WO2023185543A1 - 一种双通道可视化多色荧光探针的制备及检测方法 - Google Patents

一种双通道可视化多色荧光探针的制备及检测方法 Download PDF

Info

Publication number
WO2023185543A1
WO2023185543A1 PCT/CN2023/082699 CN2023082699W WO2023185543A1 WO 2023185543 A1 WO2023185543 A1 WO 2023185543A1 CN 2023082699 W CN2023082699 W CN 2023082699W WO 2023185543 A1 WO2023185543 A1 WO 2023185543A1
Authority
WO
WIPO (PCT)
Prior art keywords
hnt
dpa
cds
solution
dual
Prior art date
Application number
PCT/CN2023/082699
Other languages
English (en)
French (fr)
Inventor
徐君
贾磊
李蕊
李咏欣
Original Assignee
河南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河南理工大学 filed Critical 河南理工大学
Priority to US18/217,635 priority Critical patent/US20230358741A1/en
Publication of WO2023185543A1 publication Critical patent/WO2023185543A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/533Production of labelled immunochemicals with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/94Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving narcotics or drugs or pharmaceuticals, neurotransmitters or associated receptors
    • G01N33/9446Antibacterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/182Metal complexes of the rare earth metals, i.e. Sc, Y or lanthanide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/32Assays involving biological materials from specific organisms or of a specific nature from bacteria from Bacillus (G)

Definitions

  • the invention relates to the technical field of nanocomposite material preparation, and in particular to a preparation and detection method of a dual-channel visual multi-color fluorescent probe.
  • Tetracycline (TC) is widely used and abused due to its low cost, easy absorption and broad-spectrum antibacterial properties.
  • a large amount of antibiotics remain in food and agricultural and animal husbandry production, and are eventually ingested by humans and cause damage to the human body.
  • TC detection includes traditional detection methods such as high performance liquid chromatography, capillary electrophoresis, liquid chromatography-mass spectrometry and ion mass spectrometry. Although these methods are highly sensitive and accurate, the instrumentation is expensive, time-consuming, sample manipulation is cumbersome, and requires specialized skills.
  • Carbon Quantum Dots (CDs) as a new type of fluorescent nanomaterial, have unique optical properties, good biocompatibility, green preparation process and high quantum yield.
  • CDs can be used as fluorescent sensors for the quantitative determination of TC based on the internal filter effect (IFE) caused by the absorption of fluorophores excited and/or emitted by the absorber in the detection system.
  • IFE internal filter effect
  • TC fluorescence quenching effect
  • CDs are a silicate mineral with abundant reserves, large specific surface area, and abundant surface groups. It has a unique mesoporous tubular inner cavity and interior and exterior surfaces that can be modified.
  • a simple bottom-up method is generally used to synthesize fluorescent HNTs by directly loading carbon quantum dots in situ on the surface of halloysite.
  • DPA 2,6-Pyridinedicarboxylic acid
  • fluorescence analysis can detect Bacillus anthracis spores quickly, sensitively and selectively with a low detection limit.
  • classic fluorescence detection and analysis methods can usually only detect the target by measuring changes in a single fluorescence signal, and are often interfered by various irrelevant factors, thus reducing sensitivity and selectivity.
  • the ratiometric fluorescence detection method can realize the analysis of the measured object by measuring the relative change intensity of different fluorescence signals, effectively reducing various interferences and improving the degree of visualization.
  • Ln-MOFs luminescent lanthanide metal-organic frameworks
  • Luminescent lanthanide metal-organic frameworks have unique optical properties, such as large Stokes shift, narrow emission band, long wavelength, etc., and are widely used in environmental pollution and biomolecule detection.
  • Lanthanide ions have similar ionic radii and chemical behaviors, so by doping the two lanthanide ions, Terbium and Europium, into the same crystalline equivalent metal site of the MOF, two emission sources are created, Eu 3+ and Tb 3+ ions form centers that strongly emit red and green light respectively, which can be detected by the naked eye and have been widely used in the construction of luminescent materials.
  • Tb3 + is rapidly complexed with DPA for the detection of anthrax biomarkers, and as the DPA concentration increases, DPA can replace the coordination water molecules, effectively transferring energy to Tb 3+ , enhancing the emission intensity of Tb 3+ , producing strong and dominant green fluorescence.
  • the europium ion complex has a strong red fluorescence emission peak at 616 nm.
  • the ⁇ -diketone structure of the TC molecule can chelate with Eu 3+ , transfer its excitation energy to Eu 3+ , and pass through the "antenna"Effect" sensitized Eu 3+ luminescence. Based on the above technical principles, if the luminescent lanthanide metal-organic framework (Ln-MOF) can be combined with fluorescent HNT, a fluorescent probe that can detect both TC and DPA can be formed.
  • the purpose of this invention is to provide a method for preparing and using a dual-channel visual multi-color fluorescent probe, and to build a dual-channel based on in-situ synthesis of carbon quantum dots based on halloysite nanotubes (HNTs) and loading of lanthanide metal-organic frameworks.
  • Fluorescence sensor capable of rapid and simultaneous visual detection of DPA and TC.
  • the present invention provides a method for preparing a dual-channel visual multi-color fluorescent probe. The steps are as follows:
  • a method for preparing a dual-channel visual multi-color fluorescent probe which is characterized in that the steps are as follows:
  • the present invention modified the surface of halloysite and prepared a dual-channel fluorescence sensor based on the in-situ synthesis of carbon quantum dots using halloysite nanotubes (HNTs) and loaded with a lanthanide metal-organic framework, which can realize the detection of DPA and Rapid simultaneous visual detection of TC.
  • HNTs halloysite nanotubes
  • the combination of natural porous materials and metal-organic frameworks effectively improves the stability and detection sensitivity of fluorescent probes, helping to detect biomarkers quickly, accurately, and intuitively.
  • Figure 1 is a diagram showing the detection effect of HNT@CDs-MOF probe on DPA in Example 2 of the present invention
  • Figure 2 is a diagram showing the detection effect of TC by the HNT@CDs-MOF probe in Example 3 of the present invention.
  • the preparation method of a dual-channel visual multi-color fluorescent probe is as follows:
  • the method of amination modification of halloysite nanotubes is as follows. First, disperse 1 g of halloysite nanotubes into 50 mL of xylene, ultrasonic for 15 minutes, and stir at room temperature for 1 hour to make the solution more uniformly dispersed. Add 5 mL of silane coupling agent 3-chloropropyltrimethoxysilane dropwise to the above solution, stir at room temperature for 10 minutes, and the mixture is refluxed in an oil bath at 80°C for 8 hours. The coupling effect of silanol groups on the surface of halloysite nanotubes introduces chloropropyl groups to the surface of halloysite nanotubes.
  • Citric acid was used as the carbon source to improve and synthesize blue carbon dots.
  • 500 mg HNT-PEI and 300 mg citric acid were ultrasonically dispersed in 15 mL deionized water, and magnetically stirred at room temperature for 1 hour to mix the HNT-PEI and citric acid evenly.
  • the resulting solution was transferred to a polytetrafluoroethylene-lined autoclave and heated continuously at 160°C for 12 hours.
  • Carbon dots were synthesized in situ on the HNT surface through the hydrothermal reaction of PEI and citric acid at high temperature and high pressure.
  • 100mgHNT@CDs were ultrasonically dispersed in 20 mL deionized water. Dissolve 8.82 mg (0.02 mmol) of Eu(NO 3 ) 3 ⁇ 6H 2 O, 36.24 mg (0.08 mmol) of Tb(NO 3 ) 3 ⁇ 6H 2 O, and 16.41 mg (0.02 mmol) of anhydrous sodium acetate in 3 mL. In deionized water, mix the above solution evenly, then disperse 1,3,5-benzenetricarboxylic acid in 10 mL of ethanol, dissolve it with ultrasonic, and add it dropwise to the mixed solution, stir magnetically at room temperature for 1 hour, and pass through the carboxyl and rare earth groups.
  • the coordination of ions forms a layer of bimetallic MOF on the surface of HNT@CDs. Then, the supernatant was removed by centrifugation, and washed with a mixed solution of water and ethanol to remove free europium, terbium ions and sodium acetate. The final product was obtained after vacuum drying at 60°C for 8 h.
  • DPA 2,6-pyridinedicarboxylic acid
  • the concentration of DPA increases, the fluorescence change from red to green is achieved.
  • multi-color fluorescence semi-quantitative and qualitative detection of DPA can be achieved with the naked eye under 254 nm ultraviolet light.
  • TC Dissolve tetracycline
  • TC tetracycline
  • TC solution of a certain concentration
  • the luminescence color changed from blue to red.
  • the fluorescence intensity of the system at 616 nm increased with the increase of TC, 450 The fluorescence intensity at nm decreased.
  • the blue fluorescence of the HNT@CDs-MOF nanosensor decreases slightly at 450 nm, and the red fluorescence intensity at 616 nm increases significantly, as shown in Figure 2.
  • multi-color fluorescence semi-quantitative and qualitative detection of TC can be achieved with the naked eye under 365 nm ultraviolet light.
  • the present invention provides a technology for preparing a dual-channel fluorescent nanoprobe with high sensitivity, wide range and good selectivity based on in-situ growth of halloysite nanotubes, carbon quantum dots and lanthanide bimetallic organic framework doping.
  • the solution can achieve rapid visual detection of DPA and TC at the same time.
  • the nanofluorescence sensor Under the excitation wavelength of 280 nm, the nanofluorescence sensor can specifically identify DPA. After DPA is coordinated with Tb 3+ , the nanofluorescence sensor emits characteristic green light with a wavelength of 545nm through the antenna effect, and the fluorescence changes from red to green. Realize rapid visual detection of DPA.
  • the nanofluorescence sensor can specifically recognize TC and achieve a fluorescence change from blue to red.
  • the nanofluorescence sensor emits characteristic red light with a wavelength of 616 nm through the antenna effect.
  • the blue fluorescence emission intensity (450 nm) of halloysite nanotubes loaded with carbon quantum dots increases with the addition of tetracycline. There is a slight decrease, and the change in the ratio of red emission to blue emission of the Eu-TC complex is recorded, achieving highly sensitive detection of tetracycline.
  • the detection limit of this fluorescent sensor for DPA is as low as 14.4 nM in the range of 0-81 ⁇ M DPA. In the range of 0-19 ⁇ M TC, the fluorescence sensor has a detection limit of TC as low as 23.8 nM, achieving accurate detection of DPA and TC and meeting the detection requirements of TC and DPA in food and environmental samples.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种基于埃洛石纳米管(HNTs)原位合成碳量子点并负载镧系金属有机框架的双通道可视化多色荧光探针,能够实现对DPA和TC的快速同时可视化检测。采用上述双通道可视化多色荧光探针的检测方法,具有较高的稳定性和灵敏度,有助于快速、准确、直观地检测生物标志物。

Description

一种双通道可视化多色荧光探针的制备及检测方法 技术领域
本发明涉及纳米复合材料制备技术领域,尤其是涉及一种双通道可视化多色荧光探针的制备及检测方法。
背景技术
近年来,开发了各种分析法用于检测四环素(TC)、炭疽芽孢杆菌(DPA)。
四环素(TC)因成本低易吸收和广谱抑菌性被泛用与滥用,大量抗生素残留在食品与农牧业生产中,最后被人类摄入对人体造成损害。TC检测包含高效液相色谱法,毛细管电泳法,液相色谱-质谱法和离子质谱联用法等传统检测方法。尽管这些方法灵敏度和准确度都很高,但仪器昂贵、耗时、样本操作繁琐,且需具有专业技能。碳量子点(Carbon Quantum Dots,CDs)作为一种新型的荧光纳米材料,具有独特的光学性质、良好的生物相容性、绿色的制备工艺和较高的量子产率。最近的研究表明,基于检测系统中吸收剂激发和/或发射的荧光团吸收引起的内滤效应(IFE),CDs可作为荧光传感器用于TC的定量测定。然而,TC对CDs的荧光猝灭作用较弱,荧光强度下降不明显。埃洛石纳米管(HNTs)是一种硅酸盐矿物,储量丰富,比表面积大,表面基团丰富,具有独特的介孔管状内腔和可进行修饰的内外表面。现在一般采用一种简单的自下而上的方法,在埃洛石表面直接原位负载碳量子点来合成荧光HNT。
炭疽杆菌是一种会引起炭疽的危险细菌,通过进食、呼吸和皮肤接触传播感染动物体和人类,对人类和动物的皮肤、肠道和肺部造成严重损害,导致炭疽传染病,进而导致生物体内的致命感染。2,6-吡啶二羧酸(DPA)是炭疽杆菌的主要生物标志物之一,约占炭疽孢子干重的5-15%。对于DPA的检测,包含聚合酶链反应(PCR)和免疫分析,但需要较长的周期和复杂的操作。相比之下荧光分析法能够快速、灵敏和高选择性地检测炭疽杆菌孢子,且检测限较低。但经典的荧光检测和分析方法通常只能通过测量单个荧光信号的变化来检测目标,并且经常受到各种不相关因素的干扰,从而降低灵敏度和选择性。而比率荧光检测法可以通过测量不同荧光信号的相对变化强度,实现对被测对象的分析,有效减少各种干扰,提高可视化程度。采用发光镧系金属有机框架(Ln-MOF)就是一种可行的方法。
发光镧系金属有机框架(Ln-MOF)具有独特的光学性质,例如斯托克斯位移大,发射带窄,波长长等,被广泛应用于环境污染和生物分子检测。镧系离子具有相似的离子半径和化学行为,因此,通过将两个镧系离子铽(Terbium)和铕(Europium)掺杂到MOF的相同晶体等效金属位置,可产生两个发射源,Eu 3+和Tb 3+离子形成中心,分别强烈发射红光和绿光,可通过肉眼检测,并已广泛用于发光材料的构建。
在掺杂了铽和铕的发光镧系金属有机框架(Ln-MOF)中,Tb 3+与DPA快速络合用于检测炭疽生物标志物,随着DPA浓度的增加,DPA可以取代配位水分子,有效地将能量转移到Tb 3+上,增强Tb 3+的发射强度,产生强而占主导地位的绿色荧光。铕离子配合物在616 nm处有较强的红色荧光发射峰,TC分子的β-二酮结构,可以与Eu 3+发生螯合反应,将其激发能传递给Eu 3+,并通过“天线效应”敏化Eu 3+发光。基于以上技术原理,若能将发光镧系金属有机框架(Ln-MOF)与荧光HNT结合起来,就能形成一种可同时检测TC和DPA两种物质的荧光探针。
发明内容
本发明的目的是提供一种双通道可视化多色荧光探针的制备及使用方法,建造一种基于埃洛石纳米管(HNTs)原位合成碳量子点并负载镧系金属有机框架的双通道荧光传感器,能够实现对DPA和TC的快速同时可视化检测。
为实现上述目的,本发明提供了一种双通道可视化多色荧光探针的制备方法,步骤如下:
一种双通道可视化多色荧光探针的制备方法,其特征在于:步骤如下:
S1、埃洛石纳米管氨基化的修饰,
a、将埃洛石纳米管分散到二甲苯中,超声一定时间后,在室温下进行搅拌,使溶液分散更均匀;
b、将硅烷偶联剂3-氯丙基三甲氧基硅烷逐滴加入到上述溶液,室温下搅拌,混合物在加热条件下油浴回流; 
c、将上述溶液离心,去除上清液,用乙醇洗涤三次,加热条件下进行真空干燥;
d、将得到的全部产物分散在去离子水中,超声后在室温下搅拌一段时间;
e、加入聚乙烯亚胺,混合后搅拌一段时间,将混合物在加热条件下油浴回流,通过离心分离获得HNT-PEI,并用水洗涤一次,然后使用真空干燥箱进行干燥,得到HNT-PEI;
S2、以柠檬酸为碳源合成蓝色碳点并进行HNT@CDs的合成,
a、将HNT-PEI和柠檬酸超声分散在去离子水中,室温下磁力搅拌一段时间,使HNT-PEI和柠檬酸混合均匀;
b、将所得溶液转移至聚四氟乙烯内衬高压釜中,并持续加热12小时,通过PEI和柠檬酸在高温高压下的水热反应在HNT表面原位合成碳点;
c、待反应釜冷却后,离心,弃去上清液,取固体沉淀用无水乙醇洗涤,真空干燥后得到具有蓝色荧光的HNT@CDs;
S3、HNT@CDs-MOF的制备,
a、将HNT@CDs超声分散在去离子水中;
b、取一定量的Eu(NO 3) 3×6H 2O、Tb(NO 3) 3×6H 2O、无水乙酸钠溶解在去离子水中,与上述溶液混合后,再将1,3,5-苯三甲酸分散在乙醇中,超声溶解后滴加到混合液中,从而在HNT@CDs表面形成一层双金属MOF; 
c、离心去除上清液,并用水和乙醇溶液混合洗涤,去除游离的铕、铽离子及乙酸钠;
d、在加热条件下真空干燥后得到最终产物。
一种双通道可视化多色荧光探针的使用方法,包含DPA的检测方法,步骤如下:
S1、将DPA溶解在去离子水中,配置一定浓度的DPA溶液;
S2、取一定量的荧光纳米复合探针,用pH=8的Tris-HCI缓冲定容;
S3、加入不同浓度的DPA后,在激发波长Ex=280 nm通道下考察HNT@CDs-MOF荧光纳米探针识别DPA的灵敏度;
S4、在254nm紫外灯下通过肉眼实现DPA的多色荧光半定量及定性检测。
一种双通道可视化多色荧光探针的使用方法,包含TC的检测方法,步骤如下:
S1、将TC溶解在去离子水中,配置一定浓度的TC溶液;
S2、取一定量的荧光纳米复合探针,用pH=9的Tris-HCI缓冲定容;
S3、滴加一定量的TC,测定激发波长Ex=370 nm通道下的荧光发射光谱;
S4、在365 nm紫外灯下通过肉眼实现TC的多色荧光半定量及定性检测。
因此,本发明对埃洛石表面进行改性,制备了一种基于埃洛石纳米管(HNTs)原位合成碳量子点并负载镧系金属有机框架的双通道荧光传感器,能够实现对DPA和TC的快速同时可视化检测。天然多孔材料与金属有机框架的结合有效地提高了荧光探针的稳定性和检测灵敏度,有助于快速、准确、直观地检测生物标志物。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
图1为本发明实施例2中HNT@CDs-MOF探针对DPA的检测效果图;
图2为本发明实施例3中HNT@CDs-MOF探针对TC的检测效果图。
具体实施方式
以下通过附图和实施例对本发明的技术方案作进一步说明。
实施例1
一种双通道可视化多色荧光探针的制备方法如下:
1、埃洛石纳米管氨基化的修饰
埃洛石纳米管氨基化修饰的方式如下。首先,将1 g埃洛石纳米管分散到50 mL二甲苯中,超声15分钟,室温下搅拌1小时,使溶液分散更均匀。将5 mL的硅烷偶联剂3-氯丙基三甲氧基硅烷逐滴加入到上述溶液,室温下搅拌10分钟,混合物在油浴80 ℃的条件下回流8h,通过硅烷偶联剂与埃洛石纳米管表面的硅羟基的偶联作用将氯丙基引入到埃洛石纳米管表面。通过离心(7000 rmp,3min)去除上清液,用乙醇洗涤三次除去未反应的硅烷偶联剂,在60 ℃下真空干燥5小时。其次,将得到的全部产物分散在40 mL去离子水中,超声后在室温下搅拌30 min,加入2g聚乙烯亚胺(PEI),混合后搅拌30 min,混合物在90℃的条件下油浴回流8 h,通过PEI表面的氨基和埃洛石纳米管表面的氯之间的共价作用将氨基引入到埃洛石纳米管表面。然后通过离心(6000 rmp,3min)分离获得HNT-PEI,并用水洗涤一次,然后使用真空干燥箱设定温度为60℃进行干燥,得到HNT-PEI。
2、HNT@CDs的合成
选用柠檬酸为碳源进行改进并合成蓝色碳点。将500 mg HNT-PEI和300 mg柠檬酸超声分散在15 mL去离子水中,室温下磁力搅拌1h,使HNT-PEI和柠檬酸混合均匀。将所得溶液转移至聚四氟乙烯内衬高压釜中,并在160℃下持续加热12小时,通过PEI和柠檬酸在高温高压下的水热反应在HNT表面原位合成碳点。待反应釜冷却后,离心(6000 rmp,3min)弃去上清液,取固体沉淀用无水乙醇洗涤三次,以去除未反应的有机物和游离碳量子点,真空干燥后得到具有蓝色荧光的HNT@CDs。
3、HNT@CDs-MOF的制备
将100mgHNT@CDs超声分散在20 mL去离子水中。取8.82 mg (0.02 mmol)的Eu(NO 3) 3×6H 2O,36.24 mg (0.08 mmol)的Tb(NO 3) 3×6H 2O,16.41 mg(0.02 mmol)无水乙酸钠溶解在3mL去离子水中,将上述溶液混合均匀后,再将1,3,5-苯三甲酸分散在10 mL乙醇中,超声溶解后滴加到混合液中,在室温下磁力搅拌1h,通过羧基和稀土离子的配位作用在HNT@CDs表面形成一层双金属MOF。然后离心去除上清液,并用水和乙醇混合溶液洗涤,去除游离的铕、铽离子及乙酸钠。在60℃下真空干燥8h后得到最终产物。
实施例2
检测DPA
将2,6-吡啶二甲酸(DPA)溶解在去离子水中,配置一定浓度的DPA溶液(0-81 μM),取100 mL(1mg/mL)荧光纳米复合探针用Tris-HCI(pH=8)缓冲定容至2 mL。加入不同浓度DPA后,在激发波长Ex=280 nm通道下考察HNT@CDs-MOF荧光纳米探针识别DPA的灵敏度。加入DPA之后,荧光纳米探针在545 nm处的荧光强度显著增强,616 nm处的红色荧光没有明显变化,如图1所示。在0-81 μM范围内,随着DPA浓度的增加,实现了从红色到绿色的荧光变化,DPA的浓度与荧光强度呈现较好的线性关系,相关系数R 2=0.99784,相关的线性方程为I 545/I 616=3.54072C DPA+0.44552,检测限低至6.07 nM,显著低于炭疽杆菌孢子的感染量(60 μM)。
根据HNT@CDs-MOF荧光纳米探针对DPA的灵敏度检测,测量激发波长Ex=280 nm通道下不同浓度DPA存在下的发射光谱和CIE坐标图,证实了该纳米传感器在DPA存在下可以实现多种荧光颜色的转变。同时,254 nm紫外灯下可以通过肉眼实现DPA的多色荧光半定量及定性检测。
实施例3
检测TC
将四环素(TC)溶解在去离子水中,配置一定浓度的TC溶液,取100 mL (1 mg/mL)荧光纳米复合探针用Tris-HCI(pH=9)缓冲定容至2 mL,滴加一定量的TC(0-19 μM),测定激发波长Ex=370 nm通道下的荧光发射光谱,发光颜色从蓝色变为红色,体系在616 nm处荧光强度随着TC的增加而增强,450 nm处荧光强度有所下降。随着TC浓度的增加,HNT@CDs-MOF纳米传感器在450 nm处的蓝色荧光略有下降,616 nm处红色荧光强度显著增强,如图2所示。
在0~6 μM和6-19 μM的范围内,TC的浓度与荧光强度呈现良好的线性关系,R 1 2=0.99761和R 2 2=0.98038,相关的线性方程可以表示为I 616/I 450=0.28067 C TC+0.14139和I 616/I 450=0.07941C TC+1.31231,检测限为11.31 nM,远低于美国和欧盟食品和药物管理局(FDA)规定的牛奶TC的最高残留限量(0.676 μM和0.225 μM)。
根据HNT@CDs-MOF荧光纳米探针对TC的灵敏度检测,测量了激发波长Ex=370 nm通道下不同浓度TC存在下的发射光谱和CIE坐标图,证实了该纳米传感器在TC存在下可以实现多种荧光颜色的转变。同时,365 nm紫外灯下可以通过肉眼实现TC的多色荧光半定量及定性检测。
因此,本发明提供了制备一种基于埃洛石纳米管原位生长的碳量子点和镧系双金属有机框架掺杂的灵敏度高、范围广和选择性好的双通道荧光纳米探针的技术方案,能够实现同时对DPA和TC的快速可视化检测。在280 nm的激发波长下,该纳米荧光传感器能够特异性识别DPA,DPA与Tb 3+配位后,纳米荧光传感器通过天线效应发出波长为545nm的特征绿光,荧光从红色变为绿色,进而实现对DPA的快速可视化检测。在370 nm的激发波长下,该纳米荧光传感器又可以特异性识别TC,实现从蓝色到红色的荧光变化。TC与Eu 3+配位后,纳米荧光传感器通过天线效应发出波长为616 nm的特征红光,负载碳量子点的埃洛石纳米管的蓝色荧光发射强度(450 nm)随着四环素的增加有些许的下降,记录Eu-TC络合物的红色发射与蓝色发射之比的变化,实现对四环素的高灵敏检测。在0-81μM DPA范围内,该荧光传感器对DPA的检测限低至14.4 nM。在0-19 μM TC范围内,该荧光传感器对TC的检测限低至23.8 nM,实现了对DPA与TC的准确检测,能够满足食品和环境样品中TC和DPA的检测要求。
最后应说明的是:以上实施例仅用以说明本发明的技术方案而非对其进行限制,尽管参照较佳实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对本发明的技术方案进行修改或者等同替换,而这些修改或者等同替换亦不能使修改后的技术方案脱离本发明技术方案的精神和范围。

Claims (3)

  1. 一种双通道可视化多色荧光探针的制备方法,其特征在于:步骤如下:
    S1、埃洛石纳米管氨基化的修饰,
    a、将埃洛石纳米管分散到二甲苯中,超声一定时间后,在室温下进行搅拌,使溶液分散更均匀;
    b、将硅烷偶联剂3-氯丙基三甲氧基硅烷逐滴加入到上述溶液,室温下搅拌,混合物在加热条件下油浴回流; 
    c、将上述溶液离心,去除上清液,用乙醇洗涤三次,加热条件下进行真空干燥; 
    d、将得到的全部产物分散在去离子水中,超声后在室温下搅拌一段时间;
    e、加入聚乙烯亚胺,混合后搅拌一段时间,将混合物在加热条件下油浴回流,通过离心分离获得HNT-PEI,并用水洗涤一次,然后使用真空干燥箱进行干燥,得到HNT-PEI;
    S2、以柠檬酸为碳源合成蓝色碳点并进行HNT@CDs的合成,
    a、将HNT-PEI和柠檬酸超声分散在去离子水中,室温下磁力搅拌一段时间,使HNT-PEI和柠檬酸混合均匀;
    b、将所得溶液转移至聚四氟乙烯内衬高压釜中,并持续加热12小时,通过PEI和柠檬酸在高温高压下的水热反应在HNT表面原位合成碳点;
    c、待反应釜冷却后,离心,弃去上清液,取固体沉淀用无水乙醇洗涤,真空干燥后得到具有蓝色荧光的HNT@CDs;
    S3、HNT@CDs-MOF的制备,
    a、将HNT@CDs超声分散在去离子水中;
    b、取一定量的Eu(NO 3) 3×6H 2O、Tb(NO 3) 3×6H 2O、无水乙酸钠溶解在去离子水中,与上述溶液混合后,再将1,3,5-苯三甲酸分散在乙醇中,超声溶解后滴加到混合液中,从而在HNT@CDs表面形成一层双金属MOF;
    c、离心去除上清液,并用水和乙醇溶液混合洗涤,去除游离的铕、铽离子及乙酸钠;
    d、在加热条件下真空干燥后得到最终产物。
  2. 如权利要求1所述的一种双通道可视化多色荧光探针的使用方法,其特征在于:包含DPA的检测方法,步骤如下:
    S1、将DPA溶解在去离子水中,配置一定浓度的DPA溶液;
    S2、取一定量的荧光纳米复合探针,用pH=8的Tris-HCI缓冲定容;
    S3、加入不同浓度的DPA后,在激发波长Ex=280 nm通道下考察HNT@CDs-MOF荧光纳米探针识别DPA的灵敏度;
    S4、在254 nm紫外灯下通过肉眼实现DPA的多色荧光半定量及定性检测。
  3. 如权利要求1所述的一种双通道可视化多色荧光探针的使用方法,其特征在于:包含TC的检测方法,步骤如下:
    S1、将TC溶解在去离子水中,配置一定浓度的TC溶液;
    S2、取一定量的荧光纳米复合探针,用pH=9的Tris-HCI缓冲定容;
    S3、滴加一定量的TC,测定激发波长Ex=370 nm通道下的荧光发射光谱;
    S4、在365 nm紫外灯下通过肉眼实现TC的多色荧光半定量及定性检测。
PCT/CN2023/082699 2022-03-28 2023-03-21 一种双通道可视化多色荧光探针的制备及检测方法 WO2023185543A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/217,635 US20230358741A1 (en) 2022-03-28 2023-07-03 Method for preparing dual-channel visual multicolor fluorescent probe and detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210313892.5A CN114774118B (zh) 2022-03-28 2022-03-28 一种双通道可视化多色荧光探针的制备及检测方法
CN202210313892.5 2022-03-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/217,635 Continuation US20230358741A1 (en) 2022-03-28 2023-07-03 Method for preparing dual-channel visual multicolor fluorescent probe and detection method

Publications (1)

Publication Number Publication Date
WO2023185543A1 true WO2023185543A1 (zh) 2023-10-05

Family

ID=82425904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082699 WO2023185543A1 (zh) 2022-03-28 2023-03-21 一种双通道可视化多色荧光探针的制备及检测方法

Country Status (3)

Country Link
US (1) US20230358741A1 (zh)
CN (1) CN114774118B (zh)
WO (1) WO2023185543A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117431065A (zh) * 2023-10-30 2024-01-23 河北科技大学 一种碳量子点-二氧化锰荧光探针及其制备方法和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114774118B (zh) * 2022-03-28 2023-03-14 河南理工大学 一种双通道可视化多色荧光探针的制备及检测方法
CN117887455A (zh) * 2023-12-29 2024-04-16 广州大学 一种比率型荧光探针及其制备方法与在荧光检测血清素中的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106959290A (zh) * 2017-03-09 2017-07-18 华东师范大学 一种比率型稀土荧光探针及检测炭疽杆菌生物标志物的应用
CN107603592A (zh) * 2017-08-30 2018-01-19 河南理工大学 一种磁性荧光纳米材料的制备方法及其荧光检测方法
CN109232619A (zh) * 2018-11-05 2019-01-18 中山大学 基于稀土金属有机框架的多色荧光材料及其制备方法与防伪墨水应用
CN113310961A (zh) * 2021-05-27 2021-08-27 辽宁大学 一种Eu-MOF纳米荧光探针及其制备方法和在检测炭疽生物标志物中的应用
CN113884475A (zh) * 2021-10-12 2022-01-04 青岛农业大学 基于铕掺杂碳量子点比率荧光探针的四环素检测方法
CN114774118A (zh) * 2022-03-28 2022-07-22 河南理工大学 一种双通道可视化多色荧光探针的制备及检测方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105954247B (zh) * 2016-05-04 2019-03-12 东南大学 一种汞离子发光指示材料及其制备方法和应用
CN107999079B (zh) * 2017-12-29 2020-06-05 济南大学 一种基于Cu(II)-MOF/Ni复合材料的制备方法和应用
CN111999276B (zh) * 2020-08-26 2021-06-08 北京大学 一种制备发光铕基金属有机框架探针的方法及其应用
CN113125408A (zh) * 2021-03-11 2021-07-16 上海应用技术大学 一种人体呼出气中挥发性苯甲醛的现场快速检测方法
CN113512423A (zh) * 2021-07-17 2021-10-19 重庆医科大学 一种基于金属有机框架的荧光碳量子点及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106959290A (zh) * 2017-03-09 2017-07-18 华东师范大学 一种比率型稀土荧光探针及检测炭疽杆菌生物标志物的应用
CN107603592A (zh) * 2017-08-30 2018-01-19 河南理工大学 一种磁性荧光纳米材料的制备方法及其荧光检测方法
CN109232619A (zh) * 2018-11-05 2019-01-18 中山大学 基于稀土金属有机框架的多色荧光材料及其制备方法与防伪墨水应用
CN113310961A (zh) * 2021-05-27 2021-08-27 辽宁大学 一种Eu-MOF纳米荧光探针及其制备方法和在检测炭疽生物标志物中的应用
CN113884475A (zh) * 2021-10-12 2022-01-04 青岛农业大学 基于铕掺杂碳量子点比率荧光探针的四环素检测方法
CN114774118A (zh) * 2022-03-28 2022-07-22 河南理工大学 一种双通道可视化多色荧光探针的制备及检测方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JIA LEI; ZHOU TAO; XU JUN; XU ZHOUQING; ZHANG MINGMING; WANG YUAN; LI ZHONGYUE; ZHU TAOFENG: "Visible light-induced lanthanide polymer nanocomposites based on clays for bioimaging applications", JOURNAL OF MATERIAL SCIENCE, KLUWER ACADEMIC PUBLISHERS, DORDRECHT, vol. 51, no. 3, 22 September 2015 (2015-09-22), Dordrecht , pages 1324 - 1332, XP035595101, ISSN: 0022-2461, DOI: 10.1007/s10853-015-9450-x *
LI QING-ZHI, ZHOU YI-HUA, CHEN YUAN, LU FEI, QIAN JUN, CAO SHENG: "Research Progress on Detection Mechanism and Application of Carbon Dots-based Ratiometric Fluorescence Sensor", CHINESE JOURNAL OF LUMINESCENCE, GAI KAN BIANJIBU, CHANGCHUN, CN, vol. 41, no. 5, 12 May 2020 (2020-05-12), CN , pages 579 - 591, XP093094775, ISSN: 1000-7032, DOI: 10.3788/fgxb20204105.0579 *
LI-JUAN CHEN, LIU REN-YONG; ZHAO DAN; YAN YE-HAN: "A Novel Fluorescent Probe for Mercury Ion Detection Based on Polyethyleneimine Modified Carbon Dots", CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, vol. 48, no. 8, 17 June 2020 (2020-06-17), pages 1067 - 1074, XP093094770 *
SU-YUE LIU, TIAN JING-JING; TIAN HONG-TAO; XU WEN-TAO: "Terbium(Ⅲ) and Its Complexes :from Luminescent Properties to Sensing and Bioimaging Applications", BIOTECHNOLOGY BULLETIN, vol. 36, no. 4, 5 December 2019 (2019-12-05), pages 192 - 207, XP093094771, DOI: 10.13560/j.cnki.biotech.bull.1985.2019-0604 *
ZHI MA, LI YINGQIA, DING TONG, DONG JUNJIE, QIN YONGNING: "Research progress of halloysite nanotubes in biomedical science application", CHEMICAL INDUSTRY AND ENGINEERING PROGRESS, BEIJING UNIVERSITY OF CHEMICAL TECHNOLOGY, MEMBER OF CHINESE ACADEMY OF ENGINEERING, PROFESSOR, CHINA, vol. 36, no. 8, 2 June 2017 (2017-06-02), pages 3032 - 3039, XP093094773, ISSN: 1000-6613, DOI: 10.16085/j.issn.1000-6613.2016-2296 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117431065A (zh) * 2023-10-30 2024-01-23 河北科技大学 一种碳量子点-二氧化锰荧光探针及其制备方法和应用
CN117431065B (zh) * 2023-10-30 2024-05-10 河北科技大学 一种碳量子点-二氧化锰荧光探针及其制备方法和应用

Also Published As

Publication number Publication date
CN114774118B (zh) 2023-03-14
CN114774118A (zh) 2022-07-22
US20230358741A1 (en) 2023-11-09

Similar Documents

Publication Publication Date Title
WO2023185543A1 (zh) 一种双通道可视化多色荧光探针的制备及检测方法
Liu et al. Anthrax biomarker: An ultrasensitive fluorescent ratiometry of dipicolinic acid by using terbium (III)-modified carbon dots
Xu et al. A novel visual ratiometric fluorescent sensing platform for highly-sensitive visual detection of tetracyclines by a lanthanide-functionalized palygorskite nanomaterial
Hu et al. A signal-amplified ratiometric fluorescence biomimetic sensor based on the synergistic effect of IFE and AE for the visual smart monitoring of oxytetracycline
Cai et al. Self-assembled nanomaterials based on aggregation-induced emission of AuNCs: Fluorescence and colorimetric dual-mode biosensing of organophosphorus pesticides
Wu et al. Magnetic nanobead-based immunoassay for the simultaneous detection of aflatoxin B1 and ochratoxin A using upconversion nanoparticles as multicolor labels
Arai et al. Exploring the use of upconversion nanoparticles in chemical and biological sensors: from surface modifications to point-of-care devices
Wu et al. Homogenous detection of fumonisin B1 with a molecular beacon based on fluorescence resonance energy transfer between NaYF4: Yb, Ho upconversion nanoparticles and gold nanoparticles
CN109762558A (zh) 一种用于定量检测尿液中PPi含量的比率型荧光探针的制备方法
CN109799217B (zh) 一种基于碲化镉量子点与铕离子复合体系的高灵敏度比率荧光探针及其制备方法和应用
CN108680545B (zh) 一种食源性致病菌现场快速检测方法
CN111286324A (zh) 一种用于检测水环境中次氯酸根的荧光探针及其制备方法与应用
Chen et al. A fluorescence biosensor for Salmonella typhimurium detection in food based on the nano-self-assembly of alendronic acid modified upconversion and gold nanoparticles
Jiang et al. Preparation and time-resolved luminescence bioassay application of multicolor luminescent lanthanide nanoparticles
Xu et al. A ratiometric nanosensor based on lanthanide-functionalized attapulgite nanoparticle for rapid and sensitive detection of bacterial spore biomarker
Yang et al. Dual-emission of silicon nanoparticles encapsulated lanthanide-based metal-organic frameworks for ratiometric fluorescence detection of bacterial spores
CN106916159A (zh) 一种开关纳米卟啉荧光传感器可控制备方法
Su et al. Eu3+/Tb3+ supramolecular assembly hybrids for ultrasensitive and ratiometric detection of anthrax spore biomarker in water solution and actual spore samples
Xu et al. A multi-color fluorescent sensing system integrated with color recognition, liquid crystal display, and voice output module for intelligent detection of two targets
WO2017088214A1 (zh) 荧光生物检测系统
Shao et al. A ratiometric fluorescent nanoprobe based on ZIF-8@ AuNCs–Tb for visual detection of 2, 6-pyridinedicarboxylic acid
Deng et al. LMOF serve as food preservative nanosensor for sensitive detection of nitrite in meat products
Li et al. A ratiometric luminescence nanoprobe based on layered terbium hydroxide nanosheets for quantitative detection of an anthrax biomarker
Song et al. A smartphone-assisted paper-based ratio fluorescent probe for the rapid and on-site detection of tetracycline in food samples
Zhang et al. Intelligent visual detection of OTC enabled by a multicolor fluorescence nanoprobe: Europium complex functionalized carbon dots

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23777916

Country of ref document: EP

Kind code of ref document: A1