WO2023185141A1 - 一种氢气输送用复合管道及氢气泄漏监测方法 - Google Patents

一种氢气输送用复合管道及氢气泄漏监测方法 Download PDF

Info

Publication number
WO2023185141A1
WO2023185141A1 PCT/CN2022/141789 CN2022141789W WO2023185141A1 WO 2023185141 A1 WO2023185141 A1 WO 2023185141A1 CN 2022141789 W CN2022141789 W CN 2022141789W WO 2023185141 A1 WO2023185141 A1 WO 2023185141A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
pipe
pipeline
plastic
layer
Prior art date
Application number
PCT/CN2022/141789
Other languages
English (en)
French (fr)
Inventor
施建峰
苑宇童
郑津洋
姚日雾
葛周天
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to US18/160,698 priority Critical patent/US11774044B1/en
Publication of WO2023185141A1 publication Critical patent/WO2023185141A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • F17D5/02Preventing, monitoring, or locating loss
    • F17D5/06Preventing, monitoring, or locating loss using electric or acoustic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • F17D5/005Protection or supervision of installations of gas pipelines, e.g. alarm

Definitions

  • the invention relates to the field of hydrogen transportation pipelines, and in particular to a composite pipeline for hydrogen transportation and a hydrogen leakage monitoring method.
  • hydrogen transportation is an important link in the hydrogen energy industry chain, and pipelines are an important economic way to achieve large-scale, long-distance transportation.
  • medium-pressure/high-pressure pipelines are more commonly used to transport hydrogen, and dedicated lines are constructed.
  • Seamless metal pipes are commonly used for hydrogen transportation pipelines, and seamless stainless steel pipes are generally used.
  • Specific pipeline steel materials that can be used for hydrogen pipelines include X42, X52, X56, X60, X60, X70 and X80.
  • alloying elements such as C, Mn, Cr, etc. will enhance the hydrogen embrittlement susceptibility of low alloy steel.
  • the higher the hydrogen pressure and the higher the material strength the more obvious the hydrogen embrittlement and hydrogen-induced cracking will be.
  • Monel alloy is used to produce hydrogen pipelines. It has excellent physical properties such as high strength, high corrosion resistance, and wear resistance.
  • Monel alloy pipeline technology is more complex and costly. Too high and difficult to mass produce.
  • the generator and audio detection device are located inside the pipeline, which poses the risk of generating sparks. Moreover, it can only determine the leakage in a certain section and cannot provide any information. It is difficult to identify the precise leakage location, and the installation process is complicated, making practical application difficult;
  • the hydrogen pipeline in the Chinese patent application “A fully immersed, fully enclosed safe hydrogen transmission pressure pipeline” (CN 214840120U) is a metal pipe, which may suffer from hydrogen embrittlement. Phenomenon, the pipeline structure is complex, and the water quality requirements in the water storage pipeline are relatively high (impure water will corrode metal pipelines), making it difficult to implement.
  • the existing pipeline leakage monitoring technologies mainly include the following three types, non-destructive testing, condition monitoring and leakage monitoring.
  • Non-destructive testing technologies include ultrasonic testing, X or ⁇ -ray testing, magnetic particle testing, and penetrant testing. These testing methods cannot monitor in real time and cannot determine the specific location of defects. In addition, ultrasonic testing cannot detect surface or near-surface defects, and rays Detection has safety hazards and high detection costs. Magnetic particle testing is only suitable for steel pipelines, etc.
  • Commonly used condition monitoring technologies include monitoring of temperature, pressure, flow and other status parameters. These monitoring technologies can monitor in real time, but the detection accuracy will change with time. Depending on the equipment, it is difficult to achieve the detection accuracy of trace leakage of hydrogen; leakage monitoring can be achieved by arranging gas sensors on the ground, but this method can only monitor at fixed points. At the same time, hydrogen has the characteristics of fast diffusion, so the leaked hydrogen diffuses If the final concentration is too low, it is difficult for the sensor to achieve such high sensitivity, and it cannot be detected in time.
  • this field needs to improve the safe and effective transportation of hydrogen and the real-time full pipeline leakage monitoring of hydrogen pipelines.
  • the present invention provides a composite pipeline for hydrogen transportation and a real-time full-pipeline monitoring system and method for hydrogen leakage to realize effective and safe transportation of hydrogen and real-time full-pipeline leakage monitoring of hydrogen transmission pipelines.
  • a composite pipe for hydrogen transportation includes a plastic pipe, a polyurethane foam layer and a plastic protective layer arranged in sequence from the inside to the outside.
  • the plastic pipe is located on the inner layer and can be manufactured by a plastic extruder; the polyurethane foam layer is coated on the outside of the plastic pipe; the plastic protective layer material is manufactured by a plastic extruder and coated on the polyurethane foam layer outside.
  • the PE material is relatively stable and suitable for hydrogen transmission.
  • the applicant exposed the PE material to hydrogen and the results were the same as those exposed to air.
  • the preparation cost of plastic pipes is low and the manufacturing technology is mature.
  • the accumulation of hydrogen is achieved by foaming polyurethane.
  • the porosity of the polyurethane foam layer is large, which can effectively accommodate leakage or leakage of hydrogen, thereby achieving the accumulation of hydrogen. It avoids the situation where hydrogen escapes too quickly and spreads to the outside air quickly, and the hydrogen concentration near the pipeline is too low to detect the leak.
  • the plastic protective layer effectively avoids the uncertainty of the hydrogen escape point and the damage to the internal structure. Integrity.
  • the plastic pipe may be a polyethylene pipe, a nylon pipe, a reinforced plastic pipe, etc., preferably a polyethylene pipe, more preferably a high-density polyethylene pipe, and further preferably a PE100 material.
  • the polyurethane foam layer can be prepared by mixed foaming of polyMDI (diphenylmethane diisocyanate) and polyether.
  • the plastic protective layer is made of polyethylene material, preferably high-density polyethylene.
  • the plastic protective layer with a thickness between 4 and 10 mm, can protect the polyurethane insulation layer from damage by mechanical hard objects, resist corrosion and waterproofing, and bear soil pressure.
  • the preparation process of the composite pipe includes: first preparing a plastic pipe with a plastic extruder, each section is 12m long; then, using a plastic extruder to prepare a plastic protective layer, each section is 12m long, and coating And protect the inner structure; finally, take the plastic pipe as the inner pipe and the plastic protective layer as the outer pipe, fix the inner pipe and the outer pipe coaxially and arrange them at an angle, and set a plug between the end of the inner pipe and the end of the outer pipe.
  • the invention also provides a real-time full-pipeline monitoring system for hydrogen leakage, which includes the composite pipe of the present invention, a composite pipe joint, an emptying pipe and an optical fiber hydrogen sensor; the composite pipe joint is welded by the plastic pipe as the inner layer.
  • the process includes peeling off the outer layer, electrothermal welding of the inner layer, coating with a polyurethane foam layer, covering the outer plastic protective layer, installing an exhaust pipe, and installing a hydrogen sensor in the exhaust pipe; the exhaust pipe and the plastic
  • the protective layer is made of the same material.
  • the hydrogen collected by the polyurethane foam layer will be released uniformly from the exhaust pipe, realizing the localized release of leaked hydrogen;
  • the hydrogen sensor can be an optical fiber hydrogen sensor, which can quickly detect the hydrogen concentration and ambient temperature, and is composed of all hydrogen optical fiber sensors.
  • the system formed can realize real-time monitoring of hydrogen leakage throughout the entire pipeline.
  • the hydrogen sensor of the present invention may be other types of sensors, such as hydrogen sensors using wireless transmission methods.
  • the diameter of the evacuation pipe is 10mm-15mm, which is installed at each pipe joint.
  • the bottom of the evacuation pipe is 2mm deep into the polyurethane foam layer, and the top of the evacuation pipe is more than 1.5m above the ground.
  • a hydrogen sensor is installed in each exhaust pipe and installed 1m away from the bottom of the exhaust pipe.
  • the present invention further provides a method for realizing real-time full pipeline monitoring of hydrogen leakage using the aforementioned system, including:
  • each hydrogen sensor is numbered sequentially starting from “1" until the last hydrogen sensor at the outlet of the pipeline network;
  • the vertical axis of the first coordinate system represents hydrogen concentration
  • the horizontal axis of the first coordinate system represents time
  • the vertical axis of the second coordinate system represents Hydrogen concentration
  • the horizontal axis of the second coordinate system represents different sensors
  • the numbers are marked on the coordinate axis in proportion to the length of each pipe section, and "1" coincides with the origin of the coordinate;
  • Step 5 The hydrogen sensor inside the exhaust pipe detects the change in hydrogen concentration.
  • the signal receiving and processor displays the specific measured value of hydrogen concentration and the ambient temperature accordingly.
  • the leakage location is The amount of hydrogen leakage will increase, and more hydrogen will enter the polyurethane foam layer; hydrogen will accumulate in the polyurethane foam layer, and more hydrogen will diffuse along the polyurethane layer, near the leakage location. More hydrogen will escape from the venting pipe, and the amount of hydrogen escaping from other venting pipes will also fluctuate slightly;
  • a hydrogen concentration change curve with time is established, and at the same time, a hydrogen pipeline change curve in the overall pipeline is established based on the hydrogen concentration at each measurement point at the same time (linear fitting of the curve between the two measurement points);
  • the present invention has the following beneficial effects:
  • the invention optimizes the structure of the pipeline for hydrogen transmission and adopts a three-layer composite structure: the inner layer is a plastic pipe made of polyethylene, the middle layer is a polyurethane foam layer, and the outer layer is a plastic protective layer made of high-density polyethylene; each The layers have different functions and functions: the inner layer of pipes is a pressure-bearing pipe, and has the advantages of good flexibility and corrosion resistance.
  • the plastic material is relatively stable and suitable for hydrogen transmission; the middle layer of polyurethane foam layer has large porosity and can Absorb hydrogen and realize the accumulation of hydrogen.
  • the accumulation of hydrogen is achieved by foaming polyurethane, which can effectively accommodate the leakage or leakage of hydrogen, realize the accumulation of hydrogen, and avoid the rapid diffusion of hydrogen to the outside air due to excessive escape of hydrogen. And the resulting hydrogen concentration near the pipeline is too low to detect leaks. It not only alleviates the diffusion of hydrogen and reduces the loss of hydrogen transportation caused by leakage, but also slows down the leakage of hydrogen into the air, improves the safety factor, and avoids the situation where the sensor cannot detect the hydrogen concentration due to too fast escape of hydrogen. ;
  • the outer plastic protective layer plays a dual role, not only preventing the hydrogen in the polyurethane from escaping at will, but also protecting the integrity of the inner structure.
  • the present invention utilizes sensors arranged at specific positions to form a monitoring system and achieves the goal of real-time full pipeline monitoring of hydrogen transmission pipelines.
  • a vent pipe is provided at each pipe joint, and a hydrogen sensor is installed at a fixed height of each vent pipe.
  • the vent pipe provides a definite escape location for the hydrogen gas, and the hydrogen sensor can provide the hydrogen concentration at different locations and can monitor the ambient temperature.
  • time sequence time sequence
  • the hydrogen concentration change curve with time at each exhaust pipe can be obtained; through horizontal comparison (sensor position), the specific leakage point of the pipeline can be determined.
  • the hydrogen transportation composite pipeline provided by the present invention has the advantages of light weight, good flexibility, hydrogen corrosion resistance, high safety, good thermal insulation performance, long service life, etc.
  • the sensor It has the advantages of simultaneously monitoring hydrogen concentration and ambient temperature, high sensitivity, and fast transmission. The above advantages better ensure the safe transportation of hydrogen.
  • Figure 1 is a schematic diagram of the structure of a composite pipeline for hydrogen transmission in an embodiment of the present invention.
  • Figure 2 is a diagram of the hydrogen leakage monitoring system at the pipeline joint in the embodiment of the present invention.
  • Figure 3 is a partially enlarged schematic diagram of the installation of the optical fiber hydrogen sensor in the exhaust pipe in the embodiment of the present invention.
  • Figure 4 is a schematic diagram of a hydrogen pipeline equipped with real-time full pipeline monitoring in an embodiment of the present invention.
  • Figure 5 is a graph showing the hydrogen concentration curve at each position of the entire pipeline at 21s in Embodiment 1 of the present invention.
  • Figure 6 is a graph showing changes in hydrogen concentration over time in the exhaust pipe numbered “3” in Embodiment 1 of the present invention.
  • Figure 7 is a graph showing changes in hydrogen concentration over time in the exhaust pipe numbered “4” in Embodiment 1 of the present invention.
  • Figure 8 is a schematic diagram of the leakage point of pipe section "34" in Embodiment 1 of the present invention.
  • Figure 9 is a graph of hydrogen concentration at each position of the entire pipeline at 30s in Embodiment 2 of the present invention.
  • Figure 10 is a graph showing changes in hydrogen concentration over time in the exhaust pipe numbered “5” in Embodiment 2 of the present invention.
  • Figure 11 is a schematic diagram of the leakage point of pipe joint "5" in Embodiment 2 of the present invention.
  • the composite pipe for hydrogen transmission of the present invention includes a plastic pipe, a polyurethane foam layer and a plastic protective layer. From the inside to the outside, they are the plastic pipe, the polyurethane foam layer and the plastic protective layer.
  • the preparation process of the composite pipeline for hydrogen transmission of the present invention includes the following steps.
  • the vacuum degree is adjusted according to the sequence deviation of the outer diameter of the pipe.
  • the sizing vacuum degree is controlled at -0.01MPa ⁇ - Within the range of 0.06MPa; the qualified pipe after sizing is separated from the sizing copper sleeve and enters the cooling water tank under the traction of the tractor. After spray cooling or immersion cooling, it is pulled out of the vacuum shaping water tank and cooling water tank, and passes through the tractor track. The running transmission is to the printing machine, and finally transported to the planetary cutting machine for cutting according to each section of 12m.
  • the outer plastic protective layer it is prepared by a plastic extruder.
  • the specific process is the same as the inner plastic pipe, and finally covers the inner structure; finally, a high-pressure foaming machine is used to prepare a polyurethane foam layer as the middle layer: take
  • the plastic pipe is used as the inner pipe and the plastic protective layer is used as the outer pipe.
  • the inner pipe and the outer pipe are coaxially fixed and arranged at an angle.
  • a plug is set between the end of the inner pipe and the end of the outer pipe, and then the spray gun is moved from the higher end.
  • the opening on the plug is inserted into the annulus between the inner tube and the outer tube (that is, the annular space between the inner tube and the outer tube), and the two components of polyMDI and polyether are mixed by the foaming device.
  • Mix immediately and inject into the annular space between the tubes through the spray gun, control the spray gun to complete the injection and foaming while reversing, and finally remove the film after the polyurethane foam layer is stably formed.
  • FIG. 2 a schematic structural diagram of the joint monitoring device of the composite pipeline for hydrogen transmission according to the present invention.
  • a cutting machine to cut off 50cm of the plastic protective layer and polyurethane foam layer at the end of the pipe, then scrape 0.1 ⁇ 0.3mm of the oxide layer in the welding area of the inner plastic/composite pipe, select appropriate welding parameters, and use hot melt butt welding
  • the machine heats the welded sections of the two pipes to a certain temperature to melt them, then quickly joins them, and applies a certain pressure until cooling to complete the welding of the inner pipes; further, the foaming device prepares the polyurethane foam in the middle Bubble layer; further, prepare the outer plastic protective layer by a plastic extruder; further, use a cutting machine to cut a round hole with a diameter of 10-15mm on the upper part of the plastic protective layer of the pipe joint; further, insert the bottom of the drain pipe into the polyurethane hair
  • the bubble layer is 2mm, fix the drain pipe, scrape the oxide layer of the drain pipe and the cutting area
  • FIG. 3 it is a partial enlarged schematic diagram of the installation of the optical fiber hydrogen sensor of the present invention.
  • the hydrogen concentration probe and temperature probe are installed inside each exhaust pipe, and each probe is connected to the laser source and signal receiving and processor through optical fibers.
  • Two types of curves are drawn on the signal receiving and processor sides. When a jump point (jump value exceeds 10%) appears in both types of curves in the pipeline, the alarm indicates a leak in the pipeline.
  • the staff immediately looked at two types of curves: when the hydrogen concentration curve measured at a certain point in the pipeline jumped (the hydrogen concentration increased significantly) and even continued to increase rapidly afterwards, they further compared and observed the hydrogen in the entire pipeline at the moment of the jump.
  • Concentration curve if only this point also has a jump, and the concentration difference from the surrounding measurement points is large, it can be determined that there is a leak in the pipeline at the measurement point; when the hydrogen concentration curve measured at two points in the pipeline has varying degrees of jump, and at the same time, the hydrogen concentration curve of the entire pipeline also jumps at these two points at the jump moment, it can be determined that the pipeline between the two measurement points is leaking, and the pipe section is further divided according to the reciprocal of the hydrogen concentration ratio at the two points. , determine the specific leak location.
  • the overall structure of the composite pipe of the present invention used in a certain hydrogen transmission pipeline is shown in Figure 4.
  • Specific parameters of the pipeline the nominal diameter of the plastic pipe as the inner layer is 600mm, the outer diameter is 630mm, and the wall thickness is 15mm; the thickness of the polyurethane foam layer as the middle layer is 15mm; the inner diameter of the plastic protective layer as the outer layer is 660mm, thickness is 10mm.
  • the factory assembly line is used to produce composite pipes: First, the production process of the plastic pipe as the inner layer: Set the heating temperature of each section of the main barrel and head of the plastic extruder. The overall temperature is within 220°C, and the heating temperature of each section is The adjustment range is ⁇ 10°C.
  • the temperature After reaching the set temperature, the temperature is kept constant for 120 minutes.
  • the heating temperatures of the barrel and machine head sections all reach the set temperature ( ⁇ 2°C) and there is no significant change within the constant temperature time, the machine is turned on.
  • Start the main screw first. Run at low speed (10r/min), then start the feeder screw to run at low speed (10r/min); add the starting material first, and then add the regular production material (PE100) after the extrusion is normal to formally extrude the pipe; extrusion pipe After the traction is normal, start the vacuum pump on the vacuum sizing water tank.
  • the pipe passing through the sizing copper sleeve is adsorbed on the inner wall of the sizing sleeve in a vacuum environment.
  • the vacuum degree is adjusted according to the sequence deviation of the outer diameter of the pipe.
  • the sizing vacuum degree is controlled.
  • the qualified pipe after sizing is separated from the sizing copper sleeve and enters the cooling water tank under the traction of the tractor. After spray cooling or immersion cooling, it is pulled out of the vacuum sizing water tank and cooled
  • the water tank is driven to the printing machine through the crawler track of the tractor, and finally transported to the planetary cutting machine for cutting according to each section of 12m.
  • prepare the outer plastic protective layer it is prepared by a plastic extruder. The specific process is the same as the inner plastic pipe.
  • the production process of the middle layer polyurethane foam layer take the inner plastic pipe as the inner pipe and the outer plastic protective layer as the outer pipe. Fix the inner pipe and the outer pipe coaxially and arrange them at an angle. The end of the inner pipe is in contact with the outer pipe. A plug is set between the ends of the tubes, and the two components of polyMDI and polyether are mixed instantly by a high-pressure foaming machine and injected into the annular space between the inner tube and the outer tube through a spray gun to complete the injection process. Foam, and finally remove the film after the polyurethane foam layer is stably formed.
  • the specific content required for a real-time full pipeline monitoring system for pipeline hydrogen leakage multiple exhaust pipes with a diameter of 15mm; multiple optical fiber hydrogen sensors with the function of measuring temperature and hydrogen concentration.
  • the preparation process of the real-time full pipeline monitoring system for pipeline hydrogen leakage first use a cutting machine to cut off 50cm of both the plastic protective layer and the polyurethane foam layer at the end of the pipeline, then scrape 0.2mm of the oxide layer in the welding area of the inner plastic/composite pipeline, and set
  • the working temperature is 220°C
  • the temperature error is ⁇ 5°C
  • the working pressure of the hydraulic system is 3MPa
  • the 400-630 hydraulic butt welding machine is used to heat the welded sections of the two pipes to the working temperature, melt them, and then quickly attach them Then, a certain pressure is applied until cooling to complete the inner pipe welding; further, the middle polyurethane foam layer is prepared by a high-pressure foaming machine; further, the outer plastic protective layer is prepared by a plastic extruder; further, the cutting
  • the specific conditions for hydrogen transmission in the pipeline are: the pressure is 2.0MPa, and the flow rate is approximately 8417m 3 /h.
  • staff B1 heard the alarm sound and observed the hydrogen concentration curve of the signal reception and processor at the corresponding time, and found that the equipment detected a hydrogen concentration jump.
  • Staff member B1 immediately checked the hydrogen concentration curve of the entire pipeline at the corresponding time, as shown in Figure 5; after observation, it was found that the hydrogen concentration at the fiber optic hydrogen sensor "3" and the fiber optic hydrogen sensor "4" was significantly higher than the hydrogen concentration at other locations on both sides. . Further observe the hydrogen concentration versus time curves at "3" and "4" of the optical fiber hydrogen sensor, as shown in Figures 6 and 7.
  • the structure of a long-distance hydrogen transport pipeline is shown in Figure 4.
  • the specific structural dimensions of the pipeline are as follows: the nominal diameter of the inner plastic pipe is 300mm, the outer diameter is 325mm, and the wall thickness is 12.5mm; the polyurethane foam layer as the middle layer The thickness is 10mm; the inner diameter of the outer plastic protective layer is 345mm and the thickness is 5mm.
  • the specific conditions for pipeline hydrogen transmission are: the pressure is 1.8MPa and the flow rate is approximately 2160m 3 /h.
  • staff B2 heard the alarm sound and observed the hydrogen concentration curve of the signal receiving and processor at the corresponding time, and found that the equipment detected a hydrogen concentration jump.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Pipeline Systems (AREA)

Abstract

一种氢气输送用复合管道的实时全管线监测方法以及一种氢气泄露实时全管线监测系统。该氢气输送用复合管道包括从内到外依次设置的塑料管道(101)、聚氨酯发泡层(102)和塑料保护层(103)。利用复合管道在特定位置布置传感器形成监测系统,提供一种氢气泄漏监测方法,实现对输氢管道的实时全管线监测。

Description

一种氢气输送用复合管道及氢气泄漏监测方法
相关申请的交叉引用
本申请要求于2022年03月29日提交的、申请号为202210315029.3的中国专利申请的优先权,该申请以引用的方式并入本文中。
技术领域
本发明涉及氢气输送管道领域,具体涉及一种氢气输送用复合管道以及氢气泄漏监测方法。
背景技术
近年来,氢能源作为一种零碳高效新能源,在世界能源转型中的价值日益凸显,世界主要发达国家近年纷纷出台政策大力支持氢能产业发展。2020年,我国明确将氢能纳入能源种类,预示着氢能产业发展迈出了重要一步。
在氢能产业链中,非常重要的四个环节分别是制氢、储氢、运氢和用氢。其中,氢气输送(运氢)是氢能产业链的重要环节,管道是实现大规模、长距离输运的重要经济方式。
目前,输送领域较为常规的采用中压/高压管道输送氢气,且为专线建设。氢气输送用管道常用无缝金属管道,一般用无缝不锈钢管,具体可用于氢气管道的管线钢材料包括X42、X52、X56、X60、X60、X70和X80。但是,合金元素如C、Mn、Cr等会增强低合金钢的氢脆敏感性。同时,氢气压力越高、材料强度越高,氢脆和氢致开裂现象会越明显。此外,蒙耐尔合金用于生产输氢管道,其具有高强度、高耐蚀、耐磨损的优良的物理特性,但是对于远距离输氢来讲,蒙耐尔合金管道技术较复杂,成本过高,难以量产。
由于氢气分子较小,氢气扩散速度极快,且无嗅、无色、无味,爆 炸极限范围极宽(4%~75.6%),氢气最小引燃能量仅为0.017mJ等,故采用管道输送氢气时,存在如下问题:在管道连接处存在氢气的扩散损失,目前氢气的扩散损失约为天然气的三倍;由于氢气输送要求纯度较高,不宜添加其他气体来使运输气体可视、可闻,因而氢气一旦发生泄漏,从泄漏点直接进入空气中会快速逸散,极易导致泄漏点处浓度过低而无法被传感器监测的情况出现,进而难以被工作人员迅速察觉并检修;氢气的爆炸下限较低,泄漏到空气中极易形成爆炸性混合物,遇明火、高温高热极易燃烧爆炸。因此,在输氢管道中,安装一种可以实时全管线监测氢气泄漏的系统十分必要。为解决该难题,很多学者正从不同的角度进行研究与改进,如提高氢气检测速度和精度、优化管道结构使氢气泄漏可视化等,不过多数研究处于实验室阶段。如中国专利申请“一种输气管道安全防控监测方法”(CN 113090958A)中发生器和音频检测装置都位于管道内部,存在产生电火花的危险,而且只能确定某段发生泄漏,无法给出精确的泄漏位置,同时安装过程复杂,实际应用困难;中国专利申请“一种全浸式全封闭安全输氢压力管道”(CN 214840120U)中输氢管道为金属管材,其可能会出现氢脆现象,管道结构复杂,对存水管道中的水质要求较高(非纯净水会对金属管道有腐蚀作用),实现难度较大。
目前,现有的管道泄漏监测技术主要包括以下三种,无损检测、状态监测和泄漏监测。
但是各种技术均存在一定的壁垒。常用的无损检测技术包括超声检测、X或γ射线检测、磁粉检测以及渗透检测等,这些检测手段无法实时监测且无法确定缺陷的具体位置,此外超声检测无法检测到表面或近表面的缺陷,射线检测存在安全隐患并且检测成本高,磁粉检测仅适用于钢铁管道等;常用的状态监测技术包括对温度、压力以及流量等状态参数的监测技术,这些监测技术手段可以实时监测,但是检测精度会随着设备不同而不同,同时难以达到氢气微量泄露的检测精度;泄漏监测可以通过在地面布置气体传感器来实现,但是这种方法只能定点监测,同时氢气具有扩 散快的特点,因此泄漏的氢气扩散后浓度过低,传感器难以达到如此高灵敏度,进而无法被及时检测。
基于以上背景技术,本领域需要改进对安全、有效输送氢气和对输氢管道实时全管线泄漏监测。
发明内容
为了克服相关技术中的不足,本发明提供一种氢气输送用复合管道及氢气泄漏实时全管线监测系统和方法,实现有效、安全输送氢气,并对输氢管道实时全管线泄漏监测。
一种氢气输送用复合管道包括从内到外依次设置的塑料管道、聚氨酯发泡层和塑料保护层。所述塑料管道位于内层,可以由塑料挤出机制造;所述聚氨酯发泡层包覆在塑料管道外侧;所述塑料保护层材料,由塑料挤出机制造,包覆在聚氨酯发泡层外侧。
本发明中通过优化管道结构,采用了一种更易实现的复合结构来实现氢气的安全输送,PE材料比较稳定,适合氢气传输,申请人将PE材料暴露在氢气中与暴露在空气中结果一样,并且塑料管道的制备成本较低且制造技术成熟,通过发泡聚氨酯来实现氢气的聚集,聚氨酯发泡层的孔隙率较大,可以有效的容纳渗漏或者泄漏的氢气,实现了氢气的聚集,避免了因氢气逃逸过快,从而快速扩散至外部空气,以及导致的管道附近氢气浓度过低而无法监测到泄漏的情况,塑料保护层有效的避免了氢气逃逸点不确定的情况以及内部结构的完整性。不但缓解了氢气的扩散,减少了泄露导致的氢气输送损失,也减缓了氢气泄漏进空气中,提高了安全系数,并且,确定了—排空管作为氢气逃逸口来实现氢气的排放以及氢传感器来实现氢气浓度的快速有效检测。
所述塑料管道,可以为聚乙烯管、尼龙管或增强塑料管等,优选为聚乙烯管,进一步优选为高密度聚乙烯管,进一步优选为PE100材料。
所述聚氨酯发泡层,可以由聚MDI(二苯基甲烷二异氰酸酯)和聚醚混合发泡制备而成。
可选地,所述塑料保护层为聚乙烯材料,优选为高密度聚乙烯。
可选地,所述塑料保护层,厚度在4-10mm之间,可以起到保护聚氨酯保温层免遭机械硬物破坏、防腐防水以及承担土壤压力的作用。
可选地,所述的复合管道,聚氨酯发泡层厚度可以按照公式计算,聚氨酯发泡层厚度=(外层管道内径-内层管道外径)/2,在此厚度范围内,可以有效的聚集氢气,又不影响管道整体厚度。
可选地,所述复合管道的制备工艺过程包括:首先由塑料挤出机制备塑料管道,每段长取12m;然后,由塑料挤出机制备塑料保护层,每段长取12m,包覆并保护内层结构;最后,取塑料管道作为内管、塑料保护层作为外管,将内管和外管同轴固定并倾斜布置,内管的端部与外管的端部之间设置堵头,依靠发泡装置将聚氨酯组分即时混合并通过喷枪注入内管和外管之间的环形空间内,填满环形空间完成注料发泡,最后待聚氨酯发泡层稳定成型后脱膜。
本发明还提供了一种氢气泄漏实时全管线监测系统,包括本发明的复合管道,还包括复合管道接头、排空管以及光纤氢传感器;所述复合管道接头通过作为内层的塑料管道焊接而成,包括剥离外层、内层电热熔对接、涂覆聚氨酯发泡层、包覆外层塑料保护层、安装排空管,并在排空管中安装氢传感器;所述排空管与塑料保护层由相同材料制备而成。聚氨酯发泡层收集的氢气将统一从排气管中释放,实现了泄漏氢气定位地泄放;所述氢传感器可以是光纤氢传感器,可以快速的检测氢气浓度和环境温度,由全部氢光纤传感器组成的系统,可以实现氢气泄漏实时全管线的监测。
本发明的氢传感器其他类型的传感器,如采用无线传输方式的氢传感器。
本发明中,所述排空管的直径为10mm-15mm,其安装在每个管道接头处,排空管的底部深入聚氨酯发泡层2mm,排空管的顶部高于地面1.5m 以上,同时每个排空管中安装一个氢传感器,安装在距排空管底部1m处。
本发明进一步提供了利用前述系统实现实时全管线监测氢气泄漏的方法,包括:
在输氢管网的入口端起,以“1”开始依次为每一个氢传感器编号,直至管网出口端最后一个氢传感器为止;
利用origin绘制两类坐标系(第一坐标系和第二坐标系),其中,第一坐标系的纵轴代表氢气浓度,第一坐标系的横轴代表时间;第二坐标系的纵轴代表氢气浓度,第二坐标系的横轴代表各个不同的传感器,并按照每段管道的管长等比例将各编号依次标于坐标轴,“1”与坐标原点重合;
步骤五:排空管内部的氢传感器检测到氢气浓度的变化,同时在信号接收与处理器相应地显示出氢气浓度的具体测量值和环境温度,其中,复合管道内部出现破损后,泄漏位置处氢气的泄漏量会增大,同时更多的氢气会进入聚氨酯发泡层中;氢气在所述聚氨酯发泡层中聚集,且更多的氢气会沿所述聚氨酯层扩散,在泄漏位置附近的排空管内会逸散更多的氢气,其他的排空管内的氢气逸散量也会出现小幅波动;
将终点内的氢气浓度数据分类储存,并分别以一段时间内各测量点的氢气浓度进行依次输出和同一时刻所有测量点的氢气浓度依次输出;
根据同一测量点不同时刻的氢气浓度,建立氢气浓度随时间的变化曲线,同时根据同一时刻各测量点氢气浓度建立整体管道内氢气管道变化曲线(两测量点间曲线线性拟合);
根据两类曲线的变化情况来判断是否出现管道泄漏,若出现泄漏情况,报警器报警并记录相应的时刻,以找出管道泄漏的具体位置。
与相关技术相比,本发明具有的有益效果:
本发明对输氢用管道结构进行了优化,采用三层复合结构:内层为聚乙烯材料的塑料管道、中间层为聚氨酯发泡层,外层为高密度聚乙烯材料的塑料保护层;各层均具有不同的功能与作用:内层管道是承压管道,此外具有柔性好、耐腐蚀的优点,塑料材料比较稳定,适合氢气传输;中 间层聚氨酯发泡层具备较大的孔隙率,可以吸收氢气,实现氢气的聚集,通过发泡聚氨酯来实现氢气的聚集,可以有效的容纳渗漏或者泄漏的氢气,实现了氢气的聚集,避免了因氢气逃逸过快,从而快速扩散至外部空气,以及导致的管道附近氢气浓度过低而无法监测到泄漏的情况。不但缓解了氢气的扩散,减少了泄露导致的氢气输送损失,也减缓了氢气泄漏进空气中,提高了安全系数,避免了因氢气逃逸过快导致氢气浓度过低而出现传感器无法检测到的情况;外层塑料保护层起着双重作用,既可以防止聚氨酯中的氢气随意逃逸,又可以保护内层结构的完整性。
本发明利用特定位置布置传感器形成监测系统,实现了对输氢管道的实时全管线监测的目标。在每个管道接头处设置一个排空管,且在每个排空管的固定高度处安装一个氢传感器。排空管为氢气提供了确定的逃逸位置,氢传感器可以提供不同位置处的氢气浓度并且可以监测环境温度。通过纵向对比(时间先后),可以得出每个排空管处氢气浓度随时间的变化曲线;通过横向对比(传感器位置),可以确定管道的具体泄漏点。
在实现输氢用管道实时全管线监测的同时,本发明所提供的氢气输送复合管道具有质量轻、柔性好、耐氢腐蚀、安全性高、保温性能好、使用寿命长等优点,此外该传感器具备同时监测氢气浓度与环境温度、灵敏度高、传输快等优点,上述的优点更好的保障了氢气的安全输送。
附图说明
图1为本发明实施例中输氢用复合管道结构的示意图。
图2为本发明实施例中管道接头处氢气泄漏监测系统图。
图3为本发明实施例中排空管内光纤氢传感器安装的局部放大示意图。
图4为本发明实施例中具备实时全管线监测氢气管道的示意图。
图5为本发明实施例一中,第21s时全管线各位置处氢气浓度曲线 图。
图6为本发明实施例一中,编号“3”处排空管中氢气浓度随时间变化曲线图。
图7为本发明实施例一中,编号“4”处排空管中氢气浓度随时间变化曲线图。
图8为本发明实施例一中,管段“34”的泄漏点的示意图。
图9为本发明实施例二中,第30s时全管线各位置处氢气浓度曲线图。
图10为本发明实施例二中,编号“5”处排空管中氢气浓度随时间变化曲线图。
图11为本发明实施例二中,管道接头“5”的泄漏点的示意图。
附图标记:101塑料管道,102聚氨酯发泡层,103塑料保护层,201复合管道接头,202排空管,301光纤氢传感器,401、402、403…409分别代表各光纤氢传感器探头,410激光源,411信号接收与处理器,801泄漏点。
具体实施方式
下面结合附图对本发明做进一步详细描述,需要指出的是,以下所述实施例旨在便于对本发明的理解,对其不起任何限定作用。
如图1所示,本发明的输氢用复合管道包括塑料管道、聚氨酯发泡层和塑料保护层,从内到外依次为塑料管道、聚氨酯发泡层以及塑料保护层。
本发明的输氢用复合管道的制备过程包括以下步骤。
首先,制备内层塑料管道:设置塑料挤出机的主机机筒和机头各段加热温度,整体温度在175~225℃内,各段加热温度调整范围为±10℃,达到设定温度后,恒温90-150分钟;当机筒和机头各段加热温度全部达到设 置温度(±2℃)并恒温时间内无大幅变化后开机,先启动主机螺杆低速运转(5-10r/min),再启动加料机螺杆低速运转给料(5-10r/min);先加入开机料,待挤出正常后再加入常规生产料(PE100)以正式挤出管材;挤出管材牵引正常后,启动真空定型水箱上的真空泵,通过定径铜套的管材在真空环境中被吸附在定径筒套内壁上,根据管材的外径语序偏差调节真空度,一般定径真空度控制在-0.01MPa~-0.06MPa的范围内;定径后的合格管材在牵引机的牵引作用下脱离定径铜套进入冷却水箱,经过喷淋冷却或浸泡冷却后被牵引出真空定型水箱和冷却水箱,通过牵引机履带运行传动向印字机,最后输送到行星式切割机,按照每段12m进行切割。接下来,制备外层塑料保护层:由塑料挤出机制备,具体过程与内层塑料管道相同,最终包覆内层结构;最后,利用高压发泡机制备聚氨酯发泡层作为中间层:取塑料管道作为内管、塑料保护层作为外管,将内管和外管同轴固定并倾斜布置,内管的端部与外管的端部之间设置堵头,然后将喷枪从较高一端的堵头上的开孔处插入内管与外管之间的管间环空(即内管与外管之间的环形空间),依靠发泡装置将聚MDI和聚醚这两种组分即时混合并通过喷枪注入管间环形空间内,控制喷枪边倒退边完成注料发泡,最后待聚氨酯发泡层稳定成型后脱膜。
如图2所示,本发明的输氢用复合管道接头处监测装置结构示意图。首先用切割机将管道端部的塑料保护层和聚氨酯发泡层均切除50cm,然后刮削内层塑料/复合管道焊接区域的氧化层0.1~0.3mm,选择合适的焊接参数,利用热熔对接焊机将两根管道的焊接断面加热到一定温度,使其熔化,然后迅速将其贴合,并施加一定的压力直至冷却,完成内层管道焊接;进一步,由发泡装置制备处于中间的聚氨酯发泡层;进一步,由塑料挤出机制备外层塑料保护层;进一步,由切割机在管道接头塑料保护层上部切割出直径为10-15mm的圆孔;进一步,将排空管底部深入聚氨酯发泡层2mm,固定排空管,刮削排空管和切割区的氧化层0.1~0.3mm,选择合适的焊接参数,利用电熔管件内表面的电热丝通带内加热,使切割区内表面和排空管 外表面熔化,由于塑料焊管自身的热胀效应,使二者融合在一起,然后冷却到要求时间,完成焊接;最后,利用夹具深入排空管内,在安装位置处固定光纤氢传感器。
如图3所示,为本发明的光纤氢传感器安装的局部放大示意图。将氢气浓度探头和温度探头安装于每个排空管内部,各个探头均通过光纤连接激光源和信号接收与处理器。信号接收与处理器端绘制出两类曲线。当管道中两类曲线中均出现跳变点(跳变值超过10%)的时候,报警器报警预示管道出现泄漏。接下来,工作人员立即查看两类曲线图:当管道中某一点测量的氢气浓度曲线出现跳变(氢气浓度大幅增加)且后续甚至继续迅速增大,进一步对比观察在跳变时刻整体管道的氢气浓度曲线,若仅该点也出现跳变,并与周围测量点的浓度差异较大时,则可认定该测量点处管道出现泄漏;当管道中某两点测量的氢气浓度曲线出现不同程度的跳变,同时在跳变时刻整体管道的氢气浓度曲线仅在这两点处也出现跳变,则可以认定两测量点中间的管道出现泄漏,进一步依据两点处氢气浓度比值的倒数划分该管段,确定具体泄漏位置。
具体实施例一:
某一输氢管道采用的本发明中的复合管道,整体结构如图4所示。管道的具体参数:作为内层的塑料管道的公称直径为600mm,外径为630mm,壁厚为15mm;作为中间层的聚氨酯发泡层的厚度为15mm;作为外层的塑料保护层的内径为660mm,厚度为10mm。根据具体参数,利用工厂流水线生产复合管道:首先,作为内层的塑料管道生产流程:设置塑料挤出机的主机机筒和机头各段加热温度,整体温度在220℃内,各段加热温度调整范围为±10℃,达到设定温度后,恒温120分钟;当机筒和机头各段加热温度全部达到设置温度(±2℃)并恒温时间内无大幅变化后开机,先启动主机螺杆低速运转(10r/min),再启动加料机螺杆低速运转给料(10r/min);先加入开机料,待挤出正常后再加入常规生产料(PE100)以正式挤出管材;挤出管材牵引正常后,启动真空定型水箱上的真空泵,通过定径铜套的管 材在真空环境中被吸附在定径筒套内壁上,根据管材的外径语序偏差调节真空度,一般定径真空度控制在-0.01MPa~-0.06MPa的范围内;定径后的合格管材在牵引机的牵引作用下脱离定径铜套进入冷却水箱,经过喷淋冷却或浸泡冷却后被牵引出真空定型水箱和冷却水箱,通过牵引机履带运行传动向印字机,最后输送到行星式切割机,按照每段12m进行切割。接下来,制备外层塑料保护层:由塑料挤出机制备,具体过程与内层塑料管道相同。最后,中间层聚氨酯发泡层的生产流程:取内层塑料管道作为内管、外层塑料保护层作为外管,将内管和外管同轴固定并倾斜布置,内管的端部与外管的端部之间设置堵头,依靠高压发泡机将聚MDI和聚醚这两种组分即时混合并通过喷枪注入内管和外管之间的环形空间内,填满完成注料发泡,最后待聚氨酯发泡层稳定成型后脱膜。管道氢气泄漏实时全管线监测系统所需的具体内容:多个排空管,直径为15mm;多个光纤氢传感器,具备测温和测氢气浓度的功能。管道氢气泄漏实时全管线监测系统的制备过程:首先用切割机将管道端部的塑料保护层和聚氨酯发泡层均切除50cm,然后刮削内层塑料/复合管道焊接区域的氧化层0.2mm,设置工作温度220℃,温度误差:±5℃,液压系统工作压力为3MPa,利用400-630型液压对焊机,将两根管道的焊接断面加热到工作温度,使其熔化,然后迅速将其贴合,并施加一定的压力直至冷却,完成内层管道焊接;进一步,由高压发泡机制备中间聚氨酯发泡层;进一步,由塑料挤出机制备外层塑料保护层;进一步,由切割机在管道接头塑料保护层上部切割出直径为15mm的圆孔;进一步,将排空管底部深入聚氨酯发泡层2mm,固定排空管,刮削排空管和切割区的氧化层0.2mm,利用全自动电熔焊接机的电熔管件内表面的电热丝通带内加热,使切割区内表面和排空管外表面熔化,由于塑料焊管自身的热胀效应,使二者融合在一起,然后冷却到要求时间,完成焊接;最后,利用夹具深入排空管内,在安装位置处固定光纤氢传感器。
管道的输氢具体条件为:压力为2.0MPa,流量约为8417m 3/h。在管道运行中,工作人员B1听到报警器报警声,并观察信号接收与处理器在相 应时间的氢气浓度曲线,发现设备监测到氢气浓度跳变的情况。工作人员B1立即查看相应时间的全管道氢气浓度曲线,如图5所示;经过观察,发现光纤氢传感器“3”和光纤氢传感器“4”处氢气浓度明显高于两侧其他位置的氢气浓度。进一步观察光纤氢传感器“3”和“4”处的氢气浓度随时间变化曲线,如图6和图7所示,发现在21s处两位置处氢气浓度显著大,因此可以认定在管段“34”内发生了泄漏,管段“34”放大图如图8所示。由于聚氨酯发泡层材料的均一性,可以认定在泄漏管段内氢气的逃逸速度基本相同,造成两点浓度差异的主要原因是距泄漏点的距离不同。因此,工作人员B立即依据两处氢气浓度的反比3.4%:3.6%将管段“34”从左往右分为两段,分隔点即为泄漏点,如图8中的位置“801”所示。
具体实施例二:
某一远距离输送氢气管道结构如图4所示,管道的具体结构尺寸如下:内层塑料管道的公称直径为300mm,外径为325mm,壁厚为12.5mm;作为中间层的聚氨酯发泡层的厚度为10mm;作为外层的塑料保护层的内径为345mm,厚度为5mm。管道输氢的具体条件为:压力为1.8MPa,流量约为2160m 3/h。在管道运行中,工作人员B2听到报警器报警声,并观察信号接收与处理器在相应时间的氢气浓度曲线,发现设备监测到氢气浓度跳变的情况。工作人员B2立即查看相应时间的全管道氢气浓度曲线,如图9所示;经过观察,发现光纤氢传感器“5”处氢气浓度明显高于两侧其他位置的氢气浓度。进一步观察“5”处的氢气浓度随时间变化曲线,如图10所示;发现在30s处两位置处氢气浓度显著大,因此可以认定在复合管道接头“5”处发生了泄漏,具体位置如图11中位置“1101”所示。
最后,应当指出,以上实施例仅是本发明较有代表性的例子。显然,本发明不限于上述实施例,还可以有许多变形。凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均应认为属于本发明的保护范围。

Claims (6)

  1. 一种氢气输送复合管道的实时全管线监测方法,所述氢气输送复合管道包括从内到外依次设置的塑料管道、聚氨酯发泡层和塑料保护层,所述塑料管道为PE100材料;所述聚氨酯发泡层由聚二苯基甲烷二异氰酸酯和聚醚混合发泡制备而成,厚度为(外层管道内径-内层管道外径)/2;所述塑料保护层为高密度聚乙烯材料,厚度在4-10mm之间,排空管安装在每个复合管道的接头处,所述监测方法包括:
    在输氢管网的入口端起,以“1”开始依次为每一个氢传感器编号,直至管网出口端最后一个氢传感器为止;
    绘制第一坐标系和第二坐标系,其中,所述第一坐标系的纵轴代表氢气浓度,所述第一坐标系的横轴代表时间;所述第二坐标系的纵轴代表氢气浓度,所述第二坐标系的横轴代表各个不同的传感器,并按照每段管道的管长等比例将各编号依次标于坐标轴,“1”与坐标原点重合;
    排空管内部的氢传感器检测到氢气浓度的变化,同时在信号接收与处理器相应地显示出氢气浓度的具体测量值和环境温度,其中,复合管道内部出现破损后,泄漏位置处氢气的泄漏量会增大,同时更多的氢气会进入聚氨酯发泡层中;氢气在所述聚氨酯发泡层中聚集,且更多的氢气会沿所述聚氨酯层扩散,在泄漏位置附近的排空管内会逸散更多的氢气,其他的排空管内的氢气逸散量也会出现小幅波动;
    将终点内的氢气浓度数据分类储存,并分别以一段时间内各测量点的氢气浓度进行依次输出和同一时刻所有测量点的氢气浓度依次输出;
    根据同一测量点不同时刻的氢气浓度,建立氢气浓度随时间的变化曲线,同时根据同一时刻各测量点氢气浓度建立整体管道内氢气浓度变化曲线;
    根据两类曲线的跳变情况来判断是否出现管道泄漏,若出现泄漏情况,报警器报警并记录相应的时刻,以找出管道泄漏的具体位置。
  2. 根据权利要求1所述的氢气输送复合管道的实时全管线监测方法,其特征在于,制备所述氢气输送用复合管道包括:
    由塑料挤出机制备所述塑料管道,每段塑料管道为12m;
    由塑料挤出机制备塑料保护层,每段塑料保护层为12m,所述塑料保护层包覆并保护内层结构;
    取所述塑料管道作为内管、所述塑料保护层作为外管,将所述内管和所述外管同轴固定并倾斜布置,所述内管的端部与所述外管的端部之间设置堵头,依靠发泡装置将聚氨酯组分即时混合并通过喷枪注入所述内管和所述外管之间的环形空间内,填满所述环形空间以完成注料发泡,待聚氨酯发泡层稳定成型后脱膜。
  3. 一种氢气泄漏实时全管线监测系统,包括如权利要求1所述的复合管道、塑料复合管道接头、排空管和氢传感器,所述排空管安装在所述塑料复合管道接头处,所述氢传感器设置在所述排空管上。
  4. 根据权利要求3所述的氢气泄漏实时全管线监测系统,其特征在于:所述排空管与所述塑料保护层的制备材料相同;所述氢传感器包括氢气探头和温度探头,用以获得氢气浓度和环境温度,所述系统还包括信号接收与处理器和报警器,所述氢传感器将待处理信号迅速传输到信号接收处理器,并将信号转化为具体的数据。
  5. 根据权利要求3所述的氢气泄漏实时全管线监测系统,其特征在于,所述排空管的直径为10mm-15mm,其安装在每个管道接头处,所述排空管的底部深入聚氨酯发泡层2mm,所述排空管的顶部高于地面1.5m以上,同时每个排空管中安装一个氢传感器的传感探头,所述传感探头安装在距排空管底部1m处,并远程连接信号接收与处理器。
  6. 根据权利要求3所述的氢气泄漏实时全管线监测系统,其特征在于,制备所述系统包括:复合管道接头通过作为内层的塑料管道焊接而成,剥离外层、内层电热熔对接、涂覆聚氨酯发泡层、包覆作为外层的塑料保护层、安装排空管,在排空管中安装氢传感器。
PCT/CN2022/141789 2022-03-29 2022-12-26 一种氢气输送用复合管道及氢气泄漏监测方法 WO2023185141A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/160,698 US11774044B1 (en) 2022-03-29 2023-01-27 Composite pipeline for transporting hydrogen and method for monitoring hydrogen leakage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210315029.3 2022-03-29
CN202210315029.3A CN114413186B (zh) 2022-03-29 2022-03-29 一种氢气输送用复合管道及氢气泄漏监测方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/160,698 Continuation US11774044B1 (en) 2022-03-29 2023-01-27 Composite pipeline for transporting hydrogen and method for monitoring hydrogen leakage

Publications (1)

Publication Number Publication Date
WO2023185141A1 true WO2023185141A1 (zh) 2023-10-05

Family

ID=81263345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141789 WO2023185141A1 (zh) 2022-03-29 2022-12-26 一种氢气输送用复合管道及氢气泄漏监测方法

Country Status (2)

Country Link
CN (1) CN114413186B (zh)
WO (1) WO2023185141A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114413186B (zh) * 2022-03-29 2022-10-25 浙江大学 一种氢气输送用复合管道及氢气泄漏监测方法
US11774044B1 (en) 2022-03-29 2023-10-03 Zhejiang University Composite pipeline for transporting hydrogen and method for monitoring hydrogen leakage
CN115013729B (zh) * 2022-06-01 2023-03-21 上海飞舟博源石油装备股份有限公司 采用双层气道复合材料管的中高压气体输送系统及方法
CN115979527B (zh) * 2023-03-21 2023-07-07 浙江大学 一种微量氢气泄漏检测系统及方法
CN117405308B (zh) * 2023-12-15 2024-03-26 浙江大学 一种氢气泄漏定位系统及定位方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04174335A (ja) * 1990-11-06 1992-06-22 Osaka Gas Co Ltd ガスの漏洩場所の検出方法および装置
US5992217A (en) * 1996-03-26 1999-11-30 Siemens Aktiengesellschaft Device and method for leakage detection
CN102758973A (zh) * 2012-07-17 2012-10-31 东北石油大学 双层管壁的复合型燃气管道及泄漏监测方法
CN204372558U (zh) * 2014-10-17 2015-06-03 西安交通大学 一种双层套管输热管道泄漏检测装置
JP2016193810A (ja) * 2015-03-31 2016-11-17 富永 淳 導管からの水素漏洩監視システム
US10386258B1 (en) * 2015-04-30 2019-08-20 Picarro Inc. Systems and methods for detecting changes in emission rates of gas leaks in ensembles
CN112576942A (zh) * 2020-11-27 2021-03-30 大连环宇安迪科技有限公司 一种针对氢气泄露的实时监测系统
CN113175627A (zh) * 2021-06-08 2021-07-27 西南石油大学 一种掺氢天然气管道泄漏监测装置及方法
CN114413186A (zh) * 2022-03-29 2022-04-29 浙江大学 一种氢气输送用复合管道及氢气泄漏监测方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2210173C2 (de) * 1972-03-03 1983-08-04 kabelmetal electro GmbH, 3000 Hannover Als koaxiale Rohrleitung mit einem zwischen einem inneren und einem äußeren Rohr bestehenden Temperaturgefälle ausgebildete Leitung
AUPP671198A0 (en) * 1998-10-23 1998-11-19 Bruce Wilson Services Pty Limited Detection of refrigerant leaks
FR2845453B1 (fr) * 2002-10-07 2004-11-26 Nobel Plastiques Conduite pour le transport de fluides contenant de l'hydrogene
WO2008033740A2 (en) * 2006-09-11 2008-03-20 Hydrogen Discoveries Inc. Mitigating hydrogen flux through solid and liquid barrier materials
WO2010059564A1 (en) * 2008-11-18 2010-05-27 Hydrogen Discoveries, Inc. Composite structures for hydrogen storage and transfer
KR20160031759A (ko) * 2014-09-15 2016-03-23 (주)유민에쓰티 폴리우레탄 폼을 이용한 테이프형 가스 감지 센서
CN209294577U (zh) * 2018-09-18 2019-08-23 陕西兴纪龙管道有限公司 一种聚氨酯发泡预制铝合金衬pp-r保温管材
CN113551160B (zh) * 2021-07-22 2023-04-28 三门核电有限公司 一种核电厂埋地氢气管线泄漏监测系统及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04174335A (ja) * 1990-11-06 1992-06-22 Osaka Gas Co Ltd ガスの漏洩場所の検出方法および装置
US5992217A (en) * 1996-03-26 1999-11-30 Siemens Aktiengesellschaft Device and method for leakage detection
CN102758973A (zh) * 2012-07-17 2012-10-31 东北石油大学 双层管壁的复合型燃气管道及泄漏监测方法
CN204372558U (zh) * 2014-10-17 2015-06-03 西安交通大学 一种双层套管输热管道泄漏检测装置
JP2016193810A (ja) * 2015-03-31 2016-11-17 富永 淳 導管からの水素漏洩監視システム
US10386258B1 (en) * 2015-04-30 2019-08-20 Picarro Inc. Systems and methods for detecting changes in emission rates of gas leaks in ensembles
CN112576942A (zh) * 2020-11-27 2021-03-30 大连环宇安迪科技有限公司 一种针对氢气泄露的实时监测系统
CN113175627A (zh) * 2021-06-08 2021-07-27 西南石油大学 一种掺氢天然气管道泄漏监测装置及方法
CN114413186A (zh) * 2022-03-29 2022-04-29 浙江大学 一种氢气输送用复合管道及氢气泄漏监测方法

Also Published As

Publication number Publication date
CN114413186B (zh) 2022-10-25
CN114413186A (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
WO2023185141A1 (zh) 一种氢气输送用复合管道及氢气泄漏监测方法
US4220012A (en) Apparatus for freezing a slug of liquid in a section of a large diameter fluid transmission line
US4112706A (en) Apparatus for freezing a slug of liquid in a section of a large diameter fluid transmission line
US11774044B1 (en) Composite pipeline for transporting hydrogen and method for monitoring hydrogen leakage
NO20130379A1 (no) Flerlagsrør i polymermateriale, apparat for framstilling av flerlagsrøret og framgangsmåte for samme
CN109596180B (zh) 一种水下输气管道泄漏扩散与溢散燃烧的实验装置及方法
CN107676569B (zh) 热力管道原位内衬修复的施工方法
RU120183U1 (ru) Многослойная труба
CA2325891A1 (fr) Rehabilitation par chemisage de conduites d'aqueduc
BR112015032250A2 (pt) método para fabricação de um cabo de energia, e, cabo de energia
CN113108244A (zh) 一种含氢天然气管道泄漏监测定位方法和系统
US4370862A (en) Apparatus and method for freezing a slug of liquid in a section of a large diameter fluid transmission line
WO2010049667A1 (en) Apparatus and method for reducing stress across subsea pipe joints
CN116792607A (zh) 一种低温高水位环境下接口保温施工工艺
CN216813194U (zh) 用于危险介质传输的三壁管
CN209926023U (zh) 全程在线实时监测的束管型多管管输液态co2系统
CN112145864B (zh) 一种球墨铸铁管带压包补技术
CN204727951U (zh) 一种搪玻璃防腐管道喷涂系统
CN101586708B (zh) 深海油气输送复合管及其制造方法
EP3936749A1 (en) Method for installing a gas transportation arrangement
CN204611109U (zh) 一种预埋光缆的增强热塑性塑料复合管
CN205535084U (zh) 具有泄漏监测功能的油气储运管道
CN210135368U (zh) 天然气管道隔离装置
CN208074382U (zh) 一种输油用钢制保温管道
CN112856229A (zh) 一种燃气管道用夹套管及燃气系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934956

Country of ref document: EP

Kind code of ref document: A1