WO2023179535A1 - 信息交互方法及相关装置 - Google Patents

信息交互方法及相关装置 Download PDF

Info

Publication number
WO2023179535A1
WO2023179535A1 PCT/CN2023/082489 CN2023082489W WO2023179535A1 WO 2023179535 A1 WO2023179535 A1 WO 2023179535A1 CN 2023082489 W CN2023082489 W CN 2023082489W WO 2023179535 A1 WO2023179535 A1 WO 2023179535A1
Authority
WO
WIPO (PCT)
Prior art keywords
ranging
message
narrowband communication
communication module
frame
Prior art date
Application number
PCT/CN2023/082489
Other languages
English (en)
French (fr)
Inventor
郭湛
王康
李卫华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210728173.XA external-priority patent/CN116847288A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023179535A1 publication Critical patent/WO2023179535A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services

Definitions

  • the present application relates to the field of wireless communication technology, and in particular, to an information interaction method and related devices.
  • Ultra-wideband (UWB) technology is a wireless carrier communication technology. It uses nanosecond-level non-sinusoidal narrow pulses to transmit data. By modulating the impulse pulses with very steep rise and fall times, it occupies a wide spectrum range, making the signal have a gigahertz (GHz) level. bandwidth. Because UWB pulses are relatively narrow and the radiation spectrum density is low, UWB has the advantages of strong multipath resolution, low power consumption, and strong confidentiality. It can still achieve ranging and positioning in complex multipath environments.
  • the existing UWB ranging process not only needs to establish a personal area network (PAN), but also needs to complete time division multiple address (TDMA) time slot allocation, and complete ranging and/or positioning functions.
  • PAN personal area network
  • TDMA time division multiple address
  • the device also requires a long working time and high power consumption.
  • Embodiments of the present application provide an information interaction method and related devices, which can reduce the complexity of the UWB module and reduce the power consumption of the UWB module.
  • the technical solution of this application is mainly used in ranging and positioning scenarios in the field of wireless communication sensing.
  • the first device in this application includes at least a narrowband communication module and optionally a UWB module, and the second device at least includes a UWB module and a narrowband communication module.
  • the UWB module can be understood as a device or chip that implements UWB technology; accordingly, the narrowband communication module can be understood as a device that implements narrowband communication technology (such as near field communication, Wi-Fi, Bluetooth, or Zigbee (Zigbee protocol), etc.) Or chips, etc.
  • the UWB module and the narrowband communication module can be different devices or chips.
  • the UWB module and the narrowband communication module can also be integrated on one device or chip. This application does not limit the use of the UWB module and the narrowband communication module in the device. implementation method.
  • this application provides an information interaction method.
  • the method includes: a narrowband communication module of a first device sends a first message for discovering a second device; and the narrowband communication module of the first device sends a message to the discovered second device.
  • the ranging parameter information includes various ranging parameters used in the ranging process, such as ranging roles, ranging time slot allocation, etc.
  • the narrowband communication module of the first device obtains the ranging parameter information configured by the upper layer, or obtains the ranging parameter information from its own UWB module.
  • the UWB module after the UWB module is awakened, it not only needs to set up a personal area network (PAN), but also needs to complete the ranging time slot (i.e. TDMA time slots), and complete ranging and/or positioning functions; thus resulting in long working hours, high power consumption, and high implementation complexity of the UWB module.
  • the first device in this application uses its own narrowband communication module (such as Wi-Fi, NFC, Bluetooth, or Zigbee (Zigbee protocol), etc.) to interact or negotiate ranging parameter information (such as ranging role, Zigbee protocol) with the second device. Ranging time slot allocation, etc.), in order to reduce the working time of the UWB module, reduce power consumption, and reduce the implementation complexity and cost of the UWB module.
  • narrowband communication module such as Wi-Fi, NFC, Bluetooth, or Zigbee (Zigbee protocol), etc.
  • ranging parameter information such as ranging role, Zigbee protocol
  • the second message is an extended broadcast frame
  • the ranging parameter information is carried in the data content field of the extended broadcast frame.
  • the extended broadcast frame also includes a data type field, which is used to indicate the type of broadcast data carried in the extended broadcast frame. This data type field is set to a reserved value, such as any value from 7 to 255, which is used to indicate that the extended broadcast frame carries ranging parameter information. It can be understood that at this time, the narrowband communication module of the first device sends the second message in a broadcast manner.
  • This application sends ranging parameter information through broadcasting, which can allow multiple devices to perform ranging at the same time, such as one device performing ranging with multiple devices, or multiple devices performing ranging with multiple devices, thereby improving ranging. efficiency.
  • the above ranging parameter information is carried in the payload of the second message.
  • the method further includes: the narrowband communication module of the first device receives an access request message sent by the narrowband communication module of the second device, and the access request The message is used to request to establish a connection with the narrowband communication module of the first device; the narrowband communication module of the first device sends an access response message, and the access response message is used to agree to the request of the access request message. It can be understood that after the narrowband communication module of the second device receives the access response message, the connection establishment between the narrowband communication module of the first device and the narrowband communication module of the second device is completed.
  • the first device and the second device of this application first establish a connection through their respective narrowband communication modules, and then negotiate to determine the ranging parameter information in the connected state. They can support one-to-one ranging. Through the negotiation between the first device and the second device The method of determining ranging parameter information is more conducive to both parties in ranging to obtain each other's information (such as capability information), and facilitates the implementation of subsequent ranging processes.
  • the above ranging parameter information is the content included in the payload information element (information element, IE) in the ranging control message (ranging control message, RCM).
  • the above ranging parameter information includes but is not limited to one or more of the following: ranging method, identification of the ranging device, ranging role of the ranging device, ranging mode, ranging frame format, ranging time Gap allocation, angle measurement requirements, or measurement value reporting methods.
  • the ranging methods include single-sided two way ranging (SS-TWR) and bilateral two-way ranging (double-sided two way ranging, DS-TWR).
  • the identification of the ranging device may refer to the medium access control (MAC) address or ID (identifier) of each device participating in the ranging.
  • the ranging role of a ranging device may refer to which devices among the devices participating in ranging are initiators and which devices are responders.
  • the ranging mode includes ranging between one device and one device (i.e., one-to-one ranging), one device and multiple devices (i.e., one-to-many ranging), or multiple devices and multiple devices (i.e., multiple ranging). One or more of multiple ranging).
  • Angle measurement requirements can be understood as: whether there is a need for positioning, or whether there is a need to measure relative angles (or relative orientations), or whether there is a need to measure the relative angle of the first device relative to the second device (or the second device relative to the first device).
  • the measurement value reporting method can refer to whether the measurement value (or ranging result) is transmitted from the initiator to the responder, or whether the responder transmits it to the initiator.
  • the method further includes: the UWB module of the first device receives the UWB of the second device The first ranging frame sent by the module; the UWB module of the first device sends the second ranging frame according to the ranging parameter information.
  • the UWB modules of both communicating parties use the ranging parameter information broadcast or negotiated by the narrowband communication module to perform ranging, which can reduce the working time of the UWB module and reduce power consumption; and can reduce Low UWB module implementation complexity and cost reduction.
  • the method further includes: the narrowband communication module of the first device sends the first ranging frame.
  • the third message carries a first ranging result
  • the first ranging result includes the receiving time of the first ranging frame and the sending time of the second ranging frame.
  • the method further includes: the UWB module of the first device transmits the first ranging result to the narrowband communication module of the first device.
  • the above-mentioned first ranging result also includes the reliability of the reception time of the first ranging frame.
  • the first ranging result also includes one or more of the following: first device The spatial positioning coordinates (x 1 , y 1 , z 1 ) or the relative positioning coordinates of the second device relative to the first device (x 21 , y 21 , z 21 ), the AOA horizontal angle of the second device relative to the first device , or the AOA pitch angle of the second device relative to the first device.
  • the method further includes: the narrowband communication module of the first device receives the second ranging frame.
  • the fourth message sent by the narrowband communication module, the fourth message carries the second ranging result, the second ranging result includes the receiving time of the second ranging frame and the sending time of the first ranging frame.
  • the above-mentioned second ranging result also includes the reliability of the reception time of the second ranging frame.
  • the second ranging result may also include one or more of the following: second The spatial positioning coordinates of the device (x 2 , y 2 , z 2 ) or the relative positioning coordinates of the first device relative to the second device (x 12 , y 12 , z 12 ), and the AOA level of the first device relative to the second device angle, or the AOA pitch angle of the first device relative to the second device.
  • this application provides an information interaction method, which method includes: the narrowband communication module of the second device receives a first message sent by the narrowband communication module of the first device, the first message being used to discover the second device; The narrowband communication module of the second device receives a second message sent by the narrowband communication module of the first device.
  • the second message carries ranging parameter information, and the ranging parameter information is used by the UWB module of the second device to perform ranging.
  • the second message is an extended broadcast frame
  • the ranging parameter information is carried in the data content field of the extended broadcast frame.
  • the extended broadcast frame also includes a data type field, which is used to indicate the type of broadcast data carried in the extended broadcast frame. This data type field is set to a reserved value, such as any value from 7 to 255, which is used to indicate that the extended broadcast frame carries ranging parameter information. It can be understood that at this time, the narrowband communication module of the first device sends the second message in a broadcast manner.
  • the above ranging parameter information is carried in the payload of the second message.
  • the method further includes: the narrowband communication module of the second device sends an access request message, where the access request message is used to request communication with the first device.
  • the narrowband communication module of one device establishes a connection; the narrowband communication module of the second device receives an access response message sent by the narrowband communication module of the first device, and the access response message is used to agree to the request of the access request message.
  • the above ranging parameter information is content included in the payload information element (IE) in the ranging control information (RCM).
  • the above ranging parameter information includes but is not limited to one or more of the following: ranging method, identification of the ranging device, ranging role of the ranging device, ranging mode, ranging frame format, ranging time Gap allocation, angle measurement requirements, or measurement value reporting methods.
  • the method further includes: the narrowband communication module of the second device sends a message to the first device.
  • Second equipment The UWB module transmits the ranging parameter information.
  • the method further includes: the UWB module of the second device based on the measurement The distance parameter information sends the first ranging frame; the UWB module of the second device receives the second ranging frame sent by the UWB module of the first device.
  • the method further includes: the narrowband communication module of the second device receives the first ranging frame.
  • the third message sent by the narrowband communication module, the third message carries the first ranging result, the first ranging result includes the receiving time of the first ranging frame and the sending time of the second ranging frame.
  • the above-mentioned first ranging result also includes the reliability of the reception time of the first ranging frame.
  • the first ranging result also includes one or more of the following: first device The spatial positioning coordinates (x 1 , y 1 , z 1 ) or the relative positioning coordinates of the second device relative to the first device (x 21 , y 21 , z 21 ), the AOA horizontal angle of the second device relative to the first device , or the AOA pitch angle of the second device relative to the first device.
  • the method further includes: the narrowband communication module of the second device sends the second ranging frame.
  • the fourth message carries a second ranging result
  • the second ranging result includes the receiving time of the second ranging frame and the sending time of the first ranging frame.
  • the method further includes: the UWB module of the second device transmits the second ranging result to the narrowband communication module of the second device.
  • the above-mentioned second ranging result also includes the reliability of the reception time of the second ranging frame.
  • the second ranging result may also include one or more of the following: second The spatial positioning coordinates of the device (x 2 , y 2 , z 2 ) or the relative positioning coordinates of the first device relative to the second device (x 12 , y 12 , z 12 ), and the AOA level of the first device relative to the second device angle, or the AOA pitch angle of the first device relative to the second device.
  • the present application provides a communication device, which is specifically a first device or a chip therein.
  • the communication device is configured to perform the method in the first aspect or any possible implementation of the first aspect.
  • the communication device includes means for performing a method in the first aspect or in any possible implementation of the first aspect.
  • the present application provides a communication device, which is specifically a second device or a chip therein.
  • the communication device is configured to perform the method in the second aspect or any possible implementation of the second aspect.
  • the communication device includes means for performing the method of the second aspect or any possible implementation of the second aspect.
  • the above-mentioned communication device may include a transceiver unit and a processing unit.
  • a transceiver unit and a processing unit For specific descriptions of the transceiver unit and the processing unit, reference may also be made to the device embodiments shown below.
  • the beneficial effects of the above third to fourth aspects reference can be made to the relevant descriptions of the foregoing first and second aspects, and will not be described again here.
  • the present application provides a communication device.
  • the communication device includes a narrowband communication circuit and a UWB circuit.
  • the narrowband communication circuit is used to perform the above-mentioned first aspect or any possible implementation of the above-mentioned first aspect by the first device.
  • the UWB circuit is used to perform the steps or functions performed by the UWB module of the first device in the above-mentioned first aspect or any possible implementation of the above-mentioned first aspect.
  • the narrowband communication circuit and the UWB circuit reference may also be made to the device embodiments shown below.
  • the present application provides a communication device.
  • the communication device includes a narrowband communication circuit and a UWB circuit.
  • the narrowband communication circuit is used to perform the above second aspect or any possible implementation of the above second aspect by the second device. of The steps or functions performed by the narrowband communication module; the UWB circuit is used to perform the steps or functions performed by the UWB module of the second device in the above second aspect or any possible implementation of the above second aspect.
  • the narrowband communication circuit and the UWB circuit reference may also be made to the device embodiments shown below.
  • this application provides a system on chip (SoC) chip.
  • SoC chip includes a transceiver, a processor, and an internal memory and an external memory coupled to the processor.
  • the transceiver is used to send and receive messages
  • the processor is used to execute program instructions stored in the internal memory and external memory, so that the SoC chip executes the above-mentioned first aspect, or any possible implementation of the above-mentioned first aspect, or the above-mentioned second aspect, or the above-mentioned second aspect. Any possible implementation of the method shown.
  • the SoC chip can be composed of chips, or can also include chips and other discrete devices.
  • embodiments of the present application provide a computer-readable storage medium.
  • the computer-readable storage medium is used to store a computer program. When it is run on a computer, it enables the above-mentioned first aspect or any possibility of the above-mentioned first aspect.
  • the implementation shown in the method is executed.
  • embodiments of the present application provide a computer-readable storage medium.
  • the computer-readable storage medium is used to store a computer program. When it is run on a computer, it enables the above-mentioned second aspect or any possibility of the above-mentioned second aspect.
  • the implementation shown in the method is executed.
  • inventions of the present application provide a computer program product.
  • the computer program product includes a computer program or computer code. When run on a computer, the computer program product enables the above-mentioned first aspect or any possible implementation of the above-mentioned first aspect. The method shown is executed.
  • embodiments of the present application provide a computer program product, which includes a computer program or computer code that, when run on a computer, enables the above-mentioned second aspect or any possible implementation of the above-mentioned second aspect. The method shown is executed.
  • embodiments of the present application provide a computer program.
  • the computer program When the computer program is run on a computer, the method shown in the above-mentioned first aspect or any possible implementation of the above-mentioned first aspect is executed.
  • embodiments of the present application provide a computer program.
  • the computer program When the computer program is run on a computer, the method shown in the above-mentioned second aspect or any possible implementation of the above-mentioned second aspect is executed.
  • inventions of the present application provide a communication system.
  • the communication system includes a first device and a second device.
  • the first device is configured to perform the above-mentioned first aspect or any possible implementation of the first aspect.
  • the second device is configured to perform the method shown in the above second aspect or any possible implementation of the second aspect.
  • the communicating parties i.e., the first device and the second device
  • their respective narrowband communication modules such as Wi-Fi, NFC, Bluetooth, or Zigbee (Zigbee protocol), etc.
  • ranging-related parameters i.e., the ranging parameter information in this application
  • the UWB modules of the communicating parties i.e., the first device and the second device
  • use the ranging parameter information determined by broadcast or negotiation to perform ranging thereby reducing the work of the UWB module time, reduce power consumption; and can reduce the implementation complexity of UWB modules and reduce costs.
  • Figure 1 is a schematic architectural diagram of a ranging and positioning system provided by an embodiment of the present application
  • Figure 2 is a schematic diagram of the ranging principle provided by the embodiment of the present application.
  • Figure 3 is a schematic diagram of the UWB ranging process provided by the embodiment of the present application.
  • FIG. 4 is a schematic flowchart of the information interaction method provided by the embodiment of the present application.
  • Figure 5 is a schematic diagram of the frame format of an extended broadcast frame provided by an embodiment of the present application.
  • Figure 6 is a schematic flow chart of narrowband-assisted broadband ranging provided by an embodiment of the present application.
  • Figure 7 is another schematic flow chart of narrowband-assisted broadband ranging provided by an embodiment of the present application.
  • Figure 8 is another schematic flow chart of narrowband-assisted broadband ranging provided by an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 10 is another schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a communication device 1000 provided by an embodiment of the present application.
  • Figure 12 is another schematic structural diagram of a communication device provided by an embodiment of the present application.
  • At least one (item) means one or more
  • plural means two or more
  • at least two (items) means two or three and Three or more.
  • “and/or” is used to describe the association of associated objects, indicating that there can be three kinds of relationships.
  • a and/or B can mean: only A exists, only B exists, and A and B exist simultaneously. situation, where A and B can be singular or plural.
  • the character “/” generally indicates that the related objects are in an “or” relationship.
  • At least one of the following” or similar expressions refers to any combination of these items.
  • at least one of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ".
  • the technical solution provided by this application can be applied to wireless personal area network (WPAN) based on UWB technology.
  • the method provided in this application can be applied to the Institute of Electrical and Electronics Engineers (IEEE) 802.15 series protocols, such as the 802.15.4a protocol, 802.15.4z protocol or 802.15.4ab protocol, or a future generation of UWB WPAN
  • IEEE Institute of Electrical and Electronics Engineers
  • the standard is medium, so I won’t list them all here.
  • the method provided by this application can also be applied to various communication systems, for example, it can be an Internet of things (IoT) system, a vehicle to X (V2X), a narrowband Internet of things (NB) -IoT) system, used in devices in the Internet of Vehicles, IoT nodes, sensors, etc.
  • IoT Internet of things
  • V2X vehicle to X
  • NB narrowband Internet of things
  • LTE frequency division duplex FDD
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX Global interoperability for microwave access
  • LTE long term evolution
  • 5G fifth generation
  • 6G sixth generation
  • Ultra-wideband (UWB) technology is a new type of wireless communication technology. It uses nanosecond-level non-sinusoidal narrow pulses to transmit data. By modulating the impulse pulses with very steep rise and fall times, it occupies a wide spectrum range, making the signal have a gigahertz (GHz) level. bandwidth.
  • GHz gigahertz
  • the UWB system has a very wide spectrum and a very low average power spectral density.
  • the UWB system has the advantages of strong multipath resolution, low power consumption, and strong confidentiality. It is conducive to coexistence with other systems, thereby improving spectrum utilization and system capacity. .
  • the transmit power of ultra-wideband (UWB) transmitters can usually be less than 1mW (milliwatt).
  • the interference caused by ultra-wideband (UWB) signals is relatively lower than that of narrowband It is equivalent to white noise for the system, which contributes to good coexistence between ultra-wideband and existing narrowband communications. Therefore, the UWB system can work simultaneously with the narrowband (NB) communication system without interfering with each other.
  • NB narrowband
  • WLAN wireless local area networks
  • Bluetooth BLUETOOTH
  • Zigbee Zigbee protocol
  • NFC near field communication
  • High Performance wireless LAN High Performance Radio LAN, HIPERLAN
  • WANs wide area networks
  • the method provided by this application can be implemented by a communication device in a wireless communication system.
  • the communication device may be a device involved in a UWB system.
  • the communication device may include, but is not limited to, a communication server, router, switch, bridge, computer, mobile phone, etc. that supports UWB technology and narrowband communication technology (including but not limited to Wi-Fi, Bluetooth, NFC, Zigbee).
  • the communication device may include user equipment (UE).
  • the user equipment may include various handheld devices that support UWB technology and narrowband communication technology, vehicle-mounted equipment (such as cars or components installed on cars, etc.), Wearable devices, Internet of Things (IoT) devices, computing devices or other processing devices connected to wireless modems, etc., are not listed here.
  • IoT Internet of Things
  • the communication device may include a central control point, such as a personal area network (PAN) or a PAN coordinator (coordinator).
  • PAN personal area network
  • PAN coordinator can be a mobile phone, a vehicle-mounted device, an anchor, a tag or a smart home, etc.
  • the communication device may include a chip, and the chip may be installed in a communication server, router, switch or terminal equipment, etc., which are not listed here. It can be understood that the above description about the communication device is applicable to the first device and the second device in this application.
  • the communication device may include a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • This hardware layer includes hardware such as central processing unit (CPU), memory management unit (MMU) and memory (also called main memory).
  • the operating system can be any one or more computer operating systems that implement business processing through processes, such as Linux operating system, Unix operating system, Android operating system, iOS operating system or windows operating system, etc.
  • This application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the present application do not specifically limit the specific structure of the execution subject of the method provided by the embodiment of the present application, as long as the program that records the code of the method provided by the embodiment of the present application can be run to provide according to the embodiment of the present application. method to communicate.
  • the technical solution provided by this application can be applied to wireless communication sensing ranging and positioning scenarios.
  • the two parties can authenticate and negotiate to establish a wireless communication connection according to relevant protocols.
  • the sender After establishing the wireless communication connection, the sender sends a wireless ranging frame to the receiving end, and the receiving end receives the wireless ranging frame. Then calculate the arrival time and send back to the sending end Reply to another ranging radio frame.
  • the time of flight ToF
  • transmission may refer to the exchange of information within a device or chip or device.
  • Figure 1 is a schematic architectural diagram of a ranging and positioning system provided by an embodiment of the present application.
  • the ranging and positioning system includes multiple devices (device 1 and device 2 in Figure 1), and each device includes at least a UWB module and a narrowband communication module.
  • positioning and/or ranging can be performed between the UWB modules of device 1 and device 2, and data can be transmitted between the narrowband communication modules of device 1 and device 2 through wireless links.
  • the UWB module can be understood as a device, chip or system that implements UWB technology; accordingly, the narrowband communication module can be understood as a device that implements narrowband communication technology (such as Wi-Fi, Bluetooth, or Zigbee (Zigbee protocol), etc.) devices, chips or systems, etc.
  • narrowband communication technology such as Wi-Fi, Bluetooth, or Zigbee (Zigbee protocol), etc.
  • the UWB module and the narrowband communication module can be different devices or chips.
  • the UWB module and the narrowband communication module can also be integrated on one device or chip.
  • the embodiments of the present application do not limit the UWB module and the narrowband communication module. implemented in the device.
  • the basic principle of ranging is: both parties calculate the distance between them by measuring the round-trip time of the message. Among them, the sending end sends a ranging frame carrying a ranging sequence, and the receiving end performs a correlation operation on the ranging sequence in the received ranging frame and the locally stored sequence, and obtains the arrival time (i.e., t2 and t4) based on the position of the correlation peak. ).
  • Figure 2 is a schematic diagram of the ranging principle provided by an embodiment of the present application.
  • the first device sends a ranging frame 1 at time t1, and the ranging frame 1 reaches the second device at time t2; the second device then sends a ranging frame 2 to the first device at time t3, and the ranging frame 1 reaches the second device at time t3.
  • Frame 2 arrives at the first device at time t4.
  • c represents the speed of light.
  • UWB systems generally rely on narrowband signals such as near field communication (NFC), Bluetooth, Zigbee, and Wi-Fi as drivers.
  • NFC near field communication
  • the UWB module is awakened in the scenario of user demand.
  • the awakened UWB module will form a personal area network. , allocate time division multiple address (TDMA) time slots, complete ranging and positioning functions, etc.
  • TDMA time division multiple address
  • a beacon (beacon) cycle can include three periods: beacon period, ranging management period (ranging management period), and ranging period (rangingperiod).
  • the ranging management period includes one or more ranging contention access periods (RCAP) and one or more ranging contention free periods (RCFP).
  • RCAP ranging contention access periods
  • RCFP ranging contention free periods
  • the ranging management period is also known as the competition and Non-contention time slot.
  • the UWB ranging process shown in Figure 3 includes the following contents:
  • the UWB module in the device wakes up through Bluetooth low energy (BLE) before starting. After waking up, the UWB module starts with default parameters, such as initialization channel number (channel number), synchronization code (preamble code), rate, etc.
  • BLE Bluetooth low energy
  • device 1 is defined as the coordinator and is responsible for sending beacon frames to realize time synchronization of UWB Personal Area Network (PAN) and broadcast of network parameters; after device 2 receives the beacon frame, press Need to join the personal area network of device 1 (coordinator).
  • Device 1 (coordinator) can also indicate whether a ranging management period (i.e., contention or non-contention time slot) is required through the beacon frame. If a ranging management period is required, other devices (such as device n) can access the personal area network established by device 1 during this time period.
  • a ranging management period i.e., contention or non-contention time slot
  • the ranging management period is not required, maintain the current personal area network and related devices in the personal area network.
  • the ranging contention free period (RCAP) allows devices to access the network (into a personal area network), and the ranging contention free period (RCFP) is used to allocate time slots required for interaction between devices.
  • the device network access and interaction with the designated device are completed.
  • Device 1 serves as controller and initiator at the same time, and device 2 serves as controlee and responder at the same time.
  • the controller is responsible for sending ranging control messages (RCM), which includes ranging roles (that is, which devices participating in ranging serve as initiators, and which devices participating in ranging serve as responders), ranging time slot allocation (Time slices are allocated based on TDMA) and other information.
  • RCM ranging control messages
  • ranging roles that is, which devices participating in ranging serve as initiators, and which devices participating in ranging serve as responders
  • ranging time slot allocation Time slices are allocated based on TDMA
  • the initiator initiates an initial ranging frame, and after receiving the initial ranging frame, the responder will feed back the ranging frame to the initiator.
  • Each device calculates the arrival time of the ranging frame (that is, the reception time), and then broadcasts the ranging results through UWB technology.
  • the ranging results include the arrival time of the ranging frame, and the ranging between devices is completed based on the ranging results. For example, calculate the distance between devices according to the above formulas (1-1), (1-2) and (1-3). For a new measuring wheel, repeat the above steps.
  • the frame format of the ranging control information can be found in the description of the prior art, and will not be described in detail here.
  • embodiments of the present application provide an information interaction method, which is applied in ranging and positioning scenarios in the field of wireless communication sensing.
  • This method uses the narrowband communication module in the device to complete the communication functions of the UWB module (such as ranging role negotiation, allocating TDMA time slots, etc.).
  • the UWB module is only responsible for the ranging function (such as sending and receiving ranging frames, or calculating the range of the ranging frame. Arrival time or distance between devices, etc.), thereby reducing the complexity of the UWB module and reducing the power consumption of the UWB module.
  • the communicating parties i.e., the first device and the second device
  • their respective narrowband communication modules such as Wi-Fi, NFC, Bluetooth, or Zigbee (Zigbee protocol), etc.
  • Interact or negotiate parameters related to ranging including the allocation of ranging time slots (referring to the aforementioned TDMA time slots)); this can reduce the working time of the UWB module and reduce power consumption; and can reduce the implementation complexity of the UWB module and reduce cost.
  • the UWB modules of both communication parties ie, the first device and the second device
  • each implementation mode/implementation method/implementation method in each embodiment if there is no special Special instructions and logical conflicts, the terminology and/or descriptions between different embodiments, and between various implementation modes/implementation methods/implementation methods in each embodiment are consistent and can be referenced to each other. Different embodiments, And the technical features in each implementation mode/implementation method/implementation method in each embodiment can be combined to form a new embodiment, implementation mode, implementation method, or implementation method according to their internal logical relationships.
  • the embodiments of the present application described below do not constitute a limitation on the protection scope of the present application.
  • the first device and the second device in this application may be different electronic devices.
  • the first device is the device 1 in the aforementioned Figure 1
  • the second device is the device 2 in the aforementioned Figure 1.
  • the first device at least includes a narrowband communication module, and optionally also includes a UWB module; the second device at least includes a UWB module and a narrowband communication module.
  • the first device and the second device may be located in different geographical locations, that is, the distance d between the first device and the second device may not be 0.
  • the first device and the second device both support the 802.15 series of standards, such as the 802.15.4a protocol, 802.15.4z protocol or 802.15.4ab protocol, or a certain future generation of UWB WPAN standards, etc.; the first device and the second device also support narrowband Communication standards, such as Wi-Fi standards (ie 802.11 series standards), NFC standards, Bluetooth standards, or Zigbee, etc.
  • 802.15 series of standards such as the 802.15.4a protocol, 802.15.4z protocol or 802.15.4ab protocol, or a certain future generation of UWB WPAN standards, etc.
  • narrowband Communication standards such as Wi-Fi standards (ie 802.11 series standards), NFC standards, Bluetooth standards, or Zigbee, etc.
  • the information interaction method includes but is not limited to the following steps:
  • the narrowband communication module of the first device sends a first message.
  • the first message is used to discover the second device.
  • the narrowband communication module of the second device receives the first message.
  • the narrowband communication module of the first device sends a second message to the discovered second device.
  • the second message carries ranging parameter information.
  • the ranging parameter information is used for the UWB module of the second device to perform ranging.
  • the narrowband communication module of the second device receives the second message.
  • the narrowband communication module of the first device broadcasts a first message, and the first message is used to discover the device.
  • the device that receives the first message (for the convenience of description, the device that receives the first message is recorded as the second device) can use its own narrowband communication module to send a request message, and the request message can carry the identifier of the device, Information such as address or serial number, the request message can be used to request the first device to broadcast more information.
  • the narrowband communication module of the first device After the narrowband communication module of the first device receives the request message, the first device can discover the second device based on the request message because the request message carries information such as the identifier, address, or serial number of the second device. Since there may be multiple devices that receive the first message, and multiple devices may have sent request messages, the narrowband communication module of the first device may receive multiple request messages, thereby discovering multiple devices.
  • the narrowband communication module of the first device can obtain the ranging parameter information configured by the upper layer, or the narrowband communication module of the first device obtains it from the UWB module of the first device. Ranging parameter information. Then, the narrowband communication module of the first device may broadcast a second message to the discovered one or more second devices. The second message carries the ranging parameter information, and the ranging parameter information includes various parameters used in the ranging process. Ranging parameters, such as ranging roles, ranging time slot allocation, etc. The ranging parameter information can be used by the UWB module of the second device to perform ranging.
  • the second message may be an extended broadcast frame, and the ranging parameter information may be carried in a data content field of the extended broadcast frame.
  • the narrowband communication module of the first device can pack and fill the obtained ranging parameter information into the data content field of the extended broadcast frame, and send it out in the form of broadcast.
  • the extended broadcast frame includes but is not limited to a data type field and a data content field. It also optionally includes one or more of the following fields: broadcast frame structure indication, local access layer identification type, peer connection Incoming layer identification type, local access layer identification, Parse the key identification, peer access layer identification, extended broadcast frame resource configuration information, or data length.
  • the data content field carries ranging parameter information, for example, the content included in the payload information element (informationelement, IE) in the ranging control information (RCM) (that is, the ranging parameter information in this application) is carried in in the data content field of the extended broadcast frame.
  • IE payload information element
  • RCM ranging control information
  • the data type field is used to indicate the type of broadcast data carried by the extended broadcast frame.
  • the value of the data type field is 0, it means that the data content field carries sending resource configuration information.
  • the value of the data type field is 1, it means that the data content field carries the transmission instruction information of not starting the system management frame.
  • the value of the data type field is 2, it means that the data content field carries basic access information for initiating system management frames.
  • the value of the data type field is 3, it means that the data content field carries access request information.
  • the value of the data type field is 4, it means that the data content field carries access response information.
  • the value of the data type field is 5, it means that the data content field carries startup system management frame information.
  • the value of the data type field is 6, it means that the data content field carries non-connection broadcast link information.
  • the data type field is set to a reserved value, such as the data type field is set to any value from 7 to 255 (including 7 and 255), it is used to indicate that the data type field of the extended broadcast frame carries ranging information.
  • Information such as ranging parameter information in this application. It should be understood that the values and meanings of other fields in the extended broadcast frame (referring to fields except the data type field and the data content field) refer to the description of the prior art, and will not be described in detail here.
  • each second device can parse the extended broadcast frame to obtain the ranging parameter information therein.
  • the narrowband communication module of the second device parses the extended broadcast frame.
  • the data type field is set to a value in 7-255. , so it can be known that the subsequent data content field carries ranging-related information (such as ranging parameter information in this application).
  • the narrowband communication module of the second device continues to parse, and when the data length field is parsed, the length of the subsequent data content field can be learned; however, because the data content field carries ranging parameter information, the narrowband communication module of the second device may not be able to Correctly parse the data content field, so the narrowband communication module of the second device can transmit the content after the data length field that meets the length indicated by the data length field (that is, the data content field) to the UWB module of the second device. The UWB module then parses the data content field to obtain the ranging parameter information carried in the data content field.
  • the narrowband communication module of the second device parses the extended broadcast frame, which can be understood as: the second device parses the extended broadcast frame according to the narrowband communication standard.
  • the UWB module of the second device parses the data content field, which can be understood as: the second device parses the data content field according to the UWB standard.
  • the second device uses the narrowband communication standard to parse fields before the data content field of the extended broadcast frame, and the second device uses the UWB standard to parse the data content field of the extended broadcast frame.
  • the above-mentioned first message and the above-mentioned second message may be one message, that is to say, the above-mentioned ranging parameter information may also be carried in the message used to discover the device.
  • the narrowband communication module of the first device can broadcast a message, which is used to discover the device and also carries ranging parameter information.
  • the embodiment of the present application sends ranging parameter information by broadcasting, which can allow multiple devices to perform ranging at the same time, such as one device performing ranging with multiple devices, or multiple devices performing ranging with multiple devices, thereby improving the Ranging efficiency.
  • the narrowband communication module of the first device broadcasts a first message, and the first message is used to discover the device.
  • the second device can use its own narrowband communication module to send an access request message, The access request message is used to request to establish a connection with the narrowband communication module of the first device.
  • the narrowband communication module of the first device may send an access response message.
  • the access response message is used to agree to the access request message.
  • the narrowband communication module of the second device receives the access response message, the narrowband communication module of the first device and the narrowband communication module of the second device The connection between the communication modules is established.
  • the first device and the second device can negotiate and determine various ranging parameters used in the ranging process through their respective narrowband communication modules, that is, negotiate the ranging parameter information.
  • the narrowband communication module of the first device sends a second message to the second device.
  • the second message carries ranging parameter information determined by the first device.
  • the ranging parameter information includes various parameters used in the ranging process.
  • Ranging parameters such as ranging roles, ranging time slot allocation, etc.; if the second device agrees to use the ranging parameter information carried in the second message for ranging, the narrowband communication module of the second device can reply with a confirmation message, It is used to confirm the ranging parameter information carried in the second message, or the second device does not need to reply to the confirmation message, and the UWB module of the second device performs ranging according to the ranging parameter information carried in the second message.
  • the narrowband communication module of the second device can send a message i carrying the ranging parameter information determined by the second device; if the first device Agreeing to use the ranging parameter information carried in message i for ranging, the narrowband communication module of the first device can reply with a confirmation message to confirm the ranging parameter information carried in message i, or the first device does not need to reply with a confirmation message message, and the UWB module of the first device performs ranging according to the ranging parameter information carried in the message i. If the first device does not agree to use the ranging parameter information carried in message i for ranging, the negotiation continues.
  • the above ranging parameter information may be carried in the second message or the payload of message i.
  • the ranging parameter information negotiated and determined by the first device and the second device through their respective narrowband communication modules can be used by the UWB module of the first device and the UWB module of the second device to perform ranging. Specifically, how to perform measurement based on the ranging parameter information? distance, see description below.
  • the above ranging parameter information can be configured by the upper layer or generated by the UWB module.
  • the first device and the second device in the embodiment of the present application first establish a connection through their respective narrowband communication modules, and then negotiate to determine the ranging parameter information in the connected state. They can support one-to-one ranging. Through the first device and the second device The device negotiation method determines the ranging parameter information, which is more conducive for both parties to obtain each other's information (such as capability information), and facilitates the implementation of the subsequent ranging process.
  • the ranging parameter information in the above two implementations may be the content included in the payload information element (information element, IE) in the ranging control information (RCM).
  • the ranging parameter information includes but is not limited to one or more of the following: ranging method, identification of the ranging device, ranging role of the ranging device, ranging mode, ranging frame format, ranging time Gap allocation, angle measurement requirements, or measurement value reporting methods.
  • the ranging methods include single-sided two way ranging (single-sided two way ranging, SS-TWR) and bilateral two-way ranging (double-sided two way ranging, DS-TWR).
  • the identification of the ranging device may refer to the medium access control (MAC) address or ID (identifier) of each device participating in the ranging.
  • the ranging role of a ranging device can refer to which devices among the devices participating in ranging are initiators and which devices are responders.
  • the ranging mode includes ranging between one device and one device (i.e., one-to-one ranging), one device and multiple devices (i.e., one-to-many ranging), or multiple devices and multiple devices (i.e., multiple ranging). One or more of multiple ranging).
  • Angle measurement requirements can be understood as: whether there is a need for positioning, or whether there is a need to measure relative angles (or relative orientations), or whether there is a need to measure the relative angle of the first device relative to the second device (or the second device relative to the first device).
  • the measurement value reporting method can refer to whether the measurement value (or ranging result) is transmitted from the initiator to the responder, or whether the responder transmits it to the initiator.
  • the ranging mode included in the ranging parameter information is one-to-one ranging;
  • the identification of the ranging device includes the identification of the first device and the identification of the second device. identification, that is to say, both the first device and the second device participate in ranging.
  • the first device may not participate in ranging, but Ranging is performed between multiple second devices; at this time, the first device does not need a UWB module, and the ranging device includes the second device and does not include the first device.
  • the first device can also participate in ranging.
  • the first device also includes a UWB module, and the ranging device includes the first device and the second device.
  • the ranging mode included in the ranging parameter information may be one-to-one ranging, one-to-many ranging, or many-to-many ranging.
  • the ranging process described below takes one-to-one ranging between the first device and the second device as an example.
  • the ranging mode in the ranging parameter information is one-to-one ranging
  • the identity of the ranging device includes the identity of the first device and the identity of the second device.
  • the above information interaction method also includes one or more of the following steps:
  • the UWB module of the second device sends the first ranging frame according to the ranging parameter information.
  • the UWB module of the first device receives the first ranging frame.
  • the UWB module of the first device sends a second ranging frame according to the ranging parameter information.
  • the UWB module of the second device receives the second ranging frame.
  • the UWB module of the first device and the UWB module of the second device perform ranging according to the SS-TWR method.
  • the ranging method in the above ranging parameter information is DS-TWR
  • the UWB module of the first device and the UWB module of the second device perform ranging according to the DS-TWR method.
  • the DS-TWR method please refer to the description of the prior art. I won’t go into detail here.
  • the embodiment of the present application takes the ranging method SS-TWR in the above ranging parameter information as an example for description.
  • the ranging method in the above ranging parameter information is SS-TWR, and the ranging mode is one-to-one ranging.
  • the ranging role of the ranging device in the above ranging parameter information is that the second device is the initiator and the first device is the responder
  • the UWB module of the second device will be assigned or negotiated in the ranging time slot (that is, a certain TDMA time slot).
  • the first ranging frame is sent on the first ranging frame, and the frame format of the first ranging frame is the same as the ranging frame format in the ranging parameter information.
  • the UWB module of the first device receives the first ranging frame.
  • the UWB module of the first device After the UWB module of the first device receives the first ranging frame, on the one hand, the UWB module of the first device sends the second ranging frame on the assigned or negotiated ranging time slot (that is, a certain TDMA time slot).
  • the frame format of the second ranging frame is the same as the ranging frame format in the ranging parameter information.
  • the UWB module of the first device can parse the first ranging frame according to the ranging frame format in the ranging parameter information to obtain the ranging sequence; and the first device can also analyze the ranging frame. The sequence is correlated with the locally stored ranging sequence to obtain the arrival time of the first ranging frame (that is, the reception time).
  • the relevant computing operations can be performed in either the UWB module or the narrowband communication module, and the embodiments of the present application do not limit this.
  • the angle measurement requirement in the ranging parameter information is a positioning requirement, that is, a relative angle (or relative orientation) needs to be measured
  • the first device can measure the first ranging frame.
  • the AOA horizontal angle and AOA pitch angle of the second device relative to the first device and can obtain the spatial positioning coordinates of the first device (x 1 , y 1 , z 1 ) or the relative positioning coordinates of the second device relative to the first device ( x 21 , y 21 , z 21 ).
  • measuring the AOA horizontal angle and AOA pitch angle of the second device relative to the first device obtaining the spatial positioning coordinates (x 1 , y 1 , z 1 ) of the first device or obtaining the relative position of the second device to the first device
  • the operation of the relative positioning coordinates (x 21 , y 21 , z 21 ) can be performed either in the UWB module or in the narrowband communication module, and the embodiment of the present application does not limit this.
  • the UWB module of the second device can parse the second ranging frame according to the ranging frame format in the ranging parameter information to obtain the ranging sequence; and the second device
  • the ranging sequence can also be correlated with the locally stored ranging sequence to obtain the arrival time (that is, the reception time) of the second ranging frame. If the angle measurement requirement in the ranging parameter information is a positioning requirement, that is, a relative angle (or relative orientation) needs to be measured, then after the UWB module of the second device receives the second ranging frame, the second device can measure the second ranging frame.
  • the AOA of one device relative to the second device Horizontal angle and AOA pitch angle, and can obtain the spatial positioning coordinates of the second device (x 2 , y 2 , z 2 ) or the relative positioning coordinates of the first device relative to the second device (x 12 , y 12 , z 12 ) .
  • the ranging method in the above ranging parameter information is SS-TWR, and the ranging mode is one-to-one ranging.
  • the ranging role of the ranging device in the above ranging parameter information is that the first device is the initiator and the second device is the responder
  • the difference from the aforementioned second device being the initiator and the first device being the responder is: the UWB module of the first device
  • the second ranging frame is first sent on the allocated or negotiated ranging time slot (i.e. a certain TDMA time slot), and the UWB module of the second device then replies to the first ranging frame on the allocated or negotiated ranging time slot. frame.
  • the initiator sends a ranging frame first
  • the responder replies with another ranging frame.
  • the difference between the first device being the initiator and the second device being the responder and the second device being the initiator and the first device being the responder lies in the execution order of step S103 and step S104.
  • the execution sequence of step S103 is before step S104
  • the execution sequence of step S103 is before step S104. after.
  • the first device and the second device may report the measurement values in the ranging parameter information.
  • the ranging results are aggregated into one device for processing, and the direct distance between the first device and the second device is obtained.
  • the measurement value reporting method is passed from the responder to the initiator as an example.
  • the first device can summarize the ranging results to the second device, and the second device determines the first device based on the summarized ranging results.
  • the narrowband communication module of the first device may send a third message, the third message carrying the first ranging result, the first ranging result including the reception time of the above-mentioned first ranging frame ( That is, the arrival time) and the sending time of the above-mentioned second ranging frame are obtained through correlation operations.
  • the second device may receive the third message according to the receiving time of the first ranging frame, the sending time of the first ranging frame, the sending time of the second ranging frame and the second ranging frame.
  • the distance between the first device and the second device is calculated according to the above formula (1-1) to the above formula (1-3).
  • the first ranging result may also include the reliability of the reception time of the first ranging frame.
  • the reliability of the reception time of the first ranging frame can be used to determine whether the reception time is valid and credible; when the reception time of the first ranging frame is valid or credible, the second device then uses the first The distance between the first device and the second device is calculated based on the receiving time of the ranging frame, the sending time of the first ranging frame, the sending time of the second ranging frame, and the receiving time of the second ranging frame. If the reception time of the first ranging frame is invalid or unreliable, the first device and the second device can re-execute the ranging process, such as re-exchanging ranging frames, etc.; of course, they can also re-broadcast or negotiate the ranging parameter information and then Re-interaction of ranging frames is not limited in the embodiment of the present application.
  • the first ranging result may also include one or more of the following: first The spatial positioning coordinates of the device (x 1 , y 1 , z 1 ) or the relative positioning coordinates of the second device relative to the first device (x 21 , y 21 , z 21 ), and the AOA level of the second device relative to the first device angle, or the AOA pitch angle of the second device relative to the first device.
  • the narrowband communication module of the second device can also use the spatial positioning coordinates (x 1 , y 1 , z 1 ) of the first device or the relative positioning coordinates (x 21 , y 21 , z 21 ), the spatial positioning coordinates of the second device (x 2 , y 2 , z 2 ), and the AOA horizontal angle and AOA pitch angle of the second device relative to the first device, determine the first device and The relative position of the second device.
  • the UWB module of the first device needs to Transmitting all or part of the information included in the first ranging result to the narrowband communication module of the first device. For example, it is assumed that the reception time of the first ranging frame and the sending time of the second ranging frame are determined in the UWB module of the first device, and other information included in the first ranging result is determined in the first device. determined in the narrowband communication module, then the UWB module of the first device needs to transmit the reception time of the first ranging frame and the sending time of the second ranging frame to the narrowband communication module of the first device.
  • the second device summarizes the ranging results to the first device, and the first device determines the second device based on the summarized ranging results.
  • the narrowband communication module of the second device may send a fourth message, the fourth message carrying the second ranging result, the second ranging result including the reception time of the above-mentioned second ranging frame (that is, through the correlation The arithmetic operation obtains the arrival time) and the sending time of the above-mentioned first ranging frame.
  • the first ranging frame can be received according to the receiving time of the first ranging frame, the sending time of the first ranging frame, the sending time of the second ranging frame and the second ranging frame.
  • the distance between the first device and the second device is calculated according to the above formula (1-1) to the above formula (1-3).
  • the first ranging result may also include the reliability of the reception time of the first ranging frame.
  • the second ranging result may also include one or more of the following: second The spatial positioning coordinates of the device (x 2 , y 2 , z 2 ) or the relative positioning coordinates of the first device relative to the second device (x 12 , y 12 , z 12 ), and the AOA level of the first device relative to the second device angle, or the AOA pitch angle of the first device relative to the second device.
  • the narrowband communication module of the first device can also use the spatial positioning coordinates of the second device (x 2 , y 2 , z 2 ) or the relative positioning coordinates of the first device relative to the second device (x 12 , y 12 , z 12 ), the spatial positioning coordinates of the first device (x 1 , y 1 , z 1 ), and the AOA horizontal angle and AOA pitch angle of the first device relative to the second device, determine the first device and The relative position of the second device.
  • the UWB module of the second device needs to Transmitting all or part of the information included in the second ranging result to the narrowband communication module of the second device.
  • the narrowband communication module in the device when the narrowband communication module in the device is working, its UWB module can enter the sleep state. On the contrary, when the UWB module in the device is working, its narrowband communication module can enter the sleep state, so that Save power consumption.
  • the narrowband communication modules of the first device and the second device are working, then the UWB modules of the first device and the second device can enter the sleep state to save power consumption.
  • the UWB module can be awakened through the narrowband communication module. For example, before step S103 and step S104, the first device and the second device respectively wake up their own UWB modules.
  • the narrowband communication modules of the first device and the second device can enter a sleep state, thereby further saving power consumption.
  • the narrowband communication module is awakened. It can be seen from this that the embodiments of the present application further save power consumption by putting another module in the device (narrowband communication module or UWB module) to sleep while one module in the device (UWB module or narrowband communication module) is working. .
  • the communication parties in the embodiment of the present application use their respective narrowband communication modules (such as Wi-Fi, NFC, Bluetooth, or Zigbee (Zigbee protocol), etc.) to broadcast or negotiate parameters related to ranging. (i.e., the ranging parameter information in this application), so that the UWB modules of the communicating parties (i.e., the first device and the second device) use the ranging parameter information determined by broadcast or negotiation to perform ranging; thereby reducing the working time of the UWB module , reduce power consumption; and can reduce the implementation complexity and cost of UWB modules.
  • narrowband communication modules such as Wi-Fi, NFC, Bluetooth, or Zigbee (Zigbee protocol), etc.
  • the following examples take one-to-one ranging between two devices as an example.
  • the first device includes a narrowband (NB) communication module and a UWB module
  • the second device also includes a UWB module and a narrowband (NB) communication module.
  • NB narrowband
  • Example 1 Refer to Figure 6, which is a schematic flowchart of narrowband-assisted broadband ranging provided by an embodiment of the present application.
  • the process of narrowband-assisted broadband ranging includes but is not limited to the following: (1) Establish a link between the narrowband communication modules (represented by NB in Figure 6) of the first device and the second device, and pass The parameters used in the successful link negotiation ranging process (that is, the ranging parameter information in this application are negotiated), such as ranging roles, ranging time slots, ranging methods, ranging frame formats, etc.
  • the ranging parameter information please refer to the previous description and will not be repeated here.
  • the narrowband communication modules of the first device and the second device respectively wake up their respective UWB modules (represented by UWB in Figure 6), start work, and inform their respective UWB modules of the ranging parameter information negotiated by the narrowband communication module, Get ready for ranging.
  • the UWB module of the first device broadcasts the ranging frame to the second device in the allocated ranging time slot according to the ranging parameter information, and starts ranging. It can be understood that for the specific ranging process, please refer to the relevant descriptions in step S103 and step S104 above, which will not be described again here.
  • the narrowband communication module uses the previously established link to broadcast the ranging results and notify the required devices. For the process of broadcasting the ranging results, reference may be made to the relevant descriptions in steps S103 and S104 above, which will not be described again here.
  • the embodiment of this application completes the establishment of the personal area network, negotiation of ranging parameters, allocation of ranging time slots, etc. through the narrowband communication modules in the two devices, and the UWB modules in the two devices are responsible for executing the ranging process (here
  • the ranging process includes the broadcast of ranging frames, but does not include the interaction of ranging control information RCM), which can reduce the working time of the UWB module, achieve the purpose of reducing power consumption and reducing complexity.
  • Example 2 Refer to Figure 7, which is another schematic flowchart of narrowband-assisted broadband ranging provided by an embodiment of the present application.
  • the narrowband communication modules (indicated by NB in Figure 7) of the first device and the second device adopt Bluetooth communication as an example.
  • the process of narrowband-assisted broadband ranging includes but is not limited to the following: (1) The narrowband communication module of the first device sends a broadcast frame for device discovery; the narrowband communication module of the second device initiates a scan, and the scan nearby Bluetooth devices. (2) The narrowband communication module of the first device packs and fills the ranging parameter information into the data content field of the extended broadcast frame and sends it out in broadcast form.
  • the narrowband communication module of the second device scans the extended broadcast frame and parses the ranging parameter information, it completes the creation of the ranging event based on the ranging parameter information.
  • the first device and the second device respectively wake up their respective UWB modules (represented by UWB in Figure 7), and send the ranging parameter information to their respective UWB modules to prepare for ranging.
  • the UWB modules of the first device and the second device respectively complete ranging according to the ranging parameter information.
  • the first device and the second device can wake up their own narrowband communication modules respectively.
  • the narrowband communication module of the second device sends a ranging result message frame (i.e., the fourth message in the previous article),
  • the ranging result message frame includes the second ranging result;
  • the narrowband communication module of the first device starts to receive the ranging result message frame, thereby summarizing the ranging results to the first device (of course, the ranging results can also be summarized to the second device); complete the distance calculation between the first device and the second device.
  • the embodiment of this application uses the broadcast method of the narrowband communication module to inform the ranging parties of the parameters used in the ranging process (i.e., ranging parameter information), complete the establishment of the personal area network, etc.; in this way, the working time of the UWB module is reduced. , reduce power consumption and improve ranging efficiency; at the same time, it can reduce the implementation complexity of the UWB module and reduce costs.
  • the parameters used in the ranging process i.e., ranging parameter information
  • Example 3 Refer to FIG. 8 , which is another schematic flowchart of narrowband-assisted broadband ranging provided by an embodiment of the present application.
  • the process of narrowband-assisted broadband ranging includes but is not limited to the following: (1) The narrowband communication module of the first device (represented by NB in Figure 8) sends a broadcast frame for discovering the device; the second device The narrowband communication module initiates a scan for nearby devices. (2) The narrowband communication module of the second device sends an access request message to request communication with the first device. The narrowband communication module establishes a connection; the narrowband communication module of the first device sends an access response message to agree to the access request message.
  • the narrowband communication modules of the first device and the second device negotiate the ranging parameter information.
  • the first device and the second device wake up their respective UWB modules (represented by UWB in Figure 8), and send the negotiated ranging parameter information to their respective UWB modules to prepare for ranging.
  • the UWB modules of the first device and the second device respectively complete ranging according to the ranging parameter information determined through negotiation.
  • the first device and the second device can wake up their own narrowband communication modules respectively.
  • the UWB modules of the first device and the second device report the measurement results to their respective narrowband communication modules;
  • the narrowband communication module of the second device sends a ranging result message frame (i.e., the fourth message mentioned above).
  • the ranging result message frame includes the second ranging result; the narrowband communication module of the first device starts receiving the ranging result message. frame, thereby summarizing the ranging results to the first device (of course, the ranging results can also be summarized to the second device); completing the ranging calculation between the first device and the second device.
  • the two devices in the embodiment of this application establish a connection through the narrowband communication module to complete the establishment of the personal area network, negotiation of ranging parameters, and allocation of ranging time slots; in this way, the working time of the UWB module is reduced, and Power consumption improves ranging efficiency; at the same time, it can reduce the implementation complexity of UWB modules and reduce costs.
  • n is an integer greater than or equal to 2 devices to meet the ranging requirements between different devices.
  • the above content elaborates the method provided by the present application in detail.
  • the embodiments of the present application also provide corresponding devices or equipment.
  • This application divides the first device and the second device into functional modules according to the above method embodiment.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in this application is schematic and is only a logical function division. In actual implementation, there may be other division methods.
  • the first device and the second device according to the embodiment of the present application will be described in detail below with reference to FIGS. 9 to 12 .
  • Figure 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application. As shown in FIG. 9 , the communication device includes a transceiver unit 10 and a processing unit 20 .
  • the communication device may be the first device shown above. That is, the communication device shown in Figure 9 can be used to perform the steps or functions performed by the first device in the above method embodiment.
  • the transceiver unit 10 is configured to send a first message, the first message is used to discover a second device; the transceiver unit 10 is also configured to send a second message to the discovered second device.
  • the processing unit 20 is configured to generate a first message and a second message, and to send the first message and the second message through or control the transceiver unit 10 .
  • the transceiver unit 10 is also configured to receive access request messages and send access response messages.
  • the processing unit 20 is also configured to generate an access response message, and send the access response message through or control the transceiver unit 10.
  • the processing unit 20 is also used to obtain ranging parameter information.
  • the transceiver unit 10 is also configured to receive the first ranging frame and send the second ranging frame according to the ranging parameter information.
  • the processing unit 20 is also configured to generate a second ranging frame according to the ranging parameter information, and to send the second ranging frame through or control the transceiver unit 10 .
  • the transceiver unit 10 is also used to send the third message.
  • the processing unit 20 is also configured to generate a third message, and send the third message through or control the transceiver unit 10 .
  • the transceiver unit 10 is also used to receive the fourth message.
  • transceiver unit and the processing unit shown in the embodiments of the present application are only examples.
  • specific functions or steps performed by the transceiver unit and the processing unit reference can be made to the above method embodiments (as shown in Figure 4), which are not included here. Elaborate further.
  • the communication device may be the second device shown above. That is, the communication device shown in Figure 9 can be used to perform the steps or functions performed by the second device in the above method embodiment.
  • the transceiver unit 10 is used for receiving the first message and receiving the second message.
  • the transceiver unit 10 is also configured to send access request messages and receive access response messages.
  • the processing unit 20 is configured to generate an access request message, and send the access request message through or control the transceiver unit 10.
  • the transceiver unit 10 is also configured to send a first ranging frame according to the ranging parameter information, and receive a second ranging frame.
  • the processing unit 20 is also configured to generate a first ranging frame according to the ranging parameter information, and to send the first ranging frame through or control the transceiver unit 10 .
  • the transceiver unit 10 is also used to receive the third message.
  • the transceiver unit 10 is also used to send the fourth message.
  • the processing unit 20 is also configured to generate a fourth message, and send the fourth message through or control the transceiver unit 10 .
  • transceiver unit and the processing unit shown in the embodiments of the present application are only examples.
  • specific functions or steps performed by the transceiver unit and the processing unit reference can be made to the above method embodiments (as shown in Figure 4), which are not included here. Elaborate further.
  • the first device and the second device in the embodiment of the present application are introduced above.
  • the possible product forms of the first device and the second device are introduced below. It should be understood that any form of product that has the function of the first device described in Figure 9 above, or any form of product that has the function of the second device described in Figure 9 above, falls within the embodiments of the present application. scope of protection. It should also be understood that the following description is only an example, and does not limit the product forms of the first device and the second device in the embodiments of the present application to this.
  • Figure 10 is another schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device may be the first device or the second device, or a chip therein.
  • Figure 10 shows only the main components of the communication device.
  • the narrowband communication circuit 100 and the UWB circuit 200 can be connected through a bus.
  • the narrowband communication circuit 100 can be used to perform the steps or functions of the narrowband communication module in the foregoing method embodiments, and the UWB circuit 200 can be used to perform the steps or functions of the UWB module in the foregoing method embodiments.
  • the communication device shown in Figure 10 can be used to perform the functions of the first device in the foregoing method embodiments.
  • the narrowband communication circuit 100 is used to send a first message, the first message is used to discover a second device; the narrowband communication circuit
  • the path 100 is also used to send a second message to the discovered second device, where the second message carries ranging parameter information, and the ranging parameter information is used for the UWB module of the second device to perform ranging.
  • the narrowband communication circuit 100 is also configured to receive an access request message and send an access response message.
  • the access request message is used to request to establish a connection with the narrowband communication module of the first device;
  • the incoming response message is used to agree to the access request message.
  • the narrowband communication circuit 100 is also used to obtain ranging parameter information from the UWB circuit 200 .
  • the UWB circuit 200 is configured to receive a first ranging frame and send a second ranging frame according to the ranging parameter information.
  • the narrowband communication circuit 100 is also configured to send a third message, where the third message carries a first ranging result, where the first ranging result includes the reception time of the first ranging frame and The sending time of the second ranging frame.
  • the UWB circuit 200 is also used to transmit the first ranging result to the narrowband communication module of the first device.
  • the narrowband communication circuit 100 is also configured to receive a fourth message, the fourth message carries a second ranging result, the second ranging result includes the reception time and the second ranging frame. The sending time of the first ranging frame.
  • the communication device shown in Figure 10 can be used to perform the functions of the second device in the foregoing method embodiments.
  • the narrowband communication circuit 100 is configured to receive a first message and a second message.
  • the first message is used to discover the second device.
  • the second message carries ranging parameter information.
  • the ranging parameter information is used for the second device.
  • the device's ultra-wideband UWB module performs ranging.
  • the narrowband communication circuit 100 is also configured to send an access request message and receive an access response message.
  • the access request message is used to request to establish a connection with the narrowband communication module of the first device;
  • the incoming response message is used to agree to the access request message.
  • the narrowband communication circuit 100 is also used to transmit the ranging parameter information to the UWB circuit 200 .
  • the UWB circuit 200 is configured to send a first ranging frame according to the ranging parameter information, and receive a second ranging frame.
  • the narrowband communication circuit 100 is further configured to receive a third message, where the third message carries a first ranging result, where the first ranging result includes the reception time of the first ranging frame and The sending time of the second ranging frame.
  • the narrowband communication circuit 100 is also configured to send a fourth message, where the fourth message carries a second ranging result, where the second ranging result includes the reception time and The sending time of the first ranging frame.
  • the UWB circuit 200 is also used to transmit the second ranging result to the narrowband communication circuit 100 .
  • the processing unit 20 may be one or more processors, and the transceiver unit 10 may be a transceiver, or the transceiver unit 10 may also be a sending unit and a receiving unit.
  • the sending unit can be a transmitter
  • the receiving unit can be a receiver.
  • the sending unit and the receiving unit are integrated into one device, such as a transceiver. device.
  • the processor and the transceiver may be coupled, etc., and the embodiment of the present application does not limit the connection method between the processor and the transceiver.
  • the process of sending messages in the above method can be understood as a process of outputting the above message by the processor.
  • the processor When outputting the above message, the processor outputs the above message to the transceiver for transmission by the transceiver. After the above message is output by the processor, it may also need to undergo other processing before reaching the transceiver.
  • the process of receiving messages (such as receiving the first message, the second message, the third message, the fourth message, etc.) in the above method can be understood as the process of the processor receiving the input message.
  • the transceiver receives the above message and enters it into the processor. Furthermore, after the transceiver receives the above message, the above message may need to undergo other processing before being input to the processor.
  • Figure 11 is a schematic structural diagram of a communication device 1000 provided by an embodiment of the present application.
  • the communication device 1000 may be a first device or a second device, or a chip therein.
  • Figure 11 shows only the main components of the communication device 1000.
  • the communication device may further include a memory 1003 and an input and output device (not shown in the figure).
  • the processor 1001 is mainly used to process communication protocols and communication data, control the entire communication device, execute software programs, and process data of the software programs.
  • Memory 1003 is mainly used to store software programs and data.
  • the transceiver 1002 may include a control circuit and an antenna.
  • the control circuit is mainly used for conversion of baseband signals and radio frequency signals and processing of radio frequency signals.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices, such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users.
  • the processor 1001 can read the software program in the memory 1003, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor 1001 performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and then sends the radio frequency signal out in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 1001.
  • the processor 1001 converts the baseband signal into data and performs processing on the data. deal with.
  • the radio frequency circuit and antenna can be arranged independently of the processor that performs baseband processing.
  • the radio frequency circuit and antenna can be arranged remotely and independently of the communication device. .
  • the processor 1001, the transceiver 1002, and the memory 1003 can be connected through a communication bus.
  • the communication device 1000 can be used to perform the functions of the first device in the aforementioned method embodiment: the processor 1001 can be used to generate the first message sent in step S101, the second message sent in step S102 and the steps The second ranging frame sent in S104, and/or other processes for performing the technology described herein; the transceiver 1002 can be used to perform steps S101, step S102, step S104, etc. in Figure 4, and/or for Other processes for the techniques described herein.
  • the communication device 1000 can be used to perform the functions of the second device in the aforementioned method embodiment: the processor 1001 can be used to generate the first ranging frame sent in step S103 in Figure 4, and/or to perform Other processes for the techniques described herein; the transceiver 1002 may be used to perform step S103 in FIG. 4, and/or other processes for the techniques described herein.
  • the processor 1001 may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits used to implement the receiving and transmitting functions can be separate or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing codes/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transfer.
  • the processor 1001 may store instructions, which may be computer programs.
  • the computer programs run on the processor 1001 and may cause the communication device 1000 to execute the method described in the above method embodiments.
  • the computer program may be solidified in the processor 1001, in which case the processor 1001 may be implemented by hardware.
  • the communication device 1000 may include a circuit, and the circuit may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • the processor and transceiver described in this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application specific integrated circuits (application specific integrated circuits) , ASIC), printed circuit board (PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), n-type metal oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS n-type metal oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the scope of the communication device described in this application is not limited thereto, and the structure of the communication device may not be limited by FIG. 11 .
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • the IC collection may also include storage components for storing data and computer programs;
  • the processing unit 20 may be one or more logic circuits, and the transceiver unit 10 may be an input-output interface, and Or called a communication interface, or interface circuit, or interface, etc.
  • the transceiver unit 10 may also be a sending unit and a receiving unit.
  • the sending unit may be an output interface
  • the receiving unit may be an input interface.
  • the sending unit and the receiving unit may be integrated into one unit, such as an input-output interface.
  • Figure 12 is another schematic structural diagram of a communication device provided by an embodiment of the present application. As shown in FIG. 12 , the communication device shown in FIG. 12 includes a logic circuit 901 and an interface 902 .
  • the above-mentioned processing unit 20 can be implemented by the logic circuit 901, and the transceiver unit 10 can be implemented by the interface 902.
  • the logic circuit 901 can be a chip, a processing circuit, an integrated circuit or a system on chip (SoC) chip, etc.
  • the interface 902 can be a communication interface, an input/output interface, a pin, etc.
  • FIG. 12 shows that the above communication device is a chip.
  • the chip includes a logic circuit 901 and an interface 902 .
  • the logic circuit and the interface may also be coupled to each other.
  • the embodiments of this application do not limit the specific connection methods of the logic circuits and interfaces.
  • the logic circuit 901 is used to generate the first message and the second message; the interface 902 is used to output the third message. First message and second message.
  • the interface 902 is used to input the first message and the second message; the logic circuit 901 is used to input the first message.
  • the two messages are parsed to obtain the ranging parameter information.
  • the communication device shown in the embodiments of the present application can be implemented in the form of hardware to implement the methods provided in the embodiments of the present application, or can be implemented in the form of software to implement the methods provided in the embodiments of the present application. This is not limited by the embodiments of the present application.
  • An embodiment of the present application also provides a communication device, which includes a system on chip (SoC) chip.
  • SoC system on chip
  • the SoC chip includes a transceiver, a processor coupled to the transceiver, and optionally an internal memory and an external memory coupled to the processor.
  • the transceiver is used to send and receive messages, and the processor is used to execute program instructions stored in the internal memory and the external memory, so that the communication device executes the method in the foregoing method embodiment.
  • SoC is a system-on-chip, which means that it is a product, an integrated circuit with a dedicated purpose, which contains all the contents of a complete system and embedded software. At the same time, it is a technology used to realize the entire process from determining system functions to dividing software/hardware and completing the design.
  • An embodiment of the present application also provides a communication system.
  • the communication system includes a first device and a second device.
  • the first device and the second device can be used to perform the method in the foregoing method embodiment.
  • this application also provides a computer program, which is used to implement the operations and/or processing performed by the first device in the method provided by this application.
  • This application also provides a computer program, which is used to implement the operations and/or processing performed by the second device in the method provided by this application.
  • This application also provides a computer-readable storage medium that stores computer code.
  • the computer code When the computer code is run on a computer, it causes the computer to perform the operations performed by the first device in the method provided by this application. /or processing.
  • This application also provides a computer-readable storage medium that stores computer code.
  • the computer code When the computer code is run on a computer, it causes the computer to perform the operations performed by the second device in the method provided by this application. /or processing.
  • the computer program product includes a computer code or a computer program.
  • the computer code or computer program When the computer code or computer program is run on a computer, it causes the operations performed by the first device in the method provided by this application and/or or processing is performed.
  • the computer program product includes computer code or computer program.
  • the computer code or computer program When the computer code or computer program is run on a computer, it causes the operations performed by the second device in the method provided by this application and/or or processing is performed.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be an indirect coupling or communication connection through some interfaces, devices or units, or may be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the technical effects of the solutions provided by the embodiments of the present application.
  • each functional unit in various embodiments of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a readable
  • the storage medium includes several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned readable storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk, etc. that can store program code medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及无线通信感知领域的测距定位场景,尤其涉及一种信息交互方法及相关装置,该方法包括:通信双方(如第一设备和第二设备)利用各自的窄带通信模块(如Wi-Fi、蓝牙、NFC、或Zigbee等)协商测距过程中使用的参数,再利用各自的UWB模块按照窄带通信模块协商确定的参数进行测距。采用本申请实施例,可以降低UWB模块的复杂度,减少UWB模块的功耗。本申请应用于基于UWB的无线个人局域网系统,感知系统,还可以应用于支持802.11系列协议的WLAN系统。

Description

信息交互方法及相关装置
本申请要求于2022年03月25日提交中国专利局、申请号为202210300592.3、申请名称为“一种窄带辅助宽带的测距控制方法及装置”的中国专利申请的优先权和2022年06月25日提交中国专利局、申请号为202210728173.X、申请名称为“信息交互方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种信息交互方法及相关装置。
背景技术
随着室内定位技术的发展,超宽带(ultra-wide band,UWB)测距、定位技术的应用越来越广泛。超宽带(UWB)技术是一种无线载波通信技术。它利用纳秒级的非正弦波窄脉冲传输数据,通过对具有很陡上升和下降时间的冲激脉冲进行调制,因此其所占的频谱范围很宽,使信号具有吉赫(GHz)量级的带宽。由于UWB脉冲比较窄,且辐射谱密度低,因此UWB具有多径分辨能力强,功耗低,保密性强等优点,其在复杂的多径环境中仍可以实现测距和定位。
现有UWB测距过程中不仅需要组建个域网(personal area network,PAN),还需要完成时分多址(time division multiple address,TDMA)时隙分配,并完成测距和/或定位功能等。这使得实现UWB技术的装置复杂度高,需要同时兼顾通信和测距两种功能,并且该装置的工作时间长,功耗高。
发明内容
本申请实施例提供一种信息交互方法及相关装置,可以降低UWB模块的复杂度,减少UWB模块的功耗。
下面从不同的方面介绍本申请,应理解的是,下面的不同方面的实施方式和有益效果可以互相参考。
本申请的技术方案主要应用于无线通信感知领域的测距定位场景中。本申请中的第一设备至少包括窄带通信模块,可选的还包括UWB模块,第二设备至少包括UWB模块和窄带通信模块。UWB模块可以理解为实现UWB技术的装置或芯片等;相应地,窄带通信模块可以理解为实现窄带通信技术(如近场通信、Wi-Fi、蓝牙、或Zigbee(紫蜂协议)等)的装置或芯片等。一个设备(device)中,UWB模块和窄带通信模块可以为不同的装置或芯片,当然UWB模块和窄带通信模块也可以集成在一个装置或芯片上,本申请不限制UWB模块和窄带通信模块在设备中的实现方式。
第一方面,本申请提供一种信息交互方法,该方法包括:第一设备的窄带通信模块发送第一消息,用于发现第二设备;第一设备的窄带通信模块再向发现的第二设备发送第二消息,该第二消息中携带测距参数信息,用于第二设备的UWB模块进行测距。其中,该测距参数信息包括测距过程中使用的各种测距参数,比如测距角色、测距时隙分配等。
可选的,第一设备的窄带通信模块获取上层配置的测距参数信息,或者从自己的UWB模块获取测距参数信息。
一般来说,UWB模块被唤醒后,不仅需要组建个域网(PAN),还需要完成测距时隙(即 TDMA时隙)的分配,以及完成测距和/或定位功能等;从而导致UWB模块的工作时间长、功耗高,其实现复杂度也高。而本申请中的第一设备利用自己的窄带通信模块(如Wi-Fi、NFC、蓝牙、或Zigbee(紫蜂协议)等)与第二设备交互或协商测距参数信息(比如测距角色、测距时隙分配等),以此来减少UWB模块的工作时间,减少功耗,并且可以降低UWB模块的实现复杂度,降低成本。
结合第一方面,在一种可能的实现方式中,上述第二消息为扩展广播帧,上述测距参数信息携带于该扩展广播帧的数据内容字段中。该扩展广播帧中还包括数据类型字段,该数据类型字段用于指示该扩展广播帧中携带的广播数据的类型。该数据类型字段设置为预留值,比如7到255中任一值,用于表示该扩展广播帧中携带测距参数信息。可理解,此时第一设备的窄带通信模块采用广播的方式发送第二消息。
本申请通过广播的方式发送测距参数信息,可以允许多个设备同时进行测距,比如一个设备与多个设备进行测距,或者多个设备与多个设备进行测距,从而可以提高测距效率。
结合第一方面,在一种可能的实现方式中,上述测距参数信息携带于该第二消息的有效载荷(payload)中。第一设备的窄带通信模块向发现的第二设备发送第二消息之前,该方法还包括:第一设备的窄带通信模块接收第二设备的窄带通信模块发送的接入请求消息,该接入请求消息用于请求与第一设备的窄带通信模块建立连接;第一设备的窄带通信模块发送接入响应消息,该接入响应消息用于同意该接入请求消息的请求。可理解,第二设备的窄带通信模块接收到该接入响应消息后,第一设备的窄带通信模块和第二设备的窄带通信模块之间的连接建立完成。
本申请的第一设备和第二设备先通过各自的窄带通信模块建立连接,再在连接状态下协商确定测距参数信息,可以支持一对一的测距,通过第一设备和第二设备协商的方式确定测距参数信息,更有利于测距双方获知对方的信息(比如能力信息),便于后续测距过程的实施。
结合第一方面,在一种可能的实现方式中,上述测距参数信息是测距控制信息(ranging control message,RCM)中有效载荷(payload)信息元素(informationelement,IE)包括的内容。示例性的,上述测距参数信息包括但不限于以下一项或多项:测距方法、测距设备的标识、测距设备的测距角色、测距模式、测距帧格式、测距时隙分配、测角需求、或测量值上报方式。其中,测距方法包括单边双向测距(single-sided two way ranging,SS-TWR)和双边双向测距(double-sided two way ranging,DS-TWR)。测距设备的标识可以指参与测距的各个设备的介质访问控制(medium access control,MAC)地址、或ID(identifier,标识符)等。测距设备的测距角色可以指参与测距的设备中哪些设备是发起者(initiator),哪些设备是应答者(responder)。测距模式包括一个设备与一个设备测距(即一对一测距),一个设备与多个设备测距(即一对多测距)、或多个设备与多个设备测距(即多对多测距)中的一项或多项。测角需求可以理解为:是否有定位需求,或是否有测量相对角度(或相对方位)的需求,或是否需要测量第一设备相对于第二设备(或第二设备相对于第一设备)的到达角度(Angle-of-Arrival,AoA)水平角和AoA俯仰角。测量值上报方式可以指测量值(或者说测距结果)是从initiator传给responder,还是responder传给initiator。
结合第一方面,在一种可能的实现方式中,第一设备的窄带通信模块向发现的第二设备发送第二消息之后,该方法还包括:第一设备的UWB模块接收第二设备的UWB模块发送的第一测距帧;第一设备的UWB模块根据该测距参数信息发送第二测距帧。
本申请中通信双方(即第一设备和第二设备)的UWB模块利用窄带通信模块广播或协商确定的测距参数信息进行测距,可以减少UWB模块的工作时间,减少功耗;并且可以降 低UWB模块的实现复杂度,降低成本。
结合第一方面,在一种可能的实现方式中,第一设备的UWB模块接收第二设备的UWB模块发送的第一测距帧之后,该方法还包括:第一设备的窄带通信模块发送第三消息,该第三消息中携带第一测距结果,该第一测距结果包括该第一测距帧的接收时间和该第二测距帧的发送时间。
可选的,第一设备的窄带通信模块发送第二消息之前,该方法还包括:第一设备的UWB模块向第一设备的窄带通信模块传输第一测距结果。
可选的,上述第一测距结果还包括该第一测距帧的接收时间的可靠性。
可选的,当上述测距参数信息中的测角需求是存在定位需求,即需要测量相对角度(或相对方位)时,该第一测距结果还包括以下一项或多项:第一设备的空间定位坐标(x1,y1,z1)或者第二设备相对于第一设备的相对定位坐标(x21,y21,z21),第二设备相对于第一设备的AOA水平角,或第二设备相对于第一设备的AOA俯仰角。
结合第一方面,在一种可能的实现方式中,第一设备的UWB模块根据该测距参数信息发送第二测距帧之后,该方法还包括:第一设备的窄带通信模块接收第二设备的窄带通信模块发送的第四消息,该第四消息中携带第二测距结果,该第二测距结果包括该第二测距帧的接收时间和该第一测距帧的发送时间。
可选的,上述第二测距结果还包括该第二测距帧的接收时间的可靠性。
可选的,当上述测距参数信息中的测角需求是存在定位需求,即需要测量相对角度(或相对方位)时,该第二测距结果还可以包括以下一项或多项:第二设备的空间定位坐标(x2,y2,z2)或者第一设备相对于第二设备的相对定位坐标(x12,y12,z12),第一设备相对于第二设备的AOA水平角,或第一设备相对于第二设备的AOA俯仰角。
第二方面,本申请提供一种信息交互方法,该方法包括:第二设备的窄带通信模块接收第一设备的窄带通信模块发送的第一消息,该第一消息用于发现第二设备;第二设备的窄带通信模块接收第一设备的窄带通信模块发送的第二消息,该第二消息中携带测距参数信息,该测距参数信息用于第二设备的UWB模块进行测距。
结合第二方面,在一种可能的实现方式中,上述第二消息为扩展广播帧,上述测距参数信息携带于该扩展广播帧的数据内容字段中。该扩展广播帧中还包括数据类型字段,该数据类型字段用于指示该扩展广播帧中携带的广播数据的类型。该数据类型字段设置为预留值,比如7到255中任一值,用于表示该扩展广播帧中携带测距参数信息。可理解,此时第一设备的窄带通信模块采用广播的方式发送第二消息。
结合第二方面,在一种可能的实现方式中,上述测距参数信息携带于该第二消息的有效载荷(payload)中。第二设备的窄带通信模块接收第一设备的窄带通信模块发送的第二消息之前,该方法还包括:第二设备的窄带通信模块发送接入请求消息,该接入请求消息用于请求与第一设备的窄带通信模块建立连接;第二设备的窄带通信模块接收第一设备的窄带通信模块发送的接入响应消息,该接入响应消息用于同意接入请求消息的请求。
结合第二方面,在一种可能的实现方式中,上述测距参数信息是测距控制信息(RCM)中有效载荷(payload)信息元素(IE)包括的内容。示例性的,上述测距参数信息包括但不限于以下一项或多项:测距方法、测距设备的标识、测距设备的测距角色、测距模式、测距帧格式、测距时隙分配、测角需求、或测量值上报方式。
结合第二方面,在一种可能的实现方式中,第二设备的窄带通信模块接收第一设备的窄带通信模块发送的第二消息之后,该方法还包括:第二设备的窄带通信模块向第二设备的 UWB模块传输该测距参数信息。
结合第二方面,在一种可能的实现方式中,第二设备的窄带通信模块向第二设备的UWB模块传输该测距参数信息之后,该方法还包括:第二设备的UWB模块根据该测距参数信息发送第一测距帧;第二设备的UWB模块接收第一设备的UWB模块发送的第二测距帧。
结合第二方面,在一种可能的实现方式中,第二设备的UWB模块根据该测距参数信息发送第一测距帧之后,该方法还包括:第二设备的窄带通信模块接收第一设备的窄带通信模块发送的第三消息,该第三消息中携带第一测距结果,该第一测距结果包括该第一测距帧的接收时间和该第二测距帧的发送时间。
可选的,上述第一测距结果还包括该第一测距帧的接收时间的可靠性。
可选的,当上述测距参数信息中的测角需求是存在定位需求,即需要测量相对角度(或相对方位)时,该第一测距结果还包括以下一项或多项:第一设备的空间定位坐标(x1,y1,z1)或者第二设备相对于第一设备的相对定位坐标(x21,y21,z21),第二设备相对于第一设备的AOA水平角,或第二设备相对于第一设备的AOA俯仰角。
结合第二方面,在一种可能的实现方式中,第二设备的UWB模块接收第一设备的UWB模块发送的第二测距帧之后,该方法还包括:第二设备的窄带通信模块发送第四消息,该第四消息中携带第二测距结果,该第二测距结果包括该第二测距帧的接收时间和该第一测距帧的发送时间。
可选的,第二设备的窄带通信模块发送第四消息之前,该方法还包括:第二设备的UWB模块向第二设备的窄带通信模块传输第二测距结果。
可选的,上述第二测距结果还包括该第二测距帧的接收时间的可靠性。
可选的,当上述测距参数信息中的测角需求是存在定位需求,即需要测量相对角度(或相对方位)时,该第二测距结果还可以包括以下一项或多项:第二设备的空间定位坐标(x2,y2,z2)或者第一设备相对于第二设备的相对定位坐标(x12,y12,z12),第一设备相对于第二设备的AOA水平角,或第一设备相对于第二设备的AOA俯仰角。
第三方面,本申请提供一种通信装置,该通信装置具体为第一设备或其中的芯片,该通信装置用于执行第一方面或第一方面的任意可能的实现方式中的方法。该通信装置包括具有执行第一方面或第一方面的任意可能的实现方式中的方法的单元。
第四方面,本申请提供一种通信装置,该通信装置具体为第二设备或其中的芯片,该通信装置用于执行第二方面或第二方面的任意可能的实现方式中的方法。该通信装置包括具有执行第二方面或第二方面的任意可能的实现方式中的方法的单元。
在第三方面或第四方面中,上述通信装置可以包括收发单元和处理单元。对于收发单元和处理单元的具体描述还可以参考下文示出的装置实施例。上述第三方面到第四方面的有益效果可以参考前述第一方面和第二方面的相关描述,这里不赘述。
第五方面,本申请提供一种通信装置,该通信装置包括窄带通信电路和UWB电路,该窄带通信电路用于执行上述第一方面或上述第一方面的任意可能的实现方式中由第一设备的窄带通信模块执行的步骤或功能等;该UWB电路用于执行上述第一方面或上述第一方面的任意可能的实现方式中由第一设备的UWB模块执行的步骤或功能等。对于窄带通信电路和UWB电路的具体描述还可以参考下文示出的装置实施例。
第六方面,本申请提供一种通信装置,该通信装置包括窄带通信电路和UWB电路,该窄带通信电路用于执行上述第二方面或上述第二方面的任意可能的实现方式中由第二设备的 窄带通信模块执行的步骤或功能等;该UWB电路用于执行上述第二方面或上述第二方面的任意可能的实现方式中由第二设备的UWB模块执行的步骤或功能等。对于窄带通信电路和UWB电路的具体描述还可以参考下文示出的装置实施例。
第七方面,本申请提供一种片上系统(system on chip,SoC)芯片,该SoC芯片包括收发器、处理器、以及耦合于该处理器的内部存储器和外部存储器,该收发器用于收发消息,该处理器用于执行该内部存储器和外部存储器中存储的程序指令,以使得该SoC芯片执行上述第一方面、或上述第一方面的任意可能的实现方式、或上述第二方面、或上述第二方面的任意可能的实现方式所示的方法。该SoC芯片,可以由芯片构成,也可以包含芯片和其他分立器件。
第八方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序,当其在计算机上运行时,使得上述第一方面或上述第一方面的任意可能的实现方式所示的方法被执行。
第九方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序,当其在计算机上运行时,使得上述第二方面或上述第二方面的任意可能的实现方式所示的方法被执行。
第十方面,本申请实施例提供一种计算机程序产品,该计算机程序产品包括计算机程序或计算机代码,当其在计算机上运行时,使得上述第一方面或上述第一方面的任意可能的实现方式所示的方法被执行。
第十一方面,本申请实施例提供一种计算机程序产品,该计算机程序产品包括计算机程序或计算机代码,当其在计算机上运行时,使得上述第二方面或上述第二方面的任意可能的实现方式所示的方法被执行。
第十二方面,本申请实施例提供一种计算机程序,该计算机程序在计算机上运行时,上述第一方面或上述第一方面的任意可能的实现方式所示的方法被执行。
第十三方面,本申请实施例提供一种计算机程序,该计算机程序在计算机上运行时,上述第二方面或上述第二方面的任意可能的实现方式所示的方法被执行。
第十四方面,本申请实施例提供一种通信系统,该通信系统包括第一设备和第二设备,所述第一设备用于执行上述第一方面或第一方面的任意可能的实现方式所示的方法,所述第二设备用于执行上述第二方面或第二方面的任意可能的实现方式所示的方法。
本申请实施例中,通信双方(即第一设备和第二设备)利用各自的窄带通信模块(如Wi-Fi、NFC、蓝牙、或Zigbee(紫蜂协议)等)广播或协商测距相关的参数(即本申请中的测距参数信息),以使通信双方(即第一设备和第二设备)的UWB模块利用广播或协商确定的测距参数信息进行测距;从而减少UWB模块的工作时间,减少功耗;并且可以降低UWB模块的实现复杂度,降低成本。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。
图1是本申请实施例提供的测距定位系统的架构示意图;
图2是本申请实施例提供的测距原理示意图;
图3是本申请实施例提供的UWB测距流程的示意图;
图4是本申请实施例提供的信息交互方法的流程示意图;
图5是本申请实施例提供的扩展广播帧的帧格式示意图;
图6是本申请实施例提供的窄带辅助宽带测距的一种流程示意图;
图7是本申请实施例提供的窄带辅助宽带测距的另一种流程示意图;
图8是本申请实施例提供的窄带辅助宽带测距的又一种流程示意图;
图9是本申请实施例提供的通信装置的一结构示意图;
图10是本申请实施例提供的通信装置的另一结构示意图;
图11是本申请实施例提供的通信装置1000的结构示意图;
图12是本申请实施例提供的通信装置的又一结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
本申请中的术语“第一”和“第二”等仅用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备等,没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元等,或可选地还包括对于这些过程、方法、产品或设备等固有的其它步骤或单元。
在本申请的描述中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上。另外,“和/或”用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”。
本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”、“举例来说”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”、“举例来说”或者“例如”等词旨在以具体方式呈现相关概念。
本申请中对于使用单数表示的元素旨在用于表示“一个或多个”,而并非表示“一个且仅一个”,除非有特别说明。
本申请提供的技术方案可以适用于基于UWB技术的无线个人局域网(wireless personal area network,WPAN)。如本申请提供的方法可以适用于电气及电子工程师学会(institute of electrical and electronics engineers,IEEE)802.15系列协议,例如802.15.4a协议、802.15.4z协议或802.15.4ab协议,或者未来某代UWB WPAN标准中等,这里不再一一列举。本申请提供的方法还可以应用于各类通信系统,例如,可以是物联网(internet of things,IoT)系统、车联网(vehicle to X,V2X)、窄带物联网(narrow band internet of things,NB-IoT)系统,应用于车联网中的设备,物联网(IoT,internet of things)中的物联网节点、传感器等,智慧家居中的智能摄像头,智能遥控器,智能水表电表,以及智慧城市中的传感器等。本申请提供的方法还可以适用于LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、 全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、长期演进(long term evolution,LTE)系统,也可以是第五代(5th-generation,5G)通信系统、第六代(6th-generation,6G)通信系统等。
超宽带(UWB)技术是一种新型的无线通信技术。它利用纳秒级的非正弦波窄脉冲传输数据,通过对具有很陡上升和下降时间的冲激脉冲进行调制,因此其所占用的频谱范围很宽,使信号具有吉赫(GHz)量级的带宽。UWB系统具有很宽的频谱和很低的平均功率谱密度,UWB系统具有多径分辨能力强、功耗低、保密性强等优点,有利于与其他系统共存,从而提高频谱利用率和系统容量。另外,在短距离的通信应用中,超宽带(UWB)发射机的发射功率通常可做到低于1mW(毫瓦),从理论上来说,超宽带(UWB)信号所产生的干扰相对于窄带系统而言仅相当于白噪声,这样有助于超宽带与现有窄带通信之间的良好共存。因此,UWB系统可以实现与窄带(narrowband,NB)通信系统同时工作而互不干扰。
虽然本申请实施例主要以WPAN为例,比如以应用于IEEE 802.15系列标准的网络为例进行说明。本领域技术人员容易理解,本申请涉及的各个方面可以扩展到采用各种标准或协议的其它网络。例如,无线局域网(wireless local area networks,WLAN)、蓝牙(BLUETOOTH)、Zigbee(紫蜂协议)、近场通信(near field communication,NFC)、高性能无线LAN(High Performance Radio LAN,HIPERLAN)(一种与IEEE 802.11标准类似的无线标准,主要在欧洲使用)以及广域网(WAN)或其它现在已知或以后发展起来的网络。因此,无论使用的覆盖范围和无线接入协议如何,本申请提供的各种方面可以适用于任何合适的无线网络。
本申请提供的方法可以由无线通信系统中的通信装置实现。该通信装置可以是UWB系统中涉及的装置。例如,该通信装置可以包括但不限于支持UWB技术和窄带通信技术(包括但不限于Wi-Fi、蓝牙、NFC、Zigbee)的通信服务器、路由器、交换机、网桥、计算机、手机等。又例如,该通信装置可以包括用户设备(user equipment,UE),该用户设备可以包括支持UWB技术和窄带通信技术的各种手持设备、车载设备(如汽车或安装于汽车上的部件等)、可穿戴设备、物联网(internet of things,IoT)设备、计算设备或连接到无线调制解调器的其它处理设备等,这里不再一一列举。又例如,该通信装置可以包括中心控制点,如个人局域网(personal area network,PAN)或PAN协调者(coordinator)等。该PAN协调者或PAN可以是手机、车载设备、锚点(Anchor)、标签(tag)或智能家居等。又例如,该通信装置可以包括芯片,该芯片可以设置于通信服务器、路由器、交换机或终端设备中等,这里不再一一列举。可理解,以上关于通信装置的说明适用于本申请中的第一设备和第二设备。
在本申请实施例中,上述通信装置可以包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可。
本申请提供的技术方案可以应用于无线通信感知的测距定位场景中。在测距定位场景中,测距双方可以根据相关协议进行认证和协商建立无线通信连接,在建立无线通信连接后,发送端发送无线测距帧到达接收端,接收端收到该无线测距帧后计算到达时间,并向发送端回 复另一测距无线帧。通过计算飞行时间(timeofflight,ToF),来计算二者(即发送端和接收端)之间的距离,完成测距过程。
在本申请实施例中,术语“传输”可以指设备或芯片或装置内部的信息交换。
参见图1,图1是本申请实施例提供的测距定位系统的架构示意图。如图1所示,该测距定位系统包括多个设备(如图1中的设备1和设备2),每个设备中至少包括UWB模块和窄带通信模块。其中,设备1和设备2的UWB模块之间可以进行定位和/或测距,设备1和设备2的窄带通信模块之间可以通过无线链路进行数据传输。
本申请中,UWB模块可以理解为实现UWB技术的装置、芯片或系统等;相应地,窄带通信模块可以理解为实现窄带通信技术(如Wi-Fi、蓝牙、或Zigbee(紫蜂协议)等)的装置、芯片或系统等。一个设备(device)中,UWB模块和窄带通信模块可以为不同的装置或芯片,当然UWB模块和窄带通信模块也可以集成在一个装置或芯片上,本申请实施例不限制UWB模块和窄带通信模块在设备中的实现方式。
下面对本申请涉及到的一些相关内容、术语或名词进行简要介绍。
一、测距的基本原理
测距的基本原理是:测距双方通过测量消息的往返时间来计算二者之间的距离。其中,发送端发送携带测距序列的测距帧,接收端将收到的测距帧中的测距序列与本地存储的序列进行相关运算,根据相关峰的位置获得到达时间(即t2和t4)。参见图2,图2是本申请实施例提供的测距原理示意图。如图2所示,第一设备在t1时刻发送测距帧1,该测距帧1在t2时刻到达第二设备;第二设备再在t3时刻向第一设备发送测距帧2,该测距帧2在t4时刻到达第一设备。
那么,根据下述公式(1-1)、(1-2)以及(1-3)可计算出第一设备和第二设备之间的距离d:

tRTT=(t4-t1)......................................................................................................................(1-2)
treply=(t3-t2).....................................................................................................................(1-3)
其中,c表示光速。
本申请中提及的测距帧的具体帧格式参见现有802.15系列协议(如802.15.4a,或802.15.4z,或802.15.4ab)的描述,这里不一一详述。
二、UWB测距流程
UWB系统一般借助近场通信(near field communication,NFC)、蓝牙、Zigbee、Wi-Fi等窄带信号作为驱动,在用户需求的场景下再将UWB模块唤醒,唤醒后的UWB模块会组建个域网、分配时分多址(time division multiple address,TDMA)时隙、完成测距和定位功能等。
参见图3,图3是本申请实施例提供的UWB测距流程的示意图。图3以2个设备为例,这2个设备都包括UWB模块。如图3所示,一个信标(beacon)周期(beaconinternal)可包括3个时段:beacon时段、测距管理期(ranging management period)、测距期(rangingperiod)。测距管理期内包括一个或多个测距竞争访问期(ranging contention access period,RCAP),和一个或多个测距无竞争期(ranging contention free period,RCFP)。测距管理期也称为竞争与 非竞争时隙。
图3所示的UWB测距流程包括以下内容:
设备中的UWB模块启动前通过低功耗蓝牙(bluetooth low energy,BLE)唤醒。唤醒后的UWB模块使用默认参数启动,如初始化信道号(channel number)、同步码(preamble code)、速率等。
设备1和设备2中的UWB模块被唤醒并启动后,进行组网和测距。在一个beaconinternal内的beacon时段,设备1被定义为协调者(coordinator),负责发送beacon帧,实现UWB个域网(PAN)的时间同步和网络参数的播发;设备2收到beacon帧后,按需加入设备1(协调者)的个域网络中。设备1(协调者)还可以通过beacon帧指示是否需要测距管理期(即竞争与非竞争时隙)。如果需要测距管理期(ranging management period),其他设备(如设备n)可以在这个时间段接入至设备1所组建的个域网中。如果不需要测距管理期,则维持当前个域网络及个域网中的相关设备。其中,测距竞争访问期(RCAP)可实现设备入网(入个域网),测距无竞争期(ranging contention free period,RCFP)用于做设备间交互所需的时隙分配。也就是说,在测距管理期,完成设备入网和指定设备交互。
在测距期(rangingperiod)内,一共有4个角色定义,设备1同时做controller(控制者)与initiator(发起者),设备2同时做controlee(被控制者)与responder(响应者)。其中controller负责发送测距控制信息(ranging control message,RCM),该RCM中包括测距角色(即参与测距的哪些设备作为initiator,和参与测距的哪些设备作为responder)、测距时隙分配(基于TDMA将时间片分配好)等信息。然后,initiator发起初始测距帧,responder在收到初始测距帧后,会反馈测距帧给initiator。各设备将测距帧的到达时间(也就是接收时间)计算出来,再通过UWB技术播发测距结果,测距结果包括测距帧的到达时间,根据测距结果完成设备间的测距。比如根据上述公式(1-1)、(1-2)以及(1-3)计算设备间的距离。新的测距轮,按照上述步骤重复执行。
其中,测距控制信息(RCM)的帧格式可参见现有技术的描述,这里不一一详述。
由上述图3所示的UWB测距流程可知,虽然UWB系统借助BLE在用户有需求的场景下才将设备中的UWB模块唤醒,但唤醒后的UWB模块需要组建个域网、分配TDMA时隙、完成测距和定位功能,所以UWB模块的工作时间长,功耗还是很高。此外,唤醒后的UWB模块需要同时兼顾通信(比如组建个域网、分配TDMA时隙等)和测距功能,复杂度高。
因此,本申请实施例提供一种信息交互方法,应用于无线通信感知领域的测距定位场景中。该方法借助设备中的窄带通信模块来完成UWB模块的通信功能(比如测距角色协商、分配TDMA时隙等),UWB模块只负责测距功能(比如收发测距帧,或计算测距帧的到达时间或设备间的距离等),从而降低UWB模块的复杂度,减少UWB模块的功耗。换句话说,本申请实施例提供的方法中,通信双方(即第一设备和第二设备)利用各自的窄带通信模块(如Wi-Fi、NFC、蓝牙、或Zigbee(紫蜂协议)等)交互或协商测距相关的参数(包括测距时隙(指前述TDMA时隙)的分配);以此来减少UWB模块的工作时间,减少功耗;并且可以降低UWB模块的实现复杂度,降低成本。进一步的,通信双方(即第一设备和第二设备)的UWB模块只负责测距。
下面将结合更多的附图对本申请提供的技术方案进行详细说明。
本申请中,除特殊说明外,各个实施例或实现方式之间相同或相似的部分可以互相参考。在本申请中各个实施例、以及各实施例中的各个实施方式/实施方法/实现方法中,如果没有特 殊说明以及逻辑冲突,不同的实施例之间、以及各实施例中的各个实施方式/实施方法/实现方法之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例、以及各实施例中的各个实施方式/实施方法/实现方法中的技术特征根据其内在的逻辑关系可以组合形成新的实施例、实施方式、实施方法、或实现方法。以下所述的本申请实施方式并不构成对本申请保护范围的限定。
可选的,本申请中的第一设备和第二设备可以是不同的电子设备,如第一设备为前述图1中的设备1,第二设备为前述图1中的设备2。第一设备至少包括窄带通信模块,可选的第一设备还包括UWB模块;第二设备至少包括UWB模块和窄带通信模块。在一些实施例中,第一设备和第二设备可以位于不同的地理位置,也就是说第一设备和第二设备之间的距离d可以不为0。
参见图4,图4是本申请实施例提供的信息交互方法的流程示意图。其中,第一设备和第二设备均支持802.15系列标准,例如802.15.4a协议、802.15.4z协议或802.15.4ab协议,或者未来某代UWB WPAN标准等;第一设备和第二设备还支持窄带通信标准,如Wi-Fi标准(即802.11系列标准)、NFC标准、蓝牙标准、或Zigbee等。
如图4所示,该信息交互方法包括但不限于以下步骤:
S101,第一设备的窄带通信模块发送第一消息,该第一消息用于发现第二设备。
相应的,第二设备的窄带通信模块接收该第一消息。
S102,第一设备的窄带通信模块向发现的第二设备发送第二消息,该第二消息中携带测距参数信息,该测距参数信息用于第二设备的UWB模块进行测距。
相应的,第二设备的窄带通信模块接收该第二消息。
一种可能的实现方式中,第一设备的窄带通信模块广播第一消息,该第一消息用于发现设备。接收到该第一消息的设备(为便于描述,将接收到该第一消息的设备记为第二设备)可以利用自己的窄带通信模块发送请求消息,该请求消息中可以携带该设备的标识、地址或序列号等信息,该请求消息可以用于请求第一设备播发更多的信息。第一设备的窄带通信模块接收到该请求消息后,因为该请求消息中携带第二设备的标识、地址或序列号等信息,所以第一设备可以根据该请求消息发现第二设备。由于接收到该第一消息的设备可能有多个,并且可能有多个设备都发送了请求消息,所以第一设备的窄带通信模块可能接收到多个请求消息,从而发现多个设备。
当用户有UWB测距定位需求或触发UWB测距定位功能时,第一设备的窄带通信模块可以获取上层配置的测距参数信息,或者第一设备的窄带通信模块从第一设备的UWB模块获取测距参数信息。然后,第一设备的窄带通信模块可以向发现的一个或多个第二设备广播第二消息,该第二消息中携带该测距参数信息,该测距参数信息包括测距过程中使用的各种测距参数,比如测距角色、测距时隙分配等。该测距参数信息可以用于第二设备的UWB模块进行测距,具体如何根据测距参数信息进行测距,参见下文的描述。其中,第二消息可以是扩展广播帧,测距参数信息可以携带于该扩展广播帧的数据内容字段中。换句话说,第一设备的窄带通信模块可以将获取到的测距参数信息打包填充到扩展广播帧的数据内容字段中,以广播的形式发送出去。
示例性的,参见图5,图5是本申请实施例提供的扩展广播帧的帧格式示意图。如图5所示,该扩展广播帧包括但不限于数据类型字段和数据内容字段,可选的还包括以下一个或多个字段:广播帧结构指示、本端接入层标识类型、对端接入层标识类型、本端接入层标识、 解析密钥标识、对端接入层标识、扩展广播帧资源配置信息、或数据长度。其中,数据内容字段中携带测距参数信息,比如将测距控制信息(RCM)中payload(有效载荷)信息元素(informationelement,IE)包括的内容(即本申请中的测距参数信息)携带于扩展广播帧的数据内容字段中。数据类型字段用于指示扩展广播帧携带的广播数据的类型。当数据类型字段的取值为0时,表示数据内容字段携带的是发送资源配置信息。当数据类型字段的取值为1时,表示数据内容字段携带的是不启动系统管理帧的传输指示信息。当数据类型字段的取值为2时,表示数据内容字段携带的是启动系统管理帧的接入基本信息。当数据类型字段的取值为3时,表示数据内容字段携带的是接入请求信息。当数据类型字段的取值为4时,表示数据内容字段携带的是接入响应信息。当数据类型字段的取值为5时,表示数据内容字段携带的是启动系统管理帧信息。当数据类型字段的取值为6时,表示数据内容字段携带的是非连接态广播链路信息。当数据类型字段设置为预留值时,如数据类型字段设置为7到255中(包括7和255)的任一值,用于表示该扩展广播帧的数据类型字段携带的是测距相关的信息,如本申请中的测距参数信息。应理解,扩展广播帧中其它字段(指除数据类型字段和数据内容字段外的字段)的取值和含义参考现有技术的描述,这里不一一详述。
可理解,上述图5所示的各个字段的长度和名称仅是示例,本申请实施例对此不做限制。
可选的,各个第二设备的窄带通信模块接收到扩展广播帧(即上述第二消息)之后,各个第二设备可以对该扩展广播帧进行解析获得其中的测距参数信息。举例来说,结合图5所示的帧格式,第二设备的窄带通信模块对扩展广播帧进行解析,当解析到数据类型字段时,因为数据类型字段被设置为7-255中的某个值,所以可以获知后续的数据内容字段携带的是测距相关的信息(如本申请中的测距参数信息)。第二设备的窄带通信模块继续解析,当解析到数据长度字段时可以获知后续的数据内容字段的长度;但因为数据内容字段携带的是测距参数信息,而第二设备的窄带通信模块可能无法正确解析数据内容字段,所以第二设备的窄带通信模块可以将数据长度字段后满足该数据长度字段指示的长度的内容(也就是数据内容字段)传输至第二设备的UWB模块,第二设备的UWB模块再对数据内容字段进行解析,从而获得数据内容字段中携带的测距参数信息。其中,第二设备的窄带通信模块对扩展广播帧进行解析,可以理解为:第二设备按照窄带通信标准解析扩展广播帧。同理,第二设备的UWB模块对数据内容字段进行解析,可以理解为:第二设备按照UWB标准解析数据内容字段。换句话说,第二设备采用窄带通信标准解析扩展广播帧的数据内容字段之前的字段,第二设备采用UWB标准解析扩展广播帧的数据内容字段。
可选的,上述第一消息和上述第二消息可以是一个消息,也就是说上述测距参数信息也可以携带在用于发现设备的消息中。换句话说,第一设备的窄带通信模块可以广播一个消息,该消息既用于发现设备,也携带测距参数信息。
本申请实施例通过广播的方式发送测距参数信息,可以允许多个设备同时进行测距,比如一个设备与多个设备进行测距,或者多个设备与多个设备进行测距,从而可以提高测距效率。
另一种可能的实现方式中,第一设备的窄带通信模块广播第一消息,该第一消息用于发现设备。当接收到该第一消息的某个设备(为便于描述将这个设备记为第二设备)想要与第一设备建立连接时,第二设备可以利用自己的窄带通信模块发送接入请求消息,该接入请求消息用于请求与第一设备的窄带通信模块建立连接。第一设备的窄带通信模块接收到该接入请求消息后,可以发送接入响应消息,该接入响应消息用于同意该接入请求消息的请求。第二设备的窄带通信模块接收到该接入响应消息后,第一设备的窄带通信模块和第二设备的窄 带通信模块之间的连接建立完成。
第一设备和第二设备的连接建立完成后,第一设备和第二设备可以通过各自的窄带通信模块协商确定测距过程中使用的各种测距参数,即协商测距参数信息。示例性的,第一设备的窄带通信模块向第二设备发送第二消息,该第二消息中携带第一设备确定的测距参数信息,该测距参数信息包括测距过程中使用的各种测距参数,比如测距角色、测距时隙分配等;如果第二设备同意采用第二消息中携带的测距参数信息进行测距,则第二设备的窄带通信模块可以回复一个确认消息,用于确认该第二消息中携带的测距参数信息,或者第二设备无需回复确认消息,而第二设备的UWB模块按照该第二消息中携带的测距参数信息进行测距。如果第二设备不同意采用第二消息中携带的测距参数信息进行测距,则第二设备的窄带通信模块可以发送一个消息i,携带第二设备确定的测距参数信息;如果第一设备同意采用消息i中携带的测距参数信息进行测距,则第一设备的窄带通信模块可以回复一个确认消息,用于确认该消息i中携带的测距参数信息,或者第一设备无需回复确认消息,而第一设备的UWB模块按照该消息i中携带的测距参数信息进行测距。如果第一设备不同意采用消息i中携带的测距参数信息进行测距,则继续协商。
其中,上述测距参数信息可以携带于第二消息或消息i的有效载荷(payload)中。第一设备和第二设备通过各自的窄带通信模块协商确定出的测距参数信息可以用于第一设备的UWB模块和第二设备的UWB模块进行测距,具体如何根据测距参数信息进行测距,参见下文的描述。
可选的,上述测距参数信息可以是上层配置的,也可以是UWB模块生成的。
本申请实施例的第一设备和第二设备先通过各自的窄带通信模块建立连接,再在连接状态下协商确定测距参数信息,可以支持一对一的测距,通过第一设备和第二设备协商的方式确定测距参数信息,更有利于测距双方获知对方的信息(比如能力信息),便于后续测距过程的实施。
可选的,上述两种实现方式中的测距参数信息可以是测距控制信息(RCM)中payload(有效载荷)信息元素(informationelement,IE)包括的内容。示例性的,该测距参数信息包括但不限于以下一项或多项:测距方法、测距设备的标识、测距设备的测距角色、测距模式、测距帧格式、测距时隙分配、测角需求、或测量值上报方式。其中,测距方法包括单边双向测距(single-sided two way ranging,SS-TWR)和双边双向测距(double-sided two way ranging,DS-TWR),SS-TWR和DS-TWR的具体实现参考现有技术,这里不一一详述。测距设备的标识可以指参与测距的各个设备的介质访问控制(medium access control,MAC)地址、或ID(identifier,标识符)等。测距设备的测距角色可以指参与测距的设备中哪些设备是initiator,哪些设备是responder。测距模式包括一个设备与一个设备测距(即一对一测距),一个设备与多个设备测距(即一对多测距)、或多个设备与多个设备测距(即多对多测距)中的一项或多项。测角需求可以理解为:是否有定位需求,或是否有测量相对角度(或相对方位)的需求,或是否需要测量第一设备相对于第二设备(或第二设备相对于第一设备)的到达角度(Angle-of-Arrival,AoA)水平角和AoA俯仰角。测量值上报方式可以指测量值(或者说测距结果)是从initiator传给responder,还是responder传给initiator。
可理解的,在上述两种实现方式的第二种实现方式中,测距参数信息包括的测距模式为一对一测距;测距设备的标识包括第一设备的标识和第二设备的标识,也就是说第一设备和第二设备均参与测距。
可理解的,在上述两种实现方式的第一种实现方式中,第一设备可以不参与测距,而是 多个第二设备之间进行测距;此时第一设备可以无需UWB模块,测距设备包括第二设备且不包括第一设备。当然,在第一种实现方式中,第一设备也可以参与测距,此时第一设备中也包括UWB模块,测距设备包括第一设备和第二设备。在第一种实现方式中,测距参数信息包括的测距模式可以为一对一测距,也可以是一对多测距,还可以是多对多测距。
本申请实施例为便于描述,下文描述的测距过程中以第一设备与第二设备进行一对一测距为例进行说明。换句话说,下文描述的测距过程中,测距参数信息中的测距模式为一对一测距,测距设备的标识包括第一设备的标识和第二设备的标识。
可选的,步骤S102之后,上述信息交互方法还包括以下一个或多个步骤:
S103,第二设备的UWB模块根据该测距参数信息发送第一测距帧。
相应的,第一设备的UWB模块接收该第一测距帧。
S104,第一设备的UWB模块根据该测距参数信息发送第二测距帧。
相应的,第二设备的UWB模块接收该第二测距帧。
可选的,如果上述测距参数信息中测距方法是SS-TWR,则第一设备的UWB模块和第二设备的UWB模块按照SS-TWR方法进行测距,SS-TWR方法具体参见现有技术的描述,这里不一一详述。如果上述测距参数信息中测距方法是DS-TWR,则第一设备的UWB模块和第二设备的UWB模块按照DS-TWR方法进行测距,DS-TWR方法具体参见现有技术的描述,这里不一一详述。本申请实施例为便于描述,以上述测距参数信息中测距方法为SS-TWR为例进行说明。
可选的,上述测距参数信息中的测距方法为SS-TWR,且测距模式为一对一测距。如果上述测距参数信息中测距设备的测距角色是第二设备为initiator,第一设备为responder,则第二设备的UWB模块在分配或协商确定的测距时隙(即某个TDMA时隙)上发送第一测距帧,该第一测距帧的帧格式与该测距参数信息中的测距帧格式相同。相应的,第一设备的UWB模块接收该第一测距帧。第一设备的UWB模块接收到该第一测距帧后,一方面,第一设备的UWB模块在分配或协商确定的测距时隙(即某个TDMA时隙)上发送第二测距帧,该第二测距帧的帧格式与该测距参数信息中的测距帧格式相同。另一方面,第一设备的UWB模块可以按照该测距参数信息中的测距帧格式对该第一测距帧进行解析,获得其中的测距序列;并且第一设备还可以将该测距序列与本地存储的测距序列进行相关运算,获得该第一测距帧的到达时间(也就是接收时间)。可理解的,相关运算操作既可以在UWB模块中执行,也可以在窄带通信模块中执行,本申请实施例对此不做限制。如果该测距参数信息中的测角需求是存在定位需求,即需要测量相对角度(或相对方位),则第一设备的UWB模块接收到该第一测距帧后,第一设备可以测量第二设备相对于第一设备的AOA水平角和AOA俯仰角,并可以获取第一设备的空间定位坐标(x1,y1,z1)或者第二设备相对于第一设备的相对定位坐标(x21,y21,z21)。可理解的,测量第二设备相对于第一设备的AOA水平角和AOA俯仰角,获取第一设备的空间定位坐标(x1,y1,z1)或者获取第二设备相对于第一设备的相对定位坐标(x21,y21,z21)的操作既可以在UWB模块中执行,也可以在窄带通信模块中执行,本申请实施例对此不做限制。
第二设备的UWB模块接收到该第二测距帧后,可以按照该测距参数信息中的测距帧格式对该第二测距帧进行解析,获得其中的测距序列;并且第二设备还可以将该测距序列与本地存储的测距序列进行相关运算,获得该第二测距帧的到达时间(也就是接收时间)。如果该测距参数信息中的测角需求是存在定位需求,即需要测量相对角度(或相对方位),则第二设备的UWB模块接收到该第二测距帧后,第二设备可以测量第一设备相对于第二设备的AOA 水平角和AOA俯仰角,并可以获取第二设备的空间定位坐标(x2,y2,z2)或者第一设备相对于第二设备的相对定位坐标(x12,y12,z12)。
可选的,上述测距参数信息中的测距方法为SS-TWR,且测距模式为一对一测距。如果上述测距参数信息中测距设备的测距角色是第一设备为initiator,第二设备为responder,与前述第二设备为initiator,第一设备为responder不同的是:第一设备的UWB模块先在分配或协商确定的测距时隙(即某个TDMA时隙)上发送第二测距帧,第二设备的UWB模块再在分配或协商确定的测距时隙上回复第一测距帧。其中,第二设备的UWB模块接收到该第二测距帧后的操作参考前文的描述,这里不赘述。同理,第一设备的UWB模块接收到该第一测距帧后的操作参考前文的描述,这里不赘述。
可理解的,无论是第一设备作为initiator,还是第二设备作为initiator,都是initiator先发一个测距帧,responder回复另一个测距帧。还可理解的,第一设备为initiator和第二设备为responder,与第二设备为initiator和第一设备为responder的不同之处在于:步骤S103和步骤S104的执行顺序。示例性的,当第二设备为initiator且第一设备为responder时,步骤S103的执行顺序在步骤S104之前;当第一设备为initiator和第二设备为responder时,步骤S103的执行顺序在步骤S104之后。
可选的,在第一设备和第二设备利用各自的UWB模块交互测距帧之后(比如步骤S104之后),第一设备和第二设备可以按照测距参数信息中的测量值上报方式,将测距结果汇总至一个设备中进行处理,获得第一设备和第二设备直接的距离。本申请实施例以测量值上报方式为responder传给initiator为例。
一种可能的实现方式中,如果第一设备为responder,第二设备为initiator,则第一设备可以将测距结果汇总至第二设备中,第二设备再根据汇总的测距结果确定第一设备和第二设备之间的距离和/或第一设备和第二设备的相对位置。示例性的,步骤S104之后,第一设备的窄带通信模块可以发送第三消息,该第三消息中携带第一测距结果,该第一测距结果包括上述第一测距帧的接收时间(也就是通过相关运算操作获得到达时间)和上述第二测距帧的发送时间。第二设备的窄带通信模块接收到该第三消息后,可以根据该第一测距帧的接收时间、该第一测距帧的发送时间、该第二测距帧的发送时间以及该第二测距帧的接收时间,按照上述公式(1-1)至上述公式(1-3)计算第一设备与第二设备之间的距离。可选的,该第一测距结果还可以包括该第一测距帧的接收时间的可靠性。该第一测距帧的接收时间的可靠性可以用于判断这个接收时间是否有效,是否可信;当该第一测距帧的接收时间有效或可信时,第二设备再利用该第一测距帧的接收时间、该第一测距帧的发送时间、该第二测距帧的发送时间以及该第二测距帧的接收时间计算第一设备与第二设备之间的距离。如果该第一测距帧的接收时间无效或不可信时,第一设备和第二设备可以重新执行测距过程,比如重新交互测距帧等;当然还可以重新广播或协商测距参数信息再重新交互测距帧,本申请实施例对此不做限定。
可选的,当上述测距参数信息中的测角需求是存在定位需求,即需要测量相对角度(或相对方位)时,该第一测距结果还可以包括以下一项或多项:第一设备的空间定位坐标(x1,y1,z1)或者第二设备相对于第一设备的相对定位坐标(x21,y21,z21),第二设备相对于第一设备的AOA水平角,或第二设备相对于第一设备的AOA俯仰角。第二设备的窄带通信模块接收到该第三消息后,还可以根据第一设备的空间定位坐标(x1,y1,z1)或者第二设备相对于第一设备的相对定位坐标(x21,y21,z21),第二设备的空间定位坐标(x2,y2,z2),以及第二设备相对于第一设备的AOA水平角和AOA俯仰角,确定第一设备和第二设备的相对位置。
可理解的,如果第一测距结果中包括的全部或部分信息是在第一设备的UWB模块中确定的,则第一设备的窄带通信模块发送第三消息之前,第一设备的UWB模块需要向第一设备的窄带通信模块传输该第一测距结果包括的全部或部分信息。示例性的,假设第一测距帧的接收时间和第二测距帧的发送时间是在第一设备的UWB模块中确定的,而第一测距结果中包括的其他信息是在第一设备的窄带通信模块中确定的,则第一设备的UWB模块需要向第一设备的窄带通信模块传输该第一测距帧的接收时间和第二测距帧的发送时间。
另一种可能的实现方式中,如果第一设备为initiator,第二设备为responder,则第二设备将测距结果汇总至第一设备中,第一设备再根据汇总的测距结果确定第二设备和第一设备之间的距离和/或第一设备和第二设备的相对位置。示例性的,第二设备的窄带通信模块可以发送第四消息,该第四消息中携带第二测距结果,该第二测距结果包括上述第二测距帧的接收时间(也就是通过相关运算操作获得到达时间)和上述第一测距帧的发送时间。第一设备的窄带通信模块接收到该第四消息后,可以根据该第一测距帧的接收时间、该第一测距帧的发送时间、该第二测距帧的发送时间以及该第二测距帧的接收时间,按照上述公式(1-1)至上述公式(1-3)计算第一设备与第二设备之间的距离。可选的,该第一测距结果还可以包括该第一测距帧的接收时间的可靠性。
可选的,当上述测距参数信息中的测角需求是存在定位需求,即需要测量相对角度(或相对方位)时,该第二测距结果还可以包括以下一项或多项:第二设备的空间定位坐标(x2,y2,z2)或者第一设备相对于第二设备的相对定位坐标(x12,y12,z12),第一设备相对于第二设备的AOA水平角,或第一设备相对于第二设备的AOA俯仰角。第一设备的窄带通信模块接收到该第四消息后,还可以根据第二设备的空间定位坐标(x2,y2,z2)或者第一设备相对于第二设备的相对定位坐标(x12,y12,z12),第一设备的空间定位坐标(x1,y1,z1),以及第一设备相对于第二设备的AOA水平角和AOA俯仰角,确定第一设备和第二设备的相对位置。
可理解的,如果第二测距结果中包括的全部或部分信息是在第二设备的UWB模块中确定的,则第二设备的窄带通信模块发送第四消息之前,第二设备的UWB模块需要向第二设备的窄带通信模块传输该第二测距结果包括的全部或部分信息。
可选的,本申请实施例中,当设备中的窄带通信模块工作时,其UWB模块可以进入休眠状态,反之,当这个设备中的UWB模块工作时,其窄带通信模块可以进入休眠状态,从而节省功耗。换句话说,在上述步骤S101和步骤S102中第一设备和第二设备的窄带通信模块工作,那么第一设备和第二设备的UWB模块可以进入休眠状态,以节省功耗。当需要UWB模块工作时,可以通过窄带通信模块唤醒UWB模块,比如在步骤S103和步骤S104之前第一设备和第二设备分别唤醒自己的UWB模块,当第一设备和第二设备唤醒UWB模块后,第一设备和第二设备的窄带通信模块可以进入休眠状态,从而进一步节省功耗。而当需要窄带通信模块工作时,再唤醒窄带通信模块。由此可知,本申请实施例通过在设备中的一个模块(UWB模块或窄带通信模块)工作时,将该设备中的另一个模块(窄带通信模块或UWB模块)进行休眠,来进一步节省功耗。
本申请实施例的通信双方(即第一设备和第二设备)利用各自的窄带通信模块(如Wi-Fi、NFC、蓝牙、或Zigbee(紫蜂协议)等)广播或协商测距相关的参数(即本申请中的测距参数信息),以使通信双方(即第一设备和第二设备)的UWB模块利用广播或协商确定的测距参数信息进行测距;从而减少UWB模块的工作时间,减少功耗;并且可以降低UWB模块的实现复杂度,降低成本。
为更好地理解本申请实施例提供的技术方案,下面通过几个示例来说明。下述示例均以两个设备进行一对一测距为例,其中第一设备包括窄带(narrowband,NB)通信模块和UWB模块,第二设备也包括UWB模块和窄带(NB)通信模块。
示例1:参见图6,图6是本申请实施例提供的窄带辅助宽带测距的一种流程示意图。如图6所示,窄带辅助宽带测距的流程包括但不限于以下内容:(1)第一设备和第二设备的窄带通信模块(图6中用NB表示)之间建立链路,并通过建立成功的链路协商测距过程中使用的参数(即协商本申请中的测距参数信息),比如测距角色、测距时隙、测距方法、测距帧格式等。其中测距参数信息的具体实现参见前文的描述,这里不赘述。(2)第一设备和第二设备的窄带通信模块分别唤醒各自的UWB模块(图6中用UWB表示),启动工作,并将窄带通信模块协商确定的测距参数信息告知各自的UWB模块,准备进行测距。(3)第一设备的UWB模块按照测距参数信息在分配好的测距时隙内播发测距帧至第二设备,开始进行测距。可理解的,具体测距过程参考前文步骤S103和步骤S104中的相关描述,这里不赘述。(4)第一设备和第二设备完成测距后,将测距结果分别告知各自的窄带通信模块;窄带通信模块使用之前建立的链路,将测距结果播发出去,告知所需设备。测距结果的播发过程可参考前文步骤S103和步骤S104中的相关描述,这里不赘述。
本申请实施例通过两个设备中的窄带通信模块完成个域网的组建、测距参数的协商、测距时隙的分配等,而这两个设备中的UWB模块负责执行测距过程(这里的测距过程包含测距帧的播发,但不包括测距控制信息RCM的交互),可以减少UWB模块的工作时间,实现降功耗,减少复杂度的目的。
示例2:参见图7,图7是本申请实施例提供的窄带辅助宽带测距的另一种流程示意图。图7中以第一设备和第二设备的窄带通信模块(图7中用NB表示)采用蓝牙通信为例。如图7所示,窄带辅助宽带测距的流程包括但不限于以下内容:(1)第一设备的窄带通信模块发送广播帧,用于发现设备;第二设备的窄带通信模块发起扫描,扫描附近的蓝牙设备。(2)第一设备的窄带通信模块将测距参数信息打包填充到扩展广播帧的数据内容字段中并以广播形式发送出去。其中,扩展广播帧的具体帧格式以及测距参数信息的具体内容参见前文步骤S101和步骤S102中的相关描述,这里不赘述。(3)第二设备的窄带通信模块扫描到该扩展广播帧并解析出该测距参数信息后,根据该测距参数信息完成测距事件的创建。(4)第一设备和第二设备分别唤醒各自的UWB模块(图7中用UWB表示),并分别将该测距参数信息下发至各自的UWB模块,准备测距。(5)第一设备和第二设备的UWB模块分别按照该测距参数信息完成测距。(6)测距完成后,第一设备和第二设备可以分别唤醒自己的窄带通信模块,唤醒后,第二设备的窄带通信模块发送测距结果消息帧(即前文中的第四消息),该测距结果消息帧中包括第二测距结果;第一设备的窄带通信模块启动接收该测距结果消息帧,从而将测距结果汇总至第一设备中(当然也可以将测距结果汇总至第二设备中);完成第一设备和第二设备之间的测距计算。
本申请实施例通过窄带通信模块广播的方式,告知测距双方其在测距过程中使用的参数(即测距参数信息)、完成个域网建立等;以此方式来减少UWB模块的工作时间,减少功耗,提升测距效率;同时可以减少UWB模块的实现复杂度,降低成本。
示例3:参见图8,图8是本申请实施例提供的窄带辅助宽带测距的又一种流程示意图。如图8所示,窄带辅助宽带测距的流程包括但不限于以下内容:(1)第一设备的窄带通信模块(图8中用NB表示)发送广播帧,用于发现设备;第二设备的窄带通信模块发起扫描,扫描附近的设备。(2)第二设备的窄带通信模块发送接入请求消息,用于请求与第一设备的 窄带通信模块建立连接;第一设备的窄带通信模块发送接入响应消息,用于同意该接入请求消息的请求。(3)第一设备和第二设备的窄带通信模块建立连接后,第一设备和第二设备的窄带通信模块进行测距参数信息的协商。(4)第一设备和第二设备分别唤醒各自的UWB模块(图8中用UWB表示),并分别将协商确定出的测距参数信息下发至各自的UWB模块,准备测距。(5)第一设备和第二设备的UWB模块分别按照协商确定出的测距参数信息完成测距。(6)测距完成后,第一设备和第二设备可以分别唤醒自己的窄带通信模块,唤醒后,第一设备和第二设备的UWB模块分别将测量结果上报给各自的窄带通信模块;第二设备的窄带通信模块发送测距结果消息帧(即前文中的第四消息),该测距结果消息帧中包括第二测距结果;第一设备的窄带通信模块启动接收该测距结果消息帧,从而将测距结果汇总至第一设备中(当然也可以将测距结果汇总至第二设备中);完成第一设备和第二设备之间的测距计算。
本申请实施例的两个设备通过窄带通信模块建立连接的方式,完成个域网建立、测距参数的协商、以及测距时隙的分配等;以此方式来减少UWB模块的工作时间,减少功耗,提升测距效率;同时可以减少UWB模块的实现复杂度,降低成本。
可理解,上述示例1至示例3不只限于两个设备之间的测距,其可以拓展至n(n为大于或等于2的整数)个设备,完成不同设备间的测距需求。
上述内容详细阐述了本申请提供的方法,为了便于实施本申请实施例的上述方案,本申请实施例还提供了相应的装置或设备。
本申请根据上述方法实施例对第一设备和第二设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面将结合图9至图12详细描述本申请实施例的第一设备和第二设备。
参见图9,图9是本申请实施例提供的通信装置的一结构示意图。如图9所示,该通信装置包括收发单元10和处理单元20。
在本申请的一些实施例中,该通信装置可以是上文示出的第一设备。即图9所示的通信装置可以用于执行上文方法实施例中由第一设备执行的步骤或功能等。
收发单元10,用于发送第一消息,该第一消息用于发现第二设备;该收发单元10,还用于向发现的第二设备发送第二消息。
示例性的,处理单元20,用于生成第一消息和第二消息,以及通过或控制收发单元10发送该第一消息和第二消息。
在一种可能的实现方式中,收发单元10,还用于接收接入请求消息和发送接入响应消息。
示例性的,处理单元20,还用于生成接入响应消息,以及通过或控制收发单元10发送该接入响应消息。
在一种可能的实现方式中,处理单元20,还用于获取测距参数信息。
在一种可能的实现方式中,收发单元10,还用于接收第一测距帧和根据测距参数信息发送第二测距帧。
示例性的,处理单元20,还用于根据测距参数信息生成第二测距帧,以及通过或控制收发单元10发送该第二测距帧。
在一种可能的实现方式中,收发单元10,还用于发送第三消息。
示例性的,处理单元20,还用于生成第三消息,以及通过或控制收发单元10发送该第三消息。
在一种可能的实现方式中,收发单元10,还用于接收第四消息。
可理解,关于第一消息、第二消息、第三消息、第四消息、测距参数信息、第一测距帧、第二测距帧、接入请求消息、以及接入响应消息等的具体说明可以参考上文所示的方法实施例,这里不再一一详述。
可理解,本申请实施例示出的收发单元和处理单元的具体说明仅为示例,对于收发单元和处理单元的具体功能或执行的步骤等,可以参考上述方法实施例(如图4),这里不再详述。
复用图9,在本申请的另一些实施例中,该通信装置可以是上文示出的第二设备。即图9所示的通信装置可以用于执行上文方法实施例中由第二设备执行的步骤或功能等。
收发单元10,用于接收第一消息和接收第二消息。
在一种可能的实现方式中,收发单元10,还用于发送接入请求消息和接收接入响应消息。
示例性的,处理单元20,用于生成接入请求消息,以及通过或控制收发单元10发送该接入请求消息。
在一种可能的实现方式中,收发单元10,还用于根据测距参数信息发送第一测距帧,和接收第二测距帧。
示例性的,处理单元20,还用于根据测距参数信息生成第一测距帧,以及通过或控制收发单元10发送该第一测距帧。
在一种可能的实现方式中,收发单元10,还用于接收第三消息。
在一种可能的实现方式中,收发单元10,还用于发送第四消息。
示例性的,处理单元20,还用于生成第四消息,以及通过或控制收发单元10发送该第四消息。
可理解,关于第一消息、第二消息、第三消息、第四消息、测距参数信息、第一测距帧、第二测距帧、接入请求消息、以及接入响应消息等的具体说明可以参考上文所示的方法实施例,这里不再一一详述。
可理解,本申请实施例示出的收发单元和处理单元的具体说明仅为示例,对于收发单元和处理单元的具体功能或执行的步骤等,可以参考上述方法实施例(如图4),这里不再详述。
以上介绍了本申请实施例的第一设备和第二设备,以下介绍第一设备和第二设备可能的产品形态。应理解,但凡具备上述图9所述的第一设备的功能的任何形态的产品,或者,但凡具备上述图9所述的第二设备的功能的任何形态的产品,都落入本申请实施例的保护范围。还应理解,以下介绍仅为举例,不限制本申请实施例的第一设备和第二设备的产品形态仅限于此。
参见图10,图10是本申请实施例提供的通信装置的另一结构示意图。该通信装置可以为第一设备或第二设备,或其中的芯片。图10仅示出了通信装置的主要部件。其中,窄带通信电路100和UWB电路200可以通过总线连接。窄带通信电路100可以用于执行前述方法实施例中窄带通信模块的步骤或功能,UWB电路200可以用于执行前述方法实施例中UWB模块的步骤或功能。
在本申请的一些实施例中,图10所示通信装置可以用于执行前述方法实施例中第一设备的功能。窄带通信电路100用于发送第一消息,该第一消息用于发现第二设备;窄带通信电 路100还用于向发现的该第二设备发送第二消息,该第二消息中携带测距参数信息,该测距参数信息用于该第二设备的UWB模块进行测距。
在一种可能的实现方式中,窄带通信电路100还用于接收接入请求消息和发送接入响应消息,该接入请求消息用于请求与该第一设备的窄带通信模块建立连接;该接入响应消息用于同意该接入请求消息的请求。
在一种可能的实现方式中,窄带通信电路100还用于从UWB电路200获取测距参数信息。
在一种可能的实现方式中,UWB电路200用于接收第一测距帧,并根据该测距参数信息发送第二测距帧。
在一种可能的实现方式中,窄带通信电路100还用于发送第三消息,该第三消息中携带第一测距结果,该第一测距结果包括该第一测距帧的接收时间和该第二测距帧的发送时间。
在一种可能的实现方式中,UWB电路200还用于向该第一设备的窄带通信模块传输第一测距结果。
在一种可能的实现方式中,窄带通信电路100还用于接收第四消息,该第四消息中携带第二测距结果,该第二测距结果包括该第二测距帧的接收时间和该第一测距帧的发送时间。
可理解,关于第一消息、第二消息、第三消息、第四消息、测距参数信息、第一测距帧、第二测距帧、接入请求消息、以及接入响应消息等的具体说明可以参考上文所示的方法实施例,这里不再一一详述。
在本申请的另一些实施例中,图10所示通信装置可以用于执行前述方法实施例中第二设备的功能。窄带通信电路100用于接收第一消息,并接收第二消息,该第一消息用于发现该第二设备,该第二消息中携带测距参数信息,该测距参数信息用于该第二设备的超宽带UWB模块进行测距。
在一种可能的实现方式中,窄带通信电路100还用于发送接入请求消息和接收接入响应消息,该接入请求消息用于请求与该第一设备的窄带通信模块建立连接;该接入响应消息用于同意该接入请求消息的请求。
在一种可能的实现方式中,窄带通信电路100还用于向UWB电路200传输该测距参数信息。
在一种可能的实现方式中,UWB电路200用于根据该测距参数信息发送第一测距帧,并接收第二测距帧。
在一种可能的实现方式中,窄带通信电路100还用于接收第三消息,该第三消息中携带第一测距结果,该第一测距结果包括该第一测距帧的接收时间和该第二测距帧的发送时间。
在一种可能的实现方式中,窄带通信电路100还用于发送第四消息,该第四消息中携带第二测距结果,该第二测距结果包括该第二测距帧的接收时间和该第一测距帧的发送时间。
在一种可能的实现方式中,UWB电路200还用于向窄带通信电路100传输第二测距结果。
可理解,关于第一消息、第二消息、第三消息、第四消息、测距参数信息、第一测距帧、第二测距帧、接入请求消息、以及接入响应消息等的具体说明可以参考上文所示的方法实施例,这里不再一一详述。
在一种可能的实现方式中,图9所示的通信装置中,处理单元20可以是一个或多个处理器,收发单元10可以是收发器,或者收发单元10还可以是发送单元和接收单元,发送单元可以是发送器,接收单元可以是接收器,该发送单元和接收单元集成于一个器件,例如收发 器。本申请实施例中,处理器和收发器可以被耦合等,对于处理器和收发器的连接方式,本申请实施例不作限定。在执行上述方法的过程中,上述方法中有关发送消息(如发送第一消息、第二消息、第三消息、第四消息等)的过程,可以理解为由处理器输出上述消息的过程。在输出上述消息时,处理器将该上述消息输出给收发器,以便由收发器进行发射。该上述消息在由处理器输出之后,还可能需要进行其他的处理,然后才到达收发器。类似的,上述方法中有关接收消息(如接收第一消息、第二消息、第三消息、第四消息等)的过程,可以理解为处理器接收输入的上述消息的过程。处理器接收输入的消息时,收发器接收该上述消息,并将其输入处理器。更进一步的,在收发器收到该上述消息之后,该上述消息可能需要进行其他的处理,然后才输入处理器。
参见图11,图11是本申请实施例提供的通信装置1000的结构示意图。该通信装置1000可以为第一设备或第二设备,或其中的芯片。图11仅示出了通信装置1000的主要部件。除处理器1001和收发器1002之外,所述通信装置还可以进一步包括存储器1003、以及输入输出装置(图未示意)。
处理器1001主要用于对通信协议以及通信数据进行处理,以及对整个通信装置进行控制,执行软件程序,处理软件程序的数据。存储器1003主要用于存储软件程序和数据。收发器1002可以包括控制电路和天线,控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当通信装置开机后,处理器1001可以读取存储器1003中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器1001对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到通信装置时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器1001,处理器1001将基带信号转换为数据并对该数据进行处理。
在另一种实现中,所述的射频电路和天线可以独立于进行基带处理的处理器而设置,例如在分布式场景中,射频电路和天线可以与独立于通信装置,呈拉远式的布置。
其中,处理器1001、收发器1002、以及存储器1003可以通过通信总线连接。
一种设计中,通信装置1000可以用于执行前述方法实施例中第一设备的功能:处理器1001可以用于生成图4中步骤S101发送的第一消息、步骤S102发送的第二消息以及步骤S104发送的第二测距帧,和/或用于执行本文所描述的技术的其它过程;收发器1002可以用于执行图4中的步骤S101、步骤S102以及步骤S104等,和/或用于本文所描述的技术的其它过程。
另一种设计中,通信装置1000可以用于执行前述方法实施例中第二设备的功能:处理器1001可以用于生成图4中步骤S103发送的第一测距帧,和/或用于执行本文所描述的技术的其它过程;收发器1002可以用于执行图4中的步骤S103,和/或用于本文所描述的技术的其它过程。
在上述任一种设计中,处理器1001中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在上述任一种设计中,处理器1001可以存有指令,该指令可为计算机程序,计算机程序在处理器1001上运行,可使得通信装置1000执行上述方法实施例中描述的方法。计算机程序可能固化在处理器1001中,该种情况下,处理器1001可能由硬件实现。
在一种实现方式中,通信装置1000可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、无线射频集成电路(radio frequency integrated circuit,RFIC)、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图11的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
在另一种可能的实现方式中,图9所示的通信装置中,图9所示的通信装置中,处理单元20可以是一个或多个逻辑电路,收发单元10可以是输入输出接口,又或者称为通信接口,或者接口电路,或接口等等。或者收发单元10还可以是发送单元和接收单元,发送单元可以是输出接口,接收单元可以是输入接口,该发送单元和接收单元集成于一个单元,例如输入输出接口。参见图12,图12是本申请实施例提供的通信装置的又一结构示意图。如图12所示,图12所示的通信装置包括逻辑电路901和接口902。即上述处理单元20可以用逻辑电路901实现,收发单元10可以用接口902实现。其中,该逻辑电路901可以为芯片、处理电路、集成电路或片上系统(system on chip,SoC)芯片等,接口902可以为通信接口、输入输出接口、管脚等。示例性的,图12是以上述通信装置为芯片为例示出的,该芯片包括逻辑电路901和接口902。
本申请实施例中,逻辑电路和接口还可以相互耦合。对于逻辑电路和接口的具体连接方式,本申请实施例不作限定。
示例性的,当通信装置用于执行前述方法实施例中第一设备执行的方法或功能或步骤时,逻辑电路901,用于生成第一消息和第二消息;接口902,用于输出该第一消息和第二消息。
示例性的,当通信装置用于执行前述方法实施例中第二设备执行的方法或功能或步骤时,接口902,用于输入第一消息和第二消息;逻辑电路901,用于对该第二消息进行解析,获得其中的测距参数信息。
可理解,关于第一消息、第二消息以及测距参数信息等的具体说明可以参考上文所示的 方法实施例,这里不再一一详述。
可理解,本申请实施例示出的通信装置可以采用硬件的形式实现本申请实施例提供的方法,也可以采用软件的形式实现本申请实施例提供的方法等,本申请实施例对此不作限定。
对于图12所示的各个实施例的具体实现方式,还可以参考上述各个实施例,这里不再详述。
本申请实施例还提供一种通信装置,该通信装置中包括片上系统(system on chip,SoC)芯片。该SoC芯片包括收发器,与该收发器耦合的处理器,可选的还包括耦合于该处理器的内部存储器和外部存储器。收发器用于收发消息,该处理器用于执行内部存储器和外部存储器中存储的程序指令,以使得该通信装置执行前述方法实施例中的方法。
其中,SoC是系统级芯片,意指它是一个产品,是一个有专用目标的集成电路,其中包含完整系统并有嵌入软件的全部内容。同时它又是一种技术,用以实现从确定系统功能开始,到软/硬件划分,并完成设计的整个过程。
本申请实施例还提供了一种通信系统,该通信系统包括第一设备和第二设备,该第一设备和第二设备可以用于执行前述方法实施例中的方法。
此外,本申请还提供一种计算机程序,该计算机程序用于实现本申请提供的方法中由第一设备执行的操作和/或处理。
本申请还提供一种计算机程序,该计算机程序用于实现本申请提供的方法中由第二设备执行的操作和/或处理。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机代码,当计算机代码在计算机上运行时,使得计算机执行本申请提供的方法中由第一设备执行的操作和/或处理。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机代码,当计算机代码在计算机上运行时,使得计算机执行本申请提供的方法中由第二设备执行的操作和/或处理。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机代码或计算机程序,当该计算机代码或计算机程序在计算机上运行时,使得本申请提供的方法中由第一设备执行的操作和/或处理被执行。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机代码或计算机程序,当该计算机代码或计算机程序在计算机上运行时,使得本申请提供的方法中由第二设备执行的操作和/或处理被执行。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例提供的方案的技术效果。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个可读存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的可读存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (25)

  1. 一种信息交互方法,其特征在于,包括:
    第一设备的窄带通信模块发送第一消息,所述第一消息用于发现第二设备;
    所述第一设备的窄带通信模块向发现的所述第二设备发送第二消息,所述第二消息中携带测距参数信息,所述测距参数信息用于所述第二设备的超宽带UWB模块进行测距。
  2. 根据权利要求1所述的方法,其特征在于,所述第二消息为扩展广播帧,所述测距参数信息携带于所述扩展广播帧的数据内容字段中;
    所述扩展广播帧中包括数据类型字段,所述数据类型字段用于指示所述扩展广播帧中携带的广播数据的类型,所述数据类型字段设置为预留值,用于表示所述扩展广播帧中携带测距参数信息。
  3. 根据权利要求1所述的方法,其特征在于,所述测距参数信息携带于所述第二消息的有效载荷payload中;
    所述第一设备的窄带通信模块向发现的所述第二设备发送第二消息之前,所述方法还包括:
    所述第一设备的窄带通信模块接收所述第二设备的窄带通信模块发送的接入请求消息,所述接入请求消息用于请求与所述第一设备的窄带通信模块建立连接;
    所述第一设备的窄带通信模块发送接入响应消息,所述接入响应消息用于同意所述接入请求消息的请求。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述第一设备的窄带通信模块向发现的所述第二设备发送第二消息之前,所述方法还包括:
    第一设备的窄带通信模块从所述第一设备的UWB模块获取测距参数信息。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述测距参数信息包括以下一项或多项:
    测距方法、测距设备的标识、所述测距设备的测距角色、测距模式、测距帧格式、测距时隙分配、测角需求、或测量值上报方式;
    其中,所述测距方法包括单边双向测距和双边双向测距,所述测距设备包括所述第二设备,所述测距模式包括一对一测距、一对多测距、或多对多测距。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述第一设备的窄带通信模块向发现的所述第二设备发送第二消息之后,所述方法还包括:
    所述第一设备的UWB模块接收所述第二设备的UWB模块发送的第一测距帧;
    所述第一设备的UWB模块根据所述测距参数信息发送第二测距帧。
  7. 根据权利要求6所述的方法,其特征在于,所述第一设备的UWB模块接收所述第二设备的UWB模块发送的第一测距帧之后,所述方法还包括:
    所述第一设备的窄带通信模块发送第三消息,所述第三消息中携带第一测距结果,所述 第一测距结果包括所述第一测距帧的接收时间和所述第二测距帧的发送时间。
  8. 根据权利要求7所述的方法,其特征在于,所述第一设备的窄带通信模块发送第二消息之前,所述方法还包括:
    所述第一设备的UWB模块向所述第一设备的窄带通信模块传输第一测距结果。
  9. 根据权利要求7或8所述的方法,其特征在于,所述第一测距结果还包括以下一项或多项:
    定位坐标、第二设备相对于所述第一设备的到达角度AOA水平角、所述第二设备相对于所述第一设备的AOA俯仰角、或所述第一测距帧的接收时间的可靠性。
  10. 根据权利要求6所述的方法,其特征在于,所述第一设备的UWB模块根据所述测距参数信息发送第二测距帧之后,所述方法还包括:
    所述第一设备的窄带通信模块接收所述第二设备的窄带通信模块发送的第四消息,所述第四消息中携带第二测距结果,所述第二测距结果包括所述第二测距帧的接收时间和所述第一测距帧的发送时间。
  11. 根据权利要求10所述的方法,其特征在于,所述第二测距结果还包括以下一项或多项:
    定位坐标、所述第一设备相对于第二设备的AOA水平角、所述第一设备相对于所述第二设备的AOA俯仰角、或所述第二测距帧的接收时间的可靠性。
  12. 一种信息交互方法,其特征在于,包括:
    第二设备的窄带通信模块接收第一设备的窄带通信模块发送的第一消息,所述第一消息用于发现所述第二设备;
    所述第二设备的窄带通信模块接收所述第一设备的窄带通信模块发送的第二消息,所述第二消息中携带测距参数信息,所述测距参数信息用于所述第二设备的超宽带UWB模块进行测距。
  13. 根据权利要求12所述的方法,其特征在于,所述第二消息为扩展广播帧,所述测距参数信息携带于所述扩展广播帧的数据内容字段中;
    所述扩展广播帧中包括数据类型字段,所述数据类型字段用于指示所述扩展广播帧中携带的广播数据的类型,所述数据类型字段设置为预留值,用于表示所述扩展广播帧中携带测距参数信息。
  14. 根据权利要求12所述的方法,其特征在于,所述测距参数信息携带于所述第一消息的有效载荷payload中;
    所述第二设备的窄带通信模块接收第一设备的窄带通信模块发送的第二消息之前,所述方法还包括:
    所述第二设备的窄带通信模块发送接入请求消息,所述接入请求消息用于请求与所述第一设备的窄带通信模块建立连接;
    所述第二设备的窄带通信模块接收所述第一设备的窄带通信模块发送的接入响应消息,所述接入响应消息用于同意所述接入请求消息的请求。
  15. 根据权利要求12-14中任一项所述的方法,其特征在于,所述测距参数信息包括以下一项或多项:
    测距方法、测距设备的标识、所述测距设备的测距角色、测距模式、测距帧格式、测距时隙分配、测角需求、或测量值上报方式;
    其中,所述测距方法包括单边双向测距和双边双向测距,所述测距设备包括所述第二设备,所述测距模式包括一对一测距、一对多测距、或多对多测距。
  16. 根据权利要求12-15中任一项所述的方法,其特征在于,所述第二设备的窄带通信模块接收第一设备的窄带通信模块发送的第二消息之后,所述方法还包括:
    所述第二设备的窄带通信模块向所述第二设备的UWB模块传输所述测距参数信息。
  17. 根据权利要求16所述的方法,其特征在于,所述第二设备的窄带通信模块向所述第二设备的UWB模块传输所述测距参数信息之后,所述方法还包括:
    所述第二设备的UWB模块根据所述测距参数信息发送第一测距帧;
    所述第二设备的UWB模块接收所述第一设备的UWB模块发送的第二测距帧。
  18. 根据权利要求17所述的方法,其特征在于,所述第二设备的UWB模块根据所述测距参数信息发送第一测距帧之后,所述方法还包括:
    所述第二设备的窄带通信模块接收所述第一设备的窄带通信模块发送的第三消息,所述第三消息中携带第一测距结果,所述第一测距结果包括所述第一测距帧的接收时间和所述第二测距帧的发送时间。
  19. 根据权利要求18所述的方法,其特征在于,所述第一测距结果还包括以下一项或多项:
    定位坐标、第二设备相对于所述第一设备的到达角度测距AOA水平角、所述第二设备相对于所述第一设备的AOA俯仰角、或所述第一测距帧的接收时间的可靠性。
  20. 根据权利要求16所述的方法,其特征在于,所述第二设备的UWB模块接收所述第一设备的UWB模块发送的第二测距帧之后,所述方法还包括:
    所述第二设备的窄带通信模块发送第四消息,所述第四消息中携带第二测距结果,所述第二测距结果包括所述第二测距帧的接收时间和所述第一测距帧的发送时间。
  21. 根据权利要求20所述的方法,其特征在于,所述第二设备的窄带通信模块发送第四消息之前,所述方法还包括:
    所述第二设备的UWB模块向所述第二设备的窄带通信模块传输第二测距结果。
  22. 根据权利要求20或21所述的方法,其特征在于,所述第二测距结果还包括以下一项或多项:
    定位坐标、第一设备相对于所述第二设备的AOA水平角、所述第一设备相对于所述第二设备的AOA俯仰角、或所述第二测距帧的接收时间的可靠性。
  23. 一种通信装置,其特征在于,包括窄带通信电路和UWB电路,其中:
    所述窄带通信电路用于执行如权利要求1、3-4、7、10中任一项所述的方法,所述UWB电路用于执行如权利要求6、8中任一项所述的方法;
    或者,所述窄带通信电路用于执行如权利要求12、14、16、18、20中任一项所述的方法,所述UWB电路用于执行如权利要求17、21中任一项所述的方法。
  24. 一种片上系统SoC芯片,其特征在于,所述SoC芯片包括收发器、处理器、以及耦合于所述处理器的内部存储器和外部存储器,所述收发器用于收发消息,所述处理器用于执行所述内部存储器和外部存储器中存储的程序指令,以使得所述SoC芯片执行如权利要求1-22中任一项所述的方法。
  25. 一种通信系统,其特征在于,包括如权利要求1-11中任一项所述的第一设备和如权利要求12-22中任一项所述的第二设备。
PCT/CN2023/082489 2022-03-25 2023-03-20 信息交互方法及相关装置 WO2023179535A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210300592 2022-03-25
CN202210300592.3 2022-03-25
CN202210728173.X 2022-06-25
CN202210728173.XA CN116847288A (zh) 2022-03-25 2022-06-25 信息交互方法及相关装置

Publications (1)

Publication Number Publication Date
WO2023179535A1 true WO2023179535A1 (zh) 2023-09-28

Family

ID=88099931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082489 WO2023179535A1 (zh) 2022-03-25 2023-03-20 信息交互方法及相关装置

Country Status (1)

Country Link
WO (1) WO2023179535A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210136556A1 (en) * 2019-11-01 2021-05-06 Samsung Electronics Co., Ltd. Electronic device and method for performing ranging through uwb
CN113660604A (zh) * 2021-08-17 2021-11-16 Oppo广东移动通信有限公司 定位方法、定位装置、移动终端和存储介质
CN114007237A (zh) * 2022-01-04 2022-02-01 杭州优智联科技有限公司 Uwb系统进行测距的调度方法、装置、系统及介质
US20220066010A1 (en) * 2020-08-25 2022-03-03 Cisco Technology, Inc. Infrastructure triggering techniques to facilitate secure ultra-wideband (uwb) ranging

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210136556A1 (en) * 2019-11-01 2021-05-06 Samsung Electronics Co., Ltd. Electronic device and method for performing ranging through uwb
US20220066010A1 (en) * 2020-08-25 2022-03-03 Cisco Technology, Inc. Infrastructure triggering techniques to facilitate secure ultra-wideband (uwb) ranging
CN113660604A (zh) * 2021-08-17 2021-11-16 Oppo广东移动通信有限公司 定位方法、定位装置、移动终端和存储介质
CN114007237A (zh) * 2022-01-04 2022-02-01 杭州优智联科技有限公司 Uwb系统进行测距的调度方法、装置、系统及介质

Similar Documents

Publication Publication Date Title
US9078209B2 (en) Power management method for station in wireless LAN system and station that supports same
JP6527965B2 (ja) チャネル効率の高い分散方式のピアステーション間のデータ伝送の方法及びシステム
WO2021062792A1 (zh) 一种唤醒信号的检测方法及装置
US20130258932A1 (en) Method for power save mode operation in wireless local area network and apparatus for the same
WO2023125223A1 (zh) 下行传输的方法及装置
WO2022022491A1 (zh) 通信方法及装置
WO2022002192A1 (zh) 多链路设备的aid分配方法及相关装置
WO2022141184A1 (zh) 一种上行参考信号资源的配置方法及相关装置
WO2023197986A1 (zh) Uwb信号的传输方法及相关装置
WO2023179535A1 (zh) 信息交互方法及相关装置
WO2021239113A1 (zh) 数据传输方法及装置
WO2022160298A1 (zh) 时间同步方法、装置和系统
CN116847288A (zh) 信息交互方法及相关装置
WO2023236821A1 (zh) 多链路通信方法及装置
WO2023207223A1 (zh) 多链路的重配置方法及装置
WO2023185633A1 (zh) 一种通信的方法、装置和系统
CN111328127A (zh) 通信方法、通信装置及存储介质
WO2023179585A1 (zh) 时钟同步的方法和装置
WO2023197843A1 (zh) 一种通信的方法和装置
WO2024051660A1 (zh) 通信方法和通信装置
WO2023040776A1 (zh) 信号传输方法、装置及系统
WO2022237597A1 (zh) 通信方法和通信装置
WO2022082538A1 (zh) 无线通信的方法和装置以及通信设备
WO2024032299A1 (zh) 周期时隙资源的资源位置确定方法及装置
WO2024041185A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23773783

Country of ref document: EP

Kind code of ref document: A1