WO2023182382A1 - 照明装置の製造方法および照明装置の製造用セット - Google Patents

照明装置の製造方法および照明装置の製造用セット Download PDF

Info

Publication number
WO2023182382A1
WO2023182382A1 PCT/JP2023/011320 JP2023011320W WO2023182382A1 WO 2023182382 A1 WO2023182382 A1 WO 2023182382A1 JP 2023011320 W JP2023011320 W JP 2023011320W WO 2023182382 A1 WO2023182382 A1 WO 2023182382A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
lighting device
manufacturing
white
sheet
Prior art date
Application number
PCT/JP2023/011320
Other languages
English (en)
French (fr)
Inventor
正宏 小西
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Publication of WO2023182382A1 publication Critical patent/WO2023182382A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a method for manufacturing a lighting device and a set for manufacturing a lighting device.
  • Example 2 of Patent Document 1 (i) a glass binder paint containing 30 vol% of phosphor was applied to the surface of a glass substrate to form a phosphor layer with a thickness of 200 ⁇ m; (ii) (iii) When the mounting board was energized, even though multiple CSPs were emitting light, there was no glare or multiple lights. It states that the problem of shadows has been reduced.
  • CSP Chip Scale Package or Chip Size Package, which is an LED chip wrapped in phosphor resin, making it packageless with only the LED chip and phosphor resin.
  • Example 2 of Patent Document 1 a 200 ⁇ m thick fluorescent layer is formed on a glass substrate using a “glass binder paint” containing a fluorescent substance.
  • a sintering process at high temperatures is usually required. Therefore, with regard to Example 2 of Patent Document 1, there is room for improvement in terms of ease of providing the fluorescent layer, etc.
  • the casing/substrate to which the glass binder paint is applied is also subject to restrictions such as heat resistance and optimization of expansion coefficient.
  • forming a fluorescent layer using "paint” has problems, such as a complicated process and the need to solve the problem of "dripping" of the paint.
  • the present invention has been made in view of these circumstances.
  • One of the objects of the present invention is to provide a method that makes it possible to manufacture a lighting device without using paint.
  • the first surface of the insulating substrate is bonded to the first surface side of the insulating substrate, the first surface of which is provided with wiring including a connecting portion to which a light emitting element can be electrically connected.
  • a white layer forming step for obtaining a first laminate in which a white layer is provided on the side;
  • a phosphor sheet containing phosphor particles is adhered to the white layer side of the first laminate to obtain a second laminate in which the phosphor layer is provided on the white layer side of the first laminate.
  • a method of manufacturing a lighting device including: 2. 1.
  • a method for manufacturing a lighting device according to The white sheet is composed of a thermosetting resin material in a B-stage state, including a white pigment and a curable resin component, The method for manufacturing a lighting device, wherein the white layer forming step includes a step of adhering the white sheet by heat pressing. 3. 1. A method for manufacturing a lighting device according to The method for manufacturing a lighting device, wherein the white layer forming step includes a step of bonding the white sheet using an adhesive. 4. 1. ⁇ 3.
  • a method for manufacturing a lighting device includes phosphor particles and a curable resin component, and is made of a thermosetting resin material in a B-stage state, The method for manufacturing a lighting device, wherein the phosphor layer forming step includes a step of adhering the phosphor sheet by heat pressing. 5. 1. ⁇ 3. A method for manufacturing a lighting device according to any one of The method for manufacturing a lighting device, wherein the phosphor layer forming step includes a step of bonding the phosphor sheet using an adhesive. 6. 1. ⁇ 5.
  • a method for manufacturing a lighting device according to any one of The white sheet is provided with a first through hole, In the white layer forming step, the white sheet is bonded so that the first through hole is located at the connection portion when the insulating substrate is viewed from above from the first surface side. manufacturing method. 7. 1. ⁇ 6.
  • a method for manufacturing a lighting device according to any one of The phosphor sheet is provided with a second through hole, In the phosphor layer forming step, the phosphor sheet is bonded so that the second through hole is located at the connection portion when the insulating substrate is viewed from above from the first surface side. Method of manufacturing the device. 8. 1. ⁇ 7.
  • a method for manufacturing a lighting device include a CASN-based phosphor, a SCASN-based phosphor, a La 3 Si 6 N 11 -based phosphor, a Sr 2 Si 5 N 8 -based phosphor, a Ba 2 Si 5 N 8 -based phosphor, and an ⁇ -sialon-based phosphor.
  • a method for manufacturing a lighting device comprising one or more selected from the group consisting of a phosphor, a ⁇ -sialon phosphor, a LuAG phosphor, and a YAG phosphor. 12. 1. ⁇ 11.
  • a method for manufacturing a lighting device according to any one of A method for manufacturing a lighting device, wherein the light emitting element in the connecting step is a light emitting element capable of emitting blue light. 13.
  • a set for manufacturing a lighting device comprising a phosphor sheet containing phosphor particles and a white sheet.
  • a lighting device can be manufactured without using paint.
  • FIG. 3 is a diagram (cross-sectional view) for explaining the manufacturing procedure of the lighting device.
  • FIG. 3 is a diagram (cross-sectional view) for explaining the manufacturing procedure of the lighting device.
  • FIG. 3 is a diagram (cross-sectional view) for explaining the manufacturing procedure of the lighting device.
  • FIG. 3 is a diagram (cross-sectional view) for explaining the manufacturing procedure of the lighting device and the lighting device.
  • FIG. 3 is a diagram for explaining an LED chip with a reflector and an LED chip without a reflector.
  • (meth)acrylic represents a concept that includes both acrylic and methacrylic.
  • organic group as used herein means an atomic group obtained by removing one or more hydrogen atoms from an organic compound, unless otherwise specified.
  • a “monovalent organic group” refers to an atomic group obtained by removing one hydrogen atom from an arbitrary organic compound.
  • the method for manufacturing the lighting device of this embodiment is as follows: By adhering a white sheet to the first surface side of the insulating substrate, which is provided with wiring including a connection part that can electrically connect a light emitting element on the first surface, the first surface side of the insulating substrate a white layer forming step for obtaining a first laminate in which a white layer is provided; A phosphor layer forming step of adhering a phosphor sheet containing phosphor particles to the white layer side of the first laminate to obtain a second laminate in which the phosphor layer is provided on the white layer side of the first laminate. and, a connection step of electrically connecting the light emitting element to the connection portion from the fluorescent layer side in the second laminate; including.
  • a fluorescent layer in order to form a fluorescent layer, instead of "coating" a "paint” as described in Patent Document 1, "a phosphor sheet containing phosphor particles” is “adhered”. By doing so, a fluorescent layer is provided. With such a device, the fluorescent layer can be provided more easily than when a paint is used. Furthermore, compared to the case of using paint, there are fewer restrictions on heat resistance, optimization of expansion coefficient, etc. of the casing/substrate on which the fluorescent layer is formed. Furthermore, compared to forming a fluorescent layer using paint, there may be advantages in that the process is simpler and in principle there is no "dripping" of the paint.
  • a substrate including at least an insulating substrate 20 as shown in FIG. 1 is prepared.
  • the first surface of the insulating substrate 20 is provided with wiring including a connection part 21 to which a light emitting element can be electrically connected.
  • a first copper foil 22A is provided as the wiring.
  • a portion of the first copper foil 22A has been removed by etching and functions as a copper circuit (wiring).
  • a second copper foil 22B may be provided on the other surface (second surface) of the insulating substrate 20.
  • the material of the insulating substrate 20 is not particularly limited as long as it is known to be used for PWBs (printed circuit boards).
  • polyimide resin, silicone resin, (meth)acrylic resin, urea resin, epoxy resin, fluororesin, glass, metal (aluminum, copper, iron, stainless steel, etc.) can be used.
  • polyimide resin, silicone resin, glass, or metal such as a so-called "metal substrate” in which aluminum or copper is used as a base metal and an insulating layer is provided
  • the thickness of the insulating substrate 20 is not particularly limited as long as it can be used for lighting equipment. For example, it is 50 ⁇ m or more and 1000 ⁇ m or less, specifically 50 ⁇ m or more and 500 ⁇ m or less.
  • the first copper foil 22A is electrically connected to the surface-mounted LED element 28 by solder 30, as described later. Electricity is supplied to the surface-mounted LED element 28 by the cuprous foil 22A and the solder 30, and the surface-mounted LED element 28 emits light.
  • the force can be balanced on both sides of the insulating substrate 20, and for example, the occurrence of warping can be suppressed. .
  • the white sheet is composed of a thermosetting resin material in a B-stage state, including a white pigment and a curable resin component.
  • the white sheet in the B-stage state is preferably adhered to the first surface side by, for example, hot pressing or vacuum lamination.
  • Adhesion conditions are not particularly limited, and for example, conditions similar to those for pasting a phosphor sheet, which will be described later, can be employed.
  • the white layer 24 may be provided by adhering white sheets (which do not have to be B-staged) using an adhesive. More specific aspects of the white sheet will be explained later.
  • the white sheet is preferably provided with a first through hole.
  • the white sheet is preferably bonded so that the first through hole is located at the connection portion 21 when the insulating substrate 20 is viewed from above from the first surface side.
  • the opening 23 is provided in the white layer 24. The presence of this opening 23 makes it easy to electrically connect the light emitting element to the connection portion 21 in a connection process described later. In other words, it is not necessary to remove a portion of the white layer 24 to expose the connecting portion 21 when electrically connecting.
  • the position of the first through hole in the white sheet and the position of the connection part 21 may be misaligned. It is preferable to take some measures so that they can match easily without any problems. Examples of “devices” here include the following.
  • a "pin" for positioning is provided on the first surface side of the insulating substrate 20.
  • the outer shape of the board when viewed from above is the same as the outer shape of the white sheet when viewed from above. In this way, if the edge of the substrate and the edge of the white sheet are aligned, no misalignment will occur.
  • heat press instead of pressing the substrate and white sheet with a flat metal plate, heat press is performed using a device equipped with a "concavity" that matches the shape of the substrate and/or white sheet. , to prevent the substrate and/or white sheet from shifting.
  • a metal plate on the white sheet side of the press device can be placed at an appropriate position corresponding to the position of the connection part 21 of the substrate. It is also conceivable to provide a convex portion with a certain height, and to use a white sheet without through holes. During hot pressing, the white sheet melts and flows. Therefore, even if the white sheet is not provided with the first through-hole, the presence of the convex part on the metal plate will "push away" the molten white sheet, resulting in the melted white sheet as shown in Figure 2. It is believed that a first laminate can be obtained. However, depending on the pressing conditions, the convex portion may not be able to completely push away the melted white sheet, and a portion of the white sheet may remain as a thin film. In this case, the thin film may be removed.
  • the thickness of the white layer 24 is usually 20 to 150 ⁇ m, preferably 30 to 120 ⁇ m, and more preferably 35 to 100 ⁇ m.
  • the thickness of the white layer 24 is preferably 20 to 100 ⁇ m, and it is more preferable that the total thickness of the white layer 24 and the fluorescent layer 26 described below be 100 ⁇ m or less. preferable.
  • the phosphor sheet is preferably made of a thermosetting resin material in a B-stage state, including phosphor particles and a curable resin component.
  • the phosphor sheet in the B-stage state is preferably bonded by a method such as hot pressing or vacuum lamination.
  • the phosphor layer 26 may be provided by adhering a phosphor sheet (which does not have to be B-staged) using an adhesive. More specific aspects of the phosphor sheet will be explained later.
  • the phosphor sheet is preferably provided with a second through hole.
  • the phosphor sheet is preferably bonded so that the second through hole is located at the connection portion 21 when the insulating substrate 20 is viewed from above from the first surface side.
  • the opening 23 is provided in the fluorescent layer 26. The presence of this opening 23 makes it easy to electrically connect the light emitting element to the connection portion 21 in a connection process described later. In other words, it is not necessary to remove a portion of the fluorescent layer 26 to expose the connecting portion 21 when electrically connecting.
  • the position of the second through hole in the phosphor sheet and the position of the connecting part 21 can easily match without misalignment. Therefore, it is preferable to take some measures. Specifically, regarding the "devices" here, various devices have been used to easily match the position of the first through hole and the position of the connecting part 21 without misalignment, as described in the explanation of FIG. 2. can be mentioned.
  • a phosphor layer can be provided on the exposed surface of the white layer 24 by any method such as vacuum lamination.
  • the conditions for the vacuum lamination method are not particularly limited, but the temperature for heat-pressing is preferably 60 to 160°C, more preferably 80 to 140°C.
  • the heating pressure is preferably 0.098 to 1.77 MPa, more preferably 0.29 to 1.47 MPa.
  • the heat-pressing time is preferably 20 to 400 seconds, more preferably 30 to 300 seconds.
  • Lamination is preferably carried out under reduced pressure conditions of 26.7 hPa or less.
  • the phosphor sheet may be smoothed by applying a pressing force to the phosphor sheet.
  • the uncured components in the phosphor sheet are cured, and the phosphor layer 26 can be provided.
  • the heating conditions here are not particularly limited, but for example, the curing temperature is 120 to 240°C, preferably 150 to 220°C, more preferably 170 to 200°C, and the curing time is 5 to 120 minutes, preferably 10 to 200°C. The time may be 100 minutes, more preferably 15 to 90 minutes.
  • the method for forming the fluorescent layer 26 as described above is just an example.
  • the fluorescent layer 26 may be provided using a method different from that described above, such as a known method for laminating and curing prepreg.
  • solder 30 is placed in the opening (through hole) of the fluorescent layer 26 . Thereafter, the surface-mounted LED element 28 is placed on the solder 30. Then, the surface-mounted LED element 28 and the first copper foil 22A are soldered and electrically connected by melting the solder using, for example, a reflow method. For example, in this way, the light emitting element can be electrically connected to the connection portion 21 from the side of the fluorescent layer 26 in the second laminate (connection step).
  • the specific method and conditions of soldering are not particularly limited. Incidentally, the solder 30 may be applied to the first copper foil 22A in advance.
  • a lighting device can be manufactured in the manner described above. Incidentally, as shown in FIG. 5, a plurality of light emitting elements (surface-mounted LED elements 28) may be installed in the lighting device.
  • the light-emitting element preferably does not include a reflector.
  • some known surface-mounted LED elements are equipped with a reflector, as shown in FIG. 6A, so that light does not leak out laterally or downwardly.
  • the light emitting element does not include a reflector as shown in FIG. 6B.
  • the semiconductor light-emitting element 100 is arranged in a package-shaped part 108 formed by a substrate 102 and a reflector (housing) 104, and a sealing member 110 (light-transmitting resin) is placed in the package-shaped part 108. ) is filled.
  • Substrate 102 can include wiring 112 .
  • FIG. 6B the same elements as in FIG. 2A are given the same reference numerals.
  • a housing (reflector) is not used.
  • the sealing member 110 can be formed by molding using a desired mold. Alternatively, a sealing member 110 molded into a desired shape may be prepared in advance, and this may be adhered to the substrate 102 so as to cover the semiconductor light emitting element 100.
  • spacers may be used for the purpose of adjusting the film thickness. That is, the white layer 24 and the fluorescent layer 26 may be provided by heating, pressing, etc. using a spacer.
  • the resin component softened when the sheet in the B-stage state is heated may be soldered to the surface-mounted LED element 28 in the cuprous foil 22A. It is conceivable that the paint may "bleed out" into the area where it should be attached. In this case, there is a possibility that the first copper foil 22A and the surface-mounted LED element 28 cannot be electrically connected. One possible way to prevent this is to change the material of the resin sheet or the process conditions. Another method is to "protect" the part of the first copper foil 22A to which the surface-mounted LED element 28 is to be soldered by temporarily using a suitable member, such as a spring pin. It will be done.
  • the softened resin component can theoretically be applied to the surface-mounted LED element 28 on the first copper foil 22A. It is possible to prevent "bleeding" onto the parts to be soldered.
  • the white layer forming step and the fluorescent layer forming step may be performed as separate steps or may be performed simultaneously.
  • An example of a mode in which "the process is carried out simultaneously" includes, for example, stacking a white sheet and a phosphor sheet on a substrate in this order and hot-pressing them at once.
  • An example of the advantage of performing these operations simultaneously is ease of positioning. This is because when providing two layers, positioning can be done substantially only once.
  • a lighting device including the white layer 24 provided between the white layer 24 and the fluorescent layer 26, and (iv) a light emitting element provided on the surface of the fluorescent layer 26 opposite to the insulating substrate 20 can be manufactured.
  • the phosphor sheet that can be used in the phosphor layer forming step is preferably composed of a thermosetting resin material in a B-stage state, including phosphor particles and a curable resin component. Ru.
  • the thickness of the phosphor sheet is usually 20 to 150 ⁇ m, preferably 30 to 120 ⁇ m, and more preferably 35 to 100 ⁇ m.
  • the phosphor sheet is in the B-stage state (in other words, semi-cured state), its fluidity at temperatures around room temperature has virtually disappeared, allowing it to maintain its "sheet” form. . Since the phosphor sheet is in the B-stage state, it is placed on the substrate as a sheet and then heated (preferably heated while applying pressure) to adhere sufficiently strongly to the substrate and form the phosphor layer 26. can be provided. At this time, since there is no need to apply liquid paint, the fluorescent layer can be formed by a simpler process than in the past.
  • the B-stage state includes a state before the C-stage state, that is, before complete curing.
  • the phosphor sheet When the thickness of the phosphor sheet is 20 ⁇ m or more, the phosphor sheet contains a sufficient amount of phosphor particles, and the light conversion efficiency of the phosphor sheet can be sufficiently increased. Further, by setting the thickness of the phosphor sheet to 150 ⁇ m or less, the time required for thermosetting can be shortened. It is also preferable that the phosphor sheet is not too thick because it facilitates electrical connection (soldering, etc.) between the light emitting element and the copper wiring in manufacturing the lighting device described later.
  • the phosphor particles included in the phosphor sheet may be any particles that emit fluorescence when exposed to light emitted from the light emitting elements. Specifically, the phosphor particles need only be capable of converting blue light into light with a longer wavelength than the wavelength of the blue light. Only one type of particles may be used, or two or more phosphor particles may be used in combination.
  • Examples of the phosphor particles include CASN-based phosphors, SCASN-based phosphors, La 3 Si 6 N 11 -based phosphors, Sr 2 Si 5 N 8 -based phosphors, Ba 2 Si 5 N 8 -based phosphors, and ⁇ -sialon phosphors.
  • Examples include one or more selected from the group consisting of phosphors, ⁇ -sialon phosphors, LuAG phosphors, and YAG phosphors. These phosphors usually contain activating elements such as Eu and Ce.
  • the CASN-based phosphor (a type of nitride phosphor) preferably contains Eu.
  • the CASN-based phosphor is, for example, a red phosphor represented by the formula CaAlSiN 3 :Eu 2+ , which uses Eu 2+ as an activator and has a crystal made of alkaline earth silicon nitride as a matrix.
  • the definition of Eu-containing CASN-based phosphors in this specification excludes Eu-containing SCASN-based phosphors.
  • the SCASN-based phosphor (a type of nitride phosphor) preferably contains Eu.
  • the SCASN-based phosphor is, for example, a red phosphor represented by the formula (Sr,Ca)AlSiN 3 :Eu 2+ , which uses Eu 2+ as an activator and has a crystal made of alkaline earth silicon nitride as a matrix.
  • the La 3 Si 6 N 11 -based phosphor is La 3 Si 6 N 11 :Ce phosphor. This typically wavelength converts blue light from a blue LED to yellow light.
  • the Sr 2 Si 5 N 8 -based phosphor includes a Sr 2 Si 5 N 8 :Eu 2+ phosphor, a Sr 2 Si 5 N 8 :Ce 3+ phosphor, and the like. These typically wavelength convert blue light from blue LEDs into yellow to red light.
  • the Ba 2 Si 5 N 8 -based phosphor is Ba 2 Si 5 N 8 :Eu. This typically wavelength converts blue light from a blue LED to orange-red light.
  • the ⁇ -type sialon-based phosphor preferably contains Eu.
  • ⁇ -type sialon containing Eu is represented by, for example, the general formula: M x Eu y Si 12-(m+n) Al (m+n) O n N 16-n .
  • the ⁇ -type sialon-based phosphor preferably contains Eu.
  • ⁇ -type sialon containing Eu is, for example, represented by the general formula Si 6-z Al z O z N 8-z :Eu 2+ (0 ⁇ Z ⁇ 4.2), and is derived from ⁇ -sialon containing Eu 2+ as a solid solution. It is a phosphor.
  • the Z value and the europium content are not particularly limited.
  • the Z value is, for example, greater than 0 and less than or equal to 4.2, and is preferably greater than or equal to 0.005 and less than or equal to 1.0 from the viewpoint of further improving the luminescence intensity of ⁇ -sialon.
  • the content of europium is preferably 0.1% by mass or more and 2.0% by mass or less.
  • LuAG-based phosphor usually means lutetium aluminum garnet crystal. Considering the application to a lighting device, it is preferable that LuAG is a LuAG:Ce phosphor. More specifically, LuAG can be represented by the composition formula Lu 3 Al 5 O 12 :Ce, but the composition of LuAG does not necessarily have to follow stoichiometry.
  • YAG-based phosphor usually means yttrium aluminum garnet crystal. Considering application to lighting devices, it is preferable that the YAG-based phosphor be activated with Ce. More specifically, the YAG-based phosphor can be represented by the composition formula Y 3 Al 5 O 12 :Ce, but the composition of the YAG-based phosphor does not necessarily have to follow stoichiometry.
  • phosphor particles Commercially available products may be used as the phosphor particles. Examples of commercially available phosphor particles include Aron Bright (registered trademark) manufactured by Denka Corporation. It is also commercially available from Mitsubishi Chemical and other companies.
  • the median diameter D50 of the phosphor particles is preferably 1 ⁇ m or more and 20 ⁇ m or less, more preferably 5 ⁇ m or more and 15 ⁇ m or less. By appropriately adjusting the median diameter D50 , it becomes easier to form a thin and uniform phosphor sheet.
  • two or more maxima are observed in the particle size distribution curve of the phosphor particles. Specifically, it is preferable that the maximum is observed in both a region of particle size of 1 ⁇ m or more and 6 ⁇ m or less and a region of particle size of 10 ⁇ m or more and 25 ⁇ m or less.
  • the fact that two or more local maxima are observed means that the phosphor particles include both large particles and small particles. Since the small particles fit into the "gaps" between the large particles, it is easier to increase the content of phosphor particles compared to when only large particles are used. Moreover, even if the content of phosphor particles is increased, various physical properties can be easily maintained. Furthermore, when formed into a coating film, it becomes more difficult for light emitted from the light emitting element to pass through.
  • the median diameter D50 and particle size distribution curve of the phosphor particles can be determined by improving the preparation method of the phosphor particles, appropriately crushing the phosphor particles, and appropriately mixing two or more phosphor particles with different particle sizes. It can be adjusted by
  • the particle size distribution curve of the phosphor particles can be measured using a laser diffraction scattering particle size distribution measuring device after dispersing raw material phosphor particles in a dispersion medium using an ultrasonic homogenizer. Then, the median diameter D50 can be determined from the obtained particle size distribution curve.
  • the median diameter D50 and the particle size distribution curve are measured on a volume basis.
  • the phosphor sheet may contain only one type of phosphor particles, or may contain two or more types of phosphor particles.
  • the content of the phosphor particles in the phosphor sheet is 25 vol% or more and 60 vol% or less. This content is preferably 30 vol% or more and 60 vol% or less, more preferably 35 vol% or more and 60 vol% or less, and still more preferably 40 vol% or more and 50 vol% or less.
  • one of the causes of crack generation is considered to be the difference in thermal expansion coefficient between the fluorescent layer 26 and the substrate on which the fluorescent layer 26 is provided.
  • the amount of the curable resin component is relatively reduced. Then, the difference between the coefficient of thermal expansion of the fluorescent layer 26 and the coefficient of thermal expansion of the substrate on which the fluorescent layer 26 is provided becomes small. As a result, it is thought that cracks are less likely to occur in the fluorescent layer 26.
  • the content of phosphor particles in the phosphor sheet is preferably 30 vol% or more, more preferably 35 vol% or more.
  • the content of phosphor particles in the phosphor sheet is preferably 60 vol% or less. Since the content of the phosphor particles is not too large, the phosphor particles are less likely to fall off from the formed phosphor layer.
  • the phosphor sheet can contain a curable resin component.
  • curable resin component refers not only to (1) a resin (polymer) component that has the property of being cured by the action of heat, light, etc., but also (2) a monomer or oligomer component before coating film formation. However, it also includes components that can be increased in molecular weight to form resins (polymers) by the action of heat, light, etc. after coating film formation.
  • polymers, monomers, or oligomers polymerization initiators, curing agents, and the like are also considered to be part of the "curable resin component.”
  • the curable resin component When the curable resin component includes resins, monomers or oligomers, these are usually organic. That is, the curable resin component usually contains an organic resin, an organic monomer, or an organic oligomer.
  • the curable resin component preferably includes a thermosetting resin component.
  • a highly durable lighting device can be manufactured.
  • the curable resin component may include a thermoplastic resin.
  • the curable resin component preferably contains one or more of silicone resins, epoxy resins, etc.
  • the silicone resin preferably contains a silicone resin having a phenyl group and/or a methyl group.
  • silicone resins are preferable in terms of compatibility with other components, solvent solubility, coatability, heat resistance, durability, and the like.
  • the ratio of phenyl groups to methyl groups in this resin is, for example, about 0.3:1 to 1.5:1.
  • the curable resin component can include reactive groups. This allows the curable resin component to cure itself.
  • the curable resin component preferably includes a silicone resin containing a silanol group (-Si-OH). As a result, a condensation reaction of silanol groups occurs during coating film formation, and a cured coating film is obtained.
  • the silanol content (OH mass %) of the silicone resin containing a silanol group (-Si-OH) is, for example, 0.1 mass % or more and 5 mass % or less.
  • the curable resin component may be one that is cured by a hydrosilylation reaction between a vinyl group-containing polymer and a Si-H group-containing silicone polymer (addition reaction type).
  • the epoxy resin may be any resin as long as it has an epoxy group in its molecule.
  • Bisphenol A type epoxy resin bisphenol F type epoxy resin, bisphenol S type epoxy resin, alicyclic epoxy resin, aliphatic chain epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, Examples include diglycidyl etherified products of biphenol, diglycidyl etherified products of naphthalene diol, diglycidyl etherified products of phenols, diglycidyl etherified products of alcohols, alkyl substituted products, halides, hydrogenated products, etc. I can do it.
  • a curing agent that can harden the epoxy resin.
  • the curing agent include polyfunctional phenols, amines, imidazole compounds, acid anhydrides, organic phosphorus compounds, and halides thereof.
  • polyfunctional phenols include monocyclic difunctional phenols such as hydroquinone, resorcinol, and catechol, polycyclic difunctional phenols such as bisphenol A, bisphenol F, naphthalene diols, biphenols, and their halides and alkyl group-substituted phenols.
  • there are novolacs and resols which are polycondensates of these phenols and aldehydes.
  • amines include aliphatic or aromatic primary amines, secondary amines, tertiary amines, quaternary ammonium salts, aliphatic cyclic amines, guanidines, urea derivatives, and the like.
  • Examples of these compounds include N,N-benzyldimethylamine, 2-(dimethylaminomethyl)phenol, 2,4,6-tris(dimethylaminomethyl)phenol, tetramethylguanidine, triethanolamine, N,N '-dimethylpiperazine, 1,4-diazabicyclo[2,2,2]octane, 1,8-diazabicyclo[5,4,0]-7-undecene, 1,5-diazabicyclo[4,4,0]-5 -Nonene, hexamethylenetetramine, pyridine, picoline, piperidine, pyrrolidine, dimethylcyclohexylamine, dimethylhexylamine, cyclohexylamine, diisobutylamine, di-n-butylamine, diphenylamine, N-methylaniline, tri-n-propylamine, tri- -n-octylamine, tri-n-butylamine, triphenylamine
  • imidazole compounds include imidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 1-benzyl-2-methylimidazole, 2- Heptadecylimidazole, 4,5-diphenylimidazole, 2-methylimidazoline, 2-phenylimidazoline, 2-undecylimidazoline, 2-heptadecylimidazoline, 2-isopropylimidazole, 2,4-dimethylimidazole, 2-phenyl-4 - Methylimidazole, 2-ethylimidazoline, 2-phenyl-4-methylimidazoline, benzimidazole, 1-cyanoethylimidazole and the like.
  • acid anhydrides examples include phthalic anhydride, hexahydrophthalic anhydride, pyromellitic dianhydride, benzophenonetetracarboxylic dianhydride, and the like.
  • organic phosphorus compound any phosphorus compound having an organic group can be used without particular limitation.
  • hexamethylphosphoric acid triamide, tri(dichloropropyl) phosphate, tri(chloropropyl) phosphate, triphenyl phosphite, trimethyl phosphate, phenylphosphonic acid, triphenylphosphine, tri-n-butylphosph These include fins and diphenylphosphine.
  • Epoxy resin curing agents can be used alone or in combination.
  • the amount of the curing agent for the epoxy resin to be used is not particularly limited as long as the curing reaction of the epoxy group can proceed appropriately. It is preferably used in an amount of 0.01 to 5.0 equivalents, particularly preferably 0.8 to 1.2 equivalents, per mole of epoxy group.
  • the phosphor sheet may contain a curing accelerator as necessary.
  • Typical curing accelerators include tertiary amines, imidazoles, quaternary ammonium salts, etc., but are not limited thereto.
  • the phosphor sheet may contain fibers from the viewpoint of handling properties, shape retention, and the like.
  • the phosphor sheet may be in a B-stage state by impregnating the above-mentioned curable resin component into a fiber base material.
  • the fiber base material is not particularly limited.
  • materials commonly used as base materials for prepregs such as glass cloth, aramid nonwoven fabric, and liquid crystal polymer nonwoven fabric, can be used.
  • glass cloth examples include "Style 1027MS” manufactured by Asahi Schwebel (warp density 75/25 mm, weft density 75/25 mm, cloth weight 20 g/m 2 , thickness 19 ⁇ m), “Style 1027MS” manufactured by Asahi Schwebel Style 1037MS” (warp density 70/25mm, weft density 73/25mm, fabric weight 24g/ m2 , thickness 28 ⁇ m), Arisawa Seisakusho's “1078” (warp density 54/25mm, weft density 54 /25mm, cloth weight 48g/ m2 , thickness 43 ⁇ m), "1037NS” manufactured by Arisawa Seisakusho (warp density 72/25mm, weft density 69/25mm, cloth weight 23g/ m2 , thickness 21 ⁇ m), "1027NS” manufactured by Arisawa Seisakusho Co., Ltd.
  • liquid crystal polymer nonwoven fabric examples include "Veklus” (basis weight 6 to 15 g/m 2 ) and "Vectran” produced by the melt-blowing aromatic polyester nonwoven fabric manufactured by Kuraray Co., Ltd.
  • the phosphor sheet may contain a fluidity regulator from the viewpoint of manufacturing suitability.
  • a fluidity modifier silica particles such as hydrophobic silica and hydrophilic silica, aluminum oxide, etc. can be used. In particular, fumed silica is preferably used.
  • Commercially available fluidity modifiers include, for example, AEROSIL 130, AEROSIL 200, AEROSIL 300, AEROSIL R-972, AEROSIL R-812, AEROSIL R-812S, Aluminum Oxide C (manufactured by Nippon Aerosil Co., Ltd., AEROSIL is a registered trademark). ), Carplex FPS -1 (manufactured by DSL, trade name).
  • the phosphor sheet preferably has through holes.
  • the position, size, shape, number, etc. of the through holes may be determined as appropriate depending on the design of the illumination device to be finally obtained.
  • the through hole can be provided, for example, by punching.
  • the through holes may be provided in other ways.
  • the phosphor sheet can be manufactured based on known knowledge regarding curable resin compositions.
  • the phosphor sheet can be manufactured by referring to the manufacturing method of "prepreg" used for manufacturing electrical and electronic parts.
  • the phosphor sheet is produced by (1) first dissolving or dispersing components other than the fiber base material in an organic solvent to produce a varnish, (2) impregnating the fiber base material with the varnish; 3) It can be manufactured using a process of heating at a temperature and for a time that does not completely cure the varnish (becomes in a B-stage state).
  • other methods for example, a hot melt method that does not use a solvent may be used.
  • the prepreg manufacturing method is described in various known documents, and can be used as a reference when manufacturing a phosphor sheet. Methods for manufacturing prepreg are described, for example, in JP-A No. 2020-139164, JP-A No. 2004-188652, and the like.
  • a phosphor sheet is used that is made of a thermosetting resin material that includes phosphor particles and a curable resin component and is in a B-stage state.
  • the phosphor sheet is not a "phosphor sheet composed of a thermosetting resin material that includes phosphor particles and a curable resin component and is in a B-stage state.”
  • a sheet can also be used.
  • such a phosphor sheet may be referred to as "other phosphor sheet”.
  • the phosphor sheet is a phosphor sheet obtained by completely curing the above-mentioned B-stage phosphor sheet (C-stage state).
  • Another example of other phosphor sheets includes a phosphor sheet in which phosphor particles are dispersed in any resin, such as a thermoplastic resin, and formed into a sheet.
  • the thermoplastic resin used may be appropriately selected depending on the desired performance.
  • thermoplastic resins include polyolefins such as PE (polyethylene) and PP (polypropylene), PVC (polyvinyl chloride), PS (polystyrene), ABS (acrylonitrile-butadiene-styrene copolymer), and AS ( Acrylonitrile/styrene copolymer), PMMA (polymethyl methacrylate)/PBT (polybutylene terephthalate), PET (polyethylene terephthalate), and other polyester resins.
  • PE polyethylene
  • PP polypropylene
  • PVC polyvinyl chloride
  • PS polystyrene
  • ABS acrylonitrile-butadiene-styrene copolymer
  • AS Acrylonitrile/styrene copolymer
  • PMMA polymethyl methacrylate
  • PET polyethylene terephthalate
  • the types and amounts of phosphor particles that can be included in other phosphor sheets can be the same as those in the B-stage phosphor sheet described above.
  • the thickness of the other phosphor sheets can be the same as that of the phosphor sheet in the B-stage state described above. It is preferable that the other phosphor sheets have through-holes, similar to the B-stage phosphor sheet described above.
  • the white layer 24 in FIG. 2 etc. is preferably a "white sheet" containing white particles (typically a white pigment such as titanium oxide or alumina) instead of the phosphor particles in the above-mentioned ⁇ phosphor sheet>. It can be provided as follows. Although the amount of white particles is not particularly limited, it can be, for example, the same as the amount of phosphor particles in a phosphor sheet.
  • the thickness of the white sheet is usually 20 to 150 ⁇ m, preferably 30 to 120 ⁇ m, and more preferably 35 to 100 ⁇ m. In particular, when the white sheet has through holes, the thickness of the white sheet is preferably 20 to 100 ⁇ m. Further, it is preferable to adjust the thickness of the white sheet and the thickness of the phosphor sheet so that the total thickness of the final white layer 24 and the phosphor layer 26 described below is 100 ⁇ m or less.
  • the white sheet is preferably composed of a thermosetting resin material that contains a curable resin component and is in a B-stage state.
  • the white sheet can be a white sheet obtained by completely curing a white sheet in a B-stage state (C-stage state), or a white sheet in an arbitrary resin (e.g. thermoplastic resin).
  • a white sheet formed by dispersing particles examples include a white sheet formed by dispersing particles.
  • the thermoplastic resin used may be appropriately selected depending on the desired performance. Specific examples of the thermoplastic resin include those listed in the section of ⁇ phosphor sheet>.
  • These white sheets can be bonded to a substrate using an adhesive to form the white layer 24. Adhesives that can be used can be appropriately selected in consideration of adhesive strength, durability, and the like.
  • a curable resin component (silicone resin) and a solvent were first mixed to obtain a uniform solution. Thereafter, phosphor particles and a fluidity modifier (Example 3 only) were added to the solution and uniformly mixed and dispersed to obtain silicone resin varnishes 1-1 to 1-4.
  • a commercially available fiber base material (glass cloth) was impregnated with the above silicone resin varnish and dried in a vertical drying oven. After cooling, a through hole for connecting the light emitting element and the copper wiring was formed by punching. In this way, silicone resin phosphor sheets 1-1 to 1-4 were produced. Incidentally, the drying conditions (temperature and time) were adjusted so that the silicone resin phosphor sheet was in a B-stage state. Further, based on the thickness of the fluorescent layer (50 ⁇ m) described later, a fiber base material (glass cloth) having an appropriate thickness was selected.
  • epoxy resin varnishes 2-1 to 2-4 having the following compositions were prepared.
  • ⁇ Bisphenol A type epoxy resin 640 parts by mass ⁇ Bisphenol A novolac resin 25 parts by mass ⁇ Ethyl methyl imidazole 0.2 parts by mass ⁇ Phosphor particles in the amount shown in the table below ⁇ Methyl ethyl ketone solvent
  • the viscosity of the resin varnish is approximately 0.1 Ns/m amount that becomes 2
  • a commercially available fiber base material (glass cloth) was impregnated with the above epoxy resin varnish and dried at 135° C. for 5 minutes in a vertical drying oven. After cooling, a through hole for connecting the light emitting element and the copper wiring was formed by punching. In this way, epoxy resin phosphor sheets 2-1 to 2-4 in a B-stage state were produced.
  • the fiber base material (glass cloth) was selected to have an appropriate thickness based on the thickness (50 ⁇ m) of the fluorescent layer described later.
  • ⁇ Manufacture of white sheet> Except that titanium oxide/alumina mixed particles were used instead of the phosphor particles so that the amount in the nonvolatile components was 50 vol%, and the thickness of the glass cloth was changed as appropriate, A silicone resin-based white sheet was manufactured in the same manner as in ⁇ Manufacture of Phosphor Sheet Used>. In addition, the above-mentioned ⁇ Epoxy An epoxy resin-based white sheet was manufactured in the same manner as in ⁇ Manufacture of Phosphor Sheet Using Resin''.
  • a lighting device was manufactured in which a plurality of CSPs were arranged on a phosphor layer at regular intervals.
  • the manufacturing procedure is briefly shown below.
  • a bonding sheet CS-3305A manufactured by Risho Kogyo Co., Ltd. which was laminated with copper foil on both sides, was prepared. This copper foil was etched to form a copper circuit on the first copper foil.
  • the silicone resin white sheet described above was placed on the cuprous foil and pressed at a pressure of 20 kgf/cm 2 and a temperature of 190° C. for 90 minutes.
  • the position of the through hole in each sheet was set to be the position where the CSP and the first copper foil were connected in (4).
  • a lighting device was manufactured in which a plurality of CSPs were arranged on a phosphor layer at regular intervals.
  • the manufacturing procedure is briefly shown below.
  • a bonding sheet CS-3305A manufactured by Risho Kogyo Co., Ltd. which was laminated with copper foil on both sides, was prepared. This copper foil was etched to form a copper circuit on the first copper foil.
  • the above white epoxy resin sheet was placed on the cuprous foil and pressed at a pressure of 20 kgf/cm 2 and a temperature of 190° C. for 90 minutes. This formed a white layer with a thickness of 35 ⁇ m.
  • the position of the through hole in each sheet was set to be the position where the CSP and the first copper foil were connected in (4).
  • Color temperature conversion> A current was applied to each lighting device produced above to cause the lighting device to emit light.
  • the color temperature of the light emitted from the lighting device was measured using a total luminous flux measurement system (device equipped with an integrating sphere) manufactured by Otsuka Electronics Co., Ltd.
  • the measured color temperature was 2000 to 2100K and the color temperature was converted by at least 100K from the color temperature of the CSP itself (2200 to 2300K), the color temperature conversion property was evaluated as "good”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Led Device Packages (AREA)

Abstract

(1)第1面に発光素子を電気的に接続可能な接続部を含む配線が設けられた絶縁基板の、第1面の側に、白色シートを接着することにより、絶縁基板の第1面の側に白色層が設けられた第1積層体を得る白色層形成工程と、(2)第1積層体における白色層の側に、蛍光体粒子を含む蛍光体シートを接着して、第1積層体の白色層の側に蛍光層が設けられた第2積層体を得る蛍光層形成工程と、(3)第2積層体における蛍光層の側から、接続部に発光素子を電気的に接続する接続工程と、を含む、照明装置の製造方法。

Description

照明装置の製造方法および照明装置の製造用セット
 本発明は、照明装置の製造方法および照明装置の製造用セットに関する。
 LED(Light Emitting Device)を用いた照明装置について、様々な開発が進められている。LEDそのものの開発だけでなく、LEDを備える実装基板に関する開発も知られている。
 例えば、特許文献1の実施例2には、(i)30vol%の蛍光体を含むガラスバインダー塗料を、ガラス基板の表面に塗布して、厚さ200μmの蛍光層を形成したこと、(ii)そのガラス基板上に、複数のCSPを接合してLED照明用実装基板を得たこと、(iii)その実装基板に通電したところ、複数のCSPから発光しているにもかかわらず、グレアや多重影の問題が軽減されたこと、などが記載されている。
(CSPとは、Chip Scale PackageまたはChip Size Packageの略で、LEDチップを蛍光体樹脂で包み、LEDチップと蛍光体樹脂だけの構成でパッケージレスとしたものである。)
国際公開第2019/093339号
 特許文献1の実施例2においては、蛍光体を含む「ガラスバインダー塗料」を用いて、ガラス基板上に厚さ200μmの蛍光層を形成している。しかし、ガラスバインダー塗料を十二分に硬化させるには、通常、高温での焼結工程を要する。よって、特許文献1の実施例2については、蛍光層を設ける簡便性などの点で改善の余地がある。また、ガラスバインダー塗料を塗布する筐体/基板にも、耐熱性や膨張係数最適化等の制約がかかる。さらに、「塗料」を用いて蛍光層を形成することには、工程の複雑化や、塗料の「垂れ」の問題を解決する必要があるなどの課題もある。
 本発明はこのような事情に鑑みてなされたものである。本発明の目的の1つは、塗料を用いないで照明装置を製造することが可能な方法を提供することである。
 本発明者らは、鋭意検討の結果、以下に提供される発明を完成させた。
1.
 第1面に発光素子を電気的に接続可能な接続部を含む配線が設けられた絶縁基板の、前記第1面の側に、白色シートを接着することにより、前記絶縁基板の前記第1面の側に白色層が設けられた第1積層体を得る白色層形成工程と、
 前記第1積層体における前記白色層の側に、蛍光体粒子を含む蛍光体シートを接着して、前記第1積層体の前記白色層の側に蛍光層が設けられた第2積層体を得る蛍光層形成工程と、
 前記第2積層体における前記蛍光層の側から、前記接続部に発光素子を電気的に接続する接続工程と、
を含む、照明装置の製造方法。
2.
 1.に記載の照明装置の製造方法であって、
 前記白色シートは、白色顔料と、硬化性樹脂成分と、を含み、B-ステージ状態にある熱硬化性樹脂材料で構成され、
 前記白色層形成工程は、熱プレスにより前記白色シートを接着する工程を含む、照明装置の製造方法。
3.
 1.に記載の照明装置の製造方法であって、
 前記白色層形成工程は、接着剤を用いて前記白色シートを接着する工程を含む、照明装置の製造方法。
4.
 1.~3.のいずれか1つに記載の照明装置の製造方法であって、
 前記蛍光体シートは、蛍光体粒子と、硬化性樹脂成分と、を含み、B-ステージ状態にある熱硬化性樹脂材料で構成され、
 前記蛍光層形成工程は、熱プレスにより前記蛍光体シートを接着する工程を含む、照明装置の製造方法。
5.
 1.~3.のいずれか1つに記載の照明装置の製造方法であって、
 前記蛍光層形成工程は、接着剤を用いて前記蛍光体シートを接着する工程を含む、照明装置の製造方法。
6.
 1.~5.のいずれか1つに記載の照明装置の製造方法であって、
 前記白色シートには第1の貫通孔が設けられており、
 前記白色層形成工程において、前記白色シートは、前記絶縁基板を前記第1面側から上面視したときに、前記第1の貫通孔が前記接続部の位置となるように接着される、照明装置の製造方法。
7.
 1.~6.のいずれか1つに記載の照明装置の製造方法であって、
 前記蛍光体シートには第2の貫通孔が設けられており、
 前記蛍光層形成工程において、前記蛍光体シートは、前記絶縁基板を前記第1面側から上面視したときに、前記第2の貫通孔が前記接続部の位置となるように接着される、照明装置の製造方法。
8.
 1.~7.のいずれか1つに記載の照明装置の製造方法であって、
 前記白色層の厚みは20~150μmである、照明装置の製造方法。
9.
 1.~8.のいずれか1つに記載の照明装置の製造方法であって、
 前記蛍光層の厚みは20~150μmである、照明装置の製造方法。
10.
 1.~9.のいずれか1つに記載の照明装置の製造方法であって、
 前記蛍光体粒子は、青色光を、前記青色光の波長よりも長波長の光に変換可能な蛍光体粒子を含む、照明装置の製造方法。
11.
 1.~10.のいずれか1つに記載の照明装置の製造方法であって、
 前記蛍光体粒子が、CASN系蛍光体、SCASN系蛍光体、LaSi11系蛍光体、SrSi系蛍光体、BaSi系蛍光体、α型サイアロン系蛍光体、β型サイアロン系蛍光体、LuAG系蛍光体およびYAG系蛍光体からなる群より選ばれる1または2以上を含む、照明装置の製造方法。
12.
 1.~11.のいずれか1つに記載の照明装置の製造方法であって、
 前記接続工程における発光素子は、青色光を発することが可能な発光素子である、照明装置の製造方法。
13.
 蛍光体粒子を含む蛍光体シートと、白色シートと、を備える、照明装置の製造用セット。
 本発明によれば、塗料を用いないで照明装置を製造することができる。
照明装置の製造手順について説明するための図(断面図)である。 照明装置の製造手順について説明するための図(断面図)である。 照明装置の製造手順について説明するための図(断面図)である。 照明装置の製造手順について説明するための図(断面図)である。 照明装置の製造手順および照明装置について説明するための図(断面図)である。 リフレクタを備えるLEDチップと、リフレクタを備えないLEDチップを説明するための図である。
 以下、本発明の実施形態について、図面を参照しつつ、詳細に説明する。
 すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
 煩雑さを避けるため、(i)同一図面内に同一の構成要素が複数ある場合には、その1つのみに符号を付し、全てには符号を付さない場合や、(ii)特に図2以降において、図1と同様の構成要素に改めては符号を付さない場合がある。
 すべての図面はあくまで説明用のものである。図面中の各部材の形状や寸法比などは、必ずしも現実の物品と対応しない。
 本明細書中、数値範囲の説明における「X~Y」との表記は、特に断らない限り、X以上Y以下のことを表す。例えば、「1~5質量%」とは「1質量%以上5質量%以下」を意味する。
 本明細書における「(メタ)アクリル」との表記は、アクリルとメタクリルの両方を包含する概念を表す。「(メタ)アクリレート」等の類似の表記についても同様である。
 本明細書における「有機基」の語は、特に断りが無い限り、有機化合物から1つ以上の水素原子を除いた原子団のことを意味する。例えば、「1価の有機基」とは、任意の有機化合物から1つの水素原子を除いた原子団のことを表す。
<照明装置の製造方法>
 本実施形態の照明装置の製造方法は、
 第1面に発光素子を電気的に接続可能な接続部を含む配線が設けられた絶縁基板の、その第1面の側に、白色シートを接着することにより、絶縁基板の第1面の側に白色層が設けられた第1積層体を得る白色層形成工程と、
 第1積層体における白色層の側に、蛍光体粒子を含む蛍光体シートを接着して、第1積層体の白色層の側に蛍光層が設けられた第2積層体を得る蛍光層形成工程と、
 第2積層体における蛍光層の側から、接続部に発光素子を電気的に接続する接続工程と、
を含む。
 本実施形態においては、蛍光層を形成するために、特許文献1に記載されているような「塗料」を「塗布する」のではなく、「蛍光体粒子を含む蛍光体シート」を「接着」することにより、蛍光層を設ける。
 このような工夫により、塗料を用いる場合に比べて、蛍光層を簡便に設けることができる。また、塗料を用いる場合に比べて、蛍光層を形成する筐体/基板の、耐熱性や膨張係数最適化等の制約が少ない。さらに、塗料を用いた蛍光層の形成と比べて、工程の単純化や、塗料の「垂れ」が原理的に生じないメリットも考えられる。
 以下、本実施形態の照明装置の製造方法について、図面を参照しつつより具体的に説明する。
・図1
 まず、図1(断面図)に示したような、少なくとも絶縁基板20を備える基板を準備する。
 好ましくは、絶縁基板20の第1面には、発光素子を電気的に接続可能な接続部21を含む配線が設けられている。図1においては、配線として、第一銅箔22Aが設けられている。第一銅箔22Aの一部はエッチングにより除去されており、銅回路(配線)として機能する。
 絶縁基板20の他方の面(第2面)には、第二銅箔22Bが設けられていてもよい。
 絶縁基板20の材質としては、PWB(プリント基板)への使用が知られているものであれば特に制限されない。例えば、ポリイミド樹脂、シリコーン樹脂、(メタ)アクリル樹脂、ユリア樹脂、エポキシ樹脂、フッ素樹脂、ガラス、金属(アルミニウム、銅、鉄、ステンレス鋼など)といったものを使用できる。好ましくは耐熱性の観点から、ポリイミド樹脂やシリコーン樹脂、ガラスや金属(ベースメタルとしてアルミニウムや銅を使い、絶縁層を設けたいわゆる「メタル基板」としてのものなど)を使用できる。「ボンディングシート」等の名称で市販されている材料を用いることも好ましい。
 絶縁基板20の厚さは、照明器具に用いることができる範囲ならば特に制限されない。例えば50μm以上1000μm以下、具体的には50μm以上500μm以下である。
 第一銅箔22Aは、後述のように、表面実装型LED素子28と、はんだ30により電気的に接続される。第一銅箔22Aおよびはんだ30により、表面実装型LED素子28に電気が供給されて、表面実装型LED素子28は発光する。
 絶縁基板20の一方の面に第一銅箔22Aがあり、他方の面に第二銅箔22Bがあることで、絶縁基板20の両面で力のバランスが取れ、例えば反りの発生が抑制されうる。
・図2
 図1に示した基板の、第一銅箔22Aの面側、つまり第1面の側に、白色シートを接着する。これにより、絶縁基板20の第1面の側に白色層24が設けられた第1積層体を得る(白色層形成工程)。
 好ましくは、白色シートは、白色顔料と、硬化性樹脂成分と、を含み、B-ステージ状態にある熱硬化性樹脂材料で構成される。また、白色層形成工程においては、好ましくは、このB-ステージ状態にある白色シートを、例えば熱プレスや真空ラミネートの手法により第1面の側に接着させる。接着条件は特に限定されず、例えば後述する蛍光体シートの貼り付けの際の条件と同様の条件を採用することができる。
 別の例として、白色層24は、接着剤を用いて、白色シート(B-ステージ状態のものでなくてもよい)を接着することにより設けてもよい。
 白色シートのより具体的な態様については、追って説明する。
 白色シートには、好ましくは第1の貫通孔が設けられている。そして、白色層形成工程において、白色シートは、絶縁基板20を第1面側から上面視したときに、第1の貫通孔が接続部21の位置となるように接着されることが好ましい。このようにすることで、白色層24には開口23が設けられる。この開口23が存在することにより、後述する接続工程において、接続部21に発光素子を電気的に接続することが容易となる。つまり、電気的な接続に際して、白色層24の一部を除去して接続部21を露出させることが不要となる。
 ちなみに、工業的な量産性を考えると、白色シートを絶縁基板20の第1面側に貼り付ける際には、白色シートにおける第1の貫通孔の位置と、接続部21の位置とが、ズレずに容易に一致するように、何らかの工夫をすることが好ましい。ここでの「工夫」としては、例えば以下を挙げることができる。
・位置合わせ用の「ピン」を、絶縁基板20の第1面側に設けておく。
・基板を上面視したときの外形と、白色シートを上面視したときの外形と、を同一形状としておく。こうすることで、基板の端部と白色シートの端部とを合わせれば、ズレは発生しない。
・熱プレスにおいて、平板状の金属板で基板と白色シートとをプレスをするのではなく、基板および/または白色シートの形状に合った「凹部」が設けられた装置を用いて熱プレスを行い、基板および/または白色シートのズレを防ぐ。
 あるいは、熱プレスにおいて、平板状の金属板で基板と白色シートとをプレスをするのではなく、プレス装置の白色シート側の金属板として、基板の接続部21の位置に対応する位置に、適当な高さの凸部を設けておくこと、そして、白色シートとしては貫通孔が設けられていないものを用いることも考えられる。
 熱プレス時には白色シートは溶融し流動する。よって、白色シートに第1の貫通孔が設けられていなくても、金属板に凸部が存在することで、その凸部が溶融した白色シートを「押し退けて」、結果として図2のような第1積層体を得ることができると考えられる。
 ただし、押圧条件によって凸部が溶融した白色シートを完全には押し退けることができず、白色シートの一部が薄膜として残ることがあり得る。この場合はその薄膜を除去すればよい。
 白色層24の厚みは、通常20~150μm、好ましくは30~120μm、より、好ましくは35~100μmである。特に、白色シートが貫通孔を有する場合、白色層24の厚みは、20~100μmとすることが好ましく、白色層24の厚みと後述する蛍光層26との合計厚みを100μm以下とすることがより好ましい。
・図3
 白色層24が設けられた第1積層体における白色層24の側に、蛍光体粒子を含む蛍光体シートを接着する。これにより、第1積層体の白色層24の側に蛍光層26が設けられた第2積層体を得る(蛍光層形成工程)。
 蛍光体シートは、好ましくは、蛍光体粒子と、硬化性樹脂成分と、を含み、B-ステージ状態にある熱硬化性樹脂材料で構成される。また、蛍光層形成工程においては、好ましくは、このB-ステージ状態にある蛍光体シートを、熱プレス、真空ラミネート等の手法により接着させる。
 別の例として、蛍光層26は、接着剤を用いて、蛍光体シート(B-ステージ状態でなくてもよい)を接着することにより設けてもよい。
 蛍光体シートのより具体的な態様については、追って説明する。
 蛍光体シートには、好ましくは第2の貫通孔が設けられている。そして、蛍光層形成工程において、蛍光体シートは、絶縁基板20を第1面側から上面視したときに、第2の貫通孔が接続部21の位置となるように接着されることが好ましい。このようにすることで、蛍光層26には開口23が設けられる。この開口23が存在することにより、後述する接続工程において、接続部21に発光素子を電気的に接続することが容易となる。つまり、電気的な接続に際して、蛍光層26の一部を除去して接続部21を露出させることが不要となる。
 ちなみに、工業的な量産性を考えると、蛍光体シートの貼り付けの際には、蛍光体シートにおける第2の貫通孔の位置と、接続部21の位置とが、ズレずに容易に一致するように、何らかの工夫をすることが好ましい。ここでの「工夫」について具体的には、図2の説明において述べた、第1の貫通孔の位置と、接続部21の位置とが、ズレずに容易に一致するための種々の工夫を挙げることができる。
 B-ステージ状態にある熱硬化性樹脂材料で構成された蛍光体シートを用いる場合、真空ラミネート法などの任意の方法により、白色層24の露出面上に蛍光層を設けることができる。真空ラミネート法の条件は特に限定されないが、加熱圧着温度は、好ましくは60~160℃、より好ましくは80~140℃である。加熱圧着圧力は、好ましくは0.098~1.77MPa、より好ましくは0.29~1.47MPaである。加熱圧着時間は、好ましくは20~400秒、より好ましくは30~300秒である。積層は、好ましくは圧力26.7hPa以下の減圧条件下で実施する。
 真空ラミネートの後に、蛍光体シートに押圧力を加えることにより、蛍光体シートの平滑化処理を行ってもよい。
 白色層24の露出面に積層され、場合によっては平滑化処理された蛍光体シートを、加熱する。これにより蛍光体シート中の未硬化成分が硬化し、蛍光層26を設けることができる。ここでの加熱条件は特に限定されないが、例えば硬化温度は120~240℃、好ましくは150~220℃、より好ましくは170℃~200℃であり、硬化時間は5~120分、好ましくは10~100分、より好ましくは15~90分とすることができる。
 以上のような蛍光層26の形成方法はあくまで一例である。上記とは異なる方法、例えば公知のプリプレグの積層・硬化方法などを参考にして蛍光層26を設けてもよい。
・図4および図5
 蛍光層26の開口部(貫通孔)の部分にはんだ30を置く。その後、そのはんだ30の上に表面実装型LED素子28を置く。そして、例えばリフロー法によりはんだを融解させて、表面実装型LED素子28と第一銅箔22Aとをはんだ付けし、電気的に接続する。例えばこのようにして、第2積層体における蛍光層26の側から、接続部21に発光素子を電気的に接続することができる(接続工程)。
 ここで、はんだ付けの具体的方法や条件は特に限定されない。
 ちなみに、はんだ30を、あらかじめ第一銅箔22Aに付けておいてもよい。
 以上のようにして、照明装置を製造することができる。
 ちなみに、図5に示すように、照明装置には、複数の発光素子(表面実装型LED素子28)が設置されていてもよい。
・表面実装型LED素子28について
 本実施形態においては、発光素子(表面実装型LED素子28)は、リフレクタを備えないことが好ましい。具体的に説明すると、公知の表面実装型LED素子(発光素子)の中には、図6Aのように、リフレクタが備わっていることにより、光が横方向や下方向に漏れ出ないものある。しかし、本実施形態においては、発光素子(表面実装型LED素子28)は、図6Bのようにリフレクタを備えないことが好ましい。
 リフレクタを備えない発光素子を用いることで、LEDチップからの光が横方向や下方向に漏れ出る。そして、その漏れ出た光が蛍光層26のαで示した部分に当たり、αの部分が発光する。これにより、グレアや多重影の問題が一層軽減される。
 図6Aの発光素子では、基板102とリフレクタ(筐体)104により形成されるパッケージ状部108に、半導体発光素子100が配置され、パッケージ状部108には封止部材110(光透過性の樹脂)が充填されている。基板102は配線112を備えることができる。
 図6Bにおいて、図2Aと同一の要素には同一の符号が付されている。図2Bの発光素子では、筐体(リフレクタ)は用いられない。図示されるように半導体発光素子100をマウントした後、所望の型を用いた型成形により封止部材110を形成することができる。または、予め所望の形状に成形した封止部材110を用意しておき、これを、半導体発光素子100を覆うように基板102に接着させてもよい。
・補足
 白色層形成工程や蛍光層形成工程では、膜厚の調整を目的として、スペーサー(シム)を用いてもよい。すなわち、スペーサーを用いたうえで加熱、押圧などを施すことで白色層24や蛍光層26を設けてもよい。
 また、図3や図4において、樹脂シートの素材やプロセス条件によっては、B-ステージ状態のシートを加熱したときに軟化した樹脂成分が、第一銅箔22Aにおける表面実装型LED素子28とはんだ付けされるべき部分に「流れ出してしまう」ことが考えられる。こうなった場合には第一銅箔22Aと表面実装型LED素子28とを電気的に接続できなくなる可能性がある。
 これを防ぐ方法の1つとして、樹脂シートの素材やプロセス条件の変更が考えられる。
 別の方法として、第一銅箔22Aにおける表面実装型LED素子28がはんだ付けされるべき部分を、適当な部材、例えばスプリングピンなどを一時的に用いることで「保護しておく」ことが考えられる。
 さらに別の方法として、上述のように、はんだ30を、あらかじめ第一銅箔22Aに付けておけば、原理的に、軟化した樹脂成分が、第一銅箔22Aにおける表面実装型LED素子28とはんだ付けされるべき部分に「流れ出してしまう」ことは防止できる。
 白色層形成工程と、蛍光層形成工程とは、別々の工程として行われてもよいし、同時に行われてもよい。「同時に行われる」態様としては、例えば、基板上に、白色シートと蛍光体シートをこの順に重ねて、一度に熱プレスすることが挙げられる。
 同時に行うことのメリットとしては、例えば位置決めのしやすさを挙げることができる。2つの層を設けるに際して、位置決めを実質1回で済ませることができるためである。
<照明装置>
 上記のような手順により、図5に示されるような、(i)絶縁基板20と、(ii)絶縁基板20の片面側に設けられた、蛍光層26と、(iii)絶縁基板20と蛍光層26との間に設けられた白色層24と、(iv)蛍光層26における絶縁基板20と反対側の面に設置された発光素子と、を備える照明装置を製造することができる。
<蛍光体シート>
 前述のように、蛍光層形成工程で用いることができる蛍光体シートは、好ましくは、蛍光体粒子と、硬化性樹脂成分と、を含み、B-ステージ状態にある熱硬化性樹脂材料で構成される。蛍光体シートの厚みは、通常20~150μm、好ましくは30~120μm、より、好ましくは35~100μmである。
 蛍光体シートがB-ステージ状態(別の言い方として半硬化状態)であることにより、室温付近の温度での流動性が実質的に消失しており、「シート」としての形態を保つことができる。
 蛍光体シートがB-ステージ状態であることにより、シートとして基板上に置いた後、加熱する(好ましくは圧力をかけながら加熱する)ことで、基板と十分に強く接着して、蛍光層26を設けることができる。この際、液状の塗料の塗布が不要であるため、従来に比べて簡便なプロセスによりに蛍光層を形成可能である。ちなみに、本明細書において、B-ステージ状態には、C-ステージ状態の前、すなわち完全硬化する前までの状態を含む。
 蛍光体シートの厚みが20μm以上であることにより、蛍光体シートが十分な量の蛍光体粒子を含むこととなり、蛍光体シートの光変換効率を十分大きくすることができる。また、蛍光体シートの厚みが150μm以下であることにより、熱硬化に必要な時間を短縮することができる。蛍光体シートが厚すぎないことは、後掲の照明装置の製造における、発光素子と銅配線との電気的な接続(はんだ付けなど)をしやすくする点でも好ましい。
 以下、蛍光体シートについてより具体的に説明する。
(蛍光体粒子)
 蛍光体シートが含む蛍光体粒子は、発光素子から発せられる光により蛍光を発するものであればよい。具体的には、蛍光体粒子は、青色光を、その青色光の波長よりも長波長の光に変換可能なものであればよい、所望の色目・色温度などに応じて、特定の蛍光体粒子を1種のみ用いてもよいし、2以上の蛍光体粒子を併用してもよい。
 蛍光体粒子としては、CASN系蛍光体、SCASN系蛍光体、LaSi11系蛍光体、SrSi系蛍光体、BaSi系蛍光体、α型サイアロン系蛍光体、β型サイアロン系蛍光体、LuAG系蛍光体およびYAG系蛍光体からなる群より選ばれる1または2以上を挙げることができる。これら蛍光体は、通常、Eu、Ce等の賦活元素を含む。
 CASN系蛍光体(窒化物蛍光体の一種)は、好ましくはEuを含む。CASN系蛍光体は、例えば、式CaAlSiN:Eu2+で表され、Eu2+を付活剤とし、アルカリ土類ケイ窒化物からなる結晶を母体とする赤色蛍光体をいう。
 本明細書におけるEuを含有するCASN系蛍光体の定義では、Euを含有するSCASN系蛍光体は除かれる。
 SCASN系蛍光体(窒化物蛍光体の一種)は、好ましくはEuを含む。SCASN系蛍光体は、例えば、式(Sr,Ca)AlSiN:Eu2+で表され、Eu2+を賦活剤とし、アルカリ土類ケイ窒化物からなる結晶を母体とする赤色蛍光体をいう。
 LaSi11系蛍光体は、具体的には、LaSi11:Ce蛍光体などである。これは、通常、青色LEDからの青色光を黄色光に波長変換する。
 SrSi系蛍光体は、具体的には、SrSi:Eu2+蛍光体や、SrSi:Ce3+蛍光体などである。これらは、通常、青色LEDからの青色光を黄色~赤色の光に波長変換する。
  BaSi系蛍光体は、具体的には、BaSi:Euである。これは、通常、青色LEDからの青色光を橙色~赤色の光に波長変換する。
 α型サイアロン系蛍光体は、好ましくはEuを含む。Euを含むα型サイアロンは、例えば、一般式:MEuSi12-(m+n)Al(m+n)16-nで表される。一般式中、MはLi、Mg、Ca、Y及びランタニド元素(ただし、LaとCeを除く)からなる群から選ばれる、少なくともCaを含む1種以上の元素であり、Mの価数をaとしたとき、ax+2y=mであり、xが0<x≦1.5であり、0.3≦m<4.5、0<n<2.25である。
 β型サイアロン系蛍光体は、好ましくはEuを含む。Euを含むβ型サイアロンは、例えば、一般式Si6-zAl8-z:Eu2+(0<Z≦4.2)で示され、Eu2+が固溶したβ型サイアロンからなる蛍光体である。一般式において、Z値とユウロピウムの含有量は特に限定されない。Z値は、例えば0を超えて4.2以下であり、β型サイアロンの発光強度をより向上させる観点から、好ましくは0.005以上1.0以下である。また、ユウロピウムの含有量は0.1質量%以上2.0質量%以下であることが好ましい。
 LuAG系蛍光体は、通常、ルテチウムアルミニウムガーネット結晶を意味する。照明装置への適用を考慮すると、LuAGは、LuAG:Ce蛍光体であることが好ましい。より具体的には、LuAGは、LuAl12:Ceの組成式で表すことができるが、LuAGの組成は必ずしも化学量論に従っていなくてもよい。
 YAG系蛍光体は、通常、イットリウムアルミニウムガーネット結晶を意味する。照明装置への適用を考慮すると、YAG系蛍光体はCeで賦活されているものが好ましい。より具体的には、YAG系蛍光体は、YAl12:Ceの組成式で表すことができるが、YAG系蛍光体の組成は必ずしも化学量論に従っていなくてもよい。
 蛍光体粒子として市販品を使用してもよい。市販の蛍光体粒子としては、例えば、デンカ株式会社のアロンブライト(登録商標)などを挙げることができる。その他、三菱ケミカル社などからも市販されている。
 蛍光体粒子のメジアン径D50は、好ましくは1μm以上20μm以下、より好ましくは5μm以上15μm以下である。メジアン径D50が適切に調整されることにより、例え薄くて均一な蛍光体シートを形成しやすくなる。
 蛍光体粒子の粒径分布曲線においては、2以上の極大が認められることが好ましい。具体的には、粒径1μm以上6μm以下の領域と、粒径10μm以上25μm以下の領域の両方に極大が認められることが好ましい。2以上の極大が認められることは、蛍光体粒子が、大粒子と小粒子の両方を含むことを意味する。小粒子が大粒子間の「すき間」に入り込むため、大粒子のみを使う場合に比べて蛍光体粒子の含有率を高めやすい。また、蛍光体粒子の含有率を高めたとしても、諸物性を維持しやすい。さらに、塗膜としたときに、発光素子から発せられた光がより透過しにくくなる。
 蛍光体粒子のメジアン径D50や粒径分布曲線は、蛍光体粒子の調製方法の工夫、蛍光体粒子を適切に粉砕すること、粒径が異なる2以上の蛍光体粒子を適切に混合することなどにより調整することができる。
 蛍光体粒子の粒径分布曲線は、原料の蛍光体粒子を、超音波ホモジナイザで分散媒に分散させたうえで、レーザー回折散乱式粒度分布測定装置により測定することができる。そして、得られた粒径分布曲線から、メジアン径D50を求めることができる。分散処理や測定装置の詳細については後述の実施例を参照されたい。
 念のため述べておくと、本明細書において、メジアン径D50や粒径分布曲線は、体積基準で測定される。
 蛍光体シートは、蛍光体粒子を1種のみ含んでもよいし、2種以上含んでもよい。
 蛍光体シート中の蛍光体粒子の含有率は、25vol%以上60vol%以下である。この含有率は、好ましくは30vol%以上60vol%以下、より好ましくは35vol%以上60vol%以下、さらに好ましくは40vol%以上50vol%以下である。
 蛍光体粒子の含有率を25vol%以上とすることにより、発光素子から発せられた光を十分に蛍光に変換しやすくなる。
 また、蛍光体粒子の含有率を25vol%以上とすることにより、蛍光層26にクラックが発生しにくくなるというメリットもある。一般的な知見に基づけば、クラック発生の原因の1つは、蛍光層26と、蛍光層26を設ける基板との熱膨張率の差と考えられる。蛍光体粒子の含有率を25vol%以上とすることにより、相対的に硬化性樹脂成分が減る。そして、蛍光層26の熱膨張率と、蛍光層26を設ける基板の熱膨張率の差が小さくなる。その結果、蛍光層26にクラックが発生しにくくなると考えられる。
 蛍光体シート中の蛍光体粒子の含有率は、好ましくは30vol%以上、より好ましくは35vol%以上である。こうすることで、例えば蛍光層26が薄い場合であっても発光素子から発せられた光を十分に蛍光に変換することができたり、発光素子から発せられた光の色温度を大きく変換できたりする。
 一方、蛍光体シート中の蛍光体粒子の含有率は60vol%以下であることが好ましい。蛍光体粒子の含有率が大きすぎないことにより、形成された蛍光体層から蛍光体粒子が脱落しにくくなる。
(硬化性樹脂成分)
 蛍光体シートは、硬化性樹脂成分を含むことができる。
 本明細書において、「硬化性樹脂成分」は、(1)熱、光などの作用により硬化する性質を有する樹脂(ポリマー)成分だけでなく、(2)塗膜形成前においてはモノマーまたはオリゴマーであるが、塗膜形成後に、熱、光などの作用により高分子量化して樹脂(ポリマー)を形成可能な成分も含む。
 上記に関連して、本明細書においては、ポリマー、モノマーまたはオリゴマーに加え、重合開始剤や硬化剤なども「硬化性樹脂成分」の一部であるとする。
 硬化性樹脂成分が樹脂、モノマーまたはオリゴマーを含む場合、これらは通常は有機物である。つまり、硬化性樹脂成分は、通常、有機樹脂、有機モノマーまたは有機オリゴマーを含む。
 硬化性樹脂成分は、好ましくは熱硬化性樹脂成分を含む。これにより、耐久性が高い照明装置を製造することができる。もちろん、目的や用途によっては、硬化性樹脂成分は熱可塑性樹脂を含んでもよい。
 硬化性樹脂成分は、シリコーン樹脂、エポキシ樹脂等のうち1または2以上を含むことが好ましい。
 シリコーン樹脂は、フェニル基および/またはメチル基を有するシリコーン樹脂を含むことが好ましい。このようなシリコーン樹脂は、他の成分との相溶性、溶剤溶解性、塗布性、耐熱性や耐久性などの点で好ましい。この樹脂中のフェニル基:メチル基の比率は、例えば0.3:1から1.5:1程度である。
 硬化性樹脂成分は、反応性基を含むことができる。これにより、硬化性樹脂成分はそれ自身で硬化することができる。
 一例として、硬化性樹脂成分は、シラノール基(-Si-OH)を含むシリコーン樹脂を含むことが好ましい。これにより、塗膜形成時にシラノール基の縮合反応が起こり、硬化した塗膜が得られる。シラノール基(-Si-OH)を含むシリコーン樹脂の、シラノール含有量(OH質量%)は、例えば0.1質量%以上5質量%以下である。
 別の例として、硬化性樹脂成分は、ビニル基含有ポリマーと、Si-H基含有シリコーンポリマのヒドロシリル化反応により硬化するもの(付加反応タイプ)であってもよい。
 エポキシ樹脂は、分子内にエポキシ基を有するものであればどのようなものでもよい。ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビフェノールのジグリシジリエーテル化物、ナフタレンジオールのジグリシジリエーテル化物、フェノール類のジグリシジリエーテル化物、アルコール類のジグリシジルエーテル化物、これらのアルキル置換体、ハロゲン化物、水素添加物などを挙げることができる。
 エポキシ樹脂を用いる場合、エポキシ樹脂を硬化させることができる硬化剤を用いることが好ましい。硬化剤としては、例えば、多官能フェノール類、アミン類、イミダゾール化合物、酸無水物、有機リン化合物およびこれらのハロゲン化物などがある。
 多官能フェノール類の例として、単環二官能フェノールであるヒドロキノン、レゾルシノール、カテコール,多環二官能フェノールであるビスフェノールA、ビスフェノールF、ナフタレンジオール類、ビフェノール類、及びこれらのハロゲン化物、アルキル基置換体などがある。更に、これらのフェノール類とアルデヒド類との重縮合物であるノボラック、レゾールがある。
 アミン類の例としては、脂肪族あるいは芳香族の第一級アミン、第二級アミン、第三級アミン、第四級アンモニウム塩及び脂肪族環状アミン類、グアニジン類、尿素誘導体等がある。これらの化合物の一例としては、N、N-ベンジルジメチルアミン、2-(ジメチルアミノメチル)フェノール、2、4、6-トリス(ジメチルアミノメチル)フェノール、テトラメチルグアニジン、トリエタノールアミン、N、N'-ジメチルピペラジン、1、4-ジアザビシクロ[2、2、2]オクタン、1、8-ジアザビシクロ[5、4、0]-7-ウンデセン、1、5-ジアザビシクロ[4、4、0]-5-ノネン、ヘキサメチレンテトラミン、ピリジン、ピコリン、ピペリジン、ピロリジン、ジメチルシクロヘキシルアミン、ジメチルヘキシルアミン、シクロヘキシルアミン、ジイソブチルアミン、ジ-n-ブチルアミン、ジフェニルアミン、N-メチルアニリン、トリ-n-プロピルアミン、トリ-n-オクチルアミン、トリ-n-ブチルアミン、トリフェニルアミン、テトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、テトラメチルアンモニウムアイオダイド、トリエチレンテトラミン、ジアミノジフェニルメタン、ジアミノジフェニルエーテル、ジシアンジアミド、トリルビグアニド、グアニル尿素、ジメチル尿素等がある。
 イミダゾール化合物の例としては、イミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール、2-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、1-ベンジル-2-メチルイミダゾール、2-ヘプタデシルイミダゾール、4、5-ジフェニルイミダゾール、2-メチルイミダゾリン、2-フェニルイミダゾリン、2-ウンデシルイミダゾリン、2-ヘプタデシルイミダゾリン、2-イソプロピルイミダゾール、2、4-ジメチルイミダゾール、2-フェニル-4-メチルイミダゾール、2-エチルイミダゾリン、2-フェニル-4-メチルイミダゾリン、ベンズイミダゾール、1-シアノエチルイミダゾールなどがある。
 酸無水物の例としては、無水フタル酸、ヘキサヒドロ無水フタル酸、ピロメリット酸二無水物、ベンゾフェノンテトラカルボン酸二無水物等がある。
 有機リン化合物としては、有機基を有するリン化合物であれば特に限定せれずに使用できる。例えば、ヘキサメチルリン酸トリアミド、リン酸トリ(ジクロロプロピル)、リン酸トリ(クロロプロピル)、亜リン酸トリフェニル、リン酸トリメチル、フェニルフォスフォン酸、トリフェニルフォスフィン、トリ-n-ブチルフォスフィン、ジフェニルフォスフィンなどがある。
 エポキシ樹脂の硬化剤は、単独、或いは、組み合わせて用いることもできる。エポキシ樹脂の硬化剤の使用量は、エポキシ基の硬化反応を適切に進行させることができれば、特に限定することなく使用できる。好ましくは、エポキシ基1モルに対して、0.01~5.0当量の範囲で、特に好ましくは0.8~1.2当量の範囲で使用する。
 蛍光体シートは、必要に応じて硬化促進剤を含んでもよい。代表的な硬化促進剤として、第三級アミン、イミダゾール類、第四級アンモニウム塩等があるが、これに限定されるものではない。
(その他成分)
 蛍光体シートは、ハンドリング性や形状保持性などの観点で、繊維を含んでもよい。換言すると、蛍光体シートは、上述の硬化性樹脂成分などが繊維基材中に含浸してB-ステージ状態となったものであってもよい。
 繊維基材は特に限定されない。例えば、ガラスクロス、アラミド不織布、液晶ポリマー不織布等のプリプレグ用基材として常用されているものを用いることができる。
 ガラスクロスの具体例としては、旭シュエーベル社製の「スタイル1027MS」(経糸密度75本/25mm、緯糸密度75本/25mm、布重量20g/m、厚さ19μm)、旭シュエーベル社製の「スタイル1037MS」(経糸密度70本/25mm、緯糸密度73本/25mm、布重量24g/m、厚さ28μm)、有沢製作所社製の「1078」(経糸密度54本/25mm、緯糸密度54本/25mm、布重量48g/m、厚さ43μm)、有沢製作所社製の「1037NS」(経糸密度72本/25mm、緯糸密度69本/25mm、布重量23g/m、厚さ21μm)、有沢製作所社製の「1027NS」(経糸密度75本/25mm、緯糸密度75本/25mm、布重量19.5g/m、厚さ16μm)、有沢製作所社製の「1015NS」(経糸密度95本/25mm、緯糸密度95本/25mm、布重量17.5g/m、厚さ15μm)、有沢製作所社製の「1000NS」(経糸密度85本/25mm、緯糸密度85本/25mm、布重量11g/m、厚さ10μm)等が挙げられる。また液晶ポリマー不織布の具体例としては、クラレ社製の、芳香族ポリエステル不織布のメルトブロー法による「ベクルス」(目付け量6~15g/m)や「ベクトラン」などが挙げられる。
 また、蛍光体シートは、製造適性の観点から、流動性調整剤を含んでもよい。
 流動性調整剤としては、疎水性シリカ、親水性シリカなどのシリカ粒子、酸化アルミニウム等が適用できる。特に、フュームドシリカが好ましく用いられる。市販の流動性調整剤として、例えば、AEROSIL 130、AEROSIL 200、AEROSIL 300、AEROSIL R-972、AEROSIL R-812、AEROSIL R-812S、AlminiumOxideC(日本アエロジル社製、AEROSILは登録商標)、カープレックスFPS-1(DSL社製、商品名)等が挙げられる。
(貫通孔)
 前述のように、蛍光体シートは、好ましくは貫通孔を有する。貫通孔の位置、大きさ、形状、数などは、最終的に得ようとする照明装置の設計に応じて適宜決定すればよい。
 貫通孔は、例えば打ち抜き加工により設けることができる。もちろん、貫通孔はその他の方法で設けてもよい。
(蛍光体シートの製造方法)
 蛍光体シートは、硬化性樹脂組成物に関する公知の知見に基づき製造することができる。
 一例として、蛍光体シートは、電気電子部品の製造に用いられる「プリプレグ」の製造方法を参考にして製造することができる。具体的には、蛍光体シートは、(1)まず、繊維基材以外の成分を、有機溶剤に溶解または分散させてワニスを製造し、(2)そのワニスを繊維基材に含浸させ、(3)ワニスが完全硬化しない(B-ステージ状態となる)温度・時間加熱する、という工程で製造することができる。もちろん、これ以外の方法(例えば、溶剤を用いないホットメルト法)で製造してもよい。
 プリプレグの製造方法に関しては種々の公知文献に記載されているため、蛍光体シートを製造する際にも参考とすることができる。プリプレグの製造方法は、例えば特開2020-139164号公報、特開2004-188652号公報などに記載されている。
(その他の蛍光体シートの態様)
 上述のように、本実施形態においては、好ましくは、蛍光体粒子と、硬化性樹脂成分と、を含み、B-ステージ状態にある熱硬化性樹脂材料で構成された蛍光体シートが用いられる。
 一方、蛍光層26を設けることができる限り、「蛍光体粒子と、硬化性樹脂成分と、を含み、B-ステージ状態にある熱硬化性樹脂材料で構成された蛍光体シート」ではない蛍光体シートを用いることもできる。以下、このような蛍光体シートのことを「その他の蛍光体シート」と記載することがある。
 その他の蛍光体シートの一例としては、上述したB-ステージ状態の蛍光体シートを完全硬化(C-ステージ状態)させた状態の蛍光体シートが挙げられる。
 その他の蛍光体シートの別の例としては、任意の樹脂、例えば熱可塑性樹脂中に蛍光体粒子を分散させてシート状にした蛍光体シートが挙げられる。用いる熱可塑性樹脂は所望の性能に応じて適宜選択すればよい。熱可塑性樹脂の具体例としては、PE(ポリエチレン)、PP(ポリプロピレン)などのポリオレフィン、PVC(ポリ塩化ビニル)、PS(ポリスチレン)、ABS(アクリロ二トリル・ブタジエン・スチレン共重合体)、AS(アクリロニトリル・スチレン共重合体)、PMMA(ポリメタクリル酸メチル)・PBT(ポリブチレンテレフタレート)、PET(ポリエチレンテレフタラート)などのポリエステル樹脂、などを挙げることができる。
 これら、その他の蛍光体シートは、接着剤を用いて白色層24の露出面に接着して蛍光層26とすることができる。使用可能な接着剤は、接着強度や耐久性などを考慮して適宜選択することができる。
 その他の蛍光体シートが含むことができる蛍光体粒子の種類や量は、上述のB-ステージ状態の蛍光体シートと同様であることができる。
 その他の蛍光体シートの厚みは、上述のB-ステージ状態の蛍光体シートと同様であることができる。
 その他の蛍光体シートは、上述のB-ステージ状態の蛍光体シートと同様に、貫通孔を有することが好ましい。
<白色シート>
 図2等における白色層24は、好ましくは、上述した<蛍光体シート>において、蛍光体粒子の代わりに白色粒子(典型的には酸化チタンやアルミナなどの白色顔料)含む「白色シート」を用いて設けることができる。白色粒子の量は特に限定されないが、例えば蛍光体シートにおける蛍光体粒子の量と同様とすることができる。
 白色シートの厚みは、通常20~150μm、好ましくは30~120μm、より、好ましくは35~100μmである。特に、白色シートが貫通孔を有する場合、白色シートの厚みは、20~100μmが好ましい。また、最終的な白色層24の厚みと後述する蛍光層26との合計厚みが100μm以下となるように、白色シートの厚みおよび蛍光体シートの厚みを調整することが好ましい。
 蛍光体シートと同様に、白色シートは、硬化性樹脂成分を含み、B-ステージ状態にある熱硬化性樹脂材料で構成されることが好ましい。
 一方、同じく蛍光体シートと同様に、白色シートは、B-ステージ状態の白色シートを完全硬化(C-ステージ状態)させた状態の白色シートや、任意の樹脂(例えば熱可塑性樹脂)中に白色粒子を分散させてシート状にした白色シートなどを挙げることができる。用いる熱可塑性樹脂は所望の性能に応じて適宜選択すればよい。熱可塑性樹脂の具体例は<蛍光体シート>の項で挙げたものと同様のものを挙げることができる。これら白色シートは、接着剤を用いて基板に接着して白色層24とすることができる。使用可能な接着剤は、接着強度や耐久性などを考慮して適宜選択することができる。
<照明装置の製造用セット>
 上述の蛍光体シートおよび白色シートは、ともに、照明装置の製造に好ましく用いられる。よって、上述の蛍光体シート(蛍光体粒子を含む)と、白色シート(典型的には白色粒子を含む)との「セット」は、照明装置の製造用セットとして産業上有用である。具体的には、照明装置を製造しようとする者は、このような照明装置の製造用セットを入手し、このセットを用いて上述の各工程を行うことにより、照明装置を製造することができる。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。また、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
 本発明の実施態様を、実施例および比較例に基づき詳細に説明する。念のため述べておくと、本発明は実施例のみに限定されない。
<蛍光体粒子の準備>
・CASN-1:デンカ社製のCASN系蛍光体、品番RE-650YMDB、D50=15.7μm
・CASN-2:デンカ社製のCASN系蛍光体、品番RE-Sample 650SD4、D50=3.2μm
<シリコーン樹脂を用いた蛍光体シートの製造>
 上記蛍光体粒子のほか、以下材料を準備した。
・硬化性樹脂成分:東レ・ダウコーニング社のシリコーンレジン「RSN-0805」(シラノール基含有、シラノール含有量(OH質量)1%、二酸化珪素含有量48質量%、フェニル:メチル比=1.1:1、重量平均分子量200~300×10、キシレン含有、樹脂固形分50重量%)
・流動性調整剤:日本アエロジル社のフュームドシリカ AEROSIL 200
・溶剤:ブチルカルビトール
 表1に記載の成分のうち、まず、硬化性樹脂成分(シリコーンレジン)と溶剤とを混合して均一な溶液を得た。
 その後、その溶液に蛍光体粒子および流動性調整剤(実施例3のみ)を投入し、均一に混合・分散して、シリコーン樹脂ワニス1-1~1-4を得た。
Figure JPOXMLDOC01-appb-T000001
 上記のシリコーン樹脂ワニスを、市場で入手可能な繊維基材(ガラスクロス)に含浸し、縦型乾燥炉にて乾燥させた。冷却後、打ち抜き加工により、発光素子と銅配線との接続のための貫通孔を設けた。このようにして、シリコーン樹脂系蛍光体シート1-1~1-4を作製した。
 ちなみに、乾燥条件(温度および時間)は、シリコーン樹脂系蛍光体シートがB-ステージ状態となるように調整した。また、後述する蛍光層の厚み(50μm)を踏まえ、繊維基材(ガラスクロス)については適切な厚みのものを選択した。
<エポキシ樹脂を用いた蛍光体シートの製造>
 まず、以下組成のエポキシ樹脂ワニス2-1~2-4を準備した。
・ビスフェノールA型エポキシ樹脂 640質量部
・ビスフェノールAノボラック樹脂 25質量部
・エチルメチルイミダゾール 0.2部質量部
・蛍光体粒子 下表に示す量
・メチルエチルケトン溶剤 樹脂ワニスの粘度がおおよそ0.1Ns/mとなる量
Figure JPOXMLDOC01-appb-T000002
 上記のエポキシ樹脂ワニスを、市場で入手可能な繊維基材(ガラスクロス)に含浸し、縦型乾燥炉にて135℃で5分間乾燥させた。冷却後、打ち抜き加工により、発光素子と銅配線との接続のための貫通孔を設けた。このようにして、B-ステージ状態の、エポキシ樹脂系蛍光体シート2-1~2-4を作製した。
 ちなみに、後述する蛍光層の厚み(50μm)を踏まえ、繊維基材(ガラスクロス)については適切な厚みのものを選択した。
<白色シートの製造>
 蛍光体粒子の代わりに、酸化チタン/アルミナ混合粒子を、不揮発成分中の量が50vol%となるように用いたこと、および、ガラスクロスの厚みを適宜変更したこと以外は、上記<シリコーン樹脂を用いた蛍光体シートの製造>と同様にして、シリコーン樹脂系白色シートを製造した。
 また、蛍光体粒子の代わりに、酸化チタン/アルミナ混合粒子を、不揮発成分中の量が50vol%となるように用いたこと、および、ガラスクロスの厚みを適宜変更したこと以外は、上記<エポキシ樹脂を用いた蛍光体シートの製造>と同様にして、エポキシ樹脂系白色シートを製造した。
<照明装置の作製(シリコーン系)>
 上記の蛍光体シートなどを用い、複数個のCSPが、一定間隔をあけて、蛍光層の上に整列した照明装置を作製した。製造手順を以下に簡単に示す。
(1)絶縁基板の材料として、両面銅箔を張り合わせた利昌工業社製のボンディングシートCS-3305Aを準備した。これの銅箔をエッチングして第一銅箔に銅回路を形成するなどした。
(2)第一銅箔の上に、上記のシリコーン樹脂系白色シートを置き、20kgf/cmの圧力で、温度190℃で90分間プレスした。これにより厚さ35μmの白色層を形成した。
(3)白色層の上に、上記のシリコーン樹脂系蛍光体シート(1-1~1-4のいずれか)を置き、20kgf/cmの圧力で、温度190℃で90分間プレスした。これにより厚さ50μmの蛍光層を形成した。
(4)表面実装型LED素子である市販のCSP(WICOP SZ8-Y15-WW-C8、ソウル半導体社製、リフレクタ無し品、色温度2200~2300K)と、第一銅箔(銅回路)とを、はんだにより電気的に接続した。
 補足すると、上記(2)および(3)においては、各シートの貫通孔の位置が、(4)でCSPと第一銅箔とを接続する位置となるようにした。
<照明装置の作製(エポキシ系)>
 上記の蛍光体シートなどを用い、複数個のCSPが、一定間隔をあけて、蛍光層の上に整列した照明装置を作製した。製造手順を以下に簡単に示す。
(1)絶縁基板の材料として、両面銅箔を張り合わせた利昌工業社製のボンディングシートCS-3305Aを準備した。これの銅箔をエッチングして第一銅箔に銅回路を形成するなどした。
(2)第一銅箔の上に、上記のエポキシ樹脂系白色シートを置き、20kgf/cmの圧力で、温度190℃で90分間プレスした。これにより厚さ35μmの白色層を形成した。
(3)白色層の上に、上記のエポキシ樹脂系蛍光体シート(2-1~2-4のいずれか)を置き、20kgf/cmの圧力で、温度190℃で90分間プレスした。これにより厚さ50μmの蛍光層を形成した。
(4)表面実装型LED素子である市販のCSP(WICOP SZ8-Y15-WW-C8、ソウル半導体社製、リフレクタ無し品、色温度2200~2300K)と、第一銅箔(銅回路)とを、はんだにより電気的に接続した。
 補足すると、上記(2)および(3)においては、各シートの貫通孔の位置が、(4)でCSPと第一銅箔とを接続する位置となるようにした。
<評価:色温度の変換>
 上記で作製した各照明装置に電流を流し、照明装置を発光させた。照明装置から発せられる光の色温度を、大塚電子株式会社製の全光束測定システム(積分球を備える装置)を用いて測定した。測定された色温度が2000~2100Kであり、CSPそのものの色温度(2200~2300K)から少なくとも100K以上色温度が変換された場合を、色温度変換性「良好」と評価した。
 結果、作成したすべての照明装置について、色温度変換性は「良好」であった。
 以上、白色シートおよび蛍光体シートを用いることにより、塗料を用いないで照明装置を製造することができた。
 この出願は、2022年3月25日に出願された日本出願特願2022-049915号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 20  絶縁基板
 21  接続部
 22A 第一銅箔
 22B 第二銅箔
 23  開口
 24  白色層
 26  蛍光層
 28  表面実装型LED素子
 30  はんだ
 100 半導体発光素子
 102 基板
 104 リフレクタ(筐体)
 108 パッケージ状部
 110 封止部材
 112 配線

Claims (13)

  1.  第1面に発光素子を電気的に接続可能な接続部を含む配線が設けられた絶縁基板の、前記第1面の側に、白色シートを接着することにより、前記絶縁基板の前記第1面の側に白色層が設けられた第1積層体を得る白色層形成工程と、
     前記第1積層体における前記白色層の側に、蛍光体粒子を含む蛍光体シートを接着して、前記第1積層体の前記白色層の側に蛍光層が設けられた第2積層体を得る蛍光層形成工程と、
     前記第2積層体における前記蛍光層の側から、前記接続部に発光素子を電気的に接続する接続工程と、
    を含む、照明装置の製造方法。
  2.  請求項1に記載の照明装置の製造方法であって、
     前記白色シートは、白色顔料と、硬化性樹脂成分と、を含み、B-ステージ状態にある熱硬化性樹脂材料で構成され、
     前記白色層形成工程は、熱プレスにより前記白色シートを接着する工程を含む、照明装置の製造方法。
  3.  請求項1に記載の照明装置の製造方法であって、
     前記白色層形成工程は、接着剤を用いて前記白色シートを接着する工程を含む、照明装置の製造方法。
  4.  請求項1~3のいずれか1項に記載の照明装置の製造方法であって、
     前記蛍光体シートは、蛍光体粒子と、硬化性樹脂成分と、を含み、B-ステージ状態にある熱硬化性樹脂材料で構成され、
     前記蛍光層形成工程は、熱プレスにより前記蛍光体シートを接着する工程を含む、照明装置の製造方法。
  5.  請求項1~3のいずれか1項に記載の照明装置の製造方法であって、
     前記蛍光層形成工程は、接着剤を用いて前記蛍光体シートを接着する工程を含む、照明装置の製造方法。
  6.  請求項1~5のいずれか1項に記載の照明装置の製造方法であって、
     前記白色シートには第1の貫通孔が設けられており、
     前記白色層形成工程において、前記白色シートは、前記絶縁基板を前記第1面側から上面視したときに、前記第1の貫通孔が前記接続部の位置となるように接着される、照明装置の製造方法。
  7.  請求項1~6のいずれか1項に記載の照明装置の製造方法であって、
     前記蛍光体シートには第2の貫通孔が設けられており、
     前記蛍光層形成工程において、前記蛍光体シートは、前記絶縁基板を前記第1面側から上面視したときに、前記第2の貫通孔が前記接続部の位置となるように接着される、照明装置の製造方法。
  8.  請求項1~7のいずれか1項に記載の照明装置の製造方法であって、
     前記白色層の厚みは20~150μmである、照明装置の製造方法。
  9.  請求項1~8のいずれか1項に記載の照明装置の製造方法であって、
     前記蛍光層の厚みは20~150μmである、照明装置の製造方法。
  10.  請求項1~9のいずれか1項に記載の照明装置の製造方法であって、
     前記蛍光体粒子は、青色光を、前記青色光の波長よりも長波長の光に変換可能な蛍光体粒子を含む、照明装置の製造方法。
  11.  請求項1~10のいずれか1項に記載の照明装置の製造方法であって、
     前記蛍光体粒子が、CASN系蛍光体、SCASN系蛍光体、LaSi11系蛍光体、SrSi系蛍光体、BaSi系蛍光体、α型サイアロン系蛍光体、β型サイアロン系蛍光体、LuAG系蛍光体およびYAG系蛍光体からなる群より選ばれる1または2以上を含む、照明装置の製造方法。
  12.  請求項1~11のいずれか1項に記載の照明装置の製造方法であって、
     前記接続工程における発光素子は、青色光を発することが可能な発光素子である、照明装置の製造方法。
  13.  蛍光体粒子を含む蛍光体シートと、白色シートと、を備える、照明装置の製造用セット。
PCT/JP2023/011320 2022-03-25 2023-03-22 照明装置の製造方法および照明装置の製造用セット WO2023182382A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-049915 2022-03-25
JP2022049915 2022-03-25

Publications (1)

Publication Number Publication Date
WO2023182382A1 true WO2023182382A1 (ja) 2023-09-28

Family

ID=88101600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011320 WO2023182382A1 (ja) 2022-03-25 2023-03-22 照明装置の製造方法および照明装置の製造用セット

Country Status (2)

Country Link
TW (1) TW202403230A (ja)
WO (1) WO2023182382A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236310A (ja) * 2010-05-10 2011-11-24 Sony Corp 緑色発光蛍光体粒子及びその製造方法、並びに、色変換シート、発光装置及び画像表示装置組立体
JP2019215956A (ja) * 2018-06-11 2019-12-19 ミネベアミツミ株式会社 面状照明装置
WO2022030400A1 (ja) * 2020-08-07 2022-02-10 デンカ株式会社 蛍光体塗料、塗膜、蛍光体基板および照明装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236310A (ja) * 2010-05-10 2011-11-24 Sony Corp 緑色発光蛍光体粒子及びその製造方法、並びに、色変換シート、発光装置及び画像表示装置組立体
JP2019215956A (ja) * 2018-06-11 2019-12-19 ミネベアミツミ株式会社 面状照明装置
WO2022030400A1 (ja) * 2020-08-07 2022-02-10 デンカ株式会社 蛍光体塗料、塗膜、蛍光体基板および照明装置

Also Published As

Publication number Publication date
TW202403230A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
KR101760324B1 (ko) 층간접착력이 우수한 전자파 차폐 및 방열복합시트용 그라파이트 시트, 이를 포함하는 전자파 차폐 및 방열복합시트 및 이의 제조방법
JP4634856B2 (ja) 白色プリプレグ、白色積層板、及び金属箔張り白色積層板
JP4495772B1 (ja) 絶縁シート及び積層構造体
CA2726173A1 (en) Metal base circuit board
KR20170020700A (ko) 전자파 차폐 및 방열 기능 일체형 다층복합시트 및 이의 제조방법
TW201203477A (en) Power module
JP2003277479A (ja) Ledベアチップ搭載用基板の製造方法及び樹脂組成物
JP2011070930A (ja) 多層絶縁シート及び積層構造体
JP2011168672A (ja) 絶縁シート
KR20140093181A (ko) 실리콘·유기 수지 복합 적층판 및 그의 제조 방법, 및 이것을 사용한 발광 반도체 장치
JP2010218975A (ja) 絶縁シート、積層板及び多層積層板
JP2013168599A (ja) 半導体発光装置及びその製造方法
WO2023182382A1 (ja) 照明装置の製造方法および照明装置の製造用セット
JP5030103B2 (ja) 発光素子用金属ベース回路用基板の製造方法及び発光素子用金属ベース回路用基板
WO2023182379A1 (ja) 蛍光体シートおよび照明装置
TWI829809B (zh) 樹脂組成物、預浸體、附樹脂之薄膜、附樹脂之金屬箔、覆金屬積層板及印刷配線板
JP6623632B2 (ja) 絶縁樹脂フィルム及び多層プリント配線板
KR101254035B1 (ko) 고효율 방열 인쇄회로기판용 금속베이스 동박적층판 접착제 조성물
JP2013082873A (ja) Bステージフィルム及び多層基板
JP5508342B2 (ja) プリント配線板用bステージフィルム及び多層基板
CN107039361B (zh) 电子器件密封用片和电子器件封装件的制造方法
CN108074821B (zh) 电磁波屏蔽及散热复合片用石墨片、包括其的电磁波屏蔽及散热复合片及其制备方法
JP2019006980A (ja) 絶縁フィルム用樹脂組成物、絶縁フィルム及び多層プリント配線板
JP4075268B2 (ja) 回路基板の製造方法
JP2012188632A (ja) 絶縁材料及び積層構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774977

Country of ref document: EP

Kind code of ref document: A1