WO2023184398A1 - 一种电化学装置及电子装置 - Google Patents

一种电化学装置及电子装置 Download PDF

Info

Publication number
WO2023184398A1
WO2023184398A1 PCT/CN2022/084557 CN2022084557W WO2023184398A1 WO 2023184398 A1 WO2023184398 A1 WO 2023184398A1 CN 2022084557 W CN2022084557 W CN 2022084557W WO 2023184398 A1 WO2023184398 A1 WO 2023184398A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode assembly
electrochemical device
cavity
space
accommodation
Prior art date
Application number
PCT/CN2022/084557
Other languages
English (en)
French (fr)
Inventor
刘道林
何平
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to CN202280010467.7A priority Critical patent/CN116806382A/zh
Priority to PCT/CN2022/084557 priority patent/WO2023184398A1/zh
Publication of WO2023184398A1 publication Critical patent/WO2023184398A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/112Monobloc comprising multiple compartments

Definitions

  • the present application relates to the field of electrochemistry, and in particular to an electrochemical device and an electronic device.
  • the series/parallel battery in the same bag includes a casing and multiple electrode assemblies arranged in the same casing.
  • the series-connected electrode assemblies need to be separated by separators to avoid high voltage.
  • the electrolyte decomposes under voltage, and parallel electrode assemblies are separated by separators to avoid mutual interference.
  • the inventor of this application found through research that for series/parallel batteries in the same bag, the battery is prone to expansion under high temperature conditions, which reduces the safety performance of the battery.
  • the present application provides an electrochemical device and an electronic device that can improve the safety performance of the electrochemical device.
  • the electrochemical device includes a housing, a first electrode assembly, a second electrode assembly, and N separators.
  • Each isolator is arranged along the first direction, so that the N isolators and the shell jointly define N+1 accommodation cavities arranged along the first direction, and the N+1 accommodation cavities include first containers adjacent to each other. placement cavity and a second accommodation cavity; wherein, N ⁇ 2.
  • the first electrode assembly is received in the first accommodating cavity, and the second electrode assembly is received in the second accommodating cavity.
  • the second electrode assembly is far away from the reference plane relative to the first electrode assembly, where the reference plane is a plane passing through the center of the electrochemical device along the first direction and perpendicular to the first direction.
  • the volume V1 of the first accommodation cavity is the same as the second electrode assembly.
  • the volume V2 of the accommodation cavity satisfies 0.5% ⁇ (V2-V1)/V1 ⁇ 5%.
  • the inventor of this application found through research that in the same bag of series/parallel batteries, the expansion of the first accommodation cavity located inside will squeeze the second accommodation cavity located outside. At this time, the second accommodation cavity will There is a risk of over-expansion due to excessive internal pressure.
  • (V2-V1)/V1 ⁇ 0.5% makes the space of the second accommodation cavity larger, so that the expansion generated by the first accommodation cavity located inside can be effectively absorbed by the larger second accommodation cavity.
  • the overall excessive expansion of the electrochemical device and packaging failure caused by excessive internal pressure in the second accommodating cavity are suppressed; on the other hand, (V2-V1)/V1 ⁇ 5% can suppress the occurrence of excessive expansion of the electrochemical device and packaging failure due to excessive internal pressure in the second accommodating cavity.
  • the internal pressure of the first inner accommodating cavity is too large due to the small volume of the inner first accommodating cavity, thereby inhibiting the local excessive expansion of the electrochemical device and the occurrence of packaging failure of the inner first accommodating cavity, thereby improving the electrochemical device safety performance.
  • the second accommodation chamber can have a relatively larger buffer space, thereby further effectively suppressing excessive internal pressure in the second accommodation chamber and improving the safety performance of the electrochemical device.
  • the volume V1 of the first accommodation cavity, the volume V3 of the first electrode assembly, the volume V2 of the second accommodation cavity, and the volume V4 of the second electrode assembly satisfy [(V1-V3)/V3]/ [(V2-V4)/V4] ⁇ 0.9.
  • the relative size of the space occupied by the electrode assembly and the remaining space in the accommodation cavity is comprehensively considered, so that the second accommodation cavity can have a larger remaining space to buffer the expansion of the first accommodation cavity, thereby further Improve the safety performance of electrochemical devices.
  • the electrochemical device satisfies: 2.5% ⁇ (V1-V3)/V3 ⁇ 5.5%.
  • the first accommodation chamber itself has a suitable remaining space to inhibit its own expansion, thereby reducing the squeeze on the second accommodation chamber and improving the safety performance of the electrochemical device.
  • the electrochemical device satisfies: 3% ⁇ (V2-V4)/V4 ⁇ 9%.
  • the second accommodation cavity has a large remaining space to buffer the expansion of the first accommodation cavity, thereby suppressing excessive expansion of the entire electrochemical device and improving the safety performance of the electrochemical device.
  • the electrochemical device further includes a first tab and a second tab, the first tab is electrically connected to the first electrode assembly, the second tab is electrically connected to the second electrode assembly, the first tab and The second pole tabs are all led out from the first side of the housing.
  • the first plane divides the first accommodation cavity into a first space close to the first side and a second space away from the first side. In a plane perpendicular to the first direction, the projection of the first plane along the first direction is A straight line, the projection of the side edge of the first electrode assembly close to the first side along the first direction is a first line segment, and the first straight line passes through the first line segment.
  • the second plane divides the second accommodation cavity into a third space close to the first side and a fourth space away from the first side.
  • the projection of the second plane along the first direction is the third space.
  • Two straight lines, the projection of the side edge of the second electrode assembly close to the first side along the first direction is a second line segment, and the first straight line passes through the first line segment.
  • the volume T1 of the first space and the volume T3 of the third space satisfy 5% ⁇ (T3-T1)/T1 ⁇ 25%.
  • the head space of the larger second accommodation cavity can be The expansion of the head of the first accommodation chamber provides a buffer and inhibits excessive expansion of the head of the electrochemical device, thereby further improving the safety performance of the electrochemical device.
  • the electrochemical device satisfies: 10% ⁇ (T3-T1)/T1 ⁇ 15%.
  • the head space of the second accommodating chamber can provide better buffering for the expansion of the head of the first accommodating chamber, thereby inhibiting excessive expansion of the head of the electrochemical device.
  • the electrochemical device satisfies that the second plane is located on a side of the first plane away from the first side.
  • the head space of the first accommodation chamber the space located on the first side of the first electrode assembly
  • a larger buffer space can be provided, thereby improving the safety performance of the electrochemical device.
  • the N spacers include a first spacer, the first spacer is disposed between the first accommodation cavity and the second accommodation cavity, and the first spacer is recessed toward the first accommodation cavity to form a recess. groove.
  • the isolator includes a base material layer and an encapsulation layer located on the surface of the base material layer. In the above solution, the isolator has better insulation performance and packaging performance.
  • the encapsulation layer includes a first polymer material.
  • the material of the base material layer includes at least one of a metal material, a second polymer material, or a carbon material.
  • the first polymer material includes polypropylene, acid anhydride modified polypropylene, polyethylene, ethylene propylene copolymer, polyvinyl chloride, polystyrene, polyethernitrile, polyurethane, polyamide, polyester, non- Crystalline ⁇ -olefin copolymer or at least one of the derivatives of the above substances.
  • the metallic materials include Ni, Ti, Cu, Ag, Au, Pt, Fe, Co, Cr, W, Mo, Al, Mg, K, Na, Ca, Sr, Ba, Si, Ge, Sb , Pb, In, Zn, stainless steel (SUS) and at least one of its compositions or alloys.
  • the second polymer material includes polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyether ether ketone, polyimide , polyamide, polyethylene glycol, polyamide-imide, polycarbonate, cyclic polyolefin, polyphenylene sulfide, polyvinyl acetate, polytetrafluoroethylene, polymethylene naphthalene, polyvinylidene fluoride , polypropylene carbonate, poly(vinylidene fluoride-hexafluoropropylene), poly(vinylidene fluoride-co-chlorotrifluoroethylene), silicone, vinylon, polypropylene, acid anhydride modified polypropylene, poly At least one of ethylene, ethylene propylene copolymer, polyvinyl chloride, polystyrene, polyethernitrile, polyurethane, polyphenylene ether, polyester, polysulfone, a
  • the carbon material includes at least one of carbon felt, carbon film, carbon black, acetylene black, fullerene, conductive graphite film, or graphene film.
  • a second aspect of the present application also provides an electronic device, including any of the above electrochemical devices.
  • the second electrode assembly is far away from the reference plane relative to the first electrode assembly.
  • the first electrode assembly is closer to the electrochemical device along the first direction than the second electrode assembly.
  • the central position, and thus the first accommodating cavity is closer to the central position of the electrochemical device along the first direction than the second accommodating cavity.
  • the volume V1 of the first accommodation cavity and the volume V2 of the second accommodation cavity are made to satisfy 0.5% ⁇ (V2-V1)/V1 ⁇ 5%.
  • the second accommodation cavity is 0.5%-5% larger than the first accommodation cavity. That is, the accommodation cavity near the outside of the electrochemical device is 0.5%-5% larger than the adjacent accommodation cavity near the inside.
  • (V2-V1)/V1 ⁇ 0.5% makes the space of the second accommodation cavity larger, so that the expansion of the first accommodation cavity can be buffered by the second accommodation cavity, suppressing the expansion caused by the second accommodation cavity.
  • Excessive internal pressure may cause excessive expansion of the entire electrochemical device and packaging failure;
  • (V2-V1)/V1 ⁇ 5% can suppress the inner pressure caused by the small volume of the inner first accommodation cavity.
  • the internal pressure of the first accommodating cavity is too large, thereby inhibiting local excessive expansion of the electrochemical device and the occurrence of packaging failure of the inner first accommodating cavity, thereby improving the safety performance of the electrochemical device.
  • Figure 1 is a three-dimensional schematic diagram of an electrochemical device provided by an embodiment of the present application.
  • Figure 2 is a cutaway schematic three-dimensional view of an electrochemical device provided by an embodiment of the present application.
  • Figure 3 is a schematic cross-sectional side view of an electrochemical device provided by an embodiment of the present application; wherein the second plane in the figure coincides with the first plane;
  • Figure 4 is a partially enlarged schematic diagram of Figure 3;
  • Figure 5 is a cutaway exploded schematic diagram of an electrochemical device provided by an embodiment of the present application.
  • Figure 6 is a schematic cross-sectional side view of an electrochemical device provided by another embodiment of the present application.
  • FIG. 7 is a partial schematic diagram of a side view of an isolation member provided by an embodiment of the present application.
  • the inventor of this application found through research that in the same bag of series/parallel batteries, the expansion of the first accommodation cavity located inside will squeeze the second accommodation cavity located outside. At this time, the second accommodation cavity will There is a risk of over-expansion due to excessive internal pressure.
  • the electrochemical device 100 is used as an example below.
  • the electrochemical device 100 includes a housing 110, a first electrode assembly 130, a second electrode assembly 140, and N separators 120, where N ⁇ 2, that is, N may be 2, 3, 4, 5, etc.
  • Each spacer 120 is arranged along a first direction X, see FIGS. 1-4 .
  • the first direction X is the thickness direction of the electrochemical device 100 .
  • the N spacers 120 and the housing 110 jointly define N+1 accommodation cavities arranged along the first direction X. For example, when the number N of isolators 120 is 2, the number of accommodation cavities is 3, and when the number N of isolators 120 is 3, the number of accommodation cavities is 4.
  • the N+1 accommodating cavities include a first accommodating cavity 170 and a second accommodating cavity 180 that are adjacent to each other.
  • the first electrode assembly 130 is received in the first accommodating cavity 170
  • the second electrode assembly 140 is received in the second accommodating cavity 180 .
  • the first accommodating cavity 170 and the second accommodating cavity 180 are both provided with electrolyte, so that the first accommodating cavity 170 and the second accommodating cavity 180 form independent electrochemical units.
  • the electrochemical device 100 may also include other electrode assemblies, so that one electrode assembly is arranged in each of the accommodating chambers except the first accommodating chamber 170 and the second accommodating chamber 180 .
  • the electrochemical device 100 further includes a first tab 131 and a second tab 141.
  • the fluids are connected one by one and extend out of the housing 110 from between the housing 110 and the isolator 120.
  • the two second tabs 141 with different polarities and the two sets of the second electrode assembly 140 with different polarities The fluids are connected one by one and extend out of the housing 110 from between the housing 110 and the isolation member 120 .
  • the second electrode assembly 140 is far away from the reference plane 160 relative to the first electrode assembly 130, wherein the reference plane 160 is a plane passing through the center of the electrochemical device along the first direction X and perpendicular to the first direction X. .
  • the first electrode assembly 130 is closer to the thickness center of the electrochemical device 100 along the first direction X than the second electrode assembly 140 .
  • the volume V1 of the first accommodation cavity 170 and the volume V2 of the second accommodation cavity 180 satisfy V2>V1. At this time, since the space of the second accommodation cavity 180 away from the thickness center of the electrochemical device 100 along the first direction The second accommodating cavity 180 is buffered to prevent excessive expansion of the entire electrochemical device 100 and packaging failure due to excessive internal pressure in the second accommodating cavity 180 .
  • the volume V1 of the first accommodation cavity 170 and the volume V2 of the second accommodation cavity 180 satisfy 0.5% ⁇ (V2-V1)/V1 ⁇ 5%.
  • (V2-V1)/V1 may be 0.5%, 1%, 2%, 3%, 4%, or 5%, etc.
  • the second accommodation cavity 180 is 0.5%-5% larger than the first accommodation cavity 170 . That is, the accommodation cavity near the outside of the electrochemical device 100 is 0.5%-5% larger than the adjacent accommodation cavity near the inside.
  • (V2-V1)/V1 ⁇ 5% can suppress the excessive internal pressure of the inner first accommodating chamber 170 caused by the too small volume of the inner first accommodating chamber 170, thereby suppressing the localization of the electrochemical device 100. Excessive expansion and packaging failure of the inner first accommodation cavity 170 may occur, thus improving the safety performance of the electrochemical device 100 .
  • the volume V1 of the first accommodating cavity 170 and the volume V2 of the second accommodating cavity 180 can be measured by disassembling the electrochemical device, or can be obtained by in-situ measurement using three-dimensional CT scanning technology.
  • the first accommodating cavity 170 and the second accommodating cavity 180 may be any two adjacent accommodating cavities in the housing 110 that are unequal in distance from the reference plane 160 .
  • N 4
  • the thickness and size of each accommodation cavity along the first direction The cavities are sequentially numbered as accommodating cavity No. 1, accommodating cavity No. 2, accommodating cavity No. 3, accommodating cavity No. 4 and accommodating cavity No. 5.
  • the third accommodation chamber is closest to the thickness center of the electrochemical device 100 along the first direction X.
  • the second accommodating cavity 180 may be a No. 1 accommodating cavity, in which case the first accommodating cavity 170 may be a No. 2 accommodating cavity; the second accommodating cavity 180 may also be a No.
  • the first accommodating cavity 170 may be a No. 2 accommodating cavity.
  • the accommodation cavity 170 is the accommodation cavity No. 3; the second accommodation cavity 180 can also be the accommodation cavity No. 4.
  • the first accommodation cavity 170 is the accommodation cavity No. 3; the second accommodation cavity 180 can also be the accommodation cavity No. 5.
  • the first accommodating cavity 170 is the No. 4 accommodating cavity.
  • first accommodating cavity 170 and the second accommodating cavity 180 in the electrochemical device 100 may satisfy the spatial size relationship of 0.5% ⁇ (V2-V1)/V1 ⁇ 5%. All adjacent accommodation cavities may also satisfy the above relationship.
  • N 4
  • the space of the No. 1 accommodating cavity is 0.5%-5% larger than the space of the No. 2 accommodating cavity
  • the space of the No. 2 accommodating cavity is larger than the space of the No. 3 accommodating cavity.
  • the space of the accommodation cavity is 0.5%-5% larger than that of the accommodation cavity No. 3.
  • the space of the accommodation cavity No. 5 is larger than that of the accommodation cavity No. 4. 0.5%-5%.
  • the number of accommodating cavities of the electrochemical device 100 is another number, the same rules apply.
  • (V2-V1)/V1 may be 1.5%, 2%, 2.5%, 3%, 4% or 5%, etc.
  • the second accommodating cavity 180 can have a relatively larger buffer space, thereby further effectively suppressing excessive internal pressure of the second accommodating cavity 180 and improving the safety performance of the electrochemical device 100 .
  • the inventor of the present application further studied and found that better effects can be obtained by controlling the relative relationship between the remaining space in the first accommodating cavity 170 and the second accommodating cavity 180 and the space occupied by the electrode assembly. Therefore, in some embodiments, the volume V1 of the first accommodation cavity 170 , the volume V3 of the first electrode assembly 130 , the volume V2 of the second accommodation cavity 180 , and the volume V4 of the second electrode assembly 140 are configured to satisfy [(V1 -V3)/V3]/[(V2-V4)/V4] ⁇ 0.9.
  • [(V1-V3)/V3]/[(V2-V4)/V4] may be 0.5, 0.6, 0.7, 0.8 or 0.9, etc.
  • (V1-V3)/V3 is the ratio of the remaining space in the first accommodation cavity 170 after excluding the space occupied by the first electrode assembly 130 to the space occupied by the first electrode assembly 130.
  • (V2-V4)/V4 is the ratio of the remaining space in the second accommodation cavity 180 after excluding the space occupied by the second electrode assembly 140 to the space occupied by the second electrode assembly 140.
  • the space occupied by the electrode assembly and the relative size of the remaining space are comprehensively considered, so that the second accommodating cavity 180 can have a larger remaining space to buffer the expansion of the first accommodating cavity 170, thereby further suppressing the expansion of the first accommodating cavity 170. Excessive expansion of the electrochemical device 100 improves the safety performance of the electrochemical device 100 .
  • the electrochemical device satisfies: 2.5% ⁇ (V1-V3)/V3 ⁇ 5.5%.
  • the first accommodating cavity 170 itself has a suitable remaining space to inhibit its own expansion, thereby reducing the compression of the second accommodating cavity 180 and improving the safety performance of the electrochemical device 100 .
  • the electrochemical device satisfies: 3% ⁇ (V2-V4)/V4 ⁇ 9%.
  • the second accommodating cavity 180 has a large remaining space to buffer the expansion of the first accommodating cavity 170 , thereby suppressing excessive expansion of the entire electrochemical device 100 and improving the safety performance of the electrochemical device 100 .
  • the electrochemical device further includes a first tab 131 and a second tab 141.
  • the first tab 131 is electrically connected to the first electrode assembly 130
  • the second tab 141 is electrically connected to the first electrode assembly 130.
  • the two electrode assemblies 140 are electrically connected, and the first tab 131 and the second tab 141 are both led out from the first side of the housing 110 .
  • the first electrode assembly 130 and the second electrode assembly 140 are connected in series or in parallel through the first tab 131 and the second tab 141 .
  • the first plane 150 divides the first receiving cavity 170 into a first space 171 close to the first side and a second space away from the first side.
  • the projection in direction X is a first straight line
  • the projection of the side edge of the first electrode assembly 130 close to the first side along the first direction X is a first line segment
  • the first straight line passes through the first line segment.
  • the first plane 150 is in contact with the end of the first electrode assembly 130 close to the first side.
  • the first plane 150 is in contact with the end of the anode pole close to the first side.
  • the first space 171 is a space where the first accommodating cavity 170 is located on the first side of the electrode assembly.
  • the second plane divides the second receiving cavity 180 into a third space 181 close to the first side and a fourth space away from the first side.
  • the second plane is along the first direction X. is a second straight line
  • the projection of the side edge of the second electrode assembly 140 close to the first side along the first direction X is a second line segment
  • the first straight line passes through the first line segment.
  • the second plane is in contact with the end of the second electrode assembly 140 close to the first side.
  • the third space 181 is a space where the second accommodation cavity 180 is located on the first side of the electrode assembly.
  • the inventor of the present application considered that the volume expansion in each accommodation cavity of the electrochemical device 100 is more likely to occur in the head space (that is, the space near the tab of the electrode assembly, that is, the aforementioned first space 171 or the third space).
  • the volume T1 of the first space 171 and the volume T3 of the third space 181 are configured to satisfy 5% ⁇ (T3-T1)/T1 ⁇ 25%.
  • (T3-T1)/T1 can be 5%, 10%, 15%, 20% or 25%, etc. This solution takes into account that the head space in the accommodation cavity is more likely to expand.
  • the head space of the larger second accommodation cavity 180 can be The expansion of the head of the first accommodation cavity 170 provides buffering and inhibits excessive expansion of the head of the electrochemical device 100, thereby further improving the safety performance of the electrochemical device 100.
  • the second plane is configured to be located on a side of the first plane 150 facing away from the first side. After the head space (the space located on the first side of the first electrode assembly 130 ) of the first accommodation cavity 170 is expanded, a larger buffer space can be provided, thereby improving the overall safety performance of the electrochemical device 100 .
  • the space volume of the first accommodation cavity 170 is smaller than the space volume of the second accommodation cavity 180.
  • the size of the first accommodation cavity 170 along the first direction X is smaller than the size of the second accommodation cavity 180.
  • the size of the accommodation cavity 180 along the first direction X is such that the space volume of the first accommodation cavity 170 is smaller than the space volume of the second accommodation cavity 180 .
  • the cross-sectional area of the first accommodating cavity 170 parallel to the first direction X is smaller than the cross-sectional area of the second accommodating cavity 180 parallel to the first direction
  • the space volume of one accommodation cavity 170 is smaller than the space volume of the second accommodation cavity 180 .
  • the area of the isolator 120 recessed toward the second accommodation cavity 180 can be made smaller.
  • the N isolators 120 include first isolators 121 , which are disposed between the first accommodating cavity 170 and the second accommodating cavity 180 .
  • 121 is recessed toward the first receiving cavity 170 to form a groove 122 .
  • the groove 122 may be stamped and formed using a stamping process. After stamping, the space in the first accommodating cavity 170 becomes smaller, and the space in the second accommodating cavity 180 becomes larger, so that the space volume of the second accommodating cavity 180 is larger than the space volume of the first accommodating cavity 170.
  • the processing technology is low in cost and simple to process.
  • a groove 122 can be punched on all the spacers 120 .
  • the groove 122 can be provided at any position of the first isolation member 121.
  • the groove 122 is provided at a portion of the first isolation member 121 for defining the first space 171 and the third space 181. .
  • the projection of the groove 122 along the first direction X is located within the projection of the first space 171 or the third space 181 along the first direction X.
  • the isolator 120 includes a base material layer 123 and an encapsulation layer 124 located on the surface of the base material layer 123.
  • the encapsulation layer 124 is provided on both sides of the base material layer 123.
  • the encapsulation layer 124 includes a first polymer material.
  • the material of the base material layer 123 includes at least one of a metal material, a second polymer material, or a carbon material.
  • the isolator 120 may have electronic insulation properties or electronic conductivity. In some embodiments, the thickness of the spacer 120 is 50 ⁇ m to 500 ⁇ m.
  • the first polymer material includes polypropylene, acid anhydride modified polypropylene, polyethylene, ethylene propylene copolymer, polyvinyl chloride, polystyrene, polyethernitrile, polyurethane, polyamide, polyester, non- Crystalline ⁇ -olefin copolymer or at least one of the derivatives of the above substances.
  • Metal materials include Ni, Ti, Cu, Ag, Au, Pt, Fe, Co, Cr, W, Mo, Al, Mg, K, Na, Ca, Sr, Ba, Si, Ge, Sb, Pb, In, Zn , stainless steel (SUS) and at least one of its compositions or alloys.
  • the second polymer material includes polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyether ether ketone, polyimide, polyamide, polyethylene Glycol, polyamide-imide, polycarbonate, cyclic polyolefin, polyphenylene sulfide, polyvinyl acetate, polytetrafluoroethylene, polymethylene naphthalene, polyvinylidene fluoride, polypropylene carbonate , poly(vinylidene fluoride-hexafluoropropylene), poly(vinylidene fluoride-co-chlorotrifluoroethylene), silicone, vinylon, polypropylene, acid anhydride modified polypropylene, polyethylene, ethylene propylene copolymer , polyvinyl chloride, polystyrene, polyethernitrile, polyurethane, polyphenylene ether, polyester, polysulfone, amorphous ⁇ -olef
  • the carbon material includes at least one of carbon felt, carbon film, carbon black, acetylene black, fullerene, conductive graphite film or graphene film.
  • the electrode assembly of the present application is not particularly limited. Any electrode assembly in the prior art can be used as long as the purpose of the present application can be achieved. For example, a laminated electrode assembly or a wound electrode assembly can be used.
  • the electrode assembly generally includes a positive electrode piece, a negative electrode piece and a separator.
  • a negative electrode plate typically includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode current collector is not particularly limited, and any negative electrode current collector known in the art can be used, such as copper foil, aluminum foil, aluminum alloy foil, composite current collector, etc.
  • the negative active material layer includes a negative active material.
  • the negative active material is not particularly limited, and any negative active material known in the art can be used. For example, it may include at least one of artificial graphite, natural graphite, mesocarbon microspheres, soft carbon, hard carbon, silicon, silicon carbon, lithium titanate, and the like.
  • the positive electrode sheet in this application is not particularly limited, as long as it can achieve the purpose of this application.
  • the positive electrode sheet typically includes a positive current collector and a positive active material layer.
  • the positive electrode current collector is not particularly limited and can be any positive electrode current collector known in the art, such as aluminum foil, aluminum alloy foil or composite current collector.
  • the positive active material layer includes a positive active material.
  • the positive active material is not particularly limited and can be any positive active material in the prior art. For example, it can include lithium nickel cobalt manganate (NCM), lithium nickel cobalt aluminate (NCA), phosphoric acid At least one of lithium iron, lithium cobalt oxide, lithium manganate or lithium manganese iron phosphate.
  • the electrolyte in this application is not particularly limited, and any electrolyte known in the art can be used, for example, it can be any one of gel state, solid state and liquid state.
  • the liquid electrolyte solution can include lithium salt and non-aqueous solvent.
  • lithium salt is not particularly limited, and any lithium salt known in the art can be used as long as the purpose of the present application can be achieved.
  • lithium salts may include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium difluorophosphate (LiPO 2 F 2 ), lithium bistrifluoromethanesulfonimide LiN (CF 3 SO 2 ) 2 ( LiTFSI), lithium bis(fluorosulfonyl)imide Li(N(SO 2 F) 2 )(LiFSI), lithium bis(fluorosulfonyl)borate LiB(C 2 O 4 ) 2 (LiBOB) or lithium difluoroxaloborate LiBF 2 ( At least one of C 2 O 4 ) (LiDFOB).
  • LiPF 6 can be used as the lithium salt.
  • the non-aqueous solvent is not particularly limited as long as it can achieve the purpose of the present application.
  • the non-aqueous solvent may include at least one of a carbonate compound, a carboxylate compound, an ether compound, a nitrile compound, or other organic solvents.
  • the carbonate compound may include diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylene propylene carbonate Ester (EPC), ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinyl ethylene carbonate (VEC), fluoroethylene carbonate (FEC), carbonic acid 1 ,2-difluoroethylene carbonate, 1,1-difluoroethylene carbonate, 1,1,2-trifluoroethylene carbonate, 1,1,2,2-tetrafluoroethylene carbonate, 1 carbonate -Fluoro-2-methylethylene carbonate, 1-fluoro-1-methylethylene carbonate, 1,2-difluoro-1-methylethylene carbonate, 1,1,2-trifluorocarbonate- At least one of 2-methylethylene ester or trifluoromethylethylene carbonate.
  • DEC diethyl carbonate
  • DMC dimethyl carbon
  • the separator in the present application is not particularly limited.
  • the separator includes a polymer or inorganic substance formed of a material that is stable to the electrolyte of the present application.
  • the separator should generally be ion conductive and electronically insulating.
  • the separator may include a substrate layer and a surface treatment layer.
  • the base material layer can be a non-woven fabric, film or composite film with a porous structure.
  • the material of the base material layer can be selected from at least one of polyethylene, polypropylene, polyethylene terephthalate and polyimide. kind.
  • a polypropylene porous film, a polyethylene porous film, a polypropylene nonwoven fabric, a polyethylene nonwoven fabric, or a polypropylene-polyethylene-polypropylene porous composite film may be used.
  • a surface treatment layer is provided on at least one surface of the base material layer.
  • the surface treatment layer may be a polymer layer or an inorganic layer, or may be a layer formed by mixing a polymer and an inorganic substance.
  • the inorganic layer includes inorganic particles and a binder.
  • the inorganic particles are not particularly limited.
  • they can be selected from aluminum oxide, silicon oxide, magnesium oxide, titanium oxide, hafnium dioxide, tin oxide, ceria, and nickel oxide.
  • the binder is not particularly limited, and may be selected from the group consisting of polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, polyamide, polyacrylonitrile, polyacrylate, polyacrylic acid, polyacrylate, and polyvinylidene.
  • polyvinylidene fluoride vinylidene fluoride-hexafluoropropylene copolymer
  • polyamide polyacrylonitrile
  • polyacrylate polyacrylic acid
  • polyacrylate polyvinylidene
  • rrolidone polyvinyl ether
  • polymethylmethacrylate polytetrafluoroethylene
  • polyhexafluoropropylene polyhexafluoropropylene.
  • the polymer layer contains a polymer, and the polymer material includes polyamide, polyacrylonitrile, acrylate polymer, polyacrylic acid, polyacrylate, polyvinylpyrrolidone, polyvinyl ether, polyvinylidene fluoride or poly( At least one of vinylidene fluoride-hexafluoropropylene).
  • a second aspect of the present application also provides an electronic device, including the electrochemical device in any of the above embodiments.
  • the preparation process of lithium-ion batteries in the examples and comparative examples is as follows:
  • PE polyethylene
  • the encapsulation material PP in the encapsulation layer is evenly dispersed into the dispersant NMP (N-methylpyrrolidone) to obtain an encapsulation layer suspension.
  • the concentration of the suspension is 45wt%; using a glue coating machine, on a 20 ⁇ m thick
  • An encapsulation layer PP with a thickness of 40 ⁇ m is prepared on both surfaces of the Al layer of the base material layer.
  • the dispersant NMP in the encapsulation layer suspension is dried at 130°C to complete the preparation of the isolation member.
  • the electrolyte prepared above is injected into each receiving cavity of the assembled electrode assembly, and the final lithium-ion battery is obtained through processes such as vacuum packaging, standing, formation, shaping, and capacity testing.
  • the electrode assemblies are connected in series.
  • Table 1 shows the structural size parameters and performance of the lithium-ion batteries in various embodiments and comparative examples.
  • Example 1-15 Comparative Example 1-2 in Table 1 that the lithium ion battery in Example 1-15 satisfying 0.5% ⁇ (V2-V1)/V1 ⁇ 5% has a significantly reduced high temperature. storage expansion and better packaging stability. This is because, on the one hand, (V2-V1)/V1 ⁇ 0.5% makes the space of the outer accommodation cavity larger, so that the expansion generated by the inner accommodation cavity can be effectively absorbed by the larger outer accommodation cavity.
  • the buffer provided by the cavity prevents the overall excessive expansion of the lithium-ion battery and packaging failure caused by excessive internal pressure in the outer cavity, thereby improving the safety performance of the lithium-ion battery.
  • (V2-V1)/V1 ⁇ 5% can suppress the excessive internal pressure of the inner accommodating cavity caused by the small volume of the inner accommodating cavity, thereby suppressing local excessive expansion and leakage of the inner accommodating cavity. occurs, further improving the safety performance of lithium-ion batteries.
  • Example 4 which further satisfies [(V1-V3)/V3]/[(V2-V4)/V4] ⁇ 0.9, can have a lower high-temperature storage expansion rate.
  • this is because taking into account the relative size of the space occupied by the electrode assembly in the accommodation cavity and the relative size of the remaining space, the outer accommodation cavity can have a larger remaining space to buffer the expansion of the inner accommodation cavity, thereby further inhibiting the expansion of the inner accommodation cavity.
  • Lithium-ion batteries expand on high-temperature storage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本申请公开了一种电化学装置及电子装置,电化学装置包括壳体、第一电极组件、第二电极组件以及N个隔离件。各隔离件沿第一方向排列,以使N个隔离件与壳体共同限定出沿第一方向排列的N+1个容置腔,N+1个容置腔包括彼此相邻的第一容置腔以及第二容置腔;N≥2。第一电极组件收容于第一容置腔,第二电极组件收容于第二容置腔。第二电极组件相对于第一电极组件远离基准面,基准面为过电化学装置沿第一方向的中心、并垂直于第一方向的平面,本申请中,通过第一容置腔的体积V1与第二容置腔的体积V2满足0.5%≤(V2-V1)/V1≤5%,提升了电化学装置的安全性能。

Description

一种电化学装置及电子装置 技术领域
本申请涉及电化学领域,特别是涉及一种电化学装置及电子装置。
背景技术
目前,电池广泛地运用于无人机、手机、平板、笔记本电脑等电子产品中。由于在某些应用场景下,单个电池单体并不能够实现期望的输出功率;因此,通常将多个电池单体相互串联、并联或混联,以使得该多个电池单体共同配合而实现期望功率的输出。然而,将多个电池单体串联、并联或混联虽然能够提高输出功率,但是整个电池组的能量密度却较低。因此,同袋串联/并联电池的设计被提出,同袋串联/并联电池包括壳体以及设置于同一壳体内的多个电极组件,串联的电极组件之间需通过隔离件分隔开以避免高电压下电解液的分解,并联的电极组件之间通过隔离件分隔开可以避免相互之间的干扰。
发明内容
本申请的发明人通过研究发现,对于同袋串联/并联电池而言,电池在高温条件下易出现膨胀,使得电池的安全性能下降。
有鉴于此,本申请提供一种电化学装置及电子装置,能够提升电化学装置的安全性能。
为解决上述技术问题,本申请第一方面,提供一种电化学装置,电化学装置包括壳体、第一电极组件、第二电极组件以及N个隔离件。各隔离件沿第一方向排列,以使N个隔离件与壳体共同限定出沿第一方向排列的N+1个容置腔,N+1个容置腔包括彼此相邻的第一容置腔以及第二容置腔;其中,N≥2。第一电极组件收容于第一容置腔,第二电极组件收容于第二容置腔。第二电极组件相对于第一电极组件远离基准面,其中,基准面为过电化学装置沿第一方向的中心、并垂直于第一方向的平面,第一容置腔的体积V1与第二容置腔的体积V2满足0.5%≤ (V2-V1)/V1≤5%。本申请的发明人通过研究发现,由于同袋串联/并联电池中,位于内侧的第一容置腔的膨胀将会挤压位于外侧的第二容置腔,此时,第二容置腔会存在内压过大导致膨胀过度的风险。通过上述方案,一方面,(V2-V1)/V1≥0.5%使得第二容置腔的空间更大,从而使得位于内侧的第一容置腔所产生的膨胀,能够有效被更大的第二容置腔所缓冲,抑制由于第二容置腔的内压过大而造成电化学装置整体过度膨胀以及封装失效的发生;另一方面,(V2-V1)/V1≤5%能够抑制由于内侧第一容置腔的体积过小所造成的内侧第一容置腔的内压过大,从而抑制电化学装置局部过度膨胀以及内侧第一容置腔封装失效的发生,进而提升电化学装置的安全性能。
在一些实施例中,1.5%≤(V2-V1)/V1≤4%。上述方案中,第二容置腔能够具有相对更大的缓冲空间,从而进一步有效抑制第二容置腔的内压过大,提升电化学装置的安全性能。
在一些实施例中,第一容置腔的体积V1、第一电极组件的体积V3、第二容置腔的体积V2、第二电极组件的体积V4满足[(V1-V3)/V3]/[(V2-V4)/V4]≤0.9。上述方案中,综合考虑了容置腔中电极组件所占的空间大小与剩余空间的相对大小,使得第二容置腔能够具有更大的剩余空间以缓冲第一容置腔的膨胀,从而进一步提升电化学装置的安全性能。
在一些实施例中,电化学装置满足:2.5%≤(V1-V3)/V3≤5.5%。上述方案中,第一容置腔自身具有适宜的剩余空间以抑制自身的膨胀,从而降低对第二容置腔的挤压,提升电化学装置的安全性能。
在一些实施例中,电化学装置满足:3%≤(V2-V4)/V4≤9%。上述方案中,第二容置腔具有较大的剩余空间以缓冲第一容置腔的膨胀,从而抑制电化学装置整体的过度膨胀,,提升电化学装置的安全性能。
在一些实施例中,电化学装置还包括第一极耳和第二极耳,第一极耳与第一电极组件电连接,第二极耳与第二电极组件电连接,第一极耳和第二极耳均由壳体的第一侧引出。第一平面将第一容置腔分隔成靠近第一侧的第一空间以及背离第一侧的第二空间,在垂直于第一方向的平 面内,第一平面沿第一方向的投影为第一直线,第一电极组件靠近第一侧的侧边沿第一方向的投影为第一线段,第一直线过第一线段。第二平面将第二容置腔分隔成靠近第一侧的第三空间以及背离第一侧的第四空间,在垂直于第一方向的平面内,第二平面沿第一方向的投影为第二直线,第二电极组件靠近第一侧的侧边沿第一方向的投影为第二线段,第一直线过第一线段。第一空间的体积T1与第三空间的体积T3满足5%≤(T3-T1)/T1≤25%。上述方案中,综合考虑到容置腔内的头部空间更容易产生膨胀,当5%≤(T3-T1)/T1≤25%时,较大的第二容置腔的头部空间能够为第一容置腔头部的膨胀提供缓冲,抑制电化学装置头部过度膨胀的产生,从而进一步提升电化学装置的安全性能。
在一些实施例中,电化学装置满足:10%≤(T3-T1)/T1≤15%。上述方案中,第二容置腔的头部空间能够为第一容置腔头部的膨胀提供更好的缓冲,从而抑制电化学装置头部过度膨胀的产生。
在一些实施例中,电化学装置满足:第二平面位于第一平面背离第一侧的一侧。上述方案中,第一容置腔的头部空间(位于第一电极组件第一侧的空间)位置产生膨胀后,能够具有更大的缓冲空间,从而提升电化学装置的安全性能。
在一些实施例中,N个隔离件包括第一隔离件,第一隔离件设于第一容置腔与第二容置腔之间,第一隔离件朝向第一容置腔凹陷而形成凹槽。
在一些实施例中,隔离件包括基材层和位于基材层表面的封装层。上述方案中,隔离件具有较佳的隔绝性能以及封装性能。
在一些实施例中,封装层包括第一高分子材料。
在一些实施例中,基材层的材质包括金属材料、第二高分子材料或碳材料中的至少一种。
在一些实施例中,第一高分子材料包括聚丙烯、酸酐改性聚丙烯、聚乙烯、乙烯丙烯共聚物、聚氯乙烯、聚苯乙烯、聚醚腈、聚氨酯、聚酰胺、聚酯、非晶态α-烯烃共聚物或上述物质衍生物中的至少一种。
在一些实施例中,金属材料包括Ni、Ti、Cu、Ag、Au、Pt、Fe、Co、 Cr、W、Mo、Al、Mg、K、Na、Ca、Sr、Ba、Si、Ge、Sb、Pb、In、Zn、不锈钢(SUS)及其组合物或合金中的至少一种。
在一些实施例中,第二高分子材料包括聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚萘二甲酸乙二醇酯、聚醚醚酮、聚酰亚胺、聚酰胺、聚乙二醇、聚酰胺酰亚胺、聚碳酸酯、环状聚烯烃、聚苯硫醚、聚乙酸乙烯酯、聚四氟乙烯,聚亚甲基萘、聚偏二氟乙烯、聚碳酸亚丙酯、聚(偏二氟乙烯-六氟丙烯)、聚(偏二氟乙烯-共-三氟氯乙烯)、有机硅、维尼纶、聚丙烯、酸酐改性聚丙烯、聚乙烯、乙烯丙烯共聚物、聚氯乙烯、聚苯乙烯、聚醚腈、聚氨酯、聚苯醚、聚酯、聚砜、非晶态α-烯烃共聚物或上述物质衍生物中的至少一种。
在一些实施例中,碳材料包括碳毡、碳膜、炭黑、乙炔黑、富勒烯、导电石墨膜或石墨烯膜中的至少一种。
本申请的第二方面还提供了一种电子装置,包括上述任一项的电化学装置。
本申请提供的电化学装置,第二电极组件相对于第一电极组件远离基准面,换句话说,第一电极组件相较于第二电极组件而言更靠近电化学装置的沿第一方向的中部位置,进而第一容置腔相较于第二容置腔而言更靠近电化学装置的沿第一方向的中部位置。本申请中,使第一容置腔的体积V1与第二容置腔的体积V2满足0.5%≤(V2-V1)/V1≤5%。换句话说,第二容置腔比第一容置腔大0.5%-5%。即电化学装置靠近外侧的容置腔比靠近内侧的相邻的容置腔大0.5%-5%。一方面,(V2-V1)/V1≥0.5%使得第二容置腔的空间更大,从而使得第一容置腔发生的膨胀能够被第二容置腔缓冲,抑制由于第二容置腔的内压过大而造成电化学装置整体过度膨胀和封装失效的发生;另一方面,(V2-V1)/V1≤5%能够抑制由于内侧第一容置腔的体积过小所造成的内侧第一容置腔的内压过大,从而抑制电化学装置局部过度膨胀以及内侧第一容置腔封装失效的发生,进而提升电化学装置的安全性能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,还可以根据附图获得其他的附图。
图1是本申请一种实施例提供的电化学装置的立体示意图;
图2是本申请一种实施例提供的电化学装置剖切后的立体示意图;
图3是本申请一种实施例提供的电化学装置剖切后的侧视示意图;其中,图中第二平面与第一平面位置重合;
图4是图3的局部放大示意图;
图5是本申请一种实施例提供的电化学装置剖切后的爆炸示意图;
图6是本申请另一种实施例提供的电化学装置剖切后的侧视示意图;
图7是本申请一种实施例提供的隔离件的侧视图的局部示意图。
具体实施方式
为了便于理解本申请,下面结合附图和具体实施例,对本申请进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本说明书中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本申请。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本申请的发明人通过研究发现,由于同袋串联/并联电池中,位于内侧的第一容置腔的膨胀将会挤压位于外侧的第二容置腔,此时,第二容置腔会存在内压过大导致膨胀过度的风险。
鉴于此,参见图1-7,本实施例提供了一种电化学装置,该电化学装置能够抑制膨胀过度的发生,提高电化学装置的安全性能。以下以电化学装置100进行举例说明。电化学装置100包括壳体110、第一电极组件130、第二电极组件140以及N个隔离件120,其中,N≥2,即N可以为2、3、4、5等。
各隔离件120沿第一方向X排列,参见图1-4,在一些实施例中,第一方向X即电化学装置100的厚度方向。N个隔离件120与壳体110共同限定出沿第一方向X排列的N+1个容置腔。例如,当隔离件120的数量N为2时,容置腔的数量为3,当隔离件120的数量为3时,容置腔的数量为4。
N+1个容置腔包括彼此相邻的第一容置腔170以及第二容置腔180。第一电极组件130收容于第一容置腔170,第二电极组件140收容于第二容置腔180。第一容置腔170以及第二容置腔180内均设置有电解液,使得第一容置腔170以及第二容置腔180内均形成独立的电化学单元。电化学装置100还可包括其他的电极组件,以使得除第一容置腔170以及第二容置腔180外的容置腔内均布置有一个电极组件。本实施例中,电化学装置100还包括第一极耳131和第二极耳141,两个极性相异的第一极耳131与第一电极组件130的两个极性相异的集流体一一对应连接,并从壳体110与隔离件120之间伸出壳体110,两个极性相异的第二极耳141与第二电极组件140的两个极性相异的集流体一一对应连接,并从壳体110与隔离件120之间伸出壳体110。
在一些实施例中,第二电极组件140相对于第一电极组件130远离基准面160,其中,基准面160为过电化学装置沿第一方向X的中心、并垂直于第一方向X的平面。换句话说,第一电极组件130相对于第二电极组件140更靠近电化学装置100的沿第一方向X的厚度中心。
在一些实施例中,第一容置腔170的体积V1与第二容置腔180的体积V2满足V2>V1。此时,由于远离电化学装置100的沿第一方向X的厚度中心的第二容置腔180的空间更大,使得位于内侧的第一容置腔170所产生的膨胀,能够有效被更大的第二容置腔180所缓冲,抑制由于第 二容置腔180的内压过大而造成电化学装置100整体过度膨胀和封装失效的发生。在一些实施例中,第一容置腔170的体积V1与第二容置腔180的体积V2满足0.5%≤(V2-V1)/V1≤5%。示例性地,(V2-V1)/V1可以为0.5%、1%、2%、3%、4%或5%等。换句话说,第二容置腔180比第一容置腔170大0.5%-5%。即电化学装置100的靠近外侧的容置腔比靠近内侧的相邻的容置腔大0.5%-5%。此时,(V2-V1)/V1≤5%能够抑制由于内侧第一容置腔170的体积过小所造成的内侧第一容置腔170的内压过大,从而抑制电化学装置100局部过度膨胀以及内侧第一容置腔170封装失效的发生,进而提升电化学装置100的安全性能。其中,第一容置腔170的体积V1与第二容置腔180的体积V2可通过将电化学装置拆解后测量获得,也可利用三维CT扫描技术进行原位测量获得。
第一容置腔170以及第二容置腔180可以为壳体110内的任意两个与基准面160距离不相等的相邻的两个容置腔。例如,当N为4时,壳体110内具有5个容置腔,为了便于描述,以各容置腔沿第一方向X的厚度尺寸相同进行说明,且沿第一方向X,各容置腔依次编号为一号容置腔、二号容置腔、三号容置腔、四号容置腔以及五号容置腔,其中当容置腔沿第一方向X的厚度尺寸相同时,三号容置腔最靠近电化学装置100的沿第一方向X的厚度中心。第二容置腔180可以为一号容置腔,此时,第一容置腔170为二号容置腔;第二容置腔180还可以为二号容置腔,此时第一容置腔170为三号容置腔;第二容置腔180还可以为四号容置腔,此时第一容置腔170为三号容置腔;第二容置腔180还可以为五号容置腔,此时第一容置腔170为四号容置腔。当电化学装置100的容置腔的数量为其他数量时,依次规律类推。
特别地,电化学装置100内可以仅第一容置腔170以及第二容置腔180两个腔体满足0.5%≤(V2-V1)/V1≤5%的空间大小关系。也可以所有相邻的容置腔均满足上述关系。示例性地,上述当N为4时的实施例中,可以同时满足一号容置腔的空间比二号容置腔的空间大0.5%-5%、二号容置腔的空间比三号容置腔的空间大0.5%-5%、四号容置腔的空 间比三号容置腔的空间大0.5%-5%、五号容置腔的空间比四号容置腔的空间大0.5%-5%。当电化学装置100的容置腔的数量为其他数量时,依次规律类推。
在一些实施例中,1.5%≤(V2-V1)/V1≤5%。示例性地,(V2-V1)/V1可以为1.5%、2%、2.5%、3%、4%或5%等。上述方案中,第二容置腔180能够具有相对更大的缓冲空间,从而进一步有效抑制第二容置腔180的内压过大,提升电化学装置100的安全性能。
本申请的发明人进一步研究发现,通过控制第一容置腔170以及第二容置腔180内的剩余空间与电极组件所占空间之间的相对关系可获得更优的效果。因此在一些实施例中,配置为第一容置腔170的体积V1、第一电极组件130的体积V3、第二容置腔180的体积V2、第二电极组件140的体积V4满足[(V1-V3)/V3]/[(V2-V4)/V4]≤0.9。示例性地,[(V1-V3)/V3]/[(V2-V4)/V4]可以为0.5、0.6、0.7、0.8或0.9等。其中,(V1-V3)/V3为第一容置腔170内除去第一电极组件130所占空间后的剩余空间与第一电极组件130所占空间的比值。(V2-V4)/V4为第二容置腔180内除去第二电极组件140所占空间后的剩余空间与第二电极组件140所占空间的比值。本实施例中,综合考虑了电极组件所占的空间大小与剩余空间的相对大小,使得第二容置腔180能够具有更大的剩余空间以缓冲第一容置腔170的膨胀,从而进一步抑制电化学装置100的过度膨胀,提升电化学装置100的安全性能。
在一些实施例中,电化学装置满足:2.5%≤(V1-V3)/V3≤5.5%。上述方案中,第一容置腔170自身具有适宜的剩余空间以抑制自身的膨胀,从而降低对第二容置腔180的挤压,提升电化学装置100的安全性能。
在一些实施例中,电化学装置满足:3%≤(V2-V4)/V4≤9%。上述方案中,第二容置腔180具有较大的剩余空间以缓冲第一容置腔170的膨胀,从而抑制电化学装置100整体的过度膨胀,提升电化学装置100的安全性能。
参见图3-4,在一些实施例中,电化学装置还包括第一极耳131和 第二极耳141,第一极耳131与第一电极组件130电连接,第二极耳141与第二电极组件140电连接,第一极耳131和第二极耳141均由壳体110的第一侧引出。第一电极组件130和第二电极组件140之间通过第一极耳131和第二极耳141串联连接或并联连接。
第一平面150将第一容置腔170分隔成靠近第一侧的第一空间171以及背离第一侧的第二空间,在垂直于第一方向X的平面内,第一平面150沿第一方向X的投影为第一直线,第一电极组件130靠近第一侧的侧边沿第一方向X的投影为第一线段,第一直线过第一线段。换句话说,第一平面150与第一电极组件130的靠近第一侧的端部贴合。具体的,当第一电极组件130的阳极极片靠近第一侧的端部覆盖阴极极片靠近第一侧的端部时,第一平面150与阳极极片靠近第一侧的端部位置贴合。第一空间171为第一容置腔170位于电极组件第一侧的空间。
第二平面将第二容置腔180分隔成靠近第一侧的第三空间181以及背离第一侧的第四空间,在垂直于第一方向X的平面内,第二平面沿第一方向X的投影为第二直线,第二电极组件140靠近第一侧的侧边沿第一方向X的投影为第二线段,第一直线过第一线段。换句话说,第二平面与第二电极组件140的靠近第一侧的端部贴合。具体的,当第二电极组件140的阳极极片靠近第一侧的端部覆盖阴极极片靠近第一侧的端部时,第二平面与阳极极片靠近第一侧的端部位置贴合。第三空间181为第二容置腔180位于电极组件第一侧的空间。
本申请的发明人考虑到,电化学装置100的各个容置腔内的体积膨胀更容易发生于头部空间(即电极组件的靠近极耳的部位的空间,即前述的第一空间171或第三空间181)内,鉴于此,在一些实施例中,配置为第一空间171的体积T1与第三空间181的体积T3满足5%≤(T3-T1)/T1≤25%。示例性地,(T3-T1)/T1可以为5%、10%、15%、20%或25%等。本方案中考虑到了容置腔内的头部空间位置更容易产生膨胀,当5%≤(T3-T1)/T1≤25%时,较大的第二容置腔180的头部空间能够为第一容置腔170头部的膨胀提供缓冲,抑制电化学装置100头部的过度膨胀,从而进一步提升电化学装置100的安全性能。优选地, 10%≤(T3-T1)/T1≤25%。
在一些实施例中,设置为第二平面位于第一平面150背离第一侧的一侧。第一容置腔170的头部空间(位于第一电极组件130第一侧的空间)位置产生膨胀后,能够具有更大的缓冲空间,从而提升电化学装置100整体的安全性能。
实现第一容置腔170的空间体积小于第二容置腔180的空间体积的方式有多种,一种实施例中,可以因第一容置腔170沿第一方向X的尺寸小于第二容置腔180沿第一方向X的尺寸,从而使第一容置腔170的空间体积小于第二容置腔180的空间体积。另一种实施例中,参见图4,可以因第一容置腔170在平行于第一方向X的截面面积小于第二容置腔180在平行于第一方向X的截面面积,从而使第一容置腔170的空间体积小于第二容置腔180的空间体积,具体地,可以使隔离件120朝向第二容置腔180凹陷的面积较小。
又一种实施例中,参见图6,N个隔离件120包括第一隔离件121,第一隔离件121设于第一容置腔170与第二容置腔180之间,第一隔离件121朝向第一容置腔170凹陷而形成凹槽122。凹槽122可以是采用冲压工艺冲压成型。冲压后,第一容置腔170内的空间变小,第二容置腔180的空间变大,这样便使得第二容置腔180的空间体积大于第一容置腔170的空间体积,该加工工艺成本低廉,加工简单。同样地,为了调整所有相邻容置腔之间的体积比,可以在所有隔离件120上均冲压一个凹槽122。
凹槽122可以设置于第一隔离件121的任意位置,一种实施例中,参见图6,凹槽122设置于第一隔离件121用于限定出第一空间171以及第三空间181的部位。换句话说,在垂直于第一方向X的平面内,凹槽122沿第一方向X的投影位于第一空间171或第三空间181沿第一方向X的投影内。当凹槽122设置于上述位置时,一方面能够便于电解液的容纳,另一方面也不会因其受到第一电极组件130或第二电极组件140的挤压而产生形变。
参见图7,在一些实施例中,隔离件120包括基材层123和位于基 材层123表面的封装层124,基材层123的两侧均设置有封装层124。封装层124包括第一高分子材料。基材层123的材质包括金属材料、第二高分子材料或碳材料中的至少一种。隔离件120可以具有电子绝缘性,也可以具有电子传导性。在一些实施例中,隔离件120的厚度为50μm至500μm。
在一些实施例中,第一高分子材料包括聚丙烯、酸酐改性聚丙烯、聚乙烯、乙烯丙烯共聚物、聚氯乙烯、聚苯乙烯、聚醚腈、聚氨酯、聚酰胺、聚酯、非晶态α-烯烃共聚物或上述物质衍生物中的至少一种。
金属材料包括Ni、Ti、Cu、Ag、Au、Pt、Fe、Co、Cr、W、Mo、Al、Mg、K、Na、Ca、Sr、Ba、Si、Ge、Sb、Pb、In、Zn、不锈钢(SUS)及其组合物或合金中的至少一种。
第二高分子材料包括聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚萘二甲酸乙二醇酯、聚醚醚酮、聚酰亚胺、聚酰胺、聚乙二醇、聚酰胺酰亚胺、聚碳酸酯、环状聚烯烃、聚苯硫醚、聚乙酸乙烯酯、聚四氟乙烯,聚亚甲基萘、聚偏二氟乙烯、聚碳酸亚丙酯、聚(偏二氟乙烯-六氟丙烯)、聚(偏二氟乙烯-共-三氟氯乙烯)、有机硅、维尼纶、聚丙烯、酸酐改性聚丙烯、聚乙烯、乙烯丙烯共聚物、聚氯乙烯、聚苯乙烯、聚醚腈、聚氨酯、聚苯醚、聚酯、聚砜、非晶态α-烯烃共聚物或上述物质衍生物中的至少一种。
碳材料包括碳毡、碳膜、炭黑、乙炔黑、富勒烯、导电石墨膜或石墨烯膜中的至少一种。
本申请的电极组件没有特别限制,可以使用现有技术的任何电极组件,只要可以实现本申请目的即可,例如可以使用叠片型电极组件或卷绕型电极组件。电极组件一般包括正极极片、负极极片及隔膜。
本申请中的负极极片没有特别限制,只要能够实现本申请目的即可。例如,负极极片通常包含负极集流体和负极活性材料层。其中,负极集流体没有特别限制,可以使用本领域公知的任何负极集流体,例如铜箔、铝箔、铝合金箔以及复合集流体等。负极活性材料层包括负极活性材料,负极活性材料没有特别限制,可以使用本领域公知的任何负极活性材料。 例如,可以包括人造石墨、天然石墨、中间相碳微球、软碳、硬碳、硅、硅碳、钛酸锂等中的至少一种。
本申请中的正极极片没有特别限制,只要能够实现本申请目的即可。例如,所述正极极片通常包含正极集流体和正极活性材料层。其中,所述正极集流体没有特别限制,可以为本领域公知的任何正极集流体,例如铝箔、铝合金箔或复合集流体等。正极活性材料层包括正极活性材料,正极活性材料没有特别限制,可以为现有技术的任何正极活性材料,例如,可以包括镍钴锰酸锂(NCM)、镍钴铝酸锂(NCA)、磷酸铁锂、钴酸锂、锰酸锂或磷酸锰铁锂中的至少一种。
本申请中的电解液没有特别限制,可以使用本领域公知的任何电解液,例如可以是凝胶态、固态和液态中的任一种,例如,液态电解液可以包括锂盐和非水溶剂。
锂盐没有特别限制,可以使用本领域公知的任何锂盐,只要能实现本申请的目的即可。例如,锂盐可以包括六氟磷酸锂(LiPF 6)、四氟硼酸锂(LiBF 4)、二氟磷酸锂(LiPO 2F 2)、双三氟甲烷磺酰亚胺锂LiN(CF 3SO 2) 2(LiTFSI)、双(氟磺酰)亚胺锂Li(N(SO 2F) 2)(LiFSI)、双草酸硼酸锂LiB(C 2O 4) 2(LiBOB)或二氟草酸硼酸锂LiBF 2(C 2O 4)(LiDFOB)中的至少一种。例如,锂盐可选用LiPF 6
非水溶剂没有特别限定,只要能实现本申请的目的即可。例如,非水溶剂可以包括碳酸酯化合物、羧酸酯化合物、醚化合物、腈化合物或其它有机溶剂中的至少一种。
例如,碳酸酯化合物可以包括碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)、碳酸二丙酯(DPC)、碳酸甲丙酯(MPC)、碳酸乙丙酯(EPC)、碳酸亚乙酯(EC)、碳酸亚丙酯(PC)、碳酸亚丁酯(BC)、碳酸乙烯基亚乙酯(VEC)、碳酸氟代亚乙酯(FEC)、碳酸1,2-二氟亚乙酯、碳酸1,1-二氟亚乙酯、碳酸1,1,2-三氟亚乙酯、碳酸1,1,2,2-四氟亚乙酯、碳酸1-氟-2-甲基亚乙酯、碳酸1-氟-1-甲基亚乙酯、碳酸1,2-二氟-1-甲基亚乙酯、碳酸1,1,2-三氟-2-甲基亚乙酯或碳酸三氟甲基亚乙酯中的至少一种。
本申请中的隔膜没有特别限制,例如,隔膜包括由对本申请的电解液稳定的材料形成的聚合物或无机物等。隔膜一般应当具有离子传导性和电子绝缘性。
例如隔膜可包括基材层和表面处理层。基材层可以为具有多孔结构的无纺布、膜或复合膜,基材层的材料可以选自聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯和聚酰亚胺中的至少一种。任选地,可以使用聚丙烯多孔膜、聚乙烯多孔膜、聚丙烯无纺布、聚乙烯无纺布或聚丙烯-聚乙烯-聚丙烯多孔复合膜。任选地,基材层的至少一个表面上设置有表面处理层,表面处理层可以是聚合物层或无机物层,也可以是混合聚合物与无机物所形成的层。
例如,无机物层包括无机颗粒和粘结剂,所述无机颗粒没有特别限制,例如可以选自氧化铝、氧化硅、氧化镁、氧化钛、二氧化铪、氧化锡、二氧化铈、氧化镍、氧化锌、氧化钙、氧化锆、氧化钇、碳化硅、勃姆石、氢氧化铝、氢氧化镁、氢氧化钙和硫酸钡中的至少一种。所述粘结剂没有特别限制,例如可以选自聚偏氟乙烯、偏氟乙烯-六氟丙烯的共聚物、聚酰胺、聚丙烯腈、聚丙烯酸酯、聚丙烯酸、聚丙烯酸盐、聚乙烯呲咯烷酮、聚乙烯醚、聚甲基丙烯酸甲酯、聚四氟乙烯和聚六氟丙烯中的一种或几种的组合。聚合物层中包含聚合物,聚合物的材料包括聚酰胺、聚丙烯腈、丙烯酸酯聚合物、聚丙烯酸、聚丙烯酸盐、聚乙烯呲咯烷酮、聚乙烯醚、聚偏氟乙烯或聚(偏氟乙烯-六氟丙烯)中的至少一种。
本申请的第二方面还提供了一种电子装置,包括上述任一实施例中的电化学装置。
以下,举出实施例及比较例来对本申请的实施方式进行更具体地说明。各种的试验及评价按照下述的方法进行,另外,只要无特别说明,“份”、“%”为重量基准。
实施例及对比例中锂离子电池制备过程如下:
实施例1
(1)正极极片制备
将正极活性材料Li(Ni 0.5Co 0.2Mn 0.3)O 2、导电剂Super P、粘结剂聚偏二氟乙烯按照重量比96:2.2:1.8进行混合,加入N-甲基吡咯烷酮(NMP),在真空搅拌机作用下搅拌均匀,获得正极浆料,其中正极浆料的固含量为72wt%;将正极浆料均匀涂覆于正极集流体铝箔上;将涂覆后的铝箔在85℃下烘干,然后经过冷压、裁片、分切,随后在85℃的真空条件下干燥4h,得到正极极片。
(2)负极极片制备
将负极活性材料人造石墨、导电剂Super P、增稠剂羧甲基纤维素钠(CMC)、粘结剂丁苯橡胶(SBR)按照重量比96:2:0.8:1.2进行混合,加入去离子水,在真空搅拌机作用下获得负极浆料,其中负极浆料的固含量为54wt%;将负极浆料均匀涂覆在负极集流体铜箔上;将涂覆后的铜箔在85℃下烘干,然后经过冷压、裁片、分切,随后在120℃的真空条件下干燥12h,得到负极极片。
(3)电解液制备
在干燥的氩气气氛手套箱中,将有机溶剂EC(碳酸乙烯酯)、DEC(碳酸二乙酯)和EMC(碳酸甲乙酯)以质量比EC/DEC/EMC=3/2/5混合,然后向有机溶剂中加入LiPF 6(六氟磷酸锂)溶解并混合均匀,得到LiPF 6浓度为1.15M的电解液。
(4)隔离膜的制备
选用9μm厚的聚乙烯(PE)隔离膜,经涂覆含PVDF、无机颗粒(Al 2O 3)的浆液后烘干,得到最终隔离膜,涂层厚度为3μm,隔膜孔隙率为55%。
(5)电极组件的制备
将正极极片、隔离膜、负极极片按顺序叠好,使隔离膜处于正极极片、负极极片之间起到隔离的作用,然后卷绕得到电极组件,焊接极耳后备用;
(6)隔离件的制备
将封装层中的封装用物质PP均匀分散到分散剂NMP(N-甲基吡咯烷酮)中,得到封装层悬浊液,悬浊液的浓度为45wt%;利用涂胶机,在厚度为20μm的基材层Al层两个表面制备厚度为40μm的封装层PP。 130℃烘干封装层悬浊液中的分散剂NMP,即完成了隔离件的制备。
(7)锂离子电池的制备
将冲坑成型的铝塑膜,厚度为90μm,置于组装夹具内,坑面朝上,然后将一个电极组件A置于坑内,然后根据两侧容置腔体积差异的设计,将具有适当冲坑面积和深度的隔离件置于电极组件A上,施加外力压紧。将上述组装半成品置于另一组装夹具内,将另一电极组件B置于隔离件之上,然后将另一冲坑成型的隔离件置于电极组件B上,施加外力压紧;接着,将另一电极组件C置于隔离件之上,然后将另一冲坑成型的厚度为90μm的铝塑膜坑面朝下覆盖于电极组件C之上,再采用热压的方式将两个铝塑膜与隔离件一起热封,使电极组件A和电极组件B和电极组件C被隔离件分隔,得到组装电极组件。
将上述制备好的电解液注入到上述组装电极组件的各个容置腔中,经过真空封装、静置、化成、整形、容量测试等工序,并将各电极组件串联连接,获得最终锂离子电池。
实施例2-15和对比例1-2
按照表1调整锂离子电池相应的具体结构尺寸参数,其他与实施例1相同。
高温存储稳定性测试方法
在25±3℃环境中,将锂离子电池以0.05C的倍率恒流充电至满充设计电压4.3×n V(其中n为电极组件的个数),再以满充设计电压4.3×n V恒压充电至截止电流为0.025C,使锂离子电池达到满充状态,测量此时锂离子电池的厚度为H0,将锂离子电池放置在60℃的恒温箱中24h,取出后待冷却至25±3℃,测量此时锂离子电池的最大厚度为H1,则高温存储膨胀率=(H1-H0)/H0×100%。同时观察锂离子电池的封装部是否存在泄漏。
表1显示了各实施例以及对比例中锂离子电池的结构尺寸参数和性能。
表1
Figure PCTCN2022084557-appb-000001
由表1中的实施例1-15与对比例1-2的比较可知,满足0.5%≤(V2-V1)/V1≤5%的实施例1-15中的锂离子电池具有显著降低的高温存储膨胀率以及更好的封装稳定性。这是由于,一方面,(V2-V1)/V1≥0.5%使得位于外侧的容置腔的空间更大,从而使得位于内侧的容置腔所产生的膨胀,能够有效被更大的外侧容置腔所缓冲,抑制由于外侧容置腔的内压过大而造成锂离子电池整体过度膨胀以及封装失效的发生,进而提升锂离子电池的安全性能。另一方面,(V2-V1)/V1≤5%能够抑制由于内侧容置腔的体积过小所造成的内侧容置腔的内压过大,从而抑制局部过度膨胀以及内侧容置腔泄露的发生,进一步提升锂离子电池的安全性能。
进一步地,由实施例4和11的比较可知,进一步满足[(V1-V3)/V3]/[(V2-V4)/V4]≤0.9的实施例4,能够具有较低的高温存储膨胀率,这是由于,综合考虑容置腔中电极组件所占的空间大小与剩余空间的相对大小,使得外侧容置腔能够具有更大的剩余空间以缓冲内侧容置 腔的膨胀,从而进一步抑制了锂离子电池的高温存储膨胀。
此外,由实施例1-9与实施例12-15的比较可知,满足10%≤(T3-T1)/T1≤15%的实施例能够具有较低的高温存储膨胀率,这是由于,考虑到容置腔内的头部空间位置更容易产生膨胀,当10%≤(T3-T1)/T1≤15%时,较大的外侧容置腔的头部空间能够为内侧容置腔头部的膨胀提供缓冲,抑制锂离子电池头部的过度膨胀,从而进一步降低了锂离子电池的高温存储膨胀率。
需要说明的是,本申请的说明书及其附图中给出了本申请的较佳的实施例,但是,本申请可以通过许多不同的形式来实现,并不限于本说明书所描述的实施例,这些实施例不作为对本申请内容的额外限制,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。并且,上述各技术特征继续相互组合,形成未在上面列举的各种实施例,均视为本申请说明书记载的范围;进一步地,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本申请所附权利要求的保护范围。

Claims (10)

  1. 一种电化学装置,其特征在于,包括:
    壳体;
    N个隔离件,且各所述隔离件沿第一方向排列,以使所述N个隔离件与所述壳体共同限定出沿所述第一方向排列的N+1个容置腔,N+1个所述容置腔包括彼此相邻的第一容置腔以及第二容置腔;其中,N≥2;
    第一电极组件和第二电极组件,所述第一电极组件收容于所述第一容置腔,所述第二电极组件收容于所述第二容置腔;
    所述第二电极组件相对于所述第一电极组件远离基准面,其中,所述基准面为过所述电化学装置沿所述第一方向的中心、并垂直于所述第一方向的平面,所述第一容置腔的体积V1与所述第二容置腔的体积V2满足0.5%≤(V2-V1)/V1≤5%。
  2. 根据权利要求1所述的电化学装置,其特征在于,
    1.5%≤(V2-V1)/V1≤4%。
  3. 根据权利要求1所述的电化学装置,其特征在于,所述第一容置腔的体积V1、所述第一电极组件的体积V3、所述第二容置腔的体积V2、所述第二电极组件的体积V4满足[(V1-V3)/V3]/[(V2-V4)/V4]≤0.9。
  4. 根据权利要求3所述的电化学装置,其特征在于,所述电化学装置满足下列条件(a)至(b)中的至少一者:
    (a)2.5%≤(V1-V3)/V3≤5.5%;
    (b)3%≤(V2-V4)/V4≤9%。
  5. 根据权利要求1所述的电化学装置,其特征在于,所述电化学装置还包括第一极耳和第二极耳,所述第一极耳与所述第一电极组件电连 接,所述第二极耳与所述第二电极组件电连接,所述第一极耳和所述第二极耳均由所述壳体的第一侧引出;
    第一平面将所述第一容置腔分隔成靠近所述第一侧的第一空间以及背离所述第一侧的第二空间,在垂直于所述第一方向的平面内,所述第一平面沿第一方向的投影为第一直线,所述第一电极组件靠近所述第一侧的侧边沿第一方向的投影为第一线段,所述第一直线过所述第一线段;
    第二平面将所述第二容置腔分隔成靠近所述第一侧的第三空间以及背离所述第一侧的第四空间,在垂直于所述第一方向的平面内,所述第二平面沿第一方向的投影为第二直线,所述第二电极组件靠近所述第一侧的侧边沿第一方向的投影为第二线段,所述第一直线过所述第一线段;
    所述第一空间的体积T1与所述第三空间的体积T3满足5%≤(T3-T1)/T1≤25%。
  6. 根据权利要求5所述的电化学装置,其特征在于,所述电化学装置满足下列条件(c)至(d)中的至少一者:
    (c)10%≤(T3-T1)/T1≤15%;
    (d)所述第二平面位于所述第一平面背离所述第一侧的一侧。
  7. 根据权利要求1所述的电化学装置,其特征在于,
    所述N个隔离件包括第一隔离件,所述第一隔离件设于所述第一容置腔与所述第二容置腔之间,所述第一隔离件朝向所述第一容置腔凹陷而形成凹槽。
  8. 根据权利要求1所述的电化学装置,其特征在于,
    所述隔离件包括基材层和位于所述基材层表面的封装层,所述基材层包括金属,所述封装层包括第一高分子材料;所述基材层的材质包括金属材料、第二高分子材料或碳材料中的至少一种。
  9. 根据权利要求8所述的电化学装置,其特征在于,
    所述第一高分子材料包括聚丙烯、酸酐改性聚丙烯、聚乙烯、乙烯丙烯共聚物、聚氯乙烯、聚苯乙烯、聚醚腈、聚氨酯、聚酰胺、聚酯、非晶态α-烯烃共聚物或上述物质衍生物中的至少一种;
    所述金属材料包括Ni、Ti、Cu、Ag、Au、Pt、Fe、Co、Cr、W、Mo、Al、Mg、K、Na、Ca、Sr、Ba、Si、Ge、Sb、Pb、In、Zn、不锈钢(SUS)及其组合物或合金中的至少一种;
    所述第二高分子材料包括聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚萘二甲酸乙二醇酯、聚醚醚酮、聚酰亚胺、聚酰胺、聚乙二醇、聚酰胺酰亚胺、聚碳酸酯、环状聚烯烃、聚苯硫醚、聚乙酸乙烯酯、聚四氟乙烯,聚亚甲基萘、聚偏二氟乙烯、聚碳酸亚丙酯、聚(偏二氟乙烯-六氟丙烯)、聚(偏二氟乙烯-共-三氟氯乙烯)、有机硅、维尼纶、聚丙烯、酸酐改性聚丙烯、聚乙烯、乙烯丙烯共聚物、聚氯乙烯、聚苯乙烯、聚醚腈、聚氨酯、聚苯醚、聚酯、聚砜、非晶态α-烯烃共聚物或上述物质衍生物中的至少一种;
    所述碳材料包括碳毡、碳膜、炭黑、乙炔黑、富勒烯、导电石墨膜或石墨烯膜中的至少一种。
  10. 一种电子装置,其特征在于,包括权利要求1-9任一项所述的电化学装置。
PCT/CN2022/084557 2022-03-31 2022-03-31 一种电化学装置及电子装置 WO2023184398A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280010467.7A CN116806382A (zh) 2022-03-31 2022-03-31 一种电化学装置及电子装置
PCT/CN2022/084557 WO2023184398A1 (zh) 2022-03-31 2022-03-31 一种电化学装置及电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/084557 WO2023184398A1 (zh) 2022-03-31 2022-03-31 一种电化学装置及电子装置

Publications (1)

Publication Number Publication Date
WO2023184398A1 true WO2023184398A1 (zh) 2023-10-05

Family

ID=88079807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084557 WO2023184398A1 (zh) 2022-03-31 2022-03-31 一种电化学装置及电子装置

Country Status (2)

Country Link
CN (1) CN116806382A (zh)
WO (1) WO2023184398A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016081597A (ja) * 2014-10-10 2016-05-16 ソニー株式会社 リチウムイオン電池
CN106711363A (zh) * 2015-07-22 2017-05-24 北京普莱德新能源电池科技有限公司 一种电池成组框架
CN108630995A (zh) * 2017-03-21 2018-10-09 株式会社东芝 二次电池、电池包以及车辆
CN113921994A (zh) * 2021-09-30 2022-01-11 宁德新能源科技有限公司 电池及用电设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016081597A (ja) * 2014-10-10 2016-05-16 ソニー株式会社 リチウムイオン電池
CN106711363A (zh) * 2015-07-22 2017-05-24 北京普莱德新能源电池科技有限公司 一种电池成组框架
CN108630995A (zh) * 2017-03-21 2018-10-09 株式会社东芝 二次电池、电池包以及车辆
CN113921994A (zh) * 2021-09-30 2022-01-11 宁德新能源科技有限公司 电池及用电设备

Also Published As

Publication number Publication date
CN116806382A (zh) 2023-09-26

Similar Documents

Publication Publication Date Title
JP7196364B2 (ja) 二次電池及び当該二次電池を含む電池モジュール、電池パック並びに装置
CN106229447A (zh) 一种锂离子电池
US20140065489A1 (en) Electrolyte-negative electrode structure, and lithium ion secondary battery comprising the same
JP2010062113A (ja) リチウムイオン二次電池
WO2012033036A1 (ja) リチウムイオン二次電池
TW200937707A (en) Anode and secondary battery
US20220223948A1 (en) Electrochemical apparatus and electronic apparatus
CN101110477B (zh) 一种电化学储能与能量转换装置
US20180198120A1 (en) Lithium secondary battery
CN117747952A (zh) 锂离子电池、电池模块、电池包及用电装置
WO2023082924A1 (zh) 极片、锂离子电池、电池模块、电池包及用电装置
WO2023184398A1 (zh) 一种电化学装置及电子装置
KR20230088782A (ko) 복합 분리막, 전기화학적 에너지 저장 장치 및 전기 장치
CN111725555B (zh) 锂离子二次电池
CN116686153A (zh) 电极极片及包含其的二次电池
WO2020059805A1 (ja) 二次電池
WO2023216187A1 (zh) 电化学装置及电子装置
WO2023184142A1 (zh) 一种电化学装置及电子装置
CN220400655U (zh) 二次电池、电池模组及电池包
US11804637B2 (en) Battery module, battery pack, electric apparatus, and method and device for manufacturing battery module
WO2023164914A1 (zh) 电化学装置及电子装置
US20240178365A1 (en) Positive electrode plate, secondary battery and powered device
JP7164509B2 (ja) リチウムイオン電池
WO2023184784A1 (zh) 二次电池、电池模块、电池包和用电装置
US20220223863A1 (en) Graphite-based negative electrode active material

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280010467.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934236

Country of ref document: EP

Kind code of ref document: A1