WO2023182308A1 - バインダー、電極合剤、電極、およびリチウムイオン二次電池 - Google Patents

バインダー、電極合剤、電極、およびリチウムイオン二次電池 Download PDF

Info

Publication number
WO2023182308A1
WO2023182308A1 PCT/JP2023/011009 JP2023011009W WO2023182308A1 WO 2023182308 A1 WO2023182308 A1 WO 2023182308A1 JP 2023011009 W JP2023011009 W JP 2023011009W WO 2023182308 A1 WO2023182308 A1 WO 2023182308A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinylidene fluoride
binder
slurry
mass
viscosity
Prior art date
Application number
PCT/JP2023/011009
Other languages
English (en)
French (fr)
Inventor
佳奈 蘆田
佳余子 岡田
圭介 渡辺
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Publication of WO2023182308A1 publication Critical patent/WO2023182308A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder for a positive electrode of a lithium ion secondary battery, an electrode mixture using the binder, an electrode, and a lithium ion secondary battery.
  • PVDF polyvinylidene fluoride
  • Patent Document 1 discloses a vinylidene fluoride polymer that has superior adhesiveness to metal foil than conventional vinylidene fluoride polymers.
  • the present invention aims to provide a binder that is unlikely to cause gelation of the electrode mixture even when mixed with a positive electrode active material, and has sufficient adhesive properties even in a small amount, and an electrode mixture, an electrode, and a battery containing the binder. shall be.
  • the present invention provides a binder for a positive electrode for a lithium ion secondary battery containing a vinylidene fluoride polymer, wherein the vinylidene fluoride polymer contains a constitutional unit derived from vinylidene fluoride and a carboxy group.
  • a binder containing two or more types of structural units having the above-mentioned structure, and having a slurry viscosity ratio of 100% or less as determined by the following method.
  • Viscosity ratio (%) (slurry viscosity after storage) / (slurry viscosity immediately after preparation) x 100
  • the present invention also provides an electrode mixture containing the above binder and a positive electrode active material.
  • the present invention provides an electrode in which an electrode mixture layer made of the above electrode mixture is provided on a current collector. Furthermore, the present invention provides a lithium ion secondary battery including the above electrode.
  • the binder of the present invention hardly causes gelation even when mixed with a positive electrode active material containing nickel, and has sufficient adhesiveness even when used in a small amount. Therefore, it is possible to provide an electrode mixture that can be stably used over a long period of time, and also to provide high-capacity lithium ion secondary batteries and electrodes used therein.
  • Binder As mentioned above, various vinylidene fluoride polymers have been used as binders for positive electrodes for lithium ion secondary batteries, but it has been desired to further improve their adhesive properties. Another problem is that when a vinylidene fluoride polymer is mixed with a positive electrode active material, especially a positive electrode active material with a high nickel ratio, gelation tends to occur.
  • the positive electrode active material contains a base, and the positive electrode active material with a high nickel ratio contains a particularly large amount of base. Therefore, when vinylidene fluoride comes into contact with the positive electrode active material, the base accelerates the deterioration of the binder. Then, the deteriorated binder forms a crosslinked structure in the slurry-like electrode mixture (hereinafter also referred to as electrode mixture slurry), thereby causing the electrode mixture slurry to gel.
  • electrode mixture slurry slurry-like electrode mixture
  • the binder of the present invention contains a vinylidene fluoride-based polymer containing a constitutional unit derived from vinylidene fluoride and two or more types of constitutional units having a carboxy group. Further, the viscosity ratio of the slurry containing the vinylidene fluoride polymer is 100% or less, as measured by a specific method described below.
  • the monomer copolymerizable with vinylidene fluoride has different copolymerizability with vinylidene fluoride depending on its structure.
  • vinylidene fluoride polymers that are copolymerized with two or more different monomers have complex structural units that are different from polymers that use only one type of monomer, polymers that use only one type of monomer, and polymers that blend two types of polymers. It has an array. Since this complex arrangement of structural units suppresses deterioration of the binder, it is thought that even if the vinylidene fluoride polymer and the positive electrode active material are mixed, the electrode mixture is difficult to gel. Furthermore, the vinylidene fluoride polymer contains a carboxy group derived from a structural unit having a carboxy group. The carboxy group can be bonded to a polar group present on the surface of the active material or current collector.
  • the binder containing the vinylidene fluoride polymer has high adhesive strength to the active material and the current collector even in a small amount.
  • the binder is very useful as a material for the electrode mixture layer of a lithium ion secondary battery.
  • the vinylidene fluoride polymer and other components contained in the binder will be explained below.
  • the binder may contain only one kind of the following vinylidene fluoride polymer, or may contain two or more kinds.
  • the vinylidene fluoride polymer contains a structural unit derived from vinylidene fluoride and two or more of the following structural units having a carboxyl group.
  • the vinylidene fluoride polymer may contain only two types of structural units having carboxyl groups described below, but it is preferable to contain three or more types from the viewpoint of suppressing gelation.
  • the structural unit having a carboxy group may be, for example, a structural unit represented by formula (1).
  • R 1 to R 3 each independently represent a hydrogen atom, a fluorine atom, a chlorine atom, or an alkyl group having 1 to 4 carbon atoms and which may have a substituent.
  • the alkyl group may be linear or branched. Specific examples of the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, and the like. Furthermore, examples of substituents on the alkyl group include halogen atoms and the like.
  • R 1 to R 3 are more preferably a hydrogen atom or a methyl group, and particularly preferably a hydrogen atom.
  • X in the above general formula (1) represents an alkylene group having 1 or more and 4 or less carbon atoms that may have a substituent.
  • the alkylene group having 1 to 4 carbon atoms may be linear or branched.
  • Specific examples of alkylene groups include methylene, ethylene, propylene, and butylene groups.
  • substituents include halogen atoms and the like. From the viewpoint that the adhesion effect of the carboxy group is less likely to be inhibited by steric hindrance, it is preferable that the alkyl chain does not contain a substituent.
  • any one or more of the structural units having two or more carboxy groups constituting the vinylidene fluoride polymer is a structural unit represented by the general formula (1)
  • X of all the structural units represented by general formula (1) is a methylene group or Particularly preferred is ethylene group.
  • n in the above general formula (1) is an integer of 0 or more and 5 or less, and 0 or 1 is more preferable.
  • n in the structural unit represented by one type of general formula (1) is 0 or 1 from the viewpoint of suppressing gelation of the electrode mixture (from the viewpoint of satisfying the viscosity ratio of the slurry described below).
  • n in at least one structural unit represented by general formula (1) is 1.
  • the molecular weight of the structural unit having a carboxy group is preferably 70 or more and 600 or less, more preferably 100 or more and 400 or less, and even more preferably 100 or more and 250 or less. When the molecular weight is within this range, high adhesive strength can be maintained and gelation can be suppressed.
  • the structural units having a carboxy group include, for example, methacrylic acid, acrylic acid, carboxymethyl methacrylate, carboxymethyl acrylate, carboxyethyl methacrylate, carboxyethyl acrylate, carboxypropyl methacrylate, carboxypropyl acrylate, carboxybutyl methacrylate, carboxybutyl acrylate, 2- ((2-(acryloyloxy)ethanoyl)oxy)ethanoic acid, 2-(((2-(acryloyloxy)ethanoyl)oxy)ethanoyl)oxy)ethanoic acid, 3-((3-(acryloyloxy)propanoyl) It can be a structural unit derived from oxy)propanoic acid, 3-((((3-(acryloyloxy)propanoyl)oxy)propanoyl)oxy)propanoic acid, and the like.
  • structural units derived from carboxymethyl methacrylate, carboxymethyl acrylate, carboxyethyl methacrylate, carboxyethyl acrylate, carboxypropyl methacrylate, carboxypropyl acrylate, carboxybutyl methacrylate, carboxybutyl acrylate, etc. can be preferably used.
  • the proportion of the above-mentioned carboxyl group-containing structural units in the vinylidene fluoride polymer is not particularly limited.
  • the total amount of the structural units having a carboxyl group is preferably 0.1% by mass or more and 10% by mass or less, and 0.5% by mass or more and 5% by mass or less, based on the total amount of the structural units constituting the vinylidene fluoride polymer. It is more preferably at most 0.5% by mass and at most 2% by mass.
  • the total proportion of structural units having a carboxyl group in the vinylidene fluoride polymer is 10% by mass or less, the crystallinity of the vinylidene fluoride polymer becomes high, and the binder (vinylidene fluoride polymer) The adhesive strength between the active material and the current collector tends to increase.
  • the ratio of the total amount of the structural units having a carboxyl group is 0.1% by mass or more, a complex structural unit arrangement is sufficiently formed and deterioration of the binder is suppressed, so that the binder and the positive electrode active material are When mixed, gelation is unlikely to occur, and the viscosity ratio when made into a slurry, which will be described later, is likely to fall within a desired range.
  • the amount of each structural unit having a carboxyl group is preferably 10% by mass or more, more preferably 20% by mass or more, based on the total amount of structural units having a carboxyl group.
  • the proportion of individual structural units having carboxyl groups is 10% by mass or more, gelation is likely to be suppressed when mixed with a positive electrode active material containing nickel, as described above.
  • the total amount of structural units having a carboxyl group and the amount of individual structural units can be determined by 19 F-NMR analysis, 1 H-NMR, or the like.
  • the amount of vinylidene fluoride-derived structural units relative to all structural units in the vinylidene fluoride polymer is preferably 90% by mass or more and 99.9% by mass or less, and 95% by mass or more and 99.5% by mass or less. More preferably, it is 98% by mass or more and 99.5% by mass or less.
  • the amount of constitutional units derived from vinylidene fluoride is 90% by mass or more, physical properties unique to vinylidene fluoride can be easily obtained.
  • the amount of the vinylidene fluoride-derived structural units is 99.9% by mass or less, the total amount of the above-mentioned carboxyl group-containing structural units is relatively sufficient, and the binder (vinylidene fluoride polymer) and the active Increases adhesive strength with substances and current collectors.
  • the amount of vinylidene fluoride-derived constitutional units in the vinylidene fluoride polymer can be determined, for example, by 19 F-NMR analysis.
  • the vinylidene fluoride polymer may include structural units derived from vinylidene fluoride and structural units other than those having a carboxyl group (hereinafter referred to as ⁇ other compound-derived structural units'') to the extent that the objects and effects of the present invention are not impaired. (also referred to as "structural unit").
  • the vinylidene fluoride polymer may contain only one type of structural unit derived from other compounds, or may contain two or more types of structural units. However, the total amount of vinylidene fluoride-derived structural units and carboxy group-containing structural units with respect to all structural units of the vinylidene fluoride polymer is preferably 90% by mass or more, more preferably 95% by mass or more.
  • Examples of other compounds include fluorine-based monomers copolymerizable with vinylidene fluoride, hydrocarbon monomers such as ethylene and propylene, and monomers copolymerizable with the above general formula (1).
  • fluorine-based monomers that can be copolymerized with vinylidene fluoride include perfluorinated vinyl fluoride, trifluoroethylene, tetrafluoroethylene, chlorotrifluoroethylene, hexafluoropropylene, fluoroalkyl vinyl ether, and perfluoromethyl vinyl ether.
  • Examples include alkyl vinyl ethers.
  • Examples of the monomer copolymerizable with the general formula (1) include alkyl (meth)acrylate compounds represented by methyl (meth)acrylate.
  • the vinylidene fluoride-based polymer may be one obtained by block polymerizing vinylidene fluoride and two or more precursors of the structural unit having a carboxy group, but it may be one obtained by random polymerization. More preferred.
  • the vinylidene fluoride-based polymer is prepared by random polymerization, the uniformity of the polymer chain is improved, and the adhesion exhibited by the above-mentioned structural unit having a carboxy group is improved.
  • the melting point of the vinylidene fluoride polymer is preferably 160°C or higher, more preferably 165°C or higher.
  • the melting point of the vinylidene fluoride polymer can be determined by calorimetry using a differential scanning calorimeter (DSC). Specifically, the vinylidene fluoride polymer was heated from 30°C to 230°C at a rate of 10°C/min (first temperature rise), and then cooled from 230°C to 30°C at a rate of 10°C/min (1st temperature rise).
  • the temperature is further increased from 30° C. to 230° C. at a rate of 10° C./min (second temperature raising). Then, the melting peak is identified by DSC.
  • the maximum melting peak temperature observed during the second temperature increase is defined as the melting point of the vinylidene fluoride polymer.
  • the inherent viscosity of the vinylidene fluoride polymer is preferably 0.5 dL/g or more and 5.0 dL/g or less, more preferably 1.0 dL/g or more and 4.0 dL/g or less, and 1.0 dL/g or more. Most preferably 3.5 dL/g or less.
  • the inherent viscosity is 0.5 dL/g or more, the adhesive strength between the binder (vinylidene fluoride polymer) and the active material or current collector increases.
  • the inherent viscosity is 5.0 or less, when an electrode slurry is produced, the slurry viscosity does not become too high and workability is excellent.
  • the inherent viscosity ( ⁇ i ) is expressed as a logarithmic viscosity.
  • 80 mg of vinylidene fluoride polymer is dissolved in 20 mL of N,N-dimethylformamide, and the viscosity is measured using an Ubbelohde viscometer in a constant temperature bath at 30°C. Then, from the obtained value, it is calculated based on the following formula.
  • ⁇ i (1/C) ⁇ ln( ⁇ / ⁇ 0 )
  • is the viscosity of the solution
  • ⁇ 0 is the viscosity of the solvent N,N-dimethylformamide alone
  • C is the concentration of the vinylidene fluoride polymer in the solution, ie, 0.4 g/dL.
  • the vinylidene fluoride polymer is prepared by combining vinylidene fluoride, two or more precursors of the structural unit represented by (1) above, and other compounds as necessary by a known method. It can be prepared by polymerization. Examples of methods for copolymerizing these include suspension polymerization, emulsion polymerization, solution polymerization, etc., but suspension polymerization is preferred from the viewpoints that it is easy to obtain a binder with high adhesive strength and there are few impurities.
  • the binder may be composed only of the above-mentioned vinylidene fluoride polymer, but may also contain a non-aqueous solvent if necessary.
  • the vinylidene fluoride polymer can be dissolved or dispersed, and the binder can be in a liquid state.
  • non-aqueous solvents include, for example, polar solvents (polar solvents).
  • polar solvents include amide compounds such as dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone; methanol, ethanol, isopropyl alcohol, 2-ethyl-1-hexanol, 1-nonanol, lauryl alcohol, tripropylene.
  • Alcohols such as glycols; amine compounds such as o-toluidine, m-toluidine, and p-toluidine; 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide; lactones such as ⁇ -butyrolactone and ⁇ -butyrolactone; Sulfoxide/sulfone compounds such as dimethyl sulfoxide and sulfolane are included.
  • the binder may contain only one type of nonaqueous solvent, or may contain two or more types.
  • the amount of the nonaqueous solvent in the binder is preferably 400 parts by mass or more and 5000 parts by mass or less, more preferably 500 parts by mass or more and 5000 parts by mass or less, based on 100 parts by mass of the vinylidene fluoride polymer.
  • amount of the non-aqueous solvent in the binder is within this range, it is possible to uniformly disperse or dissolve the vinylidene fluoride polymer in the non-aqueous solvent.
  • the binder may further contain other resins such as acrylic resin, fillers such as inorganic fillers, various additives, etc., as long as the objects and effects of the present invention are not impaired.
  • the binder has a viscosity ratio of the slurry determined by the following method of 100% or less, preferably 80% or less, and 50% or less. % or less is more preferable.
  • the viscosity ratio is 100% or less, the electrode mixture described below becomes stable. The viscosity ratio largely depends on the type and structure of the vinylidene fluoride polymer.
  • the viscosity ratio test is performed on the vinylidene fluoride polymer by removing only the vinylidene fluoride polymer from the binder. That is, if the binder contains a nonaqueous solvent, a resin other than the vinylidene fluoride polymer, a filler, various additives, etc., these are removed and the following test is performed. In addition, when the binder contains a plurality of vinylidene fluoride polymers, the test is conducted in a state where these are mixed.
  • Viscosity ratio (%) (slurry viscosity after storage) / (slurry viscosity immediately after preparation) x 100
  • the electrode active material (NCA811) is placed in ultrapure water in an amount 50 times the mass of the electrode active material (NCA811). Then, it is stirred for 10 minutes using a magnetic stirrer at a rotation speed of 600 rpm. The pH of the solution is measured using a pH meter MODEL F-21 manufactured by Horiba, Ltd., and the measured pH is defined as the pH of NCA811.
  • Electrode mixture The binder described above and a positive electrode active material can be mixed to form an electrode mixture for producing a positive electrode of a lithium ion secondary battery.
  • the electrode mixture may further contain a conductive aid, a solvent, other additives, and the like.
  • the type of positive electrode active material is not particularly limited, and a general lithium-based positive electrode active material containing lithium can be used.
  • a lithium-based positive electrode active material for example, the following general formula (2) LiMxO2 ...( 2 ) Examples include lithium metal oxides represented by:
  • M represents at least one metal element including Ni, and the metal element other than Ni is preferably selected from the group consisting of Co, Al, Fe, Mn, Cr and V.
  • Ni it is more preferable to further contain one or more selected from the group consisting of Co, Mn, and Al.
  • the lithium metal oxide represented by the above formula (2) when the total of the metal elements constituting M is 100 mol%, it is preferable to contain 55 mol% or more of Ni, and 70% or more of Ni. It is more preferable to include. In the above general formula (2), 0.5 ⁇ x ⁇ 1.5, more preferably 0.7 ⁇ x ⁇ 1.3.
  • the positive electrode active material may be one obtained by coating the surface of the above compound. Furthermore, the positive electrode active material may be a commercially available product.
  • Examples of the composition of the lithium-based positive electrode active material represented by the above general formula (2) and other lithium-based positive electrode active materials include Li 1.0 Ni 0.8 Co 0.2 O 2 , Li 1.0 Ni 0.5 Mn 0.5 O 2 , Li 1.00 Ni 0.35 Co 0.34 Mn 0.34 O 2 (NCM111), Li 1.00 Ni 0.52 Co 0.20 Mn 0.30 O 2 (NCM523), Li 1.00 Ni 0.50 Co 0.30 Mn 0.20 O 2 (NCM532), Li 1.00 Ni 0.6 Co 0.2 Mn 0.2 O 2 (NCM622), Li 1.00 Ni 0.83 Co 0.12 Mn 0.05 O 2 (NCM811), Li 1.00 Ni 0.85 Co 0.15 Al 0.05 O 2 (NCA811), LiCoO 2 (LCO), and Includes LiFePO 4 (LFP) and the like.
  • the positive electrode active material may include a plurality of different types of lithium-based positive electrode active materials.
  • LiNix Co y Mn Z O 2 (x, y and z are the same as in the above specific example), or LiNix Co y Mn Z O 2 (x, y, and z are as shown in the above specific example).
  • LiNix Co y Al z O 2 (x, y, and z are as shown in the above specific example).
  • the amount of the positive electrode active material contained in the electrode mixture is appropriately selected depending on the use of the electrode mixture, but the amount of the positive electrode active material contained in the electrode mixture is 40 It is preferably at least 99.9% by mass. When the amount of the positive electrode active material is within this range, for example, sufficient charge/discharge capacity can be obtained, and battery performance tends to be good.
  • the binder even when the binder is mixed with the positive electrode active material described above, especially the positive electrode active material containing a relatively large amount of Ni, gelation does not easily occur. Furthermore, the binder exhibits high adhesiveness to the positive electrode active material and the like. Therefore, the ratio of the solid content derived from the binder to the total amount of the solid content derived from the binder (the total amount excluding components that volatilize during curing), the active material, and the conductive additive is set to be, for example, 0.2% by mass or more and 20% by mass or less. It is also possible to do this. The amount of solid content derived from the binder is more preferably 0.2% by mass or more and 10% by mass or less, and even more preferably 0.2% by mass or more and 4% by mass or less.
  • the conductive additive contained in the electrode mixture is not particularly limited as long as it is a compound that can further enhance the conductivity between the positive electrode active materials or between the positive electrode active material and the current collector.
  • conductive aids include acetylene black, Ketjenblack, carbon black, graphite powder, graphene, carbon nanofibers, carbon nanotubes, carbon fibers, and the like.
  • the amount of the conductive additive contained in the electrode mixture is appropriately selected depending on its type. From the viewpoint of improving both the conductivity and the dispersibility of the conductive aid, it is preferably 0.1% by mass or less than 15% by mass based on the total amount of the solid content derived from the binder, the positive electrode active material, and the conductive aid. , more preferably 0.1% by mass or more and 7% by mass or less, further preferably 0.1% by mass or more and 5% by mass or less.
  • the electrode mixture may contain a solvent different from the nonaqueous solvent contained in the binder.
  • the solvent can be selected from non-aqueous solvents that can be included in the binder described above.
  • the total amount of solvent in the electrode mixture (including the amount of non-aqueous solvent in the binder) is not particularly limited, but is usually preferably 20 parts by mass or more and 150 parts by mass or less based on 100 parts by mass of the above-mentioned active material.
  • the electrode mixture may further contain a dispersant, an adhesion aid, a thickener, etc., and known compounds can be used as these. These amounts are not particularly limited as long as they do not impair the objects and effects of the present invention, but are preferably 15% by mass or less based on the total amount of solid content derived from the binder and active material.
  • electrode mixtures include nitrogen compounds such as phosphorus compounds, sulfur compounds, organic acids, amine compounds, and ammonium compounds; organic esters, various silane-based, titanium-based, and aluminum-based coupling agents; and the above-mentioned vinylidene fluoride-based coupling agents. It may further contain additives such as resins other than polymers such as vinylidene fluoride polymer, polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), and polyacrylonitrile (PAN). These are not particularly limited as long as they do not impair the objects and effects of the present invention, but are preferably 15% by mass or less based on the total amount of the solid content derived from the binder and the positive electrode active material.
  • nitrogen compounds such as phosphorus compounds, sulfur compounds, organic acids, amine compounds, and ammonium compounds
  • organic esters various silane-based, titanium-based, and aluminum-based coupling agents
  • vinylidene fluoride-based coupling agents may further
  • the electrode mixture may be prepared by mixing all the components at once, or may be prepared by mixing some of the components first and then mixing the remaining components.
  • the viscosity of the electrode mixture can prevent dripping, uneven coating, and delayed drying after coating when applying the electrode mixture to form the electrode mixture layer, and improves workability when preparing the electrode mixture layer. It is not particularly limited as long as it has a viscosity that provides good coating properties.
  • the viscosity (slurry viscosity) measured with a B-type viscometer at 20°C and 6 rpm is preferably 100 mPa ⁇ s or more and 100,000 mPa ⁇ s or less, and 1000 mPa ⁇ s or more and 80,000 mPa ⁇ s or less. More preferably, it is particularly preferably 2000 mPa ⁇ s or more and 70000 mPa ⁇ s or less.
  • the viscosity of the electrode mixture (slurry viscosity) in this specification is a value measured 2 minutes after the start of rotation using the B-type rotational viscometer.
  • Electrode (positive electrode) of the lithium ion secondary battery of the present invention may include an electrode mixture layer made of the above-mentioned electrode mixture, for example, a current collector and a positive electrode disposed on the current collector. , and the above-mentioned electrode mixture layer.
  • a current collector is a terminal for extracting electricity.
  • the material of the current collector is not particularly limited, and metal foil or metal mesh of aluminum, copper, iron, stainless steel, steel, nickel, titanium, etc. can be used. Alternatively, a layer containing carbon black or the like may be formed on the surface of another medium, or the medium may be coated with the above-mentioned metal foil or metal mesh.
  • the electrode mixture layer is a layer formed by applying a composition containing a binder and a positive electrode active material (for example, the above-mentioned electrode mixture) onto a current collector and drying it.
  • the electrode mixture layer may be formed only on one surface of the current collector, or may be arranged on both surfaces.
  • the electrode mixture layer contains at least the above-mentioned binder-derived solid content (vinylidene fluoride polymer) and active material, and optionally contains various conductive aids, dispersants, adhesion aids, thickeners, etc. It further includes additives and the like. These are the same as those explained for the electrode mixture.
  • the thickness of the electrode mixture layer is not particularly limited, but in one example, it is preferably 1 ⁇ m or more and 1000 ⁇ m or less.
  • the basis weight of the electrode mixture layer formed on one surface of the current collector is not particularly limited and can be any desired basis weight, but in one example, 50 g/m 2 or more and 1000 g /m 2 or less is preferable, and 100 g/m 2 or more and 500 g/m 2 or less is more preferable.
  • the electrode mixture layer can be formed by applying the electrode mixture on the current collector and drying it.
  • the method for applying the electrode mixture is not particularly limited, and the doctor blade method, reverse roll method, comma bar method, gravure method, air knife method, die coating method, dip coating method, etc. can be applied.
  • the electrode mixture After applying the electrode mixture, it is heated at an arbitrary temperature to dry the non-aqueous solvent.
  • the drying temperature is preferably 60°C or higher and 500°C or lower, more preferably 80°C or higher and 200°C or lower. Heating may be performed multiple times at different temperatures.
  • the solvent in the mixture may be dried under atmospheric pressure, increased pressure, or reduced pressure. Further heat treatment may be performed after drying.
  • a press treatment may be further performed.
  • the electrode density can be improved.
  • the press pressure is preferably 1 kPa or more and 10 GPa or less.
  • Lithium ion secondary battery The binder and electrode mixture described above can be used to form the electrode (positive electrode) of lithium ion secondary batteries, etc., as described above, but they can also be used to form other layers of lithium ion secondary batteries. May be used for
  • the inherent viscosity of the vinylidene fluoride polymer was measured as follows. First, 80 mg of vinylidene fluoride polymer was dissolved in 20 mL of N,N-dimethylformamide, and the viscosity was measured using an Ubbelohde viscometer in a constant temperature bath at 30°C. Then, the inherent viscosity ( ⁇ i ) of the vinylidene fluoride polymer was calculated from the obtained value based on the following formula.
  • ⁇ i (1/C) ⁇ ln( ⁇ / ⁇ 0 )
  • is the viscosity of the solution
  • ⁇ 0 is the viscosity of the solvent N,N-dimethylformamide alone
  • C is the concentration of the vinylidene fluoride polymer in the solution, ie, 0.4 g/dL.
  • Electrodes produced in Examples and Comparative Examples described below were cut out to a length of 100 mm and a width of 20 mm. Then, using a tensile tester (ORIENTE CHSIA-1150 manufactured by UNIVERSAL TESTING MACHINE) according to JIS F6854-1, a 90° peel test was performed at a head speed of 10 mm/min to measure the peel strength.
  • a tensile tester ORIENTE CHSIA-1150 manufactured by UNIVERSAL TESTING MACHINE
  • a vinylidene fluoride polymer solution was added to the mixture of NCA811 and carbon black, and kneaded. Specifically, the above solution was added so that the solid content concentration was 81.5% by mass, and primary kneading was performed at 2000 rpm for 2.5 minutes. Then, the remaining above solution and NMP were added to make the solid content concentration 75% by mass. Then, secondary kneading was performed at 2000 rpm for 3 minutes to obtain a slurry. Note that after the first kneading and the second kneading, the slurry was allowed to cool until the temperature reached 40°C.
  • the above slurry was prepared in an environment of 22°C and a dew point of -30°C or more and -40°C or less.
  • the mass ratio of the electrode active material, carbon black, and vinylidene fluoride polymer in the obtained slurry was 100:2:2 in this order.
  • Viscosity ratio (%) (slurry viscosity after storage) / (slurry viscosity immediately after preparation) x 100
  • NCA811 average particle diameter measured by laser diffraction/diffusion method of aqueous dispersion: 12.5 ⁇ m, specific surface area measured by BET 1-point method: 0.24 m 2 /g, pH measured by the above method: 11.6
  • ⁇ N-Methyl-2-pyrrolidone water content: less than 500 ppm
  • ⁇ Carbon black SuperP (registered trademark) manufactured by Timcal Japan
  • average particle diameter measured by electron microscope analysis 40 nm
  • specific surface area measured by BET 1-point method 60 m 2 /g
  • the above vinylidene fluoride polymer A (binder) was dissolved in NMP to prepare a vinylidene fluoride polymer solution containing 8% by mass of vinylidene fluoride polymer A. Then, NMP was added to the mixture of NCA811 and carbon black, and the mixture was kneaded. Specifically, a vinylidene fluoride polymer solution was added so that the solid content concentration was 83.7% by mass, and primary kneading was performed at 2000 rpm for 4 minutes. Next, a vinylidene fluoride polymer solution was further added to make the solid content concentration 73.5% by mass, and secondary kneading was performed at 2000 rpm for 3 minutes to obtain an electrode mixture.
  • the obtained electrode mixture was coated on a 15 ⁇ m thick aluminum foil serving as a current collector using a bar coater, and was primarily dried at 110° C. for 30 minutes in a constant temperature bath under a nitrogen atmosphere. Next, secondary drying was performed at 130° C. for 2 hours in a nitrogen atmosphere to obtain an electrode (electrode peel measurement sample) with a basis weight of about 250 g/m 2 .
  • the mass ratio of the electrode active material, carbon black, and vinylidene fluoride polymer in the obtained electrode mixture was 100:2:1.5 in this order.
  • Example 2 An electrode mixture and an electrode were obtained in the same manner as in Example 1, except that the binder was changed to vinylidene fluoride polymer B.
  • Example 3 An electrode mixture and an electrode were obtained in the same manner as in Example 1, except that the binder was changed to vinylidene fluoride polymer F.
  • Example 2 An electrode mixture and an electrode were obtained in the same manner as in Example 1, except that the binder was changed to a blend of vinylidene fluoride polymer C and vinylidene fluoride polymer D at a weight ratio of 3:7.
  • Example 6 An electrode mixture and an electrode were obtained in the same manner as in Example 1, except that the binder was changed to a blend of vinylidene fluoride polymer D and vinylidene fluoride polymer G at a weight ratio of 4:6.
  • the binder contains a vinylidene fluoride polymer containing a constitutional unit derived from vinylidene fluoride and two or more types of constitutional units having a carboxyl group, it has high peel strength and The anti-oxidation resistance was good (Examples 1 to 3).
  • the binder of the present invention is mixed with a positive electrode active material containing a large amount of nickel, there is little deterioration or thickening. Further, the binder has good adhesive strength even in a small amount. Therefore, the binder, the electrode mixture, and the electrode containing the binder are very useful for manufacturing lithium ion secondary batteries.

Abstract

ニッケルを含む正極活物質と混合してもゲル化が生じ難く、かつ少量で十分な接着性を有するバインダーの提供を課題とする。上記課題を解決するバインダーは、フッ化ビニリデン系重合体を含有し、前記フッ化ビニリデン系重合体が、フッ化ビニリデン由来の構成単位と、カルボキシ基を有する構成単位2種以上と、を含み、特定の方法で行うスラリーの粘度比が100%以下である。

Description

バインダー、電極合剤、電極、およびリチウムイオン二次電池
 本発明は、リチウムイオン二次電池の正極用のバインダー、これを用いた電極合剤、電極、およびリチウムイオン二次電池に関する。
 従来、リチウムイオン二次電池等の非水電解質二次電池を、車載用の電池として活用することが広く検討されている。車載用の二次電池には、高容量であることが求められる。そこで、リチウムイオン二次電池の個々の電極におけるバインダーの量を減らし、活物質の割合を高めることが、高容量化のために重要であると考えられている。一般的に、リチウムイオン二次電池の正極用のバインダーとして、ポリフッ化ビニリデン(PVDF)が用いられているが、バインダーの接着性をさらに高めるため、様々な研究が行われている。
 例えば、特許文献1には、従来のフッ化ビニリデン系重合体より、金属箔との接着性に優れるフッ化ビニリデン系重合体が開示されている。
国際公開第2012/090876号
 しかしながら、上述の特許文献1に記載のフッ化ビニリデン系重合体であっても、接着性が不十分であることがあり、さらなる改良が求められている。また、正極活物質と、従来のフッ化ビニリデン系重合体とを組み合わせると、電極合剤がゲル化しやすい、という課題があった。近年は電池の高容量化のため、ニッケル比率が高い、三元系の化合物を正極活物質と使用することが検討されているが、そのような正極活物質を用いる場合、ゲル化の進行はさらに促進される。
 そこで、本発明は、正極活物質と混合しても電極合剤のゲル化が生じ難く、かつ少量で十分な接着性を有するバインダー、これを含む電極合剤、電極、および電池の提供を目的とする。
 本発明は、フッ化ビニリデン系重合体を含有する、リチウムイオン二次電池用の正極用のバインダーであって、前記フッ化ビニリデン系重合体が、フッ化ビニリデン由来の構成単位と、カルボキシ基を有する構成単位2種以上と、を含み、以下の方法で求めたスラリーの粘度比が100%以下である、バインダーを提供する。
 [スラリーの粘度比の求め方]
 (1)電極活物質NCA811、カーボンブラック、前記バインダー中の前記フッ化ビニリデン系重合体、およびN-メチル-2-ピロリドンのみから成り、前記電極活物質、前記カーボンブラック、および前記バインダー中の前記フッ化ビニリデン系重合体の質量比が100:2:2であり、かつ固形分濃度が75質量%であるスラリーを作製する。
 (2)前記スラリーの粘度を、E型粘度計を用いて、25℃、せん断速度2s-1で測定する。
 (3)前記スラリーを25℃、窒素雰囲気下で2週間保存する。
 (4)保存後の前記スラリーの粘度を、E型粘度計を用いて、25℃、せん断速度2s-1で測定する。
 (5)以下の式に基づき、スラリーの粘度比を算出する。
 粘度比(%)=(保存後のスラリー粘度)/(作製直後のスラリー粘度)×100
 本発明は、上記バインダーと正極活物質と、を含む電極合剤も提供する。
 本発明は、上記電極合剤から成る電極合剤層が集電体上に設けられた、電極を提供する。さらに、本発明は、上記電極を含む、リチウムイオン二次電池を提供する。
 本発明のバインダーは、ニッケルを含む正極活物質と混合してもゲル化が生じ難く、少量で十分な接着性を有する。したがって、長期に亘って安定して使用可能な電極合剤を提供可能であり、高容量のリチウムイオン二次電池や、これに用いる電極も提供可能である。
 1.バインダー
 前述のように、リチウムイオン二次電池用の正極用のバインダーとして、種々のフッ化ビニリデン系重合体が使用されてきたが、その接着性をさらに高めることが求められていた。また、フッ化ビニリデン系重合体と正極活物質、特にニッケル比率の高い正極活物質とを混合すると、ゲル化しやすい、という課題があった。
 その理由は、以下のように考えられる。正極活物質には塩基が含まれ、ニッケル比率の高い正極活物質には塩基が特に多く含まれる。そのため、フッ化ビニリデンが正極活物質に接触すると、塩基によりバインダーの劣化が促進される。そして、劣化したバインダーがスラリー状の電極合剤(以下、電極合剤スラリーともいう)中で架橋構造を形成することにより、電極合剤スラリーはゲル化する。
 これに対し、本発明のバインダーは、フッ化ビニリデン由来の構成単位と、カルボキシ基を有する構成単位2種以上と、を含むフッ化ビニリデン系重合体を含有する。また、後述の特定の方法で測定される、当該フッ化ビニリデン系重合体を含むスラリーの粘度比が100%以下である。ここで、フッ化ビニリデンと共重合するモノマーは、その構造ごとにフッ化ビニリデンとの共重合性が異なる。ゆえに2種以上の異なるモノマーを共重合したフッ化ビニリデン系重合体は、1種類のみ用いた重合体および1種類のみを用いた重合体2種をブレンドした重合体とは異なる、複雑な構成単位配列を有する。この複雑な構成単位配列がバインダーの劣化を抑制するため、フッ化ビニリデン系重合体と正極活物質とを混合しても、電極合剤がゲル化し難いと考えられる。さらに、当該フッ化ビニリデン系重合体は、カルボキシ基を有する構成単位由来のカルボキシ基を含む。当該カルボキシ基は、活物質や集電体の表面に存在する極性基と結合可能である。したがって、当該フッ化ビニリデン系重合体を含むバインダーは少量でも、活物質や集電体に対して高い接着強度を有する。つまり、当該バインダーは、リチウムイオン二次電池の電極合剤層の材料として非常に有用である。以下、バインダーが含む、フッ化ビニリデン系重合体や、その他の成分について説明する。なお、バインダーは、下記のフッ化ビニリデン系重合体を一種のみ含んでいてもよく、二種以上含んでいてもよい。
 ・フッ化ビニリデン系重合体
 フッ化ビニリデン系重合体は、フッ化ビニリデン由来の構成単位と、下記カルボキシ基を有する構成単位2種以上と、を含む。フッ化ビニリデン系重合体は、下記カルボキシ基を有する構成単位を2種のみ含んでいてもよいが、3種以上含むことが、ゲル化抑制の観点で好ましい。
 上記カルボキシ基を有する構成単位は、例えば式(1)で表される構成単位であってもよい。
 上記一般式(1)において、R~Rは、それぞれ独立に、水素原子、フッ素原子、塩素原子、または置換基を有していてもよい炭素数1以上4以下のアルキル基を示す。アルキル基は、直鎖状であってもよく、分岐鎖状であってもよい。炭素数1以上4以下のアルキル基の具体例には、メチル基、エチル基、プロピル基、ブチル基等が含まれる。また、アルキル基への置換基の例には、ハロゲン原子等が含まれる。ただし、フッ化ビニリデンとの重合時に立体障害が生じ難いとの観点から、アルキル基は置換基を含まないことが好ましい。R~Rは、水素原子、またはメチル基がさらに好ましく、水素原子が特に好ましい。
 一方、上記一般式(1)におけるXは、置換基を有していてもよい炭素数1以上4以下のアルキレン基を表す。炭素数1以上4以下のアルキレン基は、直鎖状であってもよく、分岐鎖状であってもよい。アルキレン基の具体例には、メチレン基、エチレン基、プロピレン基、ブチレン基が含まれる。置換基の例には、ハロゲン原子等が含まれる。立体障害によるカルボキシ基の接着作用の阻害が生じ難いとの観点から、アルキル鎖は置換基を含まない方が好ましい。また、フッ化ビニリデン系重合体を構成する2種以上のカルボキシ基を有する構成単位のうち、いずれか1種もしくは2種以上が、一般式(1)で表される構成単位である場合、少なくとも1種の一般式(1)で表される構成単位のXが、メチレン基またはエチレン基であることが、電極合剤のゲル化抑制との観点でより好ましい。また、フッ化ビニリデン系重合体が、一般式(1)で表される構成単位を2種以上含む場合には、全ての一般式(1)で表される構成単位のXが、メチレン基またはエチレン基であることが特に好ましい。
 さらに、上記一般式(1)におけるnは、0以上5以下の整数であり、0または1がさらに好ましい。また特に、フッ化ビニリデン系重合体を構成する2種以上のカルボキシ基を有する構成単位のうち、いずれか1種もしくは2種以上が一般式(1)で表される構成単位である場合、少なくとも1種の一般式(1)で表される構成単位のnが、0または1であることが、電極合剤のゲル化抑制の観点(後述のスラリーの粘度比を満たす観点)で特に好ましい。また、少なくとも1つの一般式(1)で表される構成単位のnが、1であることが特に好ましい。
 ここで、上記カルボキシ基を有する構成単位の分子量は、70以上600以下が好ましく、100以上400以下がより好ましく、100以上250以下がさらに好ましい。分子量が当該範囲であると、高い接着力を維持し、かつゲル化の抑制が可能となる。
 上記カルボキシ基を有する構成単位は、例えばメタクリル酸、アクリル酸、カルボキシメチルメタクリレート、カルボキシメチルアクリレート、カルボキシエチルメタクリレート、カルボキシエチルアクリレート、カルボキシプロピルメタクリレート、カルボキシプロピルアクリレート、カルボキシブチルメタクリレート、カルボキシブチルアクリレート、2-((2-(アクリロイルオキシ)エタノイル)オキシ)エタン酸、2-((((2-(アクリロイルオキシ)エタノイル)オキシ)エタノイル)オキシ)エタン酸、3-((3-(アクリロイルオキシ)プロパノイル)オキシ)プロパン酸、3-((((3-(アクリロイルオキシ)プロパノイル)オキシ)プロパノイル)オキシ)プロパン酸等由来の構成単位とすることができる。
 これらの中でも、カルボキシメチルメタクリレート、カルボキシメチルアクリレート、カルボキシエチルメタクリレート、カルボキシエチルアクリレート、カルボキシプロピルメタクリレート、カルボキシプロピルアクリレート、カルボキシブチルメタクリレート、カルボキシブチルアクリレート等由来の構成単位を好ましく用いることができる。
 フッ化ビニリデン系重合体中の、上記カルボキシ基を有する構成単位の割合は、特に制限されない。ただし、上記カルボキシ基を有する構成単位の総量は、フッ化ビニリデン系重合体を構成する構成単位の総量に対して、0.1質量%以上10質量%以下が好ましく、0.5質量%以上5質量%以下がより好ましく、0.5質量%以上2質量%以下がさらに好ましい。フッ化ビニリデン系重合体中の、カルボキシ基を有する構成単位の総量の割合が10質量%以下であると、フッ化ビニリデン系重合体の結晶性が高くなり、バインダー(フッ化ビニリデン系重合体)と活物質や集電体との接着強度が高まりやすい。一方、上記カルボキシ基を有する構成単位の総量の割合が0.1質量%以上であると、複雑な構成単位配列が十分に形成されてバインダーの劣化が抑制されるため、バインダーと正極活物質とを混合した際に、ゲル化が生じ難く、後述のスラリーとしたときの粘度比が所望の範囲に収まりやすい。
 また、個々のカルボキシ基を有する構成単位の量は、カルボキシ基を有する構成単位の総量に対して、それぞれ10質量%以上であることが好ましく、20質量%以上であることがより好ましい。個々のカルボキシ基を有する構成単位の割合が、10質量%以上であると、上述のように、ニッケルを含む正極活物質と混合したときに、ゲル化が抑制されやすい。カルボキシ基を有する構成単位の総量や、個々の構成単位の量は、19F-NMRによる分析や、H-NMR等によって特定可能である。
 一方、フッ化ビニリデン系重合体中の全構成単位に対する、フッ化ビニリデン由来の構成単位の量は、90質量%以上99.9質量%以下が好ましく、95質量%以上99.5質量%以下がより好ましく、98質量%以上99.5質量%以下がさらに好ましい。フッ化ビニリデン由来の構成単位量が90質量%以上であると、フッ化ビニリデン特有の物性が得られやすくなる。一方、フッ化ビニリデン由来の構成単位の量が99.9質量%以下であると、相対的に上記カルボキシ基を有する構成単位の総量が十分になり、バインダー(フッ化ビニリデン系重合体)と活物質や集電体との接着強度が高まる。フッ化ビニリデン系重合体中のフッ化ビニリデン由来の構成単位の量は、例えば19F-NMRによる分析等によって特定可能である。
 なお、フッ化ビニリデン系重合体は、本発明の目的および効果を損なわない範囲で、フッ化ビニリデン由来の構成単位、およびカルボキシ基を有する構成単位以外の構成単位(以下、「その他の化合物由来の構成単位」とも称する)を含んでいてもよい。フッ化ビニリデン系重合体は、その他の化合物由来の構成単位を1種のみ含んでいてもよく、2種以上含んでいてもよい。ただし、フッ化ビニリデン系重合体の全構成単位に対する、フッ化ビニリデン由来の構成単位およびカルボキシ基を有する構成単位の総量は、90質量%以上が好ましく、95質量%以上がより好ましい。
 その他の化合物の例には、フッ化ビニリデンと共重合可能なフッ素系単量体あるいはエチレン、プロピレン等の炭化水素系単量体、また上記一般式(1)と共重合可能な単量体が挙げられる。フッ化ビニリデンと共重合可能なフッ素系単量体としては、フッ化ビニル、トリフルオロエチレン、テトラフルオロエチレン、クロロトリフルオロエチレン、ヘキサフルオロプロピレン、フルオロアルキルビニルエーテル、およびペルフルオロメチルビニルエーテルに代表されるペルフルオロアルキルビニルエーテル等を挙げることができる。上記一般式(1)と共重合可能な単量体としては、(メタ)アクリル酸メチルに代表される(メタ)アクリル酸アルキル化合物等が挙げられる。
 ここで、フッ化ビニリデン系重合体は、フッ化ビニリデンと、上記カルボキシ基を有する構成単位の前駆体2種以上とをブロック重合したものであってもよいが、ランダム重合したものであることがより好ましい。フッ化ビニリデン系重合体がランダム重合によって調製されていると、高分子鎖の均一性が向上し、上記カルボキシ基を有する構成単位によって発現する接着性が良好になる。
 また、フッ化ビニリデン系重合体の融点は、160℃以上が好ましく、165℃以上がより好ましい。フッ化ビニリデン系重合体の融点が160℃以上であると、電解液によって膨潤し難く、得られるリチウムイオン二次電池の性能が良好になりやすい。上記フッ化ビニリデン系重合体の融点は示差走査熱量計(DSC)による熱量測定によって特定できる。具体的には、フッ化ビニリデン系重合体を、30℃から230℃まで、10℃/分で昇温(1回目の昇温)し、230℃から30℃まで10℃/分で降温(1回目の冷却)し、さらに30℃から230℃まで、10℃/分で昇温(2回目の昇温)する。そして、DSCにより融解ピークを特定する。本明細書では、2回目の昇温で観察される最大融解ピーク温度を、フッ化ビニリデン系重合体の融点とする。
 上記フッ化ビニリデン系重合体の、インヘレント粘度は、0.5dL/g以上5.0dL/g以下が好ましく、1.0dL/g以上4.0dL/g以下がより好ましく、1.0dL/g以上3.5dL/g以下が最も好ましい。インヘレント粘度が0.5dL/g以上であるとバインダー(フッ化ビニリデン系重合体)と活物質や集電体との接着強度が高まる。一方、インヘレント粘度が5.0以下であると電極スラリーを作製した際にスラリー粘度が高くなりすぎず作業性に優れる。インヘレント粘度(η)は対数粘度で表される。まず、フッ化ビニリデン系重合体80mgを20mLのN,N-ジメチルホルムアミドに溶解させて、30℃の恒温槽内でウベローデ粘度計を用いて粘度を測定する。そして、得られた値から、次式に基づいて算出する。
 η=(1/C)・ln(η/η
 上記式において、ηは溶液の粘度、ηは溶媒であるN,N-ジメチルホルムアミド単独の粘度、Cは溶液中のフッ化ビニリデン系重合体の濃度、すなわち0.4g/dLである。
 ここで、上記フッ化ビニリデン系重合体は、フッ化ビニリデンと、上記(1)で表される構成単位の前駆体2種以上と、必要に応じて他の化合物とを、公知の方法で共重合させて調製できる。これらを共重合する方法の例には、懸濁重合、乳化重合、溶液重合等が含まれるが、接着強度の高いバインダーを得やすく、不純物も少ないという観点で懸濁重合が好ましい。
 ・非水溶媒
 バインダーは、上述のフッ化ビニリデン系重合体のみで構成されていてもよいが、必要に応じて、非水溶媒を含んでいてもよい。
 バインダーが非水溶媒を含むと、上記フッ化ビニリデン系重合体を、溶解させたり分散させたりすることが可能であり、バインダーを液体状とすることができる。
 非水溶媒の例には、例えば極性を有する溶媒(極性溶媒)が含まれる。極性溶媒の例には、ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド化合物;メタノール、エタノール、イソプロピルアルコール、2-エチル-1-ヘキサノール、1-ノナノール、ラウリルアルコール、トリプロピレングリコール等のアルコール;o-トルイジン、m-トルイジン、p-トルイジン等のアミン化合物;1-エチル-3-メチルイミダゾリウムビス(トリフルオロメチルスルホニル)イミド;γ-ブチロラクトン、δ-ブチロラクトン等のラクトン;ジメチルスルホキシド、スルホラン等のスルホキシド・スルホン化合物等が含まれる。バインダーは、非水溶媒を1種のみ含んでいてもよく、2種以上含んでいてもよい。
 バインダー中の非水溶媒の量は、上記フッ化ビニリデン系重合体100質量部に対して400質量部以上5000質量部以下が好ましく、500質量部以上5000質量部以下がより好ましい。バインダー中の非水溶媒の量が当該範囲であると、フッ化ビニリデン系重合体を非水溶媒に均一に分散させたり溶解させたりすることが可能である。
 ・その他の成分
 バインダーは、本発明の目的及び効果を損なわない範囲で、例えばアクリル樹脂等の他の樹脂や、無機フィラー等の充填剤、各種添加剤等をさらに含んでいてもよい。
 ・バインダー中のフッ化ビニリデン系重合体をスラリーとしたときの粘度比
 また、上記バインダーは、以下の方法で求められるスラリーの粘度比が100%以下であり、好ましくは80%以下が好ましく、50%以下がより好ましい。当該粘度比が100%以下であると、後述の電極合剤が安定になる。当該粘度比は、上記フッ化ビニリデン系重合体の種類や構造に大きく依存する。
 なお、当該粘度比の試験は、バインダー中のフッ化ビニリデン系重合体のみを取り出し、当該フッ化ビニリデン系重合体に対して行う。つまり、バインダーが非水溶媒や、フッ化ビニリデン系重合体以外の樹脂、充填剤、各種添加剤等を含む場合には、これらを取り除いて下記の試験を行う。また、バインダーが複数のフッ化ビニリデン系重合体を含む場合には、これらを混合した状態で、試験を行う。
 [スラリーの粘度比の求め方]
 (1)電極活物質NCA811、カーボンブラック、バインダー中のフッ化ビニリデン系重合体、およびN-メチル-2-ピロリドンのみから成り、上記電極活物質、上記カーボンブラック、および上記バインダー中のフッ化ビニリデン系重合体の質量比が100:2:2であり、かつ固形分濃度が75質量%であるスラリーを調製する。
 (2)上記スラリーの粘度を、E型粘度計を用いて、25℃、せん断速度2s-1で測定する。
 (3)上記スラリーを25℃、窒素雰囲気下で2週間保存する。
 (4)保存後の上記スラリーの粘度を、E型粘度計を用いて、25℃、せん断速度2s-1で測定する。
 (5)以下の式に基づき、スラリーの粘度比を算出する。
 粘度比(%)=(保存後のスラリー粘度)/(作製直後のスラリー粘度)×100
 なお、上記スラリーを調製するための材料や製造条件による、スラリーの粘度比のブレを低減するため、それぞれ以下の材料や条件で、上記スラリーを調製することが好ましい。
 (i)N-メチル-2-ピロリドンの水分量:500ppm未満
 (ii)NCA811の水分散液のレーザ回折・散乱法により測定される平均粒子径の中央値(D50):8μm~13μm
 (iii)NCA811のBET1点法により測定される比表面積:0.2~0.5m/g
 (iv)NCA811について、JIS K5101-16-2に準拠する抽出法(下記に詳細を記載)を行ったときのpH:11.5~12.0
 (v)カーボンブラックの電子顕微鏡解析により測定される平均粒子径の中央値(D50):30nm~50nm
 (vi)カーボンブラックのBET1点法により測定される比表面積:50~70m/g
 (vii)スラリー調製条件:自転・公転方式ミキサーにより後述の手順で2回にわけて混錬
 (viii)スラリーの調製環境:22℃、露天温度-30℃~-40℃
 (iX)スラリーの保存環境および粘度測定環境:25℃、露天温度-30℃~-40℃
 (電極活物質のpH測定方法)
 電極活物質(NCA811)の質量の50倍量の超純水に電極活物質(NCA811)を入れる。そして、マグネチックスターラーにて回転数:600rpmで10分間を行う。当該の溶液のpHを、堀場製作所社製pHメータMODEL F-21にて測定し、測定されたpHをNCA811のpHとする。
 (スラリーの調製方法)
 NCA811およびカーボンブラックの粉体混合物と、フッ化ビニリデン系重合体をN-メチルー2-ピロリドンに溶解させたフッ化ビニリデン系重合体含有溶液とをそれぞれ準備する。上記粉体混合物に、フッ化ビニリデン系重合体含有溶液を、固形分濃度が81.5質量%となるように加え、これを自転・公転方式ミキサーにより、2000rpmで2.5分間1次混錬する。スラリー温度が40℃以下になるまで放冷したのち、残りのフッ化ビニリデン系重合体を加えて、自転・公転方式ミキサーにより2000rpmで3分間2次混錬する。
 2.電極合剤
 上述のバインダーと、正極活物質とを混合し、リチウムイオン二次電池の正極作製用の電極合剤とすることができる。電極合剤は、導電助剤や、溶媒、その他の添加剤等をさらに含んでいてもよい。
 正極活物質の種類は特に制限されず、一般的なリチウムを含むリチウム系正極活物質を用いることができる。リチウム系正極活物質としては、例えば下記一般式(2)
 LiM・・・(2)
で表されるリチウム金属酸化物が挙げられる。
 一般式(2)において、MはNiを含む少なくとも一種の金属元素を表し、Ni以外の金属元素としては、Co、Al、Fe、Mn、CrおよびVからなる群から選択されることが好ましい。Niに加えて、さらにCo、MnおよびAlからなる群から選択される1種または2種以上を含有することがより好ましい。また、上記式(2)で表されるリチウム金属酸化物において、Mを構成する金属元素の合計を100モル%としたとき、55モル%以上のNiを含むことが好ましく、70%以上のNiを含むことがより好ましい。
 上記一般式(2)において、0.5≦x≦1.5であり、さらに好ましくは0.7≦x≦1.3である。
 正極活物質は、上記化合物の表面にコーティングを施したものであってもよい。さらに、正極活物質は、市販品であってもよい。
 上記一般式(2)で表されるリチウム系正極活物質や、その他のリチウム系正極活物質の組成の例には、Li1.0Ni0.8Co0.2、Li1.0Ni0.5Mn0.5、Li1.00Ni0.35Co0.34Mn0.34(NCM111)、Li1.00Ni0.52Co0.20Mn0.30(NCM523)、Li1.00Ni0.50Co0.30Mn0.20(NCM532)、Li1.00Ni0.6Co0.2Mn0.2(NCM622)、Li1.00Ni0.83Co0.12Mn0.05(NCM811)、Li1.00Ni0.85Co0.15Al0.05(NCA811)、LiCoO(LCO)、およびLiFePO4(LFP)等が含まれる。
 さらに、正極活物質は、異なる複数種類のリチウム系正極活物質を含んでいてもよく、例えば、上記のリチウム系正極活物質の中から、組成の異なるLiNiCoMn(x、y、およびzは、上記具体例と同様である)を複数含んでいてもよいし、LiNiCoMn(x、y、およびzは、上記具体例に示すとおりである)とLiNiCoAl(x、y、およびzは、上記具体例に示すとおりである)とを含んでいてもよい。
 電極合剤が含む正極活物質の量は、電極合剤の用途等に応じて適宜選択されるが、上記バインダー由来の固形分、正極活物質、および導電助剤の合計量に対して、40質量%以上99.9質量%以下が好ましい。正極活物質の量が当該範囲であると、例えば十分な充放電容量が得られ、電池性能が良好になりやすい。
 一方、上記バインダーは、上述の正極活物質、特にNiを比較的多く含む正極活物質と混合しても、ゲル化が生じ難い。さらに、上記バインダーは、上記正極活物質等に対して、高い接着性を発現する。そこで、バインダー由来の固形分(硬化時に揮発する成分を除いた総量)、活物質、および導電助剤の合計量に対する、バインダー由来の固形分の割合を例えば0.2質量%以上20質量%以下とすることもできる。バインダー由来の固形分の量は、0.2質量%以上10質量%以下がより好ましく、0.2質量%以上4質量%以下がさらに好ましい。
 また、電極合剤が含む導電助剤は、上記正極活物質同士、または上記正極活物質と集電体との間の導電性をより高めることができる化合物であれば特に制限されない。導電助剤の例には、アセチレンブラック、ケッチェンブラック、カーボンブラック、黒鉛粉末、グラフェン、カーボンナノファイバー、カーボンナノチューブ、およびカーボンファイバー等が含まれる。
 電極合剤が含む導電助剤の量は、その種類等に応じて適宜選択される。導電性の向上および導電助剤の分散性をともに高める観点から、上記バインダー由来の固形分、正極活物質、および導電助剤の合計量に対して、0.1質量%15質量%以下が好ましく、0.1質量%以上7質量%以下がより好ましく、0.1質量%以上5質量%以下がさらに好ましい。
 電極合剤は上記バインダーが含む非水溶媒とは異なる溶媒等を含んでいてもよい。当該溶媒は、上述のバインダーが含みうる非水溶媒の中から選択できる。
 電極合剤中の溶媒の総量(バインダー中の非水溶媒の量も含む)は、特に制限されないが、通常、上述の活物質100質量部に対して20質量部以上150質量部以下が好ましい。
 電極合剤はさらに、分散剤、接着補助剤、増粘剤等を含んでいてもよく、これらは、公知の化合物を用いることができる。これらの量は、本発明の目的および効果を損なわない範囲であれば特に制限されないが、バインダー由来の固形分および活物質の合計量に対して、15質量%以下が好ましい。
 また、電極合剤は、リン化合物、硫黄化合物、有機酸、アミン化合物、およびアンモニウム化合物等の窒素化合物;有機エステル、各種シラン系、チタン系およびアルミニウム系のカップリング剤;上述のフッ化ビニリデン系重合体以外のフッ化ビニリデン重合体、ポリテトラフルオロエチレン(PTFE)、スチレン・ブタジエンゴム(SBR)、およびポリアクリロニトリル(PAN)等の樹脂;等の添加剤をさらに含んでいてもよい。これらは、本発明の目的および効果を損なわない範囲であれば特に制限されないが、バインダー由来の固形分および正極活物質の合計量に対して、15質量%以下が好ましい。
 上記電極合剤は、全ての成分を一度に混合して調製してもよく、一部の成分を先に混合し、後から残りの成分を混合して調製してもよい。
 電極合剤の粘度は、電極合剤を塗工して電極合剤層を形成するときの液だれ・塗工ムラ・塗工後の乾燥遅延を防止でき、電極合剤層作製時の作業性や塗布性が良好な粘度であれば特に限定されない。通常、B型粘度計にて、20℃、回転数6rpmにて測定される粘度(スラリー粘度)が、100mPa・s以上100000mPa・s以下であることが好ましく、1000mPa・s以上80000mPa・s以下がより好ましく、2000mPa・s以上70000mPa・s以下であることが特に好ましい。本明細書における電極合剤の粘度(スラリー粘度)は、上記B型回転粘度計にて回転開始2分後に測定される値とする。
 3.電極
 本発明のリチウムイオン二次電池の電極(正極)は、上述の電極合剤から成る電極合剤層を含んでいればよく、例えば、集電体と、当該集電体上に配置された、上述の電極合剤層とを有する構造体である。
 ・集電体
 集電体は、電気を取り出すための端子である。集電体の材質としては、特に限定されるものではなく、アルミニウム、銅、鉄、ステンレス鋼、鋼、ニッケル、チタン等の金属箔あるいは金属網等を用いることができる。また、他の媒体の表面にカーボンブラック等を含む層を形成したものや、上記金属箔あるいは金属網等を施したものであってもよい。
 ・電極合剤層
 電極合剤層は、バインダーおよび正極活物質を含む組成物(例えば、上述の電極合剤)を集電体上に塗布し、乾燥させて形成した層である。電極合剤層は、上記集電体の一方の面のみに形成されていてもよく、両方の面に配置されていてもよい。
 電極合剤層は、上述のバインダー由来の固形分(フッ化ビニリデン系重合体)および活物質を少なくとも含み、必要に応じて導電助剤や、分散剤、接着補助剤、増粘剤等の各種添加剤等をさらに含む。これらは、電極合剤で説明したものと同様である。
 ここで、電極合剤層の厚みは特に限定されるものではないが、一例において、1μm以上1000μm以下が好ましい。また、集電体の一方の面に形成された電極合剤層の目付量は、特に限定されるものではなく、任意の目付量とすることができるが、一例において、50g/m以上1000g/m以下が好ましく、100g/m以上500g/m以下がより好ましい。
 上記電極合剤層は、上述の電極合剤を集電体上に塗布する工程と、これを乾燥させる工程と、を行うことで形成できる。
 電極合剤の塗布方法は、特に限定されず、ドクターブレード法、リバースロール法、コンマバー法、グラビヤ法、エアーナイフ法、ダイコート法およびディップコート法等を適用できる。
 また、電極合剤の塗布後、任意の温度で加熱し、非水溶媒を乾燥させる。乾燥温度は、一例において、60℃以上500℃以下が好ましく、80℃以上200℃以下がより好ましい。加熱は、異なる温度で複数回行ってもよい。なお、大気圧下、加圧下、減圧下で合剤中の溶媒を乾燥させてもよい。乾燥後にさらに熱処理を行ってもよい。
 上記電極合剤の塗布および乾燥後、さらにプレス処理を行ってもよい。プレス処理を行うことにより、電極密度を向上させることができる。プレス圧力は、一例において、1kPa以上10GPa以下が好ましい。
 4.リチウムイオン二次電池
 上述のバインダーや電極合剤は、上述のように、リチウムイオン二次電池等の電極(正極)の形成に使用可能であるが、リチウムイオン二次電池の他の層の形成に使用してもよい。
 以下、本発明の具体的な実施例を比較例とともに説明するが、本発明はこれらに限定されるものではない。
 1.物性の測定方法および評価方法
 後述の実施例および比較例では、以下の方法でフッ化ビニリデン系重合体のインヘレント粘度を測定した。また、電極の剥離強度試験や、粘度比試験は、以下の手順で行った。
 ・インヘレント粘度
 フッ化ビニリデン系重合体のインヘレント粘度は、以下のように測定した。まず、フッ化ビニリデン系重合体80mgを20mLのN,N-ジメチルホルムアミドに溶解させて、30℃の恒温槽内でウベローデ粘度計を用いて粘度を測定した。そして、得られた値から、次式に基づいて、フッ化ビニリデン系重合体のインヘレント粘度(η)を算出した。
 η=(1/C)・ln(η/η
 上記式において、ηは溶液の粘度、ηは溶媒であるN,N-ジメチルホルムアミド単独の粘度、Cは溶液中のフッ化ビニリデン系重合体の濃度、すなわち0.4g/dLである。
 ・電極の剥離強度試験
 後述の実施例および比較例で作製した電極を、長さ100mm、幅20mmに切り出した。そして、JIS F6854-1に準じて引張試験機(ORIENTE CHSIA-1150 UNIVERSAL TESTING MACHINE社製)を使用し、ヘッド速度10mm/分で90°剥離試験を行い、剥離強度を測定した。
 ・粘度比試験
 (1)スラリーの調製
 後述の電極活物質NCA811(Li1.00Ni0.85Co0.15Al0.05)と、カーボンブラック(SP:Timcal Japan社製 SuperP(登録商標)、平均粒子径:40nm、比表面積:60m/g)と、を加え、粉体混合を行った。
 一方、各実施例または比較例で使用したバインダー中のフッ化ビニリデン系重合体を後述のN-メチル-2-ピロリドン(以下、「NMP」とも称する)に溶解させ、6質量%のバインダーの樹脂成分(フッ化ビニリデン系重合体)を含む溶液を調製した。そして、NCA811およびカーボンブラックの混合物に対し、フッ化ビニリデン系重合体溶液を添加し、混錬を行った。具体的には、固形分濃度が81.5質量%となるように上記溶液を添加し、2000rpmで2.5分間1次混錬を行った。次いで、残りの上記溶液およびNMPを添加して固形分濃度を75質量%とした。そして、2000rpmで3分間、2次混錬を行い、スラリーを得た。なお、1次混錬および2次混錬後、それぞれ、スラリー温度が40℃になるまで放冷を行った。また、上述のスラリーの調整は、22℃、露点-30℃以上-40℃以下の環境下で行った。得られたスラリーにおける電極活物質、カーボンブラック、およびフッ化ビニリデン重合体の質量比は、この順で、100:2:2である。
 (2)粘度の測定
 得られたスラリーについて、E型粘度計を用いて、25℃、露点-30℃以上-40℃以下の環境下で、せん断速度2s-1で測定を行った。粘度は、スラリーを測定装置に仕込んでから60秒待機し、その後ローターを回転させることで測定を行った。また、ローターの回転開始から300秒後の値を当該スラリーの粘度とした。
 (3)スラリーの保存
 各スラリーを25℃、窒素雰囲気下にて2週間保存した。保存環境の露点は-30℃以上-40℃以下とした。
 (4)粘度の測定
 2週間保存後のスラリーの粘度を、E型粘度計を用いて、25℃、露点-30℃以上-40℃以下の環境下で、せん断速度2s-1で測定を行った。粘度の測定方法は上記と同様にした。
 (5)粘度比の算出
 上記(2)で測定した粘度および上記(4)で測定した粘度から、以下の式に基づいて粘度比を算出した。
 粘度比(%)=(保存後のスラリー粘度)/(作製直後のスラリー粘度)×100
 2.原料
 後述のフッ化ビニリデン系重合体の調製には、以下の材料を使用した。
 ・VDF:フッ化ビニリデン
 ・CEA:カルボキシエチルアクリレート
 ・CMA:カルボキシメチルアクリレート
 ・APOPA:3-((3-(アクリロイルオキシ)プロパノイル)オキシ)プロパン酸
 ・APOPOPA:3-((3-(アクリロイルオキシ)プロパノイル)オキシ)プロパノイル)オキシ)プロパン酸
 ・AA:アクリル酸
 ・APS:アクリロイロキシプロピルコハク酸
 電極の作製や、上述のスラリー調製には、以下の成分を使用した。
 ・NCA811(水分散液のレーザ回折・拡散法で測定される平均粒子径:12.5μm、BET1点法で測定される比表面積:0.24m/g、上述の方法で測定されるpH:11.6)
 ・N-メチル-2-ピロリドン(水分量:500ppm未満)
 ・カーボンブラック:Timcal Japan社製 SuperP(登録商標)、電子顕微鏡解析で測定した平均粒子径:40nm、BET1点法で測定した比表面積:60m/g
 3.バインダーおよび電極の作製
 (1)フッ化ビニリデン系重合体の調製
 [フッ化ビニリデン系重合体Aの調製]
 内容量2リットルのオートクレーブに、イオン交換水1240g、メトローズ90SH-100(信越化学工業社製)0.4g、50質量%ジイソプロピルペルオキシジカーボネート-フロン225cb溶液2.2g、フッ化ビニリデン396g、およびモノマー混合物A(CEA/APOPA/APOPOPA=0.4/0.5/0.1(質量比))0.4gの各量を仕込み、45℃に加熱した。次に、45℃を維持しながら、5質量%のモノマー混合物A水溶液を平均流速0.75g/分で反応容器に連続的に供給した。得られた重合体スラリーを脱水、乾燥してフッ化ビニリデン系重合体A(VDF/CEA/APOPA/APOPOPA、)を得た。モノマー混合物Aは、初期に添加した量を含め、全量4.0gを添加した。
 [フッ化ビニリデン系重合体Bの調製]
 内容量2リットルのオートクレーブに、イオン交換水1248g、メトローズ90SH-100(信越化学工業社製)0.5g、50質量%ジイソプロピルペルオキシジカーボネート-フロン225cb溶液0.48g、フッ化ビニリデン396g、およびモノマー混合物B(AA/CEA/APOPA/APOPOPA=0.2/0.3/0.4/0.1(質量比))0.4gの各量を仕込み、45℃に加熱した。次に、45℃を維持しながら、5質量%のモノマー混合物B水溶液を流速0.3g/分で反応容器に連続的に供給した。得られた重合体スラリーを脱水、乾燥してフッ化ビニリデン系重合体B(VDF/AA/CEA/APOPA/APOPOPA)を得た。モノマー混合物Bは、初期に添加した量を含め、全量4.0gを添加した。
 [フッ化ビニリデン系重合体Cの調製]
 内容量2リットルのオートクレーブに、イオン交換水1248g、メトローズ90SH-100(信越化学工業社製)0.4g、50質量%ジイソプロピルペルオキシジカーボネート-フロン225cb溶液2.0g、フッ化ビニリデン396g、およびAA0.2gの各量を仕込み、45℃に加熱した。次に、45℃を維持しながら、5質量%のAA水溶液を流速0.5g/分で反応容器に連続的に供給した。得られた重合体スラリーを脱水、乾燥してフッ化ビニリデン系重合体C(VDF/AA)を得た。AAは、初期に添加した量を含め、全量4.0gを添加した。
 [フッ化ビニリデン系重合体Dの調製]
 内容量2リットルのオートクレーブに、イオン交換水1248g、メトローズ90SH-100(信越化学工業社製)0.4g、50質量%ジイソプロピルペルオキシジカーボネート-フロン225cb溶液2.2g、フッ化ビニリデン396g、およびCEA0.4gの各量を仕込み、45℃に加熱した。次に、45℃を維持しながら、5質量%のCEA水溶液を流速0.8g/分で反応容器に連続的に供給した。得られた重合体スラリーを脱水、乾燥してフッ化ビニリデン系重合体D(VDF/CEA)を得た。CEAは、初期に添加した量を含め、全量4.0gを添加した。
 [フッ化ビニリデン系重合体Eの調製]
 内容量2リットルのオートクレーブに、イオン交換水1224g、メトローズ90SH-100(信越化学工業社製)0.4g、50質量%ジイソプロピルペルオキシジカーボネート-フロン225cb溶液2.2g、フッ化ビニリデン396g、およびAPS0.4gの各量を仕込み、45℃に加熱した。次に、45℃を維持しながら、5質量%のモノマー混合物F(APS/AA=0.7/0.2(質量比))水溶液を流速0.45g/分で反応容器に連続的に供給した。得られた重合体スラリーを脱水、乾燥してフッ化ビニリデン共重合体E(VDF/APS/AA)を得た。
 [フッ化ビニリデン系重合体Fの調製]
 内容量2リットルのオートクレーブに、イオン交換水1212g、メトローズ90SH-100(信越化学工業社製)0.4g、50質量%ジイソプロピルペルオキシジカーボネート-フロン225cb溶液2.4g、フッ化ビニリデン396g、CEA0.05g、およびCMA0.1gの各量を仕込み、45℃に加熱した。次に、45℃を維持しながら、5質量%のモノマー混合物G(CEA/CMA=1/2(質量比))水溶液を流速0.5g/分で反応容器に連続的に供給した。得られた重合体スラリーを脱水、乾燥してフッ化ビニリデン共重合体F(VDF/CEA/CMA)を得た。
 [フッ化ビニリデン系重合体Gの調製]
 内容量2リットルのオートクレーブに、イオン交換水1222g、メトローズ90SH-100(信越化学工業社製)0.4g、50質量%ジイソプロピルペルオキシジカーボネート-フロン225cb溶液2.2g、フッ化ビニリデン396g、およびCMA0.4gの各量を仕込み、45℃に加熱した。次に、45℃を維持しながら、5質量%のCMA水溶液を流速0.6g/分で反応容器に連続的に供給した。得られた重合体スラリーを脱水、乾燥してフッ化ビニリデン共重合体G(VDF/CMA)を得た。
 (2)電極合剤の調製、ならびに電極の作製
 (実施例1)
 電極活物質NCA811に導電助剤としてカーボンブラック(SP:Timcal Japan社製 SuperP(登録商標)、平均粒子径:40nm、比表面積:60m/g)を加え、粉体混合を行った。
 上記フッ化ビニリデン系重合体A(バインダー)をNMPに溶解させ、8質量%のフッ化ビニリデン系重合体Aを含む、フッ化ビニリデン系重合体溶液を調製した。そして、NCA811およびカーボンブラックの混合物に対し、NMPを添加し、混錬を行った。具体的には、固形分濃度が83.7質量%となるようにフッ化ビニリデン系重合体溶液を添加し、2000rpmで4分間1次混錬を行った。次いで、フッ化ビニリデン系重合体溶液をさらに添加して固形分濃度を73.5質量%とし、2000rpmで3分間2次混錬を行い、電極合剤を得た。
 得られた電極合剤を、集電体である厚さ15μmのアルミ箔上にバーコーターで塗工し、これを恒温槽内、窒素雰囲気下にて110℃で30分間一次乾燥を行った。次いで、窒素雰囲気下にて130℃で2時間二次乾燥して、目付量約250g/mの電極(電極剥離測定サンプル)を得た。得られた電極合剤における電極活物質、カーボンブラック、およびフッ化ビニリデン系重合体の質量比は、この順で、100:2:1.5である。
 (実施例2)
 バインダーをフッ化ビニリデン系重合体Bに変更した以外は、実施例1と同様にして電極合剤および電極を得た。
 (実施例3)
 バインダーをフッ化ビニリデン系重合体Fに変更した以外は、実施例1と同様にして電極合剤および電極を得た。
 (比較例1)
 バインダーをクレハ社製KF#7300に変更した以外は、実施例1と同様にして電極合剤および電極を得た。
 (比較例2)
 バインダーをフッ化ビニリデン系重合体Cとフッ化ビニリデン系重合体Dを重量比3:7でブレンドしたものに変更した以外は、実施例1と同様にして電極合剤および電極を得た。
 (比較例3)
 バインダーをフッ化ビニリデン系重合体Cに変更した以外は、実施例1と同様にして電極合剤および電極を得た。
 (比較例4)
 バインダーをフッ化ビニリデン共重合体Dに変更した以外は、実施例1と同様にして電極合剤および電極を得た。
 (比較例5)
 バインダーをフッ化ビニリデン共重合体Eに変更した以外は、実施例1と同様にして電極合剤および電極を得た。
 (比較例6)
 バインダーをフッ化ビニリデン系重合体Dとフッ化ビニリデン系重合体Gとを重量比4:6でブレンドしたものに変更した以外は、実施例1と同様にして電極合剤および電極を得た。
 上記表1に示されるように、フッ化ビニリデン由来の構成単位と、カルボキシ基を有する構成単位2種以上とを含むフッ化ビニリデン系重合体を、バインダーに含む場合、剥離強度が高く、かつゲル化耐性が良好であった(実施例1~3)。
 一方、フッ化ビニリデンの単独重合体をバインダーに使用した場合、剥離強度およびゲル化耐性が低かった(比較例1)。また、フッ化ビニリデン由来の構成単位と、カルボキシ基を有する構成単位1種のみとを含むフッ化ビニリデン系重合体を、バインダーに含む場合、剥離耐性は向上したものの、粘度比が100%を超え、ゲル化耐性が低かった(比較例3~5)。さらに、フッ化ビニリデン由来の構成単位と、カルボキシ基を有する構成単位1種のみと、を含むフッ化ビニリデン系重合体を、2種混合した場合にも、ゲル化耐性が低かった(比較例2および6)。
本出願は、2022年3月25日出願の特願2022-049941号に基づく優先権を主張する。当該出願明細書に記載された内容は、すべて本願明細書に援用される。
 本発明のバインダーは、ニッケルを多く含む正極活物質と混合しても、劣化や増粘が少ない。また、当該バインダーは、少量でも接着強度が良好である。したがって、当該バインダーや、これを含む電極合剤、電極は、リチウムイオン二次電池の製造に非常に有用である。

 

Claims (7)

  1.  フッ化ビニリデン系重合体を含有する、リチウムイオン二次電池の正極用のバインダーであって、
     前記フッ化ビニリデン系重合体が、フッ化ビニリデン由来の構成単位と、カルボキシ基を有する構成単位2種以上と、を含み、
     以下の方法で求めたスラリーの粘度比が100%以下である、バインダー。
     [スラリーの粘度比の求め方]
     (1)電極活物質NCA811、カーボンブラック、前記バインダー中の前記フッ化ビニリデン系重合体、およびN-メチル-2-ピロリドンのみから成り、前記電極活物質、前記カーボンブラック、および前記バインダー中の前記フッ化ビニリデン系重合体の質量比が100:2:2であり、かつ固形分濃度が75質量%であるスラリーを調製する。
     (2)前記スラリーの粘度を、E型粘度計を用いて、25℃、せん断速度2s-1で測定する。
     (3)前記スラリーを25℃、窒素雰囲気下で2週間保存する。
     (4)保存後の前記スラリーの粘度を、E型粘度計を用いて、25℃、せん断速度2s-1で測定する。
     (5)以下の式に基づき、前記スラリーの粘度比を算出する。
     粘度比(%)=(保存後のスラリー粘度)/(作製直後のスラリー粘度)×100
  2.  前記フッ化ビニリデン系重合体が、フッ化ビニリデン由来の構成単位と、カルボキシ基を有する構成単位3種以上と、を含む、
     請求項1に記載のバインダー。
  3.  前記フッ化ビニリデン系重合体は、全構成単位を100質量%としたとき、カルボキシ基を有する構成単位の総量が0.1質量%以上2質量%以下である、
     請求項1または2に記載のバインダー。
  4.  請求項1~3のいずれか一項に記載のバインダーと正極活物質とを含む、電極合剤。
  5.  前記正極活物質が、下記一般式(2)で表される化合物である、
     請求項4に記載の電極合剤。
     LiM・・・(2)(一般式(2)中、Mは、Niを含む少なくとも1種の金属元素を表し、かつ、Mで表される金属元素の合計を100モル%とした時、Niの比率が55モル%以上であり、0.5≦x≦1.5である)
  6.  請求項4または5に記載の電極合剤を含む電極合剤層が、集電体上に設けられている、電極。
  7.  請求項6に記載の電極を含む、
     リチウムイオン二次電池。
PCT/JP2023/011009 2022-03-25 2023-03-20 バインダー、電極合剤、電極、およびリチウムイオン二次電池 WO2023182308A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022049941 2022-03-25
JP2022-049941 2022-03-25

Publications (1)

Publication Number Publication Date
WO2023182308A1 true WO2023182308A1 (ja) 2023-09-28

Family

ID=88101078

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2023/011009 WO2023182308A1 (ja) 2022-03-25 2023-03-20 バインダー、電極合剤、電極、およびリチウムイオン二次電池
PCT/JP2023/011004 WO2023182307A1 (ja) 2022-03-25 2023-03-20 バインダー、電極合剤、電極、およびリチウムイオン二次電池

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011004 WO2023182307A1 (ja) 2022-03-25 2023-03-20 バインダー、電極合剤、電極、およびリチウムイオン二次電池

Country Status (1)

Country Link
WO (2) WO2023182308A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012219125A (ja) * 2011-04-05 2012-11-12 Kureha Corp フッ化ビニリデン系共重合体、および該共重合体の用途
JP2014192136A (ja) * 2013-03-28 2014-10-06 Asahi Kasei Corp 非水電解質二次電池用正極の製造方法及び非水電解質二次電池
JP2017188203A (ja) * 2016-04-01 2017-10-12 住友金属鉱山株式会社 リチウムイオン二次電池用正極材スラリーの安定性評価方法
WO2018008262A1 (ja) * 2016-07-06 2018-01-11 株式会社クレハ バインダー組成物、電極合剤、電極、非水電解質二次電池、およびバインダー組成物の製造方法
JP2018195552A (ja) * 2016-10-07 2018-12-06 ダイキン工業株式会社 二次電池用結着剤及び二次電池用電極合剤
WO2019087652A1 (ja) * 2017-10-30 2019-05-09 ダイキン工業株式会社 二次電池用結着剤、二次電池用電極合剤、二次電池用電極及び二次電池
WO2019239781A1 (ja) * 2018-06-12 2019-12-19 株式会社クレハ バインダー組成物、電極合剤、電極構造体、電極構造体の製造方法および二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012219125A (ja) * 2011-04-05 2012-11-12 Kureha Corp フッ化ビニリデン系共重合体、および該共重合体の用途
JP2014192136A (ja) * 2013-03-28 2014-10-06 Asahi Kasei Corp 非水電解質二次電池用正極の製造方法及び非水電解質二次電池
JP2017188203A (ja) * 2016-04-01 2017-10-12 住友金属鉱山株式会社 リチウムイオン二次電池用正極材スラリーの安定性評価方法
WO2018008262A1 (ja) * 2016-07-06 2018-01-11 株式会社クレハ バインダー組成物、電極合剤、電極、非水電解質二次電池、およびバインダー組成物の製造方法
JP2018195552A (ja) * 2016-10-07 2018-12-06 ダイキン工業株式会社 二次電池用結着剤及び二次電池用電極合剤
WO2019087652A1 (ja) * 2017-10-30 2019-05-09 ダイキン工業株式会社 二次電池用結着剤、二次電池用電極合剤、二次電池用電極及び二次電池
WO2019239781A1 (ja) * 2018-06-12 2019-12-19 株式会社クレハ バインダー組成物、電極合剤、電極構造体、電極構造体の製造方法および二次電池

Also Published As

Publication number Publication date
WO2023182307A1 (ja) 2023-09-28

Similar Documents

Publication Publication Date Title
TWI753208B (zh) 二次電池用結合劑、二次電池用電極合劑、二次電池用電極及二次電池
KR101744493B1 (ko) 비수 이차 전지 전극용 바인더 수지, 비수 이차 전지 전극용 바인더 수지 조성물, 비수 이차 전지 전극용 슬러리 조성물, 비수 이차 전지용 전극, 및 비수 이차 전지
US10446850B2 (en) Binder resin composition for secondary battery electrodes, slurry for secondary battery electrodes, electrode for secondary batteries, and lithium ion secondary battery
JP5366823B2 (ja) 非水系電池用正極構造体
JP6645040B2 (ja) 電気化学素子用導電材分散液、電気化学素子正極用スラリー、電気化学素子用正極および電気化学素子
KR102401458B1 (ko) 2차 전지 정극용 바인더 조성물, 2차 전지 정극용 슬러리 조성물, 2차 전지용 정극 및 2차 전지
WO2012043765A1 (ja) 非水系二次電池用正極合剤、それを用いた非水系二次電池用正極および二次電池
JP6398191B2 (ja) 二次電池正極用スラリーの製造方法、二次電池用正極の製造方法、及び二次電池の製造方法
JP7031655B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用導電材ペースト組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
WO2018008263A1 (ja) バインダー組成物、電極合剤、電極、および非水電解質二次電池
JP6696534B2 (ja) 二次電池正極用スラリーの製造方法、二次電池用正極の製造方法、及び二次電池の製造方法
TW202109952A (zh) 電化學裝置用組成物、正極合劑、正極結構體及二次電池
JP2017069108A (ja) リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
JP2013178926A (ja) 非水系二次電池用正極合剤
JP7060405B2 (ja) バインダー組成物、電極合剤および非水電解質二次電池
WO2012043763A1 (ja) 蓄電デバイス用電極合剤およびその製造方法、ならびにこれを用いた蓄電デバイス用電極およびリチウムイオン二次電池
JP5697906B2 (ja) 二次電池用電極水系組成物
WO2023182308A1 (ja) バインダー、電極合剤、電極、およびリチウムイオン二次電池
EP4201971A1 (en) Binding agent for battery, electrode mixture, electrode, and secondary battery
JP7400712B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用導電材ペースト組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
WO2023127432A1 (ja) 非水電解質二次電池用バインダー、電極合剤、電極、および電池
JP7328219B2 (ja) 黒鉛/ケイ素アノード用pvdfバインダー
JP7192774B2 (ja) 電気化学素子電極用スラリー組成物、電気化学素子用電極、電気化学素子、および電気化学素子電極用スラリー組成物の製造方法
WO2024070815A1 (ja) 集電体およびその製造方法、電極、ならびに電池
CN115702173A (zh) 用于锂离子蓄电装置的电极粘合剂组合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774903

Country of ref document: EP

Kind code of ref document: A1