WO2023181791A1 - Testing device and testing method - Google Patents

Testing device and testing method Download PDF

Info

Publication number
WO2023181791A1
WO2023181791A1 PCT/JP2023/007017 JP2023007017W WO2023181791A1 WO 2023181791 A1 WO2023181791 A1 WO 2023181791A1 JP 2023007017 W JP2023007017 W JP 2023007017W WO 2023181791 A1 WO2023181791 A1 WO 2023181791A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring board
printed wiring
sensor
electronic component
jig
Prior art date
Application number
PCT/JP2023/007017
Other languages
French (fr)
Japanese (ja)
Inventor
陽介 金川
大樹 山上
裕之 石川
和幸 須藤
浩平 中西
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to TW112110216A priority Critical patent/TW202400981A/en
Publication of WO2023181791A1 publication Critical patent/WO2023181791A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/20Investigating strength properties of solid materials by application of mechanical stress by applying steady bending forces

Definitions

  • the present disclosure relates to a test device and a test method.
  • Non-Patent Document 1 stipulates a test method in which electronic components are mounted on a printed wiring board for testing. In this test method, judgment is made based on the performance and appearance abnormalities of electronic components after bending a printed wiring board to a specified dimension.
  • limit value the bending dimension at which the electronic component broke is not known. In order to know the limit value, it is not necessary to bend the printed wiring board to a certain dimension, but rather to bend the printed wiring board until the electronic components break, such as cracking, and to know the bending dimension at that time.
  • Patent Document 1 describes that in an apparatus for measuring the bending strength of a single object to be measured such as an electronic component, an acoustic emission sensor (hereinafter referred to as "AE It is disclosed that an AE sensor is provided to detect vibrations caused by destruction of the object to be measured.
  • AE acoustic emission sensor
  • Patent Document 1 does not assume that the printed wiring board on which the object to be measured is mounted is bent, and does not have a structure for placing the printed wiring board on a stage and bending it.
  • an object of the present disclosure is to provide a technology that can detect vibrations caused by destruction of electronic components with high accuracy in a bendability test of a printed wiring board on which electronic components are mounted.
  • a test device includes a support base that supports both ends of a mounting surface of a printed wiring board on which electronic components are mounted, and a support base that is disposed on a side of the printed wiring board opposite to the mounting surface, and , a pusher jig that applies a load to the electronic component via the printed wiring board, and a pusher jig that is disposed around the electronic component on the mounting surface of the printed wiring board, and that is caused by destruction of the electronic component.
  • a sensor that detects vibration caused by the sensor and outputs a voltage signal according to the vibration; a fixing jig that fixes the sensor to the printed wiring board; a pressing member that presses the sensor against the printed wiring board; and a measuring section for measuring the waveform of the output voltage signal.
  • the pusher jig since the support base supports both ends of the mounting surface of the printed wiring board, the pusher jig applies a load to the electronic component via the printed wiring board, so that the electronic component is mounted.
  • Printed wiring boards can be bent. Further, since the sensor is fixed to the printed wiring board by the fixing jig and pressed against the printed wiring board by the pressing member, it is possible to stably attach the sensor to the printed wiring board.
  • vibrations caused by destruction of electronic components can be detected with high accuracy in a bendability test of a printed wiring board on which electronic components are mounted.
  • FIG. 1 is a schematic diagram of a test device according to Embodiment 1.
  • FIG. FIG. 3 is a schematic diagram of the mounting location of a sensor included in the test device according to Embodiment 1, viewed from the -Y direction.
  • FIG. 3 is a schematic diagram of the mounting location of a sensor included in the test device according to the first embodiment, viewed from the X direction.
  • FIG. 2 is a schematic diagram showing a state in which a vibrator and a sensor are fixed on a printed wiring board included in the test device according to the first embodiment.
  • FIG. 3 is a diagram showing the relationship between the pressing force of a sensor against a printed wiring board and the output voltage of the sensor.
  • FIG. 3 is a schematic diagram showing the distance between a sensor and an exciter.
  • FIG. 7 is a diagram showing the relationship between the distance between the vibrator and the sensor and the output voltage of the sensor when a constant vibration is applied to the printed wiring board by the vibrator.
  • FIG. 2 is a schematic diagram of a test device according to a second embodiment.
  • FIG. 7 is a schematic diagram of the mounting location of a sensor included in the test device according to Embodiment 2, viewed from the X direction.
  • FIG. 3 is a schematic diagram of a test device according to Embodiment 3.
  • FIG. 6 is a diagram showing an output signal waveform detected by a sensor regarding vibration caused by destruction when a ceramic multilayer capacitor reaches a limit value.
  • FIG. 6 is a diagram showing a histogram for each frequency included in vibrations caused by destruction when a ceramic multilayer capacitor reaches a limit value.
  • FIG. 7 is a schematic diagram of the mounting location of a sensor included in the test device according to Embodiment 4, viewed from the -Y direction.
  • FIG. 12 is an enlarged view showing a portion of the outer circumferential surface of a fixing jig included in the test apparatus according to Embodiment 4, which faces a pusher jig.
  • FIG. 12 is a schematic diagram of the mounting location of a sensor included in the test device according to Embodiment 5, viewed from the X direction.
  • FIG. 7 is an enlarged view showing a portion of the inner circumferential surface of the fixing jig included in the test apparatus according to Embodiment 5 that contacts the printed wiring board, and a portion of the outer circumferential surface of the fixing jig that faces the pusher jig. .
  • FIG. 7 is a schematic diagram of a positioning jig according to a sixth embodiment, viewed from the Z direction.
  • FIG. 7 is a schematic diagram of a positioning jig according to a sixth embodiment, viewed from the -Y direction.
  • FIG. 12 is a schematic diagram of a state in which a sensor is attached using a positioning jig according to a sixth embodiment, viewed from the Z direction.
  • FIG. 12 is a schematic diagram of a state in which a sensor is attached using a positioning jig according to a sixth embodiment, viewed from the -Y direction.
  • FIG. 1 is a schematic diagram of a test apparatus according to Embodiment 1.
  • FIG. 2 is a schematic diagram of the mounting location of the sensor 6 included in the test apparatus according to the first embodiment, viewed from the -Y direction.
  • FIG. 3 is a schematic diagram of the mounting location of the sensor 6 included in the test device according to the first embodiment, viewed from the X direction.
  • the X direction, Y direction, and Z direction are orthogonal to each other.
  • the X, Y, and Z directions shown in the figures below are also orthogonal to each other.
  • the direction including the X direction and the ⁇ X direction, which is the opposite direction to the X direction will also be referred to as the "X-axis direction.”
  • a direction including the Y direction and the -Y direction, which is the opposite direction to the Y direction is also referred to as the "Y-axis direction.”
  • a direction including the Z direction and the -Z direction, which is the opposite direction to the Z direction is also referred to as the "Z-axis direction.”
  • the test device includes a pair of support stands 3, a load application section 1, a sensor 6, a fixing jig 8, an elastic member 7 as a pressing member, an amplifier 9, and a measurement section 10. It is equipped with
  • the pair of support stands 3 are cylindrical columns extending in the Y-axis direction so as to be able to support both ends (ends in the X-axis direction) of the mounting surface of the printed wiring board 4 arranged parallel to the XY plane. It is composed of members. At the center of the mounting surface of the printed wiring board 4, an electronic component 5, which is an object to be measured, is mounted.
  • the load application unit 1 is arranged on the side of the printed wiring board 4 opposite to the mounting surface, that is, above the printed wiring board 4 (in the Z direction).
  • the load applying section 1 is provided with a pusher jig 2 that protrudes downward (-Z direction).
  • the pusher jig 2 applies a load to the electronic component 5 via the printed wiring board 4 by descending together with the load applying section 1 .
  • the sensor 6 is arranged around the electronic component 5 on the mounting surface of the printed wiring board 4.
  • the sensor 6 is an AE sensor that detects vibrations caused by destruction of the electronic component 5 and outputs a voltage signal in accordance with the vibrations.
  • the elastic member 7 is an elastic member such as a leaf spring, coil spring, rubber, or sponge, and is used at the lower end of the sensor 6 to press the sensor 6 against the printed wiring board 4. (the end in the -Z direction).
  • Fixing jig 8 is a jig for fixing sensor 6 to printed wiring board 4 .
  • the fixing jig 8 is formed into a rectangular frame shape when viewed from the X direction so that the sensor 6 can be pressed against the printed wiring board 4 via the elastic member 7.
  • the amplifier 9 amplifies the voltage signal output from the sensor 6 and outputs it to the measurement section 10.
  • the measuring unit 10 is a voltage waveform measuring device for measuring the waveform of the amplified voltage signal. Note that although the amplifier 9 is not an essential component and can be omitted, it is more preferable for the test apparatus to include the amplifier 9.
  • the mounting position of the elastic member 7 does not have to be below the sensor 6 (in the ⁇ Z direction), and may be any mounting position where the sensor 6 is pressed against the printed wiring board 4.
  • the mounting position of the elastic member 7 may be between the fixing jig 8 and the printed wiring board 4 on the surface opposite to the mounting surface of the printed wiring board 4.
  • the printed wiring board 4 is placed on the pair of support stands 3 so that the electronic component 5 is located on the lower side (-Z direction). At this time, the electronic component 5 is oriented so as not to come into direct contact with the pusher jig 2.
  • the load applying section 1 is lowered together with the pusher jig 2, and the pusher jig 2 is brought into contact with the surface of the printed wiring board 4 opposite to the mounting surface.
  • the position of the pusher jig 2 when the pusher jig 2 contacts the printed wiring board 4 is defined as the reference position.
  • the load applying section 1 is further lowered together with the pusher jig 2, and a further load is applied from the reference position.
  • the printed wiring board 4 bends due to the load, and when further load is applied, the electronic component 5 is destroyed, and vibrations due to the destruction are emitted from the electronic component 5. This vibration propagates to the sensor 6 via the printed wiring board 4. Vibration caused by destruction of the electronic component 5 is detected by the sensor 6, converted into a voltage signal corresponding to the vibration, and output.
  • the signals input to the measurement unit 10 include, in addition to signals caused by the destruction of the electronic component 5, noise signals from the load application unit 1 and peripheral equipment, and noise output from the sensor 6 due to vibrations generated in the surrounding area. Contains signals.
  • a threshold is set to the voltage value between the voltage amplitude value of the noise signal and the voltage amplitude value of the voltage signal corresponding to vibration caused by destruction of the electronic component 5. do.
  • a printed wiring board bending resistance test is performed with the electronic component 5 mounted on the printed wiring board, the sensor 6 detects vibrations caused by destruction of the electronic component 5, and the measurement unit 10 measures the amplitude value of the voltage signal. . Further, a printed wiring board bending resistance test is performed with no electronic component 5 mounted on the printed wiring board 4, and the amplitude value of the voltage signal is measured by the measurement unit 10. A voltage signal measured without electronic component 5 mounted on printed wiring board 4 is a noise signal.
  • a threshold value is determined at a voltage value between the voltage amplitude value of the voltage signal caused by the destruction of the electronic component 5 and the voltage amplitude value of the noise signal.
  • the threshold value is determined in consideration of the amplification amount.
  • the threshold value determined in this way is set in the measurement unit 10, and while applying a load to the printed wiring board 4 by the load application unit 1 via the pusher jig 2, the voltage output from the sensor 6 is measured by the measurement unit 10. Measure the signal.
  • the electronic component 5 If a load is continued to be applied to the printed wiring board 4, the electronic component 5 will be destroyed.
  • the sensor 6 detects the vibration when the electronic component 5 is destroyed, and when the waveform of the voltage signal measured by the measurement unit 10 exceeds the threshold, the pushing dimension of the pusher jig 2 from the reference position is determined by the electronic component 5.
  • the push-in dimension of the pusher jig 2 from the reference position may be measured with the operation of the load application section 1 stopped by a trigger signal, or with the downward speed of the load application section 1 constant and It may be calculated based on the time required from the time at the position to the detection time of the trigger signal. Furthermore, the pushing dimension of the pusher jig 2 from the reference position may be measured using a laser displacement meter or the like.
  • the senor 6 may be fixed to either the mounting surface of the printed wiring board 4 or the surface opposite thereto, but it may be fixed to the same side of the printed wiring board 4 as the electronic component 5. desirable.
  • the vibration caused by the destruction of the electronic component 5 contains a lot of energy that propagates through the mounting surface of the printed wiring board 4, so the amplitude of the voltage signal output from the sensor 6 increases, and the vibration caused by the destruction of the electronic component 5 contains a large amount of energy that propagates through the mounting surface of the printed wiring board 4. The reason for this is that the detection sensitivity of vibrations caused by vibrations is improved.
  • the detection sensitivity of vibrations caused by destruction of the electronic component 5 is improved.
  • the voltage signal corresponding to the vibration caused by the destruction of the electronic component 5 becomes larger than the noise signal, and the amplitude voltage value of the voltage signal corresponding to the destruction of the electronic component 5 and the amplitude voltage value of the noise signal become different. The difference becomes larger.
  • the threshold value set in the measurement unit 10 can be set sufficiently higher than the amplitude voltage value of the noise signal, and the rate of false detection of vibrations due to destruction of the electronic component 5 is reduced.
  • a couplant 11 such as vaseline or grease to the contact surface between the sensor 6 and the printed wiring board 4.
  • FIG. 4 is a schematic diagram showing a state in which the vibrator 13 and the sensor 6 are fixed on the printed wiring board 4 included in the test apparatus according to the first embodiment.
  • FIG. 5 is a diagram showing the relationship between the pressing force of the sensor 6 against the printed wiring board 4 and the output voltage of the sensor 6.
  • FIG. 4 shows a vibrator 13 in FIG. 4, before conducting the printed wiring board bending resistance test, a vibrator 13 is fixed around the sensor 6 on the mounting surface of the printed wiring board 4 without any electronic components 5 mounted thereon. .
  • a signal generator 14 is connected to the vibrator 13 . Vibration with a constant amplitude is applied to the printed wiring board 4 from the vibrator 13.
  • FIG. 5 shows a voltage signal output from the sensor 6 when the pressing force of the sensor 6 against the printed wiring board 4 is changed.
  • the amplitude of the voltage signal output from the sensor 6 becomes smaller from around 0.4 kg/cm 2 . Therefore, by setting the pressing force of the sensor 6 against the printed wiring board 4 to be at least a certain pressure, specifically at least 0.4 kg/cm 2 , the voltage signal output from the sensor 6 will increase. The amplitude difference with the noise signal increases. When the amplitude difference becomes large, the threshold value set in the measurement unit 10 can be set sufficiently higher than the amplitude voltage value of the noise signal, and the rate of false detection of vibrations due to destruction of the electronic component 5 decreases. As a result, it can be expected that the accuracy of measuring vibrations caused by destruction of the electronic component 5 will be improved.
  • FIG. 6 is a schematic diagram showing the distance between the sensor 6 and the vibrator 13. As shown in FIG. 6, it is desirable that the distance from the sensor 6 to the vibrator 13 is a certain distance or less.
  • the vibrator 13 is bonded and fixed to the mounting surface of the printed wiring board 4 at the position where the electronic component 5 is mounted.
  • the sensor 6 is fixed by the fixing jig 8 and the elastic member 7.
  • a signal having a constant vibration width is input from the signal generator 14 to the vibrator 13, the printed wiring board 4 is vibrated.
  • FIG. 7 is a diagram showing the relationship between the distance between the vibrator 13 and the sensor 6 and the output voltage of the sensor 6 when a constant vibration is applied to the printed wiring board 4 by the vibrator 13. As shown in FIG. 7, it can be seen that as the distance between the sensor 6 and the vibrator 13 increases, the voltage value output from the sensor 6 decreases.
  • the sensor 6 can cope with the vibration caused by the destruction of the electronic component 5.
  • the output voltage is large and the sensitivity is high.
  • the threshold value set in the measurement unit 10 can be set sufficiently higher than the amplitude voltage of the noise signal, which has the effect of reducing the false detection rate of vibrations caused by destruction of the electronic component 5 and improving measurement accuracy. You can expect it.
  • the test apparatus includes a support base 3 that supports both ends of the mounting surface of the printed wiring board 4 on which the electronic component 5 is mounted, and a mounting surface of the printed wiring board 4 that is opposite to the supporting base 3.
  • the test device further includes an amplifier 9 that amplifies the voltage signal output from the sensor 6.
  • the measuring section 10 measures the waveform of the voltage signal amplified by the amplifier 9.
  • the pusher jig 2 applies a load to the electronic component 5 via the printed wiring board 4, so that the electronic component 5 is mounted.
  • Printed wiring board 4 can be bent. Further, since the sensor 6 is fixed to the printed wiring board 4 by the fixing jig 8 and pressed against the printed wiring board 4 by the pressing member, the sensor 6 can be stably attached to the printed wiring board 4.
  • the work time required for attaching and removing the sensor 6 can be shortened.
  • the pressing member includes the elastic member 7, by employing the elastic member 7 whose elastic modulus is known, the reproducibility of attaching the sensor 6 is increased. By changing the elastic coefficient of the elastic member 7, it is possible to easily obtain an appropriate pressing force against the sensor 6. As a result, the sensor 6 can be attached stably with good reproducibility.
  • the pressing force for pressing the sensor 6 against the printed wiring board 4 is 0.4 kg/cm 2 or more, the limit value of the electronic component 5 in the printed wiring board bending resistance test can be detected with high sensitivity.
  • the limit value of the electronic component 5 in the printed wiring board bending resistance test can be detected with high sensitivity.
  • FIG. 8 is a schematic diagram of a test device according to the second embodiment.
  • FIG. 9 is a schematic diagram of the mounting location of the sensor 6 included in the test device according to the second embodiment, viewed from the X direction. Note that, in the second embodiment, the same components as those described in the first embodiment are given the same reference numerals, and a description thereof will be omitted.
  • a screw 12 is provided as a pressing member. Specifically, in order to fix the sensor 6 to the printed wiring board 4, a fixing jig 8 and screws 12 are provided.
  • the senor 6 is pressed against the printed wiring board 4 by the screw 12 from the mounting surface side of the printed wiring board 4, but the screw 12 is pressed from the side opposite to the mounting surface of the printed wiring board 4 via the fixing jig 8.
  • the printed wiring board 4 may also be pressed by.
  • a bolt may be used instead of the screw 12.
  • the pressing member includes the bolt or screw 12
  • the sensor 6 can be fixed with a stable pressing force without using the elastic member 7.
  • the necessary pressing force of the sensor 6 against the printed wiring board 4 can be easily adjusted, so that an appropriate pressing force against the sensor 6 can be easily obtained. becomes possible.
  • vibrations caused by destruction of the electronic component 5 can be detected with high sensitivity, and the effect of lowering the false detection rate can be obtained.
  • the elastic modulus of the elastic member 7 needs to be known in order to ensure the desired pressing force, but the elastic modulus may change over time. Therefore, the surface pressure of the sensor 6 changes over time. Therefore, in order to obtain a stable pressing force, it is necessary to constantly manage the elastic modulus of the elastic member 7, but when the screw 12 is used, the effect that managing the elastic modulus of the elastic member 7 is not necessary can be expected. Furthermore, compared to the method of bonding the sensor 6 to the printed wiring board 4, the working time required for attaching and removing the sensor 6 can be shortened.
  • FIG. 10 is a schematic diagram of a test device according to Embodiment 3.
  • the same components as those explained in the first and second embodiments are designated by the same reference numerals, and the explanation thereof will be omitted.
  • a band rejection filter 15 is provided between the sensor 6 and the measurement unit 10 to attenuate the voltage signal in a specific frequency band. It is being Note that in addition to the configuration of the second embodiment, a band rejection filter 15 may be provided.
  • the output signal of the sensor 6 includes, in addition to signals caused by the destruction of the electronic component 5, noise signals from the load application unit 1 and peripheral devices, and vibrations generated in the surrounding area. Contains noise signals.
  • the signal caused by the vibration caused by the destruction of the electronic component 5 should be detected, but if the noise signal is mistakenly detected as the vibration caused by the destruction of the electronic component 5, the electronic There may be cases where it is erroneously determined that the limit value of the component 5 is different from the original limit value. Therefore, by arranging the band-rejection filter 15 between the sensor 6 and the measurement unit 10, it is possible to suppress erroneous detection of a noise signal as vibration caused by destruction of the electronic component 5.
  • the electronic component 5 is a ceramic multilayer capacitor and the sensor 6 detects vibration at the time of destruction, a signal is detected in a wide frequency range. Even if a voltage signal in a specific frequency band is attenuated by the band-removal filter 15, voltage signals in other frequency bands pass through the band-removal filter 15 without being substantially attenuated.
  • the frequency of the noise signal is 400 kHz
  • the band rejection filter 15 that attenuates the frequency around 400 kHz is selected.
  • the frequency of the vibration caused by the destruction of the electronic component 5 is between 100 kHz and 600 kHz
  • the 400 kHz voltage signal caused by the vibration caused by the destruction of the electronic component 5 is attenuated together with the 400 kHz noise signal.
  • FIG. 11 shows the output signal waveform detected by the sensor 6 regarding vibrations caused by destruction when the ceramic multilayer capacitor reaches its limit value.
  • FIG. 12 shows a histogram for each frequency included in vibrations caused by destruction when a ceramic multilayer capacitor reaches its limit value.
  • the test device further includes a band-rejection filter 15 disposed between the sensor 6 and the measuring section 10. Therefore, the band-rejection filter 15 can attenuate the noise signal to below the threshold set in the measuring section 10. As a result, it is expected that the rate of false detection of the limit value of the electronic component 5 due to noise signals will be reduced, and the detection accuracy will be improved.
  • FIG. 13 is a schematic diagram of the mounting location of the sensor 6 included in the test device according to the fourth embodiment, viewed from the -Y direction.
  • FIGS. 14(a) and 14(b) are enlarged views showing a portion 8a facing the pusher jig 2 of the outer peripheral surface of the fixing jig 8 included in the testing apparatus according to the fourth embodiment.
  • the same components as those described in Embodiments 1 to 3 are given the same reference numerals, and the explanation thereof will be omitted.
  • the shape of the outer peripheral surface of the fixing jig 8 is different from the configuration of the first embodiment.
  • the fixing jig 8 will be explained below.
  • the fixing jig 8 is formed in a rectangular frame shape surrounding the printed wiring board 4 and the elastic member 7 as a pressing member when viewed from the X direction.
  • the pressing member includes the elastic member 7, but the pressing member may include a screw 12 or a bolt.
  • the inner circumferential surface of the fixing jig 8 is in contact with the surface of the printed wiring board 4 on the opposite side to the mounting surface and the portion of the elastic member 7 on the side opposite to the printed wiring board 4.
  • a portion 8a of the outer peripheral surface of the fixing jig 8 that faces the pusher jig 2 is formed in an arc shape.
  • the fixing jig 8 In order to improve the vibration detection sensitivity, it is necessary to fix the sensor 6 around the electronic component 5, and as the fixing jig 8 approaches the electronic component 5, the fixing jig 8 comes into contact with the pusher jig 2. . If they come into contact, the pusher jig 2 and the fixing jig 8 will rub against each other during the bending test, causing vibration. This vibration generates noise, which increases the false detection rate.
  • the portion 8a of the outer circumferential surface of the fixing jig 8 that faces the pusher jig 2 is formed in an arc shape, but the shape is not limited to this. Any shape that avoids contact is fine.
  • a portion 8a of the outer peripheral surface of the fixing jig 8 that faces the pusher jig 2 may be formed in an inclined shape.
  • the fixing jig 8 is formed in a frame shape surrounding the printed wiring board 4 and the pressing member, and the inner peripheral surface of the fixing jig 8 is A portion 8a of the outer circumferential surface of the fixing jig 8 that faces the pusher jig 2 is in contact with the surface opposite to the mounting surface in 4 and the portion of the pressing member opposite to the printed wiring board 4. , is formed in an arcuate or slanted shape.
  • the sensor 6 even closer to the electronic component 5 than in the first embodiment. As a result, it becomes possible to detect vibrations caused by destruction of the electronic component 5 with even higher sensitivity, resulting in the effect that the false detection rate is further reduced.
  • FIG. 15 is a schematic diagram of the mounting location of the sensor 6 included in the test device according to the fifth embodiment, viewed from the X direction.
  • 16(a) and 16(b) are enlarged views showing a portion 8b of the inner circumferential surface of the fixing jig 8 included in the test apparatus according to the fifth embodiment, which contacts the printed wiring board 4.
  • 16(c) and (d) show a portion 8b of the inner circumferential surface of the fixture 8 provided in the test apparatus according to the fifth embodiment, which contacts the printed wiring board 4, and a portion 8b of the outer circumferential surface of the fixture 8. It is an enlarged view showing a portion 8a facing the pusher jig 2.
  • the same components as those explained in Embodiments 1 to 4 are given the same reference numerals, and the explanation thereof will be omitted.
  • the shape of the inner circumferential surface of the fixing jig 8 is different from that in the fourth embodiment.
  • the portion 8b that contacts the printed wiring board 4 is formed in an arc shape.
  • the printed wiring board 4 When a load is continued to be applied to the printed wiring board 4 by the pusher jig 2, the printed wiring board 4 is deformed into an arc shape (see FIG. 13), and tensile stress is applied to the electronic component 5. As the deformation of the printed wiring board 4 increases, the stress on the electronic component 5 also increases, eventually reaching a limit value and causing the electronic component 5 to break. Therefore, the limit value of the electronic component 5 influences the shape in which the printed wiring board 4 deforms. Ideally, it is desirable that the printed wiring board 4 is deformed into the same shape as it would be without the fixing jig 8 attached. The smaller the area of the portion 8b of the fixing jig 8 that contacts the printed wiring board 4, the smaller the influence on the deformed shape of the printed wiring board 4. As a result, there is no difference in the magnitude of the tensile stress acting on the electronic component 5 between when the fixing jig 8 is attached to the printed wiring board 4 and when it is not attached, making it possible to perform highly accurate testing.
  • the portion 8b of the inner peripheral surface of the fixing jig 8 that contacts the printed wiring board 4 is formed in an arc shape, but the printed wiring in the fixing jig 8 is not limited to this. Any shape is sufficient as long as the area of the portion 8b in contact with the plate 4 is small.
  • a portion 8b of the inner peripheral surface of the fixing jig 8 that contacts the printed wiring board 4 may be formed in an inclined shape.
  • the shape of the inner circumferential surface of the fixing jig 8 of the fifth embodiment and the shape of the outer circumferential surface of the fixing jig 8 of the fourth embodiment can be combined. is also possible.
  • the fixing jig 8 is formed in a frame shape surrounding the printed wiring board 4 and the pressing member, and the inner peripheral surface of the fixing jig 8 is A portion 8b of the inner peripheral surface of the fixing jig 8 that contacts the surface opposite to the mounting surface of the fixing jig 8 and a portion of the pressing member opposite to the printed wiring board 4 is , is formed in an arcuate or slanted shape.
  • FIG. 17 is a schematic diagram of the positioning jig 16 according to the sixth embodiment viewed from the Z direction.
  • FIG. 18 is a schematic diagram of the positioning jig 16 according to the sixth embodiment viewed from the -Y direction.
  • FIG. 19 is a schematic diagram of a state in which the sensor 6 is attached using the positioning jig 16 according to the sixth embodiment, viewed from the Z direction.
  • FIG. 20 is a schematic diagram of a state in which the sensor 6 is attached using the positioning jig 16 according to the sixth embodiment, viewed from the -Y direction.
  • the same components as those explained in the first to fifth embodiments are designated by the same reference numerals, and the explanation thereof will be omitted.
  • a positioning jig 16 is used to position the sensor 6.
  • the positioning jig 16 includes a plate-shaped base 16a, two guide pins 17, two fixing plungers 18, a sensor positioning plate 19, and a micrometer head 20. It is equipped with
  • the base 16a is formed into a rectangular shape when viewed from the Z direction. A portion of the base 16a closer to the ⁇ X direction than the central portion in the X-axis direction is provided with a base for preventing the fixing jig 8 and the positioning jig 16 from coming into contact with each other when the fixing jig 8 is set in the positioning jig 16. - A recess 21 recessed in the Z direction is provided.
  • the two guide pins 17 are provided on both sides of the base 16a in the X-axis direction with the recess 21 in between, and position the printed wiring board 4 in the Y-axis direction.
  • the two fixing plungers 18 are provided at positions facing the two guide pins 17 on the base 16a, respectively, and press the printed wiring board 4 against the two guide pins 17.
  • the sensor positioning plate 19 is provided at the periphery of the recess 21 in the base 16a in the X direction, and has a semicircular notch 19a that matches the cross-sectional size of the sensor 6 in order to position the sensor 6.
  • the micrometer head 20 is provided at the end of the main body 6a in the X direction, and positions the printed wiring board 4 in the X direction.
  • the fixing jig 8 is placed in the recess 21 of the positioning jig 16. Thereafter, the printed wiring board 4 on which the electronic component 5 is mounted is placed through an opening formed on the inner circumferential side of the fixing jig 8 on the positioning jig 16. At this time, the recess 21 has a structure that allows the printed wiring board 4 and the fixing jig 8 to be placed horizontally (parallel to the XY plane) with respect to the base 16a of the positioning jig 16 without coming into contact with each other. There is.
  • the position of the printed wiring board 4 in the Y-axis direction is determined along the guide pin 17 of the positioning jig 16 and the fixing plunger 18.
  • Position adjustment in the X-axis direction is performed by moving the printed wiring board 4 until it hits the micrometer head 20.
  • the position of the micrometer head 20 on the positioning jig 16 is adjusted in advance to a position where the distance between the electronic component 5 and the sensor 6 is a desired distance.
  • the sensor 6 is pressed against the semicircular notch 19a of the sensor positioning plate 19 to determine the position of the sensor 6, and the elastic member 7 fixes the sensor 6.
  • the printed wiring board 4 is moved in the -X direction and removed from the positioning jig 16, thereby completing the positioning and fixing of the sensor 6.
  • the sensor 6 As shown in FIG. 7, as the distance between the sensor 6 and the vibrator 13 increases, the voltage value output from the sensor 6 decreases. Therefore, the sensor 6 is fixed so that the distance between the sensor 6 and the electronic component 5 is 5 mm or less. However, if the sensor 6 is brought close to the electronic component 5, the fixing jig 8 will come into contact with the pusher jig 2 during the bending test.
  • the electronic component 5 is mounted on the mounting surface of the printed wiring board 4, and the sensor 6 is mounted around the electronic component 5 on the mounting surface of the printed wiring board 4 using a fixing jig.
  • a positioning jig 16 is used to position the sensor 6 on the printed wiring board 4.
  • Pusher jig 3. Support stand, 4. Printed wiring board, 5. Electronic components, 6. Sensor, 7. Elastic member, 8. Fixing jig, 9. Amplifier, 10. Measuring section, 12. Screw, 15. Band rejection filter, 16. Positioning jig. .

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

The purpose of the present invention is to provide a feature in which, in a test of the bending properties of a printed wiring board on which an electronic component is mounted, it is possible to highly accurately detect vibration caused by breakdown of the electronic component. This testing device comprises: a support base (3) for supporting both ends of a mounting surface of a printed wiring board (4) on which an electronic component (5) is mounted; a plunger jig (2) disposed on the surface of the printed wiring board (4) on the opposite side from the mounting surface, the plunger jig (2) applying a load to the electronic component (5) via the printed circuit board (4); a sensor (6) disposed surrounding the electronic component (5) on the mounting surface of the printed wiring board (4), the sensor (6) detecting vibration caused by breakdown of the electronic component (5) and outputting a voltage signal that corresponds to the vibration; a fixing jig (8) for fixing the sensor (6) to the printed wiring board (4); a pressing member for pressing the sensor (6) against the printed wiring board (4); and a measurement unit (10) for measuring the waveform of the voltage signal outputted from the sensor (6).

Description

試験装置および試験方法Test equipment and test method
 本開示は、試験装置および試験方法に関するものである。 The present disclosure relates to a test device and a test method.
 非特許文献1には、耐プリント配線板曲げ性試験に関して、試験用プリント配線板に電子部品を搭載した状態での試験方法が規定されている。この試験方法では、プリント配線板を規定寸法曲げた後の電子部品の性能と外観異常に基づいて判定している。 Regarding a printed wiring board bending resistance test, Non-Patent Document 1 stipulates a test method in which electronic components are mounted on a printed wiring board for testing. In this test method, judgment is made based on the performance and appearance abnormalities of electronic components after bending a printed wiring board to a specified dimension.
 この方法において不合格となった場合、電子部品の破壊が発生した曲げ寸法(以下、「限界値」という)が分からない。限界値を知るためにはプリント配線板を一定寸法曲げるのではなく、プリント配線板を電子部品が割れなどの破壊にいたるまで曲げ、そのときの曲げ寸法を知る必要がある。 If this method fails, the bending dimension (hereinafter referred to as "limit value") at which the electronic component broke is not known. In order to know the limit value, it is not necessary to bend the printed wiring board to a certain dimension, but rather to bend the printed wiring board until the electronic components break, such as cracking, and to know the bending dimension at that time.
 例えば、特許文献1には、電子部品などの測定対象物単体での抗折強度を測定する装置において、測定対象物が載置されるステージを構成する支持部内にアコースティックエミッションセンサー(以下、「AEセンサー」という)が設けられ、測定対象物の破壊に起因する振動をAEセンサーにより検出することが開示されている。 For example, Patent Document 1 describes that in an apparatus for measuring the bending strength of a single object to be measured such as an electronic component, an acoustic emission sensor (hereinafter referred to as "AE It is disclosed that an AE sensor is provided to detect vibrations caused by destruction of the object to be measured.
特開2010-237197号公報Japanese Patent Application Publication No. 2010-237197
 しかしながら、特許文献1に記載の技術では、測定対象物を搭載したプリント配線板を曲げることは想定されておらず、ステージにプリント配線板を載置し曲げるための構造とはなっていない。 However, the technique described in Patent Document 1 does not assume that the printed wiring board on which the object to be measured is mounted is bent, and does not have a structure for placing the printed wiring board on a stage and bending it.
 また、特許文献1に記載の技術において、プリント配線基板を載置可能な構造とした場合でも、プリント配線基板の下面全体がテーブルと接触しており、測定対象物の破壊に起因する振動がテーブルにより減衰するため、AEセンサーの検出感度が低下するという問題があった。 In addition, in the technology described in Patent Document 1, even when the structure is such that the printed wiring board can be mounted, the entire lower surface of the printed wiring board is in contact with the table, and vibrations caused by the destruction of the object to be measured are transmitted to the table. Therefore, there was a problem in that the detection sensitivity of the AE sensor decreased.
 そこで、本開示は、電子部品を搭載したプリント配線板の曲げ性試験において、電子部品の破壊に起因する振動を高精度に検出可能な技術を提供することを目的とする。 Therefore, an object of the present disclosure is to provide a technology that can detect vibrations caused by destruction of electronic components with high accuracy in a bendability test of a printed wiring board on which electronic components are mounted.
 本開示に係る試験装置は、電子部品が搭載されたプリント配線板の搭載面における両端部を支持する支持台と、前記プリント配線板における前記搭載面とは反対側の面側に配置され、かつ、前記電子部品に対し前記プリント配線板を介して荷重を印加する押し子治具と、前記プリント配線板の前記搭載面における前記電子部品の周辺に配置され、かつ、前記電子部品の破壊に起因する振動を検出し、前記振動に応じた電圧信号を出力するセンサーと、前記センサーを前記プリント配線板に固定する固定治具と、前記センサーを前記プリント配線板に押し付ける押し付け部材と、前記センサーから出力された前記電圧信号の波形を測定するための測定部とを備えたものである。 A test device according to the present disclosure includes a support base that supports both ends of a mounting surface of a printed wiring board on which electronic components are mounted, and a support base that is disposed on a side of the printed wiring board opposite to the mounting surface, and , a pusher jig that applies a load to the electronic component via the printed wiring board, and a pusher jig that is disposed around the electronic component on the mounting surface of the printed wiring board, and that is caused by destruction of the electronic component. a sensor that detects vibration caused by the sensor and outputs a voltage signal according to the vibration; a fixing jig that fixes the sensor to the printed wiring board; a pressing member that presses the sensor against the printed wiring board; and a measuring section for measuring the waveform of the output voltage signal.
 本開示によれば、支持台はプリント配線板の搭載面における両端部を支持するため、押し子治具が電子部品に対しプリント配線板を介して荷重を印加することで、電子部品を搭載したプリント配線板を曲げることができる。さらに、センサーは、固定治具によりプリント配線板に固定され、押し付け部材によりプリント配線板に押し付けられるため、プリント配線板に対するセンサーの安定した取り付けが可能となる。 According to the present disclosure, since the support base supports both ends of the mounting surface of the printed wiring board, the pusher jig applies a load to the electronic component via the printed wiring board, so that the electronic component is mounted. Printed wiring boards can be bent. Further, since the sensor is fixed to the printed wiring board by the fixing jig and pressed against the printed wiring board by the pressing member, it is possible to stably attach the sensor to the printed wiring board.
 これにより、電子部品を搭載したプリント配線板の曲げ性試験において、電子部品の破壊に起因する振動を高精度に検出することができる。 As a result, vibrations caused by destruction of electronic components can be detected with high accuracy in a bendability test of a printed wiring board on which electronic components are mounted.
 この開示の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。 Objects, features, aspects, and advantages of this disclosure will become more apparent from the following detailed description and accompanying drawings.
実施の形態1に係る試験装置の概略図である。1 is a schematic diagram of a test device according to Embodiment 1. FIG. 実施の形態1に係る試験装置が備えるセンサーの取り付け箇所を-Y方向から視た概略図である。FIG. 3 is a schematic diagram of the mounting location of a sensor included in the test device according to Embodiment 1, viewed from the -Y direction. 実施の形態1に係る試験装置が備えるセンサーの取り付け箇所をX方向から視た概略図である。FIG. 3 is a schematic diagram of the mounting location of a sensor included in the test device according to the first embodiment, viewed from the X direction. 実施の形態1に係る試験装置が備えるプリント配線板上に加振器とセンサーを固定した状態を示す概略図である。FIG. 2 is a schematic diagram showing a state in which a vibrator and a sensor are fixed on a printed wiring board included in the test device according to the first embodiment. プリント配線板に対するセンサーの押し付け力とセンサーの出力電圧との関係を示す図である。FIG. 3 is a diagram showing the relationship between the pressing force of a sensor against a printed wiring board and the output voltage of the sensor. センサーと加振器との間の距離を示す概略図である。FIG. 3 is a schematic diagram showing the distance between a sensor and an exciter. 加振器において一定の振動をプリント配線板に加えたときの加振器とセンサーとの間の距離と、センサーの出力電圧との関係を示す図である。FIG. 7 is a diagram showing the relationship between the distance between the vibrator and the sensor and the output voltage of the sensor when a constant vibration is applied to the printed wiring board by the vibrator. 実施の形態2に係る試験装置の概略図である。FIG. 2 is a schematic diagram of a test device according to a second embodiment. 実施の形態2に係る試験装置が備えるセンサーの取り付け箇所をX方向から視た概略図である。FIG. 7 is a schematic diagram of the mounting location of a sensor included in the test device according to Embodiment 2, viewed from the X direction. 実施の形態3に係る試験装置の概略図である。FIG. 3 is a schematic diagram of a test device according to Embodiment 3. セラミック製積層コンデンサが限界値に達したときの破壊に起因する振動についてセンサーにより検出された出力信号波形を示す図である。FIG. 6 is a diagram showing an output signal waveform detected by a sensor regarding vibration caused by destruction when a ceramic multilayer capacitor reaches a limit value. セラミック製積層コンデンサが限界値に達したときの破壊に起因する振動に含まれる周波数毎のヒストグラムを示す図である。FIG. 6 is a diagram showing a histogram for each frequency included in vibrations caused by destruction when a ceramic multilayer capacitor reaches a limit value. 実施の形態4に係る試験装置が備えるセンサーの取り付け箇所を-Y方向から視た概略図である。FIG. 7 is a schematic diagram of the mounting location of a sensor included in the test device according to Embodiment 4, viewed from the -Y direction. 実施の形態4に係る試験装置が備える固定治具の外周面のうち押し子治具と対向する部分を示す拡大図である。FIG. 12 is an enlarged view showing a portion of the outer circumferential surface of a fixing jig included in the test apparatus according to Embodiment 4, which faces a pusher jig. 実施の形態5に係る試験装置が備えるセンサーの取り付け箇所をX方向から視た概略図である。FIG. 12 is a schematic diagram of the mounting location of a sensor included in the test device according to Embodiment 5, viewed from the X direction. 実施の形態5に係る試験装置が備える固定治具の内周面のうちプリント配線板と接触する部分、および固定治具の外周面のうち押し子治具と対向する部分を示す拡大図である。FIG. 7 is an enlarged view showing a portion of the inner circumferential surface of the fixing jig included in the test apparatus according to Embodiment 5 that contacts the printed wiring board, and a portion of the outer circumferential surface of the fixing jig that faces the pusher jig. . 実施の形態6に係る位置決め治具をZ方向から視た概略図である。FIG. 7 is a schematic diagram of a positioning jig according to a sixth embodiment, viewed from the Z direction. 実施の形態6に係る位置決め治具を-Y方向から視た概略図である。FIG. 7 is a schematic diagram of a positioning jig according to a sixth embodiment, viewed from the -Y direction. 実施の形態6に係る位置決め治具を用いてセンサーを取り付けた状態をZ方向から視た概略図である。FIG. 12 is a schematic diagram of a state in which a sensor is attached using a positioning jig according to a sixth embodiment, viewed from the Z direction. 実施の形態6に係る位置決め治具を用いてセンサーを取り付けた状態を-Y方向から視た概略図である。FIG. 12 is a schematic diagram of a state in which a sensor is attached using a positioning jig according to a sixth embodiment, viewed from the -Y direction.
 <実施の形態1>
 <試験装置の構成>
 実施の形態1について、図面を用いて以下に説明する。図1は、実施の形態1に係る試験装置の概略図である。図2は、実施の形態1に係る試験装置が備えるセンサー6の取り付け箇所を-Y方向から視た概略図である。図3は、実施の形態1に係る試験装置が備えるセンサー6の取り付け箇所をX方向から視た概略図である。
<Embodiment 1>
<Configuration of test equipment>
Embodiment 1 will be described below using the drawings. FIG. 1 is a schematic diagram of a test apparatus according to Embodiment 1. FIG. 2 is a schematic diagram of the mounting location of the sensor 6 included in the test apparatus according to the first embodiment, viewed from the -Y direction. FIG. 3 is a schematic diagram of the mounting location of the sensor 6 included in the test device according to the first embodiment, viewed from the X direction.
 図1において、X方向、Y方向およびZ方向は、互いに直交する。以下の図に示されるX方向、Y方向およびZ方向も、互いに直交する。以下においては、X方向と、当該X方向の反対の方向である-X方向とを含む方向を「X軸方向」ともいう。また、以下においては、Y方向と、当該Y方向の反対の方向である-Y方向とを含む方向を「Y軸方向」ともいう。また、以下においては、Z方向と、当該Z方向の反対の方向である-Z方向とを含む方向を「Z軸方向」ともいう。 In FIG. 1, the X direction, Y direction, and Z direction are orthogonal to each other. The X, Y, and Z directions shown in the figures below are also orthogonal to each other. In the following, the direction including the X direction and the −X direction, which is the opposite direction to the X direction, will also be referred to as the "X-axis direction." Furthermore, hereinafter, a direction including the Y direction and the -Y direction, which is the opposite direction to the Y direction, is also referred to as the "Y-axis direction." Furthermore, hereinafter, a direction including the Z direction and the -Z direction, which is the opposite direction to the Z direction, is also referred to as the "Z-axis direction."
 図1に示すように、試験装置は、一対の支持台3と、荷重印加部1と、センサー6と、固定治具8と、押し付け部材としての弾性部材7と、アンプ9と、測定部10とを備えている。 As shown in FIG. 1, the test device includes a pair of support stands 3, a load application section 1, a sensor 6, a fixing jig 8, an elastic member 7 as a pressing member, an amplifier 9, and a measurement section 10. It is equipped with
 一対の支持台3は、XY平面と平行に配置されたプリント配線板4の搭載面における両端部(X軸方向の端部)を支持可能なように、Y軸方向に延在する円柱状の部材により構成されている。プリント配線板4の搭載面の中央部には、測定対象物である電子部品5が搭載されている。 The pair of support stands 3 are cylindrical columns extending in the Y-axis direction so as to be able to support both ends (ends in the X-axis direction) of the mounting surface of the printed wiring board 4 arranged parallel to the XY plane. It is composed of members. At the center of the mounting surface of the printed wiring board 4, an electronic component 5, which is an object to be measured, is mounted.
 荷重印加部1は、プリント配線板4における搭載面とは反対側の面側、すなわち、プリント配線板4の上方(Z方向)に配置されている。荷重印加部1には、下方(-Z方向)に突出する押し子治具2が設けられている。押し子治具2は、荷重印加部1と共に下降することにより、電子部品5に対しプリント配線板4を介して荷重を印加する。 The load application unit 1 is arranged on the side of the printed wiring board 4 opposite to the mounting surface, that is, above the printed wiring board 4 (in the Z direction). The load applying section 1 is provided with a pusher jig 2 that protrudes downward (-Z direction). The pusher jig 2 applies a load to the electronic component 5 via the printed wiring board 4 by descending together with the load applying section 1 .
 センサー6は、プリント配線板4の搭載面における電子部品5の周辺に配置されている。センサー6は、電子部品5の破壊に起因する振動を検出し、振動に応じた電圧信号を出力するAEセンサーである。 The sensor 6 is arranged around the electronic component 5 on the mounting surface of the printed wiring board 4. The sensor 6 is an AE sensor that detects vibrations caused by destruction of the electronic component 5 and outputs a voltage signal in accordance with the vibrations.
 図1~図3に示すように、弾性部材7は、板バネ、コイルばね、ゴム、またはスポンジなどの弾性を有する部材であり、センサー6をプリント配線板4に押し付けるために、センサー6の下端(-Z方向の端)に取り付けられている。固定治具8は、センサー6をプリント配線板4に固定するための治具である。固定治具8は、弾性部材7を介してセンサー6をプリント配線板4に押し付けることが可能なように、X方向から視て矩形枠状に形成されている。 As shown in FIGS. 1 to 3, the elastic member 7 is an elastic member such as a leaf spring, coil spring, rubber, or sponge, and is used at the lower end of the sensor 6 to press the sensor 6 against the printed wiring board 4. (the end in the -Z direction). Fixing jig 8 is a jig for fixing sensor 6 to printed wiring board 4 . The fixing jig 8 is formed into a rectangular frame shape when viewed from the X direction so that the sensor 6 can be pressed against the printed wiring board 4 via the elastic member 7.
 アンプ9は、センサー6から出力された電圧信号を増幅し、測定部10へ出力する。測定部10は、増幅された電圧信号の波形を測定するための電圧波形測定装置である。なお、アンプ9は必須の構成ではないため省略可能であるが、試験装置はアンプ9を備えた方がより好ましい。 The amplifier 9 amplifies the voltage signal output from the sensor 6 and outputs it to the measurement section 10. The measuring unit 10 is a voltage waveform measuring device for measuring the waveform of the amplified voltage signal. Note that although the amplifier 9 is not an essential component and can be omitted, it is more preferable for the test apparatus to include the amplifier 9.
 <試験方法>
 次に、試験装置を用いた試験方法を説明する。まず、プリント配線板4の搭載面に、はんだにより測定対象物である電子部品5が搭載され、プリント配線板4の搭載面における電子部品5の周辺にセンサー6が固定治具8と弾性部材7により固定される。なお、JIS C 5101-22の耐プリント配線板曲げ性に準拠した試験を行う場合、プリント配線板4として、厚さ1.6mm±0.2mmまたは0.8mm±0.1mmのガラス布基材エポキシ樹脂プリント配線板用銅張積層板が用いられる。また、一対の支持台3の曲率半径は5mm、一対の支持台3の間隔は90mmとする規定がある。
<Test method>
Next, a test method using a test device will be explained. First, an electronic component 5 to be measured is mounted on the mounting surface of the printed wiring board 4 with solder, and a sensor 6 is mounted around the electronic component 5 on the mounting surface of the printed wiring board 4 using a fixing jig 8 and an elastic member 7. Fixed by In addition, when conducting a test based on JIS C 5101-22 printed wiring board bending resistance, a glass cloth base material with a thickness of 1.6 mm ± 0.2 mm or 0.8 mm ± 0.1 mm is used as the printed wiring board 4. A copper-clad laminate for epoxy resin printed wiring boards is used. Further, there is a regulation that the radius of curvature of the pair of support stands 3 is 5 mm, and the interval between the pair of support stands 3 is 90 mm.
 なお、弾性部材7の取り付け位置はセンサー6の下側(-Z方向)でなくともよく、センサー6がプリント配線板4に押し付けられる取り付け位置であればよい。例えば、弾性部材7の取り付け位置は、プリント配線板4の搭載面とは反対側の面において、固定治具8とプリント配線板4との間であってもよい。 Note that the mounting position of the elastic member 7 does not have to be below the sensor 6 (in the −Z direction), and may be any mounting position where the sensor 6 is pressed against the printed wiring board 4. For example, the mounting position of the elastic member 7 may be between the fixing jig 8 and the printed wiring board 4 on the surface opposite to the mounting surface of the printed wiring board 4.
 次に、電子部品5が下側(-Z方向)に位置するように、プリント配線板4を一対の支持台3上に載置する。このとき、電子部品5は、押し子治具2と直接接触しない向きとなっている。 Next, the printed wiring board 4 is placed on the pair of support stands 3 so that the electronic component 5 is located on the lower side (-Z direction). At this time, the electronic component 5 is oriented so as not to come into direct contact with the pusher jig 2.
 荷重印加部1を押し子治具2と共に下降させて、プリント配線板4における搭載面とは反対側の面に押し子治具2を接触させる。ここで、押し子治具2がプリント配線板4に接触したときの押し子治具2の位置を基準位置とする。荷重印加部1を押し子治具2と共にさらに下降させて、基準位置からさらに荷重を印加する。 The load applying section 1 is lowered together with the pusher jig 2, and the pusher jig 2 is brought into contact with the surface of the printed wiring board 4 opposite to the mounting surface. Here, the position of the pusher jig 2 when the pusher jig 2 contacts the printed wiring board 4 is defined as the reference position. The load applying section 1 is further lowered together with the pusher jig 2, and a further load is applied from the reference position.
 荷重によりプリント配線板4が曲がり、さらに荷重が印加されると電子部品5が破壊され、破壊に起因する振動が電子部品5から発せられる。この振動は、プリント配線板4を介してセンサー6に伝搬する。電子部品5の破壊に起因する振動は、センサー6により検出され、振動に応じた電圧信号に変換され出力される。 The printed wiring board 4 bends due to the load, and when further load is applied, the electronic component 5 is destroyed, and vibrations due to the destruction are emitted from the electronic component 5. This vibration propagates to the sensor 6 via the printed wiring board 4. Vibration caused by destruction of the electronic component 5 is detected by the sensor 6, converted into a voltage signal corresponding to the vibration, and output.
 この電圧信号はアンプ9により増幅された後、測定部10に入力される。測定部10に入力される信号には、電子部品5の破壊に起因する信号以外にも、荷重印加部1と周辺機器からのノイズ信号、および周辺で発生した振動によりセンサー6から出力されるノイズ信号が含まれる。ノイズ信号を考慮した電圧信号の測定を行うために、ノイズ信号の電圧振幅値と、電子部品5の破壊に起因する振動に応じた電圧信号の電圧振幅値との間の電圧値に閾値を設定する。 After this voltage signal is amplified by the amplifier 9, it is input to the measuring section 10. The signals input to the measurement unit 10 include, in addition to signals caused by the destruction of the electronic component 5, noise signals from the load application unit 1 and peripheral equipment, and noise output from the sensor 6 due to vibrations generated in the surrounding area. Contains signals. In order to measure the voltage signal in consideration of the noise signal, a threshold is set to the voltage value between the voltage amplitude value of the noise signal and the voltage amplitude value of the voltage signal corresponding to vibration caused by destruction of the electronic component 5. do.
 次に、閾値を決定する方法について説明する。電子部品5をプリント配線板に搭載した状態で耐プリント配線板曲げ性試験を行い、センサー6により電子部品5の破壊に起因する振動を検出し、測定部10により電圧信号の振幅値を測定する。さらに、電子部品5をプリント配線板4に搭載していない状態で耐プリント配線板曲げ性試験を行い、測定部10により電圧信号の振幅値を測定する。電子部品5をプリント配線板4に搭載していない状態で測定された電圧信号がノイズ信号である。 Next, a method for determining the threshold value will be explained. A printed wiring board bending resistance test is performed with the electronic component 5 mounted on the printed wiring board, the sensor 6 detects vibrations caused by destruction of the electronic component 5, and the measurement unit 10 measures the amplitude value of the voltage signal. . Further, a printed wiring board bending resistance test is performed with no electronic component 5 mounted on the printed wiring board 4, and the amplitude value of the voltage signal is measured by the measurement unit 10. A voltage signal measured without electronic component 5 mounted on printed wiring board 4 is a noise signal.
 電子部品5の破壊に起因する電圧信号の電圧振幅値と、ノイズ信号の電圧振幅値との間の電圧値に閾値を決定する。なお、試験装置がアンプ9を備えている場合は、その増幅分を考慮して閾値を決定する。 A threshold value is determined at a voltage value between the voltage amplitude value of the voltage signal caused by the destruction of the electronic component 5 and the voltage amplitude value of the noise signal. In addition, when the test apparatus is equipped with the amplifier 9, the threshold value is determined in consideration of the amplification amount.
 試験装置の動作の説明に戻る。このように決定された閾値を測定部10に設定し、押し子治具2を介して荷重印加部1によりプリント配線板4へ荷重を印加しながら、測定部10によりセンサー6から出力される電圧信号を測定する。 Return to the explanation of the operation of the test equipment. The threshold value determined in this way is set in the measurement unit 10, and while applying a load to the printed wiring board 4 by the load application unit 1 via the pusher jig 2, the voltage output from the sensor 6 is measured by the measurement unit 10. Measure the signal.
 プリント配線板4に荷重を印加し続けると電子部品5が破壊に至る。電子部品5が破壊したときの振動をセンサー6により検出し、測定部10により測定された電圧信号の波形が閾値を超えたとき、基準位置からの押し子治具2の押し込み寸法を電子部品5の限界値とする。 If a load is continued to be applied to the printed wiring board 4, the electronic component 5 will be destroyed. The sensor 6 detects the vibration when the electronic component 5 is destroyed, and when the waveform of the voltage signal measured by the measurement unit 10 exceeds the threshold, the pushing dimension of the pusher jig 2 from the reference position is determined by the electronic component 5. The limit value of
 なお、基準位置からの押し子治具2の押し込み寸法について、トリガー信号により荷重印加部1の動作を停止させた状態で測定してもよいし、荷重印加部1の下降速度を一定とし、基準位置における時間からトリガー信号の検出時間までに要する時間に基づいて算出してもよい。さらに、レーザー変位計等を使用して、基準位置からの押し子治具2の押し込み寸法を測定してもよい。 Note that the push-in dimension of the pusher jig 2 from the reference position may be measured with the operation of the load application section 1 stopped by a trigger signal, or with the downward speed of the load application section 1 constant and It may be calculated based on the time required from the time at the position to the detection time of the trigger signal. Furthermore, the pushing dimension of the pusher jig 2 from the reference position may be measured using a laser displacement meter or the like.
 また、センサー6はプリント配線板4の搭載面またはこれとは反対側の面のどちらの面に固定されてもよいが、プリント配線板4における電子部品5と同じ面側に固定されることが望ましい。電子部品5の破壊に起因する振動には、プリント配線板4の搭載面を伝搬するエネルギーが多く含まれるため、センサー6から出力される電圧信号の振幅は大きくなり、電子部品5の破壊に起因する振動の検出感度が向上することが理由である。 Further, the sensor 6 may be fixed to either the mounting surface of the printed wiring board 4 or the surface opposite thereto, but it may be fixed to the same side of the printed wiring board 4 as the electronic component 5. desirable. The vibration caused by the destruction of the electronic component 5 contains a lot of energy that propagates through the mounting surface of the printed wiring board 4, so the amplitude of the voltage signal output from the sensor 6 increases, and the vibration caused by the destruction of the electronic component 5 contains a large amount of energy that propagates through the mounting surface of the printed wiring board 4. The reason for this is that the detection sensitivity of vibrations caused by vibrations is improved.
 このように、プリント配線板4の搭載面における電子部品5の周辺にセンサー6が固定されることにより、電子部品5の破壊に起因する振動の検出感度が向上する。検出感度が向上すると、電子部品5の破壊に起因する振動に応じた電圧信号がノイズ信号よりも大きくなり、電子部品5の破壊に対応した電圧信号の振幅電圧値とノイズ信号の振幅電圧値との差が大きくなる。その結果、測定部10に設定する閾値をノイズ信号の振幅電圧値よりも十分高く設定可能となり、電子部品5の破壊に起因する振動の誤検出率が低下する。 In this way, by fixing the sensor 6 around the electronic component 5 on the mounting surface of the printed wiring board 4, the detection sensitivity of vibrations caused by destruction of the electronic component 5 is improved. When the detection sensitivity improves, the voltage signal corresponding to the vibration caused by the destruction of the electronic component 5 becomes larger than the noise signal, and the amplitude voltage value of the voltage signal corresponding to the destruction of the electronic component 5 and the amplitude voltage value of the noise signal become different. The difference becomes larger. As a result, the threshold value set in the measurement unit 10 can be set sufficiently higher than the amplitude voltage value of the noise signal, and the rate of false detection of vibrations due to destruction of the electronic component 5 is reduced.
 また、センサー6の検出感度をさらに向上させるために、センサー6とプリント配線板4との接触面に、ワセリンまたはグリスなどの接触媒質11を塗布することが望ましい。 Furthermore, in order to further improve the detection sensitivity of the sensor 6, it is desirable to apply a couplant 11 such as vaseline or grease to the contact surface between the sensor 6 and the printed wiring board 4.
 また、センサー6をプリント配線板4に固定する際に、押し付け力を一定の圧力以上になるよう固定することが望ましい。図4は、実施の形態1に係る試験装置が備えるプリント配線板4上に加振器13とセンサー6を固定した状態を示す概略図である。図5は、プリント配線板4に対するセンサー6の押し付け力とセンサー6の出力電圧との関係を示す図である。 Furthermore, when fixing the sensor 6 to the printed wiring board 4, it is desirable to fix the sensor 6 so that the pressing force is greater than a certain pressure. FIG. 4 is a schematic diagram showing a state in which the vibrator 13 and the sensor 6 are fixed on the printed wiring board 4 included in the test apparatus according to the first embodiment. FIG. 5 is a diagram showing the relationship between the pressing force of the sensor 6 against the printed wiring board 4 and the output voltage of the sensor 6.
 図4に示すように、耐プリント配線板曲げ性試験を行う前に、電子部品5を搭載していない状態で、プリント配線板4の搭載面におけるセンサー6の周辺に加振器13を固定する。加振器13には信号発生器14が接続されている。加振器13から一定の振幅の振動をプリント配線板4に印加する。プリント配線板4に対するセンサー6の押し付け力を変化させたときに、センサー6から出力される電圧信号を図5に示す。 As shown in FIG. 4, before conducting the printed wiring board bending resistance test, a vibrator 13 is fixed around the sensor 6 on the mounting surface of the printed wiring board 4 without any electronic components 5 mounted thereon. . A signal generator 14 is connected to the vibrator 13 . Vibration with a constant amplitude is applied to the printed wiring board 4 from the vibrator 13. FIG. 5 shows a voltage signal output from the sensor 6 when the pressing force of the sensor 6 against the printed wiring board 4 is changed.
 押し付け力を低下させると、0.4kg/cm2付近から、センサー6から出力される電圧信号の振幅が小さくなる。従って、プリント配線板4に対するセンサー6の押し付け力を、一定の圧力以上、具体的には0.4kg/cm2以上になるようにすることにより、センサー6から出力される電圧信号が大きくなり、ノイズ信号との振幅差が大きくなる。振幅差が大きくなると、測定部10に設定される閾値をノイズ信号の振幅電圧値よりも十分高く設定可能となり、電子部品5の破壊に起因する振動の誤検出率が低下する。これにより、電子部品5の破壊に起因する振動の測定精度が向上する効果が期待できる。 When the pressing force is reduced, the amplitude of the voltage signal output from the sensor 6 becomes smaller from around 0.4 kg/cm 2 . Therefore, by setting the pressing force of the sensor 6 against the printed wiring board 4 to be at least a certain pressure, specifically at least 0.4 kg/cm 2 , the voltage signal output from the sensor 6 will increase. The amplitude difference with the noise signal increases. When the amplitude difference becomes large, the threshold value set in the measurement unit 10 can be set sufficiently higher than the amplitude voltage value of the noise signal, and the rate of false detection of vibrations due to destruction of the electronic component 5 decreases. As a result, it can be expected that the accuracy of measuring vibrations caused by destruction of the electronic component 5 will be improved.
 図6は、センサー6と加振器13との間の距離を示す概略図である。図6に示すように、センサー6から加振器13までの距離は、一定の距離以下であることが望ましい。 FIG. 6 is a schematic diagram showing the distance between the sensor 6 and the vibrator 13. As shown in FIG. 6, it is desirable that the distance from the sensor 6 to the vibrator 13 is a certain distance or less.
 図4に示すように、プリント配線板4の搭載面における電子部品5が搭載される位置に加振器13が接着され固定される。次に、固定治具8と弾性部材7によりセンサー6が固定される。信号発生器14から加振器13に一定の振動幅となる信号が入力されることで、プリント配線板4が加振される。 As shown in FIG. 4, the vibrator 13 is bonded and fixed to the mounting surface of the printed wiring board 4 at the position where the electronic component 5 is mounted. Next, the sensor 6 is fixed by the fixing jig 8 and the elastic member 7. When a signal having a constant vibration width is input from the signal generator 14 to the vibrator 13, the printed wiring board 4 is vibrated.
 図7は、加振器13において一定の振動をプリント配線板4に加えたときの加振器13とセンサー6との間の距離と、センサー6の出力電圧との関係を示す図である。図7に示すように、センサー6と加振器13との間の距離が長くなると、センサー6から出力される電圧値が低下していくことがわかる。 FIG. 7 is a diagram showing the relationship between the distance between the vibrator 13 and the sensor 6 and the output voltage of the sensor 6 when a constant vibration is applied to the printed wiring board 4 by the vibrator 13. As shown in FIG. 7, it can be seen that as the distance between the sensor 6 and the vibrator 13 increases, the voltage value output from the sensor 6 decreases.
 従って、センサー6と電子部品5との間の距離を一定の距離以下、具体的には5mm以下になるようにセンサー6を固定することにより電子部品5の破壊に起因する振動に対応するセンサー6の出力電圧が大きく出力され感度が高くなる。これにより、測定部10に設定される閾値をノイズ信号の振幅電圧よりも十分高く設定可能となり、電子部品5の破壊に起因する振動の誤検出率が低下し、測定精度が向上するという効果が期待できる。 Therefore, by fixing the sensor 6 so that the distance between the sensor 6 and the electronic component 5 is less than a certain distance, specifically 5 mm or less, the sensor 6 can cope with the vibration caused by the destruction of the electronic component 5. The output voltage is large and the sensitivity is high. As a result, the threshold value set in the measurement unit 10 can be set sufficiently higher than the amplitude voltage of the noise signal, which has the effect of reducing the false detection rate of vibrations caused by destruction of the electronic component 5 and improving measurement accuracy. You can expect it.
 <効果>
 以上のように、実施の形態1に係る試験装置は、電子部品5が搭載されたプリント配線板4の搭載面における両端部を支持する支持台3と、プリント配線板4における搭載面とは反対側の面側に配置され、かつ、電子部品5に対しプリント配線板4を介して荷重を印加する押し子治具2と、プリント配線板4の搭載面における電子部品5の周辺に配置され、かつ、電子部品5の破壊に起因する振動を検出し、振動に応じた電圧信号を出力するセンサー6と、センサー6をプリント配線板4に固定する固定治具8と、センサー6をプリント配線板4に押し付ける押し付け部材と、センサー6から出力された電圧信号の波形を測定するための測定部10とを備えている。また、試験装置は、センサー6から出力された電圧信号を増幅するアンプ9をさらに備えた方がより好ましい。この場合、測定部10は、アンプ9により増幅された電圧信号の波形を測定している。
<Effect>
As described above, the test apparatus according to the first embodiment includes a support base 3 that supports both ends of the mounting surface of the printed wiring board 4 on which the electronic component 5 is mounted, and a mounting surface of the printed wiring board 4 that is opposite to the supporting base 3. a pusher jig 2 disposed on the side surface side and applying a load to the electronic component 5 via the printed wiring board 4; and a pusher jig 2 disposed around the electronic component 5 on the mounting surface of the printed wiring board 4; Also, a sensor 6 that detects vibrations caused by destruction of the electronic component 5 and outputs a voltage signal according to the vibration, a fixture 8 that fixes the sensor 6 to the printed wiring board 4, and a fixing jig 8 that fixes the sensor 6 to the printed wiring board 4. 4 and a measuring section 10 for measuring the waveform of the voltage signal output from the sensor 6. Further, it is more preferable that the test device further includes an amplifier 9 that amplifies the voltage signal output from the sensor 6. In this case, the measuring section 10 measures the waveform of the voltage signal amplified by the amplifier 9.
 支持台3はプリント配線板4の搭載面における両端部を支持するため、押し子治具2が電子部品5に対しプリント配線板4を介して荷重を印加することで、電子部品5を搭載したプリント配線板4を曲げることができる。さらに、センサー6は、固定治具8によりプリント配線板4に固定され、押し付け部材によりプリント配線板4に押し付けられるため、プリント配線板4に対するセンサー6の安定した取り付けが可能となる。 Since the support stand 3 supports both ends of the mounting surface of the printed wiring board 4, the pusher jig 2 applies a load to the electronic component 5 via the printed wiring board 4, so that the electronic component 5 is mounted. Printed wiring board 4 can be bent. Further, since the sensor 6 is fixed to the printed wiring board 4 by the fixing jig 8 and pressed against the printed wiring board 4 by the pressing member, the sensor 6 can be stably attached to the printed wiring board 4.
 これにより、電子部品5を搭載したプリント配線板4の曲げ性試験において、電子部品5の破壊に起因する振動を高精度に検出することができる。 Thereby, in the bendability test of the printed wiring board 4 on which the electronic component 5 is mounted, vibrations caused by the destruction of the electronic component 5 can be detected with high accuracy.
 以上より、電子部品5を搭載したプリント配線板4を備える製品の安全性を確保することが可能となる。 From the above, it is possible to ensure the safety of a product that includes the printed wiring board 4 on which the electronic component 5 is mounted.
 また、センサー6をプリント配線板4に接着する方法と比べて、センサー6の取り付けおよび取り外しにかかる作業時間を短縮できる。 Furthermore, compared to the method of bonding the sensor 6 to the printed wiring board 4, the work time required for attaching and removing the sensor 6 can be shortened.
 また、押し付け部材は弾性部材7を含んでいるため、弾性係数が既知である弾性部材7を採用することで、センサー6の取り付けに関する再現性が高くなる。弾性部材7の弾性係数を変えることにより簡単にセンサー6への適切な押し付け力を得ることが可能となる。その結果、再現性良く安定したセンサー6の取り付けが可能となる。 Furthermore, since the pressing member includes the elastic member 7, by employing the elastic member 7 whose elastic modulus is known, the reproducibility of attaching the sensor 6 is increased. By changing the elastic coefficient of the elastic member 7, it is possible to easily obtain an appropriate pressing force against the sensor 6. As a result, the sensor 6 can be attached stably with good reproducibility.
 また、センサー6をプリント配線板4に押し付ける押し付け力は、0.4kg/cm2以上であるため、耐プリント配線板曲げ性試験における電子部品5の限界値を感度よく検出することができる。 Further, since the pressing force for pressing the sensor 6 against the printed wiring board 4 is 0.4 kg/cm 2 or more, the limit value of the electronic component 5 in the printed wiring board bending resistance test can be detected with high sensitivity.
 また、センサー6から電子部品5までの距離は5mm以下であるため、耐プリント配線板曲げ性試験における電子部品5の限界値を感度よく検出することができる。 Furthermore, since the distance from the sensor 6 to the electronic component 5 is 5 mm or less, the limit value of the electronic component 5 in the printed wiring board bending resistance test can be detected with high sensitivity.
 <実施の形態2>
 次に、実施の形態2に係る試験装置について説明する。図8は、実施の形態2に係る試験装置の概略図である。図9は、実施の形態2に係る試験装置が備えるセンサー6の取り付け箇所をX方向から視た概略図である。なお、実施の形態2において、実施の形態1で説明したものと同一の構成要素については同一符号を付して説明は省略する。
<Embodiment 2>
Next, a test device according to the second embodiment will be explained. FIG. 8 is a schematic diagram of a test device according to the second embodiment. FIG. 9 is a schematic diagram of the mounting location of the sensor 6 included in the test device according to the second embodiment, viewed from the X direction. Note that, in the second embodiment, the same components as those described in the first embodiment are given the same reference numerals, and a description thereof will be omitted.
 図8と図9に示すように、実施の形態2では、押し付け部材としてネジ12が設けられている。具体的には、センサー6をプリント配線板4に固定するために、固定治具8とネジ12が設けられている。 As shown in FIGS. 8 and 9, in the second embodiment, a screw 12 is provided as a pressing member. Specifically, in order to fix the sensor 6 to the printed wiring board 4, a fixing jig 8 and screws 12 are provided.
 この例では、プリント配線板4の搭載面側からネジ12によりセンサー6をプリント配線板4に押し付けているが、プリント配線板4の搭載面とは反対側から固定治具8を介してネジ12によりプリント配線板4を押し付けてもよい。また、ネジ12に代えてボルトが使用されてもよい。 In this example, the sensor 6 is pressed against the printed wiring board 4 by the screw 12 from the mounting surface side of the printed wiring board 4, but the screw 12 is pressed from the side opposite to the mounting surface of the printed wiring board 4 via the fixing jig 8. The printed wiring board 4 may also be pressed by. Moreover, a bolt may be used instead of the screw 12.
 以上のように、実施の形態2に係る試験装置では、押し付け部材はボルトまたはネジ12を含んでいるため、弾性部材7を使用することなくセンサー6を安定した押し付け力で固定することができる。 As described above, in the test device according to the second embodiment, since the pressing member includes the bolt or screw 12, the sensor 6 can be fixed with a stable pressing force without using the elastic member 7.
 また、ネジ12を固定するときの回転数を変えることによりセンサー6のプリント配線板4への必要な押し付け力を容易に調整可能となるため、センサー6への適切な押し付け力を容易に得ることが可能となる。その結果、電子部品5の破壊に起因する振動を感度よく検出が可能となり、誤検出率が低くなるという効果が得られる。 Further, by changing the rotation speed when fixing the screw 12, the necessary pressing force of the sensor 6 against the printed wiring board 4 can be easily adjusted, so that an appropriate pressing force against the sensor 6 can be easily obtained. becomes possible. As a result, vibrations caused by destruction of the electronic component 5 can be detected with high sensitivity, and the effect of lowering the false detection rate can be obtained.
 また、センサー6を固定するために弾性部材7を使用する場合は、所望の押し付け力を確保するためには弾性部材7の弾性率が既知である必要があるが、弾性率の経時変化があるためセンサー6の面圧は経年変化する。そのため、安定した押し付け力を得るためには弾性部材7の弾性率を常に管理する必要があるが、ネジ12を使用した場合は弾性部材7の弾性率の管理が不要となる効果も期待できる。さらに、センサー6をプリント配線板4に接着する方法と比べて、センサー6の取り付けおよび取り外しにかかる作業時間を短縮できる。 Furthermore, when using the elastic member 7 to fix the sensor 6, the elastic modulus of the elastic member 7 needs to be known in order to ensure the desired pressing force, but the elastic modulus may change over time. Therefore, the surface pressure of the sensor 6 changes over time. Therefore, in order to obtain a stable pressing force, it is necessary to constantly manage the elastic modulus of the elastic member 7, but when the screw 12 is used, the effect that managing the elastic modulus of the elastic member 7 is not necessary can be expected. Furthermore, compared to the method of bonding the sensor 6 to the printed wiring board 4, the working time required for attaching and removing the sensor 6 can be shortened.
 <実施の形態3>
 次に、実施の形態3に係る試験装置について説明する。図10は、実施の形態3に係る試験装置の概略図である。なお、実施の形態3において、実施の形態1,2で説明したものと同一の構成要素については同一符号を付して説明は省略する。
<Embodiment 3>
Next, a test apparatus according to Embodiment 3 will be explained. FIG. 10 is a schematic diagram of a test device according to Embodiment 3. In the third embodiment, the same components as those explained in the first and second embodiments are designated by the same reference numerals, and the explanation thereof will be omitted.
 図10に示すように、実施の形態3では、実施の形態1の構成に加えて、センサー6と測定部10との間に、特定の周波数帯域の電圧信号を減衰させる帯域除去フィルタ15が設けられている。なお、実施の形態2の構成に加えて、帯域除去フィルタ15が設けられていてもよい。 As shown in FIG. 10, in the third embodiment, in addition to the configuration of the first embodiment, a band rejection filter 15 is provided between the sensor 6 and the measurement unit 10 to attenuate the voltage signal in a specific frequency band. It is being Note that in addition to the configuration of the second embodiment, a band rejection filter 15 may be provided.
 上記のように、センサー6の出力信号には、電子部品5の破壊に起因する信号以外にも、荷重印加部1と周辺機器からのノイズ信号、および周辺で発生した振動によりセンサー6から出力されるノイズ信号が含まれる。本来は電子部品5の破壊の振動に起因する信号を検出すべきであるが、ノイズ信号を誤って電子部品5の破壊に起因する振動として誤検出した場合、耐プリント配線板曲げ性試験における電子部品5の限界値が本来の限界値と違う値であると誤判定する場合が生じる。従って、帯域除去フィルタ15をセンサー6と測定部10との間に配置することにより、ノイズ信号を電子部品5の破壊に起因する振動として誤検出することを抑制することが可能となる。 As mentioned above, the output signal of the sensor 6 includes, in addition to signals caused by the destruction of the electronic component 5, noise signals from the load application unit 1 and peripheral devices, and vibrations generated in the surrounding area. Contains noise signals. Originally, the signal caused by the vibration caused by the destruction of the electronic component 5 should be detected, but if the noise signal is mistakenly detected as the vibration caused by the destruction of the electronic component 5, the electronic There may be cases where it is erroneously determined that the limit value of the component 5 is different from the original limit value. Therefore, by arranging the band-rejection filter 15 between the sensor 6 and the measurement unit 10, it is possible to suppress erroneous detection of a noise signal as vibration caused by destruction of the electronic component 5.
 例えば、電子部品5がセラミック製積層コンデンサの場合に破壊時の振動をセンサー6により検出した場合、広い周波数範囲において信号が検出される。帯域除去フィルタ15により特定の周波数帯域の電圧信号が減衰しても、それ以外の周波数帯域の電圧信号はほぼ減衰せずに帯域除去フィルタ15を通過する。例えば、ノイズ信号の周波数が400kHzの場合、400kHz付近を減衰させる帯域除去フィルタ15を選択する。電子部品5の破壊に起因する振動の周波数が100kHz以上600kHz以下の場合、400kHzのノイズ信号と共に電子部品5が破壊した振動に起因する400kHzの電圧信号も減衰する。 For example, when the electronic component 5 is a ceramic multilayer capacitor and the sensor 6 detects vibration at the time of destruction, a signal is detected in a wide frequency range. Even if a voltage signal in a specific frequency band is attenuated by the band-removal filter 15, voltage signals in other frequency bands pass through the band-removal filter 15 without being substantially attenuated. For example, if the frequency of the noise signal is 400 kHz, the band rejection filter 15 that attenuates the frequency around 400 kHz is selected. When the frequency of the vibration caused by the destruction of the electronic component 5 is between 100 kHz and 600 kHz, the 400 kHz voltage signal caused by the vibration caused by the destruction of the electronic component 5 is attenuated together with the 400 kHz noise signal.
 しかしながら、それ以外の周波数帯域の信号は、ほぼ減衰せずに帯域除去フィルタ15を通過する。その結果、帯域除去フィルタ15がセンサー6と測定部10との間に配置されることにより電子部品5であるセラミック製積層コンデンサの振動に起因するセンサー6により検出される電圧信号と、ノイズ信号との電圧差が大きくなる。 However, signals in other frequency bands pass through the band-removal filter 15 without being attenuated. As a result, by disposing the band rejection filter 15 between the sensor 6 and the measurement unit 10, the voltage signal detected by the sensor 6 caused by the vibration of the ceramic multilayer capacitor, which is the electronic component 5, and the noise signal are eliminated. The voltage difference between becomes large.
 参考までに、図11に、セラミック製積層コンデンサが限界値に達したときの破壊に起因する振動についてセンサー6により検出された出力信号波形を示す。また、図12に、セラミック製積層コンデンサが限界値に達したときの破壊に起因する振動に含まれる周波数毎のヒストグラムを示す。 For reference, FIG. 11 shows the output signal waveform detected by the sensor 6 regarding vibrations caused by destruction when the ceramic multilayer capacitor reaches its limit value. Further, FIG. 12 shows a histogram for each frequency included in vibrations caused by destruction when a ceramic multilayer capacitor reaches its limit value.
 以上のように、実施の形態3に係る試験装置は、センサー6と測定部10との間に配置された帯域除去フィルタ15をさらに備えている。従って、帯域除去フィルタ15によりノイズ信号を、測定部10に設定された閾値以下まで減衰させることが可能となる。これにより、ノイズ信号が要因となっている電子部品5の限界値の誤検出率が低下し、検出精度が向上する効果が期待できる。 As described above, the test device according to the third embodiment further includes a band-rejection filter 15 disposed between the sensor 6 and the measuring section 10. Therefore, the band-rejection filter 15 can attenuate the noise signal to below the threshold set in the measuring section 10. As a result, it is expected that the rate of false detection of the limit value of the electronic component 5 due to noise signals will be reduced, and the detection accuracy will be improved.
 <実施の形態4>
 次に、実施の形態4に係る試験装置について説明する。図13は、実施の形態4に係る試験装置が備えるセンサー6の取り付け箇所を-Y方向から視た概略図である。図14(a),(b)は、実施の形態4に係る試験装置が備える固定治具8の外周面のうち押し子治具2と対向する部分8aを示す拡大図である。なお、実施の形態4において、実施の形態1~3で説明したものと同一の構成要素については同一符号を付して説明は省略する。
<Embodiment 4>
Next, a test apparatus according to Embodiment 4 will be explained. FIG. 13 is a schematic diagram of the mounting location of the sensor 6 included in the test device according to the fourth embodiment, viewed from the -Y direction. FIGS. 14(a) and 14(b) are enlarged views showing a portion 8a facing the pusher jig 2 of the outer peripheral surface of the fixing jig 8 included in the testing apparatus according to the fourth embodiment. In Embodiment 4, the same components as those described in Embodiments 1 to 3 are given the same reference numerals, and the explanation thereof will be omitted.
 図13に示すように、実施の形態4では、実施の形態1の構成に対して固定治具8の外周面の形状が異なっている。以下、固定治具8について説明する。実施の形態1の場合と同様に、固定治具8は、X方向から視て、プリント配線板4と押し付け部材としての弾性部材7とを囲む矩形枠状に形成されている。ここで、実施の形態4以降においては押し付け部材が弾性部材7を含む場合について説明するが、押し付け部材がネジ12またはボルトを含む場合であっても良い。固定治具8の内周面は、プリント配線板4における搭載面とは反対側の面と、弾性部材7におけるプリント配線板4とは反対側の部分とに接触している。図14(a)に示すように、実施の形態4では、固定治具8の外周面のうち押し子治具2と対向する部分8aは、円弧状に形成されている。 As shown in FIG. 13, in the fourth embodiment, the shape of the outer peripheral surface of the fixing jig 8 is different from the configuration of the first embodiment. The fixing jig 8 will be explained below. As in the case of the first embodiment, the fixing jig 8 is formed in a rectangular frame shape surrounding the printed wiring board 4 and the elastic member 7 as a pressing member when viewed from the X direction. Here, in the fourth and subsequent embodiments, a case will be described in which the pressing member includes the elastic member 7, but the pressing member may include a screw 12 or a bolt. The inner circumferential surface of the fixing jig 8 is in contact with the surface of the printed wiring board 4 on the opposite side to the mounting surface and the portion of the elastic member 7 on the side opposite to the printed wiring board 4. As shown in FIG. 14(a), in the fourth embodiment, a portion 8a of the outer peripheral surface of the fixing jig 8 that faces the pusher jig 2 is formed in an arc shape.
 振動の検出感度を向上させるために電子部品5の周辺にセンサー6を固定する必要があり、固定治具8を電子部品5に近づけていくと固定治具8が押し子治具2に接触する。両者が接触すると曲げ試験時に押し子治具2と固定治具8が擦れることにより振動が発生する。この振動によりノイズが発生するため誤検出率が上がる。押し子治具2の先端はJISの耐プリント板曲げ試験において、R=5と規定されており、センサー6と電子部品5との距離を短くするには限界がある。そこで、固定治具8の外周面のうち押し子治具2と対向する部分8aを円弧状とすることで、両者が接触しにくくなり、センサー6を電子部品5にさらに近づけることが可能となる。その結果、電子部品5の破壊に起因する振動の検出感度が向上する。 In order to improve the vibration detection sensitivity, it is necessary to fix the sensor 6 around the electronic component 5, and as the fixing jig 8 approaches the electronic component 5, the fixing jig 8 comes into contact with the pusher jig 2. . If they come into contact, the pusher jig 2 and the fixing jig 8 will rub against each other during the bending test, causing vibration. This vibration generates noise, which increases the false detection rate. The tip of the pusher jig 2 is specified as R=5 in the JIS printed board bending test, and there is a limit to shortening the distance between the sensor 6 and the electronic component 5. Therefore, by making the portion 8a of the outer peripheral surface of the fixing jig 8 that faces the pusher jig 2 into an arc shape, it becomes difficult for the two to come into contact with each other, and it becomes possible to bring the sensor 6 even closer to the electronic component 5. . As a result, the detection sensitivity of vibrations caused by destruction of the electronic component 5 is improved.
 図14(a)の例では、固定治具8の外周面のうち押し子治具2と対向する部分8aは、円弧状に形成されているが、これに限らず押し子治具2との接触を避けた形状であれば良い。例えば、図14(b)に示すように、固定治具8の外周面のうち押し子治具2と対向する部分8aは、傾斜状に形成されていても良い。 In the example of FIG. 14(a), the portion 8a of the outer circumferential surface of the fixing jig 8 that faces the pusher jig 2 is formed in an arc shape, but the shape is not limited to this. Any shape that avoids contact is fine. For example, as shown in FIG. 14(b), a portion 8a of the outer peripheral surface of the fixing jig 8 that faces the pusher jig 2 may be formed in an inclined shape.
 以上のように、実施の形態5に係る試験装置では、固定治具8は、プリント配線板4と押し付け部材とを囲む枠状に形成され、固定治具8の内周面は、プリント配線板4における搭載面とは反対側の面と、押し付け部材におけるプリント配線板4とは反対側の部分とに接触し、固定治具8の外周面のうち押し子治具2と対向する部分8aは、円弧状または傾斜状に形成されている。 As described above, in the test apparatus according to the fifth embodiment, the fixing jig 8 is formed in a frame shape surrounding the printed wiring board 4 and the pressing member, and the inner peripheral surface of the fixing jig 8 is A portion 8a of the outer circumferential surface of the fixing jig 8 that faces the pusher jig 2 is in contact with the surface opposite to the mounting surface in 4 and the portion of the pressing member opposite to the printed wiring board 4. , is formed in an arcuate or slanted shape.
 したがって、実施の形態1の場合よりもセンサー6を電子部品5のさらに近くに配置することが可能となる。その結果、電子部品5の破壊に起因する振動をさらに感度良く検出することが可能となり、誤検出率がさらに低下するという効果が得られる。 Therefore, it is possible to arrange the sensor 6 even closer to the electronic component 5 than in the first embodiment. As a result, it becomes possible to detect vibrations caused by destruction of the electronic component 5 with even higher sensitivity, resulting in the effect that the false detection rate is further reduced.
 <実施の形態5>
 次に、実施の形態5に係る試験装置について説明する。図15は、実施の形態5に係る試験装置が備えるセンサー6の取り付け箇所をX方向から視た概略図である。図16(a),(b)は、実施の形態5に係る試験装置が備える固定治具8の内周面のうちプリント配線板4と接触する部分8bを示す拡大図である。図16(c),(d)は、実施の形態5に係る試験装置が備える固定治具8の内周面のうちプリント配線板4と接触する部分8b、および固定治具8の外周面のうち押し子治具2と対向する部分8aを示す拡大図である。なお、実施の形態5において、実施の形態1~4で説明したものと同一の構成要素については同一符号を付して説明は省略する。
<Embodiment 5>
Next, a test device according to Embodiment 5 will be explained. FIG. 15 is a schematic diagram of the mounting location of the sensor 6 included in the test device according to the fifth embodiment, viewed from the X direction. 16(a) and 16(b) are enlarged views showing a portion 8b of the inner circumferential surface of the fixing jig 8 included in the test apparatus according to the fifth embodiment, which contacts the printed wiring board 4. 16(c) and (d) show a portion 8b of the inner circumferential surface of the fixture 8 provided in the test apparatus according to the fifth embodiment, which contacts the printed wiring board 4, and a portion 8b of the outer circumferential surface of the fixture 8. It is an enlarged view showing a portion 8a facing the pusher jig 2. In Embodiment 5, the same components as those explained in Embodiments 1 to 4 are given the same reference numerals, and the explanation thereof will be omitted.
 図15と図16(a)に示すように、実施の形態5では、実施の形態4に対して固定治具8の内周面の形状が異なっており、固定治具8の内周面のうちプリント配線板4と接触する部分8bは、円弧状に形成されている。 As shown in FIGS. 15 and 16(a), in the fifth embodiment, the shape of the inner circumferential surface of the fixing jig 8 is different from that in the fourth embodiment. The portion 8b that contacts the printed wiring board 4 is formed in an arc shape.
 押し子治具2によりプリント配線板4に荷重を印加し続けるとプリント配線板4が円弧状に変形し(図13参照)、電子部品5には引っ張り応力が加わる。プリント配線板4の変形が大きくなるとともに、電子部品5への応力も大きくなり、最終的には限界値に達して電子部品5は破壊に至る。従って、電子部品5の限界値はプリント配線板4が変形する形状に影響する。理想的には、プリント配線板4は、固定治具8が取り付けられていない場合の形状と同じ形状に変形することが望ましい。固定治具8におけるプリント配線板4と接触する部分8bの面積が小さいほど、プリント配線板4の変形形状への影響は小さくなる。その結果、プリント配線板4に固定治具8が取り付けられた場合と取り付けられていない場合との間で電子部品5に作用する引っ張り応力の大きさに差が無くなり、精度の高い試験が可能となる。 When a load is continued to be applied to the printed wiring board 4 by the pusher jig 2, the printed wiring board 4 is deformed into an arc shape (see FIG. 13), and tensile stress is applied to the electronic component 5. As the deformation of the printed wiring board 4 increases, the stress on the electronic component 5 also increases, eventually reaching a limit value and causing the electronic component 5 to break. Therefore, the limit value of the electronic component 5 influences the shape in which the printed wiring board 4 deforms. Ideally, it is desirable that the printed wiring board 4 is deformed into the same shape as it would be without the fixing jig 8 attached. The smaller the area of the portion 8b of the fixing jig 8 that contacts the printed wiring board 4, the smaller the influence on the deformed shape of the printed wiring board 4. As a result, there is no difference in the magnitude of the tensile stress acting on the electronic component 5 between when the fixing jig 8 is attached to the printed wiring board 4 and when it is not attached, making it possible to perform highly accurate testing. Become.
 図16(a)の例では、固定治具8の内周面のうちプリント配線板4と接触する部分8bは、円弧状に形成されているが、これに限らず固定治具8におけるプリント配線板4と接触する部分8bの面積が小さい形状であれば良い。例えば、図16(b)に示すように、固定治具8の内周面のうちプリント配線板4と接触する部分8bは、傾斜状に形成されていても良い。また、図16(c),(d)に示すように、実施の形態5の固定治具8の内周面の形状と実施の形態4の固定治具8の外周面の形状とを組み合わせることも可能である。 In the example of FIG. 16(a), the portion 8b of the inner peripheral surface of the fixing jig 8 that contacts the printed wiring board 4 is formed in an arc shape, but the printed wiring in the fixing jig 8 is not limited to this. Any shape is sufficient as long as the area of the portion 8b in contact with the plate 4 is small. For example, as shown in FIG. 16(b), a portion 8b of the inner peripheral surface of the fixing jig 8 that contacts the printed wiring board 4 may be formed in an inclined shape. Furthermore, as shown in FIGS. 16(c) and 16(d), the shape of the inner circumferential surface of the fixing jig 8 of the fifth embodiment and the shape of the outer circumferential surface of the fixing jig 8 of the fourth embodiment can be combined. is also possible.
 以上のように、実施の形態5に係る試験装置では、固定治具8は、プリント配線板4と押し付け部材とを囲む枠状に形成され、固定治具8の内周面は、プリント配線板4における搭載面とは反対側の面と、押し付け部材におけるプリント配線板4とは反対側の部分とに接触し、固定治具8の内周面のうちプリント配線板4と接触する部分8bは、円弧状または傾斜状に形成されている。 As described above, in the test apparatus according to the fifth embodiment, the fixing jig 8 is formed in a frame shape surrounding the printed wiring board 4 and the pressing member, and the inner peripheral surface of the fixing jig 8 is A portion 8b of the inner peripheral surface of the fixing jig 8 that contacts the surface opposite to the mounting surface of the fixing jig 8 and a portion of the pressing member opposite to the printed wiring board 4 is , is formed in an arcuate or slanted shape.
 したがって、プリント配線板4に固定治具8が取り付けられた場合と取り付けられていない場合との間で電子部品5に作用する引っ張り応力の大きさに差が無くなり、精度の高い試験が可能となる効果が得られる。 Therefore, there is no difference in the magnitude of the tensile stress acting on the electronic component 5 between when the fixing jig 8 is attached to the printed wiring board 4 and when it is not attached, making it possible to perform highly accurate testing. Effects can be obtained.
 <実施の形態6>
 次に、実施の形態6に係る位置決め治具16について説明する。図17は、実施の形態6に係る位置決め治具16をZ方向から視た概略図である。図18は、実施の形態6に係る位置決め治具16を-Y方向から視た概略図である。図19は、実施の形態6に係る位置決め治具16を用いてセンサー6を取り付けた状態をZ方向から視た概略図である。図20は、実施の形態6に係る位置決め治具16を用いてセンサー6を取り付けた状態を-Y方向から視た概略図である。なお、実施の形態6において、実施の形態1~5で説明したものと同一の構成要素については同一符号を付して説明は省略する。
<Embodiment 6>
Next, the positioning jig 16 according to the sixth embodiment will be explained. FIG. 17 is a schematic diagram of the positioning jig 16 according to the sixth embodiment viewed from the Z direction. FIG. 18 is a schematic diagram of the positioning jig 16 according to the sixth embodiment viewed from the -Y direction. FIG. 19 is a schematic diagram of a state in which the sensor 6 is attached using the positioning jig 16 according to the sixth embodiment, viewed from the Z direction. FIG. 20 is a schematic diagram of a state in which the sensor 6 is attached using the positioning jig 16 according to the sixth embodiment, viewed from the -Y direction. In the sixth embodiment, the same components as those explained in the first to fifth embodiments are designated by the same reference numerals, and the explanation thereof will be omitted.
 図17~図20に示すように、実施の形態6では、位置決め治具16を用いてセンサー6の位置決めを行う。 As shown in FIGS. 17 to 20, in the sixth embodiment, a positioning jig 16 is used to position the sensor 6.
 まず、位置決め治具16の構成について説明する。図17と図18に示すように、位置決め治具16は、板状のベース16aと、2つのガイドピン17と、2つの固定用プランジャー18と、センサー位置決めプレート19と、マイクロメータヘッド20とを備えている。 First, the configuration of the positioning jig 16 will be explained. As shown in FIGS. 17 and 18, the positioning jig 16 includes a plate-shaped base 16a, two guide pins 17, two fixing plungers 18, a sensor positioning plate 19, and a micrometer head 20. It is equipped with
 ベース16aは、Z方向から視て矩形状に形成されている。ベース16aにおけるX軸方向中央部よりも-X方向寄りには、固定治具8を位置決め治具16にセットした際に、固定治具8と位置決め治具16が接触しないようにするための、-Z方向に凹む凹部21が設けられている。 The base 16a is formed into a rectangular shape when viewed from the Z direction. A portion of the base 16a closer to the −X direction than the central portion in the X-axis direction is provided with a base for preventing the fixing jig 8 and the positioning jig 16 from coming into contact with each other when the fixing jig 8 is set in the positioning jig 16. - A recess 21 recessed in the Z direction is provided.
 2つのガイドピン17は、それぞれベース16aにおける凹部21を挟んでX軸方向両側に設けられ、プリント配線板4のY軸方向の位置決めを行う。2つの固定用プランジャー18は、それぞれベース16aにおける2つのガイドピン17と対向する位置に設けられ、プリント配線板4を2つのガイドピン17に押し当てる。 The two guide pins 17 are provided on both sides of the base 16a in the X-axis direction with the recess 21 in between, and position the printed wiring board 4 in the Y-axis direction. The two fixing plungers 18 are provided at positions facing the two guide pins 17 on the base 16a, respectively, and press the printed wiring board 4 against the two guide pins 17.
 センサー位置決めプレート19は、ベース16aにおける凹部21のX方向の周縁部に設けられ、センサー6の位置決めを行うためにセンサー6の断面寸法に合わせた半円状の切り欠き19aを有している。マイクロメータヘッド20は、本体部6aのX方向端部に設けられ、プリント配線板4のX軸方向の位置決めを行う。 The sensor positioning plate 19 is provided at the periphery of the recess 21 in the base 16a in the X direction, and has a semicircular notch 19a that matches the cross-sectional size of the sensor 6 in order to position the sensor 6. The micrometer head 20 is provided at the end of the main body 6a in the X direction, and positions the printed wiring board 4 in the X direction.
 次に、図19と図20を用いて、位置決め治具16を用いたセンサー6の位置決め方法について説明する。最初に、固定治具8を位置決め治具16の凹部21に配置する。その後、電子部品5を実装したプリント配線板4を位置決め治具16上の固定治具8の内周側に形成された開口を通して配置する。このとき、凹部21は、プリント配線板4と固定治具8とが接触せずに、位置決め治具16のベース16aに対して水平(XY平面と平行)に配置が可能となる構造となっている。 Next, a method for positioning the sensor 6 using the positioning jig 16 will be described with reference to FIGS. 19 and 20. First, the fixing jig 8 is placed in the recess 21 of the positioning jig 16. Thereafter, the printed wiring board 4 on which the electronic component 5 is mounted is placed through an opening formed on the inner circumferential side of the fixing jig 8 on the positioning jig 16. At this time, the recess 21 has a structure that allows the printed wiring board 4 and the fixing jig 8 to be placed horizontally (parallel to the XY plane) with respect to the base 16a of the positioning jig 16 without coming into contact with each other. There is.
 位置決め治具16のガイドピン17と固定用プランジャー18に沿って、プリント配線板4のY軸方向の位置を決める。X軸方向の位置調整は、プリント配線板4がマイクロメータヘッド20に当たるところまで移動させて行われる。なお、位置決め治具16におけるマイクロメータヘッド20の位置は電子部品5とセンサー6の距離が所望の距離となる位置に事前に調整しておく。この状態で、センサー6をセンサー位置決めプレート19の半円状の切り欠き19aに押し当ててセンサー6の位置を位置決めし、弾性部材7でセンサー6を固定する。その後、プリント配線板4を-X方向に移動させ、位置決め治具16からプリント配線板4を取り外すことでセンサー6の位置決めと固定が完了する。 The position of the printed wiring board 4 in the Y-axis direction is determined along the guide pin 17 of the positioning jig 16 and the fixing plunger 18. Position adjustment in the X-axis direction is performed by moving the printed wiring board 4 until it hits the micrometer head 20. Note that the position of the micrometer head 20 on the positioning jig 16 is adjusted in advance to a position where the distance between the electronic component 5 and the sensor 6 is a desired distance. In this state, the sensor 6 is pressed against the semicircular notch 19a of the sensor positioning plate 19 to determine the position of the sensor 6, and the elastic member 7 fixes the sensor 6. Thereafter, the printed wiring board 4 is moved in the -X direction and removed from the positioning jig 16, thereby completing the positioning and fixing of the sensor 6.
 図7に示したように、センサー6と加振器13との間の距離が長くなると、センサー6から出力される電圧値が低下する。従って、センサー6と電子部品5との間の距離を5mm以下になるようにセンサー6を固定する。ただし、電子部品5にセンサー6を近づければ、曲げ試験時に固定治具8が押し子治具2に接触する。 As shown in FIG. 7, as the distance between the sensor 6 and the vibrator 13 increases, the voltage value output from the sensor 6 decreases. Therefore, the sensor 6 is fixed so that the distance between the sensor 6 and the electronic component 5 is 5 mm or less. However, if the sensor 6 is brought close to the electronic component 5, the fixing jig 8 will come into contact with the pusher jig 2 during the bending test.
 しかし、図13と図14(a),(b)に示すように、固定治具8の外周面のうち押し子治具2と対向する部分8aを円弧状または傾斜状とすることで、押し子治具2に固定治具8をさらに近づけることが可能となる。ただし、上記のようにセンサー6を精度良く位置決めする必要がある。 However, as shown in FIGS. 13 and 14(a) and (b), by making the portion 8a of the outer circumferential surface of the fixing jig 8 that faces the pusher jig 2 into an arc shape or an inclined shape, it is possible to push It becomes possible to bring the fixing jig 8 even closer to the child jig 2. However, as described above, it is necessary to position the sensor 6 with high precision.
 以上のように、実施の形態6に係る試験方法では、プリント配線板4の搭載面に電子部品5を搭載し、プリント配線板4の搭載面における電子部品5の周辺にセンサー6を固定治具8と押し付け部材により固定する工程において、位置決め治具16を用いてセンサー6をプリント配線板4に位置決めしている。 As described above, in the test method according to the sixth embodiment, the electronic component 5 is mounted on the mounting surface of the printed wiring board 4, and the sensor 6 is mounted around the electronic component 5 on the mounting surface of the printed wiring board 4 using a fixing jig. In the step of fixing the sensor 8 to the printed wiring board 4 using a pressing member, a positioning jig 16 is used to position the sensor 6 on the printed wiring board 4.
 したがって、電子部品5の周辺に精度良くセンサー6を固定することが可能となり、電子部品5の破壊に起因する振動に対応するセンサー6の出力電圧が大きく出力されるため、振動の検出感度が向上ずる。 Therefore, it is possible to fix the sensor 6 around the electronic component 5 with high precision, and the output voltage of the sensor 6 corresponding to the vibration caused by the destruction of the electronic component 5 is outputted to a large extent, so the vibration detection sensitivity is improved. Cheating.
 この開示は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、限定的なものではない。例示されていない無数の変形例が、想定され得るものと解される。 Although this disclosure has been described in detail, the above description is illustrative in all aspects and is not restrictive. It is understood that countless variations not illustrated may be envisioned.
 なお、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。 Note that it is possible to freely combine each embodiment, or to modify or omit each embodiment as appropriate.
 2 押し子治具、3 支持台、4 プリント配線板、5 電子部品、6 センサー、7 弾性部材、8 固定治具、9 アンプ、10 測定部、12 ネジ、15 帯域除去フィルタ、16 位置決め治具。 2. Pusher jig, 3. Support stand, 4. Printed wiring board, 5. Electronic components, 6. Sensor, 7. Elastic member, 8. Fixing jig, 9. Amplifier, 10. Measuring section, 12. Screw, 15. Band rejection filter, 16. Positioning jig. .

Claims (11)

  1.  電子部品が搭載されたプリント配線板の搭載面における両端部を支持する支持台と、
     前記プリント配線板における前記搭載面とは反対側の面側に配置され、かつ、前記電子部品に対し前記プリント配線板を介して荷重を印加する押し子治具と、
     前記プリント配線板の前記搭載面における前記電子部品の周辺に配置され、かつ、前記電子部品の破壊に起因する振動を検出し、前記振動に応じた電圧信号を出力するセンサーと、
     前記センサーを前記プリント配線板に固定する固定治具と、
     前記センサーを前記プリント配線板に押し付ける押し付け部材と、
     前記センサーから出力された前記電圧信号の波形を測定するための測定部と、
     を備えた、試験装置。
    a support stand that supports both ends of a mounting surface of a printed wiring board on which electronic components are mounted;
    a pusher jig disposed on a side of the printed wiring board opposite to the mounting surface and applying a load to the electronic component via the printed wiring board;
    a sensor disposed around the electronic component on the mounting surface of the printed wiring board that detects vibrations caused by destruction of the electronic component and outputs a voltage signal in accordance with the vibration;
    a fixing jig for fixing the sensor to the printed wiring board;
    a pressing member that presses the sensor against the printed wiring board;
    a measurement unit for measuring the waveform of the voltage signal output from the sensor;
    Test equipment equipped with
  2.  前記センサーから出力された前記電圧信号を増幅するアンプをさらに備え、
     前記測定部は、前記アンプにより増幅された前記電圧信号の波形を測定する、請求項1に記載の試験装置。
    further comprising an amplifier that amplifies the voltage signal output from the sensor,
    The test device according to claim 1, wherein the measurement section measures the waveform of the voltage signal amplified by the amplifier.
  3.  前記押し付け部材は弾性部材を含む、請求項1または請求項2に記載の試験装置。 The test device according to claim 1 or 2, wherein the pressing member includes an elastic member.
  4.  前記押し付け部材はボルトまたはネジを含む、請求項1または請求項2に記載の試験装置。 The testing device according to claim 1 or 2, wherein the pressing member includes a bolt or a screw.
  5.  前記センサーと前記測定部との間に配置された帯域除去フィルタをさらに備えた、請求項1から請求項4のいずれか1項に記載の試験装置。 The test device according to any one of claims 1 to 4, further comprising a band-rejection filter disposed between the sensor and the measuring section.
  6.  前記センサーを前記プリント配線板に押し付ける押し付け力は、0.4kg/cm2以上である、請求項1から請求項5のいずれか1項に記載の試験装置。 The test device according to any one of claims 1 to 5, wherein a pressing force for pressing the sensor against the printed wiring board is 0.4 kg/cm 2 or more.
  7.  前記センサーから前記電子部品までの距離は5mm以下である、請求項1から請求項6のいずれか1項に記載の試験装置。 The test device according to any one of claims 1 to 6, wherein the distance from the sensor to the electronic component is 5 mm or less.
  8.  前記固定治具は、前記プリント配線板と前記押し付け部材とを囲む枠状に形成され、
     前記固定治具の内周面は、前記プリント配線板における前記搭載面とは反対側の面と、前記押し付け部材における前記プリント配線板とは反対側の部分とに接触し、
     前記固定治具の外周面のうち前記押し子治具と対向する部分は、円弧状または傾斜状に形成されている、請求項1から請求項7のいずれか1項に記載の試験装置。
    The fixing jig is formed in a frame shape surrounding the printed wiring board and the pressing member,
    The inner circumferential surface of the fixing jig contacts a surface of the printed wiring board opposite to the mounting surface and a portion of the pressing member opposite to the printed wiring board,
    The test device according to any one of claims 1 to 7, wherein a portion of the outer circumferential surface of the fixing jig that faces the pusher jig is formed in an arc shape or an inclined shape.
  9.  前記固定治具は、前記プリント配線板と前記押し付け部材とを囲む枠状に形成され、
     前記固定治具の内周面は、前記プリント配線板における前記搭載面とは反対側の面と、前記押し付け部材における前記プリント配線板とは反対側の部分とに接触し、
     前記固定治具の前記内周面のうち前記プリント配線板と接触する部分は、円弧状または傾斜状に形成されている、請求項1から請求項8のいずれか1項に記載の試験装置。
    The fixing jig is formed in a frame shape surrounding the printed wiring board and the pressing member,
    The inner circumferential surface of the fixing jig contacts a surface of the printed wiring board opposite to the mounting surface and a portion of the pressing member opposite to the printed wiring board,
    The test device according to any one of claims 1 to 8, wherein a portion of the inner circumferential surface of the fixing jig that contacts the printed wiring board is formed in an arc shape or an inclined shape.
  10.  請求項1から請求項9のいずれか1項に記載の試験装置を用いた試験方法であって、
     (a)前記プリント配線板の前記搭載面に前記電子部品を搭載し、前記プリント配線板の前記搭載面における前記電子部品の周辺に前記センサーを前記固定治具と前記押し付け部材により固定する工程と、
     (b)前記電子部品が下側に位置するように前記プリント配線板を前記支持台上に載置する工程と、
     (c)前記押し子治具を下降させて前記プリント配線板における前記搭載面とは反対側の面に接触させる工程と、
     (d)前記押し子治具をさらに下降させて、前記押し子治具が前記プリント配線板の上面に接触したときの位置である基準位置から前記プリント配線板に荷重を印加する工程と、
     (e)前記プリント配線板が曲がることで前記電子部品が破壊され、前記測定部により測定された前記電圧信号の波形が予め設定された閾値を超えたとき、前記基準位置からの前記押し子治具の押し込み寸法を前記電子部品の限界値とする、試験方法。
    A test method using the test device according to any one of claims 1 to 9,
    (a) mounting the electronic component on the mounting surface of the printed wiring board, and fixing the sensor around the electronic component on the mounting surface of the printed wiring board using the fixing jig and the pressing member; ,
    (b) placing the printed wiring board on the support base so that the electronic component is located on the lower side;
    (c) lowering the pusher jig to contact a surface of the printed wiring board opposite to the mounting surface;
    (d) further lowering the pusher jig to apply a load to the printed wiring board from a reference position, which is the position when the pusher jig contacts the top surface of the printed wiring board;
    (e) When the electronic component is destroyed due to bending of the printed wiring board and the waveform of the voltage signal measured by the measurement unit exceeds a preset threshold, the pusher is removed from the reference position. A test method in which the indentation dimension of the tool is set as the limit value of the electronic component.
  11.  前記工程(a)において、位置決め治具を用いて前記センサーを前記プリント配線板に位置決めする、請求項10に記載の試験方法。 The test method according to claim 10, wherein in the step (a), the sensor is positioned on the printed wiring board using a positioning jig.
PCT/JP2023/007017 2022-03-24 2023-02-27 Testing device and testing method WO2023181791A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112110216A TW202400981A (en) 2022-03-24 2023-03-20 Testing device and testing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-047731 2022-03-24
JP2022047731 2022-03-24

Publications (1)

Publication Number Publication Date
WO2023181791A1 true WO2023181791A1 (en) 2023-09-28

Family

ID=88100548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007017 WO2023181791A1 (en) 2022-03-24 2023-02-27 Testing device and testing method

Country Status (2)

Country Link
TW (1) TW202400981A (en)
WO (1) WO2023181791A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117782848A (en) * 2024-02-23 2024-03-29 梨树全创科技有限公司 Circuit board bending performance testing device and testing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03146843A (en) * 1989-10-31 1991-06-21 Murata Mfg Co Ltd Impact fracture test method for electronic parts
JPH11230878A (en) * 1998-02-10 1999-08-27 Sumitomo Electric Ind Ltd Method and device for testing resistance of substrate to bending of surface-mount component
JP2020041885A (en) * 2018-09-10 2020-03-19 株式会社ディスコ Chip destruction unit and method for comparing chip strength
JP2021025786A (en) * 2019-07-31 2021-02-22 株式会社村田製作所 Method for testing anti-printed board bendability of surface-mount component and device for testing anti-printed board bendability of surface-mount component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03146843A (en) * 1989-10-31 1991-06-21 Murata Mfg Co Ltd Impact fracture test method for electronic parts
JPH11230878A (en) * 1998-02-10 1999-08-27 Sumitomo Electric Ind Ltd Method and device for testing resistance of substrate to bending of surface-mount component
JP2020041885A (en) * 2018-09-10 2020-03-19 株式会社ディスコ Chip destruction unit and method for comparing chip strength
JP2021025786A (en) * 2019-07-31 2021-02-22 株式会社村田製作所 Method for testing anti-printed board bendability of surface-mount component and device for testing anti-printed board bendability of surface-mount component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117782848A (en) * 2024-02-23 2024-03-29 梨树全创科技有限公司 Circuit board bending performance testing device and testing method thereof
CN117782848B (en) * 2024-02-23 2024-05-14 梨树全创科技有限公司 Circuit board bending performance testing device and testing method thereof

Also Published As

Publication number Publication date
TW202400981A (en) 2024-01-01

Similar Documents

Publication Publication Date Title
WO2023181791A1 (en) Testing device and testing method
JP5746523B2 (en) Clamping mechanism for shear test equipment
KR20080006535A (en) Micro-impact testing apparatus
US20090128171A1 (en) Microstructure Probe Card, and Microstructure Inspecting Device, Method, and Computer Program
JP5135236B2 (en) Tensile test calibration device and method
JP2007057439A (en) Probe device and adjustment method for contact pressure between object to be inspected and probe
TWI422821B (en) Determination of breaking strength and determination of breaking strength
EP3919881A1 (en) Load cell
KR20080102082A (en) The position controlling and noise eliminating apparatus for calibrating acoustic emission sensors
Bansal et al. A new approach for early detection of PCB pad cratering failures
CN105675413B (en) method for evaluating stress life of circuit board
US4806193A (en) Apparatus for measuring bonding parameters
JP2018048915A (en) Force sensor
US4821579A (en) Apparatus for clamping a test sample in a testing machine
US20080223136A1 (en) Minute structure inspection device, inspection method, and inspection program
WO2022163532A1 (en) Measuring apparatus and measuring method
JP7313218B2 (en) Multilayer Ceramic Capacitor Crack Detection Method and Multilayer Ceramic Capacitor Crack Detection Device
EP1095254B1 (en) Surface testing equipment and method
CN218631935U (en) Device for detecting bonding force of bonding equipment and bonding equipment comprising device
US5925828A (en) Low cost clearance gauge and method of using same
JP3042035B2 (en) Circuit board inspection equipment
JPWO2022163532A5 (en)
Tarula An acoustic screening system for multilayer ceramic capacitors-a prototype
JPH0669850U (en) Chip mounter impact measurement jig
JP2001196721A (en) Method and apparatus for measuring strain in substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774390

Country of ref document: EP

Kind code of ref document: A1