WO2023184802A1 - 非球面棱镜的制造方法及非球面棱镜 - Google Patents

非球面棱镜的制造方法及非球面棱镜 Download PDF

Info

Publication number
WO2023184802A1
WO2023184802A1 PCT/CN2022/108328 CN2022108328W WO2023184802A1 WO 2023184802 A1 WO2023184802 A1 WO 2023184802A1 CN 2022108328 W CN2022108328 W CN 2022108328W WO 2023184802 A1 WO2023184802 A1 WO 2023184802A1
Authority
WO
WIPO (PCT)
Prior art keywords
prism
manufacturing
aspheric
aspherical
glass
Prior art date
Application number
PCT/CN2022/108328
Other languages
English (en)
French (fr)
Inventor
张峰
周荣冠
Original Assignee
诚瑞光学(重庆)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诚瑞光学(重庆)有限公司 filed Critical 诚瑞光学(重庆)有限公司
Publication of WO2023184802A1 publication Critical patent/WO2023184802A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • B24B13/01Specific tools, e.g. bowl-like; Production, dressing or fastening of these tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/06Grinders for cutting-off
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B5/00Electrically-operated educational appliances
    • G09B5/04Electrically-operated educational appliances with audible presentation of the material to be studied

Definitions

  • the present invention relates to the field of optical technology, and in particular to a manufacturing method of an aspherical prism and an aspherical prism.
  • Aspheric prisms are usually composed of a lens (convex or concave lens) and a prism.
  • triangular prisms and lenses are used for assembly. Aspheric prisms of different specifications can be assembled by selecting different triangular prisms and lenses of different specifications. Different assembly methods are used for different application scenarios. For example, the triangular prism and the lens can be integrated by gluing. During the assembly process of the optical lens, a bracket can be used to support the assembly. However, no matter which assembly method is used, the matching clearance, parts accuracy requirements and assembly accuracy requirements are very high.
  • the object of the present invention is to provide a method for manufacturing an aspherical prism and an aspherical prism to improve the structural accuracy of the aspherical prism.
  • an embodiment of the present invention provides a method for manufacturing an aspheric prism, which method includes the steps:
  • step S1 a precision tungsten steel mold is used for hot press forming.
  • the processing amount for the polishing process is ⁇ 20 ⁇ m, and the milling surface finish grade reaches ⁇ 8.
  • step S3 includes:
  • step S3 includes:
  • step S3 includes:
  • step S3 the polishing process is continuous polishing without downtime.
  • step S4 includes:
  • step S41 a multi-wire cutting machine is used to cut out line marks, and a multi-wire cutting machine is used for cutting.
  • the present invention provides an aspherical prism, including: a first surface, a second surface that are perpendicular to each other, and a reflective surface connecting the first surface and the second surface, wherein at least one of the first surface and the second surface is One is aspherical, and the aspherical prism is manufactured using any of the methods described above.
  • the triangular prism and the lens are integrally formed by hot press molding, and subsequent milling, polishing, coating, ink coating and other processes are all performed simultaneously based on the same benchmark. , Therefore, while improving the processing efficiency, the precision control is unified and the dimensional fluctuation is small.
  • the subsequent processing process is also integrated, so there is no problem of assembly errors, further improving the structural accuracy of the aspherical prism.
  • Figure 1 is a schematic structural diagram of the molded glass in an embodiment of the present invention.
  • Figure 2 is a schematic diagram of the bonding of molded glass and tooling in an embodiment of the present invention
  • Figure 3 is a schematic structural diagram of an aspherical prism obtained after cutting in an embodiment of the present invention.
  • the invention provides a method for manufacturing an aspheric prism, which method includes the steps:
  • a molded glass 10 obtained by the hot press molding method of this embodiment has a triangular prism structure 11 and a lens structure 12 integrally formed therewith.
  • step S1 a precision tungsten steel mold is used for hot press forming, so that the formed glass body has sufficiently high precision.
  • step S2 the opposite surface of the processed surface of the molded glass 10 is adhered to the tooling 20.
  • the bonding surface needs to be flat, and instant adhesive is used for bonding.
  • the flatness It will affect the bonding effect, so the bonding surface needs to have a high enough flatness.
  • the bonding method is coordinated with the flatness of the product to ensure the consistency of product processing and design dimensions; before milling, it is necessary to confirm the distance from the edge of the bonding surface to the outer diameter of the aspherical surface, and determine the milling setting of the two right-angled surfaces based on the design dimensions. Processing size, the reserved amount for the milling and grinding process is ⁇ 20 ⁇ m as the processing amount for the polishing process.
  • the geometric shape of the aspherical prism after milling The accuracy of the surface shape should be very close to that specified in the drawing. The angle is detected with a goniometer and there is no angle error, because the correction in the subsequent polishing process is a change in wavelength level.
  • step S3 includes:
  • step S3 includes:
  • S32 during the polishing process, monitor the grinding size at regular intervals to confirm that the grinding size is within the preset range. For example, monitor the grinding size every two hours, and use an equal thickness meter to measure the corresponding size to ensure that the grinding size is within a reasonable range. Inside.
  • step S3 includes:
  • a 45° optical adhesive pad is used (45° ⁇ 15′′ relative to the measurement datum, and the upper and lower parallelism difference is not more than 10′′).
  • the 45° optical adhesive pad can be used to polish the 45° surface.
  • the ° surface remains parallel to the polishing disc to ensure polishing accuracy.
  • step S3 the polishing process is continuous polishing without downtime, that is, the photoresist backing plate can be canceled without stopping the machine. Continuous polishing is beneficial to temperature balance and protects the stability of the polishing mold, thereby ensuring the processing of the mirror body ( That is, the surface accuracy of molded glass).
  • the separation process of the optical adhesive pad after polishing if instant adhesive is used for bonding, acetone or ethanol can be used to remove the adhesive.
  • the method of removing the adhesive depends on the type of bonding and is not limited to this.
  • the photoresist pad can also be separated by boiling it in water at high temperature (around 300°).
  • this embodiment uses low polishing for about 4 hours
  • the lens is placed in a cleaning tool for cleaning, and the appearance is inspected.
  • the finished product can then enter the next process.
  • step S4 includes:
  • an aspherical prism structure 30 obtained after milling, polishing, and cutting includes: a first surface 31, a second surface 32 that are perpendicular to each other, and a reflection connecting the first surface 31 and the second surface 32.
  • the second surface 32 can also be an aspheric surface. Based on the above method steps, the second surface 32 is aspherical. The process is also achievable.
  • step S41 a multi-wire cutting machine is used to cut out line marks, and a multi-wire cutting machine is used for cutting.
  • step S5 the coating process of the anti-reflection film and/or reflective film is performed according to the requirements of the coating layer in the design.
  • the coating needs to meet the transmittance, refractive index, spectroscopic value and coating in the design. reliability requirements.
  • the ink layer coating process is carried out in a clean room according to the design requirements, and the ink ratio and drying and hardening time are adjusted to ensure that the ink layer is not easy to fall off, and the ink appearance is free of deinking. , lack of ink, uneven ink layer, bumps, and dirt.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

本发明提供了一种非球面棱镜的制造方法及非球面棱镜,该方法包括步骤:S1,利用热压成型方法,使棱镜与透镜一体成型获得成型体玻璃;S2,将所述成型体玻璃粘接到工装上按预设尺寸进行直角面铣磨,预留抛光工序加工量;S3,将铣磨完成的成型体玻璃粘接到光胶垫板上,进行抛光;S4,将抛光完成的成型体玻璃进行切割;S5,对切割完成的成型体玻璃进行镀膜;S6,对完成镀膜的成型体玻璃进行涂墨。本方法可以提高非球面棱镜的结构精度及加工效率。

Description

非球面棱镜的制造方法及非球面棱镜 技术领域
本发明涉及光学技术领域,尤其涉及一种非球面棱镜的制造方法及非球面棱镜。
背景技术
非球面棱镜通常由透镜(凸透镜或凹透镜)和棱镜组合而成。
在非球面棱镜的制造中,采用三角棱镜与透镜进行组装,不同规格的非球面棱镜可以选择不同的三角棱镜和不同规格的透镜进行组装获得。针对不同的应用场景,采用不同的组装方式,例如可以采用胶合的方式将三角棱镜与透镜进行胶合成一体。而在光学镜头组装的过程,则可以采用支架进行支撑实现组装。然而不管是哪种组装方式,其配合间隙、零部件的精度要求以及组装精度要求都非常的高。
由于三角棱镜与透镜分别采用不同的设备加工,且其研磨、抛光、切割、镀膜、涂墨等过程都是分别在光学设备上单独完成的,整个过程中加工周期比较长、加工效率低下、精度控制无法统一、尺寸波动大。
因此,上述问题亟待解决。
技术问题
本发明的目的在于提供一种非球面棱镜的制造方法及非球面棱镜,用于提高非球面棱镜的结构精度。
技术解决方案
为了达到上述目的,第一方面,本发明实施例提供了一种非球面棱镜的制造方法,该方法包括步骤:
S1,利用热压成型方法,使棱镜与透镜一体成型获得成型体玻璃;
S2,将所述成型体玻璃粘接到工装上按预设尺寸进行直角面铣磨,预留抛光工序加工量;
S3,将铣磨完成的成型体玻璃粘接到光胶垫板上,进行抛光;
S4,将抛光完成的成型体玻璃进行切割;
S5,对切割完成的成型体玻璃进行镀膜;
S6,对完成镀膜的成型体玻璃进行涂墨。
优选的,所述步骤S1中,使用精密钨钢模具进行热压成型。
优选的,所述步骤S2中,预留抛光工序加工量≥20μm,铣磨表面光洁度等级达到▽8。
优选的,所述步骤S3中,包括:
S31,粘接成型体玻璃到光胶垫板上时,使用标准镜看干涉条纹,确认干涉条纹的数量在预设范围内。
优选的,所述步骤S3中,包括:
S32,抛光过程中,每隔一段时间监控研磨尺寸,确认研磨尺寸在预设范围内。
优选的,所述步骤S3中,包括:
S30,在45°面的抛光中,采用45°设置的光胶垫板。
优选的,所述步骤S3中,抛光过程为无停机状态连续抛光。
优选的,所述步骤S4中,包括:
S41、将一块基准玻璃板粘接在切割工装上,用切割机在玻璃板上切出线痕,作为基准线,对照基准线将镜片粘接在玻璃板上;
S42、待胶水固化后,使用切割机进行切割;
S43、切割完成后,进行拆胶取出获得非球面棱镜。
优选的,所述步骤S41中,采用多线切割机切出线痕,并采用多线切割机进行切割。
第二方面,本发明提供一种非球面棱镜,包括:相互垂直的第一面、第二面、以及连接第一面和第二面的反射面,其中,第一面和第二面中至少有一个为非球面,该非球面棱镜采用如上任一所述的方法制造。
有益效果
与相关技术相比,本发明的非球面棱镜中,三角棱镜和透镜通过热压成型的方式一体成型,在后续的铣磨、抛光、镀膜、涂墨等工序中,都是基于同一基准同时进行,因此,提高了加工效率的同时,使得精度控制达到统一,尺寸波动小。另外,也由于三角棱镜与透镜通过热压一体成型,后续加工过程也是一体的,因而不存在组装误差的问题,进一步提高了非球面棱镜的结构精度。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1为本发明实施例中成型体玻璃的结构示意图;
图2为本发明实施例中成型体玻璃与工装粘接的示意图;
图3为本发明实施例中切割后获得的非球面棱镜结构示意图。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明提供了一种非球面棱镜的制造方法,该方法包括步骤:
S1,利用热压成型方法,使棱镜与透镜一体成型获得成型体玻璃;
S2,将所述成型体玻璃粘接到工装上按预设尺寸进行直角面铣磨,预留抛光工序加工量;
S3,将铣磨完成的成型体玻璃粘接到光胶垫板上,进行抛光;
S4,将抛光完成的成型体玻璃进行切割;
S5,对切割完成的成型体玻璃进行镀膜;
S6,对完成镀膜的成型体玻璃进行涂墨。
如图1所示为本实施例的热压成型法获得的成型体玻璃10,具有三角棱镜结构11和与之一体成型的透镜结构12。
本实施例中,所述步骤S1中,使用精密钨钢模具进行热压成型,使成型后的成型体玻璃具有足够高的精度。
在本实施例中,如图2所示,所述步骤S2中,把成型体玻璃10加工面的相对面粘在工装20上,粘接面需要平整,采用瞬干胶进行粘接,平面度会影响粘接效果,因此粘接面需要具有足够高的平面度。铣磨过程中粘接的方法与产品平面度配合,保证产品加工设计尺寸一致性;铣磨前需要确认粘接面边缘到非球面外径的距离,依据设计尺寸确定两直角面设定铣磨加工尺寸,铣磨工序预留量≥20μm作为抛光工序加工量,铣磨完成后,脱胶过程中,需控制产品划伤,崩边、断裂等外观不良。铣磨完成后,成型体玻璃的表面光洁度应达到Ra=0.4um,相当于光洁度等级为▽8,用3X-6X放大镜检验,已看不到擦痕,铣磨后的非球面棱镜的几何形状和面型精度应该和图纸规定极其接近,角度用测角仪检测已经没有角度误差,因为其后的抛光工序的修正是波长级的变化。
在本实施例中,所述步骤S3中,包括:
S31,粘接成型体玻璃到光胶垫板上时,使用标准镜看干涉条纹,确认干涉条纹的数量在预设范围内,在本实施例中,粘接成型体玻璃时,按照尺寸的大小进行粘贴,按照测量尺寸的规格,合理的安排成型体玻璃的粘接位置,保证抛光过程中的角度、尺寸的精确性,粘接后,用标准镜看干涉条纹时,使干涉条纹控制在3~5条内。
在本实施例中,所述步骤S3中,包括:
S32,抛光过程中,每隔一段时间监控研磨尺寸,确认研磨尺寸在预设范围内,例如,每隔两小时监控研磨的尺寸,利用等厚仪测量相应的尺寸,确保研磨尺寸在合理的范围内。
在本实施例中,所述步骤S3中,包括:
S30,在45°面的抛光中,采用45°设置的光胶垫板(相对于测量基准呈45°±15″,上下平行差不大于10″),采用45°光胶垫板可以使45°面保持与抛光盘平行,进而保证抛光的精度。
进一步的,所述步骤S3中,抛光过程为无停机状态连续抛光,也就是无需停机就可以取消光胶垫板,连续抛光有利于温度平衡及保护抛光模的稳定,以此保证加工镜体(即成型体玻璃)的面型精度。
此外,在抛光过程中如果遇到镜体掉落,需要及时清洗抛光盘,过滤抛光粉,避免造成批量外观不良。
在抛光结束后的光胶垫板分离过程中,若粘接采用的是瞬干胶,则可用丙酮或者乙醇来拆胶,当然,拆胶的方式取决于粘接的类型,并不限于此。例如,还可以通过高温(300°左右)水煮的方式分离光胶垫板。
在抛光结束后(本实施例采用低抛4H左右),把镜片放入清洗工装中清洗,外观检查,完成品可进入下一工序。
在本实施例中,所述步骤S4中,包括:
S41、将一块基准玻璃板粘接在切割工装上,用切割机在玻璃板上切出线痕,作为基准线,对照基准线将镜片粘接在玻璃板上;
S42、待胶水固化后(约30min),使用切割机进行切割;
S43、切割完成后,进行拆胶取出获得非球面棱镜。
如图3所示为经过铣磨、抛光、切割后获得的非球面棱镜结构30,包括:相互垂直的第一面31、第二面32、以及连接第一面31和第二面32的反射面33,其中,第一面31为非球面,当然,在一种可选的实施例中,第二面32也可以为非球面,基于上述的方法步骤,实现第二面32为非球面的工艺过程也是可以实现的。
进一步的,所述步骤S41中,采用多线切割机切出线痕,并采用多线切割机进行切割。
获得非球面棱镜后放入清洗工装清洗,外观检验、角度测量、尺寸测量,进入下一步工序。
在本实施例中,所述步骤S5中,按照设计中镀膜膜层的要求,进行减反膜、和/或反射膜的镀膜过程,镀膜需满足设计中透射率、折射率、分光值及镀膜可靠性的要求。
在本实施例中,所述步骤S6中,按照设计要求在无尘室进行墨层的涂覆过程,调整墨配比以及烘干硬化时间,保证墨层不易脱落,涂墨外观,无脱墨、欠墨、墨层不均匀、凸点、脏污的不良现象。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (10)

  1. 一种非球面棱镜的制造方法,其特征在于,该方法包括步骤:
    S1,利用热压成型方法,使棱镜与透镜一体成型获得成型体玻璃;
    S2,将所述成型体玻璃粘接到工装上按预设尺寸进行直角面铣磨,预留抛光工序加工量;
    S3,将铣磨完成的成型体玻璃粘接到光胶垫板上,进行抛光;
    S4,将抛光完成的成型体玻璃进行切割;
    S5,对切割完成的成型体玻璃进行镀膜;
    S6,对完成镀膜的成型体玻璃进行涂墨。
  2. 根据权利要求1所述的非球面棱镜的制造方法,其特征在于,所述步骤S1中,使用精密钨钢模具进行热压成型。
  3. 根据权利要求1所述的非球面棱镜的制造方法,其特征在于,所述步骤S2中,预留抛光工序加工量≥20μm,铣磨表面光洁度等级达到▽8。
  4. 根据权利要求1所述的非球面棱镜的制造方法,其特征在于,所述步骤S3中,包括:
    S31,粘接成型体玻璃到光胶垫板上时,使用标准镜看干涉条纹,确认干涉条纹的数量在预设范围内。
  5. 根据权利要求4所述的非球面棱镜的制造方法,其特征在于,所述步骤S3中,包括:
    S32,抛光过程中,每隔一段时间监控研磨尺寸,确认研磨尺寸在预设范围内。
  6. 根据权利要求1所述的非球面棱镜的制造方法,其特征在于,所述步骤S3中,包括:
    S30,在45°面的抛光中,采用45°设置的光胶垫板。
  7. 根据权利要求1所述的非球面棱镜的制造方法,其特征在于,所述步骤S3中,抛光过程为无停机状态连续抛光。
  8. 如权利要求1所述的非球面棱镜的制造方法,其特征在于,所述步骤S4中,包括:
    S41、将一块基准玻璃板粘接在切割工装上,用切割机在玻璃板上切出线痕,作为基准线,对照基准线将镜片粘接在玻璃板上;
    S42、待胶水固化后,使用切割机进行切割;
    S43、切割完成后,进行拆胶取出获得非球面棱镜。
  9. 如权利要求8所述的非球面棱镜的制造方法,其特征在于,所述步骤S41中,采用多线切割机切出线痕,并采用多线切割机进行切割。
  10. 一种非球面棱镜,包括:相互垂直的第一面、第二面、以及连接第一面和第二面的反射面,其中,第一面和第二面中至少有一个为非球面,其特征在于,所述非球面棱镜采用如权利要求1-9任一所述的方法制造。
PCT/CN2022/108328 2022-03-30 2022-07-27 非球面棱镜的制造方法及非球面棱镜 WO2023184802A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210327423.9 2022-03-30
CN202210327423.9A CN114750031A (zh) 2022-03-30 2022-03-30 非球面棱镜的制造方法及非球面棱镜

Publications (1)

Publication Number Publication Date
WO2023184802A1 true WO2023184802A1 (zh) 2023-10-05

Family

ID=82329262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108328 WO2023184802A1 (zh) 2022-03-30 2022-07-27 非球面棱镜的制造方法及非球面棱镜

Country Status (2)

Country Link
CN (1) CN114750031A (zh)
WO (1) WO2023184802A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114750031A (zh) * 2022-03-30 2022-07-15 诚瑞光学(重庆)有限公司 非球面棱镜的制造方法及非球面棱镜

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11352313A (ja) * 1998-06-08 1999-12-24 Ngk Insulators Ltd プリズムアレイおよびその作製方法
CN101135740A (zh) * 2006-08-29 2008-03-05 开曼群岛商亚岗科技股份有限公司 在棱镜面上径设以微透镜的光学薄膜
CN101329442A (zh) * 2008-07-31 2008-12-24 杭州永莹光电有限公司 光学玻璃热压成型高次非球面太阳能聚光元件
CN206440851U (zh) * 2016-12-22 2017-08-25 鲜善洪 场棱镜及光学棱镜结构
CN210572886U (zh) * 2019-08-27 2020-05-19 大连优迅科技有限公司 一种基于光通信的透镜棱镜一体件
CN111571367A (zh) * 2020-03-18 2020-08-25 江苏普世祥光电技术有限公司 一种光学棱镜的加工方法
CN112987142A (zh) * 2020-12-31 2021-06-18 无锡太空力量科技有限公司 一种具有凹透镜功能且具有凸透镜外观的透镜
CN114750031A (zh) * 2022-03-30 2022-07-15 诚瑞光学(重庆)有限公司 非球面棱镜的制造方法及非球面棱镜

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11352313A (ja) * 1998-06-08 1999-12-24 Ngk Insulators Ltd プリズムアレイおよびその作製方法
CN101135740A (zh) * 2006-08-29 2008-03-05 开曼群岛商亚岗科技股份有限公司 在棱镜面上径设以微透镜的光学薄膜
CN101329442A (zh) * 2008-07-31 2008-12-24 杭州永莹光电有限公司 光学玻璃热压成型高次非球面太阳能聚光元件
CN206440851U (zh) * 2016-12-22 2017-08-25 鲜善洪 场棱镜及光学棱镜结构
CN210572886U (zh) * 2019-08-27 2020-05-19 大连优迅科技有限公司 一种基于光通信的透镜棱镜一体件
CN111571367A (zh) * 2020-03-18 2020-08-25 江苏普世祥光电技术有限公司 一种光学棱镜的加工方法
CN112987142A (zh) * 2020-12-31 2021-06-18 无锡太空力量科技有限公司 一种具有凹透镜功能且具有凸透镜外观的透镜
CN114750031A (zh) * 2022-03-30 2022-07-15 诚瑞光学(重庆)有限公司 非球面棱镜的制造方法及非球面棱镜

Also Published As

Publication number Publication date
CN114750031A (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
CN108422286A (zh) 一种斯米特屋脊棱镜的加工方法及其定位工装
CN105629359B (zh) 一种高精度五棱镜的制作方法
WO2023184802A1 (zh) 非球面棱镜的制造方法及非球面棱镜
CN102229082A (zh) 一种楔形镜的制作方法
CN107639496A (zh) 一种高角精度红外光学零件的加工及测量方法
CN108274339A (zh) 一种光学棱镜侧垂控制的定位、校验工装和加工方法
CN113385990B (zh) 一种高精度屋脊棱镜的加工方法
Anderson et al. Optical fabrication
CN101456668A (zh) 高精度超薄玻璃基片制备工艺
WO2018123416A1 (ja) ガラス板、及びガラス板の製造方法
CN101598825A (zh) 高精度空心棱镜反射器装置
CN101126825A (zh) 一种非球面光栅复制的新方法
CN208005360U (zh) 一种光学棱镜侧垂控制的定位和校验工装
KR20120092025A (ko) 금형용 기판 및 금형용 기판의 검사 방법
CN101382608B (zh) 180°大跨距秒级光轴平行度角镜的制作方法
JP2000263391A (ja) 表面形状評価方法およびこれを用いた高精度平滑研磨方法
CN208005361U (zh) 一种斯米特屋脊棱镜的定位工装
CN109249296A (zh) 小口径角锥棱镜光学加工方法
CN108490515A (zh) 一种小型柱状透镜双端面加工方法
CN104090469B (zh) 一种用于非对称结构长条玻璃镜精密加工的粘接定位方法
CN111993189B (zh) 一种大口径平面镜加工工艺
CN115519435A (zh) 一种大非球面度与高陡度非球面透镜的加工方法
CN116460667B (zh) 氟化钙光学零件的加工方法
CN117484289A (zh) 一种直角屋脊棱镜塔差1′的加工工艺
RU196896U1 (ru) Мастер-матрица для копирования оптических поверхностей

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934623

Country of ref document: EP

Kind code of ref document: A1