WO2023185097A1 - 一种利用海上风电海水提锂的系统及工作方法 - Google Patents

一种利用海上风电海水提锂的系统及工作方法 Download PDF

Info

Publication number
WO2023185097A1
WO2023185097A1 PCT/CN2022/138639 CN2022138639W WO2023185097A1 WO 2023185097 A1 WO2023185097 A1 WO 2023185097A1 CN 2022138639 W CN2022138639 W CN 2022138639W WO 2023185097 A1 WO2023185097 A1 WO 2023185097A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
seawater
ions
wind power
adsorption device
Prior art date
Application number
PCT/CN2022/138639
Other languages
English (en)
French (fr)
Inventor
石慧
许朋江
吕凯
薛朝囡
张建元
邓佳
王妍
Original Assignee
西安热工研究院有限公司
西安西热节能技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安热工研究院有限公司, 西安西热节能技术有限公司 filed Critical 西安热工研究院有限公司
Publication of WO2023185097A1 publication Critical patent/WO2023185097A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching

Definitions

  • This application belongs to the field of offshore wind energy utilization and marine lithium resource development, and specifically relates to a system and working method for extracting lithium from seawater using offshore wind power.
  • wind power As a renewable energy power, has become a global development hotspot. About 70% of the world's area is ocean, and offshore wind energy resources are very abundant, especially in deep sea areas. Larger and more stable wind power is more conducive to the development of offshore wind power.
  • offshore wind turbines mainly consist of three parts: wind turbines, towers and substructures.
  • the substructure is divided into two types of platform structures: fixed and floating.
  • wind farms in offshore areas generally use various traditional through-pile structures fixed on the seabed.
  • traditional fixed structures will greatly increase the construction cost of wind farms. Therefore, in terms of economic investment and construction From this perspective, wind turbines based on floating platforms should be developed in far-reaching sea areas. Overall, the development trend of wind power construction must be "from land to ocean, from shallow sea to deep sea, and from fixed platforms to floating platforms.”
  • Lithium metal and its compounds are widely used in various fields, and as an important strategic resource, its demand is increasing day by day. While the global land reserves of lithium are limited, there is abundant lithium in seawater. Lithium extraction from seawater is an important part of marine resource utilization, and its technical research has attracted the attention of many scholars at home and abroad. Among them, electrochemical lithium extraction technology is an expansion of rechargeable lithium-ion battery technology. It uses electrode selective adsorption technology to achieve the enrichment of lithium ions in seawater. Its process is simple, its recovery rate is high, and its selectivity is good. It is especially suitable for extracting lithium from low-grade seawater and is considered a promising method for extracting lithium from seawater.
  • the electrochemical lithium extraction device mainly consists of an adsorption device, a recovery device, a separation and precipitation device and related auxiliary equipment.
  • the working principle is: when seawater flows through the adsorption component, lithium ions and chloride ions are transported across the cation and anion exchange membranes respectively under the electric drive of the two end plates. Since the active particle structure has strong lithium selective insertion characteristics, the migrated ions Lithium ions will be embedded in the active electrode particles and flow with the flow electrode to realize the extraction of lithium ions. At the same time, the migrated chloride ions are adsorbed to the activated carbon particles of the flow electrode on the other side. The flow electrode carries lithium ions and chloride ions and is pumped into the recovery component.
  • lithium chloride is realized Extraction in seawater and continuous enrichment in recovered solutions.
  • the high-purity lithium chloride solution is converted into lithium carbonate powder through a separation and precipitation device.
  • the purpose of this application is to overcome the above shortcomings, provide a system and working method for extracting lithium from seawater using offshore wind power, make full use of the abundant offshore resources, couple the offshore wind power and seawater lithium extraction systems, and use the electric energy generated by the wind turbine to extract lithium from seawater. Perform electrochemical lithium extraction to continuously produce lithium carbonate and realize the extraction of lithium metal from seawater.
  • a system for extracting lithium from seawater using offshore wind power includes a lithium adsorption device, the purified seawater is connected to the lithium adsorption device, the lithium adsorption device is connected to a lithium recovery device, and the lithium recovery device is connected to a conversion and separation device;
  • the lithium adsorption device is provided with two flow carrier electrode plates.
  • the two flow carrier electrode plates are covered with cation exchange membranes and anion exchange membranes respectively.
  • the flow carrier positive electrode plate and the flow carrier negative electrode plate of the lithium adsorption device are connected to the lithium recovery device;
  • the lithium adsorption unit and lithium recovery unit are powered by offshore wind turbines.
  • the conversion separation device has a built-in Na 2 CO 3 solution.
  • the conversion separation device is connected to the lithium recovery barrel.
  • a circulation pump is provided on the connecting pipe between the lithium adsorption device and the lithium recovery device.
  • the positive electrode plate of the lithium adsorption device uses active electrode particles; the negative electrode plate of the lithium adsorption device uses activated carbon particles.
  • the lithium adsorption device is equipped with a seawater outlet.
  • a working method of a system for extracting lithium from seawater using offshore wind power including the following steps:
  • the purified seawater enters the lithium adsorption device.
  • the lithium adsorption device adsorbs lithium ions and chloride ions in the seawater to the mobile carrier positive electrode plate and the mobile carrier negative electrode plate respectively;
  • the flow electrode carrying lithium ions and chloride ions in the lithium adsorption device enters the lithium recovery device, and under the action of the reverse electric field, the lithium ions and chloride ions are detached and transported across the membrane to the recovery solution to form a lithium chloride solution;
  • the flow electrode after extraction is returned to the lithium adsorption device
  • the lithium chloride solution enters the conversion and separation device.
  • Lithium ions and chloride ions in seawater are transported across the cation and anion exchange membranes respectively under the electric drive of the plates at both ends.
  • the lithium ions are embedded in the active electrode particles and flow with the flow electrode to realize the extraction of lithium ions, and the chloride ions are adsorbed to the other side.
  • the lithium chloride solution reacts through the conversion and separation device to form lithium carbonate powder, which is sent to the lithium recovery barrel.
  • this application uses a lithium adsorption device to adsorb lithium ions and chloride ions in seawater to the positive electrode plate and negative electrode plate respectively.
  • the flow electrode carrying lithium ions and chloride ions in the lithium adsorption device enters
  • the lithium recovery device removes lithium ions and chloride ions across the membrane and transports them into the recovery solution under the action of a reverse electric field to form a lithium chloride solution, thereby achieving the extraction of lithium chloride from seawater and the continuous enrichment of the recovery solution.
  • This application couples offshore wind power and seawater lithium extraction systems, makes full use of the abundant offshore resources, uses the electric energy generated by seawater wind turbines to electrochemically extract lithium from seawater, drives the continuous normal operation of the lithium extraction system, and continuously produces lithium carbonate. , to achieve the extraction of lithium metal from seawater and facilitate the comprehensive resource utilization of the ocean.
  • FIG 1 is the system structure diagram of this application
  • a system for extracting lithium from seawater using offshore wind power includes a lithium adsorption device 3.
  • Purified seawater is connected to the lithium adsorption device 3.
  • the lithium adsorption device 3 is connected to a lithium recovery device 4, and the lithium recovery device 4 is connected to a conversion and separation device. 5;
  • the lithium adsorption device 3 is provided with two flow carrier electrode plates.
  • the two flow carrier electrode plates are covered with cation exchange membranes and anion exchange membranes respectively.
  • the flow carrier positive electrode plate and the flow carrier negative electrode plate of the lithium adsorption device 3 are connected.
  • Lithium recovery device 4; a circulation pump 8 is provided on the connecting pipe between the lithium adsorption device 3 and the lithium recovery device 4.
  • the lithium adsorption device 3 and the lithium recovery device 4 are powered by the offshore wind turbine 1 .
  • the lithium adsorption device 3 is provided with a seawater outlet. Seawater enters the seawater pretreatment device 2 through the water supply pump 7, and the seawater pretreatment device 2 is connected to the lithium adsorption device 3.
  • the conversion separation device 5 contains a Na 2 CO 3 solution. The conversion and separation device 5 is connected to the lithium recovery barrel 6 .
  • the positive electrode plate of the lithium adsorption device 3 uses active electrode particles; the negative electrode plate of the lithium adsorption device 3 uses activated carbon particles.
  • the electric energy generated by offshore wind turbines is transmitted to the electrical equipment in the seawater lithium extraction system, including seawater pretreatment device, lithium adsorption device, lithium recovery device, water supply pump, circulation pump and other electrical equipment;
  • a working method of a system for extracting lithium from seawater using offshore wind power including the following steps:
  • the purified seawater enters the lithium adsorption device 3.
  • the lithium adsorption device 3 adsorbs the lithium ions and chloride ions in the seawater to the mobile carrier positive electrode plate and the mobile carrier negative electrode plate respectively; the lithium ions and chloride ions in the seawater are on both sides.
  • the end plate is electrically driven and transported across the cation and anion exchange membranes respectively.
  • Lithium ions are embedded in the active electrode particles and flow with the flow electrode to realize the extraction of lithium ions.
  • Chloride ions are adsorbed to the activated carbon particles of the flow electrode on the other side.
  • the flow electrode carrying lithium ions and chloride ions in the lithium adsorption device 3 enters the lithium recovery device 4, and under the action of the reverse electric field, the lithium ions and chloride ions are detached and transported across the membrane to the recovery solution to form a lithium chloride solution. ;
  • the flow electrode after being detached is returned to the lithium adsorption device 3;
  • the lithium chloride solution enters the conversion and separation device 5, and the sodium carbonate solution is passed into the conversion and separation device to react with the high-purity lithium chloride solution to form lithium carbonate powder;
  • This application proposes coupling offshore wind power with a seawater lithium extraction system, using the electric energy generated by the wind turbine to electrochemically extract lithium from seawater, continuously producing lithium carbonate, realizing the extraction of lithium metal from seawater, and promoting the further utilization of marine resources. accomplish.

Abstract

本发明公开了一种利用海上风电海水提锂的系统及工作方法,本发明通过锂吸附装置将海水中的锂离子和氯离子分别吸附至正电极板和负电极板上,锂吸附装置中承载着锂离子和氯离子的流电极进入锂回收装置,在反向的电场作用下将锂离子和氯离子脱出跨膜运输到回收溶液中,形成氯化锂溶液,实现氯化锂在海水中的提取和回收溶液中的连续富集。本发明将海上风电和海水提锂系统耦合起来,充分利用丰富的海上资源,利用海水风电机组发出的电能对海水进行电化学提锂,驱动提锂系统的持续正常运转,源源不断地产生碳酸锂,实现从海水中提取锂金属,助力海洋全面资源化利用。

Description

一种利用海上风电海水提锂的系统及工作方法
相关申请的交叉引用
本申请要求在2022年3月28日提交中国国家知识产权局、申请号为202210313092.3、发明名称为“一种利用海上风电海水提锂的系统及工作方法”的中国专利申请的优先权,其全部内容通过引用的方式并入本文中。
技术领域
本申请属于海上风能利用及海洋锂资源开发领域,具体涉及一种利用海上风电海水提锂的系统及工作方法。
背景技术
在全球能源低碳转型日益升级的大环境下,风力发电作为可再生能源电力,已成为全球的开发热点,而全球约70%的面积是海洋,海上风能资源十分丰富,尤其在深海区域,风速更大,风力更稳定,更有利于海上风电的发展。
海上风电机组作为一个发电系统,主要由风电机组、塔架和下部结构三部分组成。其中,下部结构分为固定式和漂浮式两种平台结构。目前,近海区域风电场一般采用各种固定于海底的贯穿桩传统结构,但随着水深的增加,采用传统的固定式结构将大幅增加风电场的建设成本,因此在,从投资建设经济性的角度,在深远海域要发展基于漂浮式平台的风电机组。总体来看,风电建设的发展趋势必然是“由陆地向海洋、由浅海到深海、由固定式平台向漂浮式平台”。
锂金属及其化合物广泛应用于各个领域,作为一种重要的战略资源,其需求与日俱增。而全球陆地蕴藏的锂有限,海水中却有丰富的锂,海水提锂是海洋资源化利用的重要组成部分,其技术研究受到国内外很多学者的关注。其中,电化学提锂技术是可充电锂离子电池技术的拓展,利用电极选择性吸附技术,实现了锂离子在海水中的富集。其工艺简单、回收率高、选择性好, 特别适合从低品位的海水中提锂,被认为是很有前途的海水提锂方法。电化学提锂装置主要由吸附装置、回收装置、分离沉淀装置及相关辅助设备组成。工作原理是:海水流经吸附组件时,其中锂离子和氯离子在两端板电驱动作用下分别跨越阳离子、阴离子交换膜运输,由于活性颗粒结构具有很强的锂选择插入特性,迁移后的锂离子会嵌入活性电极颗粒中,随流电极流动,实现锂离子的提取,同时迁移后的氯离子吸附到另一侧流电极的活性炭颗粒上。流电极承载锂离子和氯离子泵入至回收组件在反向的电场作用下将锂离子和氯离子脱出跨膜运输到回收溶液中,在流电极的循环吸附和脱出中,实现氯化锂在海水中的提取和回收溶液中的连续富集。通过分离沉淀装置将高纯氯化锂溶液转化得到碳酸锂粉末。
发明内容
本申请的目的在于克服上述不足,提供一种利用海上风电海水提锂的系统及工作方法,充分利用丰富的海上资源,将海上风电和海水提锂系统耦合起来,利用风电机组发出的电能对海水进行电化学提锂,源源不断的产生碳酸锂,实现从海水中提取锂金属。
为了达到上述目的,一种利用海上风电海水提锂的系统,包括锂吸附装置,净化后的海水接入锂吸附装置,锂吸附装置连接锂回收装置,锂回收装置连接转化分离装置;
锂吸附装置设置有两个流动载体电极板,两个流动载体电极板上分别覆盖有阳离子交换膜和阴离子交换膜,锂吸附装置的流动载体正电极板和流动载体负电极板连接锂回收装置;
锂吸附装置和锂回收装置通过海上风电机组供电。
海水通过送水泵进入海水预处理装置中,海水预处理装置连接锂吸附装置。
转化分离装置内置有Na 2CO 3溶液。
转化分离装置连接锂回收桶。
锂吸附装置与锂回收装置间的连接管道上设置循环泵。
锂吸附装置的正电极板采用活性电极颗粒;锂吸附装置的负电极板采用活性炭颗粒。
锂吸附装置上设有海水出口。
一种利用海上风电海水提锂的系统的工作方法,包括以下步骤:
S1,净化后的海水进入锂吸附装置,锂吸附装置将海水中的锂离子和氯离子分别吸附至流动载体正电极板和流动载体负电极板上;
S2,锂吸附装置中承载着锂离子和氯离子的流电极进入锂回收装置,在反向的电场作用下将锂离子和氯离子脱出跨膜运输到回收溶液中,形成氯化锂溶液;
脱出后的流电极在再回到锂吸附装置中;
S3,氯化锂溶液进入转化分离装置中。
海水中的锂离子和氯离子在两端板电驱动作用下分别跨越阳离子、阴离子交换膜运输,锂离子嵌入到活性电极颗粒中,随流电极流动,实现锂离子的提取,氯离子吸附到另一侧流电极的活性炭颗粒上。
氯化锂溶液通过转化分离装置反应后形成碳酸锂粉末,送入锂回收桶中。
与现有技术相比,本申请通过锂吸附装置将海水中的锂离子和氯离子分别吸附大搜正电极板和负电极板上,锂吸附装置中承载着锂离子和氯离子的流电极进入锂回收装置,在反向的电场作用下将锂离子和氯离子脱出跨膜运输到回收溶液中,形成氯化锂溶液,实现氯化锂在海水中的提取和回收溶液中的连续富集。本申请将海上风电和海水提锂系统耦合起来,充分利用丰富的海上资源,利用海水风电机组发出的电能对海水进行电化学提锂,驱动提锂系统的持续正常运转,源源不断的产生碳酸锂,实现从海水中提取锂金属,助力海洋全面资源化利用。
附图说明
图1为本申请的系统结构图;
其中,1、海上风电机组,2、海水预处理装置,3、锂吸附装置,4、锂回收装置,5、转化分离装置,6、锂回收桶,7、送水泵,8、循环泵。
具体实施方式
下面结合附图对本申请做进一步说明。
参见图1,一种利用海上风电海水提锂的系统,包括锂吸附装置3,净 化后的海水接入锂吸附装置3,锂吸附装置3连接锂回收装置4,锂回收装置4连接转化分离装置5;锂吸附装置3设置有两个流动载体电极板,两个流动载体电极板上分别覆盖有阳离子交换膜和阴离子交换膜,锂吸附装置3的流动载体正电极板和流动载体负电极板连接锂回收装置4;锂吸附装置3与锂回收装置4间的连接管道上设置循环泵8。锂吸附装置3和锂回收装置4通过海上风电机组1供电。锂吸附装置3上开设有海水出口。海水通过送水泵7进入海水预处理装置2中,海水预处理装置2连接锂吸附装置3。转化分离装置5内置有Na 2CO 3溶液。转化分离装置5连接锂回收桶6。锂吸附装置3的正电极板采用活性电极颗粒;锂吸附装置3的负电极板采用活性炭颗粒。
海上风电机组发出的电能输送给海水提锂系统中的用电设备,包括海水预处理装置、锂吸附装置、锂回收装置、送水泵和循环泵等用电设备;
一种利用海上风电海水提锂的系统的工作方法,包括以下步骤:
S1,净化后的海水进入锂吸附装置3,锂吸附装置3将海水中的锂离子和氯离子分别吸附流动载体正电极板和流动载体负电极板上;海水中的锂离子和氯离子在两端板电驱动作用下分别跨越阳离子、阴离子交换膜运输,锂离子嵌入到活性电极颗粒中,随流电极流动,实现锂离子的提取,氯离子吸附到另一侧流电极的活性炭颗粒上。
S2,锂吸附装置3中承载着锂离子和氯离子的流电极进入锂回收装置4,在反向的电场作用下将锂离子和氯离子脱出跨膜运输到回收溶液中,形成氯化锂溶液;脱出后的流电极在再回到锂吸附装置中3;
S3,氯化锂溶液进入转化分离装置5中,向转化分离装置中通入碳酸钠溶液,使之与高纯氯化锂溶液发生反应,形成碳酸锂粉末;
2LiCl+Na 2CO 3=Li 2CO 3↓+2NaCl
S4,送入锂回收桶6中,完成提锂过程。
本申请提出将海上风电与海水提锂系统耦合起来,利用风电机组发出的电能对海水进行电化学提锂,源源不断的产生碳酸锂,实现从海水中提取锂金属,推动海洋资源化利用的进一步实现。

Claims (10)

  1. 利用海上风电海水提锂的系统,其特征在于,包括锂吸附装置(3),净化后的海水接入锂吸附装置(3),锂吸附装置(3)连接锂回收装置(4),锂回收装置(4)连接转化分离装置(5);
    锂吸附装置(3)设置有两个流动载体电极板,两个流动载体电极板上分别覆盖有阳离子交换膜和阴离子交换膜,锂吸附装置(3)的流动载体正电极板和流动载体负电极板连接锂回收装置(4);
    锂吸附装置(3)和锂回收装置(4)通过海上风电机组(1)供电。
  2. 根据权利要求1所述的利用海上风电海水提锂的系统,其特征在于,海水通过送水泵(7)进入海水预处理装置(2)中,海水预处理装置(2)连接锂吸附装置(3)。
  3. 根据权利要求1所述的利用海上风电海水提锂的系统,其特征在于,转化分离装置(5)内置有Na 2CO 3溶液。
  4. 根据权利要求1所述的利用海上风电海水提锂的系统,其特征在于,转化分离装置(5)连接锂回收桶(6)。
  5. 根据权利要求1所述的利用海上风电海水提锂的系统,其特征在于,锂吸附装置(3)与锂回收装置(4)间的连接管道上设置循环泵(8)。
  6. 根据权利要求1所述的利用海上风电海水提锂的系统,其特征在于,锂吸附装置(3)的正电极板采用活性电极颗粒;锂吸附装置(3)的负电极板采用活性炭颗粒。
  7. 根据权利要求1所述的利用海上风电海水提锂的系统,其特征在于,锂吸附装置(3)上设有海水出口。
  8. 基于权利要求1所述的利用海上风电海水提锂的系统的工作方法,其特征在于,包括以下步骤:
    S1,净化后的海水进入锂吸附装置(3),锂吸附装置(3)将海水中的锂离子和氯离子分别吸附至流动载体正电极板和流动载体负电极板上;
    S2,锂吸附装置(3)中承载着锂离子和氯离子的流电极进入锂回收装置(4),在反向的电场作用下将锂离子和氯离子脱出跨膜运输到回收溶液中,形成氯化锂溶液;
    脱出后的流电极在再回到锂吸附装置中(3);
    S3,氯化锂溶液进入转化分离装置(5)中。
  9. 根据权利要求8所述的利用海上风电海水提锂的系统的工作方法,其特征在于,海水中的锂离子和氯离子在两端板电驱动作用下分别跨越阳离子、阴离子交换膜运输,锂离子嵌入到活性电极颗粒中,随流电极流动,实现锂离子的提取,氯离子吸附到另一侧流电极的活性炭颗粒上。
  10. 根据权利要求8所述的利用海上风电海水提锂的系统的工作方法,其特征在于,氯化锂溶液通过转化分离装置(5)反应后形成碳酸锂粉末,送入锂回收桶(6)中。
PCT/CN2022/138639 2022-03-28 2022-12-13 一种利用海上风电海水提锂的系统及工作方法 WO2023185097A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210313092.3A CN114686701A (zh) 2022-03-28 2022-03-28 一种利用海上风电海水提锂的系统及工作方法
CN202210313092.3 2022-03-28

Publications (1)

Publication Number Publication Date
WO2023185097A1 true WO2023185097A1 (zh) 2023-10-05

Family

ID=82141267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138639 WO2023185097A1 (zh) 2022-03-28 2022-12-13 一种利用海上风电海水提锂的系统及工作方法

Country Status (2)

Country Link
CN (1) CN114686701A (zh)
WO (1) WO2023185097A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114686701A (zh) * 2022-03-28 2022-07-01 西安热工研究院有限公司 一种利用海上风电海水提锂的系统及工作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109487081A (zh) * 2018-12-05 2019-03-19 天津科技大学 采用流动电极的提锂单元及扩展装置和连续操作方法
KR20190080543A (ko) * 2017-12-28 2019-07-08 한국에너지기술연구원 리튬이온 회수용 전극모듈 및 이를 구비한 리튬이온 회수장치
CN111647746A (zh) * 2020-06-15 2020-09-11 北京化工大学 膜电极材料及其制备方法及应用于吸附-电耦合法提取锂
CN112161196A (zh) * 2020-09-14 2021-01-01 浙江大学 一种基于现有海上风电场的海水制氢输送系统及方法
CN114188972A (zh) * 2021-11-17 2022-03-15 北京华能新锐控制技术有限公司 海上风电核能互补运行系统及方法
CN114686701A (zh) * 2022-03-28 2022-07-01 西安热工研究院有限公司 一种利用海上风电海水提锂的系统及工作方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10385423B2 (en) * 2013-09-12 2019-08-20 Korea Institute Of Geoscience And Mineral Resources Sea water lithium-recovery device and lithium-recovery station using coastal-water-based lithium-adsorption equipment and shore-based lithium-isolation equipment, and lithium desorption device using aeration

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190080543A (ko) * 2017-12-28 2019-07-08 한국에너지기술연구원 리튬이온 회수용 전극모듈 및 이를 구비한 리튬이온 회수장치
CN109487081A (zh) * 2018-12-05 2019-03-19 天津科技大学 采用流动电极的提锂单元及扩展装置和连续操作方法
CN111647746A (zh) * 2020-06-15 2020-09-11 北京化工大学 膜电极材料及其制备方法及应用于吸附-电耦合法提取锂
CN112161196A (zh) * 2020-09-14 2021-01-01 浙江大学 一种基于现有海上风电场的海水制氢输送系统及方法
CN114188972A (zh) * 2021-11-17 2022-03-15 北京华能新锐控制技术有限公司 海上风电核能互补运行系统及方法
CN114686701A (zh) * 2022-03-28 2022-07-01 西安热工研究院有限公司 一种利用海上风电海水提锂的系统及工作方法

Also Published As

Publication number Publication date
CN114686701A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
CN106025313B (zh) 可实现燃烧前co2捕集的整体煤气化燃料电池发电系统
CN109778218B (zh) 一种电化学制氢与提锂联产的装置及方法
CN101997129B (zh) 一种液流电池
WO2023185097A1 (zh) 一种利用海上风电海水提锂的系统及工作方法
CN110106369B (zh) 基于锂离子固态电解质的锂元素提取方法及装置
CN107171012A (zh) 一种茜素类液流电池负极电解液及采用它的茜素类液流电池
CN205863298U (zh) 可实现燃烧前co2捕集的整体煤气化燃料电池发电装置
WO2018103518A1 (zh) 一种中性锌铁液流电池
CN107170968A (zh) 一种二次镁电池正极材料及其制备方法
CN109301191A (zh) 一种新型锂硫电池正极材料及其制备方法
CN103515609A (zh) Thaq/石墨烯复合材料、其制备方法、电池正极和锂离子电池
CN114142791B (zh) 一种多能互补的船舶用全天候淡-热-电联供系统
CN101220481A (zh) 空间飞行器的太阳能水基高压高纯氢氧燃料制备方法
CN107871861A (zh) 一种水系钠离子电化学储能装置
CN220099216U (zh) 一种aem电解水制氢一体化集成设备
CN111575725B (zh) 一种co2电化学转化制石墨烯的方法
CN109761318B (zh) 一种自电再生式电控离子交换系统提取阴阳离子的方法
CN103515572A (zh) 一种石墨烯/硫复合正极的制备方法
CN103061990B (zh) 一种油田抽油机的可再生能源微电网系统
CN108123159B (zh) 一种提高全钒液流电池负极电解液稳定性的方法
CN117107057A (zh) 一种盐湖卤水提锂装置及使用方法
CN106935805A (zh) 一种三氧化二铁/石墨烯自支撑电极的制备方法
CN113745620A (zh) 一种基于pcet反应的电池及储能方法
CN102723519A (zh) 一种铅液流电池电解液
CN214226971U (zh) 一种氢氧燃料电池能源再生循环装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934913

Country of ref document: EP

Kind code of ref document: A1