WO2023040776A1 - 信号传输方法、装置及系统 - Google Patents

信号传输方法、装置及系统 Download PDF

Info

Publication number
WO2023040776A1
WO2023040776A1 PCT/CN2022/118178 CN2022118178W WO2023040776A1 WO 2023040776 A1 WO2023040776 A1 WO 2023040776A1 CN 2022118178 W CN2022118178 W CN 2022118178W WO 2023040776 A1 WO2023040776 A1 WO 2023040776A1
Authority
WO
WIPO (PCT)
Prior art keywords
preamble
preambles
target
preamble group
signal
Prior art date
Application number
PCT/CN2022/118178
Other languages
English (en)
French (fr)
Inventor
段瑞洋
王碧钗
李雪茹
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22869145.7A priority Critical patent/EP4387180A1/en
Publication of WO2023040776A1 publication Critical patent/WO2023040776A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • H04W4/027Services making use of location information using location based information parameters using movement velocity, acceleration information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/004Orthogonal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0077Multicode, e.g. multiple codes assigned to one user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/10Code generation
    • H04J13/12Generation of orthogonal codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J2013/0037Multilevel codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds

Definitions

  • the embodiments of the present application relate to the field of wireless communication, and in particular, to a signal transmission method, device, and system.
  • Ultra-wideband (UWB) signals have strong anti-multipath interference capability and ultra-high time resolution, and have unique advantages in high-precision short-range ranging.
  • UWB ranging is mainly realized through the preamble code (Preamble Code) in the synchronization header (SHR) in the physical layer protocol data unit (physical layer protocol data unit, PPDU).
  • the basic principle is: the sending device repeatedly sends the preamble symbol (Preamble Symbol) generated after the preamble is filled with 0, and the receiving device performs periodic autocorrelation with the local preamble after receiving the preamble symbol, and detects the maximum autocorrelation peak The position is derived from the transmission delay of the signal, so as to complete the ranging.
  • each group includes two preambles.
  • the preambles in the same group can be used in the same channel.
  • the preamble group with a length of 31 supports the synchronous ranging of two devices, but cannot support the synchronous ranging of more devices.
  • the present application provides a signal transmission method, device and system, which can increase the preamble capacity in a preamble group, thereby supporting synchronous ranging of more devices.
  • a signal transmission method is provided.
  • the method may be executed by the second device, or may be executed by components of the second device, such as a processor, a chip, or a chip system, etc., or may be implemented by all or part of the A logical module or software implementation of the functionality of the second device.
  • the method includes generating a first signal and sending the first signal to a first device.
  • the first signal includes a preamble symbol determined according to a target preamble with a length of N, the target preamble belongs to a target preamble group including L preambles, and L is a positive integer greater than or equal to 3.
  • N is equal to 31
  • the target preamble group includes at least one of four preambles, and the four preambles are as follows:
  • N is equal to 31 and the target preamble set includes at least 3 of the twenty preambles as follows:
  • - means -1
  • the preamble set provided by this application includes at least three preambles with a length of 31, which increases the capacity of the preamble in the preamble set.
  • the preamble group provided by this application when the preambles in the same preamble group are used for synchronous ranging on the same channel, it can support the synchronous ranging of at least 3 devices in the same channel, which improves the ability to perform synchronous ranging on the same channel.
  • the number of devices for synchronous ranging can reduce the ranging delay compared with the prior art method of using time division multiplexing to perform ranging for multiple devices.
  • a signal transmission method is provided, and the method may be executed by the first device, or may be executed by components of the first device, such as a processor, a chip, or a chip system, etc., or may be implemented by all or part of the A logical module or software implementation of the first device function.
  • the method includes: receiving a first signal from a second device, and processing the first signal according to a target preamble.
  • the first signal includes a preamble symbol determined according to a target preamble with a length of N, the target preamble belongs to a target preamble group including L preambles, and L is a positive integer greater than or equal to 3;
  • N is equal to 31
  • the target preamble group includes at least one of four preambles, and the four preambles are as follows:
  • N is equal to 31 and the target preamble set includes at least 3 of the twenty preambles as follows:
  • the target preamble group is one of the first preamble group and the second preamble group, where:
  • the first preamble group includes at least one of the first two preambles of the four preambles, and at least one of the following preambles:
  • the second preamble group includes at least one of the last two preambles among the four preambles, and at least one of the following preambles:
  • the first preamble group includes at least 3 of the first 10 preambles of the twenty preambles
  • the second preamble group includes at least 3 of the last 10 preambles of the twenty preambles.
  • the preambles within each preamble group and the preambles between groups all have a low level of periodic cross-correlation.
  • intra-channel and inter-channel interference can be reduced.
  • the first preamble group and the second preamble group are used for K channels, and K is a positive integer greater than or equal to 2.
  • K is equal to 3
  • the first preamble group is used for the first channel and the third channel of the ultra-wideband frequency band
  • the second preamble group is used for the ultra-wideband frequency band
  • the second channel, the first channel and the third channel are not adjacent.
  • two channels using the same preamble group are not adjacent to each other, which can reduce interference between channels.
  • a signal transmission method is provided, which can be executed by the second device, or by components of the second device, such as processors, chips, or chip systems, etc.
  • the method includes generating a first signal and sending the first signal to a first device.
  • the first signal includes a preamble symbol determined according to a target preamble with a length of N, the target preamble belongs to a target preamble group including L preambles, and L is a positive integer greater than or equal to 3.
  • N is equal to 91
  • the target preamble group includes at least one of ten preambles, and the ten preambles are as follows:
  • - means -1
  • the preamble set provided in this application includes at least three preambles with a length of 91. Based on the preamble group, when the preambles in the same preamble group are used for the synchronous ranging of the same channel, it is possible to support the synchronous ranging of at least three devices in the same channel. In addition, the cross-correlation among the preambles among the ten preambles is low, and compared with the 91 long preambles in the prior art, the interference between the preambles can be reduced.
  • a signal transmission method may be executed by the first device, or may be executed by a component of the first device, such as a processor, a chip, or a chip system, etc., or may be implemented by all or part of the A logical module or software implementation of the first device function.
  • the method includes: receiving a first signal from a second device, and processing the first signal according to a target preamble.
  • the first signal includes a preamble symbol determined according to a target preamble with a length of N, the target preamble belongs to a target preamble group including L preambles, and L is a positive integer greater than or equal to 3;
  • N is equal to 91
  • the target preamble group includes at least one of ten preambles, and the ten preambles are as follows:
  • the target preamble group is one of the first preamble group, the second preamble group, and the third preamble group;
  • the first preamble group includes at least one of the first four preambles among the ten preambles, and at least one of the following preambles:
  • the second preamble group includes at least one of the fifth preamble, the sixth preamble, or the seventh preamble among the ten preambles, and at least one of the following preambles:
  • the third preamble group includes at least one of the last three preambles of the ten preambles, and at least one of the following preambles:
  • the preambles within each preamble group and the preambles between groups all have a low level of periodic cross-correlation.
  • intra-channel and inter-channel interference can be reduced.
  • a signal transmission method is provided.
  • the method may be executed by the second device, or may be executed by components of the second device, such as a processor, a chip, or a system-on-chip, etc., or may be implemented by all or part A logical module or software implementation of the functionality of the second device.
  • the method includes generating a first signal and sending the first signal to a first device.
  • the first signal includes a preamble symbol determined according to a target preamble with a length of N, the target preamble belongs to a target preamble group including L preambles, and L is a positive integer greater than or equal to 3.
  • N is equal to 121
  • the target preamble group includes at least 3 of the forty-two preambles, and the forty-two preambles are as follows:
  • the present application provides a preamble with a length of 121 and a preamble group including at least 3 preambles, which improves the preamble capacity in the preamble group.
  • the preamble group provided by this application, when the preambles in the same preamble group are used for synchronous ranging on the same channel, it can support the synchronous ranging of at least 3 devices in the same channel, which improves the ability to perform synchronous ranging on the same channel.
  • the number of devices for synchronous ranging can reduce the ranging delay compared with the prior art method of using time division multiplexing to perform ranging for multiple devices.
  • the cross-correlation among the preambles among the forty-two preambles is low, which can reduce the interference between the preambles.
  • a signal transmission method may be executed by the first device, or may be executed by a component of the first device, such as a processor, a chip, or a chip system, etc., or may be implemented by all or part of the A logical module or software implementation of the first device function.
  • the method includes: receiving a first signal from a second device, and processing the first signal according to a target preamble.
  • the first signal includes a preamble symbol determined according to a target preamble with a length of N, the target preamble belongs to a target preamble group including L preambles, and L is a positive integer greater than or equal to 3;
  • N is equal to 121
  • the target preamble group includes at least 3 of the forty-two preambles, and the forty-two preambles are as follows:
  • the technical effect brought by the sixth aspect can refer to the technical effect brought by the fifth aspect above, and will not be repeated here.
  • the target preamble group is one of the first preamble group, the second preamble group, and the third preamble group.
  • the first preamble group includes at least 3 of the first 14 preambles in the forty-two preambles;
  • the second preamble group includes at least 3 of the middle 14 preambles of the forty-two preambles ;
  • the third preamble group includes at least 3 of the last 14 preambles among the forty-two preambles.
  • the preambles within each preamble group and the preambles between groups all have a low level of periodic cross-correlation.
  • intra-channel and inter-channel interference can be reduced.
  • a signal transmission method is provided.
  • the method may be executed by the second device, or may be executed by a component of the second device, such as a processor, a chip, or a chip system, etc., or may be implemented by all or part of the A logical module or software implementation of the functionality of the second device.
  • the method includes generating a first signal and sending the first signal to a first device.
  • the first signal includes a preamble symbol determined according to a target preamble with a length of N, the target preamble belongs to a target preamble group including L preambles, and L is a positive integer greater than or equal to 3.
  • N is equal to 127
  • the target preamble group includes at least one of fourteen preambles, and the fourteen preambles are as follows:
  • the preamble set provided in this application includes at least three preambles with a length of 217. Based on the preamble group, when the preambles in the same preamble group are used for the synchronous ranging of the same channel, it is possible to support the synchronous ranging of at least three devices in the same channel. In addition, the cross-correlation among the preambles among the fourteen preambles is low, and compared with the 127 long preambles in the prior art, the interference between the preambles can be reduced.
  • a signal transmission method may be executed by the first device, or may be executed by a component of the first device, such as a processor, a chip, or a chip system, etc., or may be implemented by all or part of the A logical module or software implementation of the first device function.
  • the method includes: receiving a first signal from a second device, and processing the first signal according to a target preamble.
  • the first signal includes a preamble symbol determined according to a target preamble with a length of N, the target preamble belongs to a target preamble group including L preambles, and L is a positive integer greater than or equal to 3;
  • N is equal to 127
  • the target preamble group includes at least one of fourteen preambles, and the fourteen preambles are as follows:
  • the technical effect brought by the eighth aspect can refer to the technical effect brought by the seventh aspect above, and will not be repeated here.
  • the target preamble group is one of the first preamble group, the second preamble group, and the third preamble group;
  • the first preamble group includes at least one of the first six preambles of the fourteen preambles, and at least one of the following preambles:
  • the second preamble group includes at least one of a seventh preamble and an eighth preamble among the ten preambles, and at least one of the following preambles:
  • the third preamble group includes at least one of the last six preambles among the ten preambles, and at least one of the following preambles:
  • the preambles within each preamble group and the preambles between groups all have a low level of periodic cross-correlation.
  • intra-channel and inter-channel interference can be reduced.
  • a signal transmission method is provided, and the method may be executed by the second device, or may be executed by components of the second device, such as a processor, a chip, or a chip system, etc., or may be implemented by all or part of the A logical module or software implementation of the functionality of the second device.
  • the method includes generating a first signal and sending the first signal to a first device.
  • the first signal includes a preamble symbol determined according to a target preamble with a length of N, the target preamble belongs to a target preamble group including L preambles, and L is a positive integer greater than or equal to 3.
  • N is equal to 133
  • the target preamble group includes at least 3 of the forty-five preambles, and the forty-five preambles are as follows:
  • the present application provides a preamble with a length of 131 and a preamble group including at least 3 preambles, which increases the capacity of the preamble in the preamble group.
  • the preamble group provided by this application, when the preambles in the same preamble group are used for synchronous ranging on the same channel, it can support the synchronous ranging of at least 3 devices in the same channel, which improves the ability to perform synchronous ranging on the same channel.
  • the number of devices for synchronous ranging can reduce the ranging delay compared with the prior art method of using time division multiplexing to perform ranging for multiple devices.
  • the cross-correlation among the preambles among the forty-five preambles is low, which can reduce the interference between the preambles.
  • a signal transmission method is provided.
  • the method may be executed by the first device, or may be executed by a component of the first device, such as a processor, a chip, or a system-on-a-chip, etc., or may be implemented by all or part of the A logical module or software implementation of the first device function.
  • the method includes: receiving a first signal from a second device, and processing the first signal according to a target preamble.
  • the first signal includes a preamble symbol determined according to a target preamble with a length of N, the target preamble belongs to a target preamble group including L preambles, and L is a positive integer greater than or equal to 3;
  • N is equal to 133
  • the target preamble group includes at least 3 of the forty-five preambles, and the forty-five preambles are as follows:
  • the target preamble group is one of the first preamble group, the second preamble group, and the third preamble group.
  • the first preamble group includes at least 3 of the first 15 preambles in the forty-five preambles;
  • the second preamble group includes at least 3 of the middle 15 preambles of the forty-five preambles ;
  • the third preamble group includes at least 3 of the last 15 preambles among the forty-five preambles.
  • the preambles within each preamble group and the preambles between groups all have a low level of periodic cross-correlation.
  • intra-channel and inter-channel interference can be reduced.
  • the first preamble group, the second preamble group, and the third preamble group are used for K channels, and K is a positive integer greater than or equal to 2.
  • the preamble group provided by this application can be used for ranging of K channels.
  • K is equal to 3
  • the first preamble group is used for the first channel
  • the second preamble group is used for the second channel
  • the third preamble group is used for the first channel.
  • the method further includes: receiving control information from the first device, where the control information is used to indicate the target preamble , the control information includes at least one of the following: the length of the target preamble, the index of the target preamble, or the index of the target preamble group.
  • Generating the first signal includes: generating the first signal according to the control information.
  • the second device Based on this embodiment, the second device generates the first signal according to the control information of the first device, which may enable the first device to select a target preamble corresponding to the first signal when processing the first signal, thereby improving the accuracy of the solution.
  • sending the first signal to the first device includes: receiving the second signal from the first device, according to The second signal sends the first signal to the first device.
  • the target preamble is an unused preamble in the target preamble group. Based on this embodiment, an unused preamble is selected to generate the first signal, which can reduce interference between the first signal and a signal corresponding to the used preamble.
  • the method before receiving the first signal from the second device, the method further includes: sending a control signal to the second device information, the control information is used to indicate the target preamble, and the control information includes at least one of the following: the length N of the target preamble, the index of the target preamble, or the index of the target preamble group.
  • the method before receiving the first signal from the second device, the method further includes: sending the second signal, the first The second signal is used to trigger the sending of the first signal.
  • the target preamble group is a preamble corresponding to the target channel; the method further includes: performing on the target channel Monitoring, determining an unused preamble in the target preamble group, where the target preamble is one of the unused preambles.
  • a communication device for implementing the above various methods.
  • the communication device may be the second device in the first aspect or the third aspect or the fifth aspect or the seventh aspect or the ninth aspect, or a device contained in the second device, such as a chip; or, the communication device may be the first aspect The first device in the second aspect or the fourth aspect or the sixth aspect or the eighth aspect or the tenth aspect, or a device contained in the first device, such as a chip.
  • the communication device includes a corresponding module, unit, or means (means) for implementing the above method, and the module, unit, or means can be implemented by hardware, software, or by executing corresponding software on hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device may include a transceiver module and a processing module.
  • the transceiver module which may also be referred to as a transceiver unit, is configured to implement the sending and/or receiving functions in any of the above aspects and any possible implementation manners thereof.
  • the transceiver module may be composed of a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the processing module may be used to implement the processing functions in any of the above aspects and any possible implementation manners thereof.
  • the transceiver module includes a sending module and a receiving module, respectively configured to implement the sending and receiving functions in any of the above aspects and any possible implementations thereof.
  • a communication device including: a processor and a communication interface; the communication interface is used to communicate with modules other than the communication device; the processor is used to execute computer programs or instructions to enable the communication
  • the device executes the method described in any one of the above aspects.
  • the communication device may be the second device in the first aspect to the fifth aspect above, or a device contained in the second device above, such as a chip; or, the communication device may be the device in the sixth aspect to the tenth opposite aspect above
  • the first device or a device contained in the above-mentioned first device, such as a chip.
  • a communication device including: an interface circuit and a processor, the interface circuit is a code/data read and write interface circuit, and the interface circuit is used to receive computer-executed instructions (computer-executed instructions are stored in a memory, It may be directly read from the memory, or may be transmitted through other devices) and transmitted to the processor; the processor is used to execute computer-executed instructions to enable the communication device to perform the method described in any aspect above.
  • the communication device may be the second device in the first aspect to the fifth aspect above, or a device contained in the second device above, such as a chip; or, the communication device may be the device in the sixth aspect to the tenth opposite aspect above The first device, or a device contained in the above-mentioned first device, such as a chip.
  • a communication device including: at least one processor; the processor is configured to execute computer programs or instructions, so that the communication device executes the method described in any one of the above aspects.
  • the communication device may be the second device in the first aspect to the fifth aspect above, or a device contained in the second device above, such as a chip; or, the communication device may be the device in the sixth aspect to the tenth opposite aspect above The first device, or a device contained in the above-mentioned first device, such as a chip.
  • the communication device includes a memory for storing necessary program instructions and data.
  • the memory can be coupled to the processor, or it can be independent of the processor.
  • the communication device may be a chip or system-on-a-chip.
  • the device When the device is a system-on-a-chip, it may consist of chips, or may include chips and other discrete devices.
  • a computer-readable storage medium is provided. Instructions are stored in the computer-readable storage medium. When the computer-readable storage medium is run on a communication device, the method described in any one of the above aspects is executed.
  • a computer program product containing instructions, which, when run on a communication device, enable the method described in any one of the above aspects to be executed.
  • the above-mentioned sending action/function can be understood as output information
  • the above-mentioned receiving action/function can be understood as input information
  • the technical effect brought about by any one of the design methods in the eleventh aspect to the sixteenth aspect can refer to the technical effects brought about by the different design methods in the above-mentioned first aspect to the tenth aspect, and will not be repeated here.
  • a communication system includes the first device and the second device described in the above aspect.
  • FIG. 1 is a schematic structural diagram of a communication system applied in an embodiment of the present application
  • FIG. 2 is an example diagram of a communication system applied in an embodiment of the present application
  • FIG. 3 is an example diagram of another communication system applied in the embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a signal transmission method provided by the present application.
  • FIG. 5 is a schematic flowchart of another signal transmission method provided by the present application.
  • FIG. 6 is a schematic diagram of the relationship between a preamble and a preamble symbol provided by the present application.
  • FIG. 7 is a schematic diagram of the relationship between another preamble and preamble symbols provided by the present application.
  • FIG. 8 is a schematic structural diagram of a communication device provided by the present application.
  • FIG. 9 is a schematic structural diagram of another communication device provided by the present application.
  • plural means two or more than two.
  • At least one of the following or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • at least one item (piece) of a, b, or c can represent: a, b, c, a and b, a and c, b and c, a and b and c, where a, b, c Can be single or multiple.
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same function and effect.
  • words such as “first” and “second” do not limit the number and execution order, and words such as “first” and “second” do not necessarily limit the difference.
  • words such as “exemplary” or “for example” are used as examples, illustrations or illustrations. Any embodiment or design scheme described as “exemplary” or “for example” in the embodiments of the present application shall not be interpreted as being more preferred or more advantageous than other embodiments or design schemes.
  • the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner for easy understanding.
  • references to "an embodiment” throughout the specification mean that a particular feature, structure, or characteristic related to the embodiment is included in at least one embodiment of the present application.
  • the various embodiments throughout the specification are not necessarily referring to the same embodiment.
  • the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
  • the serial numbers of the processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes no limitation.
  • pre-configuration in this application can be understood as definition, pre-definition, storage, pre-storage, pre-negotiation, curing, or pre-firing.
  • ⁇ ab ( ⁇ ) is limited to a lower level.
  • exp refers to the exponential function with the natural constant e as the base, Indicates convolution.
  • the ambiguity function mainly characterizes the influence of the carrier frequency offset (CFO) on the autocorrelation characteristics of the preamble. Due to the presence of CFO, the periodic autocorrelation properties of the preamble will deteriorate.
  • CFO carrier frequency offset
  • the ratio of the maximum side peak to the main peak of the autocorrelation under the influence of CFO is used to measure the fuzzy function properties of the preamble, which is expressed as the following formula (4):
  • ⁇ (a) represents the Fourier transform of a.
  • the SPAR mainly characterizes the influence of the preamble on the power spectral density (PSD) of the ranging signal. The smaller the value of SPAR a , the better the SPAR property of the preamble.
  • TDM time division multiplexing
  • the present application provides a signal transmission method, which can increase the preamble capacity of intra-channel ranging, thereby supporting synchronous ranging of more devices.
  • the synchronous ranging of multiple devices described in this application can be understood as: measuring the distances between the multiple devices and a certain device at the same time.
  • the communication system can be a third generation partnership project (third generation partnership project, 3GPP) communication system, for example, a long term evolution (long term evolution, LTE) system, new wireless (new radio, NR) system, vehicle to everything (V2X) system, LTE and NR hybrid networking system, or device-to-device (D2D) communication system, machine to machine (machine to machine, M2M) communication system, Internet of Things (IoT) system, and other next-generation communication systems.
  • the communication system may also be a non-3GPP communication system without limitation.
  • the technical solution provided by this application can be applied to UWB one-to-many synchronous ranging in various communication scenarios, for example, it can be applied to one or more of the following communication scenarios: enhanced mobile broadband (eMBB), ultra- Communication scenarios such as ultra reliable low latency communication (URLLC), machine type communication (MTC), massive machine type communications (mMTC), D2D, V2X, and IoT.
  • eMBB enhanced mobile broadband
  • URLLC ultra reliable low latency communication
  • MTC machine type communication
  • mMTC massive machine type communications
  • D2D V2X
  • IoT IoT
  • the communication system 10 includes a first device and M second devices, where M is a positive integer greater than 1.
  • the first device needs to obtain the distance between the first device and the M second devices synchronously as an example, that is, it is necessary to measure the distance of the M second devices synchronously.
  • the M second devices work on the same channel of an ultra-wideband (ultra-wideband, UWB) frequency band. In other words, it supports the same working frequency of the UWB frequency band.
  • UWB ultra-wideband
  • the first device may be called a distance measurement center device, or a distance measurement initiator (initiator); the second device may be called a distance measurement device, or a distance measurement responder (responder).
  • the first device may be called a distance measurement center device, or a distance measurement initiator (initiator); the second device may be called a distance measurement device, or a distance measurement responder (responder).
  • the first device and the second device may be different types of devices.
  • the first device may be a network device
  • the second device may be a terminal device.
  • the second device and the second device may be the same type of device.
  • both the first device and the second device may be terminal devices.
  • the terminal device may be a device for implementing a communication function.
  • Terminal equipment may also be called user equipment (user equipment, UE), terminal, access terminal, subscriber unit, subscriber station, mobile station (mobile station, MS), remote station, remote terminal, mobile terminal (mobile terminal, MT) , user terminal, wireless communication device, user agent or user device, etc.
  • the terminal device may be, for example, an IoT, V2X, D2D, M2M, fifth generation (5th generation, 5G) network, or a wireless terminal in a future evolved public land mobile network (public land mobile network, PLMN).
  • PLMN public land mobile network
  • a wireless terminal can refer to a device with wireless transceiver functions, which can be deployed on land, including indoor or outdoor, hand-held or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the terminal device may be a drone, an IoT device (for example, a sensor, an electric meter, a water meter, etc.), a V2X device, a station (station, ST) in a wireless local area network (wireless local area networks, WLAN), a cell phone, Cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistant (PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices (also called wearable smart devices), tablet computers or computers with wireless transceiver functions, virtual reality (virtual reality, VR) terminals, industrial control ( Wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, and transportation safety Wireless terminals, wireless terminals in smart cities, wireless terminals in smart homes, vehicle-mounted terminals, vehicles with vehicle-to-vehicle (V2V) communication capabilities, intelligent networked vehicles , UAVs with
  • the network device is a device for connecting the terminal device to the wireless network, and may be an evolved base station (evolutional Node B, eNB or eNodeB) in LTE or an evolved LTE system (LTE-Advanced, LTE-A).
  • eNB evolved Node B
  • eNodeB evolved LTE system
  • LTE-A evolved LTE system
  • a network such as a traditional macro base station eNB and a micro base station eNB in a heterogeneous network scenario; or it can be a next generation node B (next generation node B, gNodeB or gNB) in a 5G system; or it can be a transmission reception point (transmission reception point, TRP); or it can be a base station in the PLMN that will evolve in the future; or it can be a broadband network gateway (broadband network gateway, BNG), an aggregation switch or a non-3GPP access device; or it can be a cloud wireless access network (cloud radio access network (CRAN); or it can be an access point (AP) in a WiFi system; or it can be a wireless relay node or a wireless backhaul node; or it can be IoT, V2X, D2D , or a device implementing a base station function in M2M, which is not specifically limited in this embodiment of the present application.
  • BNG broadband network gateway
  • BNG
  • the base stations in the embodiments of the present application may include various forms of base stations, for example: macro base stations, micro base stations (also called small stations), relay stations, access points, etc., which are not specifically limited in the embodiments of the present application .
  • the signal transmission method includes the following steps:
  • the second device m generates a first signal.
  • the first signal includes a preamble symbol.
  • the preamble symbol may be determined according to a target preamble with a length of N, and the target preamble belongs to a target preamble group including L preambles, where L is a positive integer greater than or equal to 3.
  • the L preambles included in the target preamble group may be used for synchronous ranging of multiple devices in a certain channel of the UWB.
  • the preambles in the target preamble group are all perfect periodic autocorrelation codes, and the lengths of each preamble are equal.
  • each preamble in the target preamble group has a low level of periodic cross-correlation. Therefore, when the target preamble group is used for synchronous ranging, the interference in the channel can be reduced.
  • the first signal may be a UWB signal.
  • the first signal may also be called a ranging response signal, and the two may be replaced with each other, which is not specifically limited in the present application.
  • the value of the above m can be 1, 2, ..., M, that is, the M second devices in the communication system applicable to this application can all perform the actions involved in the second device in the embodiment of this application to realize the first 2.
  • the target preambles used by different second devices are different preambles in the same target preamble group.
  • the preamble used by the second device 1 is the preamble p1 in the target preamble group, and the generated first signal is the first signal 1;
  • the preamble used by the second device 2 is the preamble p2 in the target preamble group , the generated first signal is the first signal 2;
  • the preamble used by the second device M is the preamble pM in the target preamble group, and the generated first signal is the first signal M.
  • the second device m sends a first signal to the first device.
  • the first device receives the first signal from the second device m.
  • the above-mentioned M second devices may respectively send the generated first signals to the first device.
  • the first device receives first signals from M second devices.
  • the first device processes the first signal according to the target preamble.
  • the first device may decode the preamble in the first signal (hereinafter referred to as received preamble); or, may sample the first signal to obtain the preamble in the first signal. Due to the transmission delay, the received preamble will have a cyclic shift relative to the target preamble used when generating the first signal in step S401.
  • the first device may perform a cyclic shift autocorrelation operation on the received preamble and its corresponding target preamble, determine the time corresponding to the maximum autocorrelation peak value, and determine the first device and The distance between the second devices m.
  • the cyclic shift autocorrelation operation of the received preamble and the target preamble can be expressed as the following formula (5):
  • the target preamble corresponding to the received preamble obtained by decoding the first signal is: the target preamble used when the second device generates the first signal.
  • the target preamble corresponding to the received preamble obtained by decoding the first signal 1 is the preamble p1 in the target preamble group; the first signal When it is the first signal 2, the target preamble corresponding to the received preamble obtained by decoding the first signal 2 is the preamble p2 in the target preamble group; ...; when the first signal is the first signal M, decode the first signal M
  • the obtained target preamble corresponding to the received preamble is the preamble pM in the target preamble group.
  • the target preamble used by the first signal belongs to a target preamble group, and the target preamble group includes more than or equal to 3 preambles. That is to say, the preamble group provided by this application includes at least 3 preambles. Therefore, when the preambles in the same preamble group are used for synchronous ranging on the same channel, at least 3 devices in the same channel can be supported. Synchronous ranging, increasing the number of devices capable of synchronous ranging in the same channel. In addition, compared with the prior art method of ranging by using time-division multiplexing for multiple devices, the ranging delay can be reduced.
  • the length N of the target preamble is equal to 31, or 91, or 121, or 127, or 133.
  • the preambles with different lengths are described respectively below.
  • the target set of preambles includes at least one of four preambles as follows:
  • the fourth one 0++-00+-0---++0+000+00+0+0-+000.
  • this application marks the above four preambles as the first set of preambles, and the two can replace each other. It should be noted that the order of the four preambles in the first preamble set is only exemplified here, and there may be other arrangement orders in practical applications, which is not specifically limited in this application.
  • the target preamble group is one of the first preamble group and the second preamble group. in:
  • the first set of preambles includes at least one of the first two preambles in the first set of preambles, and at least one of the following preambles:
  • the second preamble group includes at least one of the last two preambles in the first set of preambles, and at least one of the following preambles:
  • the first two preambles and the last two preambles in the first preamble set mentioned here refer to the first two and the last two in the order of the above example.
  • the first preamble group includes +0000-0++0-0+000+-+0++++-00-00- and -0-00+000+0++ At least one of -++0+-00+--0000++0, not including the first two preambles in any order;
  • the second preamble group includes 0+0++00++-+-000 At least one of ++0+--0+0-0000-0 and 0++-00+-0---++0+000+00+0+0-+000, not including any order
  • the last two preambles of Exemplarily, if the arrangement order of the 4 preambles included in the first preamble set is as follows:
  • the third one +0000-0++0-0+000+-+0++++-00-00-;
  • the fourth one -0-00+000+0++-++0+-00+--0000++0.
  • the first preamble group includes the last two preambles in the first preamble set
  • the second preamble group includes the first two preambles in the first preamble set
  • the full set of preambles included in the first preamble group and the second preamble group may be as shown in Table 1 below. Among them, + means 1, and - means -1.
  • the preamble in Table 1 can be understood as a 0-equalized preamble.
  • the preamble index in Table 1 is only an exemplary representation. In actual implementation, the preamble index can also have other representations. For example, the number starts from 0, and the index of the preamble in each group is 0 to 5. ; Or, the preambles in different groups can be serially numbered, for example, the preamble indexes in the first preamble and the second preamble group are 1 to 12, and the preambles with the index 1 to 6 belong to the first preamble group, and the index The preambles of 7 to 12 belong to the second preamble group; or, the preamble indexes in the first preamble and the second preamble group are 0 to 11. This application does not specifically limit it.
  • the difference set mapping method can be used to generate multiple 0-balanced ternary sequences with a length of 31, with cross-correlation characteristics as the main constraint, sequence fuzzy function characteristics and SPAR characteristics as secondary constraints, and the selected sequence
  • the good 12 sequences (shown in Table 1) are used as preambles in the preamble group.
  • the preambles with indexes 2, 3, and 4 in the second preamble group have relatively low
  • preambles with indexes 2, 3, and 4 can be preferentially used.
  • the above preamble may be called a preferred preamble.
  • the target set of preambles includes at least 3 of the twenty preambles as follows:
  • the fifth one 00++--0-++++++++-+++-0++-0--+-+-0+;
  • this application marks the above twenty preambles as a second preamble set, and the two can replace each other. It should be noted that this is only an exemplary description of the order of the 20 preambles included in the second preamble set in the second preamble set, and there may be other arrangement orders in practical applications, and this application does not make specific details on this. limited.
  • the target preamble group is one of the first preamble group and the second preamble group.
  • the first preamble group includes at least 3 of the first 10 preambles of the second preamble set
  • the second preamble group includes at least 3 of the last 10 preambles of the second preamble set.
  • first 10 preambles and the last 10 preambles in the second preamble set mentioned here refer to the first 10 and last 10 in the above example sorting, and you can refer to the above first preamble set Relevant descriptions will not be repeated here.
  • the full set of preambles included in the first preamble group and the second preamble group may be as shown in Table 2 below.
  • the preamble in Table 2 can be understood as a 0-less preamble.
  • preamble index in Table 2 is only an exemplary representation, and reference may be made to the relevant description of the preamble index in Table 1 above, which will not be repeated here.
  • the difference set mapping method can be used to generate multiple 0-less triplet sequences with a length of 31, with cross-correlation characteristics as the main constraint, sequence fuzzy function characteristics and SPAR characteristics as secondary constraints, and the selected sequence
  • the good 20 sequences (shown in Table 2) are used as preambles in the preamble group.
  • preambles with indexes 2, 3, 9, and 10 in the first preamble group shown in Table 2 and between preambles with indexes 2, 3, 5, and 10 in the second preamble group
  • the preamble with the index of 2, 3, 9, 10 in the first preamble group can be preferentially used, or the second Preambles with indexes 2, 3, 5, 10 in the preamble group.
  • the above preamble may be called a preferred preamble.
  • the foregoing first preamble group and the second preamble group may be used for K channels, where K is a positive integer greater than or equal to 2.
  • the K channels may be K channels of the ultra-wideband frequency band.
  • each channel in the K channels corresponds to a preamble group, and the preamble in the preamble group is used to perform synchronous ranging on the channel.
  • preambles corresponding to adjacent channels are different, and preambles corresponding to non-adjacent channels may be the same or different.
  • the first preamble group can be used for the first channel and the third channel of the ultra-wideband frequency band; the second preamble group can be used for the second channel of the ultra-wideband frequency band; wherein, the first The channel and the third channel are not adjacent.
  • the center frequency of the first channel may be 7488.0 megahertz (MHz), and the bandwidth is 499.2 MHz.
  • the center frequency of the second channel may be 7987.2MHz, and the bandwidth is 499.2MHz.
  • the center frequency of the third channel may be 8486.4MHz, and the bandwidth is 499.2MHz.
  • the center frequency of the first channel is 8486.4 MHz
  • the center frequency of the third channel is 7488.0 MHz
  • the bandwidths are both 499.2 MHz.
  • the target preamble set includes at least 1 of ten preambles as follows:
  • this application marks the above ten preambles as a third preamble set, and the two can replace each other. It should be noted that this is only an exemplary description of the order of the 10 preambles included in the third preamble set in the third preamble set, and there may be other arrangement orders in practical applications, and this application does not make specific details on this. limited.
  • the target preamble group is one of the first preamble group, the second preamble group, and the third preamble group. in:
  • the first set of preambles includes at least one of the first four preambles in the third set of preambles, and at least one of the following preambles:
  • the second preamble group includes at least one of the fifth preamble, the sixth preamble, or the seventh preamble in the third set of preambles, and at least one of the following preambles:
  • the third preamble group includes at least one of the last three preambles of the third preamble set, and at least one of the following preambles:
  • first 4 preambles, the fifth preamble, the sixth preamble, or the seventh preamble, and the last 3 preambles in the third preamble set described here are in the above-mentioned
  • sequence numbers in the sorting example refer to the relevant description of the above-mentioned first preamble set, which will not be repeated here.
  • the full set of preambles included in the first preamble group, the second preamble group, and the third preamble group may be as shown in Table 3 below.
  • preamble index in Table 3 is only an exemplary representation, and reference may be made to the relevant description of the preamble index in Table 1 above, which will not be repeated here.
  • the difference set mapping method can be used to generate multiple ternary sequences with a length of 91, with cross-correlation characteristics as the main constraint, sequence fuzzy function characteristics and SPAR characteristics as secondary constraints, and 18 sequences with better properties in the sequence are selected. sequences (as shown in Table 3) as the preamble in the preamble group.
  • the third preamble between the preambles with indexes 1, 4, and 6 in the first preamble group shown in Table 3, between the preambles with indexes 1, 4, and 6 in the second preamble group, the third preamble.
  • the preambles with indexes 1, 4, and 6 in the code group have relatively low periodic cross-correlation.
  • the first preamble group or the second can be used preferentially.
  • the preambles with indexes 1, 4, and 6 in the second preamble group or the third preamble group reduce interference as much as possible.
  • the above preamble may be called a preferred preamble.
  • the target set of preambles includes at least 3 of forty-two preambles, the forty-two preambles being as follows:
  • No. 38 -+-+++00-+++-++00-0-+000++-+0+-000++-0---0---0++---- +--++0+0+0++00--+-++-+0-+0+-0-+--+0+0++000-0+000--++-00+ +0++0-0+00+0-;
  • this application marks the above forty-two preambles as the fourth preamble set, and the two can replace each other. It should be noted that this is only an exemplary description of the order of the 42 preambles included in the fourth preamble set in the fourth preamble set, and there may be other arrangement orders in practical applications, and this application does not make specific details on this. limited.
  • the target preamble group is one of the first preamble group, the second preamble group, and the third preamble group, where:
  • the first set of preambles includes at least 3 of the first 14 preambles in the fourth set of preambles; the second set of preambles includes at least 3 of the middle 14 preambles of the fourth set of preambles; the third set of preambles
  • the code group includes at least 3 of the last 14 preambles in the fourth set of preambles.
  • first 14 preambles, the middle 14 preambles, and the last 14 preambles in the fourth preamble set described here are the sequence numbers in the above example sorting, and you can refer to the above-mentioned first preamble The relevant description of the collection will not be repeated here.
  • the first preamble group, the second preamble group, and the third preamble group include a full set of preambles as shown in Table 4 below.
  • preamble index in Table 4 is only an exemplary representation, and reference may be made to the relevant description of the preamble index in Table 1 above, which will not be repeated here.
  • the difference set mapping method can be used to generate multiple ternary sequences with a length of 121, with cross-correlation characteristics as the main constraint, sequence fuzzy function characteristics and SPAR characteristics as secondary constraints, and 42 sequences with better properties in the sequence are selected. sequences (as shown in Table 4) as the preamble in the preamble group.
  • the preambles with indexes 1, 6, 10, and 14 in the third preamble group have relatively low periodic cross-correlation, and when the number of devices that need to perform synchronous ranging is less than or equal to 4, the first Preambles with indexes 4, 6, 11, 12 in the first preamble group, or preambles with indexes 1, 8, 9, 14 in the second preamble group, or 1, 6 in the third preamble group , 10, and 14 preambles.
  • the indexes in the second preamble group are 1, 2, 7, 8
  • the preambles with the indexes of 1, 6, 9, 10, 13, and 14 in the third preamble group have relatively low periodic cross-correlations.
  • the preamble with the index 1, 4, 5, 6, 8, 11 in the first preamble group can be used preferentially, or the index in the second preamble group is 1, 2, 7, 8 , 9, and 14 preambles, or preambles with indexes 1, 6, 9, 10, 13, and 14 in the third preamble group.
  • the above preamble may be called a preferred preamble.
  • the target set of preambles includes at least one of fourteen preambles, the fourteen preambles being as follows:
  • this application marks the above fourteen preambles as the fifth preamble set, and the two can replace each other. It should be noted that this is only an exemplary description of the order of the 14 preambles included in the fifth preamble set in the fifth preamble set, and there may be other arrangement orders in practical applications, and this application does not make specific details on this. limited.
  • the target preamble group is one of the first preamble group, the second preamble group, and the third preamble group. in:
  • the first set of preambles includes at least one of the first six preambles in the fifth set of preambles, and at least one of the following preambles:
  • the second preamble set includes at least one of the seventh and eighth preambles in the third set of preambles, and at least one of the following preambles:
  • the third preamble group includes at least one of the last six preambles in the third preamble set, and at least one of the following preambles:
  • first 6 preambles, the seventh preamble, the eighth preamble, and the last 6 preambles in the fifth preamble set described here are sequence numbers in the above example sorting, which can be Refer to relevant descriptions of the above-mentioned first preamble set, and details are not repeated here.
  • the full set of preambles included in the first preamble group, the second preamble group, and the third preamble group may be as shown in Table 5 below.
  • preamble index in Table 5 is only an exemplary representation, and reference may be made to the relevant description of the preamble index in Table 1 above, which will not be repeated here.
  • the difference set mapping method can be used to generate multiple ternary sequences with a length of 127, with cross-correlation characteristics as the main constraint, sequence fuzzy function characteristics and SPAR characteristics as secondary constraints, and 27 sequences with better properties in the sequence are selected. sequences (as shown in Table 5) as the preamble in the preamble group.
  • the indexes in the second preamble group are 1, 2, 3, 4, between the preambles of 7 and 8, the preambles with the indexes of 1, 4, 6, 7, 8, and 9 in the third preamble group have relatively low periodic cross-correlation, and when synchronous ranging is required
  • preambles with indexes 1, 4, 5, 7, 8, 9 in the first preamble group, or 1, 2, 3, 4 in the second preamble group can be used preferentially , 7, and 8 preambles, or preambles with indexes 1, 4, 6, 7, 8, and 9 in the third preamble group.
  • the above preamble may be called a preferred preamble.
  • N is equal to 133 and the target set of preambles includes at least 3 of the forty-five preambles as follows:
  • No. 28 +-0---++++0+-+-+++-+--+-0++-0-+++-+--+--++-++++ +++--++++-++++-+-++--++--0--++++0--+--0++--+----0- -+-0-++++++-+-+++--+-++---+-00+0-++++--;
  • the target preamble group is one of the first preamble group, the second preamble group, and the third preamble group. in:
  • the first set of preambles includes at least 3 of the first 15 preambles in the sixth set of preambles; the second set of preambles includes at least 3 of the middle 15 preambles of the sixth set of preambles; the third set of preambles
  • the code group includes at least 3 of the last 15 preambles in the sixth preamble set.
  • first 15 preambles, the middle 15 preambles, and the last 15 preambles in the sixth preamble set described here are the sequence numbers in the above example sorting, and you can refer to the above-mentioned first preamble The relevant description of the collection will not be repeated here.
  • the full set of preambles included in the first preamble group, the second preamble group, and the third preamble group may be as shown in Table 6 below.
  • preamble index in Table 6 is only an exemplary representation, and reference may be made to the relevant description of the preamble index in Table 1 above, which will not be repeated here.
  • the difference set mapping method can be used to generate multiple ternary sequences with a length of 133, with cross-correlation characteristics as the main constraint, sequence fuzzy function characteristics and SPAR characteristics as secondary constraints, and the 45 with better properties in the sequence are selected. sequences (as shown in Table 6) as the preamble in the preamble group.
  • the preambles with indexes 1, 2, 6, and 11 in the third preamble group have relatively low periodic cross-correlation, and when the number of devices that need to perform synchronous ranging is less than or equal to 4, the first Preambles with indexes 1, 4, 7, 12 in the first preamble group, or preambles with indexes 1, 2, 7, 14 in the second preamble group, or 1, 2 in the third preamble group , 6, and 11 preambles.
  • the index in the second preamble group is 1, Between the preambles of 2, 4, 7, 8, 9, 10, 11, and 14, between the preambles with indexes 1, 4, 6, 8, 10, 12, 13, 14, and 15 in the third preamble group There is a relatively low periodic cross-correlation between them.
  • the index of 2, 3, 4, 6, 7, 9, and 10 in the first preamble group can be preferentially used.
  • 11, 14 preambles, or preambles with indexes 1, 2, 4, 7, 8, 9, 10, 11, 14 in the second preamble group, or 1, 4 in the third preamble group , 6, 8, 10, 12, 13, 14, 15 preambles.
  • the above preamble may be called a preferred preamble.
  • different preamble groups also have a low level of periodic cross-correlation. That is to say, among the multiple preamble groups, both the preambles within the group and the preambles between the groups have low periodic cross-correlation levels. Therefore, when ranging is performed using the plurality of preamble groups, intra-channel and inter-channel interference can be reduced.
  • the present application provides at least two preamble groups, capable of supporting synchronous ranging of multiple devices in at least two different channels.
  • the aforementioned first preamble group, second preamble group, and third preamble group may be used for K channels, where K is a positive integer greater than or equal to 2.
  • the K channels may be K channels of the ultra-wideband frequency band.
  • each channel in the K channels corresponds to a preamble group, and the preamble in the preamble group is used to perform synchronous ranging on the channel.
  • preambles corresponding to adjacent channels are different, and preambles corresponding to non-adjacent channels may be the same or different.
  • the first preamble group may be used for the first channel; the second preamble group may be used for the second channel; and the third preamble group may be used for the third channel.
  • the center frequencies of the first channel, the second channel, and the third channel may be any combination of the following three types: 7488.0 MHz, 7987.2 MHz, and 8486.4 MHz.
  • Bandwidths of the first channel, the second channel, and the third channel may all be 499.2 MHz.
  • the first device and the second device m should be pre-configured with preamble groups provided by this application, for example, Table 1 to Table 6 are pre-stored.
  • the first device is pre-configured with the preamble set provided by the present application, and the first device broadcasts the preamble set to M second devices.
  • the first device and the second device m may be pre-configured with the aforementioned correspondence between the preamble group and the channel. Based on the correspondence, the ranging in a certain channel uses the preamble group corresponding to the channel. preamble.
  • the signal transmission method provided by the present application further includes the following steps:
  • the first device broadcasts a synchronization request signal.
  • the second device m receives the synchronization request signal.
  • the second device m sends a synchronization signal to the first device.
  • the first device receives the synchronization signal from the second device m.
  • the synchronization signal may include information such as an identifier of the second device m.
  • the first device acquires the quantity of the second device according to the received synchronization signal.
  • the number of the second device is the number of synchronization signals received by the first device. Through the received synchronization signal, the first device can also learn the identity of the second device and the like.
  • the number of second devices is equal to M as an example for illustration.
  • the first device may also determine a target channel, the preamble group corresponding to the target channel is the target preamble group, and the first signal is transmitted on the target channel. That is, the second device m sending the first signal to the first device may include: the second device m sending the first signal to the first device on a target channel. Correspondingly, the first device receives the first signal from the second device m on the target channel.
  • the target channel may be one of the first channel, the second channel, or the third channel.
  • the target channel may be a channel designated by the first device, for example, the first device may designate a relatively idle channel as the target channel.
  • the target channel may be a channel for transmitting the synchronization signal.
  • the first device selects a target preamble.
  • the first device may select a target preamble according to a value of M.
  • M when M is less than or equal to 6, the first device may randomly select the preamble group corresponding to the target channel shown in any one of Table 1 to Table 6, and select the preamble group in the preamble group as the target preamble.
  • M is greater than 6 and less than or equal to 9
  • the first device may randomly select the preamble group corresponding to the target channel shown in any one of Table 2, Table 4, Table 5, or Table 6, and select the preamble
  • the preamble in the code group is used as the target preamble.
  • M is greater than or equal to 10
  • the first device may select the preamble group corresponding to the target channel shown in Table 4 or Table 6, and select a preamble in the preamble group as the target preamble.
  • the preferred preamble in each group may be used as the target preamble.
  • the preferred preamble of 31 length 0 equalization or the preferred preamble of 91 length can be selected as the target preamble;
  • the preferred preamble of 31 length less than 0 can be selected 121 long or 133 long preferred preamble as the target preamble;
  • M is less than or equal to 6 you can choose 121 long or 127 long preferred preamble as the target preamble; when M is less than or equal to 9, you can choose 133 long preferred preamble as the target preamble.
  • the target preamble selected by the first device may be an unused preamble in the target preamble group.
  • the first device may monitor the target channel, determine an unused preamble in the target preamble group, and select the unused preamble as the target preamble. By listening on the target channel, the first device can determine whether there are other ranging groups (including a ranging center device and a plurality of devices to be measured) performing ranging in the target channel. If other ranging groups are measuring distance, select a preamble in the target preamble group that is not used by the ranging group as the target preamble.
  • other ranging groups including a ranging center device and a plurality of devices to be measured
  • the first device can select the first preamble A number of preambles with indices 3 to 10 in the group.
  • the length of the target preamble selected by the first device is different from the length of the preamble used by other ranging groups.
  • a preamble with a length of 127 is used by the ranging group, and the first device may select a preamble with a length of 121 or 133 as a target preamble.
  • the first device may receive preambles sent by devices to be ranged in other ranging groups, and perform autocorrelation calculations with multiple preambles stored locally to obtain multiple autocorrelation peaks.
  • the local preamble corresponding to the largest autocorrelation peak among the multiple autocorrelation peaks is the preamble used by the ranging group.
  • the first device sends control information to the second device m.
  • the second device m receives the control information from the first device.
  • control information is used to indicate the target preamble.
  • control information may include at least one of the following: the length of the target preamble, the index of the target preamble, or the index of the target preamble group.
  • control information may also include the identifier of the second device m.
  • the first device may send different control information to the M second devices, so as to respectively indicate to the M second devices different preambles in the same preamble group as target preambles.
  • control information may be called ranging control message (ranging control message, RCM), and the two may replace each other without limitation.
  • RCM ranging control message
  • the second device m may perform step S401:
  • the second device m generates a first signal.
  • the second device m may determine the target preamble according to the control information, so as to generate the first signal according to the target preamble. That is, step S401 may include: generating a first signal according to control information.
  • the first device may add 0 after each symbol of the target preamble to obtain a preamble symbol.
  • the length of the target preamble when the length of the target preamble is 31, several (for example, 15) 0s may be added after each symbol of the target preamble to obtain a preamble symbol.
  • s(n) represents a preamble symbol
  • c(n) represents a preamble code.
  • the length of the target preamble is 91, 121, 127, or 133
  • several (for example, three) 0s may be added after each symbol of the target preamble to obtain a preamble symbol.
  • the first device may also perform the following step S506:
  • the first device sends a second signal.
  • the second device receives the second signal from the first device.
  • the second signal is used to trigger sending of the first signal.
  • the sending of the second signal by the first device may be: the first device broadcasts the second signal at the first time t1,0 .
  • the second signal may also be referred to as ranging initiation message (ranging initiation message, RIM), and the two may replace each other, which is not specifically limited in this application.
  • RIM ranging initiation message
  • the second time t Rm,0 may be recorded, and step S402 is performed.
  • the second moment is the moment when the second device m receives the second signal.
  • step S506 can be executed first, and then step S401 can be executed; or, step S401 can be executed first, and then step S506 can be executed; or, step S506 can be executed at the same time and step S401, which is not specifically limited in this application.
  • the second device m sends a first signal to the first device.
  • the second device m sending the first signal to the first device may include: sending the first signal to the first device according to the second signal.
  • the second device m may send the first signal at a third moment, and the time interval between the third moment and the second moment is t reply .
  • the time intervals corresponding to different second devices may be the same or different, which is not specifically limited in the present application.
  • the distance between the first device and the second device m can be expressed as the following formula (6):
  • s is the distance between the first device and the second device m
  • c is the speed of light
  • t Rm,1 is the receiving preamble of the second device m and its corresponding target preamble after the cyclic shift autocorrelation operation, The moment corresponding to the maximum autocorrelation peak.
  • the first device can obtain the distance between itself and multiple second devices, so that subsequent processing can be performed according to the distance.
  • the methods and/or steps implemented by the first device may also be implemented by components (such as processors, chips, chip systems, circuits, logic modules, or implemented by software); the method and/or steps implemented by the second device may also be implemented by components (such as processors, chips, chip systems, circuits, logic modules, or software) that can be used in the second device.
  • the present application also provides a communication device, which is used to implement the above various methods.
  • the communication device may be the first device in the above method embodiment, or a device including the above first device, or a component that can be used for the first device; or, the communication device may be the second device in the above method embodiment , or an apparatus comprising the above-mentioned second device, or a component that can be used for the second device.
  • the first device and the second device include hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software with reference to the units and method steps of the examples described in the embodiments disclosed in the present application. Whether a certain function is executed by hardware or computer software drives the hardware depends on the specific application scenario and design constraints of the technical solution.
  • FIG. 8 and FIG. 9 are schematic structural diagrams of possible communication devices provided by the embodiments of the present application. These communication apparatuses may be used to realize the functions of the first device or the second device in the above method embodiments, and thus also realize the beneficial effects of the above method embodiments.
  • the communication device may be the second device as shown in Figure 1, or the first device as shown in Figure 1, or a module applied to the first device or the second device (such as chips).
  • the communication device 80 includes a processing module 801 and a transceiver module 802 .
  • the communication device 80 is configured to realize the functions of the first device or the second device m in the method embodiment shown in FIG. 4 or FIG. 5 above.
  • the processing module 801 is configured to generate a first signal, the first signal includes a target preamble according to a length N
  • the target preamble belongs to a target preamble group including L preambles, L is a positive integer greater than or equal to 3, and N is equal to 31, or 91, or 121, or 127, or 133.
  • the transceiver module 802 is further configured to receive control information from the first device, the control information is used to indicate the target preamble, and the control information includes at least one of the following: the length of the target preamble, the index of the target preamble, or Index of the target preamble group.
  • the processing module 801 is configured to generate the first signal, including: the processing module 801 is configured to generate the first signal according to the control information.
  • the transceiver module 802, configured to send the first signal to the first device includes: the transceiver module 802, configured to receive the second signal from the first device, and send the first signal to the first device according to the second signal .
  • the transceiver module 802 is configured to send the first signal to the first device, including: the transceiver module 802 is configured to send the first signal to the first device on the target channel; the target preamble group is a preamble corresponding to the target channel code group, and the target preamble is an unused preamble in the target preamble group.
  • the transceiver module 802 is used to receive the first signal from the second device, the first signal includes The preamble symbol determined by the target preamble of N, the target preamble belongs to the target preamble group including L preambles, L is a positive integer greater than or equal to 3, and N is equal to 31, or 91, or 121, or 127, or 133 ;
  • the transceiver module 802 is further configured to send control information to the second device, the control information is used to indicate the target preamble, and the control information includes at least one of the following: the length N of the target preamble, the index of the target preamble, or Index of the target preamble group.
  • the transceiver module 802 is further configured to send a second signal, and the second signal is used to trigger sending of the first signal.
  • the transceiver module 802 configured to receive the first signal from the second device, includes: the transceiver module 802, configured to receive the first signal from the second device on a target channel.
  • the processing module 801 is further configured to monitor on the target channel and determine an unused preamble in the target preamble group, where the target preamble is one of the unused preambles.
  • processing module 801 and the transceiver module 802 can be directly obtained by referring to the relevant descriptions in the method embodiment shown in FIG. 4 or FIG. 5 , and will not be repeated here.
  • a communication device 900 includes a processor 910 and an interface circuit 920 .
  • the processor 910 and the interface circuit 920 are coupled to each other.
  • the interface circuit 920 may be a transceiver or an input-output interface.
  • the communication device 900 may further include a memory 930 for storing instructions executed by the processor 910 or storing input data required by the processor 910 to execute the instructions or storing data generated after the processor 910 executes the instructions.
  • the processor 910 is used to implement the functions of the above-mentioned processing module 801
  • the interface circuit 920 is used to implement the functions of the above-mentioned transceiver module 802 .
  • the chip implements the functions of the first device in the above method embodiment.
  • the chip receives information from other modules in the first device (such as radio frequency modules or antennas), and the information is sent to the first device by the second device; or, the chip sends information to other modules in the first device (such as radio frequency modules or antenna) to send information, the information is sent by the first device to the second device.
  • the chip implements the functions of the second device in the above method embodiment.
  • the chip receives information from other modules in the second device (such as radio frequency modules or antennas), and the information is sent by the first device to the second device; or, the chip sends information to other modules in the second device (such as radio frequency modules or antenna) to send information, the information is sent by the second device to the first device.
  • the processor in the embodiment of the present application may be a central processing unit (central processing unit, CPU), and may also be other general purpose processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits ( application specific integrated circuit (ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • the memory in this embodiment of the present application may be a device with a storage function.
  • it may be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (random access memory, RAM) or other types of memory that can store information and instructions
  • a dynamic storage device can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital versatile discs, blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be stored by a computer Any other medium, but not limited to it.
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • optical disc storage including compact discs, laser discs, optical discs, digital versatile discs, blu-ray
  • the present application also provides a computer-readable storage medium, on which a computer program or instruction is stored, and when the computer program or instruction is executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present application also provides a computer program product, which implements the functions of any one of the above method embodiments when executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server, or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or may be a data storage device including one or more servers, data centers, etc. that can be integrated with the medium.
  • the available medium may be a magnetic medium (such as a floppy disk, a hard disk, or a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as a solid state disk (solid state disk, SSD)), etc.
  • the computer may include the aforementioned apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

本申请提供一种信号传输方法、装置及系统,能够提升前导码组内的前导码容量,从而可以支持更多装置的同步测距。该方法包括:第二设备生成第一信号,并向第一设备发送该第一信号;相应的,第一设备接收该第一信号后,根据目标前导码对第一信号进行处理。其中,第一信号包括根据长度为N的目标前导码确定的前导符号,目标前导码属于包括L个前导码的目标前导码组,L为大于或等于3的正整数,N等于31、或91、或121、或127、或133。在N等于31时,目标前导码组包括如下四个前导码中的至少一个:+0000-0++0-0+000+-+0++++-00-00-、-0-00+000+0++-++0+-00+--0000++0、0+0++00++-+-000++0+--0+0-0000-0和0++-00+-0---++0+000+00+0+0-+000,其中,+表示1,-表示-1。

Description

信号传输方法、装置及系统
本申请要求于2021年09月18日提交国家知识产权局、申请号为202111113069.1、申请名称为“一种超宽带测距序列分组和选择方法”的中国专利申请的优先权,以及要求于2021年10月15日提交国家知识产权局、申请号为202111204080.9、申请名称为“信号传输方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及无线通信领域,尤其涉及信号传输方法、装置及系统。
背景技术
超宽带(ultra-wideband,UWB)信号具有极强的抗多径干扰能力和超高的时间分辨率,在高精度短程测距方面具有独特优势。UWB测距主要通过物理层协议数据单元(physical layer protocol data unit,PPDU)中同步头(synchronization header,SHR)内的前导码(Preamble Code)实现。其基本原理为:发送装置重复发送由前导码填0扩展后生成的前导符号(Preamble Symbol),接收装置在接收到前导符号之后,与本地前导码做周期自相关,通过检测最大自相关峰的位置推导信号的传输时延,从而完成测距。
现有电气与电子工程师协会(institute of electrical and electronics engineers,IEEE)802.15.4以及802.15.4z标准中,定义了4组长度为31的前导码,每组包括2个前导码。其中,同一组内的前导码可以在同一个信道内使用。
基于现有标准的定义,长度为31的前导码组支持2个装置同步测距,无法支持较多的装置同步测距。
发明内容
本申请提供一种信号传输方法、装置及系统,能够提升前导码组内的前导码容量,从而可以支持更多装置的同步测距。
第一方面,提供了一种信号传输方法,该方法可以由第二设备执行,也可以由第二设备的部件,例如处理器、芯片、或芯片系统等执行,还可以由能实现全部或部分第二设备功能的逻辑模块或软件实现。该方法包括:生成第一信号,并向第一设备发送该第一信号。其中,第一信号包括根据长度为N的目标前导码确定的前导符号,目标前导码属于包括L个前导码的目标前导码组,L为大于或等于3的正整数。
其中,N等于31,目标前导码组包括四个前导码中的至少一个,该四个前导码如下:
+0000-0++0-0+000+-+0++++-00-00-;
-0-00+000+0++-++0+-00+--0000++0;
0+0++00++-+-000++0+--0+0-0000-0;
0++-00+-0---++0+000+00+0+0-+000;
或者,N等于31,目标前导码组包括二十个前导码中的至少3个,该二十个前导码如下:
-+0--+-++00+---++-++++-+0+++0-0;
++-+++--0+++0+0-+0++-+--00--+-+;
+-+++--+0+-+----0+++-++0+0-+00+;
0-++-+++-+0-++++--0-+---+0+0++0;
00++--0-+++++-+++-0++-0--+-+-0+;
0+00+-++0+-+-+++++--0--+0--+++-;
00++0--++-0-0-+-+0-++++++--+-++;
+++++0+0---+0+--++-+-+--++00+-0;
+++-0---0+-++-0+-+-+++--+++00+0;
00+0+-+-0++-0+-+++0-++++-++----;
00++-+--++++++-0+-+-0-0-++--0++;
-+00++--+-+-++--+0+---0+0+++++0;
0+00+++--+++-+-+0-++-+0---0-+++;
----++-++++-0+++-+0-++0-+-+0+00;
-0+++0+-++++-++---+00++-+--0+-0;
+-+--00--+-++0+-0+0+++0--+++-++;
-+++--0+--0--+++++-+-+0++-+00+0;
00+0-+-+--0-++0-+++-+++++-0--++;
++0+0+---+-0--++++-0+-+++-++-00;
+00+-0+0++-+++0----+-+0+--+++-+;
其中,+表示1,-表示-1。
基于该方案,本申请提供的前导码组包括至少3个长度为31的前导码,提升了前导码组内的前导码容量。基于本申请提供的前导码组,在同一前导码组中的前导码用于同信道的同步测距时,能够支持同信道内的至少3个装置的同步测距,提升了同信道内能够进行同步测距的装置数量,相比于现有技术中使用时分复用进行多个装置的测距方法,能够降低测距时延。
第二方面,提供了一种信号传输方法,该方法可以由第一设备执行,也可以由第一设备的部件,例如处理器、芯片、或芯片系统等执行,还可以由能实现全部或部分第一设备功能的逻辑模块或软件实现。该方法包括:接收来自第二设备的第一信号,并根据目标前导码对第一信号进行处理。其中,第一信号包括根据长度为N的目标前导码确定的前导符号,目标前导码属于包括L个前导码的目标前导码组,L为大于或等于3的正整数;
其中,N等于31,目标前导码组包括四个前导码中的至少一个,该四个前导码如下:
+0000-0++0-0+000+-+0++++-00-00-;
-0-00+000+0++-++0+-00+--0000++0;
0+0++00++-+-000++0+--0+0-0000-0;
0++-00+-0---++0+000+00+0+0-+000;
或者,N等于31,目标前导码组包括二十个前导码中的至少3个,该二十个前导码如下:
-+0--+-++00+---++-++++-+0+++0-0;
++-+++--0+++0+0-+0++-+--00--+-+;
+-+++--+0+-+----0+++-++0+0-+00+;
0-++-+++-+0-++++--0-+---+0+0++0;
00++--0-+++++-+++-0++-0--+-+-0+;
0+00+-++0+-+-+++++--0--+0--+++-;
00++0--++-0-0-+-+0-++++++--+-++;
+++++0+0---+0+--++-+-+--++00+-0;
+++-0---0+-++-0+-+-+++--+++00+0;
00+0+-+-0++-0+-+++0-++++-++----;
00++-+--++++++-0+-+-0-0-++--0++;
-+00++--+-+-++--+0+---0+0+++++0;
0+00+++--+++-+-+0-++-+0---0-+++;
----++-++++-0+++-+0-++0-+-+0+00;
-0+++0+-++++-++---+00++-+--0+-0;
+-+--00--+-++0+-0+0+++0--+++-++;
-+++--0+--0--+++++-+-+0++-+00+0;
00+0-+-+--0-++0-+++-+++++-0--++;
++0+0+---+-0--++++-0+-+++-++-00;
+00+-0+0++-+++0----+-+0+--+++-+;
其中,+表示1,-表示-1。第二方面所带来的技术效果可参考上述第一方面所带来的技术效果,在此不再赘述。
结合第一方面或第二方面,在某些实施方式中,目标前导码组为第一前导码组和第二前导码组中的一个,其中:
第一前导码组包括四个前导码中的前两个前导码中的至少一个、以及如下前导码中的至少一个:
-0000-0+0--+0++000-+-++00++0+00;
0+0-0+++0+-000+-+++00-+0-00-000;
00+0+-0+0+000-++0-+---00+00++00;
0000+-0+0+00+000+0++---0-+00-++;
第二前导码组包括四个前导码中的后两个前导码中的至少一个、以及如下前导码中的至少一个:
0-00-0+-00+++-+000-+0+++0-0+000;
-00-00-++++0+-+000+0-0++0-0000+;
000++00+00---+-0++-000+0+0-+0+0;
++0000--+00-+0++-++0+000+00-0-0;
或者,第一前导码组包括二十个前导码的前10个前导码中的至少3个,第二前导码组包括二十个前导码的后10个前导码中的至少3个。
基于该实施方式,各个前导码组内的前导码和组间的前导码均具有较低的周期互相关水平。在使用多个前导码组进行测距时,可以降低信道内以及信道间的干扰。
结合第一方面或第二方面,在某些实施方式中,第一前导码组和第二前导码组用于K个信道,K为大于或等于2的正整数。
结合第一方面或第二方面,在某些实施方式中,K等于3,第一前导码组用于超宽带频段的第一信道和第三信道,第二前导码组用于超宽带频段的第二信道,第一信道和第三信道不相邻。基于该实施方式,使用同一前导码组的两个信道不相邻,可以降低信道间的干扰。
第三方面,提供了一种信号传输方法,该方法可以由第二设备执行,也可以由第二设备的部件,例如处理器、芯片、或芯片系统等执行,还可以由能实现全部或部分第二设备功能的逻辑模块或软件实现。该方法包括:生成第一信号,并向第一设备发送该第一信号。其中,第一信号包括根据长度为N的目标前导码确定的前导符号,目标前导码属于包括L个前导码 的目标前导码组,L为大于或等于3的正整数。
其中,N等于91,目标前导码组包括十个前导码中的至少1个,该十个前导码如下:
+0+-+-+-+++++-+++----0+--+-++0++-++++-0-++++-++---+--+--++---0+-+++----0-+0+--+++-++-00-++0;
++-00-++-+++--+0+-0----+++-+0---++--+--+---++-++++-0-++++-++0++-+--+0----+++-+++++-+-+-+0+0;
-+-+0++-++-+0+0--+-0+-+---+-+---++-+--+++++-+++0------+-+++--++--00++0-++--+++0++-+-+++++0-;
-++0--0+++-+++--++-0-+-0+-+-00++--++-+---+++++++++++--+--++-++-+-0+0-+-++++----0-++---0-+-+;
+-+----0+-++-++------0+-+++-+++-+++++0+-+-+0-+-+++---+++++--+-++-++--00-++0--0++--+++-+0+0-;
-+--++-+-+++++---+-+0++---+-+-+0-+-----+0--+++00++-+--++++++-++-+0--0+0+-++++-0+++0-+---++-;
+++++++-0+-+-++0--+-0-+-+---+++--+++0++-0--+-++---00+0-+++-0---+++--+--+-+-++0++-++--+--+++;
0--0--+++--+++++0+--0+--+00+-++-++++++--++---+-++++-+--+--++++0-0+++-+-++--+0+-+-+-0----+-+;
+++++--+++-+--++-+--+0-++++++-----++-++00++0--++-+--0-+-++-+-+-0++---0+---++-0-0-+-+0+++-++;
+0+++---+--0+-0+-++-+++-+00++-0-0++++-++-+--+-+--+++0+-----+0+-+---++0--+-+---++-+++--+++++;
其中,+表示1,-表示-1。
基于该方案,本申请提供的前导码组包括至少3个长度为91的前导码。基于该前导码组,在同一前导码组中的前导码用于同信道的同步测距时,能够支持同信道内的至少3个装置的同步测距。此外,该十个前导码中的各个前导码之间的互相关性较低,相比于现有技术中91长的前导码,能够降低前导码之间的干扰。
第四方面,提供了一种信号传输方法,该方法可以由第一设备执行,也可以由第一设备的部件,例如处理器、芯片、或芯片系统等执行,还可以由能实现全部或部分第一设备功能的逻辑模块或软件实现。该方法包括:接收来自第二设备的第一信号,并根据目标前导码对第一信号进行处理。其中,第一信号包括根据长度为N的目标前导码确定的前导符号,目标前导码属于包括L个前导码的目标前导码组,L为大于或等于3的正整数;
其中,N等于91,目标前导码组包括十个前导码中的至少1个,该十个前导码如下:
+0+-+-+-+++++-+++----0+--+-++0++-++++-0-++++-++---+--+--++---0+-+++----0-+0+--+++-++-00-++0;
++-00-++-+++--+0+-0----+++-+0---++--+--+---++-++++-0-++++-++0++-+--+0----+++-+++++-+-+-+0+0;
-+-+0++-++-+0+0--+-0+-+---+-+---++-+--+++++-+++0------+-+++--++--00++0-++--+++0++-+-+++++0-;
-++0--0+++-+++--++-0-+-0+-+-00++--++-+---+++++++++++--+--++-++-+-0+0-+-++++----0-++---0-+-+;
+-+----0+-++-++------0+-+++-+++-+++++0+-+-+0-+-+++---+++++--+-++-++--00-++0--0++--+++-+0+0-;
-+--++-+-+++++---+-+0++---+-+-+0-+-----+0--+++00++-+--++++++-++-+0--0+0+-++++-0+++0-+---++-;
+++++++-0+-+-++0--+-0-+-+---+++--+++0++-0--+-++---00+0-+++-0---+++--+--+-+-++0++-++--+--+++;
0--0--+++--+++++0+--0+--+00+-++-++++++--++---+-++++-+--+--++++0-0+++-+-++--+0+-+-+-0----+-+;
+++++--+++-+--++-+--+0-++++++-----++-++00++0--++-+--0-+-++-+-+-0++---0+---++-0-0-+-+0+++-++;
+0+++---+--0+-0+-++-+++-+00++-0-0++++-++-+--+-+--+++0+-----+0+-+---++0--+-+---++-+++--+++++;
其中,+表示1,-表示-1。第四方面所带来的技术效果可参考上述第三方面所带来的技术效果,在此不再赘述。
结合第三方面或第四方面,在某些实施方式中,目标前导码组为第一前导码组、第二前导码组、和第三前导码组中的一个;
第一前导码组包括十个前导码中的前四个前导码中的至少一个、以及如下前导码中的至少一个:
-0+++++-+-++0+++--++-0++00--++--+++-+------0+++-+++++--+-++---+-+---+-+0-+--0+0+-++-++0+-+-;
+-+-0---++-0----++++-+-0+0-+-++-++--+--+++++++++++---+-++--++00-+-+0-+-0-++--+++-+++0--0++-;
第二前导码组包括十个前导码中的第五个前导码、第六个前导码、或第七个前导码中的至少一个、以及如下前导码中的至少一个:
+++--+--++-++0++-+-+--+--+++---0-+++-0+00---++-+--0-++0+++--+++---+-+-0-+--0++-+-+0-+++++++;
-0+0+-+++--++0--0++-00--++-++-+--+++++---+++-+-0+-+-+0+++++-+++-+++-+0------++-++-+0----+-+;
-++---+-0+++0-++++-+0+0--0+-++-++++++--+-++00+++--0+-----+-0+-+-+---++0+-+---+++++-+-++--+-;
第三前导码组包括十个前导码的后三个前导码中的至少一个、以及如下前导码中的至少一个:
+-+----0-+-+-+0+--++-+-+++0-0++++--+--+-++++-+---++--++++++-++-+00+--+0--+0+++++--+++--0—0;
++-+++0+-+-0-0-++---+0---++0-+-+-++-+-0--+-++--0++00++-++-----++++++-0+--+-++--+-+++--+++++;
+++++--+++-++---+-+--0++---+-+0+-----+0+++--+-+--+-++-++++0-0-++00+-+++-++-+0-+0--+---+++0+。
基于该实施方式,各个前导码组内的前导码和组间的前导码均具有较低的周期互相关水平。在使用多个前导码组进行测距时,可以降低信道内以及信道间的干扰。
第五方面,提供了一种信号传输方法,该方法可以由第二设备执行,也可以由第二设备 的部件,例如处理器、芯片、或芯片系统等执行,还可以由能实现全部或部分第二设备功能的逻辑模块或软件实现。该方法包括:生成第一信号,并向第一设备发送该第一信号。其中,第一信号包括根据长度为N的目标前导码确定的前导符号,目标前导码属于包括L个前导码的目标前导码组,L为大于或等于3的正整数。
其中,N等于121,目标前导码组包括四十二个前导码中的至少3个,该四十二个前导码如下:
+0+-000-0+++00++--++-+-+--+0---++0+-0++-0-0+---+-0000-+0-+---+++0+-000-+00-0-0+0++++00-++0++-0+0+++-0-00-0--0++-+-000++0+;
-0+00+0-0++0++00-++--000+0-000++0+0+--+-0-+0+-0+-++-+--00++0+0+0++--+----++0---0---0-++000-+0+-++000+-0-00++-+++-00+++-+-;
0+-+-+0-0+-0-0+0+-+0+00-+0-+00+0+-0+0+++-0++++--++--00--++0++++--0-000-+00+-+--0+++0+--0+++00++-+0-+0-----+-00+---0+00000;
-++-00---+0-++--00++0---00--+++++00+-0+0++0+00+0+-++--000+0+0-0+0+-0++00+++--00-000+--0--+-+-+-+0++---++-+-0-+0-000++0+0+;
-0+0--++-0-00+++++-+0-0-0-+++00-0-+--0++0-+00-+-0-----0+-00-++0++++--+00++0-+-+++0-+-+000+--+0++-0+++-+0-+0+000000-0+00+-;
0+000-++++0+-+++-++00--+-0-0-++0++-+---0++--+0+0+-0-0-0--+-+-0--00++-0+00--+0++++00000++-++--0++-0-0+-0+--+00++00++0-00-0;
-000++0+00+0-+-0+---++++00-000-0-+00-+---0--+00+-0--0+++-0++00+++0-0+00--++-0-0-0++-+-++0+-+-0-++-++--0+-0+0+++++-+0000+-;
+000++00+++00+0+0++-+--++-0--0+++-0000+--0+0+0++0----+00-0+--0+0-+++--+0++-+----0-++00+0++-+-+-0-+00-00-0+-++--00-+-00++0;
++0--+0++-00+0--0-+-++000-+++++----0000+-+000-0-+--0-00----+++-+++-++0-0++0-+0++-0-+-++0++-0+0-+00-++-0+-+0-0-00+0+00++00;
-+--0++-000++00+-+0+0+0--0-0+0++-0+0+++--00-++-+++-0000-+0-00-+00++++---+0---0+-0-----+0-+++-+0+--+0++0+-0+0+-0++00000+-+;
----00++-000++0--++--0-+0---0+0000+--+0+-+00-00-+00+++++-+0++-+---+++0+++-0+-0-00+-+-+0-0+--0+-++-++000+0+0++00+0--0-0+0+;
000+000+++-0--+0--+-0+00+0+-0+++-++---+-+0-0++-+-+++0+00--0-0+++00+0+-00++--+0++++--+0+0-0+-+0+-000--0--00+----000++-+0-+;
-00000+++---0-++--0+000+---+0-0-0+00+++00--0+++0+++-+000++0-+-0+-0+00-+0++0-++-0++++-+--+-----+0-0-+0+00+-+-0+--00+-+0+0+;
--0000++0-+++++0+0+0-+0++0+-++--+--+--00++0-0++++000+---+-+0+-+--+0+0-0+0+-00+--+00-0+-+0+++----00++0--+-0-00-00++-0+-000;
--+0--++000+--0--+-++-+++00-0+0000+++-0--0+0----+-00+-+-+0+0-+++--+++++0-+--0++00+-0+0+++0+0+00--0-+0+-+0-+00+0+--+000-00;
++++0-0--++00++0+-0++00-+-000+--0--0+++0+0000+0--+00+-00+++++--+0+++-+++-0+-0-+--0+-+-0+00+00-0-++-+-++---000--+-0-0-0+0-;
+-+00-0--+++0000++0-+--+0++++-+-+++--0+0-+++++0--0-0+00-+0-0-0-+0+--++-+0-+00+--00---0--00++-++0+-+0+00+000-0+++-0++-000-;
+00+++0+--++0+0-+++-0--0--+--+00+0+0+++++----0+++-+--000+-00+0-0++--+-0+00-++0-0 -+---00++-0+-0-+0--0+-+-+0000+000++00+-+0;
+0+0-0--0+00++0+0+000++-++-+0--+0-0+-+-+00-0-+0-+++0+++---+-++0+-+++++00+-00-00+-+0+--+0000+0---0+-0--++--0++000-++00----;
-0+00++00-00+++++-0-++---0+++000+-0+-++0+-+0--0+----0--0-0++-+--+00+0-+00-++00+-+-+0+++--+---+-000+0+0++-0+0-0-+0+0000++-;
-0+0-0-0-+--000---++-+-++-0-00+00+0-+-+0--+-0-+0-+++-+++0+--+++++00-+00+--0+0000+0+++0--0--+000-+-00++0-+0++00++--0-0++++;
+--0++00+++---+----0-0+++++-00+0+0++-+00+---0+-+0-0-+0--++-0+-0---00++-0-000+0-++-+--++0++0-0+00+00-+000+-++0000++0+-+-+0;
0+-+-+0++0000++-+000+-00+00+0-0++0++--+-++-0+000-0-++00---0-+0-++--0+-0-0+-+0---+00+-++0+0+00-+++++0-0----+---+++00++0--+;
-++0000+0+-0-0+0-++0+0+000-+---+--+++0+-+-+00++-00+-0+00+--+-++0-0--0----+0--0+-+0++-+0-+000+++0---++-0-+++++00-00++00+0-;
++000-0+0+++-0+-+-+0+-++00+00+--+-00----+-++--+0+0-+0--0+--0+000+-+0-0++-+++++0---0--+00--+++--0-+0000++00-+0++0+0+00-0-+;
+-+00++000+0000+-+-+0--0+-0-+0-++00---+-0-0++-00+0-+--++0-0+00-+000--+-+++0----+++++0+0+00+--+--0--0-+++-0+0++--+0+++00+0;
-000-++0-+++0-000+00+0+-+0++-++00--0---00--+00+-0+-++--+0+-0-0-0+-00+0-0--0+++++-0+0--+++-+-++++0+--+-0++0000+++--0-00+-+;
-000+--+0+00+-0+-+0+-0--00+0+0+++0+0-+00++0--+-0+++++--+++-0+0+-+-+00-+----0+0--0-+++0000+0-00+++-++-+--0--+000++--0+--00;
-++0+00+-0++++++-0+00-+0+0+-0+--+-+-+00++0-0+-+0----000+++-+---++----0+-+-0++000-00+0+0-+-00+0-++000+++-00+0-0++----00-+0;
+-0-00+0+0++0+-00++0000+-0--+++--00+--0---0+++++-++0-0+-+000+0--+0--0+-0+0+--++-+----00-+--+00+00++-+0+-+-+0-+++0+0-000++;
0++00-+-00--++-+0-00-00+-0-+-+-++0+00++-0----+-++0+--+++-0+0--+0-00+----0++0+0+0--+0000-+++0--0-++--+-++0+0+00+++00++000+;
-0-00+00-+00-0--+0--00-+0-0+00+--+++0-00000+---0-+-0+-+++++0++-+0-0+0-+0+--+++-00+---00+++000--0++++0-++-+-+0-++++0+0-+-+;
-0-0-0-000-++0-+0-00++--0+++++00---+++-00+--0-0++0+0+0-+0--+0--00+++-++-+++-+0++0+00-00+--+-++-+-+0++00+-+--+0000-++00—0;
+0---00+-+00-00+-++000++0-+--+-0+-++00---0--++-++0+-0-++++--0+-+00-0+0-0-00+0+++++-0+++-+--0+00++0+-++++-0000-0-+00-0+--0;
+-00--+00+0+0++0000+00+++-+0-00+-+--+-0+-0-+++-+0++-0-0++00++0--00+++-++-0+++--0-0-0+---+00---00+0++--+---+-+0+000++0+0--;
+0+0+-+00--+0-+-+00+0+-0-0+-----+--+-++++0-++-0++0+-00+0-+0-+-0++000+-+++0+++0--00+++00+0-0-0+---+000+0--++-0---+++00000-;
+0++000-+-++0--0-00-0-+++0+0-++0++-00++++0+0-0-00+-000-+0+++---+-0+-0000-+---+0-0-++0-+0++---0+--+-+-++--++00+++0-000-+0+;
-+-+++00-+++-++00-0-+000++-+0+-000++-0---0---0++----+--++0+0+0++00--+-++-+0-+0+-0-+--+0+0++000-0+000--++-00++0++0-0+00+0-;
00-00-0++00++00+--+0-+0-0-++0--++-++00000++++0+--00+0-++00--0-+-+--0-0-0-+0+0+--++0---+-++0++-0-0-+--00++-+++-+0++++-000+;
+000--00--++++0+-0++00+-++-+-0-+0++--0-0++-+++-++0++-0--+0+-0000+++-+000-00-0+00-+++0++-+-0-+++-000+0--0+0-0+0+-0+----0--;
+000+0+0-+-00-0----++0+0---++-+-+-+-0--0+++-+00++-0+-++000++0+0++0--0-++-00+0+++00+---++0-++00-00+--+000-00-+0--+--+++0+0;
00++00+0+00-0-0+-+0-++-00+-0+0-++0++-+-0-++0+-0++0-0++-+++-+++----00-0--+-0-000+-+0000----+++++-000++-+-0--0+00-++0+--0++。
基于该方案,相比于现有技术,本申请提供长度为121的前导码,以及包括至少3个前导码的前导码组,提升了前导码组内的前导码容量。基于本申请提供的前导码组,在同一前导码组中的前导码用于同信道的同步测距时,能够支持同信道内的至少3个装置的同步测距,提升了同信道内能够进行同步测距的装置数量,相比于现有技术中使用时分复用进行多个装置的测距方法,能够降低测距时延。此外,该四十二个前导码中的各个前导码之间的互相关性较低,能够降低前导码之间的干扰。
第六方面,提供了一种信号传输方法,该方法可以由第一设备执行,也可以由第一设备的部件,例如处理器、芯片、或芯片系统等执行,还可以由能实现全部或部分第一设备功能的逻辑模块或软件实现。该方法包括:接收来自第二设备的第一信号,并根据目标前导码对第一信号进行处理。其中,第一信号包括根据长度为N的目标前导码确定的前导符号,目标前导码属于包括L个前导码的目标前导码组,L为大于或等于3的正整数;
其中,N等于121,目标前导码组包括四十二个前导码中的至少3个,该四十二个前导码如下:
+0+-000-0+++00++--++-+-+--+0---++0+-0++-0-0+---+-0000-+0-+---+++0+-000-+00-0-0+0++++00-++0++-0+0+++-0-00-0--0++-+-000++0+;
-0+00+0-0++0++00-++--000+0-000++0+0+--+-0-+0+-0+-++-+--00++0+0+0++--+----++0---0---0-++000-+0+-++000+-0-00++-+++-00+++-+-;
0+-+-+0-0+-0-0+0+-+0+00-+0-+00+0+-0+0+++-0++++--++--00--++0++++--0-000-+00+-+--0+++0+--0+++00++-+0-+0-----+-00+---0+00000;
-++-00---+0-++--00++0---00--+++++00+-0+0++0+00+0+-++--000+0+0-0+0+-0++00+++--00-000+--0--+-+-+-+0++---++-+-0-+0-000++0+0+;
-0+0--++-0-00+++++-+0-0-0-+++00-0-+--0++0-+00-+-0-----0+-00-++0++++--+00++0-+-+++0-+-+000+--+0++-0+++-+0-+0+000000-0+00+-;
0+000-++++0+-+++-++00--+-0-0-++0++-+---0++--+0+0+-0-0-0--+-+-0--00++-0+00--+0++++00000++-++--0++-0-0+-0+--+00++00++0-00-0;
-000++0+00+0-+-0+---++++00-000-0-+00-+---0--+00+-0--0+++-0++00+++0-0+00--++-0-0-0++-+-++0+-+-0-++-++--0+-0+0+++++-+0000+-;
+000++00+++00+0+0++-+--++-0--0+++-0000+--0+0+0++0----+00-0+--0+0-+++--+0++-+----0-++00+0++-+-+-0-+00-00-0+-++--00-+-00++0;
++0--+0++-00+0--0-+-++000-+++++----0000+-+000-0-+--0-00----+++-+++-++0-0++0-+0++-0-+-++0++-0+0-+00-++-0+-+0-0-00+0+00++00;
-+--0++-000++00+-+0+0+0--0-0+0++-0+0+++--00-++-+++-0000-+0-00-+00++++---+0---0+-0-----+0-+++-+0+--+0++0+-0+0+-0++00000+-+;
----00++-000++0--++--0-+0---0+0000+--+0+-+00-00-+00+++++-+0++-+---+++0+++-0+-0-00+-+-+0-0+--0+-++-++000+0+0++00+0--0-0+0+;
000+000+++-0--+0--+-0+00+0+-0+++-++---+-+0-0++-+-+++0+00--0-0+++00+0+-00++--+0++++--+0+0-0+-+0+-000--0--00+----000++-+0-+;
-00000+++---0-++--0+000+---+0-0-0+00+++00--0+++0+++-+000++0-+-0+-0+00-+0++0-++-0++++-+--+-----+0-0-+0+00+-+-0+--00+-+0+0+;
--0000++0-+++++0+0+0-+0++0+-++--+--+--00++0-0++++000+---+-+0+-+--+0+0-0+0+-00+--+00-0+-+0+++----00++0--+-0-00-00++-0+-000;
--+0--++000+--0--+-++-+++00-0+0000+++-0--0+0----+-00+-+-+0+0-+++--+++++0-+--0++00+-0+0+++0+0+00--0-+0+-+0-+00+0+--+000-00;
++++0-0--++00++0+-0++00-+-000+--0--0+++0+0000+0--+00+-00+++++--+0+++-+++-0+-0-+--0+-+-0+00+00-0-++-+-++---000--+-0-0-0+0-;
+-+00-0--+++0000++0-+--+0++++-+-+++--0+0-+++++0--0-0+00-+0-0-0-+0+--++-+0-+00+--00---0--00++-++0+-+0+00+000-0+++-0++-000-;
+00+++0+--++0+0-+++-0--0--+--+00+0+0+++++----0+++-+--000+-00+0-0++--+-0+00-++0-0-+---00++-0+-0-+0--0+-+-+0000+000++00+-+0;
+0+0-0--0+00++0+0+000++-++-+0--+0-0+-+-+00-0-+0-+++0+++---+-++0+-+++++00+-00-00+-+0+--+0000+0---0+-0--++--0++000-++00----;
-0+00++00-00+++++-0-++---0+++000+-0+-++0+-+0--0+----0--0-0++-+--+00+0-+00-++00+-+-+0+++--+---+-000+0+0++-0+0-0-+0+0000++-;
-0+0-0-0-+--000---++-+-++-0-00+00+0-+-+0--+-0-+0-+++-+++0+--+++++00-+00+--0+0000+0+++0--0--+000-+-00++0-+0++00++--0-0++++;
+--0++00+++---+----0-0+++++-00+0+0++-+00+---0+-+0-0-+0--++-0+-0---00++-0-000+0-++-+--++0++0-0+00+00-+000+-++0000++0+-+-+0;
0+-+-+0++0000++-+000+-00+00+0-0++0++--+-++-0+000-0-++00---0-+0-++--0+-0-0+-+0---+00+-++0+0+00-+++++0-0----+---+++00++0--+;
-++0000+0+-0-0+0-++0+0+000-+---+--+++0+-+-+00++-00+-0+00+--+-++0-0--0----+0--0+-+0++-+0-+000+++0---++-0-+++++00-00++00+0-;
++000-0+0+++-0+-+-+0+-++00+00+--+-00----+-++--+0+0-+0--0+--0+000+-+0-0++-+++++0---0--+00--+++--0-+0000++00-+0++0+0+00-0-+;
+-+00++000+0000+-+-+0--0+-0-+0-++00---+-0-0++-00+0-+--++0-0+00-+000--+-+++0----+++++0+0+00+--+--0--0-+++-0+0++--+0+++00+0;
-000-++0-+++0-000+00+0+-+0++-++00--0---00--+00+-0+-++--+0+-0-0-0+-00+0-0--0+++++-0+0--+++-+-++++0+--+-0++0000+++--0-00+-+;
-000+--+0+00+-0+-+0+-0--00+0+0+++0+0-+00++0--+-0+++++--+++-0+0+-+-+00-+----0+0--0-+++0000+0-00+++-++-+--0--+000++--0+--00;
-++0+00+-0++++++-0+00-+0+0+-0+--+-+-+00++0-0+-+0----000+++-+---++----0+-+-0++000-00+0+0-+-00+0-++000+++-00+0-0++----00-+0;
+-0-00+0+0++0+-00++0000+-0--+++--00+--0---0+++++-++0-0+-+000+0--+0--0+-0+0+--++-+----00-+--+00+00++-+0+-+-+0-+++0+0-000++;
0++00-+-00--++-+0-00-00+-0-+-+-++0+00++-0----+-++0+--+++-0+0--+0-00+----0++0+0+0-- +0000-+++0--0-++--+-++0+0+00+++00++000+;
-0-00+00-+00-0--+0--00-+0-0+00+--+++0-00000+---0-+-0+-+++++0++-+0-0+0-+0+--+++-00+---00+++000--0++++0-++-+-+0-++++0+0-+-+;
-0-0-0-000-++0-+0-00++--0+++++00---+++-00+--0-0++0+0+0-+0--+0--00+++-++-+++-+0++0+00-00+--+-++-+-+0++00+-+--+0000-++00—0;
+0---00+-+00-00+-++000++0-+--+-0+-++00---0--++-++0+-0-++++--0+-+00-0+0-0-00+0+++++-0+++-+--0+00++0+-++++-0000-0-+00-0+--0;
+-00--+00+0+0++0000+00+++-+0-00+-+--+-0+-0-+++-+0++-0-0++00++0--00+++-++-0+++--0-0-0+---+00---00+0++--+---+-+0+000++0+0--;
+0+0+-+00--+0-+-+00+0+-0-0+-----+--+-++++0-++-0++0+-00+0-+0-+-0++000+-+++0+++0--00+++00+0-0-0+---+000+0--++-0---+++00000-;
+0++000-+-++0--0-00-0-+++0+0-++0++-00++++0+0-0-00+-000-+0+++---+-0+-0000-+---+0-0-++0-+0++---0+--+-+-++--++00+++0-000-+0+;
-+-+++00-+++-++00-0-+000++-+0+-000++-0---0---0++----+--++0+0+0++00--+-++-+0-+0+-0-+--+0+0++000-0+000--++-00++0++0-0+00+0-;
00-00-0++00++00+--+0-+0-0-++0--++-++00000++++0+--00+0-++00--0-+-+--0-0-0-+0+0+--++0---+-++0++-0-0-+--00++-+++-+0++++-000+;
+000--00--++++0+-0++00+-++-+-0-+0++--0-0++-+++-++0++-0--+0+-0000+++-+000-00-0+00-+++0++-+-0-+++-000+0--0+0-0+0+-0+----0--;
+000+0+0-+-00-0----++0+0---++-+-+-+-0--0+++-+00++-0+-++000++0+0++0--0-++-00+0+++00+---++0-++00-00+--+000-00-+0--+--+++0+0;
00++00+0+00-0-0+-+0-++-00+-0+0-++0++-+-0-++0+-0++0-0++-+++-+++----00-0--+-0-000+-+0000----+++++-000++-+-0--0+00-++0+--0++。
其中,第六方面所带来的技术效果可参考上述第五方面所带来的技术效果,在此不再赘述。
结合第五方面或第六方面,在某些实施方式中,目标前导码组为第一前导码组、第二前导码组、和第三前导码组中的一个。其中,第一前导码组包括四十二个前导码中的前14个前导码中的至少3个;第二前导码组包括四十二个前导码的中间14个前导码中的至少3个;第三前导码组包括四十二个前导码中的后14个前导码中的至少3个。
基于该实施方式,各个前导码组内的前导码和组间的前导码均具有较低的周期互相关水平。在使用多个前导码组进行测距时,可以降低信道内以及信道间的干扰。
第七方面,提供了一种信号传输方法,该方法可以由第二设备执行,也可以由第二设备的部件,例如处理器、芯片、或芯片系统等执行,还可以由能实现全部或部分第二设备功能的逻辑模块或软件实现。该方法包括:生成第一信号,并向第一设备发送该第一信号。其中,第一信号包括根据长度为N的目标前导码确定的前导符号,目标前导码属于包括L个前导码的目标前导码组,L为大于或等于3的正整数。
其中,N等于127,目标前导码组包括十四个前导码中的至少一个,该十四个前导码如下:
-00000-++0-0000-00-+-000--0-00+00+0++-0-+0++-00--0++00+0+0-+0-0+-+-+0++++0000-+000+000-0+00--00++--0+0-0+000+-+++++00-000000-0+;
++0+0000-00+++000++0+00+00-0+--0-+0-+-00--0+-00-0+0-+0+0+-+--0++--0000+-000+000 -0+00++00-+--0+0-0-000++++-+-00+000000+0--00000+;
-+00000+0-000-+0++0-000000++0000+00+00+++++-+0+---+000+--0-0-0+00-0+0++--0-00+-00+-+00+-0-0+-000+000+0++-0--00-0000-++-00+0++0-;
+00-00+-++0-0+00000-0-+-+00---0----+++0+-00+0-+000-+00+-0++0+000+--+-0000++-000+0+00++000000++0-0--+0-00+0-0+0++0+--00+0000+000;
0-+0+00000+--+-0++000000-0+0-+0----+--00++0+-0+0-0+000+00-00++00+--+000-+-0---0+0-+-+0+00+0+-00+0-00+++00-000++000+0+++0000-000;
0000++0000-0-000-+-+00-000+0--00--+0+0+00--++-0+0000+-+000+00+00--0--0-0+-0-+++0-+000++0+00-0--+0++-00++00-0+0+0-++-+++000000+0;
+0000+00--+0++0+0-0+00-0+--0-0++000000++00+0+000-++0000-+--+000+0++0-+00+-000+-0+00-+0+++----0---00+-+-0-00000+0-0++-+00-00+000;
0-000+-000-0--+0000+0000+-0+00000+++--0++000000+0+0++0+++----00-+0+-0+0-0+000-00+00-+00++-+000+++0+--0-0-+-+0-00-0+-00+0-00++-0;
----+-0-0+0-00+-00-++0---0+00+0-+000+-0++++0+-0-0-+0++00-00+000--+0000+0-+--+00+0+0+++00++0-000-00+--+000+0+0000+-00000+000000+;
+00+-000-0-+-0-0++0-+00000--00--0+0-00+-+00+++-0+-0+0000+0+0-0----+0+00-0-000++0+-+000++---++0000+++0+--+00+0-+00+00+000000+000;
+000+0---0+0+-0++00000-+00--0-0-00-++00++--0++0+0000-0-0+0+--++0+00-0-000-+0+-+000--++-++0000+++0-+-+00+0++00+00+000000-000-00-;
00-++00-0+00-+0-00-0+-+-0-0--+0+++000+-++00+-00+00-000+0-0+0-+0+-00----+++0++0+0+000000++0--+++00000+0-+0000+0000+--0-000-+000-;
-+0+-00+0000--++00-0++0--+00000-0-000-+0-+0-000000+-0000+00+00+++-++-0+++--000+++0+0-0-00-0-0++++0+00-+00+-+00--0-0+-000-000+0+;
-0+0++0+++00+0000-000+00-00--++0+0+00000-0-+++00--+0-+--+--0-+00-0+-000--00++0-+0+000+-+-+0000+++000-0+00-+000000++0-0+--0+00-0。
基于该方案,本申请提供的前导码组包括至少3个长度为217的前导码。基于该前导码组,在同一前导码组中的前导码用于同信道的同步测距时,能够支持同信道内的至少3个装置的同步测距。此外,该十四个前导码中的各个前导码之间的互相关性较低,相比于现有技术中127长的前导码,能够降低前导码之间的干扰。
第八方面,提供了一种信号传输方法,该方法可以由第一设备执行,也可以由第一设备的部件,例如处理器、芯片、或芯片系统等执行,还可以由能实现全部或部分第一设备功能的逻辑模块或软件实现。该方法包括:接收来自第二设备的第一信号,并根据目标前导码对第一信号进行处理。其中,第一信号包括根据长度为N的目标前导码确定的前导符号,目标前导码属于包括L个前导码的目标前导码组,L为大于或等于3的正整数;
其中,N等于127,目标前导码组包括十四个前导码中的至少一个,该十四个前导码如下:
-00000-++0-0000-00-+-000--0-00+00+0++-0-+0++-00--0++00+0+0-+0-0+-+-+0++++0000-+000+000-0+00--00++--0+0-0+000+-+++++00-000000-0+;
++0+0000-00+++000++0+00+00-0+--0-+0-+-00--0+-00-0+0-+0+0+-+--0++--0000+-000+000-0+00++00-+--0+0-0-000++++-+-00+000000+0--00000+;
-+00000+0-000-+0++0-000000++0000+00+00+++++-+0+---+000+--0-0-0+00-0+0++--0-00+- 00+-+00+-0-0+-000+000+0++-0--00-0000-++-00+0++0-;
+00-00+-++0-0+00000-0-+-+00---0----+++0+-00+0-+000-+00+-0++0+000+--+-0000++-000+0+00++000000++0-0--+0-00+0-0+0++0+--00+0000+000;
0-+0+00000+--+-0++000000-0+0-+0----+--00++0+-0+0-0+000+00-00++00+--+000-+-0---0+0-+-+0+00+0+-00+0-00+++00-000++000+0+++0000-000;
0000++0000-0-000-+-+00-000+0--00--+0+0+00--++-0+0000+-+000+00+00--0--0-0+-0-+++0-+000++0+00-0--+0++-00++00-0+0+0-++-+++000000+0;
+0000+00--+0++0+0-0+00-0+--0-0++000000++00+0+000-++0000-+--+000+0++0-+00+-000+-0+00-+0+++----0---00+-+-0-00000+0-0++-+00-00+000;
0-000+-000-0--+0000+0000+-0+00000+++--0++000000+0+0++0+++----00-+0+-0+0-0+000-00+00-+00++-+000+++0+--0-0-+-+0-00-0+-00+0-00++-0;
----+-0-0+0-00+-00-++0---0+00+0-+000+-0++++0+-0-0-+0++00-00+000--+0000+0-+--+00+0+0+++00++0-000-00+--+000+0+0000+-00000+000000+;
+00+-000-0-+-0-0++0-+00000--00--0+0-00+-+00+++-0+-0+0000+0+0-0----+0+00-0-000++0+-+000++---++0000+++0+--+00+0-+00+00+000000+000;
+000+0---0+0+-0++00000-+00--0-0-00-++00++--0++0+0000-0-0+0+--++0+00-0-000-+0+-+000--++-++0000+++0-+-+00+0++00+00+000000-000-00-;
00-++00-0+00-+0-00-0+-+-0-0--+0+++000+-++00+-00+00-000+0-0+0-+0+-00----+++0++0+0+000000++0--+++00000+0-+0000+0000+--0-000-+000-;
-+0+-00+0000--++00-0++0--+00000-0-000-+0-+0-000000+-0000+00+00+++-++-0+++--000+++0+0-0-00-0-0++++0+00-+00+-+00--0-0+-000-000+0+;
-0+0++0+++00+0000-000+00-00--++0+0+00000-0-+++00--+0-+--+--0-+00-0+-000--00++0-+0+000+-+-+0000+++000-0+00-+000000++0-0+--0+00-0。
其中,第八方面所带来的技术效果可参考上述第七方面所带来的技术效果,在此不再赘述。
结合第七方面或第八方面,在某些实施方式中,目标前导码组为第一前导码组、第二前导码组、和第三前导码组中的一个;
第一前导码组包括十四个前导码中的前六个前导码中的至少一个、以及如下前导码中的至少一个:
+00+00+-0+00++--0+++0000+++----000+++0+-000+0+00+0+-++-0-0-0-0000+0-+0+-++00+--00+0-0++00-+00000+-0-+0-0+-+0-000--00-000-000000;
+0+0+-0-000++-+00000+00--0+-0000-0-000000+--0-+0+--++00+----++0+00+00+0-0-+-0-0+0+00+++000++00+0-+00--000-0++-+0--+00+000+0000+;
+000000++0+0-+-0-00-0+0+0++0+--00+0000-000+00+00-+++0-0+00000+0++-+00++-0+-+++--0--00-0--000+-00+-0-+0+000++---0000++-000-0+00-;
第二前导码组包括十个前导码中的第七个前导码和第八个前导码中的至少一个、以及如下前导码中的至少一个:
+-0+00+00+0-00-+++00+000-+0+0-0000+++++-+0+--0+-0++--0-000+0-+00+0+----000-000000-+00+-0++000++-00++-0-0-+-0000+00--00000-0+0+0;
000-000-00--000-0+-+0-0+-0-+00000+-00++0-0+00--+00++-+0+-0+0000-0-0-0-++-+0+00+0+000-+0+++000----+++0000+++0--++00+0-+00+00+000;
++-00000+-0-000000-00-+-++-+000-0+0+0+++-00--00+0+000+000--0000--++0-++++0-0++0+0-00-+0++00++-0++0+-+0-00+00-0--000-+-00+0000-0;
-00+0-000-++0000---++000+0+-0-+00-+000--0-00--0--+++-+0-++00+-++0+00000+0-0+++-00+00+000-0000+00--+0++0+0+0-00-0-+-0+0++000000+;
0-0000--0+00000+---+0++000000-0+0-+0---+-++00-+0++0+0+0+000-00-00-+00+-++000-+-0-++0-0++++0-00-0++00+0+00++-00+000+-000-0--+000;
-00+-0-+0-00+0+0000+0+-0000++00+0+++++-+0-0+-0--+0++--000---0+000+0+0-+-000000+-+-0--00++000-00+00++-00--++-00-00000+000++0-0+0;
+0000+000+00+--0+-++0-000--00+-0+00++000+++00+0+0-0-+-0-0+00+00+0++----+00++--+0+-0--+000000-0-0000-+0--00+00000+-++000-0-+0+0+;
第三前导码组包括十个前导码中的后六个前导码中的至少一个、以及如下前导码中的至少一个:
0-0000+00-+-000--0-00+00-0+-+0++0-++00++0+-00-0+0++0-0++++-0++--0000--000+000+0+00--00-+++0+0+0-000+-++-+-00-000000-0-+00000-++;
+--0-000-+000+00-++00+0+00++0-00-0++++0-0++-0-+-000++-+00+-00-00-000+0+0+0++0+-00++-+---0+-0+0-000000++0+---+00000+0--0000-0000;
+0+0-00000--00+0000-+-0-0-++00-++000++0-+00+-000000-000----+0+00+-0+000-0--++0-+0--+0+-+++++0000-0+0+-000+00+++-00-0+00+00+0-+0。
基于该实施方式,各个前导码组内的前导码和组间的前导码均具有较低的周期互相关水平。在使用多个前导码组进行测距时,可以降低信道内以及信道间的干扰。
第九方面,提供了一种信号传输方法,该方法可以由第二设备执行,也可以由第二设备的部件,例如处理器、芯片、或芯片系统等执行,还可以由能实现全部或部分第二设备功能的逻辑模块或软件实现。该方法包括:生成第一信号,并向第一设备发送该第一信号。其中,第一信号包括根据长度为N的目标前导码确定的前导符号,目标前导码属于包括L个前导码的目标前导码组,L为大于或等于3的正整数。
其中,N等于133,目标前导码组包括四十五个前导码中的至少3个,该四十五个前导码如下:
-+-+--+----0-+--0+-0-++--+++-+-+--++++-+--++0-0-++++-0---0--+++0--+-+++-++-0++-++++----+-0+-++-++++---+++-+++++++-++--++-+---+-+00+++;
++---0+---+-0+++0+0++0-++++++++---+00+-++--+-++-++++---+-+--++0--+--++--++0+++++---+0+++--+-++-+----+-+---+-+0-+-+++-0-+-+----++-+++-;
++--0+++-+--+++0-++++--++-+++-+0-+++00+0-+-+++-+-+-0+-+----+-+++---+-+-++++++-++-+0++--++---+-+-----++-++-+0-++0---+----0-++++++--0--;
-+--+++++----+-+++++++-++-++----+-+--+++-++-0+0+++0-+-++++-+-+++----0+---0-+--++-+--0-+0--+-+--++--0+++-+++--+-+0++---+00++-+++-+0+--;
--+--+-0-+-+0----++++++++-+-+-++0--++++--+---+0+----++-+-+-++------+00+--+-+--++++--++-++++-++---++-0+--+++-++0+0+++0--0+-+-+++0++-++;
+-0++00++++-0+-++-++--+-++-+-++-+-----++0-0++---++++-+-0-----+-+--+-+-+0+-++--++-++---+++-++--0+-+++++++++--++---0-+++0+---+-+-0--+++;
++-++0+++-+-+0--0+++0+0++-+++--+0-++---++-++++-++--++++--+-+--+00+------++-+-+-++----+0+---+--++++--0++-+-+-++++++++----0+-+-0-+--+--;
--+0+-+++-++00+---++0+-+--+++-+++0--++--+-+--0+-0--+-++--+-0---+0----+++-+-++++-+-0+++0+0-++-+++--+-+----++-++-+++++++-+----+++++--+-;
+++++--+++0+00+-++-+-+0-+---+++++++0++---0--+-0++--++----++-+----+---++++0+-+-+++0+-+-+-0++----++---+--+++-+---+++-++-+--++-+0-+-0++-;
+++00+-+---+-++--++-+++++++-+++---++++-++-+0-+----++++-++0-++-+++-+--0+++--0---0-++++-0-0++--+-++++--+-+-+++--++-0-+0--+-0----+--+-+-;
+-0-+0--++--++++-+-++0+0-+++-0-----+-++-++--+-0+++-+++-+++----++--0+++-+---0-+------+-++0-+++-+--+--+++++---++++-++-+-+-+++00+-+0++-+;
++00++0-+-+-++0+-+++-+-0-+++0----+-++-+--++-+-+0-++++----+---++---+--+0+-++++-++-++--+0-+--+++---+-0+0-++------+-+++-+++++-+++---0+++;
+--+-++---+00+-0-+-+++---++0--+---+++++++---+-++++--+---+-++-0+-++-+-----+----+-++0+0-+++-+-0-++-+++-0++--0--++-0++++-+0++++-++++-+-+;
+--0+0--0--+++0-----+0+++-+++--+--++++--+0-+--+----0-+-++-+++++-+00-+-+-+++++-++++-++++---+++-+-+--+-+++--+0--++-+-0-+-0+---++-++-+++;
+++-++++--+-+--++0--0+---0---++--+-++---00++----+++++++--+--+--+--+++-++-++++-+-0-++-+-+-+---+0++++++--+-+0+-+-+0-++0--+--+0+0+++--++;
+-+-++--+--0++0++++++-+--0----0+-++----++++-++--0+++0+0+--++-+-+-++-+--+++-+-+++++++--++--+-+++-+-++--0+-+++---00--+-+-0--++----+++-0;
+++++++++0+--+-+-+---+-++-++--+-++-+++0-+++---+++0+-0--+-+--+---+-++0--+0---+--+---+++-+++--+-0+0++++-+00++--0+-+++++---+0+-+--++----;
+00+-++-------+++++-+-+-+++-0-++++-+---+0-----++-+0++-++-+--+++----+-+--+++0--++---0-+-++--+-+-++++++-+-0+++-++0-++0+0++0-++-++--++--;
+-+-+--+++-+++-+0++-+--0-+-++-+0+0+++-+++++-00-+-0+-++--+---------++0++--++---+-+++-+-+-0-++-+--++-++--++++----+++-0++0--+++0+++----+;
-++--++-+0--0--++--+++-0+++-++-+++---+-++++----++-++0-++++---------+-+-+-0-+++-+--+-+0-+++00--++-+0+0---+-+-++++++-++-+-++0++-0+++--+;
-+++---++++-++00-++++-+-++-+--+-+--++-+++---+-0---+++++-0+0++-0+-0+--++++0+---+--++---0-+--0+--+-+-+-+++-++-+-+0-----+++--+--0+++++++;
--++--++-++-0++0+0++-0++-+++0-+-++++++-+-+--++-+-0---++--0+++--+-+----+++--+-++-++0+-++-----0+---+-++++-0-+++-+-+-+++++-------++-+00+;
--++--++-++-0++0+0++-0++-+++0-+-++++++-+-+--++-+-0---++--0+++--+-+----+++--+-++-++0+-++-----0+---+-++++-0-+++-+-+-+++++-------++-+00+;
----++--+-+0+---+++++-+0--++00+-++++0+0-+--+++-+++---+--+---0+--0++-+---+--+-+--0-+0+++---+++-0+++-++-+--++-++-+---+-+-+--+0+++++++++;
--+++0+00+-+-++--++-+++---+++---0-+-+0--+++-+-+0-+---0--++-+0-+--+++++--+++-+++----+-++++++--++-+-+++++0+-+0--++++-+-++-+0--+----0--+;
-0+++++-+--++0+++--+++-0-+------++-+-+0+-0--+++---+-+++-+0-++00+-+++0+0-+++++-++-+-++-+--+-+--++-+++-++0--+--+-+++---++-0+++---+-----;
++--+++0+0+--+--0++-0+-+-+0+-+--++++++0+---+-+-+-++-0-+-++++-++-+++--+--+--+--+++++++----++00---++-+--++---0---+0--0++--+-+--++++-+++;
+-0---++++0+-+-+++-+--+-0++-0-+++-+--+--+-+++++++--++++-++++-+-++--++--0--++++0-- +--0++--+----0--+-0-+++++-+-+++--+-++---+-00+0-+++--;
-+---++--0-+++++++---++++-+-+++++-+-++++-0+++-+-+-+--0---+--++-+++-0+00++++--0---++-++-+--0-++---+++-+-++--+0-++0+--+0----+0-+++-+-+-;
--+++-0+00-+---++-+--+++-+-+++++-0-+--0----+--++0--+--0++++--0--++--++-+-++++-++++--+++++++-+--+--+-+++-0-++0-+--+-+++-+-+0++++---0-+;
++0+----0-+-+++00++-0-+-++--+-++++-+-++-0--0++++---+--+++--+++++++++-+++++----+-+-+0++---++--0+--+--+-0+0-+--+-+---+-+-0++++-++--++--;
+-+-++++-++++0+-++++0-++--0--++0-+++-++-0-+-+++-0+0++-+----+-----+-++-+0-++-+---+--++++-+---+++++++---+--0++---+++-+-0-+00+---++-+--+;
++--0+--+-+++--+-++-+++-0++++--+-+++-++++-+0+++00+-+-+---+-0-0++-+---0+++-++0+-++-++------++++++--+--0--++-0-+0-+++--++++-+---+-+----;
-+-+++-++++---+-++-+-+++--0++++-++--+++-++-++++0+0-+---+-0++++---+0++-+0+--++0-----+0+--+--+-+-+-+---++--++++00+-0+-++++-++--0--+----;
--0--++++++-0----+---0++-0+-++-++-----+-+---++--++0+-++-++++++-+-+---+++-+----+-+0-+-+-+++-+-0+00+++-0+-+++-++--++++-0+++--+-+++0--++;
----+-+---+-++++--+++-0+-0-++--0--+--++++++------++-++-+0++-+++0---+-++0-0-+---+-+-+00+++0+-++++-+++-+--++++0-+++-++-+--+++-+--+0--++;
--++--++-++++0-+-+---+-+--+-0+0-+--+--+0--++---++0+-+-+----+++++-+++++++++--+++--+---++++0--0-++-+-++++-+--++-+-0-++00+++-+-0----+0++;
+-++-++------++00+++0+-+-+-0-+0+++++-++++-++--0+0+++-+0---+++---++----+0-++--+---++-+---+++0+--+-++-0++++--+--+-+0---+--+-+-++++-+++-;
+++-++-++---+0-+-0-+-++--0+--+++-+--+-+-+++---++++-++++-+++++-+-+-00+-+++++-++-+-0----+--+-0+--++++--+--+++-+++0+-----0+++--0--0+0--+;
+++0---+++-+++++-+++-+------++-0+0-+---+++--+-0+--++-++-++++-+0+--+---++---+----++++-0+-+-++--+-++-+----0+++-0-+-+++-+0++-+-+-0++00++;
++0-++---0--+---+---0+---++-+-+++--+0-+++00+0-+++++-+--+0++--++++---+-++-+-++--++++---+0-++-++-+++-+-+-+-+-++++-0--+0++-+----0--+++++;
++0--++++++---+--+0+-0+-+--++-+-+--+0+++++-+-+0+----+-++--0++++++++---++0-+-+-+++--++++-+0++--++-++-++----+---+-++------+-0+0-++-+00-;
+++++--0----+-++0+--0-++++-+-+-+-+-+++-++-++-0+---++++--++-+-++-+---++++--++0+--+-+++++-0+00+++-0+--+++-+-++---+0---+---+--0---++-0++;
+-++--+++---+0+++-+0+-+-++--++-+-----++-+0+-+-+--+-0+-------++0+++--+++-++-+++++0-0++--0-+-++++00++0--++-+--++++++--+-+++-0+----+-+--;
--++++++-+-+--+++--+0+-+-++---+-++-+++++-+-+-+0--0--+-+++++-0-0-++0---+++-++--++++-+--+0-+----0----0++--+--++0-++++-+00+--+-+++++--++。
基于该方案,相比于现有技术,本申请提供长度为131的前导码,以及包括至少3个前导码的前导码组,提升了前导码组内的前导码容量。基于本申请提供的前导码组,在同一前导码组中的前导码用于同信道的同步测距时,能够支持同信道内的至少3个装置的同步测距,提升了同信道内能够进行同步测距的装置数量,相比于现有技术中使用时分复用进行多个装置的测距方法,能够降低测距时延。此外,该四十五个前导码中的各个前导码之间的互相关性较低,能够降低前导码之间的干扰。
第十方面,提供了一种信号传输方法,该方法可以由第一设备执行,也可以由第一设备的部件,例如处理器、芯片、或芯片系统等执行,还可以由能实现全部或部分第一设备功能的逻辑模块或软件实现。该方法包括:接收来自第二设备的第一信号,并根据目标前导码对第一信号进行处理。其中,第一信号包括根据长度为N的目标前导码确定的前导符号,目标前导码属于包括L个前导码的目标前导码组,L为大于或等于3的正整数;
其中,N等于133,目标前导码组包括四十五个前导码中的至少3个,该四十五个前导码如下:
-+-+--+----0-+--0+-0-++--+++-+-+--++++-+--++0-0-++++-0---0--+++0--+-+++-++-0++-++++----+-0+-++-++++---+++-+++++++-++--++-+---+-+00+++;
++---0+---+-0+++0+0++0-++++++++---+00+-++--+-++-++++---+-+--++0--+--++--++0+++++---+0+++--+-++-+----+-+---+-+0-+-+++-0-+-+----++-+++-;
++--0+++-+--+++0-++++--++-+++-+0-+++00+0-+-+++-+-+-0+-+----+-+++---+-+-++++++-++-+0++--++---+-+-----++-++-+0-++0---+----0-++++++--0--;
-+--+++++----+-+++++++-++-++----+-+--+++-++-0+0+++0-+-++++-+-+++----0+---0-+--++-+--0-+0--+-+--++--0+++-+++--+-+0++---+00++-+++-+0+--;
--+--+-0-+-+0----++++++++-+-+-++0--++++--+---+0+----++-+-+-++------+00+--+-+--++++--++-++++-++---++-0+--+++-++0+0+++0--0+-+-+++0++-++;
+-0++00++++-0+-++-++--+-++-+-++-+-----++0-0++---++++-+-0-----+-+--+-+-+0+-++--++-++---+++-++--0+-+++++++++--++---0-+++0+---+-+-0--+++;
++-++0+++-+-+0--0+++0+0++-+++--+0-++---++-++++-++--++++--+-+--+00+------++-+-+-++----+0+---+--++++--0++-+-+-++++++++----0+-+-0-+--+--;
--+0+-+++-++00+---++0+-+--+++-+++0--++--+-+--0+-0--+-++--+-0---+0----+++-+-++++-+-0+++0+0-++-+++--+-+----++-++-+++++++-+----+++++--+-;
+++++--+++0+00+-++-+-+0-+---+++++++0++---0--+-0++--++----++-+----+---++++0+-+-+++0+-+-+-0++----++---+--+++-+---+++-++-+--++-+0-+-0++-;
+++00+-+---+-++--++-+++++++-+++---++++-++-+0-+----++++-++0-++-+++-+--0+++--0---0-++++-0-0++--+-++++--+-+-+++--++-0-+0--+-0----+--+-+-;
+-0-+0--++--++++-+-++0+0-+++-0-----+-++-++--+-0+++-+++-+++----++--0+++-+---0-+------+-++0-+++-+--+--+++++---++++-++-+-+-+++00+-+0++-+;
++00++0-+-+-++0+-+++-+-0-+++0----+-++-+--++-+-+0-++++----+---++---+--+0+-++++-++-++--+0-+--+++---+-0+0-++------+-+++-+++++-+++---0+++;
+--+-++---+00+-0-+-+++---++0--+---+++++++---+-++++--+---+-++-0+-++-+-----+----+-++0+0-+++-+-0-++-+++-0++--0--++-0++++-+0++++-++++-+-+;
+--0+0--0--+++0-----+0+++-+++--+--++++--+0-+--+----0-+-++-+++++-+00-+-+-+++++-++++-++++---+++-+-+--+-+++--+0--++-+-0-+-0+---++-++-+++;
+++-++++--+-+--++0--0+---0---++--+-++---00++----+++++++--+--+--+--+++-++-++++-+-0-++-+-+-+---+0++++++--+-+0+-+-+0-++0--+--+0+0+++--++;
+-+-++--+--0++0++++++-+--0----0+-++----++++-++--0+++0+0+--++-+-+-++-+--+++-+-+++++++--++--+-+++-+-++--0+-+++---00--+-+-0--++----+++-0;
+++++++++0+--+-+-+---+-++-++--+-++-+++0-+++---+++0+-0--+-+--+---+-++0--+0---+--+---+++-+++--+-0+0++++-+00++--0+-+++++---+0+-+--++----;
+00+-++-------+++++-+-+-+++-0-++++-+---+0-----++-+0++-++-+--+++----+-+--+++0--++---0-+-++--+-+-++++++-+-0+++-++0-++0+0++0-++-++--++--;
+-+-+--+++-+++-+0++-+--0-+-++-+0+0+++-+++++-00-+-0+-++--+---------++0++--++---+-+++-+-+-0-++-+--++-++--++++----+++-0++0--+++0+++----+;
-++--++-+0--0--++--+++-0+++-++-+++---+-++++----++-++0-++++---------+-+-+-0-+++-+--+-+0-+++00--++-+0+0---+-+-++++++-++-+-++0++-0+++--+;
-+++---++++-++00-++++-+-++-+--+-+--++-+++---+-0---+++++-0+0++-0+-0+--++++0+---+--++---0-+--0+--+-+-+-+++-++-+-+0-----+++--+--0+++++++;
--++--++-++-0++0+0++-0++-+++0-+-++++++-+-+--++-+-0---++--0+++--+-+----+++--+-++-++0+-++-----0+---+-++++-0-+++-+-+-+++++-------++-+00+;
--++--++-++-0++0+0++-0++-+++0-+-++++++-+-+--++-+-0---++--0+++--+-+----+++--+-++-++0+-++-----0+---+-++++-0-+++-+-+-+++++-------++-+00+;
----++--+-+0+---+++++-+0--++00+-++++0+0-+--+++-+++---+--+---0+--0++-+---+--+-+--0-+0+++---+++-0+++-++-+--++-++-+---+-+-+--+0+++++++++;
--+++0+00+-+-++--++-+++---+++---0-+-+0--+++-+-+0-+---0--++-+0-+--+++++--+++-+++----+-++++++--++-+-+++++0+-+0--++++-+-++-+0--+----0--+;
-0+++++-+--++0+++--+++-0-+------++-+-+0+-0--+++---+-+++-+0-++00+-+++0+0-+++++-++-+-++-+--+-+--++-+++-++0--+--+-+++---++-0+++---+-----;
++--+++0+0+--+--0++-0+-+-+0+-+--++++++0+---+-+-+-++-0-+-++++-++-+++--+--+--+--+++++++----++00---++-+--++---0---+0--0++--+-+--++++-+++;
+-0---++++0+-+-+++-+--+-0++-0-+++-+--+--+-+++++++--++++-++++-+-++--++--0--++++0--+--0++--+----0--+-0-+++++-+-+++--+-++---+-00+0-+++--;
-+---++--0-+++++++---++++-+-+++++-+-++++-0+++-+-+-+--0---+--++-+++-0+00++++--0---++-++-+--0-++---+++-+-++--+0-++0+--+0----+0-+++-+-+-;
--+++-0+00-+---++-+--+++-+-+++++-0-+--0----+--++0--+--0++++--0--++--++-+-++++-++++--+++++++-+--+--+-+++-0-++0-+--+-+++-+-+0++++---0-+;
++0+----0-+-+++00++-0-+-++--+-++++-+-++-0--0++++---+--+++--+++++++++-+++++----+-+-+0++---++--0+--+--+-0+0-+--+-+---+-+-0++++-++--++--;
+-+-++++-++++0+-++++0-++--0--++0-+++-++-0-+-+++-0+0++-+----+-----+-++-+0-++-+---+--++++-+---+++++++---+--0++---+++-+-0-+00+---++-+--+;
++--0+--+-+++--+-++-+++-0++++--+-+++-++++-+0+++00+-+-+---+-0-0++-+---0+++-++0+-++-++------++++++--+--0--++-0-+0-+++--++++-+---+-+----;
-+-+++-++++---+-++-+-+++--0++++-++--+++-++-++++0+0-+---+-0++++---+0++-+0+--++0-----+0+--+--+-+-+-+---++--++++00+-0+-++++-++--0--+----;
--0--++++++-0----+---0++-0+-++-++-----+-+---++--++0+-++-++++++-+-+---+++-+----+-+0-+-+-+++-+-0+00+++-0+-+++-++--++++-0+++--+-+++0--++;
----+-+---+-++++--+++-0+-0-++--0--+--++++++------++-++-+0++-+++0---+-++0-0-+---+-+-+00+++0+-++++-+++-+--++++0-+++-++-+--+++-+--+0--++;
--++--++-++++0-+-+---+-+--+-0+0-+--+--+0--++---++0+-+-+----+++++-+++++++++--+++--+---++++0--0-++-+-++++-+--++-+-0-++00+++-+-0----+0++;
+-++-++------++00+++0+-+-+-0-+0+++++-++++-++--0+0+++-+0---+++---++----+0-++--+---+ +-+---+++0+--+-++-0++++--+--+-+0---+--+-+-++++-+++-;
+++-++-++---+0-+-0-+-++--0+--+++-+--+-+-+++---++++-++++-+++++-+-+-00+-+++++-++-+-0----+--+-0+--++++--+--+++-+++0+-----0+++--0--0+0--+;
+++0---+++-+++++-+++-+------++-0+0-+---+++--+-0+--++-++-++++-+0+--+---++---+----++++-0+-+-++--+-++-+----0+++-0-+-+++-+0++-+-+-0++00++;
++0-++---0--+---+---0+---++-+-+++--+0-+++00+0-+++++-+--+0++--++++---+-++-+-++--++++---+0-++-++-+++-+-+-+-+-++++-0--+0++-+----0--+++++;
++0--++++++---+--+0+-0+-+--++-+-+--+0+++++-+-+0+----+-++--0++++++++---++0-+-+-+++--++++-+0++--++-++-++----+---+-++------+-0+0-++-+00-;
+++++--0----+-++0+--0-++++-+-+-+-+-+++-++-++-0+---++++--++-+-++-+---++++--++0+--+-+++++-0+00+++-0+--+++-+-++---+0---+---+--0---++-0++;
+-++--+++---+0+++-+0+-+-++--++-+-----++-+0+-+-+--+-0+-------++0+++--+++-++-+++++0-0++--0-+-++++00++0--++-+--++++++--+-+++-0+----+-+--;
--++++++-+-+--+++--+0+-+-++---+-++-+++++-+-+-+0--0--+-+++++-0-0-++0---+++-++--++++-+--+0-+----0----0++--+--++0-++++-+00+--+-+++++--++。
其中,第十方面所带来的技术效果可参考上述第九方面所带来的技术效果,在此不再赘述。
结合第九方面或第十方面,在某些实施方式中,目标前导码组为第一前导码组、第二前导码组、和第三前导码组中的一个。其中,第一前导码组包括四十五个前导码中的前15个前导码中的至少3个;第二前导码组包括四十五个前导码的中间15个前导码中的至少3个;第三前导码组包括四十五个前导码中的后15个前导码中的至少3个。
基于该实施方式,各个前导码组内的前导码和组间的前导码均具有较低的周期互相关水平。在使用多个前导码组进行测距时,可以降低信道内以及信道间的干扰。
结合第三方面至第十方面,在某些实施方式中,第一前导码组、第二前导码组、和第三前导码组用于K个信道,K为大于或等于2的正整数。基于该实施方式,本申请提供的前导码组能够用于K个信道的测距。
结合第三方面至第十方面,在某些实施方式中,K等于3,第一前导码组用于第一信道,第二前导码组用于第二信道,第三前导码组用于第三信道。
结合第一方面或第三方面或第五方面或第七方面或第九方面,在某些实施方式中,该方法还包括:接收来自第一设备的控制信息,控制信息用于指示目标前导码,控制信息包括以下至少一项:目标前导码的长度、目标前导码的索引、或目标前导码组的索引。生成第一信号,包括:根据控制信息,生成第一信号。基于该实施方式,第二设备根据第一设备的控制信息生成第一信号,可以使得第一设备后续在处理第一信号时,选择与第一信号对应的目标前导码,提高方案的准确性。
结合第一方面或第三方面或第五方面或第七方面或第九方面,在某些实施方式中,向第一设备发送第一信号,包括:接收来自第一设备的第二信号,根据第二信号向第一设备发送第一信号。
结合第一方面或第三方面或第五方面或第七方面或第九方面,在某些实施方式中,目标前导码为目标前导码组中未被使用的前导码。基于该实施方式选择未被使用的前导码生成第一信号,能够降低第一信号与已经被使用的前导码对应的信号之间的干扰。
结合第二方面或第四方面或第六方面或第八方面或第十方面,在某些实施方式中,接收 来自第二设备的第一信号之前,该方法还包括:向第二设备发送控制信息,控制信息用于指示目标前导码,控制信息包括以下至少一项:目标前导码的长度N、目标前导码的索引、或目标前导码组的索引。
结合第二方面或第四方面或第六方面或第八方面或第十方面,在某些实施方式中,接收来自第二设备的第一信号之前,该方法还包括:发送第二信号,第二信号用于触发第一信号的发送。
结合第二方面或第四方面或第六方面或第八方面或第十方面,在某些实施方式中,目标前导码组为目标信道对应的前导码;该方法还包括:在目标信道上进行监听,确定目标前导码组中未被使用的前导码,目标前导码为未被使用的前导码中的一个。
第十一方面,提供了一种通信装置用于实现上述各种方法。该通信装置可以为第一方面或第三方面或第五方面或第七方面或第九方面中的第二设备,或者第二设备中包含的装置,比如芯片;或者,该通信装置可以为第二方面或第四方面或第六方面或第八方面或第十方面中的第一设备,或者第一设备中包含的装置,比如芯片。所述通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
在一些可能的设计中,该通信装置可以包括收发模块和处理模块。该收发模块,也可以称为收发单元,用以实现上述任一方面及其任意可能的实现方式中的发送和/或接收功能。该收发模块可以由收发电路,收发机,收发器或者通信接口构成。该处理模块,可以用于实现上述任一方面及其任意可能的实现方式中的处理功能。
在一些可能的设计中,收发模块包括发送模块和接收模块,分别用于实现上述任一方面及其任意可能的实现方式中的发送和接收功能。
第十二方面,提供一种通信装置,包括:处理器和通信接口;该通信接口,用于与该通信装置之外的模块通信;所述处理器用于执行计算机程序或指令,以使该通信装置执行上述任一方面所述的方法。该通信装置可以为上述第一方面至第五方面中的第二设备,或者上述第二设备中包含的装置,比如芯片;或者,该通信装置可以为上述第六方面至第十反方面中的第一设备,或者上述第一设备中包含的装置,比如芯片。
第十三方面,提供了一种通信装置,包括:接口电路和处理器,该接口电路为代码/数据读写接口电路,该接口电路用于接收计算机执行指令(计算机执行指令存储在存储器中,可能直接从存储器读取,或可能经过其他器件)并传输至该处理器;处理器用于执行计算机执行指令以使该通信装置执行上述任一方面所述的方法。该通信装置可以为上述第一方面至第五方面中的第二设备,或者上述第二设备中包含的装置,比如芯片;或者,该通信装置可以为上述第六方面至第十反方面中的第一设备,或者上述第一设备中包含的装置,比如芯片。
第十四方面,提供了一种通信装置,包括:至少一个处理器;所述处理器用于执行计算机程序或指令,以使该通信装置执行上述任一方面所述的方法。该通信装置可以为上述第一方面至第五方面中的第二设备,或者上述第二设备中包含的装置,比如芯片;或者,该通信装置可以为上述第六方面至第十反方面中的第一设备,或者上述第一设备中包含的装置,比如芯片。
在一些可能的设计中,该通信装置包括存储器,该存储器,用于保存必要的程序指令和数据。该存储器可以与处理器耦合,或者,也可以独立于该处理器。
在一些可能的设计中,该通信装置可以是芯片或芯片系统。该装置是芯片系统时,可以 由芯片构成,也可以包含芯片和其他分立器件。
第十五方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在通信装置上运行时,使得上述任一方面所述的方法被执行。
第十六方面,提供了一种包含指令的计算机程序产品,当其在通信装置上运行时,使得上述任一方面所述的方法被执行。
可以理解的是,第十一方面至第十六方面中任一方面提供的通信装置是芯片时,上述的发送动作/功能可以理解为输出信息,上述的接收动作/功能可以理解为输入信息。
其中,第十一方面至第十六方面中任一种设计方式所带来的技术效果可参见上述第一方面至第十方面中不同设计方式所带来的技术效果,在此不再赘述。
第十七方面,提供一种通信系统,该通信系统包括上述方面所述的第一设备和第二设备。
附图说明
图1为本申请的实施例应用的通信系统的架构示意图;
图2为本申请的实施例应用的一种通信系统的示例图;
图3为本申请的实施例应用的另一种通信系统的示例图;
图4为本申请提供的一种信号传输方法的流程示意图;
图5为本申请提供的另一种信号传输方法的流程示意图;
图6为本申请提供的一种前导码和前导码符号的关系示意图;
图7为本申请提供的另一种前导码和前导码符号的关系示意图;
图8为本申请提供的一种通信装置的结构示意图;
图9为本申请提供的另一种通信装置的结构示意图。
具体实施方式
在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。
在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,a和b和c,其中a,b,c可以是单个,也可以是多个。
另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
可以理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各个实施例未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。 可以理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
可以理解,在本申请中,“…时”、“若”等类似描述均指在某种客观情况下会做出相应的处理,并非是限定时间,且也不要求实现时一定要有判断的动作,也不意味着存在其它限定。
可以理解,本申请中的预配置可以理解为定义、预定义、存储、预存储、预协商、固化、或预烧制。
可以理解,本申请实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,比如其当前所基于的方案,而独立实施,解决相应的技术问题,达到相应的效果,也可以在某些场景下,依据需求与其他特征进行结合。相应的,本申请实施例中给出的装置也可以相应的实现这些特征或功能,在此不予赘述。
本申请中,除特殊说明外,各个实施例之间相同或相似的部分可以互相参考。在本申请中各个实施例、以及各实施例中的各个实施方式/实施方法/实现方法中,如果没有特殊说明以及逻辑冲突,不同的实施例之间、以及各实施例中的各个实施方式/实施方法/实现方法之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例、以及各实施例中的各个实施方式/实施方法/实现方法中的技术特征根据其内在的逻辑关系可以组合形成新的实施例、实施方式、实施方法、或实现方法。以下所述的本申请实施方式并不构成对本申请保护范围的限定。
为了方便理解本申请实施例的技术方案,首先给出本申请相关技术的简要介绍如下。
第一、周期自相关特性:
对于前导码a=[a 1,a 2,…,a N],它的周期自相关定义为如下公式(1):
Figure PCTCN2022118178-appb-000001
由公式(1)可得,前导码在完全对齐(即τ=0)时取得最大周期自相关值。在UWB测距中,由于接收端装置需要根据最大周期自相关峰确定信号传输时延,为了降低测距误差,要求在τ取其他值(即τ=1,2,…,N-1)的情况下有尽量小的自相关旁峰(side lobe)。特殊地,若τ=1,2,…,N-1时,φ aa(τ)=0,称前导码a为完美周期自相关码。
第二、周期互相关特性:
对于前导码a=[a 1,a 2,…,a N]和b=[b 1,b 2,…,b N],它们的周期互相关定义为如下公式(2):
Figure PCTCN2022118178-appb-000002
由于同信道内可能出现多个装置使用同一组内的不同前导码进行同步测距的情况,因此前导码之间会产生干扰。为了降低干扰水平,要求前导码之间具有较好的周期互相关性质,即在全周期(τ=0,1,2,…,N-1)内,φ ab(τ)都限制在较低水平。
第三、模糊函数特性:
对于前导码a=[a 1,a 2,…,a N],它的模糊函数定义为如下公式(3):
Figure PCTCN2022118178-appb-000003
其中,exp指以自然常数e为底的指数函数,
Figure PCTCN2022118178-appb-000004
表示卷积。模糊函数主要刻画载波频谱偏移(carrier frequency offset,CFO)对前导码自相关特性的影响。由于存在CFO,前导码的周期自相关性质会恶化,通常使用CFO影响下的自相关最大旁峰与主峰的比值来衡量前导码的模糊函数性质,表示为如下公式(4):
Figure PCTCN2022118178-appb-000005
其中,p(v)的值越小,表示前导码的模糊函数性质越好。
第四、频谱峰均值比特性:
对于前导码a=[a 1,a 2,…,a N],它的频谱峰均值比(spectral peak to average ratio,SPAR)定义为如下公式(5):
Figure PCTCN2022118178-appb-000006
其中,ψ(a)表示a的傅里叶变换。SPAR主要刻画前导码对测距信号的功率谱密度(power spectral density,PSD)的影响。SPAR a的值越小,前导码的SPAR性质越好。
如背景技术所述,基于现有标准的定义,无法支持较多的装置进行同步测距。尽管IEEE802.15.4以及802.15.4z标准规定了时分复用(time division multiplexing,TDM)的方法,即通过在不同时间复用同一组内的前导码实现多个装置的测距,但是该方法一方面会降低测距的效率,另一方面会增加测距装置的功耗。从而,目前的前导码设计不能满足大多数场景中对较多装置的同步测距需求。
基于此,本申请提供一种信号传输方法,能够提升同信道内测距的前导码容量,从而可以支持更多装置的同步测距。
可以理解的,本申请所述的对多个装置同步测距,可以理解为:同时测量该多个装置分别与某一装置之间的距离。
本申请提供的技术方案可用于各种通信系统,该通信系统可以为第三代合作伙伴计划(third generation partnership project,3GPP)通信系统,例如,长期演进(long term evolution,LTE)系统、新无线(new radio,NR)系统、车联网(vehicle to everything,V2X)系统,LTE和NR混合组网的系统、或者设备到设备(device-to-device,D2D)通信系统、机器到机器(machine to machine,M2M)通信系统、物联网(Internet of Things,IoT)系统,以及其他下一代通信系统。或者,该通信系统也可以为非3GPP通信系统,不予限制。
本申请提供的技术方案可以应用于各种通信场景下的UWB一对多同步测距,例如可以应用于以下通信场景中的一种或多种:增强移动宽带(enhanced mobile broadband,eMBB)、超可靠低时延通信(ultra reliable low latency communication,URLLC)、机器类型通信(machine type communication,MTC)、大规模机器类型通信(massive machine type communications,mMTC)、D2D、V2X、和IoT等通信场景。
其中,上述适用本申请的通信系统和通信场景仅是举例说明,适用本申请的通信系统和通信场景不限于此,在此统一说明,以下不再赘述。
参见图1,为本申请实施例提供的一种通信系统。该通信系统10包括第一设备和M个第二设备,M为大于1的正整数。本申请实施例中,以第一设备需要同步获取第一设备与该M个第二设备之间的距离为例进行说明,即需要对M个第二设备同步测距。
可选的,该M个第二设备工作在超宽带(ultra-wideband,UWB)频段的同一信道。或者说,支持UWB频段的同一工作频率。
可选的,该第一设备可以称为测距中心装置,或者测距发起者(initiator);第二设备可以称为待测距装置,或者测距应答者(responder)。
在一些实施例中,第一设备和第二设备可以为不同类型的设备。示例性的,如图2所示, 该第一设备可以为网络设备,第二设备可以为终端设备。
在另一些实施例中,第二设备和第二设备可以为相同类型的设备。示例性的,如图3所示,该第一设备和第二设备均可以为终端设备。
可选的,终端设备可以是用于实现通信功能的设备。终端设备也可以称为用户设备(user equipment,UE)、终端、接入终端、用户单元、用户站、移动站(mobile station,MS)、远方站、远程终端、移动终端(mobile terminal,MT)、用户终端、无线通信设备、用户代理或用户装置等。终端设备例如可以是IoT、V2X、D2D、M2M、第五代(5th generation,5G)网络、或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的无线终端。无线终端可以是指一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
示例性的,终端设备可以是无人机、IoT设备(例如,传感器,电表,水表等)、V2X设备、无线局域网(wireless local area networks,WLAN)中的站点(station,ST)、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备(也可以称为穿戴式智能设备)、平板电脑或带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、车载终端、具有车对车(vehicle-to-vehicle,V2V)通信能力的车辆、智能网联车、具有无人机对无人机(UAV to UAV,U2U)通信能力的无人机等等。终端可以是移动的,也可以是固定的,本申请对此不作具体限定。
可选的,网络设备是一种将终端设备接入到无线网络的设备,可以是LTE或演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(evolutional Node B,eNB或eNodeB),如传统的宏基站eNB和异构网络场景下的微基站eNB;或者可以是5G系统中的下一代节点B(next generation node B,gNodeB或gNB);或者可以是传输接收点(transmission reception point,TRP);或者可以是未来演进的PLMN中的基站;或者可以是宽带网络业务网关(broadband network gateway,BNG)、汇聚交换机或非3GPP接入设备;或者可以是云无线接入网络(cloud radio access network,CRAN)中的无线控制器;或者可以是WiFi系统中的接入节点(access point,AP);或者可以是无线中继节点或无线回传节点;或者可以是IoT、V2X、D2D、或者M2M中实现基站功能的设备,本申请实施例对此不作具体限定。
示例性的,本申请实施例中的基站可以包括各种形式的基站,例如:宏基站,微基站(也称为小站),中继站,接入点等,本申请实施例对此不作具体限定。
下面将结合附图,以第一设备与第二设备之间的交互为例,对本申请实施例提供的方法进行展开说明。
如图4所示,为本申请提供的一种信号传输方法的流程示意图,该信号传输方法包括如下步骤:
S401、第二设备m生成第一信号。
其中,该第一信号包括前导符号。前导符号可以是根据长度为N的目标前导码确定的,该目标前导码属于包括L个前导码的目标前导码组,L为大于或等于3的正整数。
可选的,目标前导码组包括的L个前导码可以用于UWB的某一信道中的多个装置的同步测距。
可选的,目标前导码组中的前导码均为完美周期自相关码,各个前导码的长度相等。此外,目标前导码组中的各个前导码之间具有较低的周期互相关水平。因此,在使用目标前导码组进行同步测距时,可以降低信道内的干扰。
可选的,第一信号可以为UWB信号。该第一信号也可以称为测距响应信号,二者可以相互替换,本申请对此不作具体限定。
可选的,上述m的取值可以为1,2,…,M,即本申请适用的通信系统中的M个第二设备均可以执行本申请实施例中第二设备涉及的动作,实现第二设备涉及的功能。不同第二设备使用的目标前导码为同一目标前导码组中的不同前导码。例如,第二设备1使用的前导码为目标前导码组中的前导码p1,生成的第一信号为第一信号1;第二设备2使用的前导码为目标前导码组中的前导码p2,生成的第一信号为第一信号2;…;第二设备M使用的前导码为目标前导码组中的前导码pM,生成的第一信号为第一信号M。
S402、第二设备m向第一设备发送第一信号。相应的,第一设备接收来自第二设备m的第一信号。
可选的,上述M个第二设备可以分别向第一设备发送各自生成的第一信号。相应的,第一设备接收来自M个第二设备的第一信号。
S403、第一设备根据目标前导码对第一信号进行处理。
可选的,第一设备可以解码得到第一信号中的前导码(以下称为接收前导码);或者,可以对第一信号进行采样得到第一信号中的前导码。由于传输时延,接收前导码相对于步骤S401中生成第一信号时所使用的目标前导码而言,会存在循环移位。示例性的,以目标前导码为a=[a 1,a 2,…,a N]为例,接收前导码可能为a′=[a N,a 1,a 2,…,a N-1]。
可选的,得到接收前导码后,第一设备可以对接收前导码及其对应的目标前导码进行循环移位自相关运算,确定最大自相关峰值对应的时刻,根据该时刻确定第一设备和第二设备m之间的距离。
示例性的,接收前导码和目标前导码进行循环移位自相关运算可以表示为如下公式(5):
Figure PCTCN2022118178-appb-000007
可选的,解码第一信号得到的接收前导码对应的目标前导码为:第二设备生成该第一信号时使用的目标前导码。示例性的,基于步骤S401中的假设,第一信号为第一信号1时,解码第一信号1得到的接收前导码对应的目标前导码为目标前导码组中的前导码p1;第一信号为第一信号2时,解码第一信号2得到的接收前导码对应的目标前导码为目标前导码组中的前导码p2;…;第一信号为第一信号M时,解码第一信号M得到的接收前导码对应的目标前导码为目标前导码组中的前导码pM。
基于该方案,第一信号所使用的目标前导码属于目标前导码组,目标前导码组包括大于或等于3个前导码。也就是说,本申请提供的前导码组中至少包括3个前导码,因此,在同一前导码组中的前导码用于同信道的同步测距时,能够支持同信道内的至少3个装置的同步测距,提升了同信道内能够进行同步测距的装置数量。并且,相比于现有技术中使用时分复用进行多个装置的测距方法,能够降低测距时延。
以上,对本申请提供的信号传输方法的整体流程进行了说明。下面对本申请提供的前导码、前导码组进行详细说明。
其中,目标前导码的长度N等于31、或91、或121、或127、或133。下面对各个长度下的前导码分别进行说明。
在一些实施例中,N等于31时,目标前导码组包括四个前导码中的至少一个,该四个前导码如下:
第1个:+0000-0++0-0+000+-+0++++-00-00-;
第2个:-0-00+000+0++-++0+-00+--0000++0;
第3个:0+0++00++-+-000++0+--0+0-0000-0;
第4个:0++-00+-0---++0+000+00+0+0-+000。
为了便于说明,本申请将上述四个前导码记为第一前导码集合,二者可以相互替换。需要说明的是,此处仅是示例性的说明该四个前导码在第一前导码集合中的顺序,实际应用中还可以有其他排列顺序,本申请对此不作具体限定。
可选的,该实施例中,目标前导码组为第一前导码组和第二前导码组中的一个。其中:
第一前导码组包括第一前导码集合中的前两个前导码中的至少一个,以及如下前导码中的至少一个:
-0000-0+0--+0++000-+-++00++0+00;
0+0-0+++0+-000+-+++00-+0-00-000;
00+0+-0+0+000-++0-+---00+00++00;
0000+-0+0+00+000+0++---0-+00-++。
第二前导码组包括第一前导码集合中的后两个前导码中的至少一个、以及如下前导码中的至少一个:
0-00-0+-00+++-+000-+0+++0-0+000;
-00-00-++++0+-+000+0-0++0-0000+;
000++00+00---+-0++-000+0+0-+0+0;
++0000--+00-+0++-++0+000+00-0-0。
需要说明的是,此处所述的第一前导码集合中的前两个前导码、后两个前导码指上述示例排序下的前两个和后两个。总之,本申请提供的分组中,第一前导码组包括+0000-0++0-0+000+-+0++++-00-00-和-0-00+000+0++-++0+-00+--0000++0中的至少一个,并不是包括任何排序下的前两个前导码;第二前导码组包括0+0++00++-+-000++0+--0+0-0000-0和0++-00+-0---++0+000+00+0+0-+000中的至少一个,并不是包括任何排序下的后两个前导码。示例性的,若第一前导码集合包括的4个前导码的排列顺序如下:
第1个:0+0++00++-+-000++0+--0+0-0000-0;
第2个:0++-00+-0---++0+000+00+0+0-+000。
第3个:+0000-0++0-0+000+-+0++++-00-00-;
第4个:-0-00+000+0++-++0+-00+--0000++0。
那么在该示例下,第一前导码组包括第一前导码集合中的后两个前导码,第二前导码组包括第一前导码集合中的前两个前导码。
在一实施例中,第一前导码组和第二前导码组包括的前导码的全集可以如下表1所示。其中,+表示1,-表示-1。表1中的前导码可以理解为0均衡前导码。
表1
Figure PCTCN2022118178-appb-000008
Figure PCTCN2022118178-appb-000009
需要说明的是,表1中的前导码索引仅是示例性的表示,实际实现时前导码的索引还可以有其他表示形式,例如从0开始编号,每组内前导码的索引为0至5;或者,不同组内的前导码可以连续编号,例如第一前导码和第二前导码组内的前导码索引为1至12,索引为1至6的前导码属于第一前导码组,索引为7至12的前导码属于第二前导码组;或者,第一前导码和第二前导码组内的前导码索引为0至11。本申请对此不作具体限定。
可选的,可以使用差分集映射的方法,生成多个长度为31的0均衡三元序列,以互相关特性为主要约束、序列模糊函数特性和SPAR特性为次要约束,选择序列中性质较好的12个序列(如表1所示)作为前导码组中的前导码。
可选的,表1所示的第一前导码组中索引为2、3、4的前导码之间,第二前导码组中索引为2、3、4的前导码之间具有相对较低的周期互相关性,在需要进行同步测距的装置数量小于或等于3时,可以优先使用索引为2、3、4的前导码。上述前导码可以称为优选前导码。
在一些实施例中,N等于31时,目标前导码组包括二十个前导码中的至少3个,该二十个前导码如下:
第1个:-+0--+-++00+---++-++++-+0+++0-0;
第2个:++-+++--0+++0+0-+0++-+--00--+-+;
第3个:+-+++--+0+-+----0+++-++0+0-+00+;
第4个:0-++-+++-+0-++++--0-+---+0+0++0;
第5个:00++--0-+++++-+++-0++-0--+-+-0+;
第6个:0+00+-++0+-+-+++++--0--+0--+++-;
第7个:00++0--++-0-0-+-+0-++++++--+-++;
第8个:+++++0+0---+0+--++-+-+--++00+-0;
第9个:+++-0---0+-++-0+-+-+++--+++00+0;
第10个:00+0+-+-0++-0+-+++0-++++-++----;
第11个:00++-+--++++++-0+-+-0-0-++--0++;
第12个:-+00++--+-+-++--+0+---0+0+++++0;
第13个:0+00+++--+++-+-+0-++-+0---0-+++;
第14个:----++-++++-0+++-+0-++0-+-+0+00;
第15个:-0+++0+-++++-++---+00++-+--0+-0;
第16个:+-+--00--+-++0+-0+0+++0--+++-++;
第17个:-+++--0+--0--+++++-+-+0++-+00+0;
第18个:00+0-+-+--0-++0-+++-+++++-0--++;
第19个:++0+0+---+-0--++++-0+-+++-++-00;
第20个:+00+-0+0++-+++0----+-+0+--+++-+。
为了便于说明,本申请将上述二十个前导码记为第二前导码集合,二者可以相互替换。需要说明的是,此处仅是示例性的说明第二前导码集合包括的20个前导码在第二前导码集合中的顺序,实际应用中还可以有其他排列顺序,本申请对此不作具体限定。
可选的,该实施例中,目标前导码组为第一前导码组和第二前导码组中的一个。其中,第一前导码组包括第二前导码集合的前10个前导码中的至少3个,第二前导码组包括第二前导码集合的后10个前导码中的至少3个。
需要说明的是,此处所述的第二前导码集合中的前10个前导码、后10个前导码指上述示例排序下的前10个和后10个,可参考上述第一前导码集合的相关说明,在此不再赘述。
在一实施例中,第一前导码组和第二前导码组包括的前导码的全集可以如下表2所示。表2中的前导码可以理解为少0前导码。
表2
Figure PCTCN2022118178-appb-000010
需要说明的是,表2中的前导码索引仅是示例性的表示,可参考上述对表1中前导码索引的相关描述,在此不再赘述。
可选的,可以使用差分集映射的方法,生成多个长度为31的少0三元序列,以互相关特性为主要约束、序列模糊函数特性和SPAR特性为次要约束,选择序列中性质较好的20个序 列(如表2所示)作为前导码组中的前导码。
可选的,表2所示的第一前导码组中索引为2、3、9、10的前导码之间,第二前导码组中索引为2、3、5、10的前导码之间具有相对较低的周期互相关性,在需要进行同步测距的装置数量小于或等于4时,可以优先使用第一前导码组中索引为2、3、9、10的前导码,或第二前导码组中索引为2、3、5、10的前导码。上述前导码可以称为优选前导码。
可选的,前述第一前导码组和第二前导码组可以用于K个信道,K为大于或等于2的正整数。该K个信道可以为超宽带频段的K个信道。其中,该K个信道中的每个信道对应一个前导码组,在该信道上使用该前导码组中的前导码进行同步测距。特别的,相邻信道对应的前导码不同,不相邻的信道对应的前导码可以相同也可以不同。
可选的,在K等于3时,第一前导码组可以用于超宽带频段的第一信道和第三信道;第二前导码组可以用于超宽带频段的第二信道;其中,第一信道和第三信道不相邻。
示例性的,第一信道的中心频率可以为7488.0兆赫兹(MHz),带宽为499.2MHz。第二信道的中心频率可以为7987.2MHz,带宽为499.2MHz。第三信道的中心频率可以为8486.4MHz,带宽为499.2MHz。或者,第一信道的中心频率为8486.4MHz,第三信道的中心频率为7488.0MHz,带宽均为499.2MHz。
在一些实施例中,N等于91时,目标前导码组包括十个前导码中的至少1个,该十个前导码如下:
第1个:+0+-+-+-+++++-+++----0+--+-++0++-++++-0-++++-++---+--+--++---0+-+++----0-+0+--+++-++-00-++0;
第2个:++-00-++-+++--+0+-0----+++-+0---++--+--+---++-++++-0-++++-++0++-+--+0----+++-+++++-+-+-+0+0;
第3个:-+-+0++-++-+0+0--+-0+-+---+-+---++-+--+++++-+++0------+-+++--++--00++0-++--+++0++-+-+++++0-;
第4个:-++0--0+++-+++--++-0-+-0+-+-00++--++-+---+++++++++++--+--++-++-+-0+0-+-++++----0-++---0-+-+;
第5个:+-+----0+-++-++------0+-+++-+++-+++++0+-+-+0-+-+++---+++++--+-++-++--00-++0--0++--+++-+0+0-;
第6个:-+--++-+-+++++---+-+0++---+-+-+0-+-----+0--+++00++-+--++++++-++-+0--0+0+-++++-0+++0-+---++-;
第7个:+++++++-0+-+-++0--+-0-+-+---+++--+++0++-0--+-++---00+0-+++-0---+++--+--+-+-++0++-++--+--+++;
第8个:0--0--+++--+++++0+--0+--+00+-++-++++++--++---+-++++-+--+--++++0-0+++-+-++--+0+-+-+-0----+-+;
第9个:+++++--+++-+--++-+--+0-++++++-----++-++00++0--++-+--0-+-++-+-+-0++---0+---++-0-0-+-+0+++-++;
第10个:+0+++---+--0+-0+-++-+++-+00++-0-0++++-++-+--+-+--+++0+-----+0+-+---++0--+-+---++-+++--+++++。
为了便于说明,本申请将上述十个前导码记为第三前导码集合,二者可以相互替换。需要说明的是,此处仅是示例性的说明第三前导码集合包括的10个前导码在第三前导码集合中的顺序,实际应用中还可以有其他排列顺序,本申请对此不作具体限定。
可选的,该实施例中,目标前导码组为第一前导码组、第二前导码组、和第三前导码组 中的一个。其中:
第一前导码组包括第三前导码集合中的前四个前导码中的至少一个、以及如下前导码中的至少一个:
-0+++++-+-++0+++--++-0++00--++--+++-+------0+++-+++++--+-++---+-+---+-+0-+--0+0+-++-++0+-+-;
+-+-0---++-0----++++-+-0+0-+-++-++--+--+++++++++++---+-++--++00-+-+0-+-0-++--+++-+++0--0++-;
第二前导码组包括第三前导码集合中的第五个前导码、第六个前导码、或第七个前导码中的至少一个、以及如下前导码中的至少一个:
+++--+--++-++0++-+-+--+--+++---0-+++-0+00---++-+--0-++0+++--+++---+-+-0-+--0++-+-+0-+++++++;
-0+0+-+++--++0--0++-00--++-++-+--+++++---+++-+-0+-+-+0+++++-+++-+++-+0------++-++-+0----+-+;
-++---+-0+++0-++++-+0+0--0+-++-++++++--+-++00+++--0+-----+-0+-+-+---++0+-+---+++++-+-++--+-;
第三前导码组包括第三前导码集合的后三个前导码中的至少一个、以及如下前导码中的至少一个:
+-+----0-+-+-+0+--++-+-+++0-0++++--+--+-++++-+---++--++++++-++-+00+--+0--+0+++++--+++--0—0;
++-+++0+-+-0-0-++---+0---++0-+-+-++-+-0--+-++--0++00++-++-----++++++-0+--+-++--+-+++--+++++;
+++++--+++-++---+-+--0++---+-+0+-----+0+++--+-+--+-++-++++0-0-++00+-+++-++-+0-+0--+---+++0+。
需要说明的是,此处所述的第三前导码集合中的前4个前导码、第五个前导码、第六个前导码、或第七个前导码、后3个前导码是在上述示例排序中的序号,可参考上述第一前导码集合的相关说明,在此不再赘述。
在一实施例中,第一前导码组、第二前导码组、以及第三前导码组包括的前导码的全集可以如下表3所示。
表3
Figure PCTCN2022118178-appb-000011
Figure PCTCN2022118178-appb-000012
需要说明的是,表3中的前导码索引仅是示例性的表示,可参考上述对表1中前导码索引的相关描述,在此不再赘述。
可选的,可以使用差分集映射的方法,生成多个长度为91三元序列,以互相关特性为主要约束、序列模糊函数特性和SPAR特性为次要约束,选择序列中性质较好的18个序列(如表3所示)作为前导码组中的前导码。
可选的,表3所示的第一前导码组中索引为1、4、6的前导码之间,第二前导码组中索引为1、4、6的前导码之间,第三前导码组中索引为1、4、6的前导码之间具有相对较低的周期互相关性,在需要进行同步测距的装置数量小于或等于3时,可以优先使用第一前导码组或第二前导码组或第三前导码组中索引为1、4、6的前导码,尽可能降低干扰。上述前导码可以称为优选前导码。
在一些实施例中,N等于121时,目标前导码组包括四十二个前导码中的至少3个,该四十二个前导码如下:
第1个:+0+-000-0+++00++--++-+-+--+0---++0+-0++-0-0+---+-0000-+0-+---+++0+-000-+00-0-0+0++++00-++0++-0+0+++-0-00-0--0++-+-000++0+;
第2个:-0+00+0-0++0++00-++--000+0-000++0+0+--+-0-+0+-0+-++-+--00++0+0+0++--+----++0---0---0-++000-+0+-++000+-0-00++-+++-00+++-+-;
第3个:0+-+-+0-0+-0-0+0+-+0+00-+0-+00+0+-0+0+++-0++++--++--00--++0++++--0-000-+00+-+--0+++0+--0+++00++-+0-+0-----+-00+---0+00000;
第4个:-++-00---+0-++--00++0---00--+++++00+-0+0++0+00+0+-++--000+0+0-0+0+-0++00+++--00-000+--0--+-+-+-+0++---++-+-0-+0-000++0+0+;
第5个:-0+0--++-0-00+++++-+0-0-0-+++00-0-+--0++0-+00-+-0-----0+-00-++0++++--+00++0-+-+++0-+-+000+--+0++-0+++-+0-+0+000000-0+00+-;
第6个:0+000-++++0+-+++-++00--+-0-0-++0++-+---0++--+0+0+-0-0-0--+-+-0--00++-0+00--+0++++00000++-++--0++-0-0+-0+--+00++00++0-00-0;
第7个:-000++0+00+0-+-0+---++++00-000-0-+00-+---0--+00+-0--0+++-0++00+++0-0+00--++-0-0-0++-+-++0+-+-0-++-++--0+-0+0+++++-+0000+-;
第8个:+000++00+++00+0+0++-+--++-0--0+++-0000+--0+0+0++0----+00-0+--0+0-+++--+0++-+----0-++00+0++-+-+-0-+00-00-0+-++--00-+-00++0;
第9个:++0--+0++-00+0--0-+-++000-+++++----0000+-+000-0-+--0-00----+++-+++-++0-0++0-+0++-0-+-++0++-0+0-+00-++-0+-+0-0-00+0+00++00;
第10个:-+--0++-000++00+-+0+0+0--0-0+0++-0+0+++--00-++-+++-0000-+0-00-+00++++---+0---0+-0-----+0-+++-+0+--+0++0+-0+0+-0++00000+-+;
第11个:----00++-000++0--++--0-+0---0+0000+--+0+-+00-00-+00+++++-+0++-+---+++0+++-0+-0-00+-+-+0-0+--0+-++-++000+0+0++00+0--0-0+0+;
第12个:000+000+++-0--+0--+-0+00+0+-0+++-++---+-+0-0++-+-+++0+00--0-0+++00+0+-00++--+0++++--+0+0-0+-+0+-000--0--00+----000++-+0-+;
第13个:-00000+++---0-++--0+000+---+0-0-0+00+++00--0+++0+++-+000++0-+-0+-0+00-+0++0-++-0++++-+--+-----+0-0-+0+00+-+-0+--00+-+0+0+;
第14个:--0000++0-+++++0+0+0-+0++0+-++--+--+--00++0-0++++000+---+-+0+-+--+0+0-0+0+-00+--+00-0+-+0+++----00++0--+-0-00-00++-0+-000;
第15个:--+0--++000+--0--+-++-+++00-0+0000+++-0--0+0----+-00+-+-+0+0-+++--+++++0-+--0++00+-0+0+++0+0+00--0-+0+-+0-+00+0+--+000-00;
第16个:++++0-0--++00++0+-0++00-+-000+--0--0+++0+0000+0--+00+-00+++++--+0+++-+++-0+-0-+--0+-+-0+00+00-0-++-+-++---000--+-0-0-0+0-;
第17个:+-+00-0--+++0000++0-+--+0++++-+-+++--0+0-+++++0--0-0+00-+0-0-0-+0+--++-+0-+00+--00---0--00++-++0+-+0+00+000-0+++-0++-000-;
第18个:+00+++0+--++0+0-+++-0--0--+--+00+0+0+++++----0+++-+--000+-00+0-0++--+-0+00-++0-0-+---00++-0+-0-+0--0+-+-+0000+000++00+-+0;
第19个:+0+0-0--0+00++0+0+000++-++-+0--+0-0+-+-+00-0-+0-+++0+++---+-++0+-+++++00+-00-00+-+0+--+0000+0---0+-0--++--0++000-++00----;
第20个:-0+00++00-00+++++-0-++---0+++000+-0+-++0+-+0--0+----0--0-0++-+--+00+0-+00-++00+-+-+0+++--+---+-000+0+0++-0+0-0-+0+0000++-;
第21个:-0+0-0-0-+--000---++-+-++-0-00+00+0-+-+0--+-0-+0-+++-+++0+--+++++00-+00+ --0+0000+0+++0--0--+000-+-00++0-+0++00++--0-0++++;
第22个:+--0++00+++---+----0-0+++++-00+0+0++-+00+---0+-+0-0-+0--++-0+-0---00++-0-000+0-++-+--++0++0-0+00+00-+000+-++0000++0+-+-+0;
第23个:0+-+-+0++0000++-+000+-00+00+0-0++0++--+-++-0+000-0-++00---0-+0-++--0+-0-0+-+0---+00+-++0+0+00-+++++0-0----+---+++00++0--+;
第24个:-++0000+0+-0-0+0-++0+0+000-+---+--+++0+-+-+00++-00+-0+00+--+-++0-0--0----+0--0+-+0++-+0-+000+++0---++-0-+++++00-00++00+0-;
第25个:++000-0+0+++-0+-+-+0+-++00+00+--+-00----+-++--+0+0-+0--0+--0+000+-+0-0++-+++++0---0--+00--+++--0-+0000++00-+0++0+0+00-0-+;
第26个:+-+00++000+0000+-+-+0--0+-0-+0-++00---+-0-0++-00+0-+--++0-0+00-+000--+-+++0----+++++0+0+00+--+--0--0-+++-0+0++--+0+++00+0;
第27个:-000-++0-+++0-000+00+0+-+0++-++00--0---00--+00+-0+-++--+0+-0-0-0+-00+0-0--0+++++-0+0--+++-+-++++0+--+-0++0000+++--0-00+-+;
第28个:-000+--+0+00+-0+-+0+-0--00+0+0+++0+0-+00++0--+-0+++++--+++-0+0+-+-+00-+----0+0--0-+++0000+0-00+++-++-+--0--+000++--0+--00;
第29个:-++0+00+-0++++++-0+00-+0+0+-0+--+-+-+00++0-0+-+0----000+++-+---++----0+-+-0++000-00+0+0-+-00+0-++000+++-00+0-0++----00-+0;
第30个:+-0-00+0+0++0+-00++0000+-0--+++--00+--0---0+++++-++0-0+-+000+0--+0--0+-0+0+--++-+----00-+--+00+00++-+0+-+-+0-+++0+0-000++;
第31个:0++00-+-00--++-+0-00-00+-0-+-+-++0+00++-0----+-++0+--+++-0+0--+0-00+----0++0+0+0--+0000-+++0--0-++--+-++0+0+00+++00++000+;
第32个:-0-00+00-+00-0--+0--00-+0-0+00+--+++0-00000+---0-+-0+-+++++0++-+0-0+0-+0+--+++-00+---00+++000--0++++0-++-+-+0-++++0+0-+-+;
第33个:-0-0-0-000-++0-+0-00++--0+++++00---+++-00+--0-0++0+0+0-+0--+0--00+++-++-+++-+0++0+00-00+--+-++-+-+0++00+-+--+0000-++00—0;
第34个:+0---00+-+00-00+-++000++0-+--+-0+-++00---0--++-++0+-0-++++--0+-+00-0+0-0-00+0+++++-0+++-+--0+00++0+-++++-0000-0-+00-0+--0;
第35个:+-00--+00+0+0++0000+00+++-+0-00+-+--+-0+-0-+++-+0++-0-0++00++0--00+++-++-0+++--0-0-0+---+00---00+0++--+---+-+0+000++0+0--;
第36个:+0+0+-+00--+0-+-+00+0+-0-0+-----+--+-++++0-++-0++0+-00+0-+0-+-0++000+-+++0+++0--00+++00+0-0-0+---+000+0--++-0---+++00000-;
第37个:+0++000-+-++0--0-00-0-+++0+0-++0++-00++++0+0-0-00+-000-+0+++---+-0+-0000-+---+0-0-++0-+0++---0+--+-+-++--++00+++0-000-+0+;
第38个:-+-+++00-+++-++00-0-+000++-+0+-000++-0---0---0++----+--++0+0+0++00--+-++-+0-+0+-0-+--+0+0++000-0+000--++-00++0++0-0+00+0-;
第39个:00-00-0++00++00+--+0-+0-0-++0--++-++00000++++0+--00+0-++00--0-+-+--0-0-0-+0+0+--++0---+-++0++-0-0-+--00++-+++-+0++++-000+;
第40个:+000--00--++++0+-0++00+-++-+-0-+0++--0-0++-+++-++0++-0--+0+-0000+++-+000-00-0+00-+++0++-+-0-+++-000+0--0+0-0+0+-0+----0--;
第41个:+000+0+0-+-00-0----++0+0---++-+-+-+-0--0+++-+00++-0+-++000++0+0++0--0-++-00+0+++00+---++0-++00-00+--+000-00-+0--+--+++0+0;
第42个:00++00+0+00-0-0+-+0-++-00+-0+0-++0++-+-0-++0+-0++0-0++-+++-+++----00-0--+-0-000+-+0000----+++++-000++-+-0--0+00-++0+--0++。
为了便于说明,本申请将上述四十二个前导码记为第四前导码集合,二者可以相互替换。需要说明的是,此处仅是示例性的说明第四前导码集合包括的42个前导码在第四前导码集合中的顺序,实际应用中还可以有其他排列顺序,本申请对此不作具体限定。
可选的,该实施例中,目标前导码组为第一前导码组、第二前导码组、和第三前导码组中的一个,其中:
第一前导码组包括第四前导码集合中的前14个前导码中的至少3个;第二前导码组包括第四前导码集合的中间14个前导码中的至少3个;第三前导码组包括第四前导码集合中的后14个前导码中的至少3个。
需要说明的是,此处所述的第四前导码集合中的前14个前导码、中间14个前导码、后14个前导码是在上述示例排序中的序号,可参考上述第一前导码集合的相关说明,在此不再赘述。
在一实施例中,第一前导码组、第二前导码组、以及第三前导码组包括前导码的全集可以如下表4所示。
表4
Figure PCTCN2022118178-appb-000013
Figure PCTCN2022118178-appb-000014
Figure PCTCN2022118178-appb-000015
需要说明的是,表4中的前导码索引仅是示例性的表示,可参考上述对表1中前导码索引的相关描述,在此不再赘述。
可选的,可以使用差分集映射的方法,生成多个长度为121三元序列,以互相关特性为主要约束、序列模糊函数特性和SPAR特性为次要约束,选择序列中性质较好的42个序列(如表4所示)作为前导码组中的前导码。
可选的,表4所示的第一前导码组中索引为4、6、11、12的前导码之间,第二前导码组中索引为1、8、9、14的前导码之间,第三前导码组中索引为1、6、10、14的前导码之间具有相对较低的周期互相关性,在需要进行同步测距的装置数量小于或等于4时,可以优先使用第一前导码组中索引为4、6、11、12的前导码,或第二前导码组中索引为1、8、9、14的前导码,或第三前导码组中索引为1、6、10、14的前导码。
可选的,表4所示的第一前导码组中索引为1、4、5、6、8、11的前导码之间,第二前导码组中索引为1、2、7、8、9、14的前导码之间,第三前导码组中索引为1、6、9、10、13、14的前导码之间具有相对较低的周期互相关性,在需要进行同步测距的装置数量小于或等于6时,可以优先使用第一前导码组中索引为1、4、5、6、8、11的前导码,或第二前导码组中索引为1、2、7、8、9、14的前导码,或第三前导码组中索引为1、6、9、10、13、14的前导码。上述前导码可以称为优选前导码。
在一些实施例中,N等于127时,目标前导码组包括十四个前导码中的至少一个,该十四个前导码如下:
第1个:-00000-++0-0000-00-+-000--0-00+00+0++-0-+0++-00--0++00+0+0-+0-0+-+-+0++++0000-+000+000-0+00--00++--0+0-0+000+-+++++00-000000-0+;
第2个:++0+0000-00+++000++0+00+00-0+--0-+0-+-00--0+-00-0+0-+0+0+-+--0++--0000+-000+000-0+00++00-+--0+0-0-000++++-+-00+000000+0--00000+;
第3个:-+00000+0-000-+0++0-000000++0000+00+00+++++-+0+---+000+--0-0-0+00-0+0++--0-00+-00+-+00+-0-0+-000+000+0++-0--00-0000-++-00+0++0-;
第4个:+00-00+-++0-0+00000-0-+-+00---0----+++0+-00+0-+000-+00+-0++0+000+--+-0000++-000+0+00++000000++0-0--+0-00+0-0+0++0+--00+0000+000;
第5个:0-+0+00000+--+-0++000000-0+0-+0----+--00++0+-0+0-0+000+00-00++00+--+000-+-0---0+0-+-+0+00+0+-00+0-00+++00-000++000+0+++0000-000;
第6个:0000++0000-0-000-+-+00-000+0--00--+0+0+00--++-0+0000+-+000+00+00--0--0-0+-0-+++0-+000++0+00-0--+0++-00++00-0+0+0-++-+++000000+0;
第7个:+0000+00--+0++0+0-0+00-0+--0-0++000000++00+0+000-++0000-+--+000+0++0-+00+-000+-0+00-+0+++----0---00+-+-0-00000+0-0++-+00-00+000;
第8个:0-000+-000-0--+0000+0000+-0+00000+++--0++000000+0+0++0+++----00-+0+-0+0-0+000-00+00-+00++-+000+++0+--0-0-+-+0-00-0+-00+0-00++-0;
第9个:----+-0-0+0-00+-00-++0---0+00+0-+000+-0++++0+-0-0-+0++00-00+000--+0000+0-+--+00+0+0+++00++0-000-00+--+000+0+0000+-00000+000000+;
第10个:+00+-000-0-+-0-0++0-+00000--00--0+0-00+-+00+++-0+-0+0000+0+0-0----+0+00-0-000++0+-+000++---++0000+++0+--+00+0-+00+00+000000+000;
第11个:+000+0---0+0+-0++00000-+00--0-0-00-++00++--0++0+0000-0-0+0+--++0+00-0-000-+0+-+000--++-++0000+++0-+-+00+0++00+00+000000-000-00-;
第12个:00-++00-0+00-+0-00-0+-+-0-0--+0+++000+-++00+-00+00-000+0-0+0-+0+-00----+++0++0+0+000000++0--+++00000+0-+0000+0000+--0-000-+000-;
第13个:-+0+-00+0000--++00-0++0--+00000-0-000-+0-+0-000000+-0000+00+00+++-++-0+++--000+++0+0-0-00-0-0++++0+00-+00+-+00--0-0+-000-000+0+;
第14个:-0+0++0+++00+0000-000+00-00--++0+0+00000-0-+++00--+0-+--+--0-+00-0+-000--00++0-+0+000+-+-+0000+++000-0+00-+000000++0-0+--0+00-0。
为了便于说明,本申请将上述十四个前导码记为第五前导码集合,二者可以相互替换。需要说明的是,此处仅是示例性的说明第五前导码集合包括的14个前导码在第五前导码集合中的顺序,实际应用中还可以有其他排列顺序,本申请对此不作具体限定。
可选的,该实施例中,目标前导码组为第一前导码组、第二前导码组、和第三前导码组中的一个。其中:
第一前导码组包括第五前导码集合中的前六个前导码中的至少一个、以及如下前导码中的至少一个:
+00+00+-0+00++--0+++0000+++----000+++0+-000+0+00+0+-++-0-0-0-0000+0-+0+-++00+--00+0-0++00-+00000+-0-+0-0+-+0-000--00-000-000000;
+0+0+-0-000++-+00000+00--0+-0000-0-000000+--0-+0+--++00+----++0+00+00+0-0-+-0-0+0+00+++000++00+0-+00--000-0++-+0--+00+000+0000+;
+000000++0+0-+-0-00-0+0+0++0+--00+0000-000+00+00-+++0-0+00000+0++-+00++-0+-+++--0--00-0--000+-00+-0-+0+000++---0000++-000-0+00-。
第二前导码组包括第三前导码集合中的第七个前导码和第八个前导码中的至少一个、以及如下前导码中的至少一个:
+-0+00+00+0-00-+++00+000-+0+0-0000+++++-+0+--0+-0++--0-000+0-+00+0+----000-000000-+00+-0++000++-00++-0-0-+-0000+00--00000-0+0+0;
000-000-00--000-0+-+0-0+-0-+00000+-00++0-0+00--+00++-+0+-0+0000-0-0-0-++-+0+00+0+000-+0+++000----+++0000+++0--++00+0-+00+00+000;
++-00000+-0-000000-00-+-++-+000-0+0+0+++-00--00+0+000+000--0000--++0-++++0-0++0+0-00-+0++00++-0++0+-+0-00+00-0--000-+-00+0000-0;
-00+0-000-++0000---++000+0+-0-+00-+000--0-00--0--+++-+0-++00+-++0+00000+0-0+++-00+00+000-0000+00--+0++0+0+0-00-0-+-0+0++000000+;
0-0000--0+00000+---+0++000000-0+0-+0---+-++00-+0++0+0+0+000-00-00-+00+-++000-+-0-++0-0++++0-00-0++00+0+00++-00+000+-000-0--+000;
-00+-0-+0-00+0+0000+0+-0000++00+0+++++-+0-0+-0--+0++--000---0+000+0+0-+-000000+-+-0--00++000-00+00++-00--++-00-00000+000++0-0+0;
+0000+000+00+--0+-++0-000--00+-0+00++000+++00+0+0-0-+-0-0+00+00+0++----+00++--+0+-0--+000000-0-0000-+0--00+00000+-++000-0-+0+0+。
第三前导码组包括第三前导码集合中的后六个前导码中的至少一个、以及如下前导码中的至少一个:
0-0000+00-+-000--0-00+00-0+-+0++0-++00++0+-00-0+0++0-0++++-0++--0000--000+000+0+00--00-+++0+0+0-000+-++-+-00-000000-0-+00000-++;
+--0-000-+000+00-++00+0+00++0-00-0++++0-0++-0-+-000++-+00+-00-00-000+0+0+0++0+-00++-+---0+-0+0-000000++0+---+00000+0--0000-0000;
+0+0-00000--00+0000-+-0-0-++00-++000++0-+00+-000000-000----+0+00+-0+000-0--++0-+0--+0+-+++++0000-0+0+-000+00+++-00-0+00+00+0-+0。
需要说明的是,此处所述的第五前导码集合中的前6个前导码、第七个前导码、第八个前导码、后6个前导码是在上述示例排序中的序号,可参考上述第一前导码集合的相关说明,在此不再赘述。
在一实施例中,第一前导码组、第二前导码组、以及第三前导码组包括的前导码的全集可以如下表5所示。
表5
Figure PCTCN2022118178-appb-000016
Figure PCTCN2022118178-appb-000017
Figure PCTCN2022118178-appb-000018
需要说明的是,表5中的前导码索引仅是示例性的表示,可参考上述对表1中前导码索引的相关描述,在此不再赘述。
可选的,可以使用差分集映射的方法,生成多个长度为127三元序列,以互相关特性为主要约束、序列模糊函数特性和SPAR特性为次要约束,选择序列中性质较好的27个序列(如表5所示)作为前导码组中的前导码。
可选的,表5所示的第一前导码组中索引为1、4、5、7、8、9的前导码之间,第二前导码组中索引为1、2、3、4、7、8的前导码之间,第三前导码组中索引为1、4、6、7、8、9的前导码之间具有相对较低的周期互相关性,在需要进行同步测距的装置数量小于或等于6时,可以优先使用第一前导码组中索引为1、4、5、7、8、9的前导码,或第二前导码组中索引为1、2、3、4、7、8的前导码,或第三前导码组中索引为1、4、6、7、8、9的前导码。上述前导码可以称为优选前导码。
在一些实施例中,N等于133,目标前导码组包括四十五个前导码中的至少3个,该四十五个前导码如下:
第1个:-+-+--+----0-+--0+-0-++--+++-+-+--++++-+--++0-0-++++-0---0--+++0--+-+++-++-0++-++++----+-0+-++-++++---+++-+++++++-++--++-+---+-+00+++;
第2个:++---0+---+-0+++0+0++0-++++++++---+00+-++--+-++-++++---+-+--++0--+--++--++0+++++---+0+++--+-++-+----+-+---+-+0-+-+++-0-+-+----++-+++-;
第3个:++--0+++-+--+++0-++++--++-+++-+0-+++00+0-+-+++-+-+-0+-+----+-+++---+-+-++++++-++-+0++--++---+-+-----++-++-+0-++0---+----0-++++++--0--;
第4个:-+--+++++----+-+++++++-++-++----+-+--+++-++-0+0+++0-+-++++-+-+++----0+---0-+--++-+--0-+0--+-+--++--0+++-+++--+-+0++---+00++-+++-+0+--;
第5个:--+--+-0-+-+0----++++++++-+-+-++0--++++--+---+0+----++-+-+-++------+00+--+-+--++++--++-++++-++---++-0+--+++-++0+0+++0--0+-+-+++0++-++;
第6个:+-0++00++++-0+-++-++--+-++-+-++-+-----++0-0++---++++-+-0-----+-+--+-+-+0+-++--++-++---+++-++--0+-+++++++++--++---0-+++0+---+-+-0--+++;
第7个:++-++0+++-+-+0--0+++0+0++-+++--+0-++---++-++++-++--++++--+-+--+00+------++-+-+-++----+0+---+--++++--0++-+-+-++++++++----0+-+-0-+--+--;
第8个:--+0+-+++-++00+---++0+-+--+++-+++0--++--+-+--0+-0--+-++--+-0---+0----+++-+-++++-+-0+++0+0-++-+++--+-+----++-++-+++++++-+----+++++--+-;
第9个:+++++--+++0+00+-++-+-+0-+---+++++++0++---0--+-0++--++----++-+----+---++++0+-+-+++0+-+-+-0++----++---+--+++-+---+++-++-+--++-+0-+-0++-;
第10个:+++00+-+---+-++--++-+++++++-+++---++++-++-+0-+----++++-++0-++-+++-+--0+++--0---0-++++-0-0++--+-++++--+-+-+++--++-0-+0--+-0----+--+-+-;
第11个:+-0-+0--++--++++-+-++0+0-+++-0-----+-++-++--+-0+++-+++-+++----++--0+++-+---0-+------+-++0-+++-+--+--+++++---++++-++-+-+-+++00+-+0++-+;
第12个:++00++0-+-+-++0+-+++-+-0-+++0----+-++-+--++-+-+0-++++----+---++---+--+0+-++++-++-++--+0-+--+++---+-0+0-++------+-+++-+++++-+++---0+++;
第13个:+--+-++---+00+-0-+-+++---++0--+---+++++++---+-++++--+---+-++-0+-++-+-----+----+-++0+0-+++-+-0-++-+++-0++--0--++-0++++-+0++++-++++-+-+;
第14个:+--0+0--0--+++0-----+0+++-+++--+--++++--+0-+--+----0-+-++-+++++-+00-+-+-+++++-++++-++++---+++-+-+--+-+++--+0--++-+-0-+-0+---++-++-+++;
第15个:+++-++++--+-+--++0--0+---0---++--+-++---00++----+++++++--+--+--+--+++-++-++++-+-0-++-+-+-+---+0++++++--+-+0+-+-+0-++0--+--+0+0+++--++;
第16个:+-+-++--+--0++0++++++-+--0----0+-++----++++-++--0+++0+0+--++-+-+-++-+--+++-+-+++++++--++--+-+++-+-++--0+-+++---00--+-+-0--++----+++-0;
第17个:+++++++++0+--+-+-+---+-++-++--+-++-+++0-+++---+++0+-0--+-+--+---+-++0--+0---+--+---+++-+++--+-0+0++++-+00++--0+-+++++---+0+-+--++----;
第18个:+00+-++-------+++++-+-+-+++-0-++++-+---+0-----++-+0++-++-+--+++----+-+--+++0--++---0-+-++--+-+-++++++-+-0+++-++0-++0+0++0-++-++--++--;
第19个:+-+-+--+++-+++-+0++-+--0-+-++-+0+0+++-+++++-00-+-0+-++--+---------++0++--++---+-+++-+-+-0-++-+--++-++--++++----+++-0++0--+++0+++----+;
第20个:-++--++-+0--0--++--+++-0+++-++-+++---+-++++----++-++0-++++---------+-+-+-0-+++-+--+-+0-+++00--++-+0+0---+-+-++++++-++-+-++0++-0+++--+;
第21个:-+++---++++-++00-++++-+-++-+--+-+--++-+++---+-0---+++++-0+0++-0+-0+--++++0+---+--++---0-+--0+--+-+-+-+++-++-+-+0-----+++--+--0+++++++;
第22个:--++--++-++-0++0+0++-0++-+++0-+-++++++-+-+--++-+-0---++--0+++--+-+----+++--+-++-++0+-++-----0+---+-++++-0-+++-+-+-+++++-------++-+00+;
第23个:--++--++-++-0++0+0++-0++-+++0-+-++++++-+-+--++-+-0---++--0+++--+-+----+++--+-++-++0+-++-----0+---+-++++-0-+++-+-+-+++++-------++-+00+;
第24个:----++--+-+0+---+++++-+0--++00+-++++0+0-+--+++-+++---+--+---0+--0++-+---+--+-+--0-+0+++---+++-0+++-++-+--++-++-+---+-+-+--+0+++++++++;
第25个:--+++0+00+-+-++--++-+++---+++---0-+-+0--+++-+-+0-+---0--++-+0-+--+++++--+++-+++----+-++++++--++-+-+++++0+-+0--++++-+-++-+0--+----0--+;
第26个:-0+++++-+--++0+++--+++-0-+------++-+-+0+-0--+++---+-+++-+0-++00+-+++0+0-+++++-++-+-++-+--+-+--++-+++-++0--+--+-+++---++-0+++---+-----;
第27个:++--+++0+0+--+--0++-0+-+-+0+-+--++++++0+---+-+-+-++-0-+-++++-++-+++--+--+--+--+++++++----++00---++-+--++---0---+0--0++--+-+--++++-+++;
第28个:+-0---++++0+-+-+++-+--+-0++-0-+++-+--+--+-+++++++--++++-++++-+-++--++--0--++++0--+--0++--+----0--+-0-+++++-+-+++--+-++---+-00+0-+++--;
第29个:-+---++--0-+++++++---++++-+-+++++-+-++++-0+++-+-+-+--0---+--++-+++-0+00++++--0---++-++-+--0-++---+++-+-++--+0-++0+--+0----+0-+++-+-+-;
第30个:--+++-0+00-+---++-+--+++-+-+++++-0-+--0----+--++0--+--0++++--0--++--++-+-++ ++-++++--+++++++-+--+--+-+++-0-++0-+--+-+++-+-+0++++---0-+;
第31个:++0+----0-+-+++00++-0-+-++--+-++++-+-++-0--0++++---+--+++--+++++++++-+++++----+-+-+0++---++--0+--+--+-0+0-+--+-+---+-+-0++++-++--++--;
第32个:+-+-++++-++++0+-++++0-++--0--++0-+++-++-0-+-+++-0+0++-+----+-----+-++-+0-++-+---+--++++-+---+++++++---+--0++---+++-+-0-+00+---++-+--+;
第33个:++--0+--+-+++--+-++-+++-0++++--+-+++-++++-+0+++00+-+-+---+-0-0++-+---0+++-++0+-++-++------++++++--+--0--++-0-+0-+++--++++-+---+-+----;
第34个:-+-+++-++++---+-++-+-+++--0++++-++--+++-++-++++0+0-+---+-0++++---+0++-+0+--++0-----+0+--+--+-+-+-+---++--++++00+-0+-++++-++--0--+----;
第35个:--0--++++++-0----+---0++-0+-++-++-----+-+---++--++0+-++-++++++-+-+---+++-+----+-+0-+-+-+++-+-0+00+++-0+-+++-++--++++-0+++--+-+++0--++;
第36个:----+-+---+-++++--+++-0+-0-++--0--+--++++++------++-++-+0++-+++0---+-++0-0-+---+-+-+00+++0+-++++-+++-+--++++0-+++-++-+--+++-+--+0--++;
第37个:--++--++-++++0-+-+---+-+--+-0+0-+--+--+0--++---++0+-+-+----+++++-+++++++++--+++--+---++++0--0-++-+-++++-+--++-+-0-++00+++-+-0----+0++;
第38个:+-++-++------++00+++0+-+-+-0-+0+++++-++++-++--0+0+++-+0---+++---++----+0-++--+---++-+---+++0+--+-++-0++++--+--+-+0---+--+-+-++++-+++-;
第39个:+++-++-++---+0-+-0-+-++--0+--+++-+--+-+-+++---++++-++++-+++++-+-+-00+-+++++-++-+-0----+--+-0+--++++--+--+++-+++0+-----0+++--0--0+0--+;
第40个:+++0---+++-+++++-+++-+------++-0+0-+---+++--+-0+--++-++-++++-+0+--+---++---+----++++-0+-+-++--+-++-+----0+++-0-+-+++-+0++-+-+-0++00++;
第41个:++0-++---0--+---+---0+---++-+-+++--+0-+++00+0-+++++-+--+0++--++++---+-++-+-++--++++---+0-++-++-+++-+-+-+-+-++++-0--+0++-+----0--+++++;
第42个:++0--++++++---+--+0+-0+-+--++-+-+--+0+++++-+-+0+----+-++--0++++++++---++0-+-+-+++--++++-+0++--++-++-++----+---+-++------+-0+0-++-+00-;
第43个:+++++--0----+-++0+--0-++++-+-+-+-+-+++-++-++-0+---++++--++-+-++-+---++++--++0+--+-+++++-0+00+++-0+--+++-+-++---+0---+---+--0---++-0++;
第44个:+-++--+++---+0+++-+0+-+-++--++-+-----++-+0+-+-+--+-0+-------++0+++--+++-++-+++++0-0++--0-+-++++00++0--++-+--++++++--+-+++-0+----+-+--;
第45个:--++++++-+-+--+++--+0+-+-++---+-++-+++++-+-+-+0--0--+-+++++-0-0-++0---+++-++--++++-+--+0-+----0----0++--+--++0-++++-+00+--+-+++++--++。
需要说明的是,此处仅是示例性的说明第六前导码集合包括的45个前导码在第六前导码集合中的顺序,实际应用中还可以有其他排列顺序,本申请对此不作具体限定。
可选的,该实施例中,目标前导码组为第一前导码组、第二前导码组、和第三前导码组中的一个。其中:
第一前导码组包括第六前导码集合中的前15个前导码中的至少3个;第二前导码组包括第六前导码集合的中间15个前导码中的至少3个;第三前导码组包括第六前导码集合中的后15个前导码中的至少3个。
需要说明的是,此处所述的第六前导码集合中的前15个前导码、中间15个前导码、后15个前导码是在上述示例排序中的序号,可参考上述第一前导码集合的相关说明,在此不再赘述。
在一实施例中,第一前导码组、第二前导码组、以及第三前导码组包括的前导码的全集可以如下表6所示。
表6
Figure PCTCN2022118178-appb-000019
Figure PCTCN2022118178-appb-000020
Figure PCTCN2022118178-appb-000021
需要说明的是,表6中的前导码索引仅是示例性的表示,可参考上述对表1中前导码索引的相关描述,在此不再赘述。
可选的,可以使用差分集映射的方法,生成多个长度为133三元序列,以互相关特性为主要约束、序列模糊函数特性和SPAR特性为次要约束,选择序列中性质较好的45个序列(如表6所示)作为前导码组中的前导码。
可选的,表6所示的第一前导码组中索引为1、4、7、12的前导码之间,第二前导码组中索引为1、2、7、14的前导码之间,第三前导码组中索引为1、2、6、11的前导码之间具有相对较低的周期互相关性,在需要进行同步测距的装置数量小于或等于4时,可以优先使用第一前导码组中索引为1、4、7、12的前导码,或第二前导码组中索引为1、2、7、14的前导码,或第三前导码组中索引为1、2、6、11的前导码。
可选的,表6所示的第一前导码组中索引为2、3、4、6、7、9、10、11、14的前导码之间,第二前导码组中索引为1、2、4、7、8、9、10、11、14的前导码之间,第三前导码组中索引为1、4、6、8、10、12、13、14、15的前导码之间具有相对较低的周期互相关性,在需要进行同步测距的装置数量小于或等于9时,可以优先使用第一前导码组中索引为2、3、4、6、7、9、10、11、14的前导码,或第二前导码组中索引为1、2、4、7、8、9、10、11、14的前导码,或第三前导码组中索引为1、4、6、8、10、12、13、14、15的前导码。上述前导码可以称为优选前导码。
可以理解的,在上述表1至表6所示的示例中,不同前导码组之间同样具有较低的周期互相关水平。也就是说,在多个前导码组中,组内的前导码和组间的前导码均具有较低的周期互相关水平。因此,在使用该多个前导码组进行测距时,可以降低信道内以及信道间的干扰。此外,本申请提供至少两个前导码组,能够支持至少两个不同信道内的多个装置的同步测距。
可选的,前述第一前导码组、第二前导码组、和第三前导码组可以用于K个信道,K为大于或等于2的正整数。该K个信道可以为超宽带频段的K个信道。其中,该K个信道中的每个信道对应一个前导码组,在该信道上使用该前导码组中的前导码进行同步测距。特别的,相邻信道对应的前导码不同,不相邻的信道对应的前导码可以相同也可以不同。
可选的,在K等于3时,第一前导码组可以用于第一信道;第二前导码组可以用于第二信道;第三前导码组可以用于第三信道。
示例性的,第一信道、第二信道、第三信道的中心频率可以为以下三种的任意组合:7488.0MHz、7987.2MHz、8486.4MHz。第一信道、第二信道、第三信道的带宽可以均为499.2MHz。
可选的,在步骤S401之前,第一设备和第二设备m中应该预配置有本申请提供的前导码组,例如预存储有表1至表6。或者,在步骤S401之前,第一设备中预配置有本申请提供的前导码组,并且第一设备向M个第二设备广播该前导码组。
可选的,第一设备和第二设备m中可以预配置有前述前导码组与信道的对应关系,基于该对应关系,某个信道内的测距使用的是该信道对应的前导码组中的前导码。
可选的,在一些实施例中,如图5所示,步骤S401之前,本申请提供的信号传输方法还包括如下步骤:
S501、第一设备广播同步请求信号。相应的,第二设备m接收同步请求信号。
S502、第二设备m向第一设备发送同步信号。相应的,第一设备接收来自第二设备m的同步信号。
可选的,该同步信号可以包括第二设备m的标识等信息。
S503、第一设备根据收到的同步信号,获取第二设备的数量。
可选的,第二设备的数量为第一设备接收到的同步信号的数量。通过接收到的同步信号,第一设备还可以获知第二设备的标识等。本申请以第二设备的数量等于M为例进行说明。
可选的,第一设备还可以确定目标信道,目标信道对应的前导码组为目标前导码组,第一信号在该目标信道上传输。即第二设备m向第一设备发送第一信号,可以包括:第二设备m在目标信道上向第一设备发送第一信号。相应的,第一设备在目标信道上接收来自第二设备m的第一信号。示例性的,基于前述描述,目标信道可以为第一信道、第二信道、或第三信道中的一个。
可选的,在第二设备支持法规允许的全部UWB信道时,目标信道可以是第一设备指定的一个信道,例如第一设备可以指定较为空闲的信道作为目标信道。在第二设备支持部分UWB信道时,目标信道可以是传输上述同步信号的信道。
S504、第一设备选择目标前导码。
可选的,第一设备可以根据M的取值,选择目标前导码。示例性的,当M小于或等于6时,第一设备可随机选择表1至表6中的任意一个表所示的与目标信道对应的前导码组,并选择该前导码组中的前导码作为目标前导码。当M大于6且小于或等于9时,第一设备可随机选择表2、表4、表5、或表6中的任意一个表所示的与目标信道对应的前导码组,并选择该前导码组中的前导码作为目标前导码。当M大于或等于10时,第一设备可选择表4或表6所示的与目标信道对应的前导码组,并选择该前导码组中的前导码作为目标前导码。
进一步地,当M数量较小时,可以使用各组中优选前导码作为目标前导码。示例性的,当M小于或等于3时,可以选择31长0均衡优选前导码或91长优选前导码作为目标前导码;当M小于或等于4时,可以选择31长少0优选前导码、121长、或133长优选前导码作为目标前导码;当M小于或等于6时,可以选择121长或127长优选前导码作为目标前导码;当 M小于或等于9时,可以选择133长优选前导码作为目标前导码。
可选的,第一设备选择的该目标前导码可以为目标前导码组中未被使用的前导码。示例性的,第一设备可以在目标信道上进行监听,确定目标前导码组中未被使用的前导码,选择该未被使用的前导码作为目标前导码。第一设备通过在目标信道上进行监听,可以确定目标信道内是否存在其他测距组(包括测距中心装置和多个待测距装置)正在进行测距。若存在其他测距组正在测距,选择目标前导码组中未被该测距组使用的前导码作为目标前导码。例如,目标前导码组为表2所示的第一前导码组,该测距组使用该第一前导码组中索引为1和2的前导码,那么第一设备可以选择该第一前导码组中索引为3至10的多个前导码。
或者,可选的,第一设备选择的该目标前导码的长度和其他测距组使用的前导码的长度不同。例如,长度为127的前导码被该测距组使用,第一设备可以选择长度为121或133的前导码作为目标前导码。
可选的,第一设备可以接收其他测距组的待测距装置发送的前导码,与本地存储的多个前导码进行自相关运算,得到多个自相关峰值。该多个自相关峰值中的最大自相关峰值对应的本地前导码即为该测距组使用的前导码。
S505、第一设备向第二设备m发送控制信息。相应的,第二设备m接收来自第一设备的控制信息。
可选的,该控制信息用于指示目标前导码。示例性的,该控制信息可以包括以下至少一项:目标前导码的长度、目标前导码的索引、或目标前导码组的索引。进一步的,控制信息还可以包括第二设备m的标识。
可以理解的,第一设备可以向M个第二设备发送不同的控制信息,以向该M个第二设备分别指示同一前导码组中不同的前导码作为目标前导码。
可选的,该控制信息可以称为测距控制信息(ranging control message,RCM),二者可以相互替换,不予限制。
可选的,步骤S505之后,第二设备m可以执行步骤S401:
S401、第二设备m生成第一信号。
可选的,第二设备m收到控制信息后,可以根据控制信息确定目标前导码,从而根据目标前导码生成第一信号。即步骤S401可以包括:根据控制信息,生成第一信号。
可选的,确定目标前导码后,第一设备可以在目标前导码的每个码元之后补0,得到前导符号。
示例性的,如图6所示,目标前导码的长度为31时,可以在目标前导码的每个码元之后补充若干个(例如,15个)0,得到前导符号。其中,s(n)表示前导符号,c(n)表示前导码。如图7所示,目标前导码的长度为91、121、127、或133时,可以在目标前导码的每个码元之后补充若干个(例如,3个)0,得到前导符号。
可选的,步骤S505之后,第一设备还可以执行下述步骤S506:
S506、第一设备发送第二信号。相应的,第二设备m接收来自第一设备的第二信号。
可选的,该第二信号用于触发第一信号的发送。第一设备发送第二信号,可以为:第一设备在第一时刻t I,0广播第二信号。
可选的,第二信号也可以称为为测距发起信息(ranging initiation message,RIM),二者可以相互替换,本申请对此不作具体限定。
可选的,第二设备m第二信号后,可以记录第二时刻t Rm,0,并执行步骤S402。该第二时刻为第二设备m接收到该第二信号的时刻。
可选的,该步骤S506和上述步骤S401之间没有必然的先后顺序,可以先执行步骤S506,再执行步骤S401;或者,可以先执行步骤S401,再执行步骤S506;或者,可以同时执行步骤S506和步骤S401,本申请对此不作具体限定。
S402、第二设备m向第一设备发送第一信号。
可选的,第二设备m向第一设备发送第一信号,可以包括:根据第二信号向第一设备发送第一信号。示例性的,第二设备m可以在第三时刻发送第一信号,该第三时刻和第二时刻之间的时间间隔为t reply。不同第二设备对应的时间间隔可以相同也可以不同,本申请对此不作具体限定。
可选的,基于上述步骤S501至S506,在上述步骤S403中,第一设备和第二设备m之间的距离可以表示为如下公式(6):
Figure PCTCN2022118178-appb-000022
其中,s为第一设备和第二设备m之间的距离,c为光速,t Rm,1为第二设备m的接收前导码及其对应的目标前导码进行循环移位自相关运算后,最大自相关峰值对应的时刻。
至此,第一设备可以获取自身与多个第二设备之间的距离,从而可以根据该距离进行后续处理。
可以理解的是,以上各个实施例中,由第一设备实现的方法和/或步骤,也可以由可用于该第一设备的部件(例如处理器、芯片、芯片系统、电路、逻辑模块、或软件)实现;由第二设备实现的方法和/或步骤,也可以有可用于该第二设备的部件(例如处理器、芯片、芯片系统、电路、逻辑模块、或软件)实现。
上述主要从各个设备之间交互的角度对本申请提供的方案进行了介绍。相应的,本申请还提供了通信装置,该通信装置用于实现上述各种方法。该通信装置可以为上述方法实施例中的第一设备,或者包含上述第一设备的装置,或者为可用于第一设备的部件;或者,该通信装置可以为上述方法实施例中的第二设备,或者包含上述第二设备的装置,或者为可用于第二设备的部件。
可以理解的是,为了实现上述实施例中的功能,第一设备和第二设备包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图8和图9为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中第一设备或第二设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图1所示的第二设备,也可以是如图1所示的第一设备,还可以是应用于第一设备或第二设备的模块(如芯片)。
如图8所示,通信装置80包括处理模块801和收发模块802。通信装置80用于实现上述图4或图5中所示的方法实施例中第一设备或第二设备m的功能。
当通信装置80用于实现图4或图5所示的方法实施例中第二设备的功能时:处理模块801,用于生成第一信号,该第一信号包括根据长度为N的目标前导码确定的前导符号,目标前导码属于包括L个前导码的目标前导码组,L为大于或等于3的正整数,N等于31、或91、或121、或127、或133。
可选的,收发模块802,还用于接收来自第一设备的控制信息,控制信息用于指示目标 前导码,控制信息包括以下至少一项:目标前导码的长度、目标前导码的索引、或目标前导码组的索引。处理模块801,用于生成第一信号,包括:处理模块801,用于根据控制信息,生成第一信号。
可选的,收发模块802,用于向第一设备发送第一信号,包括:收发模块802,用于接收来自第一设备的第二信号,并根据第二信号向第一设备发送第一信号。
可选的,收发模块802,用于向第一设备发送第一信号,包括:收发模块802,用于在目标信道上向第一设备发送第一信号;目标前导码组为目标信道对应的前导码组,目标前导码为目标前导码组中未被使用的前导码。
当通信装置80用于实现图4或图5所示的方法实施例中第一设备的功能时:收发模块802,用于接收来自第二设备的第一信号,该第一信号包括根据长度为N的目标前导码确定的前导符号,目标前导码属于包括L个前导码的目标前导码组,L为大于或等于3的正整数,N等于31、或91、或121、或127、或133;处理模块801,用于根据所述目标前导码对所述第一信号进行处理。
可选的,收发模块802,还用于向第二设备发送控制信息,控制信息用于指示目标前导码,控制信息包括以下至少一项:目标前导码的长度N、目标前导码的索引、或目标前导码组的索引。
可选的,收发模块802,还用于发送第二信号,第二信号用于触发第一信号的发送。
可选的,收发模块802,用于接收来自第二设备的第一信号,包括:收发模块802,用于在目标信道上接收来自第二设备的第一信号。
可选的,处理模块801,还用于在目标信道上进行监听,确定目标前导码组中未被使用的前导码,目标前导码为该未被使用的前导码中的一个。
其中,有关上述处理模块801和收发模块802更详细的描述可以直接参考图4或图5所示的方法实施例中相关描述直接得到,这里不加赘述。
如图9所示,通信装置900包括处理器910和接口电路920。处理器910和接口电路920之间相互耦合。可以理解的是,接口电路920可以为收发器或输入输出接口。可选的,通信装置900还可以包括存储器930,用于存储处理器910执行的指令或存储处理器910运行指令所需要的输入数据或存储处理器910运行指令后产生的数据。
当通信装置900用于实现图4或图5所示的方法时,处理器910用于实现上述处理模块801的功能,接口电路920用于实现上述收发模块802的功能。
当上述通信装置为应用于第一设备的芯片时,该芯片实现上述方法实施例中第一设备的功能。该芯片从第一设备中的其它模块(如射频模块或天线)接收信息,该信息是第二设备发送给第一设备的;或者,该芯片向第一设备中的其它模块(如射频模块或天线)发送信息,该信息是第一设备发送给第二设备的。
当上述通信装置为应用于第二设备的芯片时,该芯片实现上述方法实施例中第二设备的功能。该芯片从第二设备中的其它模块(如射频模块或天线)接收信息,该信息是第一设备发送给第二设备的;或者,该芯片向第二设备中的其它模块(如射频模块或天线)发送信息,该信息是第二设备发送给第一设备的。
可选的,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用 处理器可以是微处理器,也可以是任何常规的处理器。
可选的,本申请的实施例中的存储器可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序或指令,该计算机程序或指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。本申请实施例中,计算机可以包括前面所述的装置。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (25)

  1. 一种信号传输方法,其特征在于,所述方法包括:
    接收来自第二设备的第一信号,所述第一信号包括根据长度为N的目标前导码确定的前导符号,所述目标前导码属于包括L个前导码的目标前导码组,所述L为大于或等于3的正整数,所述N等于31、或91、或121、或127、或133;
    根据所述目标前导码对所述第一信号进行处理;
    其中,N等于31时,所述目标前导码组包括四个前导码中的至少一个,所述四个前导码如下:
    +0000-0++0-0+000+-+0++++-00-00-;
    -0-00+000+0++-++0+-00+--0000++0;
    0+0++00++-+-000++0+--0+0-0000-0;
    0++-00+-0---++0+000+00+0+0-+000;
    或者,N等于31时,所述目标前导码组包括二十个前导码中的至少3个,所述二十个前导码如下:
    -+0--+-++00+---++-++++-+0+++0-0;
    ++-+++--0+++0+0-+0++-+--00--+-+;
    +-+++--+0+-+----0+++-++0+0-+00+;
    0-++-+++-+0-++++--0-+---+0+0++0;
    00++--0-+++++-+++-0++-0--+-+-0+;
    0+00+-++0+-+-+++++--0--+0--+++-;
    00++0--++-0-0-+-+0-++++++--+-++;
    +++++0+0---+0+--++-+-+--++00+-0;
    +++-0---0+-++-0+-+-+++--+++00+0;
    00+0+-+-0++-0+-+++0-++++-++----;
    00++-+--++++++-0+-+-0-0-++--0++;
    -+00++--+-+-++--+0+---0+0+++++0;
    0+00+++--+++-+-+0-++-+0---0-+++;
    ----++-++++-0+++-+0-++0-+-+0+00;
    -0+++0+-++++-++---+00++-+--0+-0;
    +-+--00--+-++0+-0+0+++0--+++-++;
    -+++--0+--0--+++++-+-+0++-+00+0;
    00+0-+-+--0-++0-+++-+++++-0--++;
    ++0+0+---+-0--++++-0+-+++-++-00;
    +00+-0+0++-+++0----+-+0+--+++-+;
    其中,+表示1,-表示-1。
  2. 根据权利要求1所述的方法,其特征在于,所述接收来自所述第二设备的第一信号之前,所述方法还包括:
    向所述第二设备发送控制信息,所述控制信息用于指示所述目标前导码,所述控制信息包括以下至少一项:所述目标前导码的长度N、所述目标前导码的索引、或所述目标前导码组的索引。
  3. 根据权利要求1或2所述的方法,其特征在于,所述目标前导码组为目标信道对应的 前导码;所述方法还包括:
    在所述目标信道上进行监听,确定所述目标前导码组中未被使用的前导码,所述目标前导码为所述未被使用的前导码中的一个。
  4. 一种信号传输方法,其特征在于,所述方法包括:
    生成第一信号,所述第一信号包括根据长度为N的目标前导码确定的前导符号,所述目标前导码属于包括L个前导码的目标前导码组,所述L为大于或等于3的正整数,所述N等于31、或91、或121、或127、或133;
    发送所述第一信号;
    其中,N等于31时,所述目标前导码组包括四个前导码中的至少一个,所述四个前导码如下:
    +0000-0++0-0+000+-+0++++-00-00-;
    -0-00+000+0++-++0+-00+--0000++0;
    0+0++00++-+-000++0+--0+0-0000-0;
    0++-00+-0---++0+000+00+0+0-+000;
    或者,N等于31时,所述目标前导码组包括二十个前导码中的至少3个,所述二十个前导码如下:
    -+0--+-++00+---++-++++-+0+++0-0;
    ++-+++--0+++0+0-+0++-+--00--+-+;
    +-+++--+0+-+----0+++-++0+0-+00+;
    0-++-+++-+0-++++--0-+---+0+0++0;
    00++--0-+++++-+++-0++-0--+-+-0+;
    0+00+-++0+-+-+++++--0--+0--+++-;
    00++0--++-0-0-+-+0-++++++--+-++;
    +++++0+0---+0+--++-+-+--++00+-0;
    +++-0---0+-++-0+-+-+++--+++00+0;
    00+0+-+-0++-0+-+++0-++++-++----;
    00++-+--++++++-0+-+-0-0-++--0++;
    -+00++--+-+-++--+0+---0+0+++++0;
    0+00+++--+++-+-+0-++-+0---0-+++;
    ----++-++++-0+++-+0-++0-+-+0+00;
    -0+++0+-++++-++---+00++-+--0+-0;
    +-+--00--+-++0+-0+0+++0--+++-++;
    -+++--0+--0--+++++-+-+0++-+00+0;
    00+0-+-+--0-++0-+++-+++++-0--++;
    ++0+0+---+-0--++++-0+-+++-++-00;
    +00+-0+0++-+++0----+-+0+--+++-+;
    其中,+表示1,-表示-1。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    接收来自第一设备的控制信息,所述控制信息用于指示所述目标前导码,所述控制信息包括以下至少一项:所述目标前导码的长度、所述目标前导码的索引、或所述目标前导码组的索引;
    所述生成第一信号,包括:
    根据所述控制信息,生成所述第一信号。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述目标前导码组为第一前导码组和第二前导码组中的一个;
    所述第一前导码组包括所述四个前导码中的前两个前导码中的至少一个、以及如下前导码中的至少一个:
    -0000-0+0--+0++000-+-++00++0+00;
    0+0-0+++0+-000+-+++00-+0-00-000;
    00+0+-0+0+000-++0-+---00+00++00;
    0000+-0+0+00+000+0++---0-+00-++;
    所述第二前导码组包括所述四个前导码中的后两个前导码中的至少一个、以及如下前导码中的至少一个:
    0-00-0+-00+++-+000-+0+++0-0+000;
    -00-00-++++0+-+000+0-0++0-0000+;
    000++00+00---+-0++-000+0+0-+0+0;
    ++0000--+00-+0++-++0+000+00-0-0;
    或者,所述第一前导码组包括所述二十个前导码中前10个前导码中的至少3个,所述第二前导码组包括所述二十个前导码中后10个前导码中的至少3个。
  7. 根据权利要求1-5任一项所述的方法,其特征在于,所述N等于91,所述目标前导码组包括十个前导码中的至少1个,所述十个前导码如下:
    +0+-+-+-+++++-+++----0+--+-++0++-++++-0-++++-++---+--+--++---0+-+++----0-+0+--+++-++-00-++0;
    ++-00-++-+++--+0+-0----+++-+0---++--+--+---++-++++-0-++++-++0++-+--+0----+++-+++++-+-+-+0+0;
    -+-+0++-++-+0+0--+-0+-+---+-+---++-+--+++++-+++0------+-+++--++--00++0-++--+++0++-+-+++++0-;
    -++0--0+++-+++--++-0-+-0+-+-00++--++-+---+++++++++++--+--++-++-+-0+0-+-++++----0-++---0-+-+;
    +-+----0+-++-++------0+-+++-+++-+++++0+-+-+0-+-+++---+++++--+-++-++--00-++0--0++--+++-+0+0-;
    -+--++-+-+++++---+-+0++---+-+-+0-+-----+0--+++00++-+--++++++-++-+0--0+0+-++++-0+++0-+---++-;
    +++++++-0+-+-++0--+-0-+-+---+++--+++0++-0--+-++---00+0-+++-0---+++--+--+-+-++0++-++--+--+++;
    0--0--+++--+++++0+--0+--+00+-++-++++++--++---+-++++-+--+--++++0-0+++-+-++--+0+-+-+-0----+-+;
    +++++--+++-+--++-+--+0-++++++-----++-++00++0--++-+--0-+-++-+-+-0++---0+---++-0-0-+-+0+++-++;
    +0+++---+--0+-0+-++-+++-+00++-0-0++++-++-+--+-+--+++0+-----+0+-+---++0--+-+---++-+++--+++++。
  8. 根据权利要求7所述的方法,其特征在于,所述目标前导码组为第一前导码组、第二 前导码组、和第三前导码组中的一个;
    所述第一前导码组包括所述十个前导码中前四个前导码中的至少一个、以及如下前导码中的至少一个:
    -0+++++-+-++0+++--++-0++00--++--+++-+------0+++-+++++--+-++---+-+---+-+0-+--0+0+-++-++0+-+-;
    +-+-0---++-0----++++-+-0+0-+-++-++--+--+++++++++++---+-++--++00-+-+0-+-0-++--+++-+++0--0++-;
    所述第二前导码组包括所述十个前导码中的第五个前导码、第六个前导码、或第七个前导码中的至少一个、以及如下前导码中的至少一个:
    +++--+--++-++0++-+-+--+--+++---0-+++-0+00---++-+--0-++0+++--+++---+-+-0-+--0++-+-+0-+++++++;
    -0+0+-+++--++0--0++-00--++-++-+--+++++---+++-+-0+-+-+0+++++-+++-+++-+0------++-++-+0----+-+;
    -++---+-0+++0-++++-+0+0--0+-++-++++++--+-++00+++--0+-----+-0+-+-+---++0+-+---+++++-+-++--+-;
    所述第三前导码组包括所述十个前导码中后三个前导码中的至少一个、以及如下前导码中的至少一个:
    +-+----0-+-+-+0+--++-+-+++0-0++++--+--+-++++-+---++--++++++-++-+00+--+0--+0+++++--+++--0—0;
    ++-+++0+-+-0-0-++---+0---++0-+-+-++-+-0--+-++--0++00++-++-----++++++-0+--+-++--+-+++--+++++;
    +++++--+++-++---+-+--0++---+-+0+-----+0+++--+-+--+-++-++++0-0-++00+-+++-++-+0-+0--+---+++0+。
  9. 根据权利要求1-5任一项所述的方法,其特征在于,所述N等于121,所述目标前导码组包括四十二个前导码中的至少3个,所述四十二个前导码如下:
    +0+-000-0+++00++--++-+-+--+0---++0+-0++-0-0+---+-0000-+0-+---+++0+-000-+00-0-0+0++++00-++0++-0+0+++-0-00-0--0++-+-000++0+;
    -0+00+0-0++0++00-++--000+0-000++0+0+--+-0-+0+-0+-++-+--00++0+0+0++--+----++0---0---0-++000-+0+-++000+-0-00++-+++-00+++-+-;
    0+-+-+0-0+-0-0+0+-+0+00-+0-+00+0+-0+0+++-0++++--++--00--++0++++--0-000-+00+-+--0+++0+--0+++00++-+0-+0-----+-00+---0+00000;
    -++-00---+0-++--00++0---00--+++++00+-0+0++0+00+0+-++--000+0+0-0+0+-0++00+++--00-000+--0--+-+-+-+0++---++-+-0-+0-000++0+0+;
    -0+0--++-0-00+++++-+0-0-0-+++00-0-+--0++0-+00-+-0-----0+-00-++0++++--+00++0-+-+++0-+-+000+--+0++-0+++-+0-+0+000000-0+00+-;
    0+000-++++0+-+++-++00--+-0-0-++0++-+---0++--+0+0+-0-0-0--+-+-0--00++-0+00--+0++++00000++-++--0++-0-0+-0+--+00++00++0-00-0;
    -000++0+00+0-+-0+---++++00-000-0-+00-+---0--+00+-0--0+++-0++00+++0-0+00--++-0-0-0++-+-++0+-+-0-++-++--0+-0+0+++++-+0000+-;
    +000++00+++00+0+0++-+--++-0--0+++-0000+--0+0+0++0----+00-0+--0+0-+++--+0++-+----0-++00+0++-+-+-0-+00-00-0+-++--00-+-00++0;
    ++0--+0++-00+0--0-+-++000-+++++----0000+-+000-0-+--0-00----+++-+++-++0-0++0-+0++-0-+-++0++-0+0-+00-++-0+-+0-0-00+0+00++00;
    -+--0++-000++00+-+0+0+0--0-0+0++-0+0+++--00-++-+++-0000-+0-00-+00++++---+0---0+-0-----+0-+++-+0+--+0++0+-0+0+-0++00000+-+;
    ----00++-000++0--++--0-+0---0+0000+--+0+-+00-00-+00+++++-+0++-+---+++0+++-0+-0-00+-+-+0-0+--0+-++-++000+0+0++00+0--0-0+0+;
    000+000+++-0--+0--+-0+00+0+-0+++-++---+-+0-0++-+-+++0+00--0-0+++00+0+-00++--+0++++--+0+0-0+-+0+-000--0--00+----000++-+0-+;
    -00000+++---0-++--0+000+---+0-0-0+00+++00--0+++0+++-+000++0-+-0+-0+00-+0++0-++-0++++-+--+-----+0-0-+0+00+-+-0+--00+-+0+0+;
    --0000++0-+++++0+0+0-+0++0+-++--+--+--00++0-0++++000+---+-+0+-+--+0+0-0+0+-00+--+00-0+-+0+++----00++0--+-0-00-00++-0+-000;
    --+0--++000+--0--+-++-+++00-0+0000+++-0--0+0----+-00+-+-+0+0-+++--+++++0-+--0++00+-0+0+++0+0+00--0-+0+-+0-+00+0+--+000-00;
    ++++0-0--++00++0+-0++00-+-000+--0--0+++0+0000+0--+00+-00+++++--+0+++-+++-0+-0-+--0+-+-0+00+00-0-++-+-++---000--+-0-0-0+0-;
    +-+00-0--+++0000++0-+--+0++++-+-+++--0+0-+++++0--0-0+00-+0-0-0-+0+--++-+0-+00+--00---0--00++-++0+-+0+00+000-0+++-0++-000-;
    +00+++0+--++0+0-+++-0--0--+--+00+0+0+++++----0+++-+--000+-00+0-0++--+-0+00-++0-0-+---00++-0+-0-+0--0+-+-+0000+000++00+-+0;
    +0+0-0--0+00++0+0+000++-++-+0--+0-0+-+-+00-0-+0-+++0+++---+-++0+-+++++00+-00-00+-+0+--+0000+0---0+-0--++--0++000-++00----;
    -0+00++00-00+++++-0-++---0+++000+-0+-++0+-+0--0+----0--0-0++-+--+00+0-+00-++00+-+-+0+++--+---+-000+0+0++-0+0-0-+0+0000++-;
    -0+0-0-0-+--000---++-+-++-0-00+00+0-+-+0--+-0-+0-+++-+++0+--+++++00-+00+--0+0000+0+++0--0--+000-+-00++0-+0++00++--0-0++++;
    +--0++00+++---+----0-0+++++-00+0+0++-+00+---0+-+0-0-+0--++-0+-0---00++-0-000+0-++-+--++0++0-0+00+00-+000+-++0000++0+-+-+0;
    0+-+-+0++0000++-+000+-00+00+0-0++0++--+-++-0+000-0-++00---0-+0-++--0+-0-0+-+0---+00+-++0+0+00-+++++0-0----+---+++00++0--+;
    -++0000+0+-0-0+0-++0+0+000-+---+--+++0+-+-+00++-00+-0+00+--+-++0-0--0----+0--0+-+0++-+0-+000+++0---++-0-+++++00-00++00+0-;
    ++000-0+0+++-0+-+-+0+-++00+00+--+-00----+-++--+0+0-+0--0+--0+000+-+0-0++-+++++0---0--+00--+++--0-+0000++00-+0++0+0+00-0-+;
    +-+00++000+0000+-+-+0--0+-0-+0-++00---+-0-0++-00+0-+--++0-0+00-+000--+-+++0----+++++0+0+00+--+--0--0-+++-0+0++--+0+++00+0;
    -000-++0-+++0-000+00+0+-+0++-++00--0---00--+00+-0+-++--+0+-0-0-0+-00+0-0--0+++++-0+0--+++-+-++++0+--+-0++0000+++--0-00+-+;
    -000+--+0+00+-0+-+0+-0--00+0+0+++0+0-+00++0--+-0+++++--+++-0+0+-+-+00-+----0+0--0-+++0000+0-00+++-++-+--0--+000++--0+--00;
    -++0+00+-0++++++-0+00-+0+0+-0+--+-+-+00++0-0+-+0----000+++-+---++----0+-+-0++000 -00+0+0-+-00+0-++000+++-00+0-0++----00-+0;
    +-0-00+0+0++0+-00++0000+-0--+++--00+--0---0+++++-++0-0+-+000+0--+0--0+-0+0+--++-+----00-+--+00+00++-+0+-+-+0-+++0+0-000++;
    0++00-+-00--++-+0-00-00+-0-+-+-++0+00++-0----+-++0+--+++-0+0--+0-00+----0++0+0+0--+0000-+++0--0-++--+-++0+0+00+++00++000+;
    -0-00+00-+00-0--+0--00-+0-0+00+--+++0-00000+---0-+-0+-+++++0++-+0-0+0-+0+--+++-00+---00+++000--0++++0-++-+-+0-++++0+0-+-+;
    -0-0-0-000-++0-+0-00++--0+++++00---+++-00+--0-0++0+0+0-+0--+0--00+++-++-+++-+0++0+00-00+--+-++-+-+0++00+-+--+0000-++00—0;
    +0---00+-+00-00+-++000++0-+--+-0+-++00---0--++-++0+-0-++++--0+-+00-0+0-0-00+0+++++-0+++-+--0+00++0+-++++-0000-0-+00-0+--0;
    +-00--+00+0+0++0000+00+++-+0-00+-+--+-0+-0-+++-+0++-0-0++00++0--00+++-++-0+++--0-0-0+---+00---00+0++--+---+-+0+000++0+0--;
    +0+0+-+00--+0-+-+00+0+-0-0+-----+--+-++++0-++-0++0+-00+0-+0-+-0++000+-+++0+++0--00+++00+0-0-0+---+000+0--++-0---+++00000-;
    +0++000-+-++0--0-00-0-+++0+0-++0++-00++++0+0-0-00+-000-+0+++---+-0+-0000-+---+0-0-++0-+0++---0+--+-+-++--++00+++0-000-+0+;
    -+-+++00-+++-++00-0-+000++-+0+-000++-0---0---0++----+--++0+0+0++00--+-++-+0-+0+-0-+--+0+0++000-0+000--++-00++0++0-0+00+0-;
    00-00-0++00++00+--+0-+0-0-++0--++-++00000++++0+--00+0-++00--0-+-+--0-0-0-+0+0+--++0---+-++0++-0-0-+--00++-+++-+0++++-000+;
    +000--00--++++0+-0++00+-++-+-0-+0++--0-0++-+++-++0++-0--+0+-0000+++-+000-00-0+00-+++0++-+-0-+++-000+0--0+0-0+0+-0+----0--;
    +000+0+0-+-00-0----++0+0---++-+-+-+-0--0+++-+00++-0+-++000++0+0++0--0-++-00+0+++00+---++0-++00-00+--+000-00-+0--+--+++0+0;
    00++00+0+00-0-0+-+0-++-00+-0+0-++0++-+-0-++0+-0++0-0++-+++-+++----00-0--+-0-000+-+0000----+++++-000++-+-0--0+00-++0+--0++。
  10. 根据权利要求9所述的方法,其特征在于,所述目标前导码组为第一前导码组、第二前导码组、和第三前导码组中的一个;
    其中,所述第一前导码组包括所述四十二个前导码中前14个前导码中的至少3个;所述第二前导码组包括所述四十二个前导码的中间14个前导码中的至少3个;所述第三前导码组包括所述四十二个前导码中后14个前导码中的至少3个。
  11. 根据权利要求1-5任一项所述的方法,其特征在于,所述N等于127,所述目标前导码组包括十四个前导码中的至少一个,所述十四个前导码如下:
    -00000-++0-0000-00-+-000--0-00+00+0++-0-+0++-00--0++00+0+0-+0-0+-+-+0++++0000-+000+000-0+00--00++--0+0-0+000+-+++++00-000000-0+;
    ++0+0000-00+++000++0+00+00-0+--0-+0-+-00--0+-00-0+0-+0+0+-+--0++--0000+-000+000-0+00++00-+--0+0-0-000++++-+-00+000000+0--00000+;
    -+00000+0-000-+0++0-000000++0000+00+00+++++-+0+---+000+--0-0-0+00-0+0++--0-00+-00+-+00+-0-0+-000+000+0++-0--00-0000-++-00+0++0-;
    +00-00+-++0-0+00000-0-+-+00---0----+++0+-00+0-+000-+00+-0++0+000+--+-0000++-000+ 0+00++000000++0-0--+0-00+0-0+0++0+--00+0000+000;
    0-+0+00000+--+-0++000000-0+0-+0----+--00++0+-0+0-0+000+00-00++00+--+000-+-0---0+0-+-+0+00+0+-00+0-00+++00-000++000+0+++0000-000;
    0000++0000-0-000-+-+00-000+0--00--+0+0+00--++-0+0000+-+000+00+00--0--0-0+-0-+++0-+000++0+00-0--+0++-00++00-0+0+0-++-+++000000+0;
    +0000+00--+0++0+0-0+00-0+--0-0++000000++00+0+000-++0000-+--+000+0++0-+00+-000+-0+00-+0+++----0---00+-+-0-00000+0-0++-+00-00+000;
    0-000+-000-0--+0000+0000+-0+00000+++--0++000000+0+0++0+++----00-+0+-0+0-0+000-00+00-+00++-+000+++0+--0-0-+-+0-00-0+-00+0-00++-0;
    ----+-0-0+0-00+-00-++0---0+00+0-+000+-0++++0+-0-0-+0++00-00+000--+0000+0-+--+00+0+0+++00++0-000-00+--+000+0+0000+-00000+000000+;
    +00+-000-0-+-0-0++0-+00000--00--0+0-00+-+00+++-0+-0+0000+0+0-0----+0+00-0-000++0+-+000++---++0000+++0+--+00+0-+00+00+000000+000;
    +000+0---0+0+-0++00000-+00--0-0-00-++00++--0++0+0000-0-0+0+--++0+00-0-000-+0+-+000--++-++0000+++0-+-+00+0++00+00+000000-000-00-;
    00-++00-0+00-+0-00-0+-+-0-0--+0+++000+-++00+-00+00-000+0-0+0-+0+-00----+++0++0+0+000000++0--+++00000+0-+0000+0000+--0-000-+000-;
    -+0+-00+0000--++00-0++0--+00000-0-000-+0-+0-000000+-0000+00+00+++-++-0+++--000+++0+0-0-00-0-0++++0+00-+00+-+00--0-0+-000-000+0+;
    -0+0++0+++00+0000-000+00-00--++0+0+00000-0-+++00--+0-+--+--0-+00-0+-000--00++0-+0+000+-+-+0000+++000-0+00-+000000++0-0+--0+00-0。
  12. 根据权利要求11所述的方法,其特征在于,所述目标前导码组为第一前导码组、第二前导码组、和第三前导码组中的一个;
    所述第一前导码组包括所述十四个前导码中前六个前导码中的至少一个、以及如下前导码中的至少一个:
    +00+00+-0+00++--0+++0000+++----000+++0+-000+0+00+0+-++-0-0-0-0000+0-+0+-++00+--00+0-0++00-+00000+-0-+0-0+-+0-000--00-000-000000;
    +0+0+-0-000++-+00000+00--0+-0000-0-000000+--0-+0+--++00+----++0+00+00+0-0-+-0-0+0+00+++000++00+0-+00--000-0++-+0--+00+000+0000+;
    +000000++0+0-+-0-00-0+0+0++0+--00+0000-000+00+00-+++0-0+00000+0++-+00++-0+-+++--0--00-0--000+-00+-0-+0+000++---0000++-000-0+00-;
    所述第二前导码组包括所述十四个前导码中的第七个前导码和第八个前导码中的至少一个、以及如下前导码中的至少一个:
    +-0+00+00+0-00-+++00+000-+0+0-0000+++++-+0+--0+-0++--0-000+0-+00+0+----000-000000-+00+-0++000++-00++-0-0-+-0000+00--00000-0+0+0;
    000-000-00--000-0+-+0-0+-0-+00000+-00++0-0+00--+00++-+0+-0+0000-0-0-0-++-+0+00+0+000-+0+++000----+++0000+++0--++00+0-+00+00+000;
    ++-00000+-0-000000-00-+-++-+000-0+0+0+++-00--00+0+000+000--0000--++0-++++0-0++0+0-00-+0++00++-0++0+-+0-00+00-0--000-+-00+0000-0;
    -00+0-000-++0000---++000+0+-0-+00-+000--0-00--0--+++-+0-++00+-++0+00000+0-0+++-00+00+000-0000+00--+0++0+0+0-00-0-+-0+0++000000+;
    0-0000--0+00000+---+0++000000-0+0-+0---+-++00-+0++0+0+0+000-00-00-+00+-++000-+-0-++0-0++++0-00-0++00+0+00++-00+000+-000-0--+000;
    -00+-0-+0-00+0+0000+0+-0000++00+0+++++-+0-0+-0--+0++--000---0+000+0+0-+-000000+-+-0--00++000-00+00++-00--++-00-00000+000++0-0+0;
    +0000+000+00+--0+-++0-000--00+-0+00++000+++00+0+0-0-+-0-0+00+00+0++----+00++--+0+-0--+000000-0-0000-+0--00+00000+-++000-0-+0+0+;
    所述第三前导码组包括所述十四个前导码中后六个前导码中的至少一个、以及如下前导码中的至少一个:
    0-0000+00-+-000--0-00+00-0+-+0++0-++00++0+-00-0+0++0-0++++-0++--0000--000+000+0+00--00-+++0+0+0-000+-++-+-00-000000-0-+00000-++;
    +--0-000-+000+00-++00+0+00++0-00-0++++0-0++-0-+-000++-+00+-00-00-000+0+0+0++0+-00++-+---0+-0+0-000000++0+---+00000+0--0000-0000;
    +0+0-00000--00+0000-+-0-0-++00-++000++0-+00+-000000-000----+0+00+-0+000-0--++0-+0--+0+-+++++0000-0+0+-000+00+++-00-0+00+00+0-+0。
  13. 根据权利要求1-5任一项所述的方法,其特征在于,所述N等于133,所述目标前导码组包括四十五个前导码中的至少3个,所述四十五个前导码如下:
    -+-+--+----0-+--0+-0-++--+++-+-+--++++-+--++0-0-++++-0---0--+++0--+-+++-++-0++-++++----+-0+-++-++++---+++-+++++++-++--++-+---+-+00+++;
    ++---0+---+-0+++0+0++0-++++++++---+00+-++--+-++-++++---+-+--++0--+--++--++0+++++---+0+++--+-++-+----+-+---+-+0-+-+++-0-+-+----++-+++-;
    ++--0+++-+--+++0-++++--++-+++-+0-+++00+0-+-+++-+-+-0+-+----+-+++---+-+-++++++-++-+0++--++---+-+-----++-++-+0-++0---+----0-++++++--0--;
    -+--+++++----+-+++++++-++-++----+-+--+++-++-0+0+++0-+-++++-+-+++----0+---0-+--++-+--0-+0--+-+--++--0+++-+++--+-+0++---+00++-+++-+0+--;
    --+--+-0-+-+0----++++++++-+-+-++0--++++--+---+0+----++-+-+-++------+00+--+-+--++++--++-++++-++---++-0+--+++-++0+0+++0--0+-+-+++0++-++;
    +-0++00++++-0+-++-++--+-++-+-++-+-----++0-0++---++++-+-0-----+-+--+-+-+0+-++--++-++---+++-++--0+-+++++++++--++---0-+++0+---+-+-0--+++;
    ++-++0+++-+-+0--0+++0+0++-+++--+0-++---++-++++-++--++++--+-+--+00+------++-+-+-++----+0+---+--++++--0++-+-+-++++++++----0+-+-0-+--+--;
    --+0+-+++-++00+---++0+-+--+++-+++0--++--+-+--0+-0--+-++--+-0---+0----+++-+-++++-+-0+++0+0-++-+++--+-+----++-++-+++++++-+----+++++--+-;
    +++++--+++0+00+-++-+-+0-+---+++++++0++---0--+-0++--++----++-+----+---++++0+-+-+++0+-+-+-0++----++---+--+++-+---+++-++-+--++-+0-+-0++-;
    +++00+-+---+-++--++-+++++++-+++---++++-++-+0-+----++++-++0-++-+++-+--0+++--0---0-++++-0-0++--+-++++--+-+-+++--++-0-+0--+-0----+--+-+-;
    +-0-+0--++--++++-+-++0+0-+++-0-----+-++-++--+-0+++-+++-+++----++--0+++-+---0-+------+-++0-+++-+--+--+++++---++++-++-+-+-+++00+-+0++-+;
    ++00++0-+-+-++0+-+++-+-0-+++0----+-++-+--++-+-+0-++++----+---++---+--+0+-++++-++-++--+0-+--+++---+-0+0-++------+-+++-+++++-+++---0+++;
    +--+-++---+00+-0-+-+++---++0--+---+++++++---+-++++--+---+-++-0+-++-+-----+----+-++0+ 0-+++-+-0-++-+++-0++--0--++-0++++-+0++++-++++-+-+;
    +--0+0--0--+++0-----+0+++-+++--+--++++--+0-+--+----0-+-++-+++++-+00-+-+-+++++-++++-++++---+++-+-+--+-+++--+0--++-+-0-+-0+---++-++-+++;
    +++-++++--+-+--++0--0+---0---++--+-++---00++----+++++++--+--+--+--+++-++-++++-+-0-++-+-+-+---+0++++++--+-+0+-+-+0-++0--+--+0+0+++--++;
    +-+-++--+--0++0++++++-+--0----0+-++----++++-++--0+++0+0+--++-+-+-++-+--+++-+-+++++++--++--+-+++-+-++--0+-+++---00--+-+-0--++----+++-0;
    +++++++++0+--+-+-+---+-++-++--+-++-+++0-+++---+++0+-0--+-+--+---+-++0--+0---+--+---+++-+++--+-0+0++++-+00++--0+-+++++---+0+-+--++----;
    +00+-++-------+++++-+-+-+++-0-++++-+---+0-----++-+0++-++-+--+++----+-+--+++0--++---0-+-++--+-+-++++++-+-0+++-++0-++0+0++0-++-++--++--;
    +-+-+--+++-+++-+0++-+--0-+-++-+0+0+++-+++++-00-+-0+-++--+---------++0++--++---+-+++-+-+-0-++-+--++-++--++++----+++-0++0--+++0+++----+;
    -++--++-+0--0--++--+++-0+++-++-+++---+-++++----++-++0-++++---------+-+-+-0-+++-+--+-+0-+++00--++-+0+0---+-+-++++++-++-+-++0++-0+++--+;
    -+++---++++-++00-++++-+-++-+--+-+--++-+++---+-0---+++++-0+0++-0+-0+--++++0+---+--++---0-+--0+--+-+-+-+++-++-+-+0-----+++--+--0+++++++;
    --++--++-++-0++0+0++-0++-+++0-+-++++++-+-+--++-+-0---++--0+++--+-+----+++--+-++-++0+-++-----0+---+-++++-0-+++-+-+-+++++-------++-+00+;
    --++--++-++-0++0+0++-0++-+++0-+-++++++-+-+--++-+-0---++--0+++--+-+----+++--+-++-++0+-++-----0+---+-++++-0-+++-+-+-+++++-------++-+00+;
    ----++--+-+0+---+++++-+0--++00+-++++0+0-+--+++-+++---+--+---0+--0++-+---+--+-+--0-+0+++---+++-0+++-++-+--++-++-+---+-+-+--+0+++++++++;
    --+++0+00+-+-++--++-+++---+++---0-+-+0--+++-+-+0-+---0--++-+0-+--+++++--+++-+++----+-++++++--++-+-+++++0+-+0--++++-+-++-+0--+----0--+;
    -0+++++-+--++0+++--+++-0-+------++-+-+0+-0--+++---+-+++-+0-++00+-+++0+0-+++++-++-+-++-+--+-+--++-+++-++0--+--+-+++---++-0+++---+-----;
    ++--+++0+0+--+--0++-0+-+-+0+-+--++++++0+---+-+-+-++-0-+-++++-++-+++--+--+--+--+++++++----++00---++-+--++---0---+0--0++--+-+--++++-+++;
    +-0---++++0+-+-+++-+--+-0++-0-+++-+--+--+-+++++++--++++-++++-+-++--++--0--++++0--+--0++--+----0--+-0-+++++-+-+++--+-++---+-00+0-+++--;
    -+---++--0-+++++++---++++-+-+++++-+-++++-0+++-+-+-+--0---+--++-+++-0+00++++--0---++-++-+--0-++---+++-+-++--+0-++0+--+0----+0-+++-+-+-;
    --+++-0+00-+---++-+--+++-+-+++++-0-+--0----+--++0--+--0++++--0--++--++-+-++++-++++--+++++++-+--+--+-+++-0-++0-+--+-+++-+-+0++++---0-+;
    ++0+----0-+-+++00++-0-+-++--+-++++-+-++-0--0++++---+--+++--+++++++++-+++++----+-+-+0++---++--0+--+--+-0+0-+--+-+---+-+-0++++-++--++--;
    +-+-++++-++++0+-++++0-++--0--++0-+++-++-0-+-+++-0+0++-+----+-----+-++-+0-++-+---+--++++-+---+++++++---+--0++---+++-+-0-+00+---++-+--+;
    ++--0+--+-+++--+-++-+++-0++++--+-+++-++++-+0+++00+-+-+---+-0-0++-+---0+++-++0+-++-++------++++++--+--0--++-0-+0-+++--++++-+---+-+----;
    -+-+++-++++---+-++-+-+++--0++++-++--+++-++-++++0+0-+---+-0++++---+0++-+0+--++0-----+0+--+--+-+-+-+---++--++++00+-0+-++++-++--0--+----;
    --0--++++++-0----+---0++-0+-++-++-----+-+---++--++0+-++-++++++-+-+---+++-+----+-+0-+-+-+++-+-0+00+++-0+-+++-++--++++-0+++--+-+++0--++;
    ----+-+---+-++++--+++-0+-0-++--0--+--++++++------++-++-+0++-+++0---+-++0-0-+---+-+-+00+++0+-++++-+++-+--++++0-+++-++-+--+++-+--+0--++;
    --++--++-++++0-+-+---+-+--+-0+0-+--+--+0--++---++0+-+-+----+++++-+++++++++--+++--+---++++0--0-++-+-++++-+--++-+-0-++00+++-+-0----+0++;
    +-++-++------++00+++0+-+-+-0-+0+++++-++++-++--0+0+++-+0---+++---++----+0-++--+---++-+---+++0+--+-++-0++++--+--+-+0---+--+-+-++++-+++-;
    +++-++-++---+0-+-0-+-++--0+--+++-+--+-+-+++---++++-++++-+++++-+-+-00+-+++++-++-+-0----+--+-0+--++++--+--+++-+++0+-----0+++--0--0+0--+;
    +++0---+++-+++++-+++-+------++-0+0-+---+++--+-0+--++-++-++++-+0+--+---++---+----++++-0+-+-++--+-++-+----0+++-0-+-+++-+0++-+-+-0++00++;
    ++0-++---0--+---+---0+---++-+-+++--+0-+++00+0-+++++-+--+0++--++++---+-++-+-++--++++---+0-++-++-+++-+-+-+-+-++++-0--+0++-+----0--+++++;
    ++0--++++++---+--+0+-0+-+--++-+-+--+0+++++-+-+0+----+-++--0++++++++---++0-+-+-+++--++++-+0++--++-++-++----+---+-++------+-0+0-++-+00-;
    +++++--0----+-++0+--0-++++-+-+-+-+-+++-++-++-0+---++++--++-+-++-+---++++--++0+--+-+++++-0+00+++-0+--+++-+-++---+0---+---+--0---++-0++;
    +-++--+++---+0+++-+0+-+-++--++-+-----++-+0+-+-+--+-0+-------++0+++--+++-++-+++++0-0++--0-+-++++00++0--++-+--++++++--+-+++-0+----+-+--;
    --++++++-+-+--+++--+0+-+-++---+-++-+++++-+-+-+0--0--+-+++++-0-0-++0---+++-++--++++-+--+0-+----0----0++--+--++0-++++-+00+--+-+++++--++。
  14. 根据权利要求13所述的方法,其特征在于,所述目标前导码组为第一前导码组、第二前导码组、和第三前导码组中的一个;
    其中,所述第一前导码组包括所述四十五个前导码中前15个前导码中的至少3个;所述第二前导码组包括所述四十五个前导码的中间15个前导码中的至少3个;所述第三前导码组包括所述四十五个前导码中后15个前导码中的至少3个。
  15. 根据权利要求6所述的方法,其特征在于,所述第一前导码组和所述第二前导码组用于K个信道,所述K为大于或等于2的正整数。
  16. 根据权利要求15所述的方法,其特征在于,所述K等于3,所述第一前导码组用于第一信道和第三信道,所述第二前导码组用于第二信道,所述第一信道和所述第三信道不相邻。
  17. 根据权利要求8、10、12、或14任一项所述的方法,其特征在于,所述第一前导码组、第二前导码组、和第三前导码组用于K个信道,所述K为大于或等于2的正整数。
  18. 一种通信装置,其特征在于,所述通信装置包括:处理模块和收发模块;
    所述处理模块,用于生成第一信号,所述第一信号包括根据长度为N的目标前导码确定的前导符号,所述目标前导码属于包括L个前导码的目标前导码组,所述L为大于或等于3的正整数,所述N等于31、或91、或121、或127、或133;
    所述收发模块,用于向第一设备发送所述第一信号;
    其中,N等于31时,所述目标前导码组包括四个前导码中的至少一个,所述四个前导码如下:
    +0000-0++0-0+000+-+0++++-00-00-;
    -0-00+000+0++-++0+-00+--0000++0;
    0+0++00++-+-000++0+--0+0-0000-0;
    0++-00+-0---++0+000+00+0+0-+000;
    或者,N等于31时,所述目标前导码组包括二十个前导码中的至少3个,所述二十个前导码如下:
    -+0--+-++00+---++-++++-+0+++0-0;
    ++-+++--0+++0+0-+0++-+--00--+-+;
    +-+++--+0+-+----0+++-++0+0-+00+;
    0-++-+++-+0-++++--0-+---+0+0++0;
    00++--0-+++++-+++-0++-0--+-+-0+;
    0+00+-++0+-+-+++++--0--+0--+++-;
    00++0--++-0-0-+-+0-++++++--+-++;
    +++++0+0---+0+--++-+-+--++00+-0;
    +++-0---0+-++-0+-+-+++--+++00+0;
    00+0+-+-0++-0+-+++0-++++-++----;
    00++-+--++++++-0+-+-0-0-++--0++;
    -+00++--+-+-++--+0+---0+0+++++0;
    0+00+++--+++-+-+0-++-+0---0-+++;
    ----++-++++-0+++-+0-++0-+-+0+00;
    -0+++0+-++++-++---+00++-+--0+-0;
    +-+--00--+-++0+-0+0+++0--+++-++;
    -+++--0+--0--+++++-+-+0++-+00+0;
    00+0-+-+--0-++0-+++-+++++-0--++;
    ++0+0+---+-0--++++-0+-+++-++-00;
    +00+-0+0++-+++0----+-+0+--+++-+;
    其中,+表示1,-表示-1。
  19. 根据权利要求18所述的通信装置,其特征在于,所述收发模块,还用于向所述第二设备发送控制信息,所述控制信息用于指示所述目标前导码,所述控制信息包括以下至少一项:所述目标前导码的长度N、所述目标前导码的索引、或所述目标前导码组的索引。
  20. 根据权利要求18或19所述的通信装置,其特征在于,所述目标前导码组为目标信道对应的前导码;
    所述处理模块,还用于在所述目标信道上进行监听,确定所述目标前导码组中未被使用的前导码,所述目标前导码为所述未被使用的前导码中的一个。
  21. 一种通信装置,其特征在于,所述通信装置包括:处理模块和收发模块;
    所述收发模块,用于接收来自第二设备的第一信号,所述第一信号包括根据长度为N的目标前导码确定的前导符号,所述目标前导码属于包括L个前导码的目标前导码组,所述L为大于或等于3的正整数,所述N等于31、或91、或121、或127、或133;
    所述处理模块,用于根据所述目标前导码对所述第一信号进行处理;
    其中,N等于31时,所述目标前导码组包括四个前导码中的至少一个,所述四个前导码如下:
    +0000-0++0-0+000+-+0++++-00-00-;
    -0-00+000+0++-++0+-00+--0000++0;
    0+0++00++-+-000++0+--0+0-0000-0;
    0++-00+-0---++0+000+00+0+0-+000;
    或者,N等于31时,所述目标前导码组包括二十个前导码中的至少3个,所述二十个前导码如下:
    -+0--+-++00+---++-++++-+0+++0-0;
    ++-+++--0+++0+0-+0++-+--00--+-+;
    +-+++--+0+-+----0+++-++0+0-+00+;
    0-++-+++-+0-++++--0-+---+0+0++0;
    00++--0-+++++-+++-0++-0--+-+-0+;
    0+00+-++0+-+-+++++--0--+0--+++-;
    00++0--++-0-0-+-+0-++++++--+-++;
    +++++0+0---+0+--++-+-+--++00+-0;
    +++-0---0+-++-0+-+-+++--+++00+0;
    00+0+-+-0++-0+-+++0-++++-++----;
    00++-+--++++++-0+-+-0-0-++--0++;
    -+00++--+-+-++--+0+---0+0+++++0;
    0+00+++--+++-+-+0-++-+0---0-+++;
    ----++-++++-0+++-+0-++0-+-+0+00;
    -0+++0+-++++-++---+00++-+--0+-0;
    +-+--00--+-++0+-0+0+++0--+++-++;
    -+++--0+--0--+++++-+-+0++-+00+0;
    00+0-+-+--0-++0-+++-+++++-0--++;
    ++0+0+---+-0--++++-0+-+++-++-00;
    +00+-0+0++-+++0----+-+0+--+++-+;
    其中,+表示1,-表示-1。
  22. 根据权利要求21所述的通信装置,其特征在于,所述收发模块,还用于接收来自所述第一设备的控制信息,所述控制信息用于指示所述目标前导码,所述控制信息包括以下至少一项:所述目标前导码的长度、所述目标前导码的索引、或所述目标前导码组的索引;
    所述处理模块,用于生成第一信号,包括:
    所述处理模块,用于根据所述控制信息,生成所述第一信号。
  23. 一种通信装置,其特征在于,所述通信装置包括:至少一个处理器;
    所述处理器,用于执行计算机程序或指令,以使如权利要求1-17任一项所述的方法被执行。
  24. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令在通信装置上运行时,如权利要求1-17任一项所述的方法被执行。
  25. 一种计算机程序产品,其特征在于,当所述计算机程序产品在通信装置上运行时, 如权利要求1-17任一项所述的方法被执行。
PCT/CN2022/118178 2021-09-18 2022-09-09 信号传输方法、装置及系统 WO2023040776A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22869145.7A EP4387180A1 (en) 2021-09-18 2022-09-09 Signal transmission method, apparatus and system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111113069 2021-09-18
CN202111113069.1 2021-09-18
CN202111204080.9 2021-10-15
CN202111204080.9A CN115842706A (zh) 2021-09-18 2021-10-15 信号传输方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2023040776A1 true WO2023040776A1 (zh) 2023-03-23

Family

ID=85575249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118178 WO2023040776A1 (zh) 2021-09-18 2022-09-09 信号传输方法、装置及系统

Country Status (3)

Country Link
EP (1) EP4387180A1 (zh)
CN (1) CN115842706A (zh)
WO (1) WO2023040776A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080259896A1 (en) * 2005-08-09 2008-10-23 Zafer Sahinoglu Device, Method And Protocol For Private Uwb Ranging
CN111684732A (zh) * 2017-12-08 2020-09-18 戴卡维夫有限公司 利用同时帧测距
US20200363524A1 (en) * 2019-05-13 2020-11-19 Samsung Electronics Co., Ltd. Method for performing distance measurement and authentication concurrently and electronic device thereof
US20210076163A1 (en) * 2019-09-06 2021-03-11 Apple Inc. Many to many ranging techniques

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080259896A1 (en) * 2005-08-09 2008-10-23 Zafer Sahinoglu Device, Method And Protocol For Private Uwb Ranging
CN111684732A (zh) * 2017-12-08 2020-09-18 戴卡维夫有限公司 利用同时帧测距
US20200363524A1 (en) * 2019-05-13 2020-11-19 Samsung Electronics Co., Ltd. Method for performing distance measurement and authentication concurrently and electronic device thereof
US20210076163A1 (en) * 2019-09-06 2021-03-11 Apple Inc. Many to many ranging techniques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"IEEE Standard for Low-Rate Wireless Networks ; IEEE Std 802.15.4-2020 (Revision of IEEE Std 802.15.4-2015)", IEEE STANDARD, IEEE, PISCATAWAY, NJ USA, 20 July 2020 (2020-07-20), Piscataway, NJ USA , pages 1 - 800, XP068168230, ISBN: 978-1-5044-6689-9, DOI: 10.1109/IEEESTD.2020.9144691 *

Also Published As

Publication number Publication date
CN115842706A (zh) 2023-03-24
EP4387180A1 (en) 2024-06-19

Similar Documents

Publication Publication Date Title
CN109479282B (zh) 多用户资源分配的装置、系统和方法
US11262445B2 (en) Method and device for transmitting and receiving data via UWB in wireless communication system
US10615929B2 (en) Apparatus, system and method of multi user (MU) range measurement
US11109356B2 (en) Apparatus, system and method of trigger-based ranging measurement
WO2016160727A1 (en) Exploratory beamforming training techniques for 60 ghz devices
US20240137177A1 (en) Wireless sensing method and apparatus
WO2020024110A1 (zh) 参考信号强度指示的测量方法和装置
WO2022213653A1 (zh) 频域资源位置确定方法与装置、终端和网络设备
WO2021239113A1 (zh) 数据传输方法及装置
WO2022242335A1 (zh) 信号发送、接收方法及装置
WO2023040776A1 (zh) 信号传输方法、装置及系统
WO2022247593A1 (zh) 测距方法和装置
WO2019141244A1 (zh) 随机接入方法、装置、设备、芯片、存储介质及程序产品
WO2020094155A1 (zh) 参考信号发送方法和设备
WO2021062872A1 (zh) 一种通信方法及装置
WO2023185633A1 (zh) 一种通信的方法、装置和系统
WO2022178881A1 (zh) 通信方法及装置
WO2023179535A1 (zh) 信息交互方法及相关装置
WO2024032562A1 (zh) 一种通信方法及装置
WO2024169443A1 (zh) 一种聚合测量定位参考信号prs的方法和装置
WO2023179430A1 (zh) 通信方法、装置和系统
WO2023174131A1 (zh) 通信方法和通信装置
WO2023061011A1 (zh) 一种测距方法和装置
WO2023179585A1 (zh) 时钟同步的方法和装置
WO2023142827A1 (zh) 前导码传输方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869145

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022869145

Country of ref document: EP

Effective date: 20240312

NENP Non-entry into the national phase

Ref country code: DE