WO2023181932A1 - 濾過膜ユニット、保持体、濾過システム、及び濾過処理設備 - Google Patents

濾過膜ユニット、保持体、濾過システム、及び濾過処理設備 Download PDF

Info

Publication number
WO2023181932A1
WO2023181932A1 PCT/JP2023/008740 JP2023008740W WO2023181932A1 WO 2023181932 A1 WO2023181932 A1 WO 2023181932A1 JP 2023008740 W JP2023008740 W JP 2023008740W WO 2023181932 A1 WO2023181932 A1 WO 2023181932A1
Authority
WO
WIPO (PCT)
Prior art keywords
filtration membrane
filtration
socket
protrusion
membrane unit
Prior art date
Application number
PCT/JP2023/008740
Other languages
English (en)
French (fr)
Inventor
寛 野口
輝武 丹羽
彰利 中川
Original Assignee
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明電舎 filed Critical 株式会社明電舎
Publication of WO2023181932A1 publication Critical patent/WO2023181932A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis

Definitions

  • the present invention relates to a filtration membrane unit, a holder for holding the same, a filtration system including the filtration membrane unit and the holder, and a filtration treatment facility including a plurality of filtration systems.
  • a filtration membrane unit that includes at least a filtration membrane and allows the filtrate in the filtration membrane to flow along the longitudinal direction of the filtration membrane.
  • the membrane element as a filtration membrane unit described in Patent Document 1 uses a separation membrane and filter plates joined to each of the longitudinal end surfaces of the separation membrane as the filtration membrane. Suction force is applied to this membrane element by the operation of a suction device such as a pump from both sides in the longitudinal direction of the membrane element. As a result, inside the membrane element, the filtrate flows from the longitudinal center of the membrane element to one side along the longitudinal direction of the membrane element, and vice versa. A flow of filtrate towards the other side occurs. As a result, the filtrate is discharged from each of the longitudinal ends of the membrane element.
  • the holder that holds the membrane element described in Patent Document 1 includes two water collection cases. Each of these water collection cases includes a slit extending along the transverse direction of the membrane element. One longitudinal end of the membrane element is held in one of the water collection cases by being pushed into the slit of the one water collection case. The other end of the membrane element in the longitudinal direction is held in the other water collection case by being pushed into the slit of the other water collection case.
  • the membrane element may be damaged due to the stress that accompanies the wobbling.
  • the present invention has been made in view of the above background, and its purpose is to provide a filtration system that can suppress the occurrence of damage to a filtration membrane caused by rattling at the end of a filtration membrane unit such as a membrane element.
  • the present invention provides a membrane unit. Furthermore, it is an object of the present invention to provide a holder that holds such a filtration membrane unit, a filtration system that includes the filtration membrane unit and the holder, and a filtration treatment facility that includes a plurality of filtration systems.
  • one aspect of the present invention includes at least a filtration membrane, and the filtrate in the filtration membrane is caused to flow along the longitudinal direction of the filtration membrane.
  • a filtration membrane unit in which one end of the filtration membrane in the longitudinal direction is inserted, and the peripheral surface consisting of a front surface, a back surface, and two side surfaces at the end portion is completely covered.
  • a socket body that includes a recess into which the end portion is inserted; a first protrusion that protrudes toward one side from one end surface of the socket body in the longitudinal direction; a second protruding body, the first protruding body being disposed at a position shifted toward the center of the socket body in the transverse direction from one end of the socket body in the transverse direction; , the second protrusion is arranged at a position shifted toward the center from the other end of the socket main body in the lateral direction.
  • FIG. 1 is a diagram showing a schematic configuration of a water treatment facility including a filtration system according to an embodiment. It is a perspective view showing a filtration membrane unit concerning an embodiment. It is a sectional view showing a longitudinal section of a suction side socket of the same filter membrane unit. It is a side view showing the same filter membrane unit from the side.
  • FIG. 1 is a perspective view showing a filtration system according to an embodiment. It is an exploded perspective view showing the same filtration system. It is a perspective view showing a water collection cassette of the holding body concerning an embodiment. It is a perspective view showing filtration processing equipment concerning an embodiment.
  • FIG. 11 is a cross-sectional view showing a cross section of the connecting pipe in a larger scale than that shown in FIG. 10;
  • FIG. 1 is a diagram showing a schematic configuration of a water treatment facility including filtration treatment equipment according to an embodiment.
  • This water treatment facility includes a raw water tank 1, a filtered water tank 2, a treated water tank 3, a control device 4, a raw water pump 5, a first water level sensor 6, a raw water transfer pipe 7, a treated water transfer pipe 8, a suction pump 9, and a first water level sensor 6.
  • a second water level sensor 11, a third water level sensor 12, etc. are provided.
  • the water treatment facility also includes a blower 13, an air supply pipe 14, a pedestal 15, a filtration treatment facility 20, a bubble generator 90, and the like.
  • raw water (pre-treatment water) W1 as a liquid is stored.
  • a first water level sensor such as an ultrasonic sensor installed in the raw water tank 1, detects the water level (water surface height) of the raw water W1 in the raw water tank 1, and sends the detection result to the control device 4 as a water level signal.
  • a raw water pump 5 installed in the raw water tank 1 sucks and discharges the raw water W1 in the raw water tank 1, and sends it to the filtration treatment tank 2 through the raw water transfer pipe 7.
  • a submersible pump is illustrated as the raw water pump 5, a land pump may also be used.
  • the filtration treatment water tank 2 is a water tank made of reinforced concrete.
  • a filtration treatment equipment 20 and a bubble generator 90 are installed in the filtration treatment water tank 2.
  • the filtration treatment equipment 20 and the bubble generator 90 are supported by the pedestal 15.
  • the pedestal 15 supports the bubble generator 90 in such a manner that it is positioned directly below the filtration treatment equipment 20 .
  • Each of the filtration equipment 20 and the bubble generator 90 is immersed in the raw water W1 in the filtration water tank 2.
  • the blower 13 discharges air as a gas sucked through the suction port to the air supply pipe 14 through the discharge port.
  • the air discharged into the air supply pipe 14 is supplied to the bubble generator 90.
  • the bubble generator 90 emits air supplied from the air supply pipe 14 upward as bubbles.
  • the released air bubbles rise in the raw water W1 while contacting a plurality of filter membranes mounted on the filtration treatment equipment 20. At this time, the bubbles cause the solid matter adhering to the surface of the filtration membrane to separate from the surface of the filtration membrane. This separation suppresses clogging of the filtration membrane.
  • the third water level sensor 12 installed in the filtered water tank 2 detects the water level of the raw water W1 in the filtered water tank 2, and transmits the detection result to the control device 4 as a water level signal.
  • the suction pump 9 sucks raw water W 1 in the filtered water tank 2 via the treated water transfer pipe 8 and a plurality of filter membranes, which will be described later, mounted in the filtering equipment 20 .
  • the sucked raw water W 1 is filtered by a filter membrane to become treated water W 2 , and then sent to the treated water tank 3 through the treated water transfer pipe 8 .
  • the second water level sensor 11 set in the treated water tank 3 detects the water level of the treated water W2 in the treated water tank 3, and transmits the detection result to the control device 4 as a water level signal.
  • suction pump 9 a pump that generates suction force using water head pressure may be used.
  • the means of suction is not particularly limited.
  • the control device 4 When the water level in the treated water tank 3 has not reached the upper limit and predetermined operation execution conditions are met, the control device 4 operates the suction pump 9 and the blower 13 to perform the filtration process on the raw water W1. Execute. However, even if the operation execution conditions are met, if the water level of the raw water W 1 in the raw water tank 1 is below the lower limit, or if the water level of the raw water W 1 in the filtered water tank 2 is below the lower limit. In this case, the control device 4 stops execution of the filtration process.
  • the filtration treatment equipment 20 includes a plurality of filtration systems (described in detail later) according to the embodiment.
  • Each filtration system includes a plurality of filtration membrane units (described in detail later) according to embodiments.
  • FIG. 2 is a perspective view showing the filtration membrane unit 21 according to the embodiment.
  • the filtration membrane unit 21 includes a flat filtration membrane 22 .
  • the material for the filter membrane 22 include organic materials such as PVDF (polyvinylidene fluoride) and PVC (polyvinyl chloride).
  • a ceramic whose main component is alumina, silicon carbide, etc. may be used as the material of the filter membrane 22 .
  • the filtration membrane 22 of the filtration membrane unit 21 according to the embodiment is made of a ceramic membrane.
  • suction force is applied to the filtration membrane 22 along the longitudinal direction of the filtration membrane 22.
  • a suction force is applied to the filtration membrane 22 from one side in the longitudinal direction of the filtration membrane 22 (the right side in the left-right direction in FIG. 4, which will be described later). That is, one side of the filter membrane 22 in the longitudinal direction is a suction side to which suction force is applied.
  • the other side in the longitudinal direction of the filtration membrane 22 (the left side in the left-right direction in FIG. 4, which will be described later) is a shielding side that shields the suction force applied to the filtration membrane 22.
  • the filtration membrane unit 21 includes a suction side socket 23 and a shielding side socket 24.
  • the suction side socket 23 serving as a socket in the present invention is fixed to one end of the filtration membrane 22 in the longitudinal direction in order to hold the filtration membrane 22 on one side (suction side) in the longitudinal direction.
  • the shield-side socket 24 is fixed to the other longitudinal end of the filter membrane 22 in order to hold the filter membrane 22 on the other longitudinal side (shield side).
  • Each of the suction side socket 23 and the shielding side socket 24 is fixed to the filtration membrane 22 and extends in the lateral direction of the filtration membrane 22 (in the embodiment, the vertical direction along the direction of gravity).
  • FIG. 3 is a sectional view showing a longitudinal section of the suction side socket 23.
  • the suction side socket 23 includes a socket main body 23a.
  • the socket main body 23a has a recess 23d into which one longitudinal end of the filtration membrane (22 in FIG. 2) is inserted, and a channel 23e extending in the extending direction of the socket main body 23a while communicating with the recess 23d. Be prepared.
  • the socket main body 23a completely covers the circumferential surface of the filtration membrane (22 in FIG. 2), which is composed of a front surface, a back surface, and two side surfaces at one longitudinal end of the filtration membrane (22 in FIG. 2), by the inner peripheral surface of the recess 23d. Cover all around.
  • the inner circumferential surface of the recess 23d covers the entire circumferential surface of one end of the filter membrane (22) in the longitudinal direction, thereby preventing the end from wobbling within the recess 23d.
  • the suction side socket 23 includes a first protrusion 23b and a second protrusion 23c.
  • Each of the first protruding body 23b and the second protruding body 23c is located on the outside (on the right side in FIG. 3) of the socket main body 23a in the longitudinal direction (left-right direction in FIG. 3) of the filtration membrane (22 in FIG. 2). , are lined up along the extending direction (vertical direction in FIG. 3) of the socket body 23a.
  • Each of the first protruding body 23b and the second protruding body 23c extends from one end surface of the socket main body 23a (right side in FIG. 3) to one side in the longitudinal direction (left-right direction in FIG. 3) of the filtration membrane (22). protrude towards.
  • each of the first protruding body 23b and the second protruding body 23c is a tubular structure having a hollow (23b-1, 23c-1).
  • Each hollow (23b-1, 23c-1) in the first protrusion 23b and the second protrusion 23c communicates with the channel 23e of the socket body 23a.
  • each hollow (23b-1, 23c-1) in the first protrusion 23b and the second protrusion 23c is located at each end of the protrusion (23b, 23c) in the extending direction (left-right direction in FIG. 3). is open.
  • the opening on one side the right side in FIG.
  • the first outlet 23b-2 is a discharge port for discharging the treated water (W 2 in FIG. 1). Further, among the two openings in the hollow 23c-1 of the second protrusion 23c, the opening on one side (the right side in FIG. 3) in the extending direction (left-right direction in FIG. 3) of the second protrusion 23c is a flow path.
  • the second outlet 23c-2 is a discharge port for discharging the treated water in the second outlet 23e.
  • the hollow 23b-1 of the first protruding body 23b has an opening 23b-3 on the other side (the left side in FIG. 3) in the extending direction (left-right direction in FIG. 3) of the first protruding body 23b among its two openings. It communicates with the flow path 23e through.
  • the hollow 23c-1 of the second protrusion 23c is the opening 23c on the other side (the left side in FIG. 3) of the two openings of the second protrusion 23c in the extending direction (left-right direction in FIG. 3). -3 and communicates with the flow path 23e.
  • FIG. 4 is a side view showing the filtration membrane unit 21 from the side.
  • the shield-side socket 24 of the filtration membrane unit 21 includes a socket main body 24a and two protrusions 24b.
  • the socket main body 24a includes a recess (not shown) into which the other end (left side in FIG. 4) of the filter membrane 22 in the longitudinal direction (left-right direction in FIG. 4) is inserted. Note that the socket main body 24a does not include a flow path communicating with the above-mentioned recess.
  • the suction force applied to the filtration membrane 22 is blocked on the other longitudinal side of the filtration membrane 22 by the shielding side socket 24 .
  • Each of the two protrusions 24b in the shielding side socket 24 is located outside (on the left side in FIG. 4) of the socket body 24a in the longitudinal direction of the filtration membrane 22 (the left-right direction in FIG. 4), and extends from the socket body 24a. They are lined up along the current direction (vertical direction in FIG. 4).
  • the first outlet provided on the first protruding body 23b (23b-2 in FIG. 3) and the second outlet provided on the second protruding body 23c (second outlet 23c-2 in FIG. 3) will be collectively referred to as "suction side”.
  • ⁇ Two outlets of socket 23'' When the diameter of the discharge port is set to a predetermined value and the amount of filtrate per unit time by the filtration membrane (22, 122) is set to a predetermined value, the conditions for the flow rate of treated water per unit time passing through the discharge port As such, it is necessary to adopt the following conditions.
  • the amount of treated water flowing into the outlet of the filtration membrane unit 121 according to the first comparative example is approximately equal to the amount of treated water flowing into each of the "two outlets of the suction side socket 23" according to the embodiment.
  • the condition is to set it twice. Under such conditions, the flow path resistance of the treated water in the filtration membrane unit 21 is made smaller than in the first comparative example, compared to the configuration described in Patent Document 1, which has only one discharge port (filtrate outlet). Therefore, the power of a suction power machine such as a suction pump (9 in FIG. 1) can be made smaller, and energy saving can be achieved.
  • each of the first outlet (23b-2 in FIG. 3) and the second outlet (23c-2 in FIG. 3) (hereinafter, this arrangement will be referred to as peripheral arrangement).
  • the first outlet 23b-2 and the second outlet 23c-2 are arranged on the tip surface of the protrusion (23b, 23c) (hereinafter, this arrangement is referred to as the tip surface arrangement). ) is more desirable. This is due to the reason explained below.
  • the flow of treated water in the hollows (23b-1, 23c-1) of the protrusions (23b-2, 23c-2) is directed to the discharge ports (first outlet 23b-2, second outlet It is necessary to change direction at an angle of about 90 degrees just before reaching the exit 23c-2).
  • This increases the flow path resistance of the filtration membrane unit 21.
  • the flow direction of the treated water in the hollows (23b-1, 23c-1) of the protrusions (23b-2, 23c-2) and the discharge port (first outlet 23b-2) the flow direction of the treated water when passing through the second outlet 23c-2) is the same direction. Therefore, unlike the circumferential arrangement, there is no need to change the direction of the flow of the treated water in the hollows (23b-1, 23c-1), so the flow path resistance is reduced compared to the circumferential arrangement. be able to.
  • FIG. 5 is a perspective view showing the filtration system 31 according to the embodiment.
  • the filtration system 31 includes a plurality of filtration membrane units 21 and a holder 40 that holds the plurality of filtration membrane units 21.
  • the shape of the holder 40 is a frame, and the holder 40 holds a plurality of filtration membrane units 21 within the frame.
  • the holding body 40 also includes a water collection cassette 41, a blind cassette 60, a first side cover 65, and a second side cover 66.
  • FIG. 6 is an exploded perspective view showing the filtration system 31 according to the embodiment.
  • the holder (40 in FIG. 5) is composed of a flat rectangular parallelepiped-shaped water collection cassette 41, a flat plate-shaped first side cover 65, a flat rectangular parallelepiped-shaped blind cassette 60, and a flat plate-shaped second side cover 66. It is formed by combining the shapes.
  • the water collection cassette 41 and the blind cassette 60 face each other.
  • the first side cover 65 and the second side cover 66 face each other in a direction perpendicular to the direction in which the water collection cassette 41 and the blind cassette 60 face each other.
  • Each of the water collection cassette 41 and the blind cassette 60 is arranged in such a manner that its longitudinal direction is aligned with the direction in which the first side cover 65 and the second side cover 66 face each other.
  • each of the first side cover 65 and the second side cover 66 is arranged such that its longitudinal direction is aligned with the direction in which the water collection cassette 41 and the blind cassette 60 face each other.
  • FIG. 7 is a perspective view showing the water collection cassette 41 of the holder (40 in FIG. 5).
  • the water collection cassette 41 includes a top plate 42, a bottom plate 45, a first long side plate 43, a second long side plate 44, a first short side plate 46 shorter than the long side plates (43, 44), and a first short side plate 46, which is shorter than the long side plates (43, 44).
  • Two short side plates 47 are combined to form a flat rectangular parallelepiped shape.
  • the top plate 42 and the bottom plate 45 face each other.
  • the water collection cassette 41 is arranged in such a manner that the top plate 42 and the bottom plate 45 are arranged vertically along the direction of gravity.
  • Each of the first long side plate 43 and the second long side plate 44 is arranged in such a manner that its longitudinal direction is along the short side direction of the first short side plate 46 and the second short side plate 47, respectively.
  • each of the first short side plate 46 and the second short side plate 47 is arranged in such a manner that its longitudinal direction is aligned with the direction in which the top plate 42 and the bottom plate 45 face each other.
  • a first fixing portion 48 protruding from the front surface is provided on the front surface of the first short side plate 46. Furthermore, a second fixing portion 49 is provided on the front surface of the second short side plate 47 and protrudes from the front surface.
  • the first elongated side plate 43 is located inside the “frame” than the second elongated side plate 44.
  • the first elongated side plate 43 functions as a side plate that holds one longitudinal end of the filtration membrane unit (21 in FIG. 6).
  • the first elongated side plate 43 has an insertion hole into which one of the first protrusion (23b in FIG. 3) and the second protrusion (23c in FIG. 3) is inserted, and the first and second protrusion.
  • a plurality of hole pairs are provided in which one of the protruding bodies is not inserted into the insertion hole and the other is inserted into the insertion hole. In each of the plurality of hole pairs, the distance between the two insertion holes is the same.
  • the two insertion holes of the hole pair are arranged along the short direction of the first long side plate 43 (vertical direction in FIG. 6).
  • One of the first protruding body 23b and the second protruding body 23c is inserted into one of the two insertion holes of the hole pair, and the other protruding body is inserted into the other insertion hole.
  • each of the two protrusions 24b of the shielding socket 24 has a square or rectangular parallelepiped shape.
  • the two protrusions 24b are for positioning the other longitudinal end of the filtration membrane unit (21 in FIG. 6) in the blind cassette (60 in FIG. 6) and holding the other end in the blind cassette. It is.
  • each of the two protrusions (23b, 23c) formed integrally with the socket main body 23a has a tubular shape.
  • the length in the thickness direction of the flat filter membrane 22 will be referred to as width.
  • the inner diameters of the two protrusions (23b, 23c) of the suction side socket 23 be the same as the width of the filtration membrane 22.
  • the tube peripheral walls of the two protrusions (23b23c) protrude from the socket body 23a in the width direction. That is, the outer diameters of the two protrusions (23b, 23c) are larger than the width of the socket body 23a.
  • each of the plurality of hole pairs provided in the first long side plate (43 in FIG. 7) is an insertion hole located on one side in the short direction of the first long side plate (43) among the two insertion holes. are arranged along the longitudinal direction of the first long side plate (43).
  • the insertion hole located on the other side in the lateral direction of the first elongated side plate (43) out of the two insertion holes is also located on the other side in the lateral direction of the first elongated side plate (43). Arrange along the direction.
  • two insertion holes adjacent to each other along the longitudinal direction will be referred to as "two adjacent insertion holes.”
  • the arrangement pitch the arrangement pitch along the longitudinal direction of the first long side plate 43 of the plurality of filtration membrane units (21 in FIG. 6) becomes smaller.
  • the distance between "two adjacent insertion holes” becomes shorter. If this distance becomes excessively short, the length between the holes of the first long side plate (43) (the portion between "two adjacent insertion holes") becomes excessively small, and the length between the holes of the first long side plate (43) becomes excessively small. The necessary strength cannot be obtained.
  • the hole length (narrow limit value) that provides the minimum strength is the same even if the material and thickness of the first long side plate (43) are the same. is constant.
  • the arrangement pitch of the plurality of filtration membrane units 21 is the same, if the outer diameters of the protrusions (23b, 23c) are different, the above-mentioned inter-hole lengths will be different. As the outer diameter of the protrusion (23b, 23c) becomes larger, the length between the holes becomes smaller (the strength of the portion between the holes becomes lower). Therefore, the narrowing of the arrangement pitch of the insertion holes is restricted by the outer diameter of the protrusions (23b, 23c).
  • each of the two protrusions (23b, 23c) is arranged in the manner shown in FIG. 3. Specifically, the distance ⁇ from the center in the extending direction of the socket body 23a (the position indicated by the dashed line L1) to the first protrusion 23b and the distance ⁇ from the center to the second protrusion 23c are set to each other. This is an embodiment in which they are different ( ⁇ ).
  • the reason why the above-mentioned effects can be achieved is as explained below. That is, there are two types of hole pairs provided in the first long side plate 43 shown in FIG. Among the plurality of hole pairs, the first type hole pair 43c is classified as the first type, and the second type hole pair 43f is classified as the second type.
  • the first type hole pairs 43c and the second type hole pairs 43f are arranged alternately along the longitudinal direction (vertical direction in FIG. 7) of the first long side plate 43.
  • the distance between the two insertion holes (43a, 43b) in the first type hole pair 43c and the distance between the two insertion holes (43d, 43e) in the second type hole pair 43f are the same.
  • the insertion hole 43a located on one side (upper side in FIG. 7) in the lateral direction of the first elongated side plate 43 is the first elongated hole pair 43c. It is arranged at a predetermined first position along the lateral direction of the first long side plate 43 within the plane of the side plate 43 . This first position is indicated by a dashed line L2 in FIG.
  • the insertion hole 43d located on one side (upper side in FIG. 7) in the transverse direction of the first elongated side plate 43 is the first elongated hole pair 43f.
  • Two protrusions (23b, 23c) of the filtration membrane unit (21) that take a predetermined first posture are inserted into the first type hole pair 43c.
  • two protrusions (23b, 23c) of the filtration membrane unit (21) that take a predetermined second attitude are inserted into the second type hole pair 43f.
  • the filtration membrane unit (21) that takes the first attitude and the filtration membrane unit (21) that takes the second attitude are located between the center of the suction side socket (23) in the extending direction and the extension of the shielding side socket (24). It is located at a point-symmetrical position (180° rotated position) with respect to the axis passing through the center of the direction (dotted chain line L4 in FIG. 2).
  • the positional deviation of the first elongated side plate 43 along the short direction will be simply referred to as positional deviation.
  • the insertion hole 43a located at the above-mentioned first position (dotted chain line l2) and the two insertion holes (43a, 43b) of the second type hole pair 43f 43d, 43e) the insertion hole 43e located at the second position (dotted chain line L2) is shifted from the insertion hole 43e.
  • One of the two adjacent filtration membrane units (21) inserts the two protrusions (23b, 23c) of the suction side socket (23) into the two insertion holes (43a, 43b) of the first type hole pair 43c. are doing.
  • the two protrusions (23b, 23c) of the suction side socket (23) are inserted into the two insertion holes (43d, 43e) of the second type hole pair.
  • the longitudinal direction of the first long side plate 43 in the longitudinal direction of the first long side plate 43, the other end of the adjacent insertion hole located on one side of the "two adjacent insertion holes" is connected to the adjacent insertion hole located on the other side. It is possible to secure the portion between the holes of the first elongated side plate 43 while locating it on the other side of the hole rather than one end of the hole. More specifically, in FIG. 7, the longitudinal direction of the first long side plate 43 is generally along the left-right direction in FIG. 7 (strictly speaking, the longitudinal direction is slightly inclined from the left-right direction in FIG. 7). ) Therefore, hereinafter, the longitudinal direction of the first long side plate 43 will be described as the left-right direction in FIG. 7.
  • the insertion hole 43a of the first type hole pair 43c located on the leftmost side in the left-right direction in the figure, and the insertion hole 43a on the right side in the left-right direction in the figure.
  • the insertion hole 43a of the first seed hole pair 43c is located on the left side in the left-right direction in the figure than the insertion hole 43d of the second seed hole pair 43f.
  • the insertion hole 43a of the first type hole pair 43c is the adjacent insertion hole located on the other side in the longitudinal direction of the first long side plate 43 among the two adjacent insertion holes
  • the second type hole Attention is focused on an example in which the insertion holes 43d of the pair 43f are adjacent insertion holes located on one side in the longitudinal direction.
  • the left (other side) end of the insertion hole 43d of the second type hole pair 43f is located to the left of the right (one side) end of the insertion hole 43a of the first type hole pair 43c.
  • an inter-hole portion between the insertion hole 43a and the insertion hole 43d is secured.
  • the inter-hole length of the above-mentioned inter-hole portion becomes larger. Therefore, even if the diameter of the two protrusions (23b, 23c) of the suction side socket (23) is increased or the arrangement pitch of the plurality of filtration membrane units (21) is narrowed, the above-mentioned position By increasing the amount of deviation, it is possible to make the length between the holes equal to or greater than the narrowing limit value.
  • the arrangement pitch of the plurality of filtration membrane units 21 can be adjusted without causing positional displacement of the plurality of filtration membrane units 21 (positional displacement along the short direction of the first long side plate 43).
  • the filtration system 31 can be made smaller by narrowing the filtration system 31.
  • the filtration performance of the filtration membrane 22 can be improved by increasing the diameter of the two protrusions (23b, 23c) of the suction side socket (23).
  • the blind cassette 60 shown in FIG. 6 includes a plurality of shielding-side insertion holes (not shown) on the surface facing the plurality of filtration membrane units 21. These shield-side insertion holes are insertion holes into which the protrusion 24b of the shield-side socket 24 of the filtration membrane unit 21 is inserted. By inserting each of the two protrusions 24b of the shielding side socket 24 into the shielding side insertion hole provided on the opposing surface, the other end in the longitudinal direction of the filtration membrane unit 21 is inserted into the blind cassette 60. It is positioned against. In addition, the other end of the filter membrane unit 21 in the longitudinal direction is held in the blind cassette 60.
  • the rubber member includes a base plate extending along the longitudinal direction of the blind cassette 60, and a plurality of partition plates that protrude from the surface of the base plate and are arranged at a predetermined arrangement pitch along the longitudinal direction of the blind cassette 60. It is.
  • the shield-side socket 24 of the filtration membrane unit 21 may be sandwiched between two adjacent partition plates of this rubber member.
  • the shape of the filtration membrane 22 is not limited to a flat plate shape, and may be, for example, a corrugated plate shape.
  • the first protruding body 23b of the suction side socket 23 is located on one side (in the same figure) of the second protruding body 23c in the transverse direction (vertical direction in FIG. 3) of the filtration membrane (22). (hereinafter, this amount of deviation will be referred to as the "first deviation amount"). Furthermore, the first protruding body 23b is disposed at a position shifted toward the center of the socket body 23a from one end (the upper side in FIG. 3) of the socket body 23a in the lateral direction (hereinafter referred to as This amount of deviation is referred to as the "second deviation amount").
  • the one located on one side (upper side in the figure) in the transverse direction (vertical direction in the figure) of the filtration membrane (22) will be referred to as "one side”.
  • side protrusion 24b Furthermore, of the two protrusions 24b, the one located on the other side (lower side in the figure) in the transverse direction is referred to as “the other protrusion 24b.”
  • “One side protrusion 24b” is located at a position shifted from one end (upper end in the figure) to the other side (lower side in the figure) in the extending direction of the socket body (24a) (hereinafter referred to as , this amount of deviation is called the "third deviation amount").
  • the protrusion 24b on the other side is located at a position shifted to one side (upper side in the figure) from the other end (lower end in the figure) in the extending direction of the socket body (24a).
  • this amount of deviation will be referred to as the "fourth deviation amount.”
  • a comparative example different from the example shown in FIG. 3 will be considered for comparison with the example shown in FIG. 3.
  • the first protruding body 23b of the suction side socket 23 is located at one end (the upper end in the figure) of the filtration membrane (22) in the transverse direction.
  • the second protruding body 23c of the suction side socket 23 is located at the other end (lower end in the figure) of the filtration membrane (22) in the transverse direction.
  • the "one side protrusion 24b" is located at one end (the upper end in the figure) of the filtration membrane (22) in the transverse direction. Moreover, “the protruding body 24b on the other side” is located at the other end (lower end in the figure) of the filtration membrane (22) in the transverse direction.
  • the "first shift amount”, “second shift amount”, “third shift amount”, and “fourth shift amount” are all zero.
  • the distance between the first protrusion 24b and the second protrusion 24c of the suction side socket 23 is longer than the same distance in the filtration membrane unit 21 according to the embodiment.
  • the distance between the "one side protrusion 24b" and the “other side protrusion 24b" of the shielding side socket 24 is longer than the same distance in the filtration membrane unit 21 according to the embodiment. .
  • the force applied to the region of the filtration membrane 22 near the protrusion is larger than that of the filtration membrane unit 21 according to the embodiment, so that the filtration membrane 22 is likely to be damaged.
  • the filtration membrane unit 21 according to the embodiment by not arranging each protrusion at the end of the socket in the lateral direction of the filtration membrane 22, damage to the filtration membrane 22 due to skew force can be suppressed. can.
  • the "first deviation amount”, “second deviation amount”, “third deviation amount”, and “fourth deviation amount” should be as large as possible.
  • the "first deviation amount” and “second deviation amount” are excessively increased in the suction side socket 23, the amount of water collected from the first protrusion 23b and the amount of water collected from the second protrusion 23c will not be equal. It will be difficult to achieve this goal.
  • each of the "first deviation amount” and the “second deviation amount” is set to 1/10 or less of the length in the extending direction of the socket body 23a of the suction side socket 23. This is desirable.
  • a range of 1/4 to 1/3 of the length of the socket body 23a of the suction side socket 23 in the extending direction is preferably adopted.
  • the first protruding body 23b is disposed at a position shifted to one side (upper side in FIG. 3) from the center of the socket body 23a
  • the second protruding body 23c is disposed at a position shifted from the center of the socket body 23a. It is arranged at a position shifted to the other side (lower side in FIG. 3).
  • both the first protruding body 23b and the second protruding body 23c are disposed at positions shifted from the center to either one side or the other side, thereby improving the filtration membrane unit (21). Shaking on the side where the protrusion is not arranged is prevented. Therefore, according to the filtration membrane unit (21) according to the embodiment, it is possible to prevent the filtration membrane (22) from being damaged due to the aforementioned vibration.
  • the filtration system (31) adopts the so-called single-pull method in which only one side of the longitudinal sides of the filtration membrane 22 is used as the suction side
  • the filtration system (31) adopts the so-called double-pull method in which each of both sides is used as the suction side. It's okay.
  • suction side sockets 23 having a similar configuration may be provided as the respective sockets on both sides.
  • FIG. 8 is a perspective view showing the filtration treatment equipment 20 according to the embodiment.
  • the filtration treatment facility 20 includes three filtration systems 31.
  • the three filtration systems 31 are lined up along the short direction of the first long side plate (43).
  • the structure of the filtration treatment equipment 20 is a three-stage structure in which three filtration systems 31 are stacked in the vertical direction.
  • FIG. 9 shows the water collection cassette 41 of the filtration system (31) disposed on one side (upper side in the figure) of the first long side plate (43) in the width direction and the other side (upper side in the figure) of the first elongated side plate (43). It is a perspective view which shows the water collection cassette 41 of the filtration system (31) arrange
  • the connecting pipe 70 plays a role of connecting the two water collection cassettes 41.
  • three top plate openings 42a are arranged in a manner that they are lined up at predetermined intervals along the longitudinal direction of the top plate 42.
  • the top plate opening 42a faces one side (upper side in the figure) of the first long side plate 43 in the lateral direction (vertical direction in the figure).
  • first connection sockets 50 are arranged inside the water collection cassette 41. These first connection sockets 50 are fixed to the back surface of the top plate 42 and communicate with the top plate opening 42a.
  • Three bottom plate openings 45a are arranged in the bottom plate 45 of each of the three water collection cassettes 41 so as to be lined up at predetermined intervals along the longitudinal direction of the bottom plate 45.
  • the bottom plate opening 45a faces the other side (lower side in the figure) of the first long side plate 43 in the lateral direction.
  • One of the three top plate openings 42a and one of the three bottom plate openings 45a face each other along the short direction of the first long side plate 43. Further, another one of the three top plate openings 42a and another one of the three bottom plate openings 45a face each other along the lateral direction. Furthermore, the last one of the three top plate openings 42a and the last one of the three bottom plate openings 45a face each other along the lateral direction.
  • Three cylindrical second connection sockets 51 are provided inside the water collection cassette 41. These second connection sockets 51 are fixed to the back surface of the bottom plate 45 and communicate with the bottom plate opening 45a.
  • the water collection cassette 41 arranged on the lower side of the figure and the water collection cassette 41 arranged on the upper side of the figure are connected by three connecting pipes 70.
  • the connecting pipe 70 is arranged in such a manner that the pipe length direction is aligned with the lateral direction (the vertical direction in the figure) of the first elongated side plate 43.
  • a ring-shaped recess (not shown) extending over the entire circumference of the pipe circumferential surface is arranged at one end and the other end of the connecting pipe 70 in the transverse direction, respectively.
  • An O-ring 71 is fitted into the ring-shaped recess.
  • the one end (upper side in the figure) of the connecting pipe 70 in the lateral direction is inserted into the second connection socket 51 of the water collection cassette 41 on the upper side in the figure. Further, the other (lower side in the figure) end of the connecting pipe 70 in the lateral direction is inserted into the first connecting socket 50 of the water collection cassette 41 on the upper side of the figure.
  • the internal space of the water collecting cassette 41 on the upper side of the figure and the inner space of the water collecting cassette 41 on the lower side of the figure communicate with each other through three connecting pipes 70.
  • connection pipes 70 are not inserted into each of the three second connection sockets 51, but are inserted into each of the three second connection sockets 51.
  • a sealing plug (not shown) is inserted into the second connection socket 51. This prevents the suction force generated in the internal space of the lowermost water collection cassette 41 from leaking to the outside through the second connection socket 51.
  • the connection pipes 70 are not inserted into the three first connection sockets 50, but are branched for water collection. A tube is inserted. These water collection branch pipes are connected to one treated water transfer pipe (8 in FIG. 1).
  • the internal space of the water collection cassette 41 on the lower side of the figure contains treated water that has passed through the filter membranes of a plurality of filter membrane units (not shown) held by the first long side plate 43 of the water collection cassette 41. will flow in.
  • treated water that has passed through the filtration membranes of a plurality of filtration membrane units (not shown) held by the first long side plate 43 of this water collection cassette 41 is stored. Water flows in. The treated water existing in the internal space of the lower water collecting cassette 41 in the figure is sucked into the internal space of the upper water collecting cassette 41 through the connecting pipe 70 by the suction force generated inside the connecting pipe 70. be done.
  • treated water that has passed through each of the plurality of filtration membranes 22 is collected in the water collection cassette 41.
  • the treated water in the inner space of the water collection cassette 41 located lower is transferred to the inner space of the water collection cassette 41 located higher. is sucked into.
  • the treated water collected in the internal space of each of the three water collection cassettes 41 is finally collected in the internal space of the uppermost water collection cassette 41, and then the treated water is collected in the treated water tank ( It is transferred to 3) in FIG.
  • the pipe length direction is along the lateral direction of the first long side plate 43, as described above.
  • the O-ring 71 fitted into the end of the connecting pipe 70 on one side (the upper side in the figure) in the short direction prevents the end inserted into the second connecting socket 51 from coming out of the second connecting socket 51. This improves the sealing performance between the end portion and the second connection socket 51.
  • a plurality of O-rings 71 arranged in the lateral direction may be fitted into the end portion.
  • the O-ring 71 fitted into the other (lower side in the figure) end of the connecting pipe 70 in the short direction allows the O-ring 71 to be inserted into the first connecting socket 50 at the end inserted into the first connecting socket 50. This prevents the end portion from coming off and improves the sealing performance between the end portion and the first connection socket 50.
  • a plurality of O-rings 71 arranged in the lateral direction may be fitted into the end portion.
  • the number of the top plate opening 42a, the bottom plate opening 45a, the first connection socket 50, the second connection socket 51, and the connection pipe 70 is not limited to three. It is sufficient if there is one or more.
  • a multiple system in which a plurality of filtration systems (31) are connected in a horizontal manner may also be adopted. Further, both a multi-stage method and a multi-stage method may be adopted.
  • the filtration system (31) of the filtration treatment equipment (20) according to the example is in an upside-down position. Even if the posture of the filtration system (31) is flipped upside down in this way, the two-dimensional layout of each insertion hole on the plane of the first long side plate (43) of the water collection cassette (41) remains the same as before upside down.
  • Each insertion hole is arranged so that
  • the plate material that functioned as the top plate (42) before being turned upside down functions as the bottom plate (45) after being turned upside down, and functions as the bottom plate (45) before being turned upside down.
  • the plate material that was used as a top plate functions as a top plate (42) after being turned upside down.
  • the relative positions of the three top plate openings (42a) of the top plate (42) before being turned upside down and the top plate (42) after being turned upside down are ) are the same relative to the three top plate openings (42a). Therefore, in the region from one end to the other end in the longitudinal direction of the water collection cassette 41, the relative positions of the three bottom plate openings (45a) of the bottom plate (45) before being turned upside down and the position of the bottom plate (45) after being turned upside down are The relative positions with the three bottom plate openings (45a) are the same. Therefore, in the filtration treatment equipment (20) according to the embodiment, the filtration system (31) can be handled without worrying about the vertical posture of the filtration system (31).
  • FIG. 10 is a cross-sectional view showing a longitudinal cross-section of two water collection cassettes 41 stacked one above the other in the filtration treatment equipment (20) according to the embodiment, along with a cross-section of the connecting pipe 70.
  • FIG. 11 is a cross-sectional view showing a cross section of the connecting pipe 70 on a larger scale than in FIG. 10. As shown in FIG.
  • each of the three first connection sockets 50 fixed to the top plate 42 of the water collection cassette 41 is provided with a female screw portion 50a on the inner peripheral surface.
  • the female threaded portion 50a is provided in an upwardly biased region of the entire length of the first connection socket 50 made of a tube material.
  • each of the three second connection sockets 51 fixed to the bottom plate 45 of the water collection cassette 41 includes a female screw portion 51a on the inner peripheral surface.
  • the female threaded portion 51a is provided in a region biased toward the lower side of the entire length of the second connection socket 51 made of a tube material.
  • the connecting pipe 70 includes a male threaded portion 70a on its outer peripheral surface.
  • the male threaded portion 70a is provided in a region biased to one side of the entire length of the connecting pipe 70 in the pipe length direction.
  • the connecting pipe 70 is used in such a manner that, of both ends of the connecting pipe 70 in the pipe length direction, the end provided with the male threaded portion 70a is located below the other end.
  • each of the three connecting pipes 70 has a male threaded portion 70a attached to the female threaded portion 50a of the first connecting socket 50 of the lower one of the two water collecting cassettes 41. It is inserted into this first connection socket 50 while doing so.
  • the above-mentioned screw can prevent the connecting pipe 70 from coming off from the first connecting socket 50.
  • each of the three connecting pipes 70 is held in the lower water collection cassette 41. Since the condition can be maintained reliably, the workability of maintenance and inspection can be improved.
  • the second connection socket 51 in the water collection cassette 41 of the lowest filtration system (31) is equipped with a connection pipe. 70 is not inserted. Instead, a sealing plug (not shown) having a male thread on its outer peripheral surface is inserted into the second connection socket 51. At this time, the sealing plug is inserted into the second connection socket 51 while threading its male threaded portion into the female threaded portion 51a of the second connection socket 51. The sealing plug inserted into the second connection socket 51 in this manner is prevented from coming off from the second connection socket 51 by the aforementioned screw.
  • connection pipe 70 is not inserted into the first connection socket 50 in the water collection cassette 41 of the uppermost filtration system (31). Instead, the above-mentioned water collection branch pipe is inserted into the first connection socket 50. A male screw portion is provided on the outer peripheral surface of this water collection branch pipe. The water collecting branch pipe is inserted into the first connection socket 50 while screwing its own male thread into the female thread of the first connection socket 50. The water collection branch pipe inserted into the first connection socket 50 in this manner is prevented from coming off from the first connection socket 50 by the above-mentioned screw.
  • the present invention is not limited to the above-described embodiments and examples, and configurations different from the embodiments and examples may be adopted within the scope where the configuration of the present invention is applicable.
  • the present invention provides specific effects for each aspect described below.
  • the first aspect includes at least a filtration membrane (for example, the filtration membrane 22), and the filtrate (for example, treated water W 2 ) in the filtration membrane is transferred in the longitudinal direction of the filtration membrane.
  • a filtration membrane unit (for example, the filtration membrane unit 21) that is flown along the longitudinal direction of the filtration membrane, with one longitudinal end of the filtration membrane inserted and the front surface, back surface, and two side surfaces of the end portion
  • a socket body (for example, the socket body 23a) including a socket (for example, the suction side socket 23) that covers the entire circumferential surface of the socket, the socket having a recess into which the end portion is inserted; It is characterized by comprising a first protrusion (for example, the first protrusion 23b) and a second protrusion (for example, the second protrusion 23c) that protrude toward one side from the end face on one side in the longitudinal direction of the socket body. That is.
  • a second aspect is a filtration membrane unit having the configuration of the first aspect, in which the first protrusion is positioned in the lateral direction of the socket body more than the one end of the lateral direction of the socket body. , and the second protrusion is located at a position shifted toward the center from the other end of the socket body in the short direction. That is.
  • a third aspect is a filtration membrane unit having the configuration of the second aspect, in which the first protrusion is disposed at a position shifted from the center to one side in the lateral direction, and the second protrusion is arranged at a position shifted from the center to the other side in the lateral direction.
  • both the first protruding body and the second protruding body are disposed at positions shifted from the center of the socket to either one side or the other side in the lateral direction of the filtration membrane. Shaking of the filtration membrane unit on the side where the protruding body is not disposed is prevented. Therefore, according to the third aspect, it is possible to prevent the filtration membrane from being damaged due to the above-mentioned vibration.
  • a fourth aspect is a filtration membrane unit having the configuration of the third aspect, wherein each of the first protrusion and the second protrusion has a hollow communicating with the inside of the socket and a distal end surface of the protrusion. and a discharge port arranged and communicating with the hollow space, wherein each of the discharge ports of the first protrusion body and the second protrusion body discharges the filtrate in the hollow space along the longitudinal direction. That is.
  • distal end surface arrangement unlike the circumferential surface arrangement, there is no need to change the direction of the flow of the treated water in the respective hollows of the first protruding body and the second protruding body, so that the circumferential surface
  • the flow path resistance can be reduced compared to the arrangement.
  • a fifth aspect is a holder (e.g., holder 40) that holds each of the plurality of filtration membrane units, and a side plate (e.g., a first length) that holds one longitudinal end of each of the plurality of filtration membrane units.
  • Each of the plurality of filtration membrane units is a filtration membrane unit having the configuration of any one of the first to fourth aspects, and the side plate is provided with the first protrusion and the second protrusion.
  • a plurality of hole pairs each consisting of an insertion hole into which one of the protrusions is inserted, and an insertion hole into which the one of the first and second protrusions that is not inserted into the insertion hole is inserted. It is characterized by having
  • a sixth aspect is a filtration system (for example, filtration system 31) comprising a plurality of filtration membrane units and a holder that holds the filtration membrane units, wherein each of the plurality of filtration membrane units is A filtration membrane unit having the configuration according to any one of the fourth aspects, wherein the holding body is the holding body according to the fifth aspect.
  • a seventh aspect is a filtration treatment facility in which a plurality of filtration systems are combined, and each of the plurality of filtration systems is a filtration system having the configuration of the sixth aspect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

少なくとも濾過膜22を備え、濾過膜22内の濾液を濾過膜22の長手方向と短手方向とのうち、前記長手方向に沿って流す濾過膜ユニット21であって、濾過膜22の長手方向の一方側の端部を挿入されて、前記端部におけるおもて面、裏面、及び2つの側面から構成される周面を全周に渡って覆うソケット23を備え、ソケット23が、前記端部を挿入される凹部を具備するソケット本体23aと、ソケット本体23aにおける前記長手方向の一方側の端面から一方側に向けて突出する第1突出体23b及び第2突出体23cとを備える。

Description

濾過膜ユニット、保持体、濾過システム、及び濾過処理設備
 本発明は、濾過膜ユニットと、これを保持する保持体と、濾過膜ユニット及び保持体を備える濾過システムと、複数の濾過システムを備える濾過処理設備とに関する。
 従来、少なくとも濾過膜を備え、この濾過膜内の濾液を、濾過膜の長手方向と短手方向とのうち、長手方向に沿って流す濾過膜ユニットが知られている。
 例えば、特許文献1に記載の濾過膜ユニットとしての膜エレメントは、分離膜と、この分離膜の長手方向の両端面のそれぞれに接合される濾板とを濾過膜として用いる。この膜エレメントに対しては、膜エレメントの長手方向の両側からポンプ等の吸引装置の作動による吸引力が付与される。これにより、膜エレメントの内部においては、膜エレメントの長手方向に沿って、膜エレメントの長手方向の中心から一方側に向かう濾液の流れと、これとは逆に、膜エレメントの長手方向の中心から他方側に向かう濾液の流れとが発生する。これにより、濾液が、膜エレメントの長手方向の両端のそれぞれから排出される。
特開2012-148230号公報
 特許文献1に記載の膜エレメントを保持する保持体は、2つの集水ケースを備える。これら集水ケースのそれぞれは、膜エレメントの短手方向に沿って延びるスリットを備える。膜エレメントの長手方向の一方側の端部は、一方の集水ケースのスリットに押し込まれることで、一方の集水ケースに保持される。また、膜エレメントの長手方向の他方側の端部は、他方の集水ケースのスリットに押し込まれることで、他方の集水ケースに保持される。
 かかる構成においては、膜エレメントの長手方向の両端部のそれぞれが、スリット内においてスリットの延在方向(=膜エレメントの短手方向)に沿ったガタツキを引き起こすおそれがある。このようなガタツキが生じると、ガタツキに伴う応力付与によって膜エレメントを破損させることがある。
 本発明は、以上の背景に鑑みてなされたものであり、その目的とするところは、膜エレメントなどの濾過膜ユニットの端部のガタツキに起因する濾過膜の破損の発生を抑えることができる濾過膜ユニットを提供することである。更には、かかる濾過膜ユニットを保持する保持体と、濾過膜ユニット及び保持体を備える濾過システムと、複数の濾過システムを備える濾過処理設備とを提供することである。
 前記目的を達成するために、本発明の一態様は、少なくとも濾過膜を備え、前記濾過膜内の濾液を、前記濾過膜の長手方向と短手方向とのうち、前記長手方向に沿って流す濾過膜ユニットであって、前記濾過膜の長手方向の一方側の端部を挿入されて、前記端部におけるおもて面、裏面、及び2つの側面から構成される周面を全周に渡って覆うソケットを備え、前記ソケットが、前記端部を挿入される凹部を具備するソケット本体と、前記ソケット本体における前記長手方向の一方側の端面から一方側に向けて突出する第1突出体及び第2突出体とを備え、前記第1突出体が、前記ソケット本体の前記短手方向の一方側の端よりも、前記ソケット本体の前記短手方向の中心の側にずれた位置に配置され、前記第2突出体が、前記ソケット本体の前記短手方向の他方側の端よりも、前記中心の側にずれた位置に配置されることを特徴とするものである。
 本発明によれば、濾過膜ユニットの長手方向の端部のガタツキに起因する濾過膜の破損の発生を抑えることができるという優れた効果がある。
実施形態に係る濾過システムを備える水処理施設の概略構成を示す図である。 実施形態に係る濾過膜ユニットを示す斜視図である。 同濾過膜ユニットの吸引側ソケットの縦断面を示す断面図である。 同濾過膜ユニットを側方から示す側面図である。 実施形態に係る濾過システムを示す斜視図である。 同濾過システムを示す分解斜視図である。 実施形態に係る保持体の集水カセットを示す斜視図である。 実施形態に係る濾過処理設備を示す斜視図である。 同濾過処理設備において多段配置される上側の集水カセット、及び下側の集水カセットと、それらカセットを連結させる連結管とを示す斜視図である。 実施例に係る濾過処理設備において互いに上下に積み重ねられる2つの集水カセットの縦断面を、連結管の断面とともに示す断面図である。 同連結管の断面を図10よりも拡大して示す断面図である。
 以下、各図を用いて、本発明を適用した濾過処理設備の一実施形態について説明する。実施形態では説明を分かり易くするため、本発明の主要部以外の構造や要素については、簡略化または省略して説明する。また、各図において、同じ要素には同じ符号を付す。なお、各図に示す各要素の形状、寸法などは模式的に示したもので、実際の形状、寸法などを示すものではない。
 図1は、実施形態に係る濾過処理設備を備える水処理施設の概略構成を示す図である。この水処理施設は、原水タンク1、濾過処理水槽2、処理水タンク3、制御装置4、原水ポンプ5、第1水位センサー6、原水移送管7、処理水移送管8、吸引ポンプ9、第2水位センサー11、第3水位センサー12等を備える。また、水処理施設は、ブロワー13、空気供給管14、架台15、濾過処理設備20、気泡発生装置90等を備える。
 原水タンク1内には、液体としての原水(処理前水)Wが貯留される。原水タンク1に設置された超音波センサー等からなる第1水位センサーは、原水タンク1内の原水Wの水位(水面の高さ)を検知して、検知結果を水位信号として制御装置4に送信する。原水タンク1内に設置された原水ポンプ5は、原水タンク1内の原水Wを吸引、吐出して、原水移送管7を通じて濾過処理水槽2に送る。原水ポンプ5として、水中ポンプからなるものを例示したが、陸上ポンプからなるものを用いてもよい。
 濾過処理水槽2は、鉄筋コンクリート製の水槽である。濾過処理水槽2内には、濾過処理設備20と、気泡発生装置90とが設置される。濾過処理設備20及び気泡発生装置90は、架台15によって支持される。架台15は、気泡発生装置90を濾過処理設備20の直下に位置させる態様で支持する。濾過処理設備20及び気泡発生装置90のそれぞれは、濾過処理水槽2内の原水Wに浸かっている。
 ブロワー13は、吸引口から吸引した気体としての空気を、吐出口を通じて空気供給管14に吐出する。空気供給管14に吐出された空気は、気泡発生装置90に供給される。気泡発生装置90は、空気供給管14から供給される空気を、気泡として上方に向けて放出する。放出された気泡は、濾過処理設備20に搭載される複数の濾過膜に接触しながら原水W中を上昇する。このとき、気泡は、濾過膜の表面に付着している固形物を濾過膜の表面から離脱させる。この離脱により、濾過膜の目詰まりが抑えられる。
 濾過処理水槽2に設置された第3水位センサー12は、濾過処理水槽2内の原水Wの水位を検知して、検知結果を水位信号として制御装置4に送信する。
 吸引ポンプ9は、処理水移送管8と、濾過処理設備20内に搭載された後述の複数の濾過膜とを介して、濾過処理水槽2内の原水Wを吸引する。吸引された原水Wは、濾過膜によって濾過されて処理済水Wとなった後、処理水移送管8を通じて処理水タンク3に送られる。処理水タンク3に設定された第2水位センサー11は、処理水タンク3内の処理済水W2の水位を検知して、検知結果を水位信号として制御装置4に送信する。
 なお、吸引ポンプ9の代わりに、水頭圧を利用して吸引力を発生させるポンプを使用してもよい。吸引の手段は、特に限定されない。
 処理水タンク3の水位が上限に達しておらず、且つ所定の運転実行条件が成立している場合、制御装置4は、吸引ポンプ9とブロワー13とを作動させて、原水Wの濾過処理を実行する。但し、運転実行条件が成立していても、原水タンク1内の原水Wの水位が下限以下になっている場合、及び濾過処理水槽2内の原水Wの水位が下限以下になっている場合には、制御装置4は、濾過処理の実行を中止する。
  濾過処理設備20は、実施形態に係る濾過システム(後に詳述される)を複数備える。それぞれの濾過システムは、実施形態に係る濾過膜ユニット(後に詳述される)を複数備える。
 図2は、実施形態に係る濾過膜ユニット21を示す斜視図である。濾過膜ユニット21は、平板状の濾過膜22を備える。濾過膜22の材質としては、PVDF(ポリフッ化ビニリデン)、PVC(ポリ塩化ビニル)等の有機材が挙げられる。また、濾過膜22の材質として、アルミナ、炭化ケイ素などを主成分とするセラミックを用いてもよい。実施形態に係る濾過膜ユニット21の濾過膜22は、セラミック膜からなる。
 上述の吸引ポンプ(図1の9)が作動すると、濾過膜22に対して濾過膜22の長手方向に沿った吸引力が付与される。実施形態に係る濾過システムにおいては、濾過膜22に対して濾過膜22の長手方向の一方側(後述の図4における左右方向の右側)から吸引力が付与される。即ち、濾過膜22の長手方向の一方側は、吸引力が付与される吸引側である。濾過膜22の長手方向の他方側(後述の図4における左右方向の左側)は、濾過膜22に付与される吸引力を遮蔽する遮蔽側である。
 濾過膜ユニット21は、上述の濾過膜22に加えて、吸引側ソケット23と、遮蔽側ソケット24とを備える。本発明におけるソケットとしての吸引側ソケット23は、濾過膜22を長手方向の一方側(吸引側)で保持するために濾過膜22における長手方向の一方側の端部に固定される。遮蔽側ソケット24は、濾過膜22を長手方向の他方側(遮蔽側)で保持するために濾過膜22における長手方向の他方側の端部に固定される。吸引側ソケット23及び遮蔽側ソケット24のそれぞれは、濾過膜22に固定された状態で濾過膜22の短手方向(実施形態では重力方向に沿った上下方向)に延在する。
 図3は、吸引側ソケット23の縦断面を示す断面図である。吸引側ソケット23は、ソケット本体23aを備える。ソケット本体23aは、濾過膜(図2の22)の長手方向の一方側の端部を挿入される凹部23dと、凹部23dに連通しつつソケット本体23aの延在方向に延びる流路23eとを備える。
 ソケット本体23aは、凹部23dの内周面により、濾過膜(図2の22)の長手方向の一方側の端部におけるおもて面、裏面、及び2つの側面から構成される周面を全周に渡って覆う。凹部23dの内周面が、濾過膜(22)の長手方向の一方側の端部における周面を全域に渡って覆うことで、凹部23d内における前記端部のガタツキが防止される。
 吸引側ソケット23は、上述のソケット本体23aに加えて、第1突出体23b及び第2突出体23cを備える。第1突出体23b及び第2突出体23cのそれぞれは、濾過膜(図2の22)の長手方向(図3における左右方向)においてソケット本体23aよりも外側(図3における右側)に位置しつつ、ソケット本体23aの延在方向(図3における上下方向)に沿って並ぶ。
 第1突出体23b及び第2突出体23cのそれぞれは、濾過膜(22)の長手方向(図3における左右方向)において、ソケット本体23aにおける一方側(図3における右側)の端面から一方側に向けて突出する。
 かかる構成において、第1突出体23b及び第2突出体23cのそれぞれが、不図示の保持体に設けられた挿入孔に挿入されると、濾過膜ユニット(21)の長手方向の一端部が、保持体に対して位置決めされるとともに、保持体に保持される。第1突出体23bの外周面の面積は、ソケット本体23aの外周面の面積に比べて非常に小さな値になる。また、第2突出体23cの外周面の面積も、ソケット本体23aの外周面の面積に比べて非常に小さな値になる。このため、第1突出体23bの外周と前述の挿入孔の内周とのクリアランス、及び第2突出体23cの外周と前述の挿入孔の内周とのクリアランスを、それぞれほぼ無くしても、それらの突出体(23b、23c)のそれぞれを、個別の挿入孔に容易に挿入することが可能である。このようにクリアランスが設定されると、濾過膜ユニット(21)の長手方向における一方側の端部のガタツキが防止される。よって、実施形態に係る濾過膜ユニット(21)によれば、濾過膜ユニットの長手方向における一方側の端部のガタツキに起因する濾過膜(22)の破損の発生を抑えることができる。
 第1突出体23b及び第2突出体23cのそれぞれの構造は、中空(23b-1、23c-1)を有する管状構造である。第1突出体23b及び第2突出体23cにおけるそれぞれの中空(23b-1、23c-1)は、ソケット本体23aの流路23eに連通する。また、第1突出体23b及び第2突出体23cにおけるそれぞれの中空(23b-1、23c-1)は、突出体(23b、23c)の延在方向(図3の左右方向)の両端のそれぞれが開口している。第1突出体23bの中空23b-1における2つの開口のうち、第1突出体23bの延在方向(図3の左右方向)の一方側(図3における右側)の開口は、流路23e内の処理済水(図1のW)を排出するための排出口としての第1出口23b-2である。また、第2突出体23cの中空23c-1における2つの開口のうち、第2突出体23cの延在方向(図3の左右方向)の一方側(図3における右側)の開口は、流路23e内の処理済水を排出するための排出口としての第2出口23c-2である。
 第1突出体23bの中空23b-1は、自己の2つの開口のうち、第1突出体23bの延在方向(図3の左右方向)の他方側(図3における左側)の開口23b-3を通じて流路23eと連通する。また、第2突出体23cの中空23c-1は、自己の2つの開口のうち、第2突出体23cの延在方向(図3の左右方向)の他方側(図3における左側)の開口23c-3を通じて流路23eと連通する。
 吸引ポンプ(図1の9)が作動すると、第1突出体23bの中空23b-1、及び第2突出体23cの中空23c-1のそれぞれに負圧による吸引力が発生する。この吸引力により、ソケット本体23aの流路23e内の処理済水が、第1突出体23bの中空23b-1、及び第2突出体23cの中空23c-1の内部に向けて吸引される。
 図4は、濾過膜ユニット21を側方から示す側面図である。濾過膜ユニット21の遮蔽側ソケット24は、ソケット本体24aと、2つの突出体24bとを備える。ソケット本体24aは、濾過膜22の長手方向(図4の左右方向)の他方側(図4の左側)の端部を挿入される凹部(不図示)を備える。なお、ソケット本体24aは、前述の凹部に連通する流路を備えていない。濾過膜22に付与される吸引力は、遮蔽側ソケット24により、濾過膜22の長手方向の他方側で遮蔽される。
 遮蔽側ソケット24における2つの突出体24bのそれぞれは、濾過膜22の長手方向(図4における左右方向)においてソケット本体24aよりも外側(図4における左側)に位置しつつ、ソケット本体24aの延在方向(図4における上下方向)に沿って並ぶ。
 以下、第1突出体23bに設けられる第1出口(図3の23b-2)と、第2突出体23cに設けられる(図3の第2出口23c-2)とを、まとめて「吸引側ソケット23の2つの排出口」と言う。排出口の口径を所定値に設定し、且つ濾過膜(22、122)による単位時間あたりの濾過液量を所定値に設定する場合、排出口に通す処理済水の単位時間あたりの流量の条件として、次のような条件を採用する必要がある。即ち、第1比較例に係る濾過膜ユニット121の排出口に対する処理済水の流入量を、実施形態に係る「吸引側ソケット23の2つの排出口」のそれぞれに対する処理済水の流入量の約2倍に設定するという条件である。かかる条件では、排出口(濾液出口)を1つしか備えていない特許文献1に記載の構成に比べて、濾過膜ユニット21における処理済水の流路抵抗を第1比較例に比べて小さくするので、吸引ポンプ(図1の9)などの吸引動力機の動力をより小さくして、省エネルギー化を図ることができる。
 第1出口(図3の23b-2)及び第2出口(図3の23c-2)のそれぞれについては、図3に示される態様とは異なり、突出体(23b、23c)の周面における所定位置に配置してもよい(以下、この配置を周面配置と言う)。但し、図3に示されるように、突出体(23b、23c)の先端面に、第1出口23b-2及び第2出口23c-2のそれぞれを配置(以下、この配置を先端面配置と言う)することがより望ましい。これは、次に説明する理由による。即ち、周面配置では、突出体(23b-2、23c-2)の中空(23b-1、23c-1)内における処理済水の流れを、排出口(第1出口23b-2、第2出口23c-2)に至る直前で約90〔°〕の角度で方向転換させる必要がある。これにより、濾過膜ユニット21の流路抵抗を高めてしまう。これに対し、先端面配置では、突出体(23b-2、23c-2)の中空(23b-1、23c-1)内における処理済水の流れ方向と、排出口(第1出口23b-2、第2出口23c-2)を通るときの処理済水の流れ方向とを同方向にする。このため、周面配置とは異なり、中空(23b-1、23c-1)内で処理済水の流れを大きく方向転換させることがなくなるので、周面配置に比べて、流路抵抗を小さくすることができる。
 図5は、実施形態に係る濾過システム31を示す斜視図である。濾過システム31は、複数の濾過膜ユニット21と、複数の濾過膜ユニット21を保持する保持体40とを備える。保持体40の形状は枠状であり、保持体40は枠内に複数の濾過膜ユニット21を保持する。また、保持体40は、集水カセット41と、ブラインドカセット60と、第1サイドカバー65と、第2サイドカバー66とを備える。
 図6は、実施形態に係る濾過システム31を示す分解斜視図である。保持体(図5の40)は、扁平直方体状の集水カセット41と、平板状の第1サイドカバー65と、扁平直方体状のブラインドカセット60と、平板状の第2サイドカバー66とが枠状に組み合わさって形成されたものである。同図に示される状態とは異なり、複数の濾過膜ユニット21が存在しない状態では、集水カセット41とブラインドカセット60とが相対向する。加えて、前記状態では、第1サイドカバー65と第2サイドカバー66とが、集水カセット41とブラインドカセット60との対向方向と直交する方向に相対向する。
 集水カセット41及びブラインドカセット60のそれぞれは、自己の長手方向を、第1サイドカバー65と第2サイドカバー66との対向方向に沿わせる態様で配置される。一方、第1サイドカバー65及び第2サイドカバー66のそれぞれは、自己の長手方向を、集水カセット41とブラインドカセット60との対向方向に沿わせる態様で配置される。
 図7は、保持体(図5の40)の集水カセット41を示す斜視図である。集水カセット41は、天板42と、底板45と、第1長尺側板43と、第2長尺側板44と、長尺側板(43、44)よりも短尺の第1短尺側板46及び第2短尺側板47とが、扁平直方体状に組み合わさって形成されたものである。天板42と底板45とは、相対向する。水処理施設においては、同図に示されるように、天板42と底板45とを重力方向に沿った上下方向に並べる態様で、集水カセット41が配置される。
 第1長尺側板43及び第2長尺側板44のそれぞれは、自己の長手方向を、第1短尺側板46及び第2短尺側板47のそれぞれにおける短手方向に沿わせる態様で配置される。一方、第1短尺側板46及び第2短尺側板47のそれぞれは、自己の長手方向を、天板42と底板45との対向方向に沿わせる態様で配置される。
 第1短尺側板46のおもて面には、前記おもて面から突出する第1固定部48が設けられる。また、第2短尺側板47のおもて面には、前記おもて面から突出する第2固定部49が設けられる。
 以下、枠状の保持体(図5の40)の枠構造を、単に「枠」と言う。第1長尺側板43は、第2長尺側板44よりも「枠」の内側に位置する。第1長尺側板43は、濾過膜ユニット(図6の21)における長手方向の一端部を保持する側板として機能する。
 第1長尺側板43は、第1突出体(図3の23b)及び第2突出体(図3の23c)のうち、何れか一方を挿入される挿入孔と、第1突出体及び第2突出体のうち、前記挿入孔に挿入されない方を挿入される挿入孔とからなる孔対を複数備える。複数の孔対のそれぞれにおいて、2つの挿入孔の距離は、互いに同じである。
 図6に示されるように、孔対の2つの挿入孔のそれぞれは、第1長尺側板43の短手方向(図6の上下方向)に沿って並ぶ。第1突出体23b及び第2突出体23cのうち、何れか一方は、孔対の2つの挿入孔の何れか一方に挿入され、他方の突出体は、他方の挿入孔に挿入される。
 図2に示されるように、遮蔽側ソケット24の2つの突出体24bのそれぞれの形状は、正方体状又は直方体状である。2つの突出体24bは、濾過膜ユニット(図6の21)の長手方向の他端部をブラインドカセット(図6の60)に位置決めしつつ、前記他端部をブラインドカセットに保持させるためのものである。
 吸引側ソケット23において、ソケット本体23aと一体形成される2つの突出体(23b、23c)のそれぞれの形状は、管状である。
 以下、各部材において、平板状の濾過膜22の厚み方向に沿った方向の長さを幅と言う。濾過膜22の濾過性能を効率よく引き出すためには、吸引側ソケット23の2つの突出体(23b、23c)の内径を、濾過膜22の幅と同じにすることが望ましい。すると、図2に示されるように、2つの突出体(23b23c)のそれぞれの管周壁が、ソケット本体23aから幅方向に出っ張る。即ち、2つの突出体(23b、23c)の外径が、ソケット本体23aの幅よりも大きくなる。
 かかる構成では、濾過システム(図5の31)の小型化が困難になる。具体的には、濾過システムの小型化を図るためには、複数の濾過膜ユニット(図6の21)の並び方向における配設ピッチを、できるだけ小さくすることが望ましい。そして、前述の配設ピッチの狭小化は、吸引側ソケット23の2つの突出体(23b、23c)のそれぞれの外径によって制約を受ける。
 前述の配設ピッチの狭小化が、突出体(23b、23c)の外径によって制約を受ける理由は、次の通りである。即ち、第1長尺側板(図7の43)に複数設けられる孔対のそれぞれは、2つの挿入孔のうち、第1長尺側板(43)の短手方向の一方側に位置する挿入孔を、第1長尺側板(43)の長手方向に沿って並べる。加えて、複数の孔対のそれぞれは、2つの挿入孔のうち、第1長尺側板(43)の短手方向の他方側に位置する挿入孔も、第1長尺側板(43)の長手方向に沿って並べる。以下、前記長手方向に沿って互いに隣り合う2つの挿入孔を、「2つの隣設挿入孔」と言う。濾過システム(図5の31)の小型化により、複数の濾過膜ユニット(図6の21)の配設ピッチ(第1長尺側板43の長手方向に沿った配設ピッチ)が小さくなるにつれて、「2つの隣設挿入孔」の距離が短くなる。この距離が過剰に短くなると、第1長尺側板(43)の孔間部分(「2つの隣設挿入孔」の間の部分)の孔間長さが過剰に小さくなって、孔間部分において必要な強度が得られなくなる。第1長尺側板(43)の前述の孔間部分において、最低限の強度が得られる孔間長さ(狭小限界値)は、第1長尺側板(43)の材質及び厚みが同じであれば一定である。一方で、複数の濾過膜ユニット21の配設ピッチが同じであっても、突出体(23b、23c)の外径が異なれば、前述の孔間長さが異なる。突出体(23b、23c)の外径が大きくなるほど、孔間長さが小さくなる(孔間部分の強度が低くなる)。よって、挿入孔の配設ピッチの狭小化が、突出体(23b、23c)の外径によって制約を受けることになる。
 そこで、実施形態に係る濾過膜ユニット21の吸引側ソケット(23)においては、2つの突出体(23b、23c)のそれぞれが、図3に示される態様で配置される。具体的には、ソケット本体23aの延在方向の中心(一点鎖線L1によって示される位置)から第1突出体23bまでの距離αと、前記中心から第2突出体23cまでの距離βとを互いに異ならせる(α<β)態様である。かかる構成では、第1長尺側板(43)の孔間部分の孔間長さを狭小限界値まで狭小化しつつ、距離αと距離βとを互いに同じにする場合に比べて、複数の濾過膜ユニット(21)の配設ピッチを小さくするという効果を奏することができる。
 前述の効果を奏することができる理由は、以下に説明する通りである。即ち、図7に示される第1長尺側板43に設けられる複数の孔対は、2つの種類のものが存在する。複数の孔対のうち第1種類に分類されるのが第1種孔対43cであり、第2種類に分類されるのが第2種孔対43fである。第1種孔対43cと、第2種孔対43fとは、第1長尺側板43の長手方向(図7では上下方向)に沿って交互に配置される。第1種孔対43cにおける2つの挿入孔(43a、43b)の距離と、第2種孔対43fにおける2つの挿入孔(43d、43e)の距離とは、互いに同じである。第1種孔対43cの2つの挿入孔(43a、43b)のうち、第1長尺側板43の短手方向の一方側(図7では上側)に位置する挿入孔43aは、第1長尺側板43の面内において第1長尺側板43の短手方向に沿った所定の第1位置に配置される。この第1位置は、図7において一点鎖線L2によって示される。第2種孔対43fの2つの挿入孔(43d、43e)のうち、第1長尺側板43の短手方向の一方側(図7では上側)に位置する挿入孔43dは、第1長尺側板43の面内において第1長尺側板43の短手方向に沿った所定の第2位置に配置される。この第2位置は、図7において一点鎖線L3で示される。第1長尺側板43の短手方向において、前述の第1位置と第2位置とは、互いに異なる。
 第1種孔対43cに対しては、所定の第1姿勢をとる濾過膜ユニット(21)の2つの突出体(23b、23c)が挿入される。これに対し、第2種孔対43fに対しては、所定の第2姿勢をとる濾過膜ユニット(21)の2つの突出体(23b、23c)が挿入される。第1姿勢をとる濾過膜ユニット(21)と、第2姿勢をとる濾過膜ユニット(21)とは、吸引側ソケット(23)の延在方向の中心と、遮蔽側ソケット(24)の延在方向の中心とを通る軸線(図2の一点鎖線L4)を基準にした点対称の位置(180°回転した位置)にある。
 以下、各部材において、第1長尺側板43の短手方向に沿った位置ずれを、単に位置ずれと言う。第1種孔対43cの2つの挿入孔(43a、43b)のうち、上述の第1位置(一点鎖線l2)に配置される挿入孔43aと、第2種孔対43fの2つの挿入孔(43d、43e)のうち、上述の第2位置(一点鎖線L2)に配置される挿入孔43eとは、互いに位置ずれしている。互いに隣り合う2つの濾過膜ユニット(21)の一方は、吸引側ソケット(23)の2つの突出体(23b、23c)を第1種孔対43cの2つの挿入孔(43a、43b)に挿入している。他方の濾過膜ユニット(21)は、吸引側ソケット(23)の2つの突出体(23b、23c)を第2種孔対の2つの挿入孔(43d、43e)に挿入している。
 かかる構成では、第1長尺側板43の長手方向において、「2つの隣設挿入孔」のうち、一方側に位置する隣設挿入孔の他方側の端を、他方側に位置する隣設挿入孔の一方側の端よりも他方側に位置させつつ、第1長尺側板43の孔間部分を確保することが可能である。より詳しくは、図7においては、第1長尺側板43の長手方向が、図7の左右方向に概ね沿っている(厳密には、前記長手方向は図7の左右方向から僅かに傾いている)ので、以下、第1長尺側板43の長手方向を、図7の左右方向として説明する。例えば、第1長尺側板43に設けられる複数の孔対のうち、図中の左右方向の最も左側に位置する第1種孔対43cの挿入孔43aと、これに対して左右方向の右側で隣り合っている第2種孔対43fの挿入孔43dとを「2つの隣設挿入孔」として着目してみる。第1種孔対43cの挿入孔43aは、第2種孔対43fの挿入孔43dよりも図中の左右方向の左側に位置する。つまり、第1種孔対43cの挿入孔43aを、「2つの隣設挿入孔」のうち、第1長尺側板43の長手方向の他方側に位置する隣設挿入孔とし、第2種孔対43fの挿入孔43dを、前記長手方向の一方側に位置する隣設挿入孔とする例について着目している。この例では、第2種孔対43fの挿入孔43dの左側(他方側)の端を、第1種孔対43cの挿入孔43aの右側(一方側)の端よりも左側に位置させている。このような位置関係を保ちつつ、第1長尺側板43においては、挿入孔43aと挿入孔43dとの間の孔間部分が確保されている。挿入孔43aと挿入孔43dとの位置ずれ量が大きくなるほど、前述の孔間部分の孔間長さが大きくなる。このため、吸引側ソケット(23)の2つの突出体(23b、23c)を大径化させたり、複数の濾過膜ユニット(21)の配設ピッチを狭小化させたりしても、前述の位置ずれ量をより大きくすることで、孔間長さを狭小限界値と同等以上にすることが可能である。
 よって、濾過システム31によれば、複数の濾過膜ユニット21の位置ずれ(第1長尺側板43の短手方向に沿った位置ずれ)を引き起こすことなく、複数の濾過膜ユニット21の配設ピッチを狭小化させて、濾過システム31の小型化を図ることができる。加えて、濾過システム31によれば、吸引側ソケット(23)の2つの突出体(23b、23c)を大径化させて、濾過膜22の濾過性能を向上させることもできる。
 図6に示されるブラインドカセット60は、複数の濾過膜ユニット21との対向面に、複数の遮蔽側挿入孔(不図示)を備える。それらの遮蔽側挿入孔は、濾過膜ユニット21の遮蔽側ソケット24の突出体24bを挿入するための挿入孔である。遮蔽側ソケット24の2つの突出体24bのそれぞれが、前記対向面に設けられた遮蔽側挿入孔に挿入されることで、濾過膜ユニット21の長手方向における他方側の端部がブラインドカセット60に対して位置決めされる。加えて、濾過膜ユニット21の長手方向における他方側の端部が、ブラインドカセット60に保持される。
 なお、ブラインドカセット60における複数の濾過膜ユニット21との対向面に複数の遮蔽側挿入孔を配置し、濾過膜ユニット21の遮蔽側ソケット24に2つの突出体24bを設けた例について説明したが、遮蔽側挿入孔、及び突出体24bの付設を省略してもよい。この場合、例えば、次のようなゴム製部材を用いることで、複数の濾過膜ユニット21のそれぞれにおける長手方向の他方側(遮蔽側)の端部を保持することが可能である。即ち、ブラインドカセット60の長手方向に沿って延びるベース板と、ベース板の表面から突出しつつ、ブラインドカセット60の長手方向に沿って所定の配設ピッチで並ぶ複数の仕切板とを備えるゴム製部材である。このゴム製部材における互いに隣り合う2つの仕切板に、濾過膜ユニット21の遮蔽側ソケット24を挟み込ませればよい。
 また、濾過膜22の形状が平板状である例について説明したが、濾過膜22の形状は平板状に限られず、例えば波板状などでもよい。
 濾過膜ユニット21に対しては、濾過膜ユニット21の周囲に存在する原水(W)の流れ、気泡発生装置90から放出される気泡などにより、応力が加えられる。この応力により、濾過膜ユニット21には、濾過膜22の短手方向を、集水カセット41及びブラインドカセット60のそれぞれの短手方向(図6では上下方向)から傾けようとする力(スキュー力)が加えられる。このスキュー力により、濾過膜22の全域のうち、吸引側ソケット23の第1突出体23bに近い領域、吸引側ソケットの第2突出体23cに近い領域、及び遮蔽側ソケット24の2つの突出体24bに近い領域には、大きな力が加わる。以下、前述の4つの領域をまとめて突出体近傍領域という。
 図3に示されるように、吸引側ソケット23の第1突出体23bは、濾過膜(22)の短手方向(図3における上下方向)において、第2突出体23cよりも一方側(同図の上側)にずれた位置に配置される(以下、このずれの量を「第1ずれ量」と言う)。更に、第1突出体23bは、前記短手方向において、ソケット本体23aの一方側(図3における上側)の端よりも、ソケット本体23aの中心の側にずれた位置に配置される(以下、このずれの量を「第2ずれ量」と言う)。
 以下、遮蔽側ソケット24に設けられる2つの突出体24bのうち、濾過膜(22)の短手方向(同図の上下方向)において一方側(同図の上側)に位置する方を、「一方側の突出体24b」と言う。また、2つの突出体24bのうち、前記短手方向において他方側(同図の下側)に位置する方を、「他方側の突出体24b」と言う。「一方側の突出体24b」は、ソケット本体(24a)の延在方向における一方側の端(同図における上端)よりも他方側(同図における下側)にずれた位置に存在する(以下、このずれの量を「第3ずれ量」と言う)。また、「他方側の突出体24b」は、ソケット本体(24a)の延在方向における他方側の端(同図における下端)よりも一方側(同図における上側)にずれた位置に存在する(以下、このずれの量を「第4ずれ量」と言う。
 図3に示される例とは異なる比較例を、図3に示される例との比較対象として検討を行う。比較例においては、吸引側ソケット23の第1突出体23bが、濾過膜(22)の短手方向における一方側の端(同図における上端)に位置する。また、吸引側ソケット23の第2突出体23cは、濾過膜(22)の短手方向における他方側の端(同図における下端)に位置する。
 比較例の遮蔽側ソケット24においては、「一方側の突出体24b」が、濾過膜(22)の短手方向における一方側の端(同図における上端)に位置する。また、「他方側の突出体24b」が、濾過膜(22)の短手方向における他方側の端(同図における下端)に位置する。
 つまり、比較例においては、「第1ずれ量」、「第2ずれ量」、「第3ずれ量」、及び「第4ずれ量」が何れも、ゼロになっている。かかる構成の比較例においては、吸引側ソケット23の第1突出体24bと第2突出体24cとの距離が、実施形態に係る濾過膜ユニット21における同距離よりも長くなる。加えて、比較例においては、遮蔽側ソケット24の「一方側の突出体24b」と「他方側の突出体24b」との距離が、実施形態に係る濾過膜ユニット21における同距離よりも長くなる。このため、比較例においては、テコの原理により、濾過膜22の突出体近傍領域に加わる力が、実施形態に係る濾過膜ユニット21よりも大きくなることから、濾過膜22の破損が発生し易くなる。換言すれば、実施形態に係る濾過膜ユニット21は、濾過膜22の短手方向において、各突出体をソケットの端に配置しないことにより、スキュー力に起因する濾過膜22の破損を抑えることができる。
 実施形態に係る濾過膜ユニット21において、濾過膜22の破損を効率よく抑えるためには、「第1ずれ量」、「第2ずれ量」、「第3ずれ量」、及び「第4ずれ量」をできる限り大きくすることが望ましい。但し、吸引側ソケット23において、「第1ずれ量」や「第2ずれ量」を過剰に大きくすると、第1突出体23bからの集水量と、第2突出体23cからの集水量との均一化を図ることが困難になる。前述の均一化を図るためには、「第1ずれ量」、及び「第2ずれ量」のそれぞれを、吸引側ソケット23のソケット本体23aの延在方向の長さの1/10以下にすることが望ましい。より望ましくは、吸引側ソケット23のソケット本体23aの延在方向の長さの1/4から1/3の範囲を採用するのがよい。遮蔽側ソケット24における「第3ずれ量」、及び「第4ずれ量」も同様である。
 濾過膜(22)の短手方向において、第1突出体23bは、ソケット本体23aの中心よりも一方側(図3では上側)にずれた位置に配置され、第2突出体23cは、前記中心よりも他方側(図3では下側)にずれた位置に配置される。かかる構成では、第1突出体23b及び第2突出体23cの両方が、前記中心よりも一方側及び他方側のうちの何れかにずれた位置に配置されることによる濾過膜ユニット(21)の突出体非配置側の振れが防止される。よって、実施形態に係る濾過膜ユニット(21)によれば、前述の振れに起因する濾過膜(22)の破損の発生を防止することができる。
 濾過膜22の長手方向の両側のうち、片側だけを吸引側とするいわゆる片引き方式を採用した濾過システム(31)について説明したが、両側のそれぞれを吸引側とするいわゆる両引き方式を採用してもよい。この場合、両側のそれぞれのソケットとして、同様の構成の吸引側ソケット23を設ければよい。
 図8は、実施形態に係る濾過処理設備20を示す斜視図である。濾過処理設備20は、3つの濾過システム31を備える。3つの濾過システム31は、第1長尺側板(43)の短手方向に沿って並ぶ。同図においては、前記短手方向が上下方向に沿っているので、濾過処理設備20の構造は、3つの濾過システム31を上下方向に積み重ねた3段構造になっている。
 図9は、第1長尺側板(43)の短手方向の一方側(同図では上側)に配置された濾過システム(31)の集水カセット41と、前記短手方向の他方側(同図では下側)に配置された濾過システム(31)の集水カセット41と、連結管70とを示す斜視図である。連結管70は、2つの集水カセット41を連結させる役割を担う。図9に示される2つの集水カセット41のそれぞれの天板42には、3つの天板開口42aが天板42の長手方向に沿って所定間隔で並ぶ態様で配置される。天板開口42aは、第1長尺側板43の短手方向(同図では上下方向)の一方側(同図では上側)を向く。
 集水カセット41の内部には、筒状の第1連結ソケット50が3つ配設される。これらの第1連結ソケット50は、天板42の裏面に固定されて天板開口42aに連通する。
 3つの集水カセット41のそれぞれの底板45には、3つの底板開口45aが底板45の長手方向に沿って所定間隔で並ぶ態様で配置される。底板開口45aは、第1長尺側板43の短手方向の他方側(同図では下側)を向く。
 3つの天板開口42aにおける1つと、3つの底板開口45aにおける1つとは、第1長尺側板43の短手方向に沿って相対向する。また、3つの天板開口42aにおける他の1つと、3つの底板開口45aにおける他の1つとは、前記短手方向に沿って相対向する。更に、また、3つの天板開口42aにおける最後の1つと、3つの底板開口45aにおける最後の1つとは、前記短手方向に沿って相対向する。
 集水カセット41の内部には、筒状の第2連結ソケット51が3つ配設される。これらの第2連結ソケット51は、底板45の裏面に固定されて底板開口45aに連通する。
 同図の下側に配置される集水カセット41と、同図の上側に配置される集水カセット41とは、3つの連結管70によって連結される。連結管70は、管長さ方向を第1長尺側板43の短手方向(同図では上下方向)に沿わせる態様で配置される。連結管70における前記短手方向の一方側の端部、及び他方側の端部のそれぞれには、管周面の全周に渡って延在するリング状凹部(不図示)が配置され、それぞれのリング状凹部にはOリング71が嵌め込まれる。
 連結管70の前記短手方向の一方側(同図では上側)の端部は、同図の上側の集水カセット41の第2連結ソケット51に挿入される。また、連結管70の前記短手方向の他方側(同図では下側)の端部は、同図の上側の集水カセット41の第1連結ソケット50に挿入される。同図の上側の集水カセット41の内部空間と、同図の下側の集水カセット41の内部空間とは、3つの連結管70を通じて互いに連通する。
 なお、3段重ねで積み重ねられる3つの集水カセット41のうち、最下段の集水カセット41においては、3つの第2連結ソケット51のそれぞれに連結管70が挿入されるのではなく、それぞれの第2連結ソケット51に封止プラグ(不図示)が挿入される。これにより、最下段の集水カセット41の内部空間に発生する吸引力を、第2連結ソケット51を通じて外部に漏らしてしまうことが防止される。
 また、3段重ねで積み重ねられる3つの集水カセット41のうち、最上段の集水カセット41においては、3つの第1連結ソケット50に連結管70が挿入されるのではなく、集水用分岐管が挿入される。これらの集水用分岐管は、1本の処理水移送管(図1の8)に連結される。
 同図の下側の集水カセット41の内部空間には、この集水カセット41の第1長尺側板43によって保持される複数の濾過膜ユニット(不図示)の濾過膜を透過した処理済水が流入する。また、同図の上側の集水カセット41の内部空間には、この集水カセット41の第1長尺側板43によって保持される複数の濾過膜ユニット(不図示)の濾過膜を透過した処理済水が流入する。同図の下側の集水カセット41の内部空間に存在する処理済水は、連結管70の内部に発生する吸引力により、連結管70を通じて上側の集水カセット41の内部空間の中に吸引される。
 つまり、図8に示される3つの濾過システム31のそれぞれにおいては、複数の濾過膜22のそれぞれを透過した処理済水が集水カセット41に集水される。そして、3つの濾過システム31のそれぞれの集水カセット41においては、より下側に位置する集水カセット41の内部空間の中の処理済水が、より上側に位置する集水カセット41の内部空間の中に吸引される。この結果、3つの集水カセット41のそれぞれの内部空間の中に集水された処理済水は、最終的に最上段の集水カセット41の内部空間に集水された後、処理水タンク(図1の3)に移送される。
 図9に示される連結管70においては、上述のように、管長さ方向が、第1長尺側板43の短手方向に沿っている。連結管70の前記短手方向の一方側(同図では上側)の端部に嵌め込まれたOリング71は、第2連結ソケット51に挿入された前記端部の第2連結ソケット51からの抜けを回避するとともに、前記端部と第2連結ソケット51との密閉性を向上させる。前述の抜けをより確実に回避したり、前述の密閉性をより高めたりするために、前記短手方向に並ぶ複数のOリング71を前記端部に嵌め込んでもよい。
 連結管70の前記短手方向の他方側(同図では下側)の端部に嵌め込まれたOリング71は、第1連結ソケット50に挿入された前記端部の第1連結ソケット50からの抜けを回避するとともに、前記端部と第1連結ソケット50との密閉性を向上させる。前述の抜けをより確実に回避したり、前述の密閉性をより高めたりするために、前記短手方向に並ぶ複数のOリング71を前記端部に嵌め込んでもよい。
 天板開口42a、底板開口45a、第1連結ソケット50、第2連結ソケット51、及び連結管70の数は、3つに限定されない。1つ以上であればよい。
 複数の濾過システム(31)を多段方式で積み重ねた濾過処理設備(20)について説明したが、複数の濾過システム(31)を水平方式に連結させる多連方式を採用してもよい。また、多段方式と多連方式との両方を採用してもよい。
 次に、濾過処理設備(20)の実施例について説明する。なお、以下に特筆しない限り、実施例に係る濾過処理設備(20)の構成は、実施形態と同様である。
 実施例に係る濾過処理設備(20)の濾過システム(31)が、上下を反転させる姿勢になったとする。このように濾過システム(31)の姿勢が上下反転しても、集水カセット(41)の第1長尺側板(43)の平面上における各挿入孔の2次元レイアウトが上下反転前と同じになるように、各挿入孔が配置されている。また、集水カセット(41)においては、上下反転前に天板(42)として機能していた板材が、上下反転後に底板(45)として機能し、上下反転前に底板(45)として機能していた板材が、上下反転後に天板(42)として機能する。集水カセット(41)の長手方向の一端から他端までの領域において、上下反転前の天板(42)の3つの天板開口(42a)の相対位置と、上下反転後の天板(42)の3つの天板開口(42a)との相対位置とは、互いに同じである。このため、集水カセット41の長手方向の一端から他端までの領域において、上下反転前の底板(45)の3つの底板開口(45a)の相対位置と、上下反転後の底板(45)の3つの底板開口(45a)との相対位置とは、互いに同じである。よって、実施例に係る濾過処理設備(20)においては、濾過システム(31)の上下姿勢に気を使うことなく、濾過システム(31)を取り扱うことができる。
 図10は、実施例に係る濾過処理設備(20)において互いに上下に積み重ねられる2つの集水カセット41の縦断面を、連結管70の断面とともに示す断面図である。図11は、連結管70の断面を図10よりも拡大して示す断面図である。
 図11に示されるように、集水カセット41の天板42に固定される3つの第1連結ソケット50のそれぞれは、内周面にメスネジ部50aを備える。このメスネジ部50aは、管材からなる第1連結ソケット50の管長さ方向の全域のうち、上側に偏った領域に設けられる。また、集水カセット41の底板45に固定される3つの第2連結ソケット51のそれぞれは、内周面にメスネジ部51aを備える。このメスネジ部51aは、管材からなる第2連結ソケット51の管長さ方向の全域のうち、下側に偏った領域に設けられる。
 集水カセット41の姿勢が上下反転すると、上下反転前に天板42として機能していた板材が、底板45として機能し、且つ上下反転前に第1連結ソケット50として機能していた管材が、第2連結ソケット51として機能する。連結管70は、図11に示されるように、オスネジ部70aを外周面に備える。このオスネジ部70aは、連結管70の管長さ方向の全域のうち、一方側に偏った領域に設けられる。連結管70は、連結管70の管長さ方向の両端部のうち、オスネジ部70aを備える方の端部を、もう一方の端部よりも下側に位置させる態様で用いられる。
 図10において、3つの連結管70のそれぞれは、自己のオスネジ部70aを、2つの集水カセット41のうち、下側に位置する集水カセット41の第1連結ソケット50のメスネジ部50aに螺号させながら、この第1連結ソケット50に挿入される。前述の螺号により、連結管70の第1連結ソケット50内からの抜けを回避することができる。また、保守点検作業のために、上側の集水カセット41と下側の集水カセット41とを分離する場合に、3つの連結管70のそれぞれを、下側の集水カセット41に保持させた状態を確実に維持することが可能なので、保守点検の作業性を向上させることができる。
 濾過処理設備(20)において、3段重ねで段積みされる3つの濾過システム(31)のうち、最下段の濾過システム(31)の集水カセット41における第2連結ソケット51には、連結管70が挿入されない。その代わりに、その第2連結ソケット51には、外周面にオスネジ部を具備する封止プラグ(不図示)が挿入される。このとき、封止プラグは、自己のオスネジ部を第2連結ソケット51のメスネジ部51aに螺号させながら、第2連結ソケット51内に挿入される。このようにして第2連結ソケット51内に挿入された封止プラグは、前述の螺号により、第2連結ソケット51内からの抜けが回避される。
 濾過処理設備(20)における3つの濾過システム(31)のうち、最上段の濾過システム(31)の集水カセット41における第1連結ソケット50には、連結管70が挿入されない。その代わりに、その第1連結ソケット50には、上述の集水用分岐管が挿入される。この集水用分岐管の外周面にはオスネジ部が設けられる。集水用分岐管は、自己のオスネジ部を第1連結ソケット50のメスネジ部に螺号させながら、第1連結ソケット50内に挿入される。このようにして第1連結ソケット50内に挿入された集水用分岐管は、前述の螺号により、第1連結ソケット50内からの抜けが回避される。
 本発明は上述の実施形態、及び実施例に限られず、本発明の構成を適用し得る範囲内で、実施形態及び実施例とは異なる構成を採用することもできる。本発明は、以下に説明する態様毎に特有の作用効果を奏する。
〔第1態様〕
 第1態様は、少なくとも濾過膜(例えば濾過膜22)を備え、前記濾過膜内の濾液(例えば処理済水W)を、前記濾過膜の長手方向と短手方向とのうち、前記長手方向に沿って流す濾過膜ユニット(例えば濾過膜ユニット21)であって、前記濾過膜の長手方向の一方側の端部を挿入されて、前記端部におけるおもて面、裏面、及び2つの側面から構成される周面を全周に渡って覆うソケット(例えば吸引側ソケット23)を備え、前記ソケットが、前記端部を挿入される凹部を具備するソケット本体(例えばソケット本体23a)と、前記ソケット本体における前記長手方向の一方側の端面から一方側に向けて突出する第1突出体(例えば第1突出体23b)及び第2突出体(例えば第2突出体23c)とを備えることを特徴とするものである。
 かかる構成によれば、濾過膜ユニットの長手方向における一方側の端部のガタツキに起因する濾過膜の破損の発生を抑えることができる。
〔第2態様〕
 第2態様は、第1態様の構成を備える濾過膜ユニットであって、前記第1突出体が、前記ソケット本体の前記短手方向の一方側の端よりも、前記ソケット本体の前記短手方向の中心の側にずれた位置に配置され、前記第2突出体が、前記ソケット本体の前記短手方向の他方側の端よりも、前記中心の側にずれた位置に配置されることを特徴とするものである。
 かかる構成によれば、濾過膜の短手方向において、第1突出体や第2突出体をソケットの端に配置しないことにより、スキュー力に起因する濾過膜の破損を抑えることができる。
〔第3態様〕
 第3態様は、第2態様の構成を備える濾過膜ユニットであって、前記第1突出体が、前記中心よりも前記短手方向の一方側にずれた位置に配置され、前記第2突出体が、前記中心よりも前記短手方向の他方側にずれた位置に配置されることを特徴とするものである。
 かかる構成では、濾過膜の短手方向において、第1突出体及び第2突出体の両方が、ソケットの中心よりも一方側及び他方側のうちの何れかにずれた位置に配置されることによる濾過膜ユニットの突出体非配置側の振れが防止される。よって、第3態様によれば、前述の振れに起因する濾過膜の破損の発生を防止することができる。
〔第4態様〕
 第4態様は、第3態様の構成を備える濾過膜ユニットであって、前記第1突出体及び前記第2突出体のそれぞれが、前記ソケットの内部に連通する中空と、突出体の先端面に配置されて前記中空に連通する排出口とを備え、前記第1突出体及び前記第2突出体のそれぞれの前記排出口が、前記中空内の濾液を前記長手方向に沿って排出することを特徴とするものである。
 かかる構成(先端面配置)によれば、周面配置とは異なり、第1突出体及び第2突出体のそれぞれの中空内で処理済水の流れを大きく方向転換させることがなくなるので、周面配置に比べて、流路抵抗を小さくすることができる。
〔第5態様〕
 第5態様は、複数の濾過膜ユニットのそれぞれを保持する保持体(例えば保持体40)であって、複数の前記濾過膜ユニットのそれぞれにおける長手方向の一端部を保持する側板(例えば第1長尺側板43)を備え、複数の前記濾過膜ユニットのそれぞれが、第1態様~第4態様の何れかの構成を備える濾過膜ユニットであり、前記側板が、前記第1突出体及び前記第2突出体のうち、何れか一方を挿入される挿入孔と、前記第1突出体及び前記第2突出体のうち、前記挿入孔に挿入されない方を挿入される挿入孔とからなる孔対を複数備えることを特徴とするものである。
 かかる構成によれば、複数の濾過膜ユニットのそれぞれについて、長手方向の一方側の端部のガタツキに起因する濾過膜の破損の発生を抑えることができる。
〔第6態様〕
 第6態様は、複数の濾過膜ユニットと、それら濾過膜ユニットを保持する保持体とを備える濾過システム(例えば濾過システム31)であって、複数の前記濾過膜ユニットのそれぞれが、第1態様~第4態様の何れかの構成を備える濾過膜ユニットであり、前記保持体が、第5態様の保持体であることを特徴とするものである。
 かかる構成によれば、濾過システムに搭載される複数の濾過膜ユニットのそれぞれについて、長手方向の一方側の端部のガタツキに起因する濾過膜の破損の発生を抑えることができる。
〔第7態様〕
 第7態様は、複数の濾過システムが組み合わさってなる濾過処理設備であって、複数の濾過システムのそれぞれが、第6態様の構成を備える濾過システムであることを特徴とするものである。
 かかる構成によれば、複数の濾過膜ユニットのそれぞれについて、長手方向の一方側の端部のガタツキに起因する濾過膜の破損の発生を抑えることで、濾過処理設備のダウンタイムの発生を抑えることができる。
   20・・・濾過処理設備、   21・・・濾過膜ユニット、   22・・・濾過膜、   23・・・吸引側ソケット(ソケット)、   23a・・・ソケット本体、   23b・・・第1突出体、   23b-1・・・中空、   23b-2・・・第1出口、   23c・・・第2突出体、   23c-1・・・中空、   23c-2・・・第2出口、   23d・・・凹部、   23e・・・流路、   31・・・濾過システム

 

Claims (7)

  1.  少なくとも濾過膜を備え、前記濾過膜内の濾液を、前記濾過膜の長手方向と短手方向とのうち、前記長手方向に沿って流す濾過膜ユニットであって、
     前記濾過膜の長手方向の一方側の端部を挿入されて、前記端部におけるおもて面、裏面、及び2つの側面から構成される周面を全周に渡って覆うソケットを備え、
     前記ソケットが、前記端部を挿入される凹部を具備するソケット本体と、前記ソケット本体における前記長手方向の一方側の端面から一方側に向けて突出する第1突出体及び第2突出体とを備える
     ことを特徴とする濾過膜ユニット。
  2.  請求項1に記載の濾過膜ユニットであって、
     前記第1突出体が、前記ソケット本体の前記短手方向の一方側の端よりも、前記ソケット本体の前記短手方向の中心の側にずれた位置に配置され、
     前記第2突出体が、前記ソケット本体の前記短手方向の他方側の端よりも、前記中心の側にずれた位置に配置される
     ことを特徴とする濾過膜ユニット。
  3.  請求項2に記載の濾過膜ユニットであって、
     前記第1突出体が、前記中心よりも前記短手方向の一方側にずれた位置に配置され、
     前記第2突出体が、前記中心よりも前記短手方向の他方側にずれた位置に配置される
     ことを特徴とする濾過膜ユニット。
  4.  請求項3に記載の濾過膜ユニットであって、
     前記第1突出体及び前記第2突出体のそれぞれが、前記ソケットの内部に連通する中空と、突出体の先端面に配置されて前記中空に連通する排出口とを備え、
     前記第1突出体及び前記第2突出体のそれぞれの前記排出口が、前記中空内の濾液を前記長手方向に沿って排出する
     ことを特徴とする濾過膜ユニット。
  5.  複数の濾過膜ユニットのそれぞれを保持する保持体であって、
     複数の前記濾過膜ユニットのそれぞれにおける長手方向の一端部を保持する側板を備え、
     複数の前記濾過膜ユニットのそれぞれが、請求項1乃至4の何れか1項に記載の濾過膜ユニットであり、
     前記側板が、前記第1突出体及び前記第2突出体のうち、何れか一方を挿入される挿入孔と、前記第1突出体及び前記第2突出体のうち、前記挿入孔に挿入されない方を挿入される挿入孔とからなる孔対を複数備える
     ことを特徴とする保持体。
  6.  複数の濾過膜ユニットと、それら濾過膜ユニットを保持する保持体とを備える濾過システムであって、
     複数の前記濾過膜ユニットのそれぞれが、請求項1乃至4の何れか1項に記載の濾過膜ユニットであり、
     前記保持体が、請求項5に記載の保持体である
     ことを特徴とする濾過システム。
  7.  複数の濾過システムが組み合わさってなる濾過処理設備であって、
     複数の濾過システムのそれぞれが、請求項6に記載の濾過システムである
     ことを特徴とする濾過処理設備。
PCT/JP2023/008740 2022-03-23 2023-03-08 濾過膜ユニット、保持体、濾過システム、及び濾過処理設備 WO2023181932A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-046307 2022-03-23
JP2022046307A JP2023140458A (ja) 2022-03-23 2022-03-23 濾過膜ユニット、保持体、濾過システム、及び濾過処理設備

Publications (1)

Publication Number Publication Date
WO2023181932A1 true WO2023181932A1 (ja) 2023-09-28

Family

ID=88101278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008740 WO2023181932A1 (ja) 2022-03-23 2023-03-08 濾過膜ユニット、保持体、濾過システム、及び濾過処理設備

Country Status (2)

Country Link
JP (1) JP2023140458A (ja)
WO (1) WO2023181932A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07504120A (ja) * 1991-12-24 1995-05-11 ポール・コーポレーション フィルタ装置
KR200312518Y1 (ko) * 2002-11-29 2003-05-13 주식회사 코레드 수처리용 평막모듈과 막 단위체 및 그 평막모듈 제조방법
KR20060019241A (ko) * 2004-08-27 2006-03-03 주식회사 퓨어엔비텍 평막 모듈
JP2013017920A (ja) * 2011-07-08 2013-01-31 Mie Univ 固液分離モジュールおよび、固液分離方法
JP2013063382A (ja) * 2011-09-16 2013-04-11 Hitachi Plant Technologies Ltd 浸漬型膜分離装置における膜エレメント

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07504120A (ja) * 1991-12-24 1995-05-11 ポール・コーポレーション フィルタ装置
KR200312518Y1 (ko) * 2002-11-29 2003-05-13 주식회사 코레드 수처리용 평막모듈과 막 단위체 및 그 평막모듈 제조방법
KR20060019241A (ko) * 2004-08-27 2006-03-03 주식회사 퓨어엔비텍 평막 모듈
JP2013017920A (ja) * 2011-07-08 2013-01-31 Mie Univ 固液分離モジュールおよび、固液分離方法
JP2013063382A (ja) * 2011-09-16 2013-04-11 Hitachi Plant Technologies Ltd 浸漬型膜分離装置における膜エレメント

Also Published As

Publication number Publication date
JP2023140458A (ja) 2023-10-05

Similar Documents

Publication Publication Date Title
EP3473330B1 (en) Siphon-type air diffusion device, membrane bioreactor, and water treatment method
TW201016293A (en) Separator for separating a mixture of liquid and gas and apparatus for processing a substrate including the separator
ES2429448T3 (es) Aparato de filtración de membrana de fibra hueca
KR20110088016A (ko) 중공사막 모듈
WO2023181932A1 (ja) 濾過膜ユニット、保持体、濾過システム、及び濾過処理設備
BR112021010424A2 (pt) Dispositivo de filtro, unidade de filtro de membrana, uso de dispositivo de filtro, e, método para instalar uma pluralidade de unidades de filtro de membrana
KR101461048B1 (ko) 침지식 막분리장치용 분리막 유니트
JP7392752B2 (ja) 濾過システムおよび濾過処理設備
JP5137935B2 (ja) バラスト水処理用の膜処理設備
WO2023181933A1 (ja) 濾過システム及び濾過処理設備
EP2322268B1 (en) Immersion type membrane separator device
CN113060798B (zh) 可更换过滤膜组件的罐型过滤设备
WO2023181938A1 (ja) 保持体、濾過システム、及び濾過処理設備
JP5984135B2 (ja) 膜分離装置
JP2016087567A (ja) 膜モジュール
WO2011052537A1 (ja) マニホールド構造
JPWO2020138096A1 (ja) 脱気システム、液体の脱気方法、脱気ユニット、脱気モジュール、脱気システムの製造方法、及び天然資源の産生方法
TW201713405A (zh) 過濾單元
ES2272668T3 (es) Casete de membrana de fibra hueca.
US20230321614A1 (en) Bubble generation device and liquid filtration device
WO2016158308A1 (ja) 散気管及び濾過ユニット
JP5281183B2 (ja) バラスト水処理用の膜処理設備に用いられる膜カートリッジの交換方法
WO2023181941A1 (ja) 保持体、濾過システム、及び濾過処理設備
JP5581086B2 (ja) セラミックフィルタモジュール
JP7380731B2 (ja) 濾過システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774531

Country of ref document: EP

Kind code of ref document: A1