WO2023179737A1 - 一种血液泵系统 - Google Patents

一种血液泵系统 Download PDF

Info

Publication number
WO2023179737A1
WO2023179737A1 PCT/CN2023/083515 CN2023083515W WO2023179737A1 WO 2023179737 A1 WO2023179737 A1 WO 2023179737A1 CN 2023083515 W CN2023083515 W CN 2023083515W WO 2023179737 A1 WO2023179737 A1 WO 2023179737A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood
tube
arc
power transmission
transmission part
Prior art date
Application number
PCT/CN2023/083515
Other languages
English (en)
French (fr)
Inventor
吉亮
曹宋叶子
沈美君
陈卫华
陈佳峰
产革南
陈军
邵闻斌
Original Assignee
上海魅丽纬叶医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海魅丽纬叶医疗科技有限公司 filed Critical 上海魅丽纬叶医疗科技有限公司
Publication of WO2023179737A1 publication Critical patent/WO2023179737A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/135Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel inside a blood vessel, e.g. using grafting
    • A61M60/139Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel inside a blood vessel, e.g. using grafting inside the aorta, e.g. intra-aortic balloon pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/165Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/165Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart
    • A61M60/17Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart inside a ventricle, e.g. intraventricular balloon pumps
    • A61M60/174Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart inside a ventricle, e.g. intraventricular balloon pumps discharging the blood to the ventricle or arterial system via a cannula internal to the ventricle or arterial system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/408Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being mechanical, e.g. transmitted by a shaft or cable
    • A61M60/411Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being mechanical, e.g. transmitted by a shaft or cable generated by an electromotor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to a blood pump system, in particular to a blood pump system using a double-pump aortic internal circulation structure, and belongs to the technical field of medical devices.
  • Heart failure is a variety of cardiac structural or functional diseases that lead to impairment of ventricular filling and/or ejection function, cardiac output cannot meet the metabolic needs of the body's tissues, congestion of the pulmonary circulation and/or systemic circulation, and organ, Tissue hypoperfusion is a group of syndromes with clinical manifestations, mainly characterized by dyspnea, limited physical activity, and fluid retention.
  • cardiac assist devices can be used to improve symptoms.
  • current cardiac assist devices generally have problems such as excessive size and complicated surgical insertion into the body.
  • the technical problem to be solved by the present invention is to provide a blood pump system using a double-pump aortic internal circulation structure.
  • a blood pump system including:
  • Cardiac circulation pump used to be installed in the heart to pump blood from the heart into the aorta;
  • Aortic circulation pump used to be installed in the aorta to supply blood in the aorta to set organs
  • the power transmission part is connected between the cardiac circulation pump and the aortic circulation pump to realize power transmission.
  • the cardiac circulation pump includes:
  • the first rotating member is sleeved on the power transmission part to rotate with the rotation of the power transmission part;
  • a first network tube is sleeved on the outside of the first rotating member for safety protection of the first rotating member
  • a first guide tube is sleeved on the outside of the first network tube and has a first blood inlet and a first blood outlet, wherein the first blood inlet is away from the aortic circulation pump, and the first blood inlet is far away from the aortic circulation pump.
  • the outlet is close to the aortic circulation pump;
  • the power transmission part can drive the first rotating member to rotate, so as to drive the blood in the heart to enter the first blood inlet from the first blood inlet of the first blood conduit, and to pass from the first blood inlet to the first blood conduit.
  • the outlet flows out of the first guide tube.
  • the aortic circulation pump includes:
  • the second rotating member is sleeved on the power transmission part to rotate with the rotation of the power transmission part;
  • a second network tube is sleeved on the outside of the second rotating member for safety protection of the second rotating member
  • a support network tube can be deployed on the power transmission part to support the aorta in an expanded state
  • a second guide tube is sleeved on the outside of the second network tube and has a second blood inlet and a second blood outlet, wherein the second blood inlet is close to the first blood outlet, and the second blood inlet is close to the first blood outlet.
  • the outlet is remote from the first blood outlet.
  • the first rotating member includes:
  • a rotating body which is sleeved on the power transmission part to rotate with the rotation of the power transmission part.
  • the rotating body is also provided with a rotating shaft groove for accommodating the rotating blade;
  • the rotating blade is openably and closably disposed in the rotating shaft groove to adjust the opening angle of the rotating blade relative to the rotating body.
  • the first network tube is woven from a plurality of first metal wires, and the middle section of each first metal wire is bent into a trapezoidal shape, so that both ends of the plurality of first metal wires They are all sleeved on the power transmission part, and the middle area of the plurality of first metal wires forms a cylindrical cavity for accommodating the first rotating member.
  • the support network tube is braided by a plurality of second metal wires, the first end of each second metal wire is close to the power transmission part, and the first end of each second metal wire is close to the power transmission part.
  • the second ends of the plurality of second metal wires are all away from the power transmission part, so that the first ends of the plurality of second metal wires are jointly sleeved on the power transmission part, and the second ends of the plurality of second metal wires are spread out to form a Petal shape.
  • the first network tube is carved from a metal tube, so that both ends of the first network tube are sleeved on the power transmission part, and the middle area of the first network tube is formed to accommodate The cylindrical cavity of the first rotating member;
  • the support network tube is carved and shaped from a metal tube, so that the first end of the support network tube is sleeved on the power transmission part, and the second end of the support network tube is spread out in a petal shape.
  • the power transmission part includes a heart transmission section, an aorta transmission section and a power cable;
  • the cardiac transmission section is separately connectable to the power cable to control the rotation of the first rotating member through the power cable;
  • the aortic transmission section can be independently connected to the power cable to control the rotation of the second rotating member through the power cable;
  • the heart transmission section can also be connected to the aorta transmission section, and the aorta transmission section is connected to the power cable to control the first rotating member and the second rotating member simultaneously through the power cable. Turn.
  • the first guide tube includes a first acceleration section and a second acceleration section, and the first acceleration section and the second acceleration section are spaced apart along the length direction of the first guide tube, To increase the flow speed of blood in the first guiding tube.
  • the first acceleration section includes a first arc-shaped tube and a second arc-shaped tube with gradually changing diameters, both of the first arc-shaped tube and the second arc-shaped tube facing the first guide.
  • the axial direction of the flow tube is curved; the diameter of the first arc-shaped tube changes from large to small, and the diameter of the second arc-shaped tube changes from small to large; the bending radius of the first arc-shaped tube is the same as the bending radius of the first arc-shaped tube.
  • the bending radius of the second arc-shaped tube has a first set ratio.
  • the second acceleration section includes a third arc-shaped tube and a fourth arc-shaped tube, both of the third arc-shaped tube and the fourth arc-shaped tube face the axis of the first guide tube.
  • the direction is bent; the diameter of the third arc-shaped tube changes from large to small, and the tube diameter of the fourth arc-shaped tube changes from small to large; the bending radius of the third arc-shaped tube is the same as that of the fourth arc-shaped tube.
  • the bend radius of the tube has a second set ratio.
  • the blood pump system can accelerate the circulation of blood in the heart and the blood in the aorta through the heart circulation pump and the aorta circulation pump respectively, thereby assisting in increasing the blood supply to the heart. Function.
  • the rotating blades of the blood pump system are adjustable.
  • the blood can be pumped out in the fully stored state (smaller size at this time).
  • the pump system is inserted into the body through a simple interventional surgery, and then opens to a semi-open state and a fully open state in the body to improve blood flow and improve convenience of use.
  • Figure 1 is a schematic diagram of the overall structure of the blood pump system provided by the first embodiment of the present invention
  • FIG. 2 is a schematic diagram of the exploded structure of the cardiac circulation pump in Figure 1;
  • Figure 3 is a schematic structural diagram of the first rotating member in Figure 2;
  • Figure 4 is a schematic structural diagram of the rotating blades of the first rotating member at different opening angles
  • FIG. 5 is a schematic structural diagram of the blood pump system in different forms
  • Figure 6 is a schematic structural diagram of the first network management
  • Figure 7 is a schematic structural diagram of the first guide tube
  • Figure 8 is a schematic diagram of the exploded structure of the aortic circulation pump
  • Figure 9 is a schematic structural diagram of the supporting network management
  • Figure 10 is a schematic diagram of the exploded structure of the power transmission part
  • FIG 11 shows the actual application scenario of the cardiac circulation pump
  • Figure 12 is a diagram of the actual application scenario of the aortic circulation pump
  • Figure 13 is a schematic structural diagram of a blood pump system provided by the second embodiment of the present invention.
  • Figure 14 is a schematic structural diagram of a blood pump system provided by the third embodiment of the present invention.
  • FIG 1 shows a blood pump system provided by the first embodiment of the present invention, which specifically includes: a cardiac circulation pump 1, an aortic circulation pump 2 and a power transmission part 3.
  • the cardiac circulation pump 1 is used to be installed in the heart (as shown in Figure 11, in this embodiment, it is installed in the left ventricle, but can also be installed in the atrium) to pump blood in the heart into the aorta;
  • the aortic circulation pump 2 is used to be installed in the aorta (as shown in Figure 12, in this embodiment it is installed in the descending aorta, it can also be installed in the aortic arch), so as to supply the blood in the aorta to the set organ.
  • the power transmission part 3 is connected between the cardiac circulation pump 1 and the aortic circulation pump 2 to achieve power transmission.
  • the cardiac circulation pump 1 includes a first rotating member 11 , a first network tube 12 and a first guiding tube 13 .
  • the first rotating member 11 is set on the power transmission On the transmission part 3, it can rotate with the rotation of the power transmission part 3.
  • the end of the first rotating member 11 away from the aortic circulation pump 2 is also provided with a pigtail elbow connecting section 10 for connecting with the pigtail elbow.
  • the first rotating member 11 includes a rotating body 111 and a rotating blade 112. The rotating body 111 is sleeved on the power transmission part 3 and is relatively fixed to the power transmission part 3.
  • the rotating blades 112 are arranged on the outside of the rotating main body 111.
  • a plurality of rotating shaft grooves 1111 are provided on the outside of the rotating main body 111. After heat treatment, the rotating blades 112 can be opened and closed on the rotating shaft. In the groove 1111, the opening angle of the rotating blade 112 relative to the rotating body 111 can be adjusted. Referring to Figure 4, there are three modes in which the rotating blades 112 are opened at 0°, 45° and 90° respectively, so that the blood pump system has three working modes (as shown in Figure 5, fully retracted mode and half-open mode).
  • the blood pump system can be inserted into the body in the fully stowed state (the size is smaller at this time) through simple interventional surgery, and then opened to the semi-open state and fully open state in the body to improve blood flow.
  • two sets of rotation axis grooves are symmetrically provided on the outside of the rotation body 111 along the axial direction of the rotation body 111.
  • Each set of rotation axis grooves has three, two adjacent ones.
  • the included angle of the rotation axis slot 111 is 120°.
  • a set of rotating blades is installed on each set of rotating shaft grooves, so that there are two sets of six rotating blades 112 on the outside of the rotating body 111 to increase the rotating suction force of the first rotating member 11 .
  • the structure of a "two-layer, single-layer, three-piece” blade is formed according to the arrangement of the rotation axis groove, which is only a specific implementation manner.
  • the number of sets of rotating shaft grooves and the number of rotating blades can be adaptively set according to needs, thereby forming a "single-layer two-piece type", “single-layer three-piece type”, “two-layer two-piece type” Type", "three-layer two-piece” and other structural types.
  • the first network tube 12 is sleeved on the outside of the first rotating member 11 , thereby providing safety protection to the first rotating member 11 and improving the safety of use of the cardiac circulation pump 1 .
  • the first network pipe 12 is braided by a plurality of first metal wires 121.
  • the first metal wires can be made of ordinary metal or alloy. After braiding, the middle section of each first metal wire is bent into a trapezoidal shape, so that both ends of the plurality of first metal wires are sleeved on the power transmission part 3, and the middle section of the plurality of first metal wires is A cylindrical cavity is formed for accommodating the first rotating member 11 and for To protect.
  • the first guide tube 13 is sleeved on the outside of the first network tube 12 and has a first blood inlet 131 and a first blood outlet 132.
  • the first blood inlet 131 is far away from the aortic circulation pump 2, and the first blood outlet 132 is close to the aortic circulation pump 2.
  • the aortic circulation pump 2 is used to guide the blood in the heart into the first conduit 13 from the first blood inlet 131 and flow through the first conduit 13 from the first blood outlet 132 .
  • the first guide tube 13 has a first acceleration section 133 and a second acceleration section 134, wherein the first acceleration section 133 is a Coanda effect tube,
  • the Coanda Effect is also called the Coanda effect or the Coanda effect.
  • the fluid water flow or air flow
  • the Coanda effect tube specifically includes a first arc-shaped tube 1331 and a second arc-shaped tube 1332 with gradually changing diameters.
  • the first arc-shaped tube 1331 and the second arc-shaped tube 1332 are both bent toward the axis of the first guide tube 13 .
  • the diameter of the first arc-shaped tube 1331 changes from large to small, with a reduction value of ⁇ 99mm to 0.1mm.
  • the tube diameter of the second arc-shaped tube 1332 changes from small to large, with an enlargement value of ⁇ 99mm to 0.1mm, so that the first arc-shaped
  • the connection between the tube 1331 and the second arc-shaped tube 1332 forms a Coanda effect area to accelerate the blood for the first time.
  • the second acceleration section 134 is a Venturi sonic nozzle structure.
  • the Venturi nozzle is commonly known as a sonic nozzle, also known as a critical flow nozzle. It is mainly used in the transmission of flow standards, gas flow measurement and flow systems. Maximum traffic limit.
  • the second acceleration section 134 includes a third arc-shaped tube 1341 and a fourth arc-shaped tube 1342 .
  • both the third arc-shaped tube 1341 and the fourth arc-shaped tube 1342 are bent toward the axis direction of the first guide tube 13 .
  • the diameter of the third arc-shaped tube 1341 changes from large to small, with a reduction value of ⁇ 99mm to 0.1mm.
  • the tube diameter of the fourth arc-shaped tube 1342 changes from small to large, with an enlargement value of ⁇ 99mm to 0.1mm, so that the third arc-shaped
  • the connection between the tube 1341 and the fourth arc-shaped tube 1342 forms a Venturi sonic nozzle action area to accelerate the blood for a second time. Therefore, the first guiding tube 13 can double-accelerate the blood to increase the blood flow speed, thereby assisting in improving the blood supply function of the heart.
  • the aortic circulation pump 2 includes a second rotating member 21 , a second network tube 22 , a supporting network tube 23 and a second guiding tube 24 .
  • the second rotating member 21, the second network tube 22 and the second guiding tube 24 have the same structure as the cardiac circulation pump 1, and will not be described again here.
  • the difference between the aortic circulation pump 2 and the cardiac circulation pump 1 is that the aortic circulation pump 2 also includes a support network tube 23.
  • the support network tube 23 is expandably sleeved on the power transmission part 3.
  • the support network management 23 is braided with multiple second metal wires 231.
  • the first end of each second metal wire is close to the power transmission part 3, and the second end is close to the power transmission part 3.
  • the first ends of the plurality of second metal wires are jointly sleeved on the power transmission part 3, and the second ends of the plurality of second metal wires are spread out in a petal shape.
  • the second ends of the plurality of second metal wires have a certain degree of elasticity, so that the second ends of the support network tube 23 can contract or expand when it is necessary to enter the aorta. , the second end of the support network tube 23 can be contracted to avoid interference.
  • the second end of the support network tube 23 can be opened to support the blood vessel wall of the aorta. It helps to ensure smooth blood flow.
  • the second network management 22 and the supporting network management 23 can be made into an integrated structure.
  • the second network management 22 and the supporting network management 23 can also be integrated. It is made into a split structure, and the specific selection can be made adaptively according to actual needs.
  • the first network tube 12 is carved and shaped from a metal tube, so that both ends of the first network tube 12 are sleeved on the power transmission part, and the middle area of the first network tube 12 is formed to accommodate the first rotation. cylindrical cavity of the piece.
  • the support network tube 22 is carved from a metal tube, so that the first end of the support network tube 22 is sleeved on the power transmission part, and the second end of the support network tube 22 is spread out in a petal shape.
  • the power transmission section 3 is divided into a heart transmission section 31, an aorta transmission section 32 and a power cable 33.
  • the heart transmission section 31 can be connected to the power cable 33 separately, so that the The cardiac circulation pump 1 is placed in the heart and works alone;
  • the aortic transmission section 32 can be connected to the power cable 33 alone, so that the aortic circulation pump 2 can be placed in the aorta and work alone;
  • the cardiac transmission section 31 can also be connected with the aorta.
  • the arterial transmission section 32 is connected, and then connected to the power cable 33 through the aortic transmission section 32, so that the cardiac circulation pump 1 can be placed in the heart and the aortic circulation pump 2 can be placed in the aorta, so that the two pumps can work simultaneously.
  • the blood pump system provided by the embodiment of the present invention can accelerate the circulation of blood in the heart and the blood in the aorta through the heart circulation pump 1 and the aorta circulation pump 2 respectively, thereby assisting in increasing the blood supply to the heart.
  • the rotating blades 112 of the blood pump system are adjustable.
  • the blood pump system can be inserted into the body in a fully stowed form (the size is smaller at this time) through a simple interventional surgery, and then can be opened to half of the body. Open state, fully open state to improve blood flow and improve convenience of use.
  • a blood pump system is provided in the second embodiment of the present invention, which includes a main device 1A, a plurality of flexible shaft connectors 2A, a plurality of flexible shafts 3A, a diversion dock 4A, and a paddle 5A.
  • Fixed bracket 6A multiple braided metal tubes 7A, multiple serpentine tubes 8A, multiple wear-resistant positioning bearings 9A, head end flow rate sensor 10A, tail end flow rate sensor 11A, flow guide cover 12A and opening and closing sheet valve 13A.
  • the main device 1A is located at the end of the blood pump system, and includes a power motor, a display and a controller.
  • the power motor is used to provide rotational power
  • the display is used to display pictures
  • the controller is used to It is used for program control of various sensors, valves and propellers.
  • the display has multiple data interfaces that can read data from various sensors, valves and propellers; the above-mentioned data interfaces include interfaces that comply with the USB standard, and data can be output or imported through this interface.
  • the controller can run self-made software, so that it can analyze and calculate the blood flow suitable for the current point in time based on the information collected by the data interface, and control the rotation speed of the paddle 5A based on the calculation results.
  • the main device 1A also includes one or more power source interfaces for connecting the flexible shaft 3A to transmit the power generated by the motor to the blades 5A through a gear structure or other types of fitting structures.
  • the blood pump system also includes an operating handle, which is used to connect the power source interface and data interface of the main device 1A, regulate the opening and closing of the paddle 5A, and is used to open and close the deflector 12A. Close; the material of the operating handle may be composed of ABS, nylon, polycarbonate, carbon fiber, glass fiber, etc.
  • the flexible shaft 3A is connected to the main equipment 1 through a flexible shaft connector 2A, and a flexible shaft connector 2A is connected between two adjacent flexible shafts 3A.
  • the flexible shaft connector 2A is used to connect to the power motor of the main equipment 1A. connection, thereby realizing the conversion between rigid transmission and flexible transmission.
  • the flexible shaft 3A is composed of a single or multiple wires, and the wire materials are stainless steel, carbon steel, titanium alloy, and nickel-titanium alloy; the flexible shaft is composed of multiple wires, and some of the metal wires are braided.
  • the diversion dock 4A is connected to the flexible shaft 3A through the flexible shaft connector 2A. Moreover, the end of the diversion dock 4A is provided with a paddle 5A. The rotation of the paddle 5A can promote the flow of blood in the diversion dock 4A. Moreover, the deflector 12A is set on the outside of the deflector dock 4A. The deflector dock 4A will eject the blood flow accelerated by the blades 5A from the cavity in the designed direction, forming a vortex at the rear end of the deflector 12A, and being contained. in the air deflector 12A. The deflector 12A is used to contain the blade 5A to prevent the blade 5A from colliding with tissue, and to contain and restrict the blood flow. Among them, the air deflector 12A may be made of a polymer material film, which can automatically expand and expand, or can be sucked in when the paddle 5A is running. After fluid, it is squeezed and expanded.
  • the blade 5A can be an integrated structure or a split structure, or it can also be composed of a braided metal skeleton with a surface covered with a film or coating.
  • the material of the blade 5A may be an organic material or an inorganic material.
  • the blade 5A can be expanded or contracted. The expanded size is between 1.0mm and 3000mm, and the contracted size is between 1mm and 1000mm.
  • the air deflector 12A can also be made of woven metal wires or engraved metal pipes, and has elasticity or self-expandability, so that it can automatically expand.
  • the metal material constituting the air deflector 12A may be titanium alloy, nickel-titanium alloy, stainless steel, carbon fiber or polymer material sheet, or a combination of metal material and polymer material. There are protrusions distributed at the blood flow suction end of the deflector 12A, which constitutes a necessary condition to achieve the Coanda Effect.
  • the speed and flow rate of the blood flow in the deflector 12A will accelerate, causing the liquid pressure at the center of the deflector 12A to increase, which can inhale blood flow more quickly and efficiently than a straight duct.
  • the overall structure of the guide cover 12A conforms to the Venturi effect (critical flow Venturi nozzle) properties.
  • Venturi effect critical flow Venturi nozzle
  • the speed reaches a maximum value and the static pressure reaches a minimum value.
  • the velocity of blood increases due to changes in the cross-sectional area of the flow.
  • the entire blood flow must go through the process of narrowing the duct at the same time, thereby generating a pressure difference. This pressure can ensure that the pressure loss between the blood inlet and the blood outlet is about 5% to 20%.
  • the fixing bracket 6A is provided at the end of the flow guide 12A to fix the flow guide 12A on the blood vessel wall.
  • a plurality of braided metal tubes 7A are arranged at intervals on the outside of the flexible shaft 3A, and a serpentine tube 8A is provided between two adjacent braided metal tubes 7A.
  • the inner layer of the braided metal tube 7A is braided by nickel-titanium alloy wire, and the outer layer is coated with hydrophilic polymer material. The outer layer contacts the blood.
  • the inner layer accommodates the flexible shaft 3A.
  • One end is connected to the main device 1A, and the other end is connected to the paddle. 5A, and the braided metal tube 7A is partially located outside the body (for example: a part close to the main device 1A), and the other part is located inside the body (for example: a part close to the paddle 5A).
  • the serpentine tube 8A provides staged support for the braided metal tube 7A, and provides central axis support and positioning for the flexible shaft 2A through the internally fixed wear-resistant positioning bearing 9A.
  • the head end flow velocity sensor 10A is mounted on the flow guide cover 12A for reading the blood flow velocity before acceleration.
  • the tail end flow rate sensor 11A is set in the middle area of the blood pump system (for example For example, it is set on a certain section of snake bone tube 8A or a certain section of braided metal tube 7A in the middle area to read the accelerated blood flow rate.
  • the opening and closing sheet valve 13A is set on the head end flow rate sensor 10A to control the outflow of blood flow. It can simulate the heart beat based on the electrocardiogram signal collected by the main device 1A and provide a flow rate similar to the pulse output of the human heart. output.
  • the blood flow outlet of the flow guide 12A is equipped with one or more opening and closing sheet valves 13A.
  • the valve sheets 13A are driven by photokinetic energy, thermal energy, mechanical force, magnetic force, ultrasonic force or electricity. , can be opened or closed according to the set frequency and opening degree, or can be opened or closed according to the collected physiological signals; these physiological signals include ECG signals, temperature signals, flow rate signals or photoelectric signals.
  • a blood pump system is provided in the third embodiment of the present invention, which includes a main device 1B, a plurality of cable connectors 2B, a plurality of cables 3B, a motor 4B, a diversion dock 5B, and a paddle 6B. , fixed bracket 7B, a plurality of braided metal tubes 8B, a plurality of serpentine tubes 9B, a head end flow velocity sensor 10B, a tail end flow velocity sensor 11B and a flow guide cover 12B.
  • the main device 1B is located at the end of the blood pump system and includes a power motor, a display and a controller.
  • the power motor is used to provide rotational power
  • the display is used to display pictures
  • the controller is used to For program control of various sensors and propellers.
  • the display has multiple data interfaces that can read data from various sensors and propellers; the above-mentioned data interfaces include an interface that complies with the USB standard, and data can be output or imported through this interface.
  • the controller can run self-made software, so that it can analyze and calculate the blood flow suitable for the current point in time based on the information collected by the data interface, and control the rotation speed of the paddle 5B based on the calculation results.
  • the main device 1B also includes one or more power source interfaces for connecting cables 3B to transmit the power generated by the motor to the blades 6B through gear structures or other types of fitting structures.
  • the blood pump system also includes an operating handle, which is used to connect the power source interface and data interface of the main device 1B, regulate the opening and closing of the paddle 5B, and is used to open and close the deflector 12B. Close; the operating handle may be made of BBS, nylon, polycarbonate, carbon fiber, glass fiber, etc.
  • the cable 3B is connected to the main device 1 through a cable connector 2B, and a cable connector 2B is connected between two adjacent cables 3B.
  • the cable connector 2B is used to connect to the main device 1. 1B power motor connection to achieve conversion between rigid transmission and flexible transmission. Among them, the head end of the cable 3B is connected to the motor 4B of the paddle 5B, and the tail end of the cable 3B is connected to the operating handle.
  • the diversion dock 5B is connected to the cable 3B through the cable connector 2B. Moreover, the end of the diversion dock 5B is provided with a paddle 6B. The rotation of the paddle 6B can promote the flow of blood in the diversion dock 5B. Moreover, the deflector cover 12B is set on the outside of the deflector dock 5B. The deflector dock 5B will eject the blood flow accelerated by the blades 6B from the cavity according to the designed direction, forming a vortex at the rear end of the deflector cover 12B and being contained. in the air deflector 12B. The deflector 12B is used to contain the blade 6B to prevent the blade 6B from colliding with the tissue, and to contain and restrict the blood flow. Among them, the air deflector 12B may be made of a polymer material film, which can automatically expand and expand, or can be squeezed and expanded after the blade 5B operates and sucks in fluid.
  • the paddle 6B may be of an integrated structure or a split structure, or may be composed of a braided metal skeleton with a surface covered with a film or coating.
  • the material of the blade 6B may be an organic material or an inorganic material.
  • the blade 6B can be expanded or contracted, and the expanded size is between 1.0mm and 3000mm, and the contracted size is between 1mm and 1000mm.
  • the air deflector 12B can also be made of woven metal wires or engraved metal pipes, and has elasticity or self-expandability, so that it can automatically expand.
  • the metal material constituting the air deflector 12B may be titanium alloy, nickel-titanium alloy, stainless steel, carbon fiber or polymer material sheet, or a combination of metal material and polymer material. There are protrusions distributed at the blood flow suction end of the deflector 12B, which constitutes a necessary condition to achieve the CoBndB Effect.
  • the speed and flow rate of the blood flow in the deflector 12B will accelerate, causing the liquid pressure at the center of the deflector 12B to increase, which can inhale blood flow more quickly and efficiently than a straight duct.
  • the overall structure of the deflector 12B conforms to the Venturi effect (critical flow Venturi nozzle).
  • Critical flow Venturi nozzle critical flow Venturi nozzle
  • the fixing bracket 7B is provided at the end of the flow guide 12B to fix the flow guide 12B on the blood vessel wall.
  • a plurality of braided metal tubes 8B are sleeved on the outside of the cable 3B at intervals, and two adjacent braided metal tubes 8B are arranged at intervals on the outside of the cable 3B.
  • Snake tubes 9B are provided between the metal tubes 8B.
  • the inner layer of the braided metal tube 8B is braided by nickel-titanium alloy wire, and the outer layer is coated with hydrophilic polymer material. The outer layer contacts the blood.
  • the inner layer accommodates the cable 3B. One end is connected to the main equipment 1B, and the other end is connected to the paddle 5B.
  • the serpentine tube 9B provides staged support for the braided metal tube 8B, and provides central axis support and positioning for the flexible shaft 2B through the internally fixed wear-resistant positioning bearing 9B.
  • the head end flow velocity sensor 10B is mounted on the flow guide cover 12B for reading the blood flow velocity before acceleration.
  • the tail end flow rate sensor 11B is set in the middle area of the blood pump system (for example: set on a certain section of the snake bone tube 9B or a certain section of the braided metal tube 8B in the middle area) to read the accelerated flow rate. blood flow rate.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Mechanical Engineering (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • Transplantation (AREA)
  • External Artificial Organs (AREA)

Abstract

一种血液泵系统,包括:心脏循环泵(1),用于设置在心脏内,以便将心脏内的血液抽取至主动脉内;主动脉循环泵(2),用于设置在主动脉内,以便将主动脉内的血液供给设定器官;动力传输部(3),连接于所述心脏循环泵(1)与所述主动脉循环泵(2)之间,以实现动力传递。该血液泵系统通过心脏循环泵(1)和主动脉循环泵(2),能够分别对心脏内的血液和主动脉内的血液进行循环加速,从而能够辅助提升心脏的供血功能。而且,该血液泵系统的旋转叶片(112)可调,在使用时,可在完全收纳形态将血液泵系统通过简单的介入手术置入体内,然后,在体内打开至半开形态、完全打开形态以改善血流情况。

Description

一种血液泵系统 技术领域
本发明涉及一种血液泵系统,尤其涉及一种采用双泵式主动脉内循环结构的血液泵系统,属于医疗器械技术领域。
背景技术
心功能不全(cardiac dysfunction)或心功能障碍是一个广泛的概念,伴有临床症状的心功能不全称之为心力衰竭(简称心衰)。心力衰竭(heart failure)是各种心脏结构或功能性疾病导致心室充盈和(或)射血功能受损,心排血量不能满足机体组织代谢需要,以肺循环和(或)体循环淤血,器官、组织血液灌注不足为临床表现的一组综合征,主要表现为呼吸困难、体力活动受限和体液潴留。针对心功能障碍患者,可以采用心脏辅助装置改善症状。但是,目前的心脏辅助装置普遍存在体积过大、手术置入体内复杂等问题。
发明内容
本发明所要解决的技术问题在于提供一种采用双泵式主动脉内循环结构的血液泵系统。
为实现上述技术目的,本发明采用以下的技术方案:
一种血液泵系统,包括:
心脏循环泵,用于设置在心脏内,以便将心脏内的血液抽取至主动脉内;
主动脉循环泵,用于设置在主动脉内,以便将主动脉内的血液供给设定器官;
动力传输部,连接于所述心脏循环泵与所述主动脉循环泵之间,以实现动力传递。
其中较优地,所述心脏循环泵包括:
第一旋转件,套设于所述动力传输部上,以随所述动力传输部的转动而转动;
第一网管,套设于所述第一旋转件的外侧,以用于对所述第一旋转件进行安全防护;
第一导流管,套设于所述第一网管的外侧,并具有第一血液入口和第一血液出口,其中,所述第一血液入口远离所述主动脉循环泵,所述第一血液出口靠近所述主动脉循环泵;
所述动力传输部能够带动所述第一旋转件转动,以带动心脏内的血液从所述第一导流管的第一血液入口进入所述第一导流管,并从所述第一血液出口流出所述第一导流管。
其中较优地,所述主动脉循环泵包括:
第二旋转件,套设于所述动力传输部上,以随所述动力传输部的转动而转动;
第二网管,套设于所述第二旋转件的外侧,以用于对所述第二旋转件进行安全防护;
支撑网管,可张开地套设于所述动力传输部上,以用于在张开状态下支撑主动脉;
第二导流管,套设于所述第二网管的外侧,并具有第二血液入口和第二血液出口,其中,所述第二血液入口靠近所述第一血液出口,所述第二血液出口远离所述第一血液出口。
其中较优地,所述第一旋转件包括:
旋转主体,所述旋转主体套设在所述动力传输部上,以随所述动力传输部的转动而转动,所述旋转主体上还设有用于容纳所述旋转叶片的旋转轴槽;
旋转叶片,可开合地设置于所述旋转轴槽内,以调节所述旋转叶片相对于所述旋转主体的张开角度。
其中较优地,所述第一网管由多根第一金属丝编织而成,每根所述第一金属丝的中间段均弯折成梯形形状,以使得多根第一金属丝的两端均套设于动力传输部上,并且多根第一金属丝的中间区域形成用于容纳所述第一旋转件的圆柱形空腔。
其中较优地,所述支撑网管由多根第二金属丝编织而成,每一根所述第二金属丝的第一端均靠近所述动力传输部,每一根所述第二金属丝的第二端均远离所述动力传输部,从而使得多根第二金属丝的第一端共同套设于所述动力传输部上,并使得多根第二金属丝的第二端散开呈花瓣状。
其中较优地,所述第一网管由金属管雕刻成型,以使所述第一网管的两端均套设于所述动力传输部上,并且所述第一网管的中间区域形成用于容纳所述第一旋转件的圆柱形空腔;
和/或,所述支撑网管由金属管雕刻成型,以使所述支撑网管的第一端套设于所述动力传输部上,所述支撑网管的第二端散开呈花瓣状。
其中较优地,所述动力传输部包括心脏传输段、主动脉传输段以及动力缆;
所述心脏传输段能够与所述动力缆单独连接,以通过所述动力缆控制所述第一旋转件的转动;
所述主动脉传输段能够与所述动力缆单独连接,以通过所述动力缆控制所述第二旋转件的转动;
所述心脏传输段还能够与所述主动脉传输段连接,所述主动脉传输段与所述动力缆连接,以通过所述动力缆控制所述第一旋转件和所述第二旋转件同时转动。
其中较优地,所述第一导流管包括第一加速段和第二加速段,所述第一加速段和所述第二加速段沿所述第一导流管的长度方向间隔设置,以用于增加血液在所述第一导流管内的流动速度。
其中较优地,所述第一加速段包括管径渐变的第一弧形管和第二弧形管,所述第一弧形管和所述第二弧形管均朝向所述第一导流管的轴线方向弯曲;所述第一弧形管的管径由大变小,所述第二弧形管的管径由小变大;所述第一弧形管的弯曲半径与所述第二弧形管的弯曲半径具有第一设定比值。
其中较优地,所述第二加速段包括第三弧形管和第四弧形管,所述第三弧形管和所述第四弧形管均朝向所述第一导流管的轴线方向弯曲;所述第三弧形管的管径由大变小,所述第四弧形管的管径由小变大;所述第三弧形管的弯曲半径与所述第四弧形管的弯曲半径具有第二设定比值。
与现有技术相比较,本发明实施例提供的血液泵系统,通过心脏循环泵和主动脉循环泵能够分别对心脏内的血液和主动脉内的血液进行循环加速,从而能够辅助提升心脏的供血功能。而且,该血液泵系统的旋转叶片可调,在使用时,可在完全收纳形态(此时的尺寸较小)将血液 泵系统通过简单的介入手术置入体内,然后,在体内打开至半开形态、完全打开形态以改善血流情况,提高了使用的便利性。
附图说明
图1为本发明第一实施例提供的血液泵系统的整体结构示意图;
图2为图1中心脏循环泵的分解结构示意图;
图3为图2中第一旋转件的结构示意图;
图4为第一旋转件的旋转叶片不同张开角度的结构示意图;
图5为血液泵系统不同形态下的结构示意图;
图6为第一网管的结构示意图;
图7为第一导流管的结构示意图;
图8为主动脉循环泵的分解结构示意图;
图9为支撑网管的结构示意图;
图10为动力传输部的分解结构示意图;
图11为心脏循环泵的实际应用场景图;
图12为主动脉循环泵实际应用场景图;
图13为本发明第二实施例提供的一种血液泵系统的结构示意图;
图14为本发明第三实施例提供的一种血液泵系统的结构示意图。
具体实施方式
下面结合附图和具体实施例对本发明的技术内容进行详细具体的说明。
<第一实施例>
图1所示为本发明第一实施例提供的一种血液泵系统,具体包括:心脏循环泵1、主动脉循环泵2以及动力传输部3。其中,心脏循环泵1用于设置在心脏内(如图11所示,本实施例中为设置在左心室内,也可以设置在心房内),以便将心脏内的血液抽取至主动脉内;主动脉循环泵2用于设置在主动脉内(如图12所示,本实施例中为设置在降主动脉内,也可以设置于主动脉弓内),以便将主动脉内的血液供给设定器官;动力传输部3连接于心脏循环泵1与所述主动脉循环泵2之间,以实现动力传递。
如图2所示,在上述实施例中,心脏循环泵1包括第一旋转件11、第一网管12以及第一导流管13。具体的,第一旋转件11套设于动力传 输部3上,以随动力传输部3的转动而转动,而且,第一旋转件11上远离主动脉循环泵2的一端还设有猪尾弯头连接段10,以用于与猪尾弯头连接。如图3所示,在本发明的一个实施例中,第一旋转件11包括旋转主体111和旋转叶片112,该旋转主体111套设在动力传输部3上,并与动力传输部3相对固定(例如:通过键配合或过盈配合等方式实现),从而通过动力传输部3的转动带动旋转主体111转动。相应地,旋转叶片112设置于旋转主体111的外侧,并且,本实施例中,旋转主体111的外侧开设有多个旋转轴槽1111,旋转叶片112经过热处理后,可开合地设置于旋转轴槽1111内,从而能够调节旋转叶片112相对于旋转主体111的张开角度。参照图4所示,为旋转叶片112分别张开0°、45°和90°的三种形态,从而使得血液泵系统具有三种工作形态(如图5所示,完全收纳形态、半开形态、完全打开形态),以适应不同的使用情况。在使用时,可在完全收纳形态(此时的尺寸较小)将血液泵系统通过简单的介入手术置入体内,然后,在体内打开至半开形态、完全打开形态以改善血流情况。
此外,在本发明的一个实施例中,旋转主体111的外侧沿旋转主体111的轴向方向上,对称开设有两组旋转轴槽,每一组旋转轴槽均为三个,相邻两个旋转轴槽111的夹角为120°。相应地,每一组旋转轴槽上均安装有一组旋转叶片,从而使得该旋转主体111的外侧具有两组共6个旋转叶片112,以提高第一旋转件11的旋转吸力。可以理解的是,在本发明的一个实施例中根据旋转轴槽的设置形式,形成的“两层、单层三片”式桨叶的结构仅为一种具体的实现方式。在其他实施例中,旋转轴槽的组数以及旋转叶片的片数均可根据需要进行适应性设置,从而形成“单层两片式”、“单层三片式”、“两层两片式”、“三层两片式”等结构类型。
第一网管12套设在第一旋转件11的外侧,从而能够对第一旋转件11进行安全防护,以提高心脏循环泵1使用的安全性。具体的,如图6所示,在本发明的一个实施例中,第一网管12由多根第一金属丝121编织而成,其中,第一金属丝可以选用普通金属也可以选用合金,经过编织后,每根第一金属丝的中间段均弯折成梯形形状,从而使得多根第一金属丝的两端均套设于动力传输部3上,并且多根第一金属丝的中间区域形成圆柱形空腔,以用于容纳该第一旋转件11并对该第一旋转件11 进行保护。
第一导流管13套设于第一网管12的外侧,并具有第一血液入口131和第一血液出口132,其中,第一血液入口131远离主动脉循环泵2,第一血液出口132靠近主动脉循环泵2,以用于引导心脏内的血液从第一血液入口131进入第一导流管13内,并从第一血液出口132流程第一导流管13。具体的,如图7所示,在本发明的一个实施例中,第一导流管13具有第一加速段133和第二加速段134,其中,第一加速段133为康达效应管,康达效应(Coanda Effect)亦称附壁作用或柯恩达效应,流体(水流或气流)由偏离原本流动方向,改为随着凸出的物体表面流动的倾向。该康达效应管具体包括管径渐变的第一弧形管1331和第二弧形管1332,第一弧形管1331和第二弧形管1332均朝向第一导流管13的轴线方向弯曲。第一弧形管1331的管径由大变小,缩小值为φ99mm至0.1mm,第二弧形管1332的管径由小变大,扩大值为φ99mm至0.1mm,从而使得第一弧形管1331与第二弧形管1332的连接处形成康达效应作用区域,以对血液进行第一次加速。
而且,在本发明的一个实施例中,第二加速段134为文丘里音速喷嘴结构,文丘里喷嘴俗称音速喷嘴,又称临界流喷嘴,主要应用于流量标准的传递、气体流量测量和流量系统最大流量的限制。具体的,第二加速段134包括第三弧形管1341和第四弧形管1342。类似的,第三弧形管1341和第四弧形管1342均朝向第一导流管13的轴线方向弯曲。第三弧形管1341的管径由大变小,缩小值为φ99mm至0.1mm,第四弧形管1342的管径由小变大,扩大值为φ99mm至0.1mm,从而使得第三弧形管1341与第四弧形管1342的连接处形成文丘里音速喷嘴作用区域,以对血液进行第二次加速。由此,利用该第一导流管13能够对血液进行双重加速,以提高血液流动速度,从而辅助提升心脏供血功能。
如图8所示,在上述实施例中,主动脉循环泵2包括第二旋转件21、第二网管22、支撑网管23以及第二导流管24。其中,第二旋转件21、第二网管22以及第二导流管24均与心脏循环泵1的结构相同,在此不再赘述。主动脉循环泵2与心脏循环泵1的不同之处在于,主动脉循环泵2还包括支撑网管23,如图9所示,该支撑网管23可张开地套设于动力传输部3上,以用于在张开状态下支撑主动脉。具体的,该支撑网管 23有多根第二金属丝231编织而成,不同于第二网管22的是,该支撑网管23中,每一根第二金属丝的第一端均靠近动力传输部3,第二端均远离动力传输部3,从而使得多根第二金属丝的第一端共同套设于动力传输部3上,多根第二金属丝的第二端散开呈花瓣状。可以理解的是,在本发明的一个实施例中,多根第二金属丝的第二端具有一定的弹性,从而使得支撑网管23的第二端可收缩或张开,当需要进入主动脉时,可将支撑网管23的第二端收缩,以避免造成干扰,当进入到主动脉的预设位置后,可将支撑网管23的第二端张开,从而对主动脉的血管壁起到支撑作用,有利于保证血液流动的流畅性。
此外,可以理解的是,在本发明的一个实施例中,可以将第二网管22与支撑网管23做成一体式结构,在另一个实施例中,也可以将第二网管22与支撑网管23做成分体式结构,具体可根据实际需要进行适应性选择。在又一个实施例中,第一网管12由金属管雕刻成型,以使第一网管12的两端均套设于动力传输部上,并且第一网管12的中间区域形成用于容纳第一旋转件的圆柱形空腔。并且,支撑网管22由金属管雕刻成型,以使支撑网管22的第一端套设于动力传输部上,支撑网管22的第二端散开呈花瓣状。
如图10所示,在上述实施例中,动力传输部3分为心脏传输段31、主动脉传输段32以及动力缆33,其中,心脏传输段31可单独与动力缆33连接,从而可将心脏循环泵1置入心脏内单独工作;主动脉传输段32可单独与动力缆33连接,从而可将主动脉循环泵2置入主动脉内单独工作;此外,心脏传输段31还可与主动脉传输段32连接,再通过主动脉传输段32与动力缆33连接,从而可将心脏循环泵1置入心脏内、主动脉循环泵2置入主动脉内,使得两个泵同时工作。
综上所述,本发明实施例提供的血液泵系统,通过心脏循环泵1和主动脉循环泵2能够分别对心脏内的血液和主动脉内的血液进行循环加速,从而能够辅助提升心脏的供血功能。而且,该血液泵系统的旋转叶片112可调,在使用时,可在完全收纳形态(此时的尺寸较小)将血液泵系统通过简单的介入手术置入体内,然后,在体内打开至半开形态、完全打开形态以改善血流情况,提高了使用的便利性。
<第二实施例>
如图13所示,为本发明第二实施例提供的一种血液泵系统,其包括主体设备1A、多个软轴连接器2A、多个软轴3A、导流坞4A、桨叶5A、固定支架6A、多个编织金属管7A、多个蛇骨管8A、多个耐磨定位轴承9A、头端流速传感器10A、尾端流速传感器11A、导流罩12A以及开合式薄片阀门13A。
具体的,在本发明的一个实施例中,主体设备1A位于血液泵系统的端部,其包括动力电机、显示器和控制器,动力电机用于提供旋转动力,显示器用于进行画面显示,控制器用于对各传感器、阀门以及桨叶进行程序控制。该显示器上具有多个数据接口,可以读取从各传感器、阀门以及桨叶的数据;上述数据接口中包括符合USB标准的接口,并可以通过此接口输出或导入数据。该控制器可运行自制软件,从而可根据数据接口采集的信息,分析计算出当前时点所适合的血液流量,并根据计算结果控制桨片5A的转速。该主体设备1A还包括一个或多个动力源接口,用于连接软轴3A,通过齿轮结构或其他类型的契合结构,将电机产生的动力输送至桨叶5A。
在本发明的一个实施例中,血液泵系统还包括一个操作手柄,用于连接主体设备1A的动力源接口、数据接口,调控桨片5A的打开、合拢,用于导流罩12A的打开、合拢;操作手柄的材料可能由ABS、尼龙、聚碳酸酯、碳纤维、玻璃纤维等构成。
软轴3A通过软轴连接器2A与主体设备1连接,而且,相邻两个软轴3A之间连接有一个软轴连接器2A,该软轴连接器2A用于与主体设备1A的动力电机连接,从而实现刚性传递与柔性传递的转换。其中,软轴3A由单根或多根丝材构成,丝材的材质为不锈钢、碳钢、钛合金、镍钛合金;多根丝构成的软轴,部分金属丝以编织方式构成。
导流坞4A通过软轴连接器2A与软轴3A连接,而且,导流坞4A端部设有桨叶5A,通过桨叶5A的转动能够推动血液在导流坞4A内流动。并且,导流罩12A套设在导流坞4A的外侧,导流坞4A将被桨叶5A加速的血流,按照设计方向从腔道射出,在导流罩12A尾端形成涡流,被包容在导流罩12A内。导流罩12A用于包容桨叶5A,以避免桨叶5A与组织发生碰撞,并对血流起到包容、约束作用。其中,导流罩12A可能由高分子材料薄膜构成,可以自动膨胀展开,也可以在桨片5A运转吸入 流体后,受挤压扩张开。
桨叶5A可以是一体化结构,也可以是分体式结构,还可以由编制的金属骨架构成,表面覆膜或带有涂层。桨叶5A的材料可以是有机材料,也可以是无机材料。桨叶5A可展开或收缩,展开后尺寸在1.0mm—3000mm之间,收缩后尺寸在1mm—1000mm之间。
导流罩12A也可以是由金属丝材编织构成,或由金属管材雕刻构成,具备弹性或自膨开性,从而可以自动展开。构成导流罩12A的金属材质可能是钛合金、镍钛合金、不锈钢,也有可能是碳纤维或高分子材料片材,或金属材质与高分子材质共同构成。导流罩12A的血流吸入端有凸起物分布,构成达成Coanda Effect效应的必要条件,利用Coanda Effect效应,在桨片5A开始旋转吸入血液时,导流罩12A内血流的速度及流量会加快,导致导流罩12A中央位置的液体压力增加,可以相较平直涵道更快速、高效的吸入血流。导流罩12A的整体结构符合Venturi effect效应(临界流文丘里喷嘴)属性,当血液从吸入端吸入并经过桨片5A加速后,在文丘里管里面流动,因着连续性方程式在管道的最窄处,速度达到最大值,静态压力达到最小值。血液的速度因为涌流横截面积变化的关系而上升。整个血液涌流都要在同一时间经历涵道缩小的过程,进而产生压力差,这个压力可以确保血液进口与血液出口的压力损失在5%~20%左右。
固定支架6A设置于导流罩12A的端部,以用于将导流罩12A固定在血管壁上。
多个编织金属管7A间隔套设于软轴3A的外侧,并且相邻两个编织金属管7A之间设有蛇骨管8A。其中,编织金属管7A的内层由镍钛合金丝编织,外层涂覆亲水性高分子材料,外层接触血液,内层容纳软轴3A,一端连接主体设备1A,另一端连接浆叶5A,并且编织金属管7A部分位于体外(例如:靠近主体设备1A的一部分),另一部分位于体内(例如:靠近桨叶5A的一部分)。此外,该蛇骨管8A为编织金属管7A提供阶段性支撑,并通过内部固定的耐磨定位轴承9A,为软轴2A提供中心轴支撑及定位。
头端流速传感器10A套设于导流罩12A上,以用于读取加速前的血液流速。类似的,尾端流速传感器11A套设于血液泵系统的中部区域(例 如:套设在中部区域的某一段蛇骨管8A或某一段编织金属管7A上),以用于读取加速后的血液流速。
开合式薄片阀门13A套设于头端流速传感器10A上,以用于控制血流的涌出,可根据主体设备1A采集的心电信号,模拟心脏搏动,提供类似于人体心脏脉搏输出量的流量输出。在本发明的一个实施例中,导流罩12A的血流涌出口,具备一个或多个开合式薄片阀门13A,阀片13A以光动能、热能、机械力、磁力驱动、超声波驱动或电力驱动,可以按照设定的频率及开放度打开或关闭,也可以根据所采集的生理信号打开或关闭;这些生理信号包括心电信号、温度信号、流量流速信号或光电信号。
<第三实施例>
如图14所示,为本发明第三实施例提供的一种血液泵系统,其包括主体设备1B、多个电缆连接器2B、多个电缆3B、电机4B、导流坞5B、桨叶6B、固定支架7B、多个编织金属管8B、多个蛇骨管9B、头端流速传感器10B、尾端流速传感器11B以及导流罩12B。
具体的,在本发明的一个实施例中,主体设备1B位于血液泵系统的端部,其包括动力电机、显示器和控制器,动力电机用于提供旋转动力,显示器用于进行画面显示,控制器用于对各传感器以及桨叶进行程序控制。该显示器上具有多个数据接口,可以读取从各传感器以及桨叶的数据;上述数据接口中包括符合USB标准的接口,并可以通过此接口输出或导入数据。该控制器可运行自制软件,从而可根据数据接口采集的信息,分析计算出当前时点所适合的血液流量,并根据计算结果控制桨片5B的转速。该主体设备1B还包括一个或多个动力源接口,用于连接电缆3B,通过齿轮结构或其他类型的契合结构,将电机产生的动力输送至桨叶6B。
在本发明的一个实施例中,血液泵系统还包括一个操作手柄,用于连接主体设备1B的动力源接口、数据接口,调控桨片5B的打开、合拢,用于导流罩12B的打开、合拢;操作手柄的材料可能由BBS、尼龙、聚碳酸酯、碳纤维、玻璃纤维等构成。
电缆3B通过电缆连接器2B与主体设备1连接,而且,相邻两个电缆3B之间连接有一个电缆连接器2B,该电缆连接器2B用于与主体设备 1B的动力电机连接,从而实现刚性传递与柔性传递的转换。其中,电缆3B的头端与桨片5B的电机4B连接,电缆3B的尾端与操作手柄连接。
导流坞5B通过电缆连接器2B与电缆3B连接,而且,导流坞5B端部设有桨叶6B,通过桨叶6B的转动能够推动血液在导流坞5B内流动。并且,导流罩12B套设在导流坞5B的外侧,导流坞5B将被桨叶6B加速的血流,按照设计方向从腔道射出,在导流罩12B尾端形成涡流,被包容在导流罩12B内。导流罩12B用于包容桨叶6B,以避免桨叶6B与组织发生碰撞,并对血流起到包容、约束作用。其中,导流罩12B可能由高分子材料薄膜构成,可以自动膨胀展开,也可以在桨片5B运转吸入流体后,受挤压扩张开。
桨叶6B可以是一体化结构,也可以是分体式结构,还可以由编制的金属骨架构成,表面覆膜或带有涂层。桨叶6B的材料可以是有机材料,也可以是无机材料。桨叶6B可展开或收缩,展开后尺寸在1.0mm~3000mm之间,收缩后尺寸在1mm~1000mm之间。
导流罩12B也可以是由金属丝材编织构成,或由金属管材雕刻构成,具备弹性或自膨开性,从而可以自动展开。构成导流罩12B的金属材质可能是钛合金、镍钛合金、不锈钢,也有可能是碳纤维或高分子材料片材,或金属材质与高分子材质共同构成。导流罩12B的血流吸入端有凸起物分布,构成达成CoBndB Effect效应的必要条件,利用CoBndB Effect效应,在桨片5B开始旋转吸入血液时,导流罩12B内血流的速度及流量会加快,导致导流罩12B中央位置的液体压力增加,可以相较平直涵道更快速、高效的吸入血流。导流罩12B的整体结构符合Venturi effect效应(临界流文丘里喷嘴)属性,当血液从吸入端吸入并经过桨片5B加速后,在文丘里管里面流动,因为连续性方程式在管道的最窄处,速度达到最大值,静态压力达到最小值。血液的速度因为涌流横截面积变化的关系而上升。整个血液涌流都要在同一时间经历涵道缩小的过程,进而产生压力差,这个压力可以确保血液进口与血液出口的压力损失在5%~20%左右。
固定支架7B设置于导流罩12B的端部,以用于将导流罩12B固定在血管壁上。
多个编织金属管8B间隔套设于电缆3B的外侧,并且相邻两个编织 金属管8B之间设有蛇骨管9B。其中,编织金属管8B的内层由镍钛合金丝编织,外层涂覆亲水性高分子材料,外层接触血液,内层容纳电缆3B,一端连接主体设备1B,另一端连接浆叶5B,并且编织金属管8B部分位于体外(例如:靠近主体设备1B的一部分),另一部分位于体内(例如:靠近桨叶6B的一部分)。此外,该蛇骨管9B为编织金属管8B提供阶段性支撑,并通过内部固定的耐磨定位轴承9B,为软轴2B提供中心轴支撑及定位。
头端流速传感器10B套设于导流罩12B上,以用于读取加速前的血液流速。类似的,尾端流速传感器11B套设于血液泵系统的中部区域(例如:套设在中部区域的某一段蛇骨管9B或某一段编织金属管8B上),以用于读取加速后的血液流速。
上面对本发明所提供的血液泵系统进行了详细的说明。对本领域的一般技术人员而言,在不背离本发明实质内容的前提下对它所做的任何显而易见的改动,都将构成对本发明专利权的侵犯,将承担相应的法律责任。

Claims (12)

  1. 一种血液泵系统,其特征在于包括:
    心脏循环泵,用于设置在心脏内,以便将心脏内的血液抽取至主动脉内;
    主动脉循环泵,用于设置在主动脉内,以便将主动脉内的血液供给设定器官;
    动力传输部,连接于所述心脏循环泵与所述主动脉循环泵之间,以实现动力传递。
  2. 如权利要求1所述的血液泵系统,其特征在于,所述心脏循环泵包括:
    第一旋转件,套设于所述动力传输部上,以随所述动力传输部的转动而转动;
    第一网管,套设于所述第一旋转件的外侧,以用于对所述第一旋转件进行安全防护;
    第一导流管,套设于所述第一网管的外侧,并具有第一血液入口和第一血液出口,其中,所述第一血液入口远离所述主动脉循环泵,所述第一血液出口靠近所述主动脉循环泵;
    所述动力传输部能够带动所述第一旋转件转动,以带动心脏内的血液从所述第一导流管的第一血液入口进入所述第一导流管,并从所述第一血液出口流出所述第一导流管。
  3. 如权利要求2所述的血液泵系统,其特征在于,所述主动脉循环泵包括:
    第二旋转件,套设于所述动力传输部上,以随所述动力传输部的转动而转动;
    第二网管,套设于所述第二旋转件的外侧,以用于对所述第二旋转件进行安全防护;
    支撑网管,可张开地套设于所述动力传输部上,以用于在张开状态下支撑主动脉;
    第二导流管,套设于所述第二网管的外侧,并具有第二血液入口和第二血液出口,其中,所述第二血液入口靠近所述第一血液出口,所述 第二血液出口远离所述第一血液出口。
  4. 如权利要求2所述的血液泵系统,其特征在于,所述第一旋转件包括:
    旋转主体,所述旋转主体套设在所述动力传输部上,以随所述动力传输部的转动而转动,所述旋转主体上还设有用于容纳所述旋转叶片的旋转轴槽;
    旋转叶片,可开合地设置于所述旋转轴槽内,以调节所述旋转叶片相对于所述旋转主体的张开角度。
  5. 如权利要求2所述的血液泵系统,其特征在于,所述第一网管由多根第一金属丝编织而成,每根所述第一金属丝的中间段均弯折成梯形形状,以使得多根第一金属丝的两端均套设于动力传输部上,并且多根第一金属丝的中间区域形成用于容纳所述第一旋转件的圆柱形空腔。
  6. 如权利要求3所述的血液泵系统,其特征在于,所述支撑网管由多根第二金属丝编织而成,每一根所述第二金属丝的第一端均靠近所述动力传输部,每一根所述第二金属丝的第二端均远离所述动力传输部,从而使得多根第二金属丝的第一端共同套设于所述动力传输部上,并使得多根第二金属丝的第二端散开呈花瓣状。
  7. 如权利要求3所述的血液泵系统,其特征在于:
    所述第一网管由金属管雕刻成型,以使所述第一网管的两端均套设于所述动力传输部上,并且所述第一网管的中间区域形成用于容纳所述第一旋转件的圆柱形空腔。
  8. 如权利要求3所述的血液泵系统,其特征在于:
    所述支撑网管由金属管雕刻成型,以使所述支撑网管的第一端套设于所述动力传输部上,所述支撑网管的第二端散开呈花瓣状。
  9. 如权利要求3所述的血液泵系统,其特征在于,所述动力传输部包括心脏传输段、主动脉传输段以及动力缆;
    所述心脏传输段能够与所述动力缆单独连接,以通过所述动力缆控制所述第一旋转件的转动;
    所述主动脉传输段能够与所述动力缆单独连接,以通过所述动力缆控制所述第二旋转件的转动;
    所述心脏传输段还能够与所述主动脉传输段连接,所述主动脉传输 段与所述动力缆连接,以通过所述动力缆控制所述第一旋转件和所述第二旋转件同时转动。
  10. 如权利要求2所述的血液泵系统,其特征在于,所述第一导流管包括第一加速段和第二加速段,所述第一加速段和所述第二加速段沿所述第一导流管的长度方向间隔设置,以用于增加血液在所述第一导流管内的流动速度。
  11. 如权利要求10所述的血液泵系统,其特征在于,所述第一加速段包括管径渐变的第一弧形管和第二弧形管,所述第一弧形管和所述第二弧形管均朝向所述第一导流管的轴线方向弯曲;所述第一弧形管的管径由大变小,所述第二弧形管的管径由小变大;所述第一弧形管的弯曲半径与所述第二弧形管的弯曲半径具有第一设定比值。
  12. 如权利要求10所述的血液泵系统,其特征在于,所述第二加速段包括第三弧形管和第四弧形管,所述第三弧形管和所述第四弧形管均朝向所述第一导流管的轴线方向弯曲;所述第三弧形管的管径由大变小,所述第四弧形管的管径由小变大;所述第三弧形管的弯曲半径与所述第四弧形管的弯曲半径具有第二设定比值。
PCT/CN2023/083515 2022-03-23 2023-03-23 一种血液泵系统 WO2023179737A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210316344 2022-03-23
CN202210316344.8 2022-03-23

Publications (1)

Publication Number Publication Date
WO2023179737A1 true WO2023179737A1 (zh) 2023-09-28

Family

ID=87050789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/083515 WO2023179737A1 (zh) 2022-03-23 2023-03-23 一种血液泵系统

Country Status (2)

Country Link
CN (4) CN219835932U (zh)
WO (1) WO2023179737A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060036127A1 (en) * 2004-08-13 2006-02-16 Delgado Reynolds M Iii Method and apparatus for long-term assisting a left ventricle to pump blood
US20120059459A1 (en) * 2009-05-11 2012-03-08 Mayo Foundation For Medical Education And Research Treating congestive heart failure
CN104225696A (zh) * 2014-09-04 2014-12-24 江苏大学 一种折叠式微创植入的心室内轴流血泵
CN111632217A (zh) * 2020-05-15 2020-09-08 孙英贤 一种设有中间叶轮的心室循环辅助装置
US20210008263A1 (en) * 2018-03-20 2021-01-14 Second Heart Assist, Inc. Circulatory assist pump
CN113101516A (zh) * 2021-02-08 2021-07-13 苏州心岭迈德医疗科技有限公司 一种辅助泵血导管泵
CN114040794A (zh) * 2019-05-23 2022-02-11 马真塔医药有限公司 血液泵

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060036127A1 (en) * 2004-08-13 2006-02-16 Delgado Reynolds M Iii Method and apparatus for long-term assisting a left ventricle to pump blood
US20120059459A1 (en) * 2009-05-11 2012-03-08 Mayo Foundation For Medical Education And Research Treating congestive heart failure
CN104225696A (zh) * 2014-09-04 2014-12-24 江苏大学 一种折叠式微创植入的心室内轴流血泵
US20210008263A1 (en) * 2018-03-20 2021-01-14 Second Heart Assist, Inc. Circulatory assist pump
CN114040794A (zh) * 2019-05-23 2022-02-11 马真塔医药有限公司 血液泵
CN111632217A (zh) * 2020-05-15 2020-09-08 孙英贤 一种设有中间叶轮的心室循环辅助装置
CN113101516A (zh) * 2021-02-08 2021-07-13 苏州心岭迈德医疗科技有限公司 一种辅助泵血导管泵

Also Published As

Publication number Publication date
CN219963749U (zh) 2023-11-07
CN116650826A (zh) 2023-08-29
CN116407754A (zh) 2023-07-11
CN219835932U (zh) 2023-10-17

Similar Documents

Publication Publication Date Title
CN106512117B (zh) 柔性传动系统、经皮辅助泵血装置及血管内血栓抽吸系统
JP5641546B2 (ja) カテーテルポンプ
US8734331B2 (en) Expandable blood pumps and methods of their deployment and use
WO2017159849A1 (ja) カテーテルポンプおよび処置方法
US11957891B2 (en) Percutaneous blood pump and introducer system
US6709418B1 (en) Apparatus and methods for entering cavities of the body
US6974409B2 (en) Catheter pump, catheter and method for supporting organ perfusion
WO2023134695A1 (zh) 导管泵壳体结构以及导管泵装置
KR20010101590A (ko) 교차 흐름 원리를 사용하는 혈액 펌프
WO2023134693A1 (zh) 泵血装置
CN102481398A (zh) 具有可扩张套管的血泵
EP1087805A1 (en) Apparatus and methods for entering cavities of the body
WO2017133425A1 (zh) 右心辅助装置
CN111632217A (zh) 一种设有中间叶轮的心室循环辅助装置
WO2023179737A1 (zh) 一种血液泵系统
CN111097077B (zh) 一种体外磁驱动液悬浮轴流式血泵
CN219355087U (zh) 心室辅助泵血装置
CN219001739U (zh) 介入式血泵
WO2024037119A1 (zh) 具有出口导流结构的介入式血泵
US20230086096A1 (en) Intravascular blood pump
CN217138101U (zh) 一种血管内成像导管的传动轴及血管内成像导管
WO2024037105A1 (zh) 具有调弯功能的介入式血泵
WO2024103207A1 (zh) 心室辅助泵血用插管及心室辅助装置
JP2023542328A (ja) ポンプ補助血液循環のためのシステム及び方法
CN116474256A (zh) 介入式血泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23773982

Country of ref document: EP

Kind code of ref document: A1