WO2023115564A1 - 子载波确定方法、装置、设备及存储介质 - Google Patents

子载波确定方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2023115564A1
WO2023115564A1 PCT/CN2021/141329 CN2021141329W WO2023115564A1 WO 2023115564 A1 WO2023115564 A1 WO 2023115564A1 CN 2021141329 W CN2021141329 W CN 2021141329W WO 2023115564 A1 WO2023115564 A1 WO 2023115564A1
Authority
WO
WIPO (PCT)
Prior art keywords
subcarrier allocation
subcarriers
transmission
subcarrier
receiving device
Prior art date
Application number
PCT/CN2021/141329
Other languages
English (en)
French (fr)
Inventor
张振宇
赵群
吴昱民
池连刚
胡苏�
黄驿轩
叶启彬
胡泽林
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202180004685.5A priority Critical patent/CN116648636A/zh
Priority to PCT/CN2021/141329 priority patent/WO2023115564A1/zh
Publication of WO2023115564A1 publication Critical patent/WO2023115564A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/02Systems for determining distance or velocity not using reflection or reradiation using radio waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present application relates to the field of mobile communications, and in particular to a subcarrier determination method, device, equipment and storage medium.
  • the distance and speed of a single communication device can be measured by means of echo processing.
  • Embodiments of the present application provide a method, device, device, and storage medium for determining subcarriers.
  • the interval between adjacent subcarriers is a target interval to ensure the reliability of determined subcarriers used for data transmission. Described technical scheme is as follows:
  • a method for determining a subcarrier is provided, the method is performed by a target device, and the method includes:
  • the interval between two adjacent subcarriers in the plurality of subcarriers is a target interval
  • the transmission device is at least one of the following devices: a data receiving device and an echo receiving device.
  • an apparatus for determining a subcarrier comprising:
  • a determining module configured to determine multiple subcarriers corresponding to each of the at least two transmission devices at the same time domain position
  • the interval between two adjacent subcarriers in the plurality of subcarriers is a target interval
  • the transmission device is at least one of the following devices: a data receiving device and an echo receiving device.
  • a target device which includes: a processor; a transceiver connected to the processor; a memory for storing executable instructions of the processor; wherein the processor is configured as The executable instructions are loaded and executed to implement the subcarrier determination method in the above aspect.
  • a computer-readable storage medium is provided.
  • Executable program codes are stored in the readable storage medium, and the executable program codes are loaded and executed by a processor to implement the method for determining subcarriers as described above.
  • a chip is provided, the chip includes a programmable logic circuit and/or program instructions, and when the chip is run on a target device, it is used to implement the method for determining a subcarrier according to the above aspect.
  • an embodiment of the present application provides a computer program product, which is used to implement the method for determining a subcarrier in the above aspect when the computer program product is executed by a processor of a target device.
  • the embodiment of the present application provides a subcarrier determination method.
  • the interval between adjacent subcarriers is the target interval, which ensures that the determined subcarriers used for data transmission Reliability, and there is an interval between adjacent subcarriers to prevent interference between subcarriers and ensure the accuracy of determining the parameters of the data receiving device based on the transmitted data.
  • Fig. 1 shows a block diagram of a communication system provided by an exemplary embodiment of the present application
  • Fig. 2 shows a schematic diagram of signal processing provided by an exemplary embodiment of the present application
  • FIG. 3 shows a flowchart of a subcarrier determination method provided in an exemplary embodiment of the present application
  • FIG. 4 shows a flowchart of a subcarrier determination method provided in an exemplary embodiment of the present application
  • FIG. 5 shows a flowchart of a subcarrier determination method provided in an exemplary embodiment of the present application
  • FIG. 6 shows a flowchart of a subcarrier determination method provided in an exemplary embodiment of the present application
  • FIG. 7 shows a flowchart of a subcarrier determination method provided in an exemplary embodiment of the present application.
  • FIG. 8 shows a flowchart of a subcarrier determination method provided in an exemplary embodiment of the present application
  • Fig. 9 shows a schematic diagram of distance and speed measurement provided by an exemplary embodiment of the present application.
  • Fig. 10 shows a schematic diagram of distance and speed measurement provided by an exemplary embodiment of the present application
  • FIG. 11 shows a block diagram of an apparatus for determining a subcarrier provided in an exemplary embodiment of the present application
  • FIG. 12 shows a block diagram of an apparatus for determining a subcarrier provided in an exemplary embodiment of the present application
  • Fig. 13 shows a schematic structural diagram of a communication device provided by an exemplary embodiment of the present application.
  • first, second, third, etc. may be used in this application to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the present application, first information may also be called second information, and similarly, second information may also be called first information. Depending on the context, for example, the word “if” as used herein could be interpreted as “at” or “when” or "in response to a determination”.
  • FIG. 1 shows a block diagram of a communication system provided by an exemplary embodiment of the present application.
  • the communication system may include: a terminal 10 and a network device 20 .
  • the terminal 10 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to a wireless modem, as well as various forms of user equipment (User Equipment, UE), mobile station ( Mobile Station, MS) and so on.
  • UE User Equipment
  • MS Mobile Station
  • the access network device 20 is a device deployed in an access network to provide a wireless communication function for the terminal 10 .
  • the access network device 20 may include various forms of macro base stations, micro base stations, relay stations, access points, and so on.
  • the names of devices with access network device functions may be different.
  • they are called gNodeB or gNB.
  • access network equipment With the evolution of communication technology, the name "access network equipment" may change.
  • access network devices For the convenience of description, in the embodiment of the present application, the above-mentioned devices that provide the wireless communication function for the terminal 10 are collectively referred to as access network devices.
  • a connection may be established between the access network device 20 and the terminal 10 through an air interface, so as to perform communication through the connection, including signaling and data interaction.
  • the number of access network devices 20 may be multiple, and two adjacent access network devices 20 may also communicate in a wired or wireless manner.
  • the terminal 10 can switch between different access network devices 20 , that is, establish connections with different access network devices 20 .
  • the "5G NR system" in the embodiment of the present application may also be called a 5G system or an NR system, but those skilled in the art can understand its meaning.
  • the technical solutions described in the embodiments of this application can be applied to the 5G NR system, and can also be applied to the subsequent evolution system of the 5G NR system.
  • a synaesthesia integration technology is proposed, which is realized by a communication system and a radar system.
  • the application can realize perception and detection through the synaesthesia integration technology to obtain The speed and/or distance of movement of the receiving end of the data.
  • the synesthesia integration technology includes data sending equipment, data receiving equipment and echo receiving equipment. Before the data sending device, data receiving device, and echo receiving device interact, they can first determine the multiple subcarriers corresponding to each data receiving device and echo receiving device at the same time domain position. For the convenience of description, this application will determine The sub-carrier devices are uniformly described as target devices, and the data receiving devices and echo receiving devices are uniformly described as transmission devices.
  • the data sending device may transmit data based on the subcarriers.
  • the data sending device sends a signal
  • the echo receiving device can receive the information sent by the data sending device, and the data receiving device not only receives the signal, but also reflects the signal
  • the echo receiving device receives the signal reflected by the data receiving device
  • the echo receiving device can also receive the signal sent by the data sending device, and then determine the moving speed and/or distance of the data receiving device according to the signal sent by the data sending device and the received signal reflected by the data receiving device.
  • the communication radar integrated system architecture transmits bit data, performs serial-to-parallel conversion and symbol modulation on the bit data, the modulated signal is sent to the radar processor, and the modulated signal is also processed After the inverse fast Fourier transform, add a cyclic prefix and then perform parallel-to-serial conversion, convert the converted signal from a digital signal to an analog signal, and transmit it to a moving target device.
  • the target device will reflect the converted signal.
  • the receiving device converts the reflected signal from an analog signal to a digital signal, removes the cyclic prefix from the converted signal, performs serial-to-parallel conversion, performs fast Fourier transform, and performs parallel-to-serial conversion on the converted signal Converted, demodulated to get the bit data, and the radar processor can determine the moving speed and/or distance of the target device based on the two signals received.
  • the terminal and the access network device mentioned above may be the data sending device and the data receiving device in the synaesthesia integration technology
  • the radar processor is the echo receiving device, that is, the data sending device sends Bit data
  • the radar processor and the data receiving device both receive the signal processed by the data sending device on the bit data
  • the data receiving device also reflects the signal sent by the data sending device, then the radar processor and the data sending device can also receive data The signal reflected by the receiving device.
  • the data sending device can send data to multiple data receiving devices, and different data receiving devices receive the data sent by the data sending device on different subcarriers, so for the data sending device, the data receiving device and the echo For the receiving device, it is necessary to determine the subcarrier of each data receiving device, and then receive the data sent by the data sending device based on the subcarrier of each data receiving device.
  • the signal processing of the communication radar integrated system of the present application is described: based on OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) communication radar integrated system, after the signal is scattered and the target is reflected by the data sending device, the data is received The device transmits the received signal to the communication processing end and the radar processing end respectively.
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • S Tx () is the OFDM frequency domain symbol, that is, the Fourier transform of s(t)
  • N frame is the total number of symbols of a frame OFDM signal
  • N c is the number of subcarriers
  • 0,...
  • N frame -1 is the OFDM symbol index
  • f n represents the corresponding subcarrier frequency
  • T is OFDM basic symbol period
  • T CP is the cyclic prefix time
  • rect() is the rectangular window function.
  • the communication and radar integrated system can communicate and perceive the target equipment in the environment, and the received signal has Doppler frequency deviation, and its expression is:
  • is the wavelength
  • f c is the carrier frequency
  • c is the speed of light
  • c/f c .
  • the received signal is expressed as:
  • the received modulation symbol is:
  • a linear phase shift will be generated between the subcarrier data of all reflected OFDM symbols.
  • the distance information R is contained in the linear phase shift between modulation symbols on the frequency axis.
  • Doppler processing is similar to range processing.
  • the Doppler frequency of the echo signal reflected by the target device moving at the relative speed v rel is twice the Doppler frequency of the communication signal with the same relative speed.
  • the relative speed information v rel is included in the linear phase shift between the modulation symbols on the time axis.
  • Fig. 3 shows a flowchart of a subcarrier determination method provided by an exemplary embodiment of the present application, which can be applied to the target device as shown in Fig. 2 , taking the target device as a data sending device as an example, the A method that includes at least some of the following:
  • Step 301 The data sending device determines multiple subcarriers corresponding to each of the at least two transmission devices at the same time domain position.
  • the subcarriers are used for data transmission
  • the interval between adjacent subcarriers in the plurality of subcarriers is the target interval
  • the transmission device is at least one of a data receiving device and an echo receiving device.
  • a plurality refers to any number greater than one, that is, a plurality is greater than or equal to 2.
  • the data sending device may send data to at least two transmission devices, so as to measure the moving speed and/or distance of each data receiving device based on the sent data, and for each transmission device, the The transmission device corresponds to multiple subcarriers at the same time domain position, so the data sending device needs to determine the multiple subcarriers corresponding to each transmission device at the same time domain position, and the interval between adjacent subcarriers among the multiple subcarriers As the target interval, the subsequent data sending device may perform data transmission based on the determined multiple subcarriers.
  • the embodiment of the present application is only described by taking the target device as the data sending device as an example.
  • the target device may also be the data receiving device, that is, the data receiving device determines multiple subcarriers corresponding to each of the at least two transmission devices at the same time domain position.
  • the transmitting device corresponds to multiple subcarriers at the same time domain position, and the data transmitting device will perform data transmission according to multiple subcarriers, and the data receiving device also needs to determine the multiple subcarriers corresponding to the same time domain position , and the interval between adjacent subcarriers among the plurality of subcarriers is the target interval.
  • the target device may also be the echo receiving device, that is, the echo receiving device determines multiple subcarriers corresponding to each of the at least two transmission devices at the same time domain position.
  • the echo receiving device corresponds to multiple subcarriers at the same time domain position, and the data sending device will perform data transmission according to multiple subcarriers, so the echo receiving device can receive the data sent by the data sending device and For the data reflected by the data receiving device, multiple subcarriers corresponding to the same time domain position also need to be determined, and the interval between adjacent subcarriers among the multiple subcarriers is the target interval.
  • the embodiment of the present application provides a subcarrier determination method.
  • the interval between adjacent subcarriers is the target interval, which ensures that the determined subcarriers used for data transmission Reliability, and there is an interval between adjacent subcarriers to prevent interference between subcarriers and ensure the accuracy of determining the parameters of the data receiving device based on the transmitted data.
  • the embodiment shown in FIG. 3 illustrates the determined subcarriers.
  • the distribution of the subcarriers can be determined according to the subcarrier allocation method.
  • the following still uses the target device as the data sending device as an example for description:
  • the first method determine the subcarrier according to the subcarrier allocation method sent by the access network equipment, for example, referring to Figure 4, the method includes:
  • Step 401 The data sending device receives the subcarrier allocation mode sent by the access network device, and the subcarrier allocation mode indicates the target interval of the transmission device.
  • the access network device may send the subcarrier allocation method to each device, the subcarrier allocation method indicates that the subcarriers corresponding to the transmission device are distributed at the same time domain position according to the target interval, and the data transmission device receives To the subcarrier allocation mode sent by the access network device, the subcarrier allocation mode indicates the subcarrier allocation situation.
  • subcarriers distributed according to target intervals at the same time domain position refer to: multiple equally spaced subcarriers at the same time domain position; that is, the distance between two adjacent subcarriers is the target interval.
  • the access network device sends configuration information, where the configuration information includes a subcarrier allocation manner.
  • the access network device may send multiple subcarrier allocation modes to the data sending device, and then the data sending device may receive the multiple subcarrier allocation modes.
  • Step 402 The data sending device determines multiple subcarriers corresponding to the same time domain position of each transmission device according to the subcarrier allocation manner.
  • the plurality of subcarriers are distributed at equal intervals, and the interval is the target interval.
  • the data sending device after receiving the subcarrier allocation method sent by the access network device, can determine the multiple subcarriers corresponding to each transmission device at the same time domain position according to the subcarrier allocation method according to the target The intervals are equally spaced.
  • the subcarrier allocation mode is carried in DCI (Downlink Control Information, downlink control information) signaling, or the subcarrier allocation mode is carried in MAC-CE (Medium Access Control-Control Element, media access control-control unit ) signaling, or the subcarrier allocation method is carried in RRC (Radio Resource Control, radio resource control) signaling.
  • DCI Downlink Control Information, downlink control information
  • MAC-CE Medium Access Control-Control Element, media access control-control unit
  • RRC Radio Resource Control, radio resource control
  • the access network device indicates the subcarrier allocation manner through semi-static signaling. In this embodiment of the present application, the access network device determines the subcarrier allocation manner indicated by the signaling through the signaling sent.
  • the signaling is RRC signaling.
  • the access network device indicates the subcarrier allocation manner through dynamic information.
  • the access network device indicates the subcarrier allocation mode through MAC-CE signaling or DCI signaling.
  • the embodiment of the present application is only described by taking an access network device indicating subcarrier allocation manner as an example.
  • the data sending device determines the subcarrier allocation method to be used from the multiple subcarrier allocation methods, and then determines the used subcarrier allocation method according to itself Determine the distribution of each data receiving device.
  • the data sending device can determine the subcarrier distribution of each data receiving device according to the subcarrier allocation method sent by the access network device, so as to ensure the subcarriers used for data transmission determined by the data sending device Reliability, and there is an interval between adjacent subcarriers to prevent interference between subcarriers and ensure the accuracy of determining the parameters of the data receiving device based on the transmitted data.
  • the second type the distribution of subcarriers at the same time domain position according to the target interval is stipulated by the communication protocol, and then the data sending device determines the subcarriers according to the communication protocol.
  • the method includes:
  • Step 501 The data sending device determines the subcarrier allocation mode of the transmission device according to the communication protocol.
  • the subcarrier allocation method indicates that the subcarriers corresponding to the transmission device are distributed at the same time domain position according to the target interval, then the data sending device receives the subcarrier allocation method sent by the access network device, and uses the subcarrier The allocation mode indicates the allocation of subcarriers.
  • Step 502 According to the subcarrier allocation method, the data sending device determines that the interval between two adjacent subcarriers among the multiple subcarriers corresponding to the same time domain position of each data receiving device is the target interval.
  • the distribution of multiple subcarriers corresponding to each transmission device at the same time domain position is stipulated by the communication protocol, so the data sending device can directly determine the subcarrier allocation method according to the communication protocol, and then determine that each transmission device is in the same time domain.
  • the multiple subcarriers corresponding to the domain positions are distributed according to the target interval.
  • the communication protocol stipulates the start position and target interval of each subcarrier among the multiple subcarriers corresponding to each transmission device at the same time domain position, so according to the start position of each subcarrier corresponding to each transmission device The location and the target interval determine the multiple subcarriers corresponding to each transmission device.
  • the data sending device can determine the subcarrier distribution of each transmission device according to the subcarrier allocation method stipulated in the communication protocol, so as to ensure the reliability of the subcarriers used for data transmission determined by the data sending device , and there is an interval between adjacent subcarriers to prevent interference between subcarriers and ensure the accuracy of determining the parameters of the data receiving device based on the transmitted data.
  • the third method determine the subcarrier according to the subcarrier allocation method sent by the core network equipment, for example, referring to Figure 6, the method includes:
  • Step 601 The data sending device receives the subcarrier allocation mode sent by the core network device, and the subcarrier allocation mode indicates the target interval of the transmission device.
  • the core network device can directly send the subcarrier allocation method to the data sending device; if the data sending device is not directly connected to the core network device, the core network The device may send the subcarrier allocation manner to the data sending device through any other appropriate device. In the embodiments of the present disclosure, these methods are collectively referred to as: the data sending device receives the subcarrier allocation method sent by the core network device.
  • the core network device may directly or indirectly (through other devices) send the subcarrier allocation method to each device, the subcarrier allocation method indicates that the subcarriers are distributed at the same time domain position according to the target interval, then the data The sending device receives the subcarrier allocation mode sent by the core network device, and indicates the subcarrier allocation situation through the subcarrier allocation mode.
  • the core network device sends configuration information, where the configuration information includes a subcarrier allocation manner.
  • the core network device may send multiple subcarrier allocation modes to the data sending device, and then the data sending device may receive the multiple subcarrier allocation modes.
  • Step 602 The data sending device determines multiple subcarriers corresponding to each transmission device at the same time domain position according to the subcarrier allocation method.
  • the plurality of subcarriers are distributed at equal intervals, and the interval is the target interval.
  • the data sending device after the data sending device receives the subcarrier allocation method sent by the core network device, it can determine the multiple subcarriers corresponding to each transmission device at the same time domain position according to the subcarrier allocation method according to the target interval distributed.
  • the subcarrier allocation manner is carried in DCI signaling, or the subcarrier allocation manner is carried in MAC-CE signaling, or the subcarrier allocation manner is carried in RRC signaling.
  • the core network device indicates the subcarrier allocation manner through semi-static signaling. In the embodiment of the present application, the core network device determines the subcarrier allocation manner indicated by the signaling through the signaling sent.
  • the signaling is RRC signaling.
  • the core network device indicates the subcarrier allocation manner through dynamic information.
  • the core network device indicates the subcarrier allocation mode through MAC-CE signaling or DCI signaling.
  • the data sending device can determine the subcarrier distribution of each transmission device according to the subcarrier allocation method sent by the core network device, so as to ensure the reliability of the subcarriers used for data transmission determined by the data sending device and there is an interval between adjacent subcarriers to prevent interference between subcarriers and ensure the accuracy of determining the parameters of the data receiving device based on the transmitted data.
  • the target device may also be a data receiving device, and the manner in which the data receiving device determines the subcarrier is similar to the manner in which the data sending device determines the subcarrier, so details are not repeated here.
  • the target device may also be an echo receiving device, and the manner in which the echo receiving device determines the subcarrier is similar to the manner in which the data sending device determines the subcarrier, and details are not repeated here. That is, steps 401 to 402 in the above-mentioned first manner may be executed by the data receiving device, or may be executed by the echo receiving device.
  • Steps 501 to 502 in the above second manner may be executed by the data receiving device, or may be executed by the echo receiving device.
  • Steps 601 to 602 in the above-mentioned second manner may be executed by the data receiving device, or may be executed by the echo receiving device.
  • the data receiving device needs to determine the distribution of subcarriers according to the subcarrier allocation method sent by the data sending device.
  • the method includes:
  • Step 701 The data sending device sends a subcarrier allocation manner to the data receiving device.
  • Step 702 The data receiving device receives the subcarrier allocation mode sent by the data sending device.
  • Step 703 The data receiving device determines the interval between two adjacent subcarriers among the multiple subcarriers corresponding to the same time domain position of each transmission device as the target interval according to the subcarrier allocation method.
  • the data sending device after the data sending device determines the subcarrier allocation method, it can send the subcarrier allocation method to the data receiving device, and the data receiving device can determine the multiple subcarriers corresponding to the same time domain position according to the subcarrier allocation method of the distribution.
  • the data sending device sends a subcarrier allocation method to the data receiving device, wherein the subcarrier allocation method is used to instruct the data receiving device to determine two of the multiple subcarriers corresponding to each transmission device at the same time domain position according to the subcarrier allocation method
  • the interval between adjacent subcarriers is the target interval.
  • the data receiving device receives the subcarrier allocation method sent by the data sending device, so as to determine the interval between two adjacent subcarriers among the multiple subcarriers corresponding to the same time domain position of each transmission device according to the subcarrier allocation method. target interval.
  • the data receiving device can determine the distribution of subcarriers according to the subcarrier allocation method sent by the data sending device, and then perform data transmission based on the determined subcarriers, so as to ensure that the data receiving device determines the distribution of subcarriers.
  • the echo receiving device needs to determine the distribution of subcarriers according to the subcarrier allocation method sent by the data sending device.
  • the method includes:
  • Step 801 The data sending device sends the subcarrier allocation mode to the echo receiving device.
  • Step 802 The echo receiving device receives the subcarrier allocation mode sent by the data sending device.
  • Step 803 The echo receiving device determines the interval between two adjacent subcarriers among the multiple subcarriers corresponding to the same time domain position of each transmission device as the target interval according to the subcarrier allocation manner.
  • the data sending device after the data sending device determines the subcarrier allocation method, it can send the subcarrier allocation method to the echo receiving device, and the echo receiving device can determine the corresponding multi-carrier at the same time domain position according to the subcarrier allocation method.
  • the distribution of subcarriers After the data sending device determines the subcarrier allocation method, it can send the subcarrier allocation method to the echo receiving device, and the echo receiving device can determine the corresponding multi-carrier at the same time domain position according to the subcarrier allocation method. The distribution of subcarriers.
  • the data sending device sends the subcarrier allocation mode to the echo receiving device, wherein the subcarrier allocation mode is used to instruct the echo receiving device to determine the number of subcarriers corresponding to the same time domain position of each transmission device according to the subcarrier allocation mode.
  • the spacing between two adjacent subcarriers is the target spacing.
  • the echo receiving device receives the subcarrier allocation method sent by the data sending device, so as to determine the interval between two adjacent subcarriers among the multiple subcarriers corresponding to the same time domain position of each transmission device according to the subcarrier allocation method is the target interval.
  • the echo receiving device can determine the distribution of subcarriers according to the subcarrier allocation method sent by the data sending device, and then perform data transmission based on the determined subcarriers to ensure that the echo receiving device determines the distribution of subcarriers.
  • the above-mentioned embodiments in FIG. 7 and FIG. 8 are only described by taking the manner in which the data sending device sends the subcarrier allocation to the data receiving device and the echo receiving device as an example.
  • the data receiving device can also determine the subcarrier allocation method, and then the data receiving device sends the subcarrier allocation method to the data sending device and the echo receiving device, wherein the data receiving device sends the data sending device and the echo receiving device the subcarrier allocation method.
  • the process of sending the subcarrier allocation mode by the wave receiving device is similar to the process of the embodiments shown in FIG. 7 and FIG. 8 above, and will not be repeated here.
  • the echo receiving device can also determine the subcarrier allocation method, and then the echo receiving device sends the subcarrier allocation method to the data sending device and the data receiving device, wherein the echo receiving device sends
  • the process for the device and the data receiving device to send the subcarrier allocation mode is similar to the flow of the embodiments shown in FIG. 7 and FIG. 8 above, and will not be repeated here.
  • the target interval is determined according to the number of data receiving devices, that is, the determined target intervals are different for different numbers of data receiving devices.
  • the target interval is the difference between the number of data receiving devices and one.
  • At least two data receiving devices need to occupy subcarriers at the same time domain position, then each data receiving device allocates multiple subcarriers at the same time domain position, so that each The distance between adjacent subcarriers among the multiple subcarriers allocated by the data receiving device is the target interval.
  • the target interval is the difference between the number of data receiving devices and 1.
  • the subcarriers occupied by the data receiving device in the frequency domain resources have equal frequency intervals, that is, the frequency interval of adjacent frequency domain signals is the target interval.
  • N(s) represent the sth element of the set.
  • the interval between adjacent subcarriers is only described by using one data receiving device.
  • the interval between two adjacent subcarriers corresponding to one data receiving device is one subcarrier corresponding to all other data receiving devices, that is, the target interval is the sum of the number of subcarriers corresponding to all other data receiving devices.
  • a time domain position includes 1024 subcarriers
  • for the fourth data receiving device each time domain position
  • the 4n+4th subcarrier among the 1024 subcarriers at the domain position, n 0, 1, 2...255.
  • the target interval is a subcarrier respectively corresponding to the second data receiving device, the third data receiving device and the fourth data receiving device.
  • the space between the 1st subcarrier and the 5th subcarrier is the 2nd subcarrier, the 3rd subcarrier of the second data receiving device The third subcarrier of the first data receiving device and the fourth subcarrier of the fourth data receiving device.
  • the third subcarrier and the fourth data of the third data receiving device spaced between the second subcarrier and the sixth subcarrier.
  • the 4th subcarrier of the receiving device and the 5th subcarrier of the first data receiving device, and so on, each data receiving device's adjacent two subcarriers are separated by one subcarrier of all other data receiving devices.
  • the distances and speeds of other terminals are the distances and speeds corresponding to the black dots in the figure.
  • a time domain position includes 1024 subcarriers
  • for the fourth data receiving device each time domain position
  • the 4n+1th subcarrier among the 1024 subcarriers at the domain position, n 0,1,2...255, where i,j,k,l ⁇ 1,2,3,4 ⁇ and i, j, k and l are different, for each time domain position, i, j, k, l are randomly determined from 1, 2, 3, 4, but i,
  • the target interval is a subcarrier respectively corresponding to the second data receiving device, the third data receiving device and the fourth data receiving device.
  • i takes 2
  • j takes 1
  • k takes 4
  • l takes 3 as an example, taking the second subcarrier and the sixth subcarrier of the first data receiving device as an example, the second subcarrier
  • the space between the carrier and the 6th subcarrier is the 3rd subcarrier of the fourth data receiving device, the 4th subcarrier of the third data receiving device and the 5th subcarrier of the second data receiving device.
  • each data receiving device has an interval between two adjacent subcarriers of one subcarrier of all other data receiving devices.
  • the distances and speeds of other terminals are the distances and speeds corresponding to the black dots in the figure.
  • the data receiving device is a terminal
  • the echo receiving device is an access network device or a terminal
  • the data sending device is an access network device or a terminal.
  • the data sending device and the echo receiving device may be the same device.
  • the data sending device and the echo receiving device are both access network devices.
  • both the data sending device and the echo receiving device are terminals, but the terminal of the data sending device and the echo receiving device is not the same terminal as the terminal of the data receiving device.
  • the synaesthesia integrated system is an active radar system
  • the data sending device sends bit data to the data receiving device
  • the data receiving device acts as a receiver Complete the communication function.
  • the data sending device sends the bit data and irradiates the echo signal generated on the data receiving end to the echo receiving device (that is, the data sending device), and the echo receiving device detects the speed and distance of the data receiving device through the radar processor , to complete the radar function.
  • the data sending device and the echo receiving device are different devices.
  • the data sending device is the access network device 1
  • the data receiving device is the terminal
  • the echo receiving device is the access network device 2 or a set of access network devices.
  • the data sending device is terminal 1
  • the data receiving device is terminal 2
  • the echo receiving device is terminal 3 or a combination of terminals.
  • the data sending device is terminal 1
  • the data receiving device is terminal 2
  • the echo receiving device is an access network device or a set of access network devices.
  • the integrated system of synesthesia is a passive radar system
  • the data sending device and the echo receiving device are different devices, and there may be multiple an echo receiving device.
  • the data sending device sends bit data to the data receiving device, and the data receiving device acts as a receiver to complete the communication function.
  • the data sending device transmits bit data and irradiates the echo signal generated by the data receiving device back to the echo receiving device.
  • the echo receiving device detects the speed and distance of the data receiving device through the radar processor to complete the radar function.
  • Fig. 11 shows a block diagram of an apparatus for determining a subcarrier provided in an exemplary embodiment of the present application.
  • the apparatus includes:
  • a determination module 1101 configured to determine a plurality of subcarriers corresponding to each transmission device in the same time domain position in at least two transmission devices;
  • the transmission device is at least one of the following devices: a data receiving device and an echo receiving device.
  • subcarriers of different transmission devices do not overlap each other.
  • the device also includes:
  • the receiving module 1102 is configured to receive the subcarrier allocation mode of the transmission equipment sent by the access network equipment, where the subcarrier allocation mode indicates the target interval of the transmission equipment;
  • the determination module 1101 is further configured to determine the interval between two adjacent subcarriers among the multiple subcarriers corresponding to the same time domain position of each transmission device as the target interval according to the subcarrier allocation manner.
  • the determination module 1101 is also used to:
  • the interval between two adjacent subcarriers among the multiple subcarriers corresponding to the same time domain position of each transmission device is determined as the target interval.
  • the device also includes:
  • the receiving module 1102 is configured to receive the subcarrier allocation mode of the transmission equipment sent by the core network equipment, and the subcarrier allocation mode indicates the target interval of the transmission equipment;
  • the determination module 1101 is further configured to determine the interval between two adjacent subcarriers among the multiple subcarriers corresponding to the same time domain position of each transmission device as the target interval according to the subcarrier allocation manner.
  • the target device is at least one of the following devices:
  • Data sending device data receiving device or echo receiving device.
  • the device also includes:
  • the sending module 1103 is configured to send the subcarrier allocation mode to the transmission device, where the subcarrier allocation mode indicates the target interval of the transmission device.
  • the sending module 1103 is also used to:
  • the subcarrier allocation mode is sent to the transmission device through RRC signaling.
  • the data sending device is an access network device or a terminal.
  • the data receiving device is a terminal.
  • the echo receiving device is an access network device or a terminal.
  • the target interval is the difference between the number of data receiving devices and one.
  • the division of the above-mentioned functional modules is used as an example for illustration. In practical applications, the above-mentioned function allocation can be completed by different functional modules according to the needs.
  • the internal structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • the device and the method embodiment provided by the above embodiment belong to the same idea, and the specific implementation process thereof is detailed in the method embodiment, and will not be repeated here.
  • FIG. 13 shows a schematic structural diagram of a communication device provided by an exemplary embodiment of the present application.
  • the communication device includes: a processor 1301 , a receiver 1302 , a transmitter 1303 , a memory 1304 and a bus 1305 .
  • the processor 1301 includes one or more processing cores, and the processor 1301 executes various functional applications and information processing by running software programs and modules.
  • the receiver 1302 and the transmitter 1303 can be implemented as a communication component, which can be a communication chip.
  • the memory 1304 is connected to the processor 1301 through the bus 1305 .
  • the memory 1304 may be used to store at least one program code, and the processor 1301 is used to execute the at least one program code, so as to implement various steps in the foregoing method embodiments.
  • the communication device may be a terminal or a network device.
  • the memory 1304 can be realized by any type of volatile or non-volatile storage device or their combination, and the volatile or non-volatile storage device includes but not limited to: magnetic disk or optical disk, electrically erasable programmable read-only Memory (EEPROM), Erasable Programmable Read Only Memory (EPROM), Static Anytime Access Memory (SRAM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Programmable Read Only Memory (PROM).
  • EEPROM electrically erasable programmable read-only Memory
  • EPROM Erasable Programmable Read Only Memory
  • SRAM Static Anytime Access Memory
  • ROM Read Only Memory
  • Magnetic Memory Magnetic Memory
  • Flash Memory Programmable Read Only Memory
  • a computer-readable storage medium is also provided, and executable program code is stored in the readable storage medium, and the executable program code is loaded and executed by a processor to implement the implementation of each of the above methods.
  • the example provides a subcarrier determination method performed by a communication device.
  • a chip in an exemplary embodiment, includes a programmable logic circuit and/or program instructions, and when the chip is run on a terminal or a network device, it is used to implement the method as provided in each method embodiment.
  • Subcarrier determination method when the chip is run on a terminal or a network device, it is used to implement the method as provided in each method embodiment.
  • a computer program product is provided, and when the computer program product is executed by a processor of a terminal or a network device, it is used to implement the methods for determining subcarriers provided by the above method embodiments.
  • the program can be stored in a computer-readable storage medium.
  • the above-mentioned The storage medium mentioned may be a read-only memory, a magnetic disk or an optical disk, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种子载波确定方法、装置、设备及存储介质,涉及移动通信领域。该方法包括:目标设备确定至少两个传输设备中每个传输设备在相同的时域位置对应的多个子载波;其中,所述多个子载波中的两个相邻子载波之间的间隔为目标间隔,所述传输设备为以下的至少一种设备:数据接收设备、回波接收设备,保证确定的用于进行数据传输的子载波的可靠性,并且相邻的子载波之间存在间隔,防止子载波之间的干扰,保证基于传输的数据确定数据接收设备的参数的准确性。

Description

子载波确定方法、装置、设备及存储介质 技术领域
本申请涉及移动通信领域,特别涉及一种子载波确定方法、装置、设备及存储介质。
背景技术
随着移动通信技术的快速发展,通过回波处理的方式可以测量单独的通信设备的距离和速度。而对于多个通信设备的情况,在同一时刻需要考虑如何为这多个通信设备分配子载波。
发明内容
本申请实施例提供了一种子载波确定方法、装置、设备及存储介质,相邻的子载波之间的间隔为目标间隔,保证确定的用于进行数据传输的子载波的可靠性。所述技术方案如下:
根据本申请的一个方面,提供了一种子载波确定方法,所述方法由目标设备执行,方法包括:
确定至少两个数据接收设备中每个数据接收设备在相同的时域位置对应的多个子载波;
其中,所述多个子载波中的两个相邻子载波之间的间隔为目标间隔,所述传输设备为以下的至少一种设备:数据接收设备、回波接收设备。
根据本申请的一个方面,提供了一种子载波确定装置,所述装置包括:
确定模块,用于确定至少两个传输设备中每个传输设备在相同的时域位置对应的多个子载波;
其中,所述多个子载波中的两个相邻子载波之间的间隔为目标间隔,所述传输设备为以下的至少一种设备:数据接收设备、回波接收设备。
根据本申请的一个方面,提供了一种目标设备,所述目标设备包括:处理器;与处理器相连的收发器;用于存储处理器的可执行指令的存储器;其中,处理器被配置为加载并执行可执行指令以实现如上述方面的子载波确定方法。
根据本申请的一个方面,提供了一种计算机可读存储介质,可读存储介质中存储有可执行程序代码,可执行程序代码由处理器加载并执行以实现如上述方面的子载波确定方法。
根据本申请的一个方面,提供了一种芯片,芯片包括可编程逻辑电路和/或程序指令,当芯片在目标设备上运行时,用于实现如上述方面的子载波确定方法。
根据本申请的一个方面,本申请实施例提供了一种计算机程序产品,当计算机程序产品被目标设备的处理器执行时,其用于实现上述方面的子载波确定方法。
本申请实施例提供了一种子载波确定方式,在相同的时域位置确定的多个子载波中,相邻的子载波之间的间隔为目标间隔,保证确定的用于进行数据传输的子载波的可靠性,并且相邻的子载波之间存在间隔,防止子载波之间的干扰,保证基于传输的数据确定数据接收设备的参数的准确性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本申请一个示例性实施例提供的通信系统的框图;
图2示出了本申请一个示例性实施例提供的信号处理的示意图;
图3示出了本申请一个示例性实施例提供的子载波确定方法的流程图;
图4示出了本申请一个示例性实施例提供的子载波确定方法的流程图;
图5示出了本申请一个示例性实施例提供的子载波确定方法的流程图;
图6示出了本申请一个示例性实施例提供的子载波确定方法的流程图;
图7示出了本申请一个示例性实施例提供的子载波确定方法的流程图;
图8示出了本申请一个示例性实施例提供的子载波确定方法的流程图;
图9示出了本申请一个示例性实施例提供的距离和速度测量的示意图;
图10示出了本申请一个示例性实施例提供的距离和速度测量的示意图;
图11示出了本申请一个示例性实施例提供的子载波确定装置的框图;
图12示出了本申请一个示例性实施例提供的子载波确定装置的框图;
图13示出了本申请一个示例性实施例提供的通信设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也是旨在包括多数形式,除非上下文清楚地表示其它含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本申请可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,例如,在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面,对本申请的应用场景进行说明:
图1示出了本申请一个示例性实施例提供的通信系统的框图,该通信系统可以包括:终端10和网络设备20。
终端10的数量通常为多个,每一个网络设备20所管理的小区内可以分布一个或多个终端10。终端10可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE)、移动台(Mobile Station,MS)等等。为方便描述,本申请实施例中,上面提到的设备统称为终端。
接入网设备20是一种部署在接入网中用以为终端10提供无线通信功能的装置。接入网设备20可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备接入网设备功能的设备的名称 可能会有所不同,例如在5G NR系统中,称为gNodeB或者gNB。随着通信技术的演进,“接入网设备”这一名称可能会变化。为方便描述,本申请实施例中,上述为终端10提供无线通信功能的装置统称为接入网设备。接入网设备20与终端10之间可以通过空口建立连接,从而通过该连接进行通信,包括信令和数据的交互。接入网设备20的数量可以有多个,两个邻近的接入网设备20之间也可以通过有线或者无线的方式进行通信。终端10可以在不同的接入网设备20之间进行切换,也即与不同的接入网设备20建立连接。
本申请实施例中的“5G NR系统”也可以称为5G系统或者NR系统,但本领域技术人员可以理解其含义。本申请实施例描述的技术方案可以适用于5G NR系统,也可以适用于5G NR系统后续的演进系统。
而随着移动通信技术的发展,提出了一种通感一体化技术,该通感一体化技术由通信系统和雷达系统实现,本申请可以通过该通感一体化技术实现感知与检测,以获取数据接收端的移动速度和/或距离。在通感一体化技术中,包括数据发送设备、数据接收设备和回波接收设备。而数据发送设备、数据接收设备和回波接收设备进行交互前,可以先确定每个数据接收设备和回波接收设备在相同的时域位置对应的多个子载波,本申请为方便描述,将确定子载波的设备统一以目标设备描述,数据接收设备和回波接收设备统一描述为传输设备。
在本申请实施例中,数据发送设备、数据接收设备和回波接收设备确定子载波后,可以基于子载波传输数据。其中,数据发送设备发送信号,回波接收设备可以接收数据发送设备发送的信息,而数据接收设备不仅接收该信号,还会对该信号进行反射,回波接收设备接收由数据接收设备反射的信号,并且回波接收设备还可以接收数据发送设备发送的信号,进而根据数据发送设备发送的信号和接收的数据接收设备反射的信号,确定数据接收设备的移动速度和/或距离。
例如,参见图2,该通信雷达一体化系统架构通过发送比特数据,对该比特数据进行串并转换和符号调制,调制后的信号会发送给雷达处理器,并且还会对调制后的信号进行快速傅里叶逆变换后,添加循环前缀后再进行并串转换,对转换后的信号进行数字信号到模拟信号的转换,发射给移动的目标设备,目标设备会对转换后的信号进行反射,接收设备对反射后的信号进行模拟信号到数字信号的转换,对转换后的信号去除循环前缀,再进行串并转化,再进行快速傅里叶变换,并且还会对变换后的信号进行并串转换,解调后得到比特数据, 而雷达处理器可以根据接收的两个信号确定目标设备的移动速度和/或距离。
在一些实施例中,上述所涉及的终端和接入网设备可以为通感一体化技术中的数据发送设备和数据接收设备,而雷达处理器为回波接收设备,也即是数据发送设备发送比特数据,雷达处理器和数据接收设备均接收数据发送设备对比特数据处理后的信号,并且数据接收设备还会反射数据发送设备发送的信号,则雷达处理器和数据发送设备还均可以接收数据接收设备反射的信号。
需要说明的是,数据发送设备可以向多个数据接收设备发送数据,而不同的数据接收设备在不同的子载波上接收数据发送设备发送的数据,因此对于数据发送设备、数据接收设备和回波接收设备来说,均需要确定每个数据接收设备的子载波,进而基于每个数据接收设备的子载波接收数据发送设备发送的数据。
下面,对本申请的通信雷达一体化系统的信号处理进行说明:基于OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)通信雷达一体化系统通过数据发送设备对信号散射和目标反射后,数据接收设备将接收信号分别传输到通信处理端与雷达处理端。OFDM时域发射信号表示为
Figure PCTCN2021141329-appb-000001
其中,S Tx()为OFDM频域符号,即为s(t)的傅里叶变换,N frame为一帧OFDM信号的总符号数,N c为子载波数,μ=0,...,N frame-1为OFDM符号索引,n=0,...,N c-1为子载波索引,f n表示对应的子载波频率,T OFDM=T+T CP为OFDM符号周期,T为OFDM基础符号周期,T CP为循环前缀时间,rect()为矩形窗函数。
通信雷达一体化系统可对环境中的目标设备进行通信及感知探测,接收的信号出现多普勒频偏,其表达式为:
f D,radar=2v rel/λ=2v relf c/c
其中λ为波长,f c为载波频率,c为光速,且λ=c/f c
当OFDM信号的距离为R,由相关运动而引起的多普勒频移为f d的目标反射时,接收信号表示为:
Figure PCTCN2021141329-appb-000002
由发送信号和多普勒频移可得接收的调制符号为:
Figure PCTCN2021141329-appb-000003
对于一个距离通信雷达一体化系统为R的物体,所有反射OFDM符号的子载波数据间都将产生一个线性相移。假设物体是静止的,对于同一个OFDM符号,即同一时间点,距离信息R被包含在频率轴上的调制符号间的线性相移中。多普勒处理与距离处理相似。以相对速度v rel运动的目标设备反射的回波信号的多普勒频率是具有同样相对速度的通信信号的多普勒频率的两倍。对于同一个OFDM子载波,即同一频率点,相对速度信息v rel被包含在时间轴上的调制符号间的线性相移中。
图3示出了本申请一个示例性实施例提供的子载波确定方法的流程图,示例性的可以应用于如图2所示的目标设备中,以目标设备为数据发送设备为例,对本申请的方法进行说明,该方法包括以下内容中的至少部分内容:
步骤301:数据发送设备确定至少两个传输设备中每个传输设备在相同的时域位置对应的多个子载波。
其中,子载波用于进行数据传输,多个子载波中的相邻子载波之间的间隔为目标间隔,传输设备为数据接收设备和回波接收设备中的至少一种。在本公开实施例中,多个是指大于一个的任意数字,即:多个为大于等于2个。
在本申请实施例中,数据发送设备可以向至少两个传输设备发送数据,以便于基于发送的数据测量每个数据接收设备的移动速度和/或距离,而对于每个传输设备来说,该传输设备在相同的时域位置对应多个子载波,因此数据发送设备需要确定每个传输设备在相同的时域位置对应的多个子载波,并且这多个子载波中相邻的子载波之间的间隔为目标间隔,后续数据发送设备可以基于确定的多个子载波进行数据传输。
需要说明的是,本申请实施例仅是以目标设备为数据发送设备为例进行说明。而在另一实施例中,该目标设备还可以为数据接收设备,也即是数据接收设备确定至少两个传输设备中每个传输设备在相同的时域位置对应的多个子载波。
在本申请实施例中,传输设备在相同的时域位置对应多个子载波,而数据发送设备会根据多个子载波进行数据传输,数据接收设备也需要确定在相同的时域位置对应的多个子载波,并且这多个子载波中相邻的子载波之间的间隔为 目标间隔。
在另一实施例中,该目标设备还可以为回波接收设备,也即是回波接收设备确定至少两个传输设备中每个传输设备在相同的时域位置对应的多个子载波。
在本申请实施例中,回波接收设备在相同的时域位置对应多个子载波,而数据发送设备会根据多个子载波进行数据传输,因此回波接收设备为了能接收数据发送设备发送的数据以及数据接收设备反射的数据,也需要确定在相同的时域位置对应的多个子载波,并且这多个子载波中相邻的子载波之间的间隔为目标间隔。
本申请实施例提供了一种子载波确定方式,在相同的时域位置确定的多个子载波中,相邻的子载波之间的间隔为目标间隔,保证确定的用于进行数据传输的子载波的可靠性,并且相邻的子载波之间存在间隔,防止子载波之间的干扰,保证基于传输的数据确定数据接收设备的参数的准确性。
图3所示的实施例对确定的子载波进行说明,而对于如何确定子载波,可以根据子载波分配方式确定子载波的分布情况,下面仍以目标设备为数据发送设备为例进行说明:
第一种:根据接入网设备发送的子载波分配方式确定子载波,例如,参见图4,该方法包括:
步骤401:数据发送设备接收接入网设备发送的子载波分配方式,子载波分配方式指示传输设备的目标间隔。
在本申请实施例中,接入网设备可以向各个设备发送的子载波分配方式,该子载波分配方式指示传输设备对应的子载波在相同的时域位置按照目标间隔分布,则数据发送设备接收到接入网设备发送的子载波分配方式,通过该子载波分配方式指示子载波的分配情况。
在本公开实施例中,子载波在相同的时域位置按照目标间隔分布是指:在相同的时域位置的多个等间隔分布的子载波;即,相邻的两个子载波之间距离该目标间隔。
在一些实施例中,接入网设备发送配置信息,该配置信息中包括子载波分配方式。
在一些实施例中,接入网设备可以向数据发送设备发送多个子载波分配方 式,则数据发送设备可以接收多个子载波分配方式。
步骤402:数据发送设备根据子载波分配方式,确定每个传输设备在相同的时域位置对应的多个子载波。其中多个子载波之间等间隔分布,其该间隔为目标间隔。
在本申请实施例中,数据发送设备接收到接入网设备发送的子载波分配方式后,即可根据该子载波分配方式确定每个传输设备在相同的时域位置对应的多个子载波按照目标间隔等间隔分布。
在一些实施例中,子载波分配方式承载在DCI(Downlink Control Information,下行控制信息)信令,或者子载波分配方式承载在MAC-CE(Medium Access Control-Control Element,媒体接入控制-控制单元)信令,或者子载波分配方式承载在RRC(Radio Resource Control,无线资源控制)信令。
在一些实施例中,接入网设备通过半静态信令指示子载波分配方式。在本申请实施例中,接入网设备通过发送的信令确定该信令指示的子载波分配方式。该信令为RRC信令。
在另一些实施例中,接入网设备通过动态信息指示子载波分配方式。在本申请实施例中,接入网设备通过MAC-CE信令或DCI信令指示子载波分配方式。
需要说明的是,本申请实施例仅是以接入网设备指示子载波分配方式为例进行说明。而在另一实施例中,数据发送设备接收接入网设备发送的多个子载波分配方式后,从多个子载波分配方式中确定使用的子载波分配方式,再根据自身确定使用的子载波分配方式确定每个数据接收设备的分布情况。
本申请实施例提供的方法,数据发送设备根据接入网设备发送的子载波分配方式即可确定每个数据接收设备的子载波分布情况,保证数据发送设备确定的用于进行数据传输的子载波的可靠性,并且相邻的子载波之间存在间隔,防止子载波之间的干扰,保证基于传输的数据确定数据接收设备的参数的准确性。
第二种:子载波在相同的时域位置按照目标间隔分布由通信协议约定,则数据发送设备根据通信协议确定子载波,例如,参见图5,该方法包括:
步骤501:数据发送设备根据通信协议,确定传输设备的子载波分配方式。
在本申请实施例中,子载波分配方式指示传输设备对应的子载波在相同的时域位置按照目标间隔分布,则数据发送设备接收到接入网设备发送的子载波分配方式,通过该子载波分配方式指示子载波的分配情况。
步骤502:数据发送设备根据该子载波分配方式,确定每个数据接收设备在 相同的时域位置对应的多个子载波中的两个相邻的子载波之间的间隔为目标间隔。
其中,每个传输设备在相同的时域位置对应的多个子载波分布情况由通信协议约定,因此数据发送设备可以直接根据通信协议,确定子载波分配方式,进而确定每个传输设备在相同的时域位置对应的多个子载波按照目标间隔分布。
在一些实施例中,通信协议约定了每个传输设备在相同的时域位置对应的多个子载波中每个子载波的起始位置以及目标间隔,因此根据每个传输设备对应的子载波的起始位置以及目标间隔,确定每个传输设备对应的多个子载波。
本申请实施例提供的方法,数据发送设备根据通信协议约定的子载波分配方式即可确定每个传输设备的子载波分布情况,保证数据发送设备确定的用于进行数据传输的子载波的可靠性,并且相邻的子载波之间存在间隔,防止子载波之间的干扰,保证基于传输的数据确定数据接收设备的参数的准确性。
第三种:根据核心网设备发送的子载波分配方式确定子载波,例如,参见图6,该方法包括:
步骤601:数据发送设备接收核心网设备发送的子载波分配方式,子载波分配方式指示传输设备的目标间隔。
在本公开实施例中,如果该数据发送设备直接连接到核心网设备,则核心网设备可以直接向数据发送设备发送子载波分配方式;如果数据发送设备没有直接连接到核心网设备,则核心网设备可以通过其他任何恰当的设备,将该子载波分配方式发送给数据发送设备。在本公开实施例中,这些方式都被统称为:数据发送设备接收核心网设备发送的子载波分配方式。
在本申请实施例中,核心网设备可以直接或间接(通过其他设备)向各个设备发送的子载波分配方式,该子载波分配方式指示子载波在相同个时域位置按照目标间隔分布,则数据发送设备接收到核心网设备发送的子载波分配方式,通过该子载波分配方式指示子载波的分配情况。
在一些实施例中,核心网设备发送配置信息,该配置信息中包括子载波分配方式。
在一些实施例中,核心网设备可以向数据发送设备发送多个子载波分配方式,则数据发送设备可以接收多个子载波分配方式。
步骤602:数据发送设备根据子载波分配方式,确定每个传输设备在相同的 时域位置对应的多个子载波。其中多个子载波之间等间隔分布,其该间隔为目标间隔。
在本申请实施例中,数据发送设备接收到核心网设备发送的子载波分配方式后,即可根据该子载波分配方式确定每个传输设备在相同的时域位置对应的多个子载波按照目标间隔分布。
在一些实施例中,子载波分配方式承载在DCI信令,或者子载波分配方式承载在MAC-CE信令,或者子载波分配方式承载在RRC信令。
在一些实施例中,核心网设备通过半静态信令指示子载波分配方式。在本申请实施例中,核心网设备通过发送的信令确定该信令指示的子载波分配方式。该信令为RRC信令。
在另一些实施例中,核心网设备通过动态信息指示子载波分配方式。在本申请实施例中,核心网设备通过MAC-CE信令或DCI信令指示子载波分配方式。
本申请实施例提供的方法,数据发送设备根据核心网设备发送的子载波分配方式即可确定每个传输设备的子载波分布情况,保证数据发送设备确定的用于进行数据传输的子载波的可靠性,并且相邻的子载波之间存在间隔,防止子载波之间的干扰,保证基于传输的数据确定数据接收设备的参数的准确性。
需要说明的是,本申请实施例仅是以目标设备为数据发送设备为例进行说明。而在另一实施例中,目标设备还可以为数据接收设备,并且数据接收设备确定子载波的方式以上述数据发送设备确定子载波的方式类似,在此不再赘述。另外,在另一实施例中,目标设备还可以为回波接收设备,并且回波接收设备确定子载波的方式以上述数据发送设备确定子载波的方式类似,在此不再赘述。即:上述的第一种方式中的步骤401-步骤402,可以由数据接收设备执行,也可以由回波接收设备执行。上述第二种方式中的步骤501-步骤502,可以由数据接收设备执行,也可以由回波接收设备执行。上述第二种方式中的步骤601-步骤602,可以由数据接收设备执行,也可以由回波接收设备执行。
在图3所示的实施例的基础上,数据接收设备需要根据数据发送设备发送的子载波分配方式确定子载波的分布情况,参见图7,该方法包括:
步骤701:数据发送设备向数据接收设备发送子载波分配方式。
步骤702:数据接收设备接收数据发送设备发送的子载波分配方式。
步骤703:数据接收设备根据子载波分配方式,确定每个传输设备在相同的 时域位置对应的多个子载波中的两个相邻的子载波之间的间隔为目标间隔。
在本申请实施例中,数据发送设备确定子载波分配方式后,则可以向数据接收设备发送子载波分配方式,数据接收设备可以根据子载波分配方式确定在相同的时域位置对应的多个子载波的分布情况。
即,在一种可能的实现方式中:
数据发送设备向数据接收设备发送子载波分配方式,其中该子载波分配方式用于指示数据接收设备根据子载波分配方式确定每个传输设备在相同的时域位置对应的多个子载波中的两个相邻的子载波之间的间隔为目标间隔。
即,在另一种可能的实现方式中:
数据接收设备接收数据发送设备发送的子载波分配方式,以根据子载波分配方式确定每个传输设备在相同的时域位置对应的多个子载波中的两个相邻的子载波之间的间隔为目标间隔。
本申请实施例提供的方法,数据接收设备根据数据发送设备发送的子载波分配方式即可确定子载波的分布情况,进而基于确定的子载波进行数据传输,保证数据接收设备确定的用于进行数据传输的子载波的可靠性,并且相邻的子载波之间存在间隔,防止子载波之间的干扰,保证基于传输的数据确定数据接收设备的参数的准确性。
需要说明的是,本申请实施例仅是以数据发送设备向数据接收设备发送子载波分配方式为例进行说明。
在图3所示的实施例的基础上,回波接收设备需要根据数据发送设备发送的子载波分配方式确定子载波的分布情况,参见图8,该方法包括:
步骤801:数据发送设备向回波接收设备发送子载波分配方式。
步骤802:回波接收设备接收数据发送设备发送的子载波分配方式。
步骤803:回波接收设备根据子载波分配方式,确定每个传输设备在相同的时域位置对应的多个子载波中的两个相邻的子载波之间的间隔为目标间隔。
在本申请实施例中,数据发送设备确定子载波分配方式后,则可以向回波接收设备发送子载波分配方式,回波接收设备可以根据子载波分配方式确定在相同的时域位置对应的多个子载波的分布情况。
即,在一种可能的实现方式中:
数据发送设备向回波接收设备发送子载波分配方式,其中该子载波分配方 式用于指示回波接收设备根据子载波分配方式确定每个传输设备在相同的时域位置对应的多个子载波中的两个相邻的子载波之间的间隔为目标间隔。
即,在另一种可能的实现方式中:
回波接收设备接收数据发送设备发送的子载波分配方式,以根据子载波分配方式确定每个传输设备在相同的时域位置对应的多个子载波中的两个相邻的子载波之间的间隔为目标间隔。
本申请实施例提供的方法,回波接收设备根据数据发送设备发送的子载波分配方式即可确定子载波的分布情况,进而基于确定的子载波进行数据传输,保证回波接收设备确定的用于进行数据传输的子载波的可靠性,并且相邻的子载波之间存在间隔,防止子载波之间的干扰,保证基于传输的数据确定回波接收设备的参数的准确性。
需要说明的是,上述图7和图8实施例仅是以数据发送设备向数据接收设备和回波接收设备发送子载波分配方式为例进行说明。而在另一实施例中,还可以由数据接收设备确定子载波分配方式,再由数据接收设备向数据发送设备和回波接收设备发送子载波分配方式,其中数据接收设备向数据发送设备和回波接收设备发送子载波分配方式的过程与上述图7和图8所示的实施例的流程类似,在此不再赘述。
另外,在另一实施例中,还可以由回波接收设备确定子载波分配方式,再由回波接收设备向数据发送设备和数据接收设备发送子载波分配方式,其中回波接收设备向数据发送设备和数据接收设备发送子载波分配方式的过程与上述图7和图8所示的实施例的流程类似,在此不再赘述。
在图3所示的实施例的基础上,目标间隔根据数据接收设备的数量确定,也就是数据接收设备的数量不同,确定的目标间隔也不同。
在一些实施例中,目标间隔为数据接收设备的数量与1的差值。
在本申请实施例中,至少两个数据接收设备在相同的时域位置均需要占用子载波,则按照每个数据接收设备对相同的时域位置上的多个子载波进行分配,以使每个数据接收设备分配的多个子载波中相邻子载波之间的距离为目标间隔。
其中,目标间隔为数据接收设备的数量与1的差值。
对于任一数据接收设备,该数据接收设备在频域资源中占据的子载波具有相等的频率间隔,即相邻频域信号的频率间隔为目标间隔。假设数据接收设备占据频域资源中全部N个子载波中的N u个子载波,且N u个子载波构成一个集合N,令N(s)表示集合的第s个元素。假设该数据接收设备占有的子载波的中心频率为f(i),其中i=N(1),N(2)…,N(N u)。当采取子载波等间隔分配方案时,可得f(i+1)-f(i)=Δf,其中Δf为目标间隔,且Δf为数据接收设备的数量与1的差值。
需要说明的是,上述实施例仅是以一个数据接收设备对相邻的子载波的间隔进行说明。而在另一实施例中,对于至少两个数据接收设备来说,一个数据接收设备对应的相邻的两个子载波之间的间隔是其他所有数据接收设备对应的一个子载波,也就是目标间隔是其他所有数据接收设备对应的一个子载波的数量的和。
例如,以一个时域位置包括1024个子载波,数据接收设备为4个,则对于第一个数据接收设备来说,每个时域位置上的1024个子载波中的第4n+1个子载波,n=0,1,2…255,对于第二个数据接收设备来说,每个时域位置上的1024个子载波中的第4n+2个子载波,n=0,1,2…255,对于第三个数据接收设备来说,每个时域位置上的1024个子载波中的第4n+3个子载波,n=0,1,2…255,对于第四个数据接收设备来说,每个时域位置上的1024个子载波中的第4n+4个子载波,n=0,1,2…255。
对于第一个数据接收设备,目标间隔为第二个数据接收设备、第三个数据接收设备和第四个数据接收设备分别对应的一个子载波。例如,以第一个数据接收设备的第1个子载波和第5个子载波为例,第1个子载波和第5个子载波之间间隔的是第二个数据接收设备的第2个子载波、第三个数据接收设备的第3个子载波和第四个数据接收设备的第4个子载波。而对于第二个数据接收设备的第2个子载波和第6个子载波为例,第2个子载波和第6个子载波之间间隔的第三个数据接收设备的第3个子载波、第四个数据接收设备的第4个子载波和第一个数据接收设备的第5个子载波,以此类推,每个数据接收设备的相邻两个子载波之间均间隔其他所有数据接收设备的一个子载波。
在此情况下,参见图9,对于第一个终端来说,其他终端的距离和速度为图示中的黑色点对应的距离和速度。
例如,以一个时域位置包括1024个子载波,数据接收设备为4个,则对于 第一个数据接收设备来说,每个时域位置上的1024个子载波中的第4n+i个子载波,n=0,1,2…255,对于第二个数据接收设备来说,每个时域位置上的1024个子载波中的第4n+j个子载波,n=0,1,2…255,对于第三个数据接收设备来说,每个时域位置上的1024个子载波中的第4n+k个子载波,n=0,1,2…255,对于第四个数据接收设备来说,每个时域位置上的1024个子载波中的第4n+l个子载波,n=0,1,2…255,其中,i,j,k,l∈{1,2,3,4}且i、j、k、l各不相同,对于每个时域位置来说,i、j、k、l随机从1、2、3、4中确定,但i、j、k、l各不相同。
对于第一个数据接收设备,目标间隔为第二个数据接收设备、第三个数据接收设备和第四个数据接收设备分别对应的一个子载波。例如,在一个时域位置上,i取2、j取1、k取4和l取3为例,以第一个数据接收设备的第2个子载波和第6个子载波为例,第2个子载波和第6个子载波之间间隔的是第四个数据接收设备的第3个子载波、第三个数据接收设备的第4个子载波和第二个数据接收设备的第5个子载波。而对于第四个数据接收设备的第3个子载波和第7个子载波为例,第3个子载波和第7个子载波之间间隔的第三个数据接收设备的第4个子载波、第二个数据接收设备的第5个子载波和第一个数据接收设备的第6个子载波,以此类推,每个数据接收设备的相邻两个子载波之间均间隔其他所有数据接收设备的一个子载波。
在此情况下,参见图10,对于第一个终端来说,其他终端的距离和速度为图示中的黑色点对应的距离和速度。
在图3所示的实施例的基础上,数据接收设备为终端,回波接收设备为接入网设备或终端,数据发送设备为接入网设备或终端。
在一些实施例中,数据发送设备和回波接收设备可以为同一个设备。
例如,数据发送设备和回波接收设备均为接入网设备。
又例如,数据发送设备和回波接收设备均为终端,而数据发送设备和回波接收设备的终端与数据接收设备的终端不是同一个终端。
需要说明的是,数据发送设备和回波接收设备为同一设备的情况下,该通感一体化系统为主动式雷达系统,该数据发送设备发送比特数据给数据接收设备,数据接收设备作为接收机完成通信功能。数据发送设备发送比特数据照射在数据接收端上产生的回波信号回传至回波接收设备(即数据发送设备),回波接收设备通过雷达处理器对数据接收设备进行速度和距离等信息探测,完成 雷达功能。
在另一些实施例中,数据发送设备和回波接收设备为不同的设备。
例如,数据发送设备为接入网设备1,数据接收设备为终端,回波接收设备为接入网设备2或者接入网设备集合。
又例如,数据发送设备为终端1,数据接收设备为终端2,回波接收设备为终端3或者终端结合。
又例如,数据发送设备为终端1,数据接收设备为终端2,回波接收设备为接入网设备或者接入网设备集合。
需要说明的是,数据发送设备和回波接收设备为不同的设备的情况下,该通感一体化系统为被动式雷达系统,数据发送设备和回波接收设备为不相同的设备,且可有多个回波接收设备。数据发送设备发送比特数据给数据接收设备,数据接收设备作为接收机完成通信功能。数据发送设备发送比特数据照射在数据接收设备上产生的回波信号回传至回波接收设备,回波接收设备通过雷达处理器对数据接收设备进行速度和距离等信息探测,完成雷达功能。
需要说明的是,上述实施例可以拆分为新实施例,或与其他实施例互相组合为新实施例,本申请对实施例之间的组合不做限定。
图11示出了本申请一个示例性实施例提供的子载波确定装置的框图,参见图11,该装置包括:
确定模块1101,用于确定至少两个传输设备中每个传输设备在相同的时域位置对应的多个子载波;
其中,多个子载波中的两个相邻子载波之间的间隔为目标间隔,传输设备为以下的至少一种设备:数据接收设备、回波接收设备。
在一些实施例中,不同传输设备的子载波相互不重叠。
在一些实施例中,装置还包括:
接收模块1102,用于接收接入网设备发送的传输设备的子载波分配方式,子载波分配方式指示传输设备的目标间隔;
确定模块1101,还用于根据子载波分配方式,确定每个传输设备在相同的时域位置对应的多个子载波中的两个相邻的子载波之间的间隔为目标间隔。
在一些实施例中,确定模块1101,还用于:
根据通信协议确定传输设备的子载波分配方式,子载波分配方式指示传输 设备的目标间隔;
根据子载波分配方式,确定每个传输设备在相同的时域位置对应的多个子载波中的两个相邻的子载波之间的间隔为目标间隔。
在一些实施例中,装置还包括:
接收模块1102,用于接收核心网设备发送的传输设备的子载波分配方式,子载波分配方式指示传输设备的目标间隔;
确定模块1101,还用于根据子载波分配方式,确定每个传输设备在相同的时域位置对应的多个子载波中的两个相邻的子载波之间的间隔为目标间隔。
在一些实施例中,目标设备为以下至少一种设备:
数据发送设备、数据接收设备或回波接收设备。
在一些实施例中,装置还包括:
发送模块1103,用于向传输设备发送子载波分配方式,子载波分配方式指示传输设备的目标间隔。
在一些实施例中,发送模块1103,还用于:
通过DCI信令向传输设备发送子载波分配方式,
或,
通过MAC-CE信令向传输设备发送子载波分配方式;
或,
通过RRC信令向传输设备发送子载波分配方式。
在一些实施例中,数据发送设备为接入网设备或终端。
在一些实施例中,数据接收设备为终端。
在一些实施例中,回波接收设备为接入网设备或终端。
在一些实施例中,目标间隔为数据接收设备的数量与1的差值。
需要说明的是,上述实施例提供的装置,在实现其功能时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的装置与方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
图13示出了本申请一个示例性实施例提供的通信设备的结构示意图,该通信设备包括:处理器1301、接收器1302、发射器1303、存储器1304和总线1305。
处理器1301包括一个或者一个以上处理核心,处理器1301通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器1302和发射器1303可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器1304通过总线1305与处理器1301相连。
存储器1304可用于存储至少一个程序代码,处理器1301用于执行该至少一个程序代码,以实现上述方法实施例中的各个步骤。
此外,通信设备可以为终端或网络设备。存储器1304可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),静态随时存取存储器(SRAM),只读存储器(ROM),磁存储器,快闪存储器,可编程只读存储器(PROM)。
在示例性实施例中,还提供了一种计算机可读存储介质,所述可读存储介质中存储有可执行程序代码,所述可执行程序代码由处理器加载并执行以实现上述各个方法实施例提供的由通信设备执行的子载波确定方法。
在示例性实施例中,提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在终端或网络设备上运行时,用于实现如各个方法实施例提供的子载波确定方法。
在示例性实施例中,提供了计算机程序产品,当所述计算机程序产品被终端或网络设备的处理器执行时,其用于实现上述各个方法实施例提供的子载波确定方法。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (27)

  1. 一种子载波确定方法,其特征在于,所述方法由目标设备执行,所述方法包括:
    确定至少两个传输设备中每个传输设备在相同的时域位置对应的多个子载波;
    其中,所述多个子载波中的两个相邻子载波之间的间隔为目标间隔,所述传输设备为以下的至少一种设备:数据接收设备、回波接收设备。
  2. 根据权利要求1所述的方法,其特征在于,不同传输设备的子载波相互不重叠。
  3. 根据权利要求1或2所述的方法,其特征在于,所述确定至少两个传输设备中每个传输设备在相同的时域位置对应的多个子载波,包括:
    接收接入网设备发送的传输设备的子载波分配方式,所述子载波分配方式指示所述传输设备的所述目标间隔;
    根据所述子载波分配方式,确定所述每个传输设备在相同的时域位置对应的多个子载波中的两个相邻的子载波之间的间隔为所述目标间隔。
  4. 根据权利要求1或2所述的方法,其特征在于,所述确定至少两个传输设备中每个传输设备在相同的时域位置对应的多个子载波,包括:
    根据通信协议确定传输设备的子载波分配方式,所述子载波分配方式指示所述传输设备的所述目标间隔;
    根据所述子载波分配方式,确定所述每个传输设备在相同的时域位置对应的多个子载波中的两个相邻的子载波之间的间隔为所述目标间隔。
  5. 根据权利要求1或2所述的方法,其特征在于,所述确定至少两个传输设备中每个传输设备在相同的时域位置对应的多个子载波,包括:
    接收核心网设备发送的传输设备的子载波分配方式,所述子载波分配方式指示所述传输设备的所述目标间隔;
    根据所述子载波分配方式,确定所述每个传输设备在相同的时域位置对应的多个子载波中的两个相邻的子载波之间的间隔为所述目标间隔。
  6. 根据权利要求1至5任一所述的方法,其特征在于,所述目标设备为以下至少一种设备:
    数据发送设备、数据接收设备或回波接收设备。
  7. 根据权利要求6所述的方法,其特征在于,所述目标设备为所述数据发送设备,所述方法还包括:
    向所述传输设备发送子载波分配方式,所述子载波分配方式指示所述传输设备的所述目标间隔。
  8. 根据权利要求7所述的方法,其特征在于,所述向所述传输设备发送子载波分配方式,包括:
    通过DCI信令向所述传输设备发送所述子载波分配方式;
    或,
    通过MAC-CE信令向所述传输设备发送所述子载波分配方式;
    或,
    通过RRC信令向所述传输设备发送所述子载波分配方式。
  9. 根据权利要求6至9任一所述的方法,其特征在于,所述数据发送设备为接入网设备或终端。
  10. 根据权利要求6至9任一所述的方法,其特征在于,所述数据接收设备为终端。
  11. 根据权利要求6至9任一所述的方法,其特征在于,所述回波接收设备为接入网设备或终端。
  12. 根据权利要求1至11任一所述的方法,其特征在于,所述目标间隔为所 述数据接收设备的数量与1的差值。
  13. 一种子载波确定装置,其特征在于,所述装置包括:
    确定模块,用于确定至少两个传输设备中每个传输设备在相同的时域位置对应的多个子载波;
    其中,所述多个子载波中的两个相邻子载波之间的间隔为目标间隔,所述传输设备为以下的至少一种设备:数据接收设备、回波接收设备。
  14. 根据权利要求13所述的装置,其特征在于,不同传输设备的子载波相互不重叠。
  15. 根据权利要求13或14所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收接入网设备发送的传输设备的子载波分配方式,所述子载波分配方式指示所述传输设备的所述目标间隔;
    所述确定模块,还用于根据所述子载波分配方式,确定所述每个传输设备在相同的时域位置对应的多个子载波中的两个相邻的子载波之间的间隔为所述目标间隔。
  16. 根据权利要求13或14所述的装置,其特征在于,所述确定模块,还用于:
    根据通信协议确定传输设备的子载波分配方式,所述子载波分配方式指示所述传输设备的所述目标间隔;
    根据所述子载波分配方式,确定所述每个传输设备在相同的时域位置对应的多个子载波的两个相邻的子载波之间的间隔为所述目标间隔。
  17. 根据权利要求13或14所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收核心网设备发送的传输设备的子载波分配方式,所述子载波分配方式指示所述传输设备的所述目标间隔;
    所述确定模块,还用于根据所述子载波分配方式,确定所述每个传输设备在相同的时域位置对应的多个子载波中的两个相邻的子载波之间的间隔为所述 目标间隔。
  18. 根据权利要求13至17任一所述的装置,其特征在于,所述目标设备为以下至少一种设备:
    数据发送设备、数据接收设备或回波接收设备。
  19. 根据权利要求18所述的装置,其特征在于,所述装置还包括:
    发送模块,用于向所述传输设备发送子载波分配方式,所述子载波分配方式指示所述传输设备的所述目标间隔。
  20. 根据权利要求19所述的装置,其特征在于,所述发送模块,还用于:
    通过DCI信令向所述传输设备发送所述子载波分配方式;
    或,
    通过MAC-CE信令向所述传输设备发送所述子载波分配方式;
    或,
    通过RRC信令向所述传输设备发送所述子载波分配方式。
  21. 根据权利要求18至20任一所述的装置,其特征在于,所述数据发送设备为接入网设备或终端。
  22. 根据权利要求18至20任一所述的装置,其特征在于,所述数据接收设备为终端。
  23. 根据权利要求18至20任一所述的装置,其特征在于,所述回波接收设备为接入网设备或终端。
  24. 根据权利要求13至23任一所述的装置,其特征在于,所述目标间隔为所述数据接收设备的数量与1的差值。
  25. 一种设备,其特征在于,所述设备包括:
    处理器;
    与所述处理器相连的收发器;
    其中,所述处理器被配置为加载并执行可执行指令以实现如权利要求1至12任一所述的子载波确定方法。
  26. 一种计算机可读存储介质,其特征在于,所述可读存储介质中存储有可执行程序代码,所述可执行程序代码由处理器加载并执行以实现如权利要求1至12任一所述的子载波确定方法。
  27. 一种计算机程序产品,其特征在于,所述算机程序产品被目标设备的处理器执行时,用于实现如权利要求1至12任一所述的子载波确定方法。
PCT/CN2021/141329 2021-12-24 2021-12-24 子载波确定方法、装置、设备及存储介质 WO2023115564A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180004685.5A CN116648636A (zh) 2021-12-24 2021-12-24 子载波确定方法、装置、设备及存储介质
PCT/CN2021/141329 WO2023115564A1 (zh) 2021-12-24 2021-12-24 子载波确定方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/141329 WO2023115564A1 (zh) 2021-12-24 2021-12-24 子载波确定方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023115564A1 true WO2023115564A1 (zh) 2023-06-29

Family

ID=86901119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141329 WO2023115564A1 (zh) 2021-12-24 2021-12-24 子载波确定方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN116648636A (zh)
WO (1) WO2023115564A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170257865A1 (en) * 2015-11-27 2017-09-07 Telefonaktiebolaget Lm Ericsson (Publ) Method and system for multi-protocol transmissions
WO2018015795A1 (en) * 2016-07-22 2018-01-25 Telefonaktiebolaget Lm Ericsson (Publ) Method and system for orthogonal multi-protocol transmissions
CN109061633A (zh) * 2018-10-19 2018-12-21 西安电子科技大学 Ofdm雷达通信一体化机载平台系统的信号设计方法
US20190245726A1 (en) * 2016-07-22 2019-08-08 Telefonaktiebolaget Lm Ericsson (Publ) Method and system for multi-protocol transmissions
CN111025255A (zh) * 2019-12-26 2020-04-17 桂林电子科技大学 基于随机频偏的ofdm-fda雷达通信一体化实现方法
CN113093163A (zh) * 2021-03-19 2021-07-09 湖南大学 基于有效ofdm通信子载波检测的高速目标测速方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170257865A1 (en) * 2015-11-27 2017-09-07 Telefonaktiebolaget Lm Ericsson (Publ) Method and system for multi-protocol transmissions
WO2018015795A1 (en) * 2016-07-22 2018-01-25 Telefonaktiebolaget Lm Ericsson (Publ) Method and system for orthogonal multi-protocol transmissions
US20190245726A1 (en) * 2016-07-22 2019-08-08 Telefonaktiebolaget Lm Ericsson (Publ) Method and system for multi-protocol transmissions
CN109061633A (zh) * 2018-10-19 2018-12-21 西安电子科技大学 Ofdm雷达通信一体化机载平台系统的信号设计方法
CN111025255A (zh) * 2019-12-26 2020-04-17 桂林电子科技大学 基于随机频偏的ofdm-fda雷达通信一体化实现方法
CN113093163A (zh) * 2021-03-19 2021-07-09 湖南大学 基于有效ofdm通信子载波检测的高速目标测速方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "DC subcarrier handling", 3GPP DRAFT; R1-1703014 DC SUBCARRIER HANDLING, vol. RAN WG1, 7 February 2017 (2017-02-07), Athens, Greece, pages 1 - 3, XP051221812 *

Also Published As

Publication number Publication date
CN116648636A (zh) 2023-08-25

Similar Documents

Publication Publication Date Title
US11533202B2 (en) Sounding reference signal transmission method, terminal device and network device
WO2023029339A1 (zh) 一种无线信号传输方法和设备
WO2018228568A1 (zh) 无线通信方法和无线通信装置
WO2020061944A1 (en) Method and apparatus for resource configuration for positioning reference signals
WO2021012981A1 (en) Methods and apparatuses of sounding reference signal transmission
CN111464473B (zh) 配置信息的方法与装置
US20190132831A1 (en) Resource Element-Level Allocation For Wireless Communication
US10827515B2 (en) Sequence-based signal processing method and apparatus
US20210328842A1 (en) Sequence-based signal processing method and apparatus
WO2022151291A1 (en) Ssb and rmsi multiplexing patterns
WO2020030253A1 (en) Reducing dci payload
WO2023115564A1 (zh) 子载波确定方法、装置、设备及存储介质
CN114424667B (zh) 一种通信方法及装置
KR20200108877A (ko) 비면허 무선 주파수 대역에 접속하기 위한 네트워크 노드, 무선 통신 디바이스 및 그 방법들
WO2024104266A1 (zh) 一种资源指示方法及装置
WO2023185771A1 (zh) 一种信号传输方法和装置
US20240032040A1 (en) Simultaneous physical uplink control channel transmissions over multi-panel
WO2023236995A1 (zh) 信号传输方法、装置、通信设备及可读存储介质
WO2022206245A1 (zh) 带宽配置方法、传输方法、通信节点及存储介质
WO2023050056A1 (zh) 资源配置方法、装置、设备及存储介质
WO2024075289A1 (ja) 端末、基地局及び通信方法
WO2022268104A1 (zh) 一种无线感知的方法及装置
CN115002915B (zh) 信息指示方法及相关设备
WO2022247593A1 (zh) 测距方法和装置
WO2024109785A1 (zh) 信号传输方法、装置及通信设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202180004685.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968693

Country of ref document: EP

Kind code of ref document: A1