the linear change of each time segment in the M z time segments is the same. When M z >1, the starting frequency of the M z segment is the lowest frequency of the frequency range, and the end frequency of the M z -1 segment is the highest frequency of the frequency range.
  • the starting frequency of the Mz -th segment is the highest frequency of the frequency range
  • the end frequency of the Mz -1th segment is the lowest frequency of the frequency range.
  • K, M, and Z are integers greater than or equal to 1, and z is taken from 1 through Z.
  • the input and output interface is used to input the first signal on K subcarriers.
  • the frequency occupied by the first signal is within the frequency range of the frequency domain resource corresponding to K subcarriers, and K is an integer greater than or equal to 1.
  • the logic circuit is used to demodulate the first signal using the frequency range of the frequency resources corresponding to the K subcarriers as the sampling rate to obtain the data signal.
  • the present application provides a communication system, including: a communication device for executing each implementation method of the first aspect and a communication device for executing each implementation method of the second aspect.
  • the present application also provides a chip system, including: a processor configured to execute each implementation method of the first to second aspects.
  • the present application also provides a computing program product, which includes computer execution instructions.
  • a computing program product which includes computer execution instructions.
  • the computer execution instructions When the computer execution instructions are run on a computer, each implementation method of the above first to second aspects is executed.
  • the present application also provides a computer-readable storage medium.
  • Computer programs or instructions are stored in the computer-readable storage medium. When the instructions are run on a computer, each implementation of the above-mentioned first to second aspects is realized. method.
  • Figure 1 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • Figure 2 is an OFDM time-frequency diagram and a chirp signal time-frequency diagram provided by the embodiment of the present application;
  • Figure 3 is an exemplary flow chart of a signal transmission method provided by an embodiment of the present application.
  • Figure 4 is one of the schematic diagrams of time segments provided by the embodiment of the present application.
  • Figure 5 is one of the flow diagrams of a signal transmission method provided by an embodiment of the present application.
  • Figure 6A is one of the schematic diagrams of time segments provided by the embodiment of the present application.
  • Figure 6B is one of the schematic diagrams of time segments provided by the embodiment of the present application.
  • Figure 7 is a time-frequency diagram of the first signal provided by the embodiment of the present application.
  • Figure 8 is one of the flow diagrams of a signal transmission method provided by an embodiment of the present application.
  • Figure 9 is a block diagram of a communication device provided by an embodiment of the present application.
  • Figure 10 is a block diagram of a communication device provided by an embodiment of the present application.
  • Figure 11 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • Figure 12 is a block diagram of a communication device provided by an embodiment of the present application.
  • Linear frequency modulation modulation refers to frequency modulation of the data signal.
  • the frequency occupied by the data signal after linear frequency modulation modulation changes linearly with time. For example, the frequency occupied by the data signal after linear frequency modulation modulation increases as time increases, or the frequency occupied by the data signal after linear frequency modulation modulation decreases as time increases.
  • the essence of the discrete Fourier transform is to convert the time domain sequence ⁇ x(n) ⁇ into the frequency domain sequence ⁇ X(k) ⁇ .
  • FFT is a fast calculation method of DFT.
  • IFFT is a fast calculation method of IDFT.
  • the sequence ⁇ x(n) ⁇ is first multiplied by a phase get Then the sequence can be Perform DFT or FFT to get then multiplied by a phase Get X(k).
  • GDFT can be calculated by DFT/FFT.
  • the sequence ⁇ X(k) ⁇ is first multiplied by a phase get Then the sequence can be Perform IDFT or IFFT to get then multiplied by a phase Get x(n).
  • GIDFT can be calculated by IDFT/IFFT.
  • Subcarrier width can be understood as the frequency range of the frequency domain resource corresponding to the subcarrier.
  • the frequency domain resources corresponding to subcarrier K1 are P0 to P1, then the subcarrier width can be understood as the width of
  • the plurality involved in the embodiments of this application refers to two or more than two.
  • “And/or” describes the relationship between related objects, indicating that there can be three relationships.
  • a and/or B can mean: A exists alone, A and B exist simultaneously, and B exists alone.
  • the character "/" generally indicates that the related objects are in an "or” relationship.
  • first, second, etc. may be used to describe various objects in the embodiments of the present invention, these objects should not be limited to these terms. These terms are only used to distinguish objects from each other.
  • a communication system 100 includes a transmitting device 101 and a receiving device 102 .
  • the sending device 101 may be a network device or a terminal device, and the receiving device 102 may be a network device or a terminal device.
  • the receiving device 102 may be a terminal device; when the receiving device 102 is a network device, the sending device 101 may be a terminal device.
  • the terminal equipment involved in this application includes equipment that provides voice and/or data signal connectivity to users. Specifically, it includes equipment that provides voice to users, or includes equipment that provides data signal connectivity to users, or includes providing users with Equipment for voice and data signal connectivity. This may include, for example, a handheld device with wireless connectivity, or a processing device connected to a wireless modem.
  • the terminal equipment may include user equipment (user equipment, UE), wireless terminal equipment, mobile terminal equipment, device-to-device communication (device-to-device, D2D) terminal equipment, vehicle to everything (V2X) terminal equipment , machine-to-machine/machine-type communications (M2M/MTC) terminal equipment, Internet of things (IoT) terminal equipment, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station, remote station, access point (AP), remote terminal equipment (remote terminal), access terminal equipment (access terminal), user terminal equipment (user terminal) ), user agent, or user device, satellite, drone, balloon or aircraft, etc.
  • IoT Internet of things
  • this may include a mobile phone (or "cellular" phone), a computer with a mobile terminal device, a portable, pocket-sized, handheld, computer-built-in mobile device, etc.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • constrained devices such as devices with lower power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities.
  • they include barcodes, radio frequency identification (RFID), sensors, global positioning systems (GPS), laser scanners and other information sensing equipment.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices.
  • the various terminal devices introduced above can be considered as vehicle-mounted terminal equipment if they are located on the vehicle (for example, placed or installed in the vehicle).
  • the vehicle-mounted terminal equipment is also called an on-board unit (OBU), for example. ).
  • OBU on-board unit
  • the network equipment involved in this application includes access network (AN) equipment, such as base stations (for example, access points), which may refer to the access network communicating with wireless terminal equipment through one or more cells over the air interface.
  • AN access network
  • base stations for example, access points
  • the communication equipment, or for example, the network equipment in a vehicle-to-everything (V2X) technology is the road side unit (RSU).
  • RSU road side unit
  • the network equipment may include an evolutionary base station (NodeB or eNB or e-NodeB, evolutionary Node B) in a long term evolution (LTE) system or long term evolution-advanced (LTE-A), or It can include the next generation nodes in the evolved packet core network (evolved packet core, EPC), the fifth generation mobile communication technology (the 5th generation, 5G), and the new radio interface (new radio, NR) system (also referred to as the NR system) B (next generation node B, gNB) may also include the centralized unit (centralized unit, CU) and distributed unit (distributed unit, DU) in the cloud access network (cloud radio access network, Cloud RAN) system, satellite , drones, balloons, airplanes, etc., are not limited by the embodiments of this application.
  • LTE long term evolution
  • LTE-A long term evolution-advanced
  • EPC evolved packet core network
  • 5G fifth generation mobile communication technology
  • NR new radio interface
  • ISAC is widely regarded as a key application scenario for next-generation wireless communications.
  • the wireless message sent The number has the ability to sense and communicate at the same time. Among them, the communication requirement is simply to send some information from the sending end to the receiving end.
  • the requirements for perception include sensing the surrounding environment, the moving speed and distance of objects, etc. Taking radar sensing as an example, the radar sends FMCW.
  • the working principle is that the radar transmitter emits a continuous signal whose frequency increases linearly with time. When a signal is reflected by an object, due to the delay on the propagation path, there is a frequency difference ⁇ f between the reflected signal and the transmitted signal. This frequency difference is positively related to the propagation delay and can satisfy the following formula (1).
  • R is the rate of frequency change of the continuous FM signal
  • the specific value is the ratio of the signal bandwidth (bandwidth, BW) to the signal period T.
  • d is the distance between the object and the sending end
  • c is the speed of electromagnetic wave propagation.
  • the received reflected signal is mixed with the emitted signal to obtain the frequency difference between the two. According to ⁇ f, the distance between the object and the sending end can be calculated.
  • linear frequency modulation signals based on FMCW such as chirp signals
  • chirp signals are used as a waveform in ISAC to achieve communication and sensing functions at the same time. How to generate chirp signals carrying data signals within a limited communication bandwidth has become a problem that needs to be solved.
  • n is an integer representing the time domain sampling index.
  • the ⁇ n 0 ,...,n 0 +L-1 ⁇ part is the cyclic prefix (CP) part of the chirp signal with length L. Derivating the phase, it can be seen that the frequency occupied by the k-th data signal d k is That is, the frequency changes linearly with the time domain sampling index n.
  • k 0 determines the frequency position of data signal transmission, which can be any value, usually an integer.
  • the chirp signal can be obtained by phase-shifting the data signal d k and performing GIDFT on the phase-shifted data signal.
  • the transmitting end further adds CP to the data signal after GIDFT and performs time domain phase offset to obtain it.
  • phase offset is to multiply each data signal by a phase, which is d k e j2 ⁇ (k) .
  • ⁇ (k) 0.
  • the time domain phase offset is to multiply the time domain signal after adding CP by a phase, that is
  • Time domain phase shift will cause spectrum expansion.
  • the signal adding CP only occupies the bandwidth of K subcarriers.
  • the frequency occupied by the data signal d k of the k-th subcarrier is Due to the influence of c 1 , the data signal d k no longer only occupies the k-th subcarrier.
  • the OFDM signal occupies the k -th to K+k 0 -1 frequency domain width of subcarrier.
  • the chirp signal s(n) occupies the width of 2c 1 n 0 +k 0 to 2c 1 (n 0 +L+N-1)+k 0 +K-1 subcarriers, occupying The large bandwidth expands 2c 1 (L+N-1) subcarriers.
  • an exemplary flow chart of a signal transmission method provided by an embodiment of the present application may include the following operations.
  • the transmitting end performs chirp modulation on Z data signals within the frequency domain resources corresponding to the K subcarriers to obtain the first signal.
  • Z can be less than or equal to K.
  • Z and K are integers greater than or equal to 1.
  • Z is an integer greater than or equal to 2.
  • the data signals in S301 may include K0 data signals known to the receiver, and the remaining Z-K0 data signals may be data signals unknown to the receiver.
  • the value of the known data signal may be 0.
  • the z-th data signal among the Z data signals corresponds to M z time segments.
  • the slope of the linear change in each of the M z time segments is the same.
  • the slope of the linear change in the frequency occupied by each data signal in the Mz -2th time segment is the same as the linear change in the frequency occupied by each data signal in the Mz -1th time segment.
  • the slopes are the same.
  • the slope of the linear change in the frequency occupied by each data signal in the M z -1th time segment and the slope of the linear change in the frequency occupied by each data signal in the M z -th time segment are Same, and so on.
  • M z is an integer greater than or equal to 1.
  • M z is an integer greater than or equal to 2.
  • the starting frequency of the M z -th segment is the lowest frequency in the frequency range of the frequency domain resource corresponding to the K subcarriers
  • the end frequency of the M z -1 -th segment is the above-mentioned The highest frequency in the frequency range of the frequency domain resource corresponding to the K subcarriers.
  • the starting frequency of the M z -th segment is the highest frequency in the frequency range of the frequency domain resource corresponding to the K subcarriers
  • the end frequency of the M z -1 -th segment is The lowest frequency in the frequency range of the frequency domain resource corresponding to the above K subcarriers.
  • the starting frequency of the second segment is the lowest frequency in the frequency range of the frequency domain resource corresponding to the K subcarriers, as shown at point a in Figure 4.
  • the end frequency of the first segment is the highest frequency in the frequency range of the frequency domain resource corresponding to the K subcarriers, as shown at point b in Figure 4.
  • the receiving end receives the first signal.
  • the frequency occupied by the above-mentioned first signal is within the frequency range of the frequency domain resource corresponding to the K subcarriers.
  • the frequency occupied by the first signal generated by the linear frequency modulation modulation of the data signal by the transmitting end is within the frequency range of the frequency domain resource corresponding to the K subcarriers.
  • the signal generated by the technical solution shown in Figure 3 does not need to occupy the frequency of more than K subcarriers.
  • the frequency occupied by the signal is within the frequency range corresponding to the K subcarriers, so the waste of transmission resources can be reduced.
  • the manner in which the sending end generates the first signal in S301 can be divided into the following manner 1 and manner 2, which are introduced respectively below.
  • the transmitter can linearly modulate each data signal d k separately, and fold the spectrum of the part beyond the frequency range corresponding to the K subcarriers, so that the occupied frequency is still corresponding to the K subcarriers. within the frequency range. It can be understood that the time-frequency resources occupied by each data signal do not overlap and are still orthogonal. In other words, the spectral lines of the chirp signals generated by each data signal do not overlap.
  • the method of generating the first signal shown in method 1 will be introduced in detail.
  • FIG. 5 is an exemplary flow chart of a method for generating a chirp signal according to an embodiment of the present application.
  • the transmitting end performs phase shifts on the data signals d 1 to d k respectively.
  • the phase offset is to multiply the data signal d 1 to the data signal d k respectively by e j2 ⁇ (k) . That is, phase shift d k to obtain d k e j2 ⁇ (k) .
  • the transmitting end performs chirp modulation on each phase-shifted data signal respectively.
  • Chirp modulation is to modulate the phase-shifted data signal onto a time-frequency resource that changes with time. That is, linear frequency modulation modulates d k e j2 ⁇ (k) to obtain
  • the transmitting end can fold the time-frequency resources occupied by data signals beyond the frequency range corresponding to the K subcarriers into the frequency range corresponding to the K subcarriers.
  • the sending end combines the signals generated by each data signal to obtain the first signal.
  • the frequency adjustment amount here can be an integer multiple of the subcarrier width.
  • the transmitter can convert the FM-modulated data signal take The above n kt is an integer, K is the number of subcarriers, and ⁇ f is the subcarrier width. t ⁇ [T 0 ,T end ], T 0 is the starting time of the chirp signal, and T end is the end time of the chirp signal.
  • the transmitting end combines the signals respectively generated by the data signal d 1 to the data signal d k to obtain the first signal
  • n kt K ⁇ f unit Hz
  • n kt may be related to time.
  • the value of n kt can be a negative number or a positive number.
  • n kt is a negative number, it can be understood that the frequency occupied by the data signal is moved to a frequency smaller than the frequency occupied by the data signal.
  • n kt is a positive number, it can be understood that the frequency occupied by the data signal is moved to a frequency greater than the frequency occupied by the data signal.
  • k 0 is the subcarrier index corresponding to the subcarrier with the lowest frequency among the K subcarriers, and k 0 is an integer. It is understandable that the above , the smaller the subcarrier index is, the lower the frequency of the subcarrier corresponding to the subcarrier index is.
  • the constrained by k 0 is the subcarrier index corresponding to the subcarrier with the highest frequency among the K subcarriers. At this time, the smaller the subcarrier index is, the higher the frequency of the subcarrier corresponding to the subcarrier index is.
  • s(t) may be an analog signal. If s(t) is converted into a data signal, the following expression can be obtained.
  • d k e j2 ⁇ (k) can be understood as phase shifting the data signal. It can be understood as performing chirp modulation on the phase-shifted data signal. It can be understood that the frequency occupied by the data signal exceeding the frequency range corresponding to the K subcarriers is folded into the frequency range corresponding to the K subcarriers.
  • the transmitter derivation of the phase of s(n) can determine the frequency (k+k 0 )+2c 1 nN+n kt K occupied by the data signal d 1 to the data signal d k .
  • n kt K (unit: subcarrier) here can be understood as the frequency adjustment amount. Therefore, the transmitter can uniquely determine a value of n kt , so that (k+k 0 )+2c 1 nN+n kt K is constrained within the range corresponding to K subcarriers. In other words, the sender can determine the value of n kt , so that (k+k 0 )+2c 1 nN+n kt K ⁇ [k 0 ,k 0 +K-1].
  • k 0 is the subcarrier index of the lowest frequency subcarrier among the K subcarriers. The smaller the subcarrier index is, the lower the frequency of the subcarrier corresponding to the subcarrier index is.
  • (k+k 0 )+2c 1 nN+n kt K can also be constrained to [k 0 +K-1, k 0 ].
  • k 0 is the subcarrier index corresponding to the subcarrier with the highest frequency among the K subcarriers. At this time, the smaller the subcarrier index is, the higher the frequency of the subcarrier corresponding to the subcarrier index is.
  • the starting frequency of the first time segment is greater than the starting frequency of the second time segment.
  • the starting frequency of the first time segment is less than the starting frequency of the second time segment.
  • the first time segment and the second time segment are two different time segments of a signal generated by the same data signal.
  • the signal corresponding to the first time segment and the signal corresponding to the second time segment may be discontinuous in frequency.
  • the signal shown in FIG. 6A is a signal generated by the same data signal. This signal corresponds to two time segments, namely the first time segment and the second time segment. It can be seen that the starting frequency of the first time segment is greater than the starting frequency of the second segment.
  • the time domain resources corresponding to the first time segment and the second time segment overlap.
  • the part of the signal with frequency folding corresponds to the first time segment
  • the part of the signal without frequency folding corresponds to the second time segment.
  • the frequency-folded part of the signal corresponds to the first time segment and the third time segment, where the frequency after frequency folding is greater than
  • the part of the signal corresponding to the frequency before frequency folding corresponds to the first time segment
  • the part of the signal corresponding to the frequency after frequency folding is smaller than the frequency before frequency folding corresponds to the third time segment
  • the part of the signal without frequency folding corresponds to the second time segment.
  • the signals shown in FIG. 6B are respectively signals generated by the data signal d 1 .
  • Some signals in the data signal d 1 occupy frequencies that exceed the frequency range corresponding to the K subcarriers. Therefore, the signals exceeding the frequency range corresponding to the K subcarriers can be frequency folded.
  • the frequency after frequency folding is greater than the frequency before frequency folding, corresponding to the first time segment, and the frequency after frequency folding is smaller than the frequency before frequency folding.
  • Part of the signal corresponds to the third time segment, and part of the signal without frequency folding corresponds to the second time segment.
  • the transmitting end can fold the frequency occupied by the data signal that exceeds the frequency range corresponding to the K subcarriers back into the frequency range corresponding to the K subcarriers.
  • the frequency occupied by some data signals exceeds the frequency range corresponding to the K subcarriers.
  • the frequency occupied by this part of the data signal can be folded back into the frequency range corresponding to K subcarriers, as shown by arrow 1 and arrow 2 in Figure 7.
  • the signal generated by each data signal has frequency folding.
  • the part of the signal in which frequency folding occurs corresponds to the first time segment
  • the part of the signal in which frequency folding does not occur corresponds to the second time segment.
  • the frequency folding part of the signal generated by each data signal is different, so it can be considered that the first time segment corresponding to the signal generated by each data signal is different, and the signal generated by each data signal The corresponding second time segment is different.
  • the chirp signal spectral lines after frequency folding do not overlap.
  • the time-frequency resources occupied by data signal d 1 to data signal d k do not overlap. Therefore, through method 1
  • the generated first signal does not affect performance and can transmit data signals, that is, it can be used for communication.
  • chirp signals can also be used to sense It is known that the first signal generated through method 1 can be used for communication and sensing.
  • the receiving end may receive the above-mentioned first signal.
  • the receiving end can filter the received first signal.
  • the frequency range occupied by the second signal is the same as before the transmitting end performs frequency folding on the chirp-modulated data signal. Therefore, the receiver can reconstruct the chirp signal before frequency folding.
  • the receiving end can demodulate the chirp signal to obtain each data signal.
  • processing performed by the receiving end on the first signal can be regarded as a reverse operation relative to the sending end.
  • the receiving end processes the first signal to construct the time-frequency signal before the transmitting end performs frequency folding, so that performance is not lost and additional bandwidth is not occupied, so that the frequency domain resources occupied by the data signal are constrained within the occupied bandwidth.
  • the modulation method of the above-mentioned method 1 is to perform linear frequency modulation modulation on each data signal separately, and then combine the signals generated by the respective data signals.
  • method 2 the chirp cyclic prefix (CCP) part and the non-CCP part of the chirp signal can be generated separately.
  • FIG. 8 is an exemplary flow chart of a method for generating a chirp signal according to an embodiment of the present application.
  • the transmitting end performs phase shift on the data signal d 1 to the data signal d k .
  • the phase offset is to multiply the data signal d k by e j2 ⁇ (k) . That is, phase shift d k to obtain d k e j2 ⁇ (k) .
  • the transmitting end performs K-point GIDFT transformation on the phase-shifted K data signals ⁇ d k ⁇ to the time domain to generate the second signal.
  • the transmitting end performs phase shift on the second signal according to the CCP time ⁇ n 2 ,..., n 2 +K-1 ⁇ to generate the fifth signal.
  • the phase offset performed by the transmitting end on the second signal may be as shown in method 1. or Among them, CCP time can be understood as the time domain resources occupied by CCP.
  • the sender phase-shifts the second signal according to the CCP time ⁇ n 2 ,...,n 2 +K-1 ⁇ to generate a fifth signal: Among them, n 2 ,...,n 2 +K-1 are CCP time.
  • the transmitting end performs K-point GDFT conversion on the fifth signal to the frequency domain and maps it onto K subcarriers to obtain the sixth signal, and performs N-point GIDFT conversion on the sixth signal back to the time domain to obtain an L-point cyclic prefix signal.
  • the time corresponding to point L is
  • the transmitting end performs phase shift on the second signal according to the non-CCP time ⁇ n 1 ,..., n 1 +K-1 ⁇ to generate the third signal.
  • the phase offset performed by the transmitting end on the second signal may be as shown in method 1. or Among them, non-CCP time can be understood as the time domain resources occupied by other data signals except the time domain resources occupied by CCP.
  • the transmitting end phase-shifts the second signal according to the non-CCP time ⁇ n 1 ,...,n 1 +K-1 ⁇ to generate a third signal: Among them, n 1 ,..., n 1 +K-1 are non-CCP times.
  • the transmitting end performs K-point GDFT conversion on the third signal to the frequency domain and maps it onto K subcarriers to obtain the fourth signal, and performs N-point GIDFT conversion on the fourth signal back to the time domain to obtain N Point of non-CCP signal.
  • L is the length of the CCP signal
  • N is the length of the non-CCP signal
  • L and N are integers greater than or equal to 0.
  • L can be the number of points for CCP signals
  • N can be the number of points for non-CCP signals.
  • the sending end can respond to the third signal Do K-point GDFT conversion to frequency domain. That is to say, do K-point GDFT on the third signal to get the fourth signal.
  • the transmitter performs N-point GIDFT conversion on the fourth signal to the time domain to obtain a non-CCP signal.
  • the sending end can signal the fifth Do K-point GDFT conversion to frequency domain. That is to say, do K-point GDFT on the fifth signal to get the sixth in, The transmitter performs N-point GIDFT conversion on the sixth signal to the time domain to obtain the CCP signal.
  • expression (2) is the time corresponding to the CCP signal at point L.
  • L is the length of CCP.
  • k 1 is a real number.
  • the CCP signal and the non-CCP signal can be fused to generate a chirp signal, which is the first signal in S301.
  • the first signal can satisfy the following expression (3):
  • the transmitting end maps the K frequency domain signals of the above-mentioned first signal onto K subcarriers, that is, zero-fills the NK subcarriers.
  • the operation of the transmitting end to map the above frequency domain signal onto K subcarriers is equivalent to performing time domain interpolation on K time domain signals corresponding to the above frequency domain signal into N signals.
  • the distance between adjacent time domain signals after interpolation to N is from 1 time domain units become K/N time domain units.
  • n 1 is the starting time of the non-CCP signal
  • n 2 is the ending time of the non-CCP signal. is the time corresponding to the CCP signal at point L.
  • n 1 is the starting time of the non-CCP signal
  • n 2 is the ending time of the non-CCP signal. is the time corresponding to the CCP signal at point L.
  • the transmitting end maps the K frequency domain signals of the first signal to K subcarriers
  • the non-CCP signal and the CCP signal can be continuous in the time domain.
  • One signal is mapped to K subcarriers, that is, the frequency domain resources occupied by the first signal are within the frequency range corresponding to the K subcarriers, so transmission resources can be saved.
  • n 2 , n 1 and n in formula (5) Any one of the following situations 1 to 4 can be satisfied.
  • the starting time of the non-CCP signal may be 0, and the ending time of the non-CCP signal may be -K. In this way, the time corresponding to the CCP signal at point L
  • the starting time of the non-CCP signal may be K, and the ending time of the non-CCP signal may be 0. In this way, the time corresponding to the CCP signal at point L
  • the starting time of the non-CCP signal may be 0, and the ending time of the non-CCP signal may be -K/2. In this way, the time corresponding to the CCP signal at point L
  • n 2 is equal to It is an integer and the operation is simple.
  • the starting time of the non-CCP signal may be K
  • the ending time of the non-CCP signal may be K/2. In this way, the time corresponding to the CCP signal at point L
  • n 2 is equal to It is an integer and the operation is simple.
  • the time corresponding to the CCP signal at point L can be an integer, which is beneficial to mapping the generated CCP signals and non-CCP signals to time domain resources.
  • the sending end generates a digital signal through the above method (2), and the sending end can send the digital signal to the receiving end.
  • the sending end can use a digital-to-analog converter to convert the above digital signal into an analog signal and send it to the receiving end.
  • the receiving end may receive the above-mentioned first signal.
  • the receiving end can filter the received first signal. For example, when the first signal is an analog signal, the receiving end can perform analog signal filtering on the first signal; when the first signal is a digital signal, the receiving end can perform digital signal filtering on the first signal.
  • the receiving end can demodulate the data signal on the second signal to obtain each data signal.
  • processing performed by the receiving end on the first signal can be regarded as a reverse operation relative to the sending end.
  • the sending end generates the first signal through digital signal processing means such as GIDFT and GDFT, thereby reducing the complexity of signal generation. Due to the frequency domain resources occupied by the CCP signal and the non-CCP part of the signal The frequency domain resources occupied by the number are all within the frequency range corresponding to K subcarriers, thus avoiding the waste of resources caused by spectrum expansion.
  • an embodiment of the present application provides a communication device 900.
  • the device 900 includes a processing unit 901 and a transceiver unit 902.
  • the device 900 may be a device at the sending end, or may be a device applied to the device at the sending end, and can support the device at the sending end to perform the signal transmission method.
  • the device 900 may be a device at the receiving end, or may be a device applied to the device at the receiving end and capable of supporting the device at the receiving end to perform the signal transmission method.
  • the transceiver unit may also be called a transceiver module, a transceiver, a transceiver, a transceiver device, etc.
  • the processing unit may also be called a processor, a processing board, a processing unit, a processing device, etc.
  • the device used to implement the receiving function in the transceiver unit can be regarded as a receiving unit. It should be understood that the transceiver unit is used to perform sending operations and receiving operations on the sending end side or the receiving end side in the above method embodiments.
  • the device used to implement the sending function in the unit is regarded as the sending unit, that is, the sending and receiving unit includes a receiving unit and a sending unit.
  • the sending unit included in the transceiver unit 902 is used to perform a sending operation on the sending end side, such as sending a first signal, specifically, sending the first signal to the receiving end.
  • the receiving unit included in the transceiver unit 902 is used to perform a receiving operation on the receiving end side, such as acquiring a first signal. Specifically, it may be acquiring a first signal from a transmitting end.
  • the transceiver unit may be an input-output circuit and/or a communication interface, performing input operations (corresponding to the aforementioned receiving operations) and output operations (corresponding to the aforementioned sending operations); processing unit It is an integrated processor or microprocessor or integrated circuit.
  • the following is a detailed description of an implementation in which the device 900 is applied to the sending end or the receiving end.
  • the device 900 when the device 900 is applied to the sending end, the operations performed by each unit thereof are described in detail.
  • the processing unit 901 is configured to perform chirp modulation on Z data signals within the frequency domain resources corresponding to the K subcarriers to obtain the first signal.
  • Transceiver unit 902 configured to send the first signal.
  • the frequency occupied by the first signal is within the frequency range of the frequency domain resource corresponding to the K subcarriers, and the frequency occupied by each of the Z data signals after linear frequency modulation modulation changes linearly with time.
  • the z-th data signal among the Z data signals corresponds to M z time segments, and the slope of the linear change of each time segment in the M z time segments is the same.
  • the starting frequency of the M z segment is the lowest frequency of the frequency range, and the end frequency of the M z -1 segment is the highest frequency of the frequency range.
  • the starting frequency of the Mz -th segment is the highest frequency of the frequency range, and the end frequency of the Mz -1th segment is the lowest frequency of the frequency range.
  • K, M, and Z are integers greater than or equal to 1, and z is taken from 1 through Z.
  • the processing unit 901 is further configured to convert the first signal into a digital signal, the frequency of the digital signal is within a second range, and the second range is [k 0 ,k 0 +K-1].
  • k 0 is the subcarrier index corresponding to the subcarrier with the lowest frequency among the K subcarriers, and k 0 is an integer.
  • the processing unit 901 is used to perform chirp modulation on the data signal in M consecutive time segments within the frequency domain resources corresponding to the K subcarriers. Specifically, it is used to: perform linear frequency modulation on the data signal.
  • Phase offset perform GIDFT on the phase-shifted data signal. The data signal after GIDFT is time-domain phase shifted, and the frequency occupied by the data signal after time-domain phase shift is increased by a frequency adjustment amount, which is an integer multiple of the subcarrier width.
  • the transceiver unit 902 is configured to acquire the first signal on K subcarriers, and the frequency occupied by the first signal is within the frequency range of the frequency domain resource corresponding to the K subcarriers.
  • K is an integer greater than or equal to 1.
  • an embodiment of the present application provides a communication device 1000.
  • the communication device 1000 includes a processor 1010 .
  • the communication device 1000 may also include a memory 1020 for storing instructions executed by the processor 1010 or input data required for the processor 1010 to run the instructions or data generated after the processor 1010 executes the instructions.
  • the processor 1010 can implement the method shown in the above method embodiment through instructions stored in the memory 1020.
  • the embodiment of the present application provides a communication device 1100.
  • the communication device 1100 may be a chip or a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the communication device 1100 may include at least one processor 1110 coupled with a memory.
  • the memory may be located within the device or outside the device.
  • the communication device 1100 may further include at least one memory 1120.
  • the memory 1120 stores the computer programs, configuration information, computer programs or instructions and/or data necessary to implement any of the above embodiments; the processor 1110 may execute the computer program stored in the memory 1120 to complete the method in any of the above embodiments.
  • the coupling in the embodiment of this application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information interaction between devices, units or modules.
  • the processor 1110 may cooperate with the memory 1120.
  • the specific connection medium between the transceiver 1130, the processor 1110 and the memory 1120 is not limited in the embodiment of the present application.
  • the communication device 1100 may also include a transceiver 1130, and the communication device 1100 may interact with other devices through the transceiver 1130.
  • the transceiver 1130 can be a circuit, a bus, a transceiver, or any other device that can be used for information exchange, or is also called a signal transceiver unit. As shown in Figure 11, the transceiver 1130 includes a transmitter 1131, a receiver 1132 and an antenna 1133.
  • the transceiver in the communication device 1100 may also be an input-output circuit and/or a communication interface, which may input data (or receive data) and output data ( Or, sending data), the processor is an integrated processor or microprocessor or integrated circuit, and the processor can determine the output data according to the input data.
  • the communication device 1100 can be applied to the sending end.
  • the specific communication device 1100 can be a device of the sending end, or can be a device capable of supporting the sending end, realizing the functions of the sending end in any of the above-mentioned embodiments. installation.
  • the memory 1120 stores the necessary computer programs, computer programs or instructions and/or data to implement the functions of the sending end in any of the above embodiments.
  • the processor 1110 can execute the computer program stored in the memory 1120 to complete the method performed by the sending end in any of the above embodiments.
  • the transmitter 1131 in the communication device 1100 can be used to transmit the first signal through the antenna 1133.
  • the communication device 1100 can be applied to the receiving end.
  • the specific communication device 1100 can be a device of the receiving end, or can be a device capable of supporting the receiving end, to implement the receiving end in any of the above-mentioned embodiments.
  • the memory 1120 stores the necessary computer programs, computer programs or instructions and/or data to implement the functions of the receiving end in any of the above embodiments.
  • the processor 1110 can execute the computer program stored in the memory 1120 to complete the method performed by the receiving end in any of the above embodiments.
  • the receiver 1132 in the communication device 1100 can be used to receive the first signal through the antenna 1133.
  • the communication device 1100 provided in this embodiment can be applied to the sending end, the method performed by the sending end is completed, or The method is applied to the receiving end to complete the method executed by the receiving end. Therefore, the technical effects that can be obtained can be referred to the above method embodiments, and will not be described again here.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may implement or Execute each method, step and logical block diagram disclosed in the embodiment of this application.
  • a general-purpose processor may be a microprocessor or any conventional processor, etc. The steps of the methods disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor for execution, or can be executed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or it may be a volatile memory (volatile memory), such as Random-access memory (RAM).
  • Memory may also be, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in the embodiment of the present application can also be a circuit or any other device capable of performing a storage function, used to store computer programs, computer programs or instructions and/or data.
  • the embodiment of the present application also provides another communication device 1200, including: an input and output interface 1210 and a logic circuit 1220; the input and output interface 1210 is used to receive code instructions and transmit them to the logic circuit 1220; The logic circuit 1220 is used to run code instructions to perform the method performed by the sending end or the receiving end in any of the above embodiments.
  • the communication device 1200 can be applied to the sending end to perform the method performed by the sending end. Specifically, for example, the method performed by the sending end in the embodiment shown in FIG. 3 .
  • the logic circuit 1220 is used to linearly modulate the Z data signals within the frequency domain resources corresponding to the K subcarriers to obtain the first signal.
  • the input and output interface 1210 is used to output the first signal.
  • the communication device 1200 can be applied to the receiving end to perform the method performed by the receiving end. Specifically, for example, the method performed by the receiving end in the method embodiment shown in FIG. 3 .
  • the input and output interface 1210 is used to input the first signal on K subcarriers.
  • the logic circuit 1220 is used to demodulate the first signal using the frequency range of the frequency resource corresponding to the K subcarriers as the sampling rate to obtain a data signal.
  • the communication device 1200 provided in this embodiment can be applied to the sending end to perform the method performed by the sending end, or applied to the receiving end to complete the method performed by the receiving end. Therefore, the technical effects that can be obtained can be referred to the above method embodiments, and will not be described again here.
  • embodiments of the present application further provide a communication system, which includes at least one communication device applied to the sending end and at least one communication device applied to the receiving end.
  • a communication system which includes at least one communication device applied to the sending end and at least one communication device applied to the receiving end.
  • embodiments of the present application also provide a computer-readable storage medium that stores computer programs or instructions.
  • the computer-readable storage medium may include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other various media that can store program codes.
  • embodiments of the present application also provide a chip including a processor to support the communication device to implement the functions involved in the sending end or the receiving end in the above method embodiments.
  • the chip is connected to a memory or includes a memory for saving the communication Install necessary computer programs or instructions and data.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer programs or instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture that includes the instruction means,
  • the instruction means implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer programs or instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in a process or processes in the flow diagram and/or in a block or blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本申请提供一种信号传输方法和装置,用来解决由时域相位偏移造成的频谱拓展的问题,节省传输资源。该方法中,发送端在K个子载波所对应的频域资源内对Z个数据信号进行线性调频调制,得到第一信号。其中,第一信号所占用的频率在K个子载波所对应的频域资源的频率范围内。其中,经过线性调频调制后的数据信号中每个数据信号所占用的频率随时间线性变化。基于上述方案,发送端对数据信号进行线性调频调制生成的第一信号所占用的频率在K个子载波所对应的频域资源的频率范围内,相较于线性调频调制所造成的频谱拓展,上述第一信号并不需要占用多于K个子载波的频率,因此可以减少传输资源的浪费。

Description

一种信号传输方法和装置
相关申请的交叉引用
本申请要求在2022年04月02日提交中国国家知识产权局、申请号为202210351131.9、申请名称为“一种信号传输方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种信号传输方法和装置。
背景技术
通信感知一体化(intergrated sensing and communication,ISAC)是下一代无线通信的一个应用场景。线性调频连续波(frequency modulated continuous wave,FMCW)的线性调频类信号,如啁啾信号(chirp)就作为一个波形用于ISAC中,同时实现通信和感知的功能。
目前啁啾信号可以通过对数据信号进行相位偏移,并对相位偏移后的数据信号进行广义逆向离散傅里叶变换(general inverse discrete fourier transform,GIDFT)再进行时域相位偏移得到。
但是,时域相位偏移会造成频谱拓展。也就是说,时域相位偏移会让啁啾信号占用的带宽相较于正交频分复用(orthogonal frequency division multiplexing,OFDM)信号增大,从而造成传输资源的浪费。
发明内容
本申请提供一种信号传输方法和装置,用来解决由时域相位偏移造成的频谱拓展的问题,节省传输资源。
第一方面,提供了一种信号传输方法。该方法可以由发送端的设备执行,或者可以由类似发送端的设备功能的芯片执行。可以理解的是,发送端的设备可以是网络设备也可以是终端设备。该方法中,发送端在K个子载波所对应的频域资源内对Z个数据信号进行线性调频调制,得到第一信号。其中,第一信号所占用的频率在K个子载波所对应的频域资源的频率范围内。其中,经过线性调频调制后的数据信号中每个数据信号所占用的频率随时间线性变化。Z个数据信号中的第z个数据信号对应MZ个时间分段,MZ个时间分段中各时间分段的线性变化的斜率相同。当MZ>1时,第MZ个分段的起始频率为频率范围的最低频率,第MZ-1个分段的结束频率为频率范围的最高频率。或者,第MZ个分段的起始频率为频率范围的最高频率,第MZ-1个分段的结束频率为频率范围的最低频率。K、MZ、Z为大于或等于1的整数,z从1取遍Z。可选的,Z小于或等于K。可选的,MZ、Z为大于或等于2的整数。
基于上述方案,发送端对数据信号进行线性调频调制生成的第一信号所占用的频率在K个子载波所对应的频域资源的频率范围内,相较于线性调频调制所造成的频谱拓展,上 述第一信号并不需要占用多于K个子载波的频率,因此可以减少传输资源的浪费。
在一个示例中,MZ个时间分段中,第一时间分段的起始频率大于第二时间分段的起始频率。或者,第一时间分段的起始频率小于第二时间分段的起始频率。另一个示例中,针对同一数据信号生成的信号,如果该信号占用的频率有折叠,则频率折叠的部分信号对应第一时间分段,频率无折叠的部分信号对应第二时间分段。
在一种可能的实现方式中,第一信号为模拟信号,第一信号的频率在第一范围内,第一范围为其中,k0为K个子载波中频率最低的子载波对应的子载波索引,k0为整数,Δf为子载波宽度。
在一种可能的实现方式中,第一信号的频率在第一范围内,第一范围为 其中,k0为K个子载波中频率最低的子载波对应的子载波索引,k0为整数,Δf为子载波宽度。
基于上述方案,发送端可以让第一信号的频率约束在上述第一范围内,也就是K个子载波对应的频域资源的频率范围内,可以避免频谱拓展造成的资源浪费。
在一种可能的实现方式中,第一信号为数字信号。第一信号的频率在第二范围内,第二范围为[k0,k0+K-1]。其中,k0为K个子载波中频率最低的子载波对应的子载波索引,k0为整数。
在一种可能的实现方式中,第一信号为数字信号。第一信号的频率在第二范围内,第二范围为[k0+K-1,k0]。其中,k0为K个子载波中频率最低的子载波对应的子载波索引,k0为整数。
基于上述方案,发送端可以将第一信号转换为数字信号,并可以让数字信号的频率约束在上述第二范围内,也就是K个子载波对应的频域资源的频率范围内,可以避免频谱拓展造成的资源浪费。
在一种可能的实现方式中,发送端可以对数据信号进行相位偏移。以及对进行相位偏移后的数据信号进行GIDFT。发送端可以对进行GIDFT后的数据信号进行时域相位偏移。发送端可以对经过时域相位偏移后的数据信号所占用的频率增加频率调整量。该频率调整量可以是子载波宽度的整数倍。
基于上述方案,发送端可以通过时域相位偏移生成占用的频率超出K个子载波对应的频率范围的信号,发送端可以通过将该信号占用的频率增加频率调整量将超出K个子载波对应的频率范围的部分信号折叠回K个子载波对应的频率范围内,因此可以节省传输资源。
在一种可能的实现方式中,第一信号包括循环前缀信号和非循环前缀信号。循环前缀信号是根据Z个数据信号和循环前缀时间生成的信号,非循环前缀信号是根据Z个数据信号和非循环前缀时间生成的信号。
基于上述方案,发送端可以生成包含循环前缀信号的第一信号,可以消除信号之间的干扰,提升第一信号之间的传输性能。
在一种可能的实现方式中,发送端对数据信号进行相位偏移,并对经过相位偏移后的数据信号进行K点GIDFT生成第二信号。发送端根据非循环前缀时间{n1,…,n1+K-1}对第二信号进行相位偏移生成第三信号,并对第三信号进行K点GDFT转换到频域映射到K个子载波上得到第四信号,发送端对第四信号进行N点GIDFT转换回时域得到N点的非循环前缀信号。发送端根据循环前缀时间{n2,…,n2+K-1}对第二信号进行相位偏移生成第五信号,并对第五信号进行K点GDFT转换到频域映射到K个子载波上得到第六信 号,发送端对第六信号进行N点GIDFT转换回时域得到L点的循环前缀信号。其中,L点对应的时间为L为循环前缀的长度,N为非循环前缀的长度,L、N为大于或等于0的整数。
基于上述方案,发送端可以分别生成循环前缀信号和非循环前缀信号,并将循环前缀信号和非循环前缀信号影射到K个子载波上,也就是让循环前缀信号和非循环前缀信号占用的频率均在K个子载波对应的频率范围内,可以避免频谱拓展造成的资源浪费。
在一种可能的实现方式中,循环前缀信号和非循环前缀信号在时间上是连续的。基于上述方案,可以通过循环前缀信号减少非循环前缀信号间的干扰。
在一种可能的实现方式中,满足以下公式:
基于上述方案,在循环前缀信号的起始的时间满足上述公式时循环前缀信号和非循环前缀在时间上是连续的。
在一种可能的实现方式中,n1=0,n2=-K,或者,n1=K,n2=0,N-L。或者,n1=0,n2=-K/2,可选的,N、K是偶数。或者,n1=K,n2=K/2,可选的,N、K是偶数。
基于上述方案,上述4种情况中的循环前缀信号的起始的时间可以是整数,有利于将生成的循环前缀信号和非循环前缀信号映射至时域资源上。
第二方面,提供一种信号传输方法。该方法可以由接收端的设备执行,或者由类似接收端的设备功能的芯片执行。可以理解的是,接收端的设备可以是网络设备也可以是终端设备。该方法中,接收端获取在K个子载波上的第一信号。第一信号所占用的频率在K个子载波所对应的频域资源的频率范围内。其中,K为大于或等于1的整数。接收端以K个子载波所对应的频率资源的频率范围为采样率,对第一信号进行解调,得到数据信号。
在一种可能的实现方式中,第一信号为模拟信号,第一信号的频率在第一范围内,第一范围为其中,k0为K个子载波中频率最低的子载波对应的子载波索引,Δf为子载波宽度。可选的,该第一信号为模拟信号。
在一种可能的实现方式中,第一信号为模拟信号,第一信号的频率在第一范围内,第一范围为其中,k0为K个子载波中频率最低的子载波对应的子载波索引,k0为整数,Δf为子载波宽度。可选的,该第一信号为模拟信号。
在一种可能的实现方式中,第一信号为数字信号,第一信号的频率在第二范围内,第二范围为[k0,k0+K-1]。其中,k0为K个子载波中频率最低的子载波对应的子载波索引。可选的,第一信号为数字信号。
在一种可能的实现方式中,第一信号为数字信号,第一信号的频率在第二范围内,第二范围为[k0+K-1,k0]。其中,k0为K个子载波中频率最低的子载波对应的子载波索引,k0为整数。可选的,第一信号为数字信号。
在一种可能的实现方式中,接收端以K个子载波所对应的频率资源的频率范围为采样率,对第一信号进行采样,接收端对采样后的第一信号进行GDFT。接收端对经过广义离散傅里叶变换的第一信号进行相位偏移,得到数据信号。
在一种可能的实现方式中,第一信号包括循环前缀信号和非循环前缀信号。循环前缀信号是根据Z个数据信号和循环前缀时间生成的信号,非循环前缀信号是根据Z个数据信号中的已知数据信号和非循环前缀时间生成的信号。
在一种可能的实现方式中,循环前缀信号和非循环前缀信号在时间上是连续的。
第三方面,本申请实施例提供一种通信装置,该装置可以是发送端的设备,还可以是用于发送端的设备的芯片或模块。该装置具有实现上述第一方面的任意实现方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第四方面,本申请实施例提供一种通信装置,该装置可以是接收端的设备,还可以是用于接收端的设备的芯片或模块。该装置具有实现上述第二方面的任意实现方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第五方面,本申请提供一种通信装置,包括处理器,处理器和存储器耦合,存储器用于存储计算机程序或指令,处理器用于执行计算机程序或指令,以执行上述第一方面至第二方面的各实现方法。该存储器可以位于该装置之内,也可以位于该装置之外。该处理器的数量为一个或多个。
第六方面,本申请提供一种通信装置,包括:处理器和接口电路,接口电路用于与其它装置通信,处理器用于上述第一方面至第二方面的各实现方法。
第七方面,提供了一种通信装置。该装置包括逻辑电路和输入输出接口。
在一种设计中,逻辑电路,用于在K个子载波所对应的频域资源内对Z个数据信号进行线性调频调制,得到第一信号。输入输出接口,用于输出第一信号。其中,第一信号所占用的频率在K个子载波所对应的频域资源的频率范围内,经过线性调频调制后的Z个数据信号中每个数据信号所占用的频率随时间线性变化。Z个数据信号中的第z个数据信号对应Mz个时间分段,Mz个时间分段中各时间分段的线性变化的斜率相同。当Mz>1时,第Mz个分段的起始频率为频率范围的最低频率,第Mz-1个分段的结束频率为频率范围的最高频率。或,第Mz个分段的起始频率为频率范围的最高频率,第Mz-1个分段的结束频率为频率范围的最低频率。K、M、Z为大于或等于1的整数,z从1取遍Z。
在一种设计中,输入输出接口,用于输入在K个子载波上的第一信号。其中,第一信号所占用的频率在K个子载波所对应的频域资源的频率范围内,K为大于或等于1的整数。逻辑电路,用于以K个子载波所对应的频率资源的频率范围为采样率,对第一信号进行解调,得到数据信号。
第八方面,本申请提供一种通信系统,包括:用于执行上述第一方面各实现方法的通信装置和用于执行上述第二方面各实现方法的通信装置。
第九方面,本申请还提供一种芯片系统,包括:处理器,用于执行上述第一方面至第二方面的各实现方法。
第十方面,本申请还提供一种计算程序产品,包括计算机执行指令,当计算机执行指令在计算机上运行时,使得上述第一方面至第二方面的各实现方法被执行。
第十一方面,本申请还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序或指令,当指令在计算机上运行时,实现上述第一方面至第二方面的各实现方法。
上述第二方面至第十一方面达到的技术效果可以参考第一方面中的技术效果,此处不再重复赘述。
附图说明
图1为本申请实施例提供的通信系统的示意图;
图2为本申请实施例提供的OFDM时频图和啁啾信号时频图;
图3为本申请实施例提供的一种信号传输方法的示例性流程图;
图4为本申请实施例提供的时间分段的示意图之一;
图5为本申请实施例提供的一种信号传输方法的流程框图之一;
图6A为本申请实施例提供的时间分段的示意图之一;
图6B为本申请实施例提供的时间分段的示意图之一;
图7为本申请实施例提供的第一信号的时频图;
图8为本申请实施例提供的一种信号传输方法的流程框图之一;
图9为本申请实施例提供的通信装置的框图之一;
图10为本申请实施例提供的通信装置的框图之一;
图11为本申请实施例提供的通信装置的示意图;
图12为本申请实施例提供的通信装置的框图之一。
具体实施方式
为便于理解本申请实施例提供的技术方案,以下对本申请实施例提及的技术术语进行解释和说明。
1)线性调频调制,指对数据信号进行调频调制,经过线性调频调制后的数据信号所占用的频率随时间线性变化。例如,经过线性调频调制后的数据信号所占用的频率随时间增大而增大,或者经过线性调频调制后的数据信号所占用的频率随时间增大而减小。
2)离散傅里叶变换(discrete fourier transform,DFT)/快速傅里叶变换(fast fourer transform,FFT):对于N点的序列{x(n),n=0,…,N-1},离散傅里叶变换为
离散傅里叶变换的本质是把时域序列{x(n)}转换成频域序列{X(k)}。FFT为DFT的一种快速计算方法。γ是一个常数,通常γ=1,或者或者
3)逆向离散傅里叶变换(inverse discrete fourer transform,IDFT)/逆向快速傅里叶变换(inverse fast fourer transform,IFFT):对于N点的序列{X(k),k=0,…,N-1},逆向离散傅里叶变换为
逆向离散傅里叶变换的本质是把时域序列{x(n)}转换成频域序列{X(k)}。IFFT为IDFT的一种快速计算方法。β是一个常数,通常β=1,或者或者
4)GDFT:对于N点的序列{x(n),n=0,…,N-1},广义离散傅里叶变换为
a,b是一个实数。上式经过推导,可得:
可以看出,对序列{x(n)}先乘以一个相位得到然后可以对序列进行DFT或者FFT,得到然后乘以一个相位获得X(k)。也就是说GDFT可以通过DFT/FFT计算。当a=b=0时,GDFT回退为DFT/FFT。另外,广义离散傅里叶变换也等价于对于N点的序列{x(n),n=a,…,a+N-1}进行IDFT/IFFT,获得
5)GIDFT:对于N点的序列{X(k),k=0,…,N-1},广义逆向离散傅里叶变换为
a,b是一个实数。上式经过推导,可得:
可以看出,对序列{X(k)}先乘以一个相位得到然后可以对序列进行IDFT或者IFFT,得到然后乘以一个相位获得x(n)。也就是说GIDFT可以通过IDFT/IFFT计算。当a=b=0时,GIDFT回退为IDFT/IFFT。另外,广义逆向离散傅里叶变换也等价于对于N点的序列{X(k),k=b,…,b+N-1}进行DFT/FFT,获得
可以理解的是,本申请实施例中为描述简化,假定α=β=1。
6)子载波宽度,可以理解为子载波所对应的频域资源的频率范围。举例来说,子载波K1所对应的频域资源为P0至P1,那么子载波宽度可以理解为|P0-P1|的宽度。
本申请实施例中涉及的多个,是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。另外,应当理解,尽管在本发明实施例中可能采用术语第一、第二等来描述各对象、但这些对象不应限于这些术语。这些术语仅用来将各对象彼此区分开。
本申请实施例的描述中所提到的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括其他没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。需要说明的是,本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
以下,结合附图对本申请实施例提供的技术方案进行解释和说明。
下面结合图1,介绍本申请实施例提供的信号传输方法所适用的通信系统。参见图1,通信系统100包括发送设备101和接收设备102。其中,发送设备101可以是网络设备或者可以是终端设备,接收设备102可以是网络设备也可以是终端设备。可选的,当发送设备101是网络设备时,接收设备102可以是终端设备;当接收设备102是网络设备时,发送设备101可以是终端设备。
本申请涉及的终端设备,包括向用户提供语音和/或数据信号连通性的设备,具体的,包括向用户提供语音的设备,或包括向用户提供数据信号连通性的设备,或包括向用户提供语音和数据信号连通性的设备。例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、车到一切(vehicle to everything,V2X)终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、或用户装备(user device)、卫星、无人机、气球或飞机等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称。而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
本申请所涉及的网络设备,例如包括接入网(access network,AN)设备,例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备,或者例如,一种车到一切(vehicle-to-everything,V2X)技术中的网络设备为路侧单元(road side unit,RSU)。网络设备可以包括长期演进(long term evolution,LTE)系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括演进的分组核心网络(evolved packet core,EPC)、第五代移动通信技术(the 5th generation,5G)、新空口(new radio,NR)系统(也简称为NR系统)中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,Cloud RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),卫星、无人机、气球和飞机等,本申请实施例并不限定。
ISAC被广泛认为是下一代无线通信的一个关键应用场景。具体来讲,发送的无线信 号同时具有感知和通信的能力。其中,通信的需求简单来讲就是将发送端的一些信息发送给接收端。感知的需求简单来讲包括感知周围环境、物体的移动速度和距离等等。以雷达进行感知为例,雷达发送FMCW。工作原理是雷达发送端发出频率随时间线性增加的连续信号。当信号经过物体反射,由于传播路径上的延时,反射信号与发射信号存在频率差Δf,该频率差与传播延时成正相关,可以满足以下公式(1)。
其中R为连续调频信号频率变化的速率,具体值为信号的带宽(bandwidth,BW)与信号周期T之比。d为物体与发送端的距离,c为电磁波传播的速度。将接收到的反射信号与发出的信号进行混频,获得两者的频率差。根据Δf可以推算出物体与发送端的距离。
因此,基于FMCW的线性调频类信号,如啁啾信号(chirp)就作为一个波形用于ISAC中,同时实现通信和感知的功能。如何在有限的通信带宽内生成携带数据信号的啁啾信号,成为需要解决的问题。
一种携带数据信号的啁啾信号表达式如公式(2)所示:
其中n是一个整数,代表时域采样索引。{n0,…,n0+L-1}部分为长度为L的啁啾信号的循环前缀(cyclic prefix,CP)部分。对相位求导可以看出,第k个数据信号dk占用的频率是也就是频率随着时域采样索引n线性变化。
k0决定数据信号传输的频率位置,可以为任意值,一般为一个整数。
上述公式(2)中的为带CP的OFDM信号。因此,啁啾信号可以通过对数据信号dk进行相位偏移,并对相位偏移后的数据信号进行GIDFT。发送端进一步为经过GIDFT后的数据信号添加CP后,进行时域相位偏移得到。
其中相位偏移就是对每个数据信号乘以一个相位,也就是dkej2πφ(k)。可选的,φ(k)=0。
GIDFT就是生成加CP就是将n=n0+N,…,n0+L+N-1的L长度数据信号,赋值给n=n0,…,n0+L-1,也就是
时域相位偏移也就是对加完CP后的时域信号乘以一个相位,也就是
可以理解的是,以上是离散数字信号的表达形式。如果转换为模拟信号表达式,模拟信号的表达式满足以下公式(3):
将离散数字信号转换为模拟信号的原理就是:对连续信号s(t)以采样率fs,时间间隔Ts=1/fs,进行采样。其中可见如下s(nTs)就等于离散信号的s(n)。
时域相位偏移会造成频谱拓展。具体来讲就是添加CP的信号只占用K个子载波的带宽。乘以一个相位信号形成s(n)以后,可以看出,第k个子载波的数据信号dk占用的频率是由于c1的影响,导致数据信号dk不再只占据第k个子载波。如图2中的a所示,OFDM信号占据第k0到第 K+k0-1个子载波的频域宽度。如图2中的b所示,啁啾信号s(n)占据2c1n0+k0到2c1(n0+L+N-1)+k0+K-1子载波的宽度,占据大带宽扩大了2c1(L+N-1)个子载波。
有鉴于此,本申请实施例提供一种信号传输方法。该方法中,发送端通过超出K个子载波频率的啁啾信号折叠回来,从而让传输的啁啾信不占用额外带宽。参阅图3,为本申请实施例提供的一种信号传输方法的示例性流程图,可以包括以下操作。
S301:发送端在K个子载波所对应的频域资源内对Z个数据信号进行线性调频调制,得到第一信号。
其中,Z可以小于或等于K。Z、K为大于或等于1的整数。可选的,Z为大于或等于2的整数。
可以理解的是,经过线性调频调制后的数据信号中每个数据信号所占用的频率随时间线性变化。
在一种可能的实现方式中,S301中的数据信号中可以包含接收机已知的K0个数据信号,剩余Z-K0个数据信号可以是接收机未知的数据信号。可选的,在S301中为了方便生成第一信号,已知的数据信号的取值可以为0。
在一个示例中,Z个数据信号中第z个数据信号对应Mz个时间分段。其中,Mz个时间分段中各时间分段内的线性变化的斜率是相同的。举例来说,第Mz-2个时间分段内每个数据信号所占用的频率的线性变化的斜率,与第Mz-1个时间分段内每个数据信号所占用的频率的线性变化的斜率是相同的。同样的,第Mz-1个时间分段内每个数据信号所占用的频率的线性变化的斜率,与第Mz个时间分段内每个数据信号所占用的频率的线性变化的斜率是相同的,以此类推。Mz为大于或等于1的整数。可选的,Mz为大于或等于2的整数。
例如,当Mz>1时,第Mz个分段的起始频率为上述K个子载波所对应的频域资源的频率范围的最低频率,第Mz-1个分段的结束频率为上述K个子载波所对应的频域资源的频率范围的最高频率。又例如,当Mz>1时,第Mz个分段的起始频率为上述K个子载波所对应的频域资源的频率范围的最高频率,第Mz-1个分段的结束频率为上述K个子载波所对应的频域资源的频率范围的最低频率。
参阅图4,假设Mz等于2,那么第2个分段的起始频率为上述K个子载波所对应的频域资源的频率范围的最低频率,如图4中的a点所示。第1个分段的结束频率为上述K个子载波所对应的频域资源的频率范围的最高频率,如图4中的b点所示。
S302:发送端发送第一信号。
相应的,接收端接收第一信号。
上述第一信号所占用的频率在K个子载波所对应的频域资源的频率范围内。
基于上述方案,发送端对数据信号进行线性调频调制生成的第一信号所占用的频率在K个子载波所对应的频域资源的频率范围内,相较于线性调频调制所造成的频谱拓展,基于图3所示的技术方案生成的信号并不需要占用多于K个子载波的频率,换句话说该信号占用的频率在K个子载波对应的频率范围内,因此可以减少传输资源的浪费。
在一种可能的实现方式中,S301中发送端生成第一信号的方式可以分为以下方式1和方式2,以下分别进行介绍。
方式1:
在方式1中,发送端可以将每一个数据信号dk分别进行线性调频调制,并将超出K个子载波所对应的频率范围的部分进行频谱折叠,使其占用的频率仍在K个子载波所对应的频率范围内。可以理解的是,每个数据信号所占用的时频资源不重叠依旧正交。换句话说,每个数据信号所生成的啁啾信号的谱线是不重叠的。以下,方式1所示的第一信号的生成方式进行具体介绍。
参阅图5,为本申请实施例提供的一种啁啾信号的生成方法的示例性流程图。该方法中,发送端分别对数据信号d1至数据信号dk分别进行相位偏移。其中,相位偏移就是将数据信号d1至数据信号dk分别乘以ej2πφ(k)。也就是将dk进行相位偏移,从而得到dkej2πφ(k)
发送端对经过相位偏移的各个数据信号分别进行线性调频调制。线性调频调制就是将经过相位偏移后的数据信号调制到随时间变化的时频资源上。也就是将dkej2πφ(k)进行线性调频调制,从而得到
可以理解的是,由于频谱拓展,经过线性调频调制后的数据信号d1至数据信号dk占用的频率会超过K个子载波所对应的频域资源的频率范围。因此,发送端可以将超出K个子载波所对应的频率范围以外的数据信号所占用的时频资源折叠至K个子载波所对应的频率范围以内。发送端将每个数据信号生成的信号进行合并,得到第一信号。
在一个示例中,想要将超出K个子载波所对应的频率范围以外的数据信号所占用的时频资源折叠至K个子载波所对应的频率范围以内,可以将经过线性调频调制后的数据信号所占用的频率增加频率调整量。这里的频率调整量可以是子载波宽度的整数倍。
举例来说,发送端可以将经过调频调制后的数据信号上述nkt是一个整数,K是子载波的数量,Δf是子载波宽度。t∈[T0,Tend],T0为啁啾信号的起始时间,Tend为啁啾信号的结束时间。发送端将数据信号d1至数据信号dk分别生成的信号进行合并,得到第一信号
通过将上述第一信号s(t)对相位求导,可以确定数据信号d1至数据信号dk占用的频率这里的nktKΔf(单位Hz)可以理解为频率调整量。因此,为了将数据信号d1至数据信号dk占用的频率约束在K个子载波所对应的频率范围内,也就是约束在可以唯一确定一个nkt的取值。换句话说,发送端可以确定nkt的取值,从而让
本申请实施例中,nkt可以与时间相关。nkt的取值可以是负数也可以是正数,在nkt的取值为负数时,可以理解为将数据信号所占用的频率向小于该数据信号所占用的频率迁移。在nkt的取值为正数时,可以理解为将数据信号所占用的频率向大于该数据信号所占用的频率迁移。
需要说明的是,上述k0为K个子载波中频率最低的子载波所对应的子载波索引,k0为整数。可以理解的是,上述中,子载波索引越小,该子载波索引所对应的子载波的频率越低。
可以理解的是,本申请实施例中也可以将约束在k0为K个子载波中频率最高的子载波所对应的子载波索引。此时,子载波索引越小,该子载波索引所对应的子载波的频率越高。
上述s(t)可以是模拟信号。如果将s(t)转换为数据信号,那么可以得到以下表达式。
上述表达式s(n)中,dkej2πφ(k)可以理解为对数据信号进行相位偏移。可以理解为对经过相位偏移后的数据信号进行线性调频调制。可以理解为将超出K个子载波对应的频率范围的数据信号占用的频率折叠会K个子载波对应的频率范围之内。
同样的,发送端将s(n)对相位求导,可以确定数据信号d1至数据信号dk占用的频率(k+k0)+2c1nN+nktK。这里的nktK(单位:个子载波)可以理解为频率调整量。因此,发送端可以唯一确定一个nkt的取值,从而让(k+k0)+2c1nN+nktK约束在K个子载波所对应的范围内。也就是说,发送端可以确定nkt的取值,从而让(k+k0)+2c1nN+nktK∈[k0,k0+K-1]。
需要说明的是,k0为K个子载波中频率最低的子载波的子载波索引。其中,子载波索引越小,该子载波索引所对应的子载波的频率越低。
可以理解的是,本申请实施例中也可以将(k+k0)+2c1nN+nktK约束在[k0+K-1,k0]。k0为K个子载波中频率最高的子载波所对应的子载波索引。此时,子载波索引越小,该子载波索引所对应的子载波的频率越高。
在一个示例中,Mz个时间分段中,针对同一数据信号生成的信号,第一时间分段的起始频率大于第二时间分段的起始频率。或者,第一时间分段的起始频率小于第二时间分段的起始频率。可以理解的是,该第一时间分段和第二时间分段是同一数据信号生成的信号的两个不同的时间分段。需要说明的是,该第一时间分段对应的信号与第二时间分段对应的信号,在频率上可以是不连续的。参阅图6A,图6A所示的信号是同一数据信号生成的信号。该信号共对应两个时间分段,分别为第一时间分段和第二时间分段。可以看出,第一时间分段的起始频率大于第二分段的起始频率。另外,可以看出第一时间分段和第二时间分段对应的时域资源有重叠。
另一个示例中,针对同一数据信号生成的信号,如果该信号占用的频率有折叠,则频率折叠的部分信号对应第一时间分段,频率无折叠的部分信号对应第二时间分段。一种可能的情况中,针对同一数据信号生成的信号,如果该信号占用的频率有折叠,则频率折叠的部分信号对应第一时间分段和第三时间分段,其中频率折叠后的频率大于频率折叠前的频率对应的部分信号对应第一时间分段,频率折叠后的频率小于频率折叠前的频率对应的部分信号对应第三时间分段,频率无折叠的部分信号对应第二时间分段。参阅图6B,图6B所示的信号分别是数据信号d1生成的信号。数据信号d1有部分信号占用的频率超出K个子载波对应的频率范围,因此可以将超出K个子载波对应的频率范围的信号进行频率折叠。由图6B可以看出,数据信号d1生成的信号中频率折叠后的频率大于频率折叠前的频率对应的部分信号对应第一时间分段,频率折叠后的频率小于频率折叠前的频率对应的部分信号对应第三时间分段,频率无折叠的部分信号对应第二时间分段。
通过上述方式1,发送端可以将超出K个子载波对应的频率范围的数据信号所占用的频率,折叠回K个子载波所对应的频率范围内。参阅图7,可以看出有部分数据信号所占据的频率超出了K个子载波对应的频率范围。为了节省传输资源,通过上述方式1,可以将该部分数据信号所占据的频率折叠回K个子载波对应的频率范围内,如图7中的箭头1所示和箭头2所示。其中,每个数据信号所生成的信号均有频率折叠。以数据信号d1生成的信号为例,发生频率折叠的部分信号对应第一时间分段,未发生频率折叠的部分信号对应第二时间分段。从图7中可以看出,每个数据信号生成的信号发生频率折叠的部分不同,因此可以认为每个数据信号生成的信号所对应的第一时间分段不同,以及每个数据信号生成的信号所对应的第二时间分段不同。
另外,由图7中可以看出,经过频率折叠后的啁啾信号谱线并无重叠,换句话说数据信号d1至数据信号dk占用的时频资源并无重叠,因此通过方式1所生成的第一信号也并未影响性能,可以传输数据信号,也就是说可以用于通信。同时,啁啾信号也可以用于感 知,因此通过方式1所生成的第一信号,可以用于通信与感知。
在S302中,接收端可以接收上述第一信号。此时,接收端可以对接收到的第一信号进行滤波。例如,第一信号为模拟信号时,接收端可以对第一信号进行模拟信号滤波,第一信号为数字信号时,接收端可以对第一信号进行数字信号滤波。接收端可以取出K个子载波对应的频率范围内的数据信号,然后以等效fs=KΔf Hz的采样率生成第二信号。由于第二信号在频域是以fs为周期进行拓展的,也就是第二信号占用的频率会超出K个子载波对应的频率范围。换句话说,第二信号占用的频率范围与发送端对经过线性调频调制后的数据信号进行频率折叠前相同。因此,接收端可以重构频率折叠之前的啁啾信号。接收端可以进行对啁啾信号进行数据信号的解调,从而得到各个数据信号。
需要说明的是,接收端对于第一信号执行的处理,可以看做是相对于发送端的反向操作。
基于上述技术方案,通过对超过占用带宽的时频信号进行频率折叠,换句话说平移整数倍占用的信号带宽,模拟信号就是nktKΔf,数字信号就是nktK使每个数据信号经历的时频资源不重叠,依旧正交。接收端对第一信号进行处理可以构建发送端进行频率折叠前的时频信号,从而不损失性能且不占用额外的带宽,从而让数据信号占用的频域资源约束在占用带宽内。
上述方式1的调制方法是分别对各个数据信号进行线性调频调制后,将各个数据信号生成的信号进行合并。而在方式2中可以分别生成啁啾信号的啁啾循环前缀(chirp cyclic prefix,CCP)部分和非CCP部分。以下,进行具体介绍。
方式2:
参阅图8,为本申请实施例提供的一种啁啾信号的生成方法的示例性流程图。该方法中,发送端对数据信号d1至数据信号dk进行相位偏移。其中,相位偏移就是将数据信号dk乘以ej2πφ(k)。也就是将dk进行相位偏移,从而得到dkej2πφ(k)。发送端对经过相位偏移后的K个数据信号{dk}做K点GIDFT变换到时域,生成第二信号
其中,
一种可能的情况中,发送端根据CCP时间{n2,…,n2+K-1}对第二信号进行相位偏移生成第五信号。发送端对第二信号进行的相位偏移可以是方式一中示出的其中,CCP时间可以理解为CCP占用的时域资源。发送端根据CCP时间{n2,…,n2+K-1}对第二信号进行相位偏移生成的第五信号为其中,n2,…,n2+K-1为CCP时间。发送端对第五信号进行K点GDFT转换到频域映射到K个子载波上得到第六信号,并对第六信号进行N点GIDFT转换回时域得到L点的循环前缀信号。其中,L点对应的时间为
另一种可能的情况中,发送端根据非CCP时间{n1,…,n1+K-1}对第二信号进行相位偏移生成第三信号。发送端对第二信号进行的相位偏移可以是方式一中示出的其中,非CCP时间可以理解为除CCP占用的时域资源以外的其他数据信号所占用的时域资源。发送端根据非CCP时间{n1,…,n1+K-1}对第二信号进行相位偏移生成的第三信号为 其中,n1,…,n1+K-1为非CCP时间。发送端对第三信号进行K点GDFT转换到频域映射到K个子载波上得到第四信号,并对第四信号进行N点GIDFT转换回时域得到N 点的非CCP信号。
以下,分别介绍CCP信号和非CCP信号的生成方式。可以理解的是,L为CCP信号的长度,N为非CCP的长度,L、N为大于或等于0的整数。需要说明的是,CCP信号的长度和非CCP信号的长度并不是连续的,而是离散的。换句话说,L可以是CCP信号的点数,N可以是非CCP信号的点数。
一种可能的情况中,参阅图8,发送端可以对第三信号做K点GDFT转换到频域。也就是对第三信号做K点GDFT得到第四信号其中,发送端对第四信号做N点GIDFT转换至时域,得到非CCP信号
其中,上述表达式(1)中的n=0,…,N-1为N点非CCP信号对应的时刻。
另一种可能的情况中,参阅图8,发送端可以第五信号做K点GDFT转换到频域。也就是对第五信号做K点GDFT得到第六其中,发送端对第六信号做N点GIDFT转换至时域,得到CCP信号
其中,表达式(2)中的为L点CCP信号对应的时刻。其中,L为CCP的长度。
上述表达式(1)和表达式(2)中,k1是一个实数。可选的,k1=0、k1=-N/2、k1=N/2、或者
参阅图8,发送端通过上述方式生成CCP信号和非CCP信号后,可以将CCP信号和非CCP信号融合,生成啁啾信号,也就是S301中的第一信号。
假设第一信号s(n)从时刻n0索引开始,且CCP长度为L,那么第一信号可以满足以下表达式(3):
发送端将上述第一信号的K个频域信号映射到K个子载波上,也就是将N-K个子载波补零。发送端将上述频域信号映射到K个子载波上的操作等效为对上述频域信号对应的K个时域信号进行时域插值到N个。换句话说,插值到N个后的相邻时域信号的距离从1 个时域单位变成K/N个时域单位。
因此,为了让非CCP信号和L个CCP信号在时域上连续,需要满足以下公式(5):
上述公式(5)中n1为非CCP信号的起始的时刻,n2为非CCP信号的结束的时刻,为L点CCP信号对应的时刻。上述公式(5)中可以理解为CCP信号所占用的距离,也就是CCP信号所占用的时长。
通过上述公式(5),发送端在将第一信号的K个频域信号映射到K个子载波时,可以让非CCP信号与CCP信号在时域上是连续的,且由于发送端是将第一信号映射到K个子载波上,也就是第一信号占用的频域资源在K个子载波对应的频率范围内,因此可以节省传输资源。
在一种可能的实现方式中,为了让非CCP信号和L个CCP信号在时域上连续,公式(5)中的n2、n1可以满足以下情况1至情况4中的任一种情况。
情况1:n1=0,n2=-K,
在情况1中,非CCP信号的起始的时刻可以为0,非CCP信号的结束的时刻可以为-K。这样,L点CCP信号对应的时刻
情况2:n1=K,n2=0,
在情况2中,非CCP信号的起始的时刻可以为K,非CCP信号的结束的时刻可以为0。这样,L点CCP信号对应的时刻
情况3:n1=0,n2=-K/2,
在情况3中,非CCP信号的起始的时刻可以为0,非CCP信号的结束的时刻可以为-K/2。这样,L点CCP信号对应的时刻
可选的,K、N为偶数。这样,n2为整数,运算简单。
情况4:n1=K,n2=K/2,
在情况4中,非CCP信号的起始的时刻可以为K,非CCP信号的结束的时刻可以为K/2。这样,L点CCP信号对应的时刻
可选的,K、N为偶数。这样,n2为整数,运算简单。
基于上述情况1至情况4得到的也就是L点CCP信号对应的时刻可以是整数,有利于将生成的CCP信号和非CCP信号映射至时域资源上。
发送端通过上述方式(2)生成的是数字信号,发送端可以将该数字信号发送给接收端。可选的,发送端可以利用数模转换器将上述数字信号转换成模拟信号,并发送给接收端。在S302中,接收端可以接收上述第一信号。此时,接收端可以对接收到的第一信号进行滤波。例如,第一信号为模拟信号时,接收端可以对第一信号进行模拟信号滤波,第一信号为数字信号时,接收端可以对第一信号进行数字信号滤波。接收端可以取出K个子载波对应的频率范围内的数据信号,然后以等效fs=KΔf Hz的采样率生成第二信号。接收端可以进行对第二信号进行数据信号的解调,从而得到各个数据信号。
需要说明的是,接收端对于第一信号执行的处理,可以看做是相对于发送端的反向操作。
基于上述技术方案,发送端通过GIDFT和GDFT等数字信号处理手段,来生成第一信号,从而可以降低信号生成的复杂度。由于CCP信号占用的频域资源和非CCP部分信 号占用的频域资源均在K个子载波对应的频率范围内,因此避免了由于频谱拓展带来的资源的浪费。
基于上述实施例的构思,参见图9,本申请实施例提供了一种通信装置900,该装置900包括处理单元901和收发单元902。该装置900可以是发送端的设备,也可以是应用于发送端的设备,能够支持发送端的设备执行信号传输方法的装置。或者,该装置900可以是接收端的设备,也可以是应用于接收端的设备,能够支持接收端的设备执行信号传输方法的装置。
其中,收发单元也可以称为收发模块、收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理单元、处理装置等。可选的,可以将收发单元中用于实现接收功能的器件视为接收单元,应理解,收发单元用于执行上述方法实施例中发送端侧或接收端侧的发送操作和接收操作,将收发单元中用于实现发送功能的器件视为发送单元,即收发单元包括接收单元和发送单元。该装置900应用于发送端时,其收发单元902包括的发送单元用于执行发送端侧的发送操作,例如发送第一信号,具体的可以是向接收端发送第一信号。该装置900应用于接收端时,其收发单元902包括的接收单元用于执行接收端侧的接收操作,例如获取第一信号,具体的可以是从发送端获取第一信号。
此外需要说明的是,若该装置采用芯片/芯片电路实现,收发单元可以是输入输出电路和/或通信接口,执行输入操作(对应前述接收操作)、输出操作(对应前述发送操作);处理单元为集成的处理器或者微处理器或者集成电路。
以下对于将该装置900应用于发送端或接收端的实施方式进行详细说明。
示例性的,对该装置900应用于发送端时,其各单元执行的操作进行详细说明。
处理单元901,用于在K个子载波所对应的频域资源内对Z个数据信号进行线性调频调制,得到第一信号。收发单元902,用于发送第一信号。其中,第一信号所占用的频率在K个子载波所对应的频域资源的频率范围内,经过线性调频调制后的Z个数据信号中每个数据信号所占用的频率随时间线性变化。Z个数据信号中的第z个数据信号对应Mz个时间分段,Mz个时间分段中各时间分段的线性变化的斜率相同。当Mz>1时,第Mz个分段的起始频率为频率范围的最低频率,第Mz-1个分段的结束频率为频率范围的最高频率。或,第Mz个分段的起始频率为频率范围的最高频率,第Mz-1个分段的结束频率为频率范围的最低频率。K、M、Z为大于或等于1的整数,z从1取遍Z。
在一种设计中,处理单元901还用于,将第一信号转换为数字信号,数字信号的频率在第二范围内,第二范围为[k0,k0+K-1]。其中,k0为K个子载波中频率最低的子载波对应的子载波索引,k0为整数。
在一种设计中,处理单元901,用于在K个子载波所对应的频域资源内对数据信号在M个连续的时间分段内分别进行线性调频调制时,具体用于:对数据信号进行相位偏移,对经过相位偏移后的数据信号进行GIDFT。对经过GIDFT后的数据信号进行时域相位偏移,将经过时域相位偏移后的数据信号占用的频率增加频率调整量,频率调整量为子载波宽度的整数倍。
示例性的,对装置900应用于接收端时,其各单元执行的操作进行详细说明。
收发单元902,用于获取在K个子载波上的第一信号,第一信号所占用的频率在K个子载波所对应的频域资源的频率范围内。其中,K为大于或等于1的整数。处理单元901, 用于以K个子载波所对应的频率资源的频率范围为采样率,对第一信号进行解调,得到数据信号。
基于实施例的构思,如图10所示,本申请实施例提供一种通信装置1000。该通信装置1000包括处理器1010。可选的,通信装置1000还可以包括存储器1020,用于存储处理器1010执行的指令或存储处理器1010运行指令所需要的输入数据或存储处理器1010运行指令后产生的数据。处理器1010可以通过存储器1020存储的指令实现上述方法实施例所示的方法。
基于实施例的构思,如图11所示,本申请实施例提供一种通信装置1100,该通信装置1100可以是芯片或者芯片系统。可选的,在本申请实施例中芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
通信装置1100可以包括至少一个处理器1110,该处理器1110与存储器耦合,可选的,存储器可以位于该装置之内,也可以位于该装置之外。例如,通信装置1100还可以包括至少一个存储器1120。存储器1120保存实施上述任一实施例中必要计算机程序、配置信息、计算机程序或指令和/或数据;处理器1110可能执行存储器1120中存储的计算机程序,完成上述任一实施例中的方法。
本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1110可能和存储器1120协同操作。本申请实施例中不限定上述收发器1130、处理器1110以及存储器1120之间的具体连接介质。
通信装置1100中还可以包括收发器1130,通信装置1100可以通过收发器1130和其它设备进行信息交互。收发器1130可以是电路、总线、收发器或者其它任意可以用于进行信息交互的装置,或称为信号收发单元。如图11所示,该收发器1130包括发射机1131、接收机1132和天线1133。此外,当该通信装置1100为芯片类的装置或者电路时,该通信装置1100中的收发器也可以是输入输出电路和/或通信接口,可以输入数据(或称,接收数据)和输出数据(或称,发送数据),处理器为集成的处理器或者微处理器或者集成电路,处理器可以根据输入数据确定输出数据。
在一种可能的实施方式中,该通信装置1100可以应用于发送端,具体通信装置1100可以是发送端的设备,也可以是能够支持发送端的设备,实现上述涉及的任一实施例中发送端的功能的装置。存储器1120保存实现上述任一实施例中的发送端的功能的必要计算机程序、计算机程序或指令和/或数据。处理器1110可执行存储器1120存储的计算机程序,完成上述任一实施例中发送端执行的方法。应用于发送端,该通信装置1100中的发射机1131可以用于通过天线1133发射第一信号。
在另一种可能的实施方式中,该通信装置1100可以应用于接收端,具体通信装置1100可以是接收端的设备,也可以是能够支持接收端的设备,实现上述涉及的任一实施例中接收端的功能的装置。存储器1120保存实现上述任一实施例中的接收端的功能的必要计算机程序、计算机程序或指令和/或数据。处理器1110可执行存储器1120存储的计算机程序,完成上述任一实施例中接收端执行的方法。应用于接收端,该通信装置1100中的接收机1132可以用于通过天线1133接收第一信号。
由于本实施例提供的通信装置1100可应用于发送端,完成上述发送端执行的方法,或 者应用于接收端,完成接收端执行的方法。因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实施或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器还可以是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实施存储功能的装置,用于存储计算机程序、计算机程序或指令和/或数据。
基于以上实施例,参见图12,本申请实施例还提供另一种通信装置1200,包括:输入输出接口1210和逻辑电路1220;输入输出接口1210,用于接收代码指令并传输至逻辑电路1220;逻辑电路1220,用于运行代码指令以执行上述任一实施例中发送端或者接收端执行的方法。
以下,对该通信装置应用于发送端或者接收端所执行的操作进行详细说明。
一种可选的实施方式中,该通信装置1200可应用于发送端,执行上述发送端所执行的方法,具体的例如前述图3所示的实施例中发送端所执行的方法。逻辑电路1220,用于在K个子载波所对应的频域资源内对Z个数据信号进行线性调频调制,得到第一信号。输入输出接口1210,用于输出第一信号。
另一种可选的实施方式中,该通信装置1200可应用于接收端,执行上述接收端所执行的方法,具体的例如前述图3所示的方法实施例中接收端所执行的方法。输入输出接口1210,用于输入在K个子载波上的第一信号。逻辑电路1220,用于以K个子载波所对应的频率资源的频率范围为采样率,对第一信号进行解调,得到数据信号。
由于本实施例提供的通信装置1200可应用于发送端,执行上述发送端所执行的方法,或者应用于接收端,完成接收端执行的方法。因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
基于以上实施例,本申请实施例还提供一种通信系统,该系统包括至少一个应用于发送端的通信装置和至少一个应用于接收端的通信装置。所能获得的技术效果可参考上述方法实施例,在此不再赘述。
基于以上实施例,本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序或指令,当指令被执行时,使上述任一实施例中终端设备执行的方法被实施或者网络设备执行的方法被实施。该计算机可读存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
为了实现上述图9~图12的通信装置的功能,本申请实施例还提供一种芯片,包括处理器,用于支持该通信装置实现上述方法实施例中发送端或者接收端所涉及的功能。在一种可能的设计中,该芯片与存储器连接或者该芯片包括存储器,该存储器用于保存该通信 装置必要的计算机程序或指令和数据。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序或指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序或指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序或指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序或指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (32)

  1. 一种信号传输方法,其特征在于,包括:
    发送端在K个子载波所对应的频域资源内对Z个数据信号进行线性调频调制,得到第一信号;其中,所述第一信号所占用的频率在所述K个子载波所对应的频域资源的频率范围内,经过所述线性调频调制后的所述Z个数据信号中每个数据信号所占用的频率随时间线性变化;
    所述Z个数据信号中的第z个数据信号对应Mz个时间分段,所述Mz个时间分段中各时间分段的所述线性变化的斜率相同;当Mz>1时,第Mz个分段的起始频率为所述频率范围的最低频率,第Mz-1个分段的结束频率为所述频率范围的最高频率;或第Mz个分段的起始频率为所述频率范围的最高频率,第Mz-1个分段的结束频率为所述频率范围的最低频率;K、Mz、Z为大于或等于1的整数,z从1取遍Z。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信号为模拟信号,所述第一信号的频率在第一范围内,所述第一范围为或者,所述第一范围为
    其中,所述k0为所述K个子载波中频率最低的子载波对应的子载波索引,k0为整数,Δf为子载波宽度。
  3. 根据权利要求1所述的方法,其特征在于,所述第一信号为数字信号;所述第一信号的频率在第二范围内,所述第二范围为[k0,k0+K-1];或者,所述第二范围为[k0+K-1,k0];
    其中,所述k0为所述K个子载波中频率最低的子载波对应的子载波索引,k0为整数。
  4. 根据权利要求1~3任一所述的方法,其特征在于,所述第一信号包括循环前缀信号和非循环前缀信号;所述循环前缀信号是根据所述Z个数据信号和循环前缀时间生成的信号,所述非循环前缀信号是根据所述Z个数据信号和非循环前缀时间生成的信号。
  5. 根据权利要求1~4任一所述的方法,其特征在于,所述发送端在K个子载波所对应的频域资源内对Z个数据信号在多个连续的时间分段内分别进行线性调频调制,包括:
    所述发送端对所述Z个数据信号进行相位偏移;
    所述发送端对经过相位偏移后的数据信号进行K点广义离散逆傅里叶变换GIDFT生成第二信号;
    所述发送端根据非循环前缀时间{n1,…,n1+K-1}对第二信号进行相位偏移生成第三信号,所述发送端对所述第三信号进行K点广义离散傅里叶变换GDFT转换到频域映射到K个子载波上得到第四信号,所述发送端对所述第四信号进行N点GIDFT转换回时域得到N点的非循环前缀信号;
    所述发送端根据循环前缀时间{n2,…,n2+K-1}对第二信号进行相位偏移生成第五信号,所述发送端对所述第五信号进行K点GDFT转换到频域映射到K个子载波上得到第六信号,所述发送端对所述第六信号进行N点GIDFT转换回时域得到L点的循环前缀信号,其中L点对应的时间为
    L为所述循环前缀的长度,N为所述非循环前缀的长度,L、N为大于或等于0的整数。
  6. 根据权利要求4或5所述的方法,其特征在于,所述循环前缀信号和所述非循环前缀信号在时间上是连续的。
  7. 根据权利要求6所述的方法,其特征在于,所述满足以下公式:
  8. 根据权利要求7所述的方法,其特征在于,所述n1=0,所述n2=-K,所述或者
    所述n1=K,所述n2=0,所述或者
    所述n1=0,所述n2=-K/2,所述或者
    所述n1=K,所述n2=K/2,所述
  9. 一种信号传输方法,其特征在于,包括:
    接收端获取在K个子载波上的第一信号;所述第一信号所占用的频率在所述K个子载波所对应的频域资源的频率范围内;其中,K为大于或等于1的整数;
    所述接收端以所述K个子载波所对应的频率资源的频率范围为采样率,对所述第一信号进行解调,得到数据信号。
  10. 根据权利要求9所述的方法,其特征在于,所述第一信号为模拟信号,所述第一信号的频率在第一范围内,所述第一范围为或者,所述第一范围为
    其中,所述k0为所述K个子载波中频率最低的子载波对应的子载波索引,Δf为子载波宽度。
  11. 根据权利要求9所述的方法,其特征在于,所述第一信号为数字信号,所述第一信号的频率在第二范围内,所述第二范围为[k0,k0+K-1];或者,所述第二范围为[k0+K-1,k0];
    其中,所述k0为所述K个子载波中频率最低的子载波对应的子载波索引。
  12. 根据权利要求9~11任一所述的方法,其特征在于,所述第一信号包括循环前缀信号和非循环前缀信号;所述循环前缀信号是根据所述Z个数据信号和循环前缀时间生成的信号,所述非循环前缀信号是根据所述Z个数据信号中的已知数据信号和非循环前缀时间生成的信号。
  13. 根据权利要求12所述的方法,其特征在于,所述循环前缀信号和所述非循环前缀信号在时间上是连续的。
  14. 一种通信装置,其特征在于,包括:处理单元和收发单元;
    所述处理单元,用于
    在K个子载波所对应的频域资源内对Z个数据信号进行线性调频调制,得到第一信号;其中,所述第一信号所占用的频率在所述K个子载波所对应的频域资源的频率范围内,经过所述线性调频调制后的所述Z个数据信号中每个数据信号所占用的频率随时间线性变化;
    所述Z个数据信号中的第z个数据信号对应Mz个时间分段,所述Mz个时间分段中各时间分段的所述线性变化的斜率相同;当Mz>1时,第Mz个分段的起始频率为所述频率范围的最低频率,第Mz-1个分段的结束频率为所述频率范围的最高频率;或第Mz个分段的起始频率为所述频率范围的最高频率,第Mz-1个分段的结束频率为所述频率范围的最低频率;K、M、Z为大于或等于1的整数,z从1取遍Z;
    所述收发单元,用于发送所述第一信号。
  15. 根据权利要求14所述的装置,其特征在于,所述第一信号为模拟信号,所述第一 信号的频率在第一范围内,所述第一范围为或者,所述第一范围为
    其中,所述k0为所述K个子载波中频率最低的子载波对应的子载波索引,k0为整数,Δf为子载波宽度。
  16. 根据权利要求14所述的装置,其特征在于,所述第一信号为数字信号;所述第一信号的频率在第二范围内,所述第二范围为[k0,k0+K-1];或者,所述第二范围为[k0+K-1,k0];
    其中,所述k0为所述K个子载波中频率最低的子载波对应的子载波索引,k0为整数。
  17. 根据权利要求14~16任一所述的装置,其特征在于,所述第一信号包括循环前缀信号和非循环前缀信号;所述循环前缀信号是根据所述Z个数据信号和循环前缀时间生成的信号,所述非循环前缀信号是根据所述Z个数据信号和非循环前缀时间生成的信号。
  18. 根据权利要求14~17任一所述的装置,其特征在于,所述处理单元用于在K个子载波所对应的频域资源内对Z个数据信号在多个连续的时间分段内分别进行线性调频调制时,具体用于:
    对所述数据信号进行相位偏移;
    对经过相位偏移后的数据信号进行K点广义离散逆傅里叶变换GIDFT生成第二信号;
    根据非循环前缀时间{n1,…,n1+K-1}对第二信号进行相位偏移生成第三信号,所述发送端对所述第三信号进行K点GDFT转换到频域映射到K个子载波上得到第四信号,所述发送端对所述第四信号进行N点GIDFT转换回时域得到N点的非循环前缀信号;
    根据循环前缀时间{n2,…,n2+K-1}对第二信号进行相位偏移生成第五信号,所述发送端对所述第五信号进行K点GDFT转换到频域映射到K个子载波上得到第六信号,所述发送端对所述第六信号进行N点GIDFT转换回时域得到L点的循环前缀信号,其中L点对应的时间为
    L为所述循环前缀的长度,N为所述非循环前缀的长度,L、N为大于或等于0的整数。
  19. 根据权利要求17或18所述的装置,其特征在于,所述循环前缀信号和所述非循环前缀信号在时间上是连续的。
  20. 根据权利要求19所述的装置,其特征在于,所述满足以下公式:
  21. 根据权利要求20所述的装置,其特征在于,所述n1=0,所述n2=-K,所述 或者
    所述n1=K,所述n2=0,所述或者
    所述n1=0,所述n2=-K/2,所述或者
    所述n1=K,所述n2=K/2,所述
  22. 一种通信装置,其特征在于,包括:处理单元和收发单元;
    所述收发单元,用于获取在K个子载波上的第一信号;所述第一信号所占用的频率在所述K个子载波所对应的频域资源的频率范围内;其中,K为大于或等于1的整数;
    所述处理单元,用于以所述K个子载波所对应的频率资源的频率范围为采样率,对所述第一信号进行解调,得到数据信号。
  23. 根据权利要求22所述的装置,其特征在于,所述第一信号为模拟信号,所述第一 信号的频率在第一范围内,所述第一范围为或者,所述第一范围为
    其中,所述k0为所述K个子载波中频率最低的子载波对应的子载波索引,Δf为子载波宽度。
  24. 根据权利要求22所述的装置,其特征在于,所述第一信号为数字信号,所述第一信号的频率在第二范围内,所述第二范围为[k0,k0+K-1];或者,所述第二范围为[k0+K-1,k0];
    其中,所述k0为所述K个子载波中频率最低的子载波对应的子载波索引。
  25. 根据权利要求22~24任一所述的装置,其特征在于,所述第一信号包括循环前缀信号和非循环前缀信号;所述循环前缀信号是根据所述Z个数据信号和循环前缀时间生成的信号,所述非循环前缀信号是根据所述Z个数据信号中的已知数据信号和非循环前缀时间生成的信号。
  26. 根据权利要求25所述的装置,其特征在于,所述循环前缀信号和所述非循环前缀信号在时间上是连续的。
  27. 一种通信装置,其特征在于,包括:至少一个处理器,所述处理器和存储器耦合;
    所述存储器用于存储计算机程序或指令;
    所述处理器用于执行所述计算机程序或指令,以实现权利要求1~8任一项所述的方法或者实现权利要求9~13任一项所述的方法。
  28. 一种通信装置,其特征在于,包括:逻辑电路和输入输出接口;
    所述逻辑电路,用于根据权利要求1-8任一项所述的方法确定第一信号;
    所述输入输出接口,用于输出所述第一信号。
  29. 一种通信装置,其特征在于,包括:逻辑电路和输入输出接口;
    所述输入输出接口,用于输入第一信号;
    所述逻辑电路,用于根据权利要求9-13任一项所述的方法对所述第一信号进行解调,得到数据信号。
  30. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序或指令,当所述指令在计算机上运行时,实现权利要求1~8任一项所述的方法或者实现权利要求9~13任一项所述的方法。
  31. 一种计算机程序产品,其特征在于,包括计算机执行指令,当所述计算机执行指令在计算机上运行时,使得所述计算机执行如权利要求1~8任一项所述的方法或者如权利要求9~13任一项所述的方法。
  32. 一种通信系统,其特征在于,包括权利要求14~21任一项所述的通信装置或者如权利要求22~26任一项所述的通信装置。
PCT/CN2023/084184 2022-04-02 2023-03-27 一种信号传输方法和装置 WO2023185771A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210351131.9 2022-04-02
CN202210351131.9A CN116938282A (zh) 2022-04-02 2022-04-02 一种信号传输方法和装置

Publications (2)

Publication Number Publication Date
WO2023185771A1 true WO2023185771A1 (zh) 2023-10-05
WO2023185771A9 WO2023185771A9 (zh) 2023-11-09

Family

ID=88199160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084184 WO2023185771A1 (zh) 2022-04-02 2023-03-27 一种信号传输方法和装置

Country Status (2)

Country Link
CN (1) CN116938282A (zh)
WO (1) WO2023185771A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101689872A (zh) * 2008-07-07 2010-03-31 联发科技股份有限公司 用于在多频带正交频分复用存取通信系统中收发数据的方法以及使用同样方法的通信装置
CN102148789A (zh) * 2010-02-08 2011-08-10 清华大学 多载波调制信号的接收方法和装置
CN102223223A (zh) * 2011-06-27 2011-10-19 中兴通讯股份有限公司 多载波信号的接收方法及装置
US10348530B1 (en) * 2017-10-06 2019-07-09 University Of South Florida Combined minimization of intersymbol interference (ISI) and adjacent channel interference (ACI)
CN110471054A (zh) * 2019-08-16 2019-11-19 广州大学 宽带正交啁啾复用雷达通信一体化波形的信号处理方法
CN114124325A (zh) * 2020-08-31 2022-03-01 华为技术有限公司 信号生成方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101689872A (zh) * 2008-07-07 2010-03-31 联发科技股份有限公司 用于在多频带正交频分复用存取通信系统中收发数据的方法以及使用同样方法的通信装置
CN102148789A (zh) * 2010-02-08 2011-08-10 清华大学 多载波调制信号的接收方法和装置
CN102223223A (zh) * 2011-06-27 2011-10-19 中兴通讯股份有限公司 多载波信号的接收方法及装置
US10348530B1 (en) * 2017-10-06 2019-07-09 University Of South Florida Combined minimization of intersymbol interference (ISI) and adjacent channel interference (ACI)
CN110471054A (zh) * 2019-08-16 2019-11-19 广州大学 宽带正交啁啾复用雷达通信一体化波形的信号处理方法
CN114124325A (zh) * 2020-08-31 2022-03-01 华为技术有限公司 信号生成方法及装置

Also Published As

Publication number Publication date
CN116938282A (zh) 2023-10-24
WO2023185771A9 (zh) 2023-11-09

Similar Documents

Publication Publication Date Title
US10312990B2 (en) Signal sending or receiving method and device
CN115001923B (zh) 基于序列的信号处理方法及装置
CN112449429B (zh) 信号传输方法及通信装置
CN109392129B (zh) 一种资源分配的方法,终端以及网络设备
CN109274473B (zh) 基于序列的信号处理方法及装置
WO2017107716A1 (zh) 一种数据帧实现方法和装置
CN109802820A (zh) 基于序列的信号处理方法及信号处理装置
JP2023014109A (ja) 系列に基づく信号処理方法および装置
WO2023185771A1 (zh) 一种信号传输方法和装置
WO2023093821A1 (zh) 通信方法及装置
WO2018126968A1 (zh) 一种信号发送、接收方法及装置
WO2020114317A1 (zh) 一种参考信号的传输方法及装置
Kadhum et al. Digital chunk processing with orthogonal GFDM doubles wireless channel capacity
WO2022253116A1 (zh) 一种多用户通信的方法及相关通信装置
WO2023115564A1 (zh) 子载波确定方法、装置、设备及存储介质
WO2024192645A1 (zh) 通信方法、通信装置及通信系统
CN110868279A (zh) 一种信号发送、接收方法及装置
WO2023241190A1 (zh) 确定参考信号的符号的循环前缀长度的方法和装置
WO2024113323A1 (zh) 一种信号传输方法和装置
WO2024041522A1 (zh) 信号处理的方法和装置
WO2024169864A1 (zh) 通信方法及相关装置
WO2024192644A1 (zh) 通信方法、通信装置及通信系统
WO2024082926A1 (zh) 信号传输方法、通信系统及通信装置
RU2776782C2 (ru) Устройство и способ обработки сигнала на основе последовательности
US20220329379A1 (en) Signal sending method, signal receiving method, and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778136

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023778136

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023778136

Country of ref document: EP

Effective date: 20240930

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024020264

Country of ref document: BR