WO2023178757A1 - 像素结构及显示面板 - Google Patents

像素结构及显示面板 Download PDF

Info

Publication number
WO2023178757A1
WO2023178757A1 PCT/CN2022/086810 CN2022086810W WO2023178757A1 WO 2023178757 A1 WO2023178757 A1 WO 2023178757A1 CN 2022086810 W CN2022086810 W CN 2022086810W WO 2023178757 A1 WO2023178757 A1 WO 2023178757A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixel
pixels
same
scan line
Prior art date
Application number
PCT/CN2022/086810
Other languages
English (en)
French (fr)
Inventor
刘莹莹
应见见
杜鹏
Original Assignee
苏州华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州华星光电技术有限公司 filed Critical 苏州华星光电技术有限公司
Publication of WO2023178757A1 publication Critical patent/WO2023178757A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells

Definitions

  • the present application relates to the field of display technology, and specifically to a pixel structure and a display panel.
  • the pixel architecture of data line sharing is a pixel architecture commonly used in pixel structures that saves chip on film (COF, Chip On Film) and thereby reduces costs. As shown in Figure 1, this pixel architecture It means that two adjacent sub-pixels in the same row are powered by the same data line. For example, the data line DL1 charges the adjacent sub-pixels R11 and G12 in the same row at the same time, and the data line DL2 is located in the same row and adjacent.
  • Sub-pixel B13 and sub-pixel R14 are charged, and the data line DL3 charges the adjacent sub-pixel G15 and sub-pixel B16 located in the same row; the corresponding sub-pixels in the same row are turned on successively through two gate lines, for example, the gate line GL1 can be used to turn on sub-pixel R11, sub-pixel B13, and sub-pixel G15, and gate line GL2 can be used to turn on sub-pixel G12, sub-pixel R14, and sub-pixel B16.
  • This application provides a pixel structure and a display panel to alleviate the technical problem that stripes or grid-like phenomena are easily observed under dynamic conditions.
  • the present application provides a pixel structure, which includes a plurality of data lines arranged in sequence along a first direction, a plurality of scan lines arranged in sequence along a second direction, and a plurality of pixel rows arranged in sequence along the second direction,
  • the first direction and the second direction are perpendicular to each other; each pixel row is located between two adjacent scan lines, and there are two scan lines between two adjacent pixel rows; the pixel row includes a plurality of scan lines along the first direction.
  • the first pixel unit is arranged sequentially.
  • the first pixel unit includes six sub-pixels located in the same row and arranged sequentially along the first direction. There are two sub-pixels between two adjacent data lines and two sub-pixels located between the two adjacent data lines. The two sub-pixels in between are connected to the same data line; in the same first pixel unit, the sub-pixels with the highest brightness under the same gray scale are connected to the scan line of the next level of the pixel row where the first pixel unit is located.
  • the first pixel unit includes a first sub-pixel, a second sub-pixel, a third sub-pixel, a fourth sub-pixel, a fifth sub-pixel and a first sub-pixel located in the same row and arranged sequentially along the first direction.
  • the plurality of scan lines include a first scan line, a second scan line and a third scan line arranged sequentially along the second direction.
  • Three scan lines, the first scan line, the first pixel unit, the second scan line and the third scan line are arranged in sequence along the second direction.
  • the first scan line is connected with the first sub-pixel, the third sub-pixel and the sixth sub-pixel.
  • the pixels are connected, and the second scan line is connected to the second sub-pixel and the fifth sub-pixel.
  • the second scan line is also connected to the fourth sub-pixel.
  • the first sub-pixel and the fourth sub-pixel are the same color sub-pixel
  • the second sub-pixel and the fifth sub-pixel are the same color sub-pixel
  • the third sub-pixel and the sixth sub-pixel are the same color sub-pixel. pixels.
  • both the second sub-pixel and the fifth sub-pixel are green sub-pixels.
  • another pixel row adjacent to the pixel row in the second direction also includes a second pixel unit, and the second pixel unit includes six sub-pixels located in the same row and arranged sequentially along the first direction. There are two sub-pixels between two adjacent data lines, and the two sub-pixels located between the two adjacent data lines are connected to the same data line; in the same second pixel unit, the one with the highest brightness under the same gray level The sub-pixels are all connected to the scan line at the next level of the pixel row where the second pixel unit is located.
  • the second pixel unit includes seventh, eighth, ninth, tenth, and eleventh subpixels located in the same row and sequentially arranged along the first direction; Twelfth sub-pixel, in which the eighth sub-pixel and the eleventh sub-pixel are the sub-pixels with the highest brightness under the same gray scale;
  • the plurality of scan lines include fourth scan lines arranged sequentially along the second direction, and the third scan line The line, the second pixel unit and the fourth scan line are arranged in sequence along the second direction.
  • the third scan line is connected to the seventh sub-pixel, the ninth sub-pixel and the twelfth sub-pixel.
  • the fourth scan line is connected to the eighth sub-pixel.
  • the pixel and the eleventh sub-pixel are connected.
  • the fourth scan line is also connected to the tenth sub-pixel.
  • the first subpixel and the seventh subpixel are located in the same column and are both red subpixels, and the first subpixel and the seventh subpixel have opposite polarities in the same frame; the second subpixel and the seventh subpixel are both red subpixels.
  • the eight sub-pixels are located in the same column and are all green sub-pixels.
  • the second and eighth sub-pixels have opposite polarities in the same frame.
  • the third and ninth sub-pixels are located in the same column and are both blue sub-pixels. , the third and ninth sub-pixels have opposite polarities in the same frame; the fourth and tenth sub-pixels are in the same column and are both red sub-pixels, and the fourth and tenth sub-pixels are in the same frame.
  • the polarity in the frame is opposite; the fifth sub-pixel and the eleventh sub-pixel are located in the same column and are both green sub-pixels.
  • the fifth sub-pixel and the eleventh sub-pixel have opposite polarities in the same frame;
  • the sixth sub-pixel and The twelfth sub-pixel is located in the same column and both are blue sub-pixels.
  • the sixth sub-pixel and the twelfth sub-pixel have opposite polarities in the same frame.
  • the first pixel units and the second pixel units are arranged alternately in the second direction.
  • the present application provides a display panel.
  • the display panel includes an array substrate, a color filter substrate disposed opposite to the array substrate, and a liquid crystal layer encapsulated between the array substrate and the color filter substrate.
  • the array substrate includes at least one of the above embodiments. pixel structure in the way.
  • the pixel structure and display panel provided by this application can reduce the same problem by connecting the next-level scanning line of the pixel row where the first pixel unit is located to the sub-pixel with the highest brightness at the same gray level in the same first pixel unit.
  • the coupling capacitance of the sub-pixel with the highest brightness in a gray scale reduces the feed-through voltage of the sub-pixel with the highest brightness in the same gray scale, thus reducing the visual shaking head phenomenon.
  • Figure 1 is a first structural schematic diagram of a pixel structure in a related technical solution.
  • Figure 2 is a second structural schematic diagram of a pixel structure in a related technical solution.
  • Figure 3 is a third structural schematic diagram of a pixel structure in a related technical solution.
  • FIG. 4 is a schematic structural diagram of a pixel structure provided by an embodiment of the present application.
  • Figure 5 is an equivalent circuit schematic diagram of some sub-pixels in Figure 3 or Figure 4.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features.
  • features defined as “first” and “second” may explicitly or implicitly include one or more of the described features.
  • “plurality” means two or more than two, unless otherwise expressly and specifically limited.
  • connection should be understood in a broad sense.
  • connection or integral connection; it can be mechanical connection, electrical connection or mutual communication; it can be directly connected, or it can be indirectly connected through an intermediary, it can be the internal connection of two components or the interaction of two components relation.
  • the term “above” or “below” a first feature to a second feature may include the first feature being in direct contact with the second feature, or it may include the first feature being in direct contact with the second feature.
  • the two characteristics are not in direct contact but through a third characteristic outside of them.
  • the terms “above”, “above” and “above” a first feature on a second feature include the first feature being directly above and diagonally above the second feature, or simply mean that the first feature is at a higher level than the second feature.
  • “Below”, “under” and “under” the first feature is the second feature includes the first feature being directly below and diagonally below the second feature, or simply means that the first feature is less horizontally taller than the second feature.
  • the DLS pixel architecture shown in Figure 2 includes a first row of sub-pixels and a second row of sub-pixels.
  • the first sub-pixel from left to right is connected to the data line DL1 through a downward connection.
  • the second sub-pixel from left to right is connected to the data line DL1 through an upward connection;
  • the third sub-pixel from left to right is connected to the data line DL2 through a downward connection, and
  • the fourth sub-pixel from left to right is connected through an upward connection.
  • the seventh sub-pixels, the eighth sub-pixel, the ninth sub-pixel, the tenth sub-pixel, the eleventh sub-pixel and the twelfth sub-pixel respectively repeat the connection method of the first sub-pixel to the sixth sub-pixel.
  • the scan line GL1 may be connected to the first subpixel, the third subpixel, the fifth subpixel, the seventh subpixel, etc.
  • the scan line GL2 may be connected to the first subpixel in the first row of subpixels.
  • the scanning signal in the scanning line GL1 can first control the corresponding sub-pixel to charge, and then the scanning signal in the scanning line GL2 can control the corresponding sub-pixel to charge; or, the charging order of the two can be reversed.
  • the first sub-pixel from left to right is connected to the data line DL2 through a downward connection, and the second sub-pixel from left to right is connected to the data line DL2 through an upper connection;
  • the third sub-pixel on the right is connected to the data line DL3 through a downward connection, the fourth sub-pixel from left to right is connected to the data line DL3 through an upward connection, and the fifth sub-pixel from left to right is connected to the data line DL3 through an upper connection.
  • Data line DL4 the sixth sub-pixel from left to right is connected to the data line DL4 through a downward connection; the seventh sub-pixel, eighth sub-pixel, ninth sub-pixel, tenth sub-pixel, tenth sub-pixel from left to right
  • the scan line GL3 may be connected to the first sub-pixel, the third sub-pixel, the fifth sub-pixel, the seventh sub-pixel, etc. in the second row of sub-pixels, and the scan line GL4 may be connected to the first sub-pixel in the first row.
  • the scanning signal in the scanning line GL3 can first control the corresponding sub-pixel to charge, and then the scanning signal in the scanning line GL4 controls the corresponding sub-pixel to charge; or, the charging order of the two can be reversed.
  • the second sub-pixel and the fifth sub-pixel in the first row of sub-pixels and the second and fifth sub-pixels in the second row of sub-pixels are all connected to the corresponding data lines in a connected manner, plus different sub-pixels.
  • the pixels are subject to different coupling capacitances, resulting in sub-pixels such as the second sub-pixel and the fifth sub-pixel being subject to a larger coupling capacitance and a larger feed circuit voltage, resulting in shaking heads. The more serious it is.
  • the DLS pixel architecture shown in Figure 3 is similar to the DLS pixel architecture shown in Figure 2.
  • the connection method of each sub-pixel to the corresponding data line is also the same.
  • the difference is the polarity inversion method of the two.
  • R can be used to characterize red sub-pixels
  • G can be used to characterize green sub-pixels
  • B can be used to characterize blue sub-pixels.
  • the scan line GL2 has a larger coupling capacitance Cpg1 for the pixel electrode 11 of the sub-pixel connected to the scan line GL1, while the scan line GL3 has a smaller coupling capacitance Cpg2 for the pixel electrode 12 of the sub-pixel connected to the scan line GL2 because the distance is farther.
  • the green sub-pixels are all affected by larger The coupling capacitance Cpg1 and the blue sub-pixel are subject to a smaller coupling capacitance Cpg2.
  • the green sub-pixel is subject to the largest feed circuit voltage
  • the blue sub-pixel is subject to the largest feed circuit voltage.
  • the color sub-pixel receives the smallest feed circuit voltage; wherein, Ctotal is the sum of capacitances associated with all sub-pixels, for example, it can be the sum of liquid crystal capacitance Clc, gate-source capacitance Cgs, and storage capacitance Cst.
  • Ctotal is the sum of capacitances associated with all sub-pixels, for example, it can be the sum of liquid crystal capacitance Clc, gate-source capacitance Cgs, and storage capacitance Cst.
  • the pixel structure includes a plurality of data lines arranged in sequence along the first direction DR1, a plurality of scanning lines arranged in sequence along the second direction DR2, and a plurality of scan lines arranged in sequence along the second direction DR2.
  • a plurality of pixel rows arranged in sequence in the second direction DR2, the first direction DR1 and the second direction DR2 are perpendicular to each other; each pixel row is located between two adjacent scan lines, and there is a Two scanning lines; the pixel row includes a plurality of first pixel units 110 arranged sequentially along the first direction DR1.
  • the first pixel unit 110 includes six sub-pixels located in the same row and arranged sequentially along the first direction DR1. Two adjacent ones There are two sub-pixels between each data line, and the two sub-pixels located between two adjacent data lines are connected to the same data line; in the same first pixel unit 110, the sub-pixel with the highest brightness under the same gray level Both are connected to the scan line of the next level of the pixel row where the first pixel unit 110 is located.
  • the pixel structure provided by this embodiment is connected to the sub-pixel with the maximum brightness at the same gray level in the same first pixel unit 110 through the scanning line of the next level of the pixel row where the first pixel unit 110 is located. , can reduce the coupling capacitance of the sub-pixel with the highest brightness under the same gray level, thereby reducing the feed-through voltage experienced by the sub-pixel with the highest brightness under the same gray level, thereby alleviating the visual impact. Shaking head wrinkles phenomenon.
  • the first pixel unit 110 includes first sub-pixels, second sub-pixels, third sub-pixels, fourth sub-pixels and fifth sub-pixels located in the same row and sequentially arranged along the first direction DR1 and a sixth sub-pixel, wherein the second sub-pixel and the fifth sub-pixel are the sub-pixels with the highest brightness under the same gray scale; the plurality of scan lines include the first scan line and the second scan line arranged sequentially along the second direction DR2.
  • the lines and the third scan line, the first scan line, the first pixel unit 110, the second scan line and the third scan line are arranged in sequence along the second direction DR2, the first scan line and the first sub-pixel, the third sub-pixel
  • the pixel is connected to the sixth sub-pixel
  • the second scanning line is connected to the second sub-pixel and the fifth sub-pixel.
  • the second scan line is also connected to the fourth sub-pixel.
  • the second sub-pixel, the fourth sub-pixel and the fifth sub-pixel are The coupling capacitance received is reduced, thereby reducing the feed circuit voltage Vft received by the second sub-pixel, the fourth sub-pixel and the fifth sub-pixel.
  • the change in coupling capacitance of at least one of the second sub-pixel, the fourth sub-pixel and the fifth sub-pixel, the first sub-pixel, the third sub-pixel and the sixth sub-pixel are also affected.
  • the coupling environment has an impact, so that the feed circuit voltages corresponding to the first sub-pixel, the third sub-pixel and the sixth sub-pixel can be improved.
  • the improvement of the feed circuit voltage corresponding to each sub-pixel is detailed in Table 1 below.
  • the first sub-pixel and the fourth sub-pixel are sub-pixels of the same color
  • the second sub-pixel and the fifth sub-pixel are the sub-pixels of the same color
  • the third sub-pixel and the sixth sub-pixel are the same color sub-pixel. pixels.
  • the first and fourth sub-pixels are both red sub-pixels
  • the second and fifth sub-pixels are both green sub-pixels
  • the third and sixth sub-pixels are both blue. sub-pixel.
  • another pixel row adjacent to the pixel row in the second direction DR2 also includes a second pixel unit 120.
  • the second pixel unit 120 includes six pixels located in the same row and sequentially arranged along the first direction DR1. There are two sub-pixels between two adjacent data lines, and the two sub-pixels between the two adjacent data lines are connected to the same data line; in the same second pixel unit 120, the same gray The sub-pixels with the highest brightness under the level are all connected to the scanning line of the next level of the pixel row where the second pixel unit 120 is located.
  • the second pixel unit 120 includes seventh sub-pixels, eighth sub-pixels, ninth sub-pixels, and tenth sub-pixels located in the same row and sequentially arranged along the first direction DR1.
  • the plurality of scan lines are arranged sequentially along the second direction DR2
  • the fourth scan line, the third scan line, the second pixel unit 120 and the fourth scan line are arranged in sequence along the second direction DR2.
  • the third scan line and the seventh sub-pixel, the ninth sub-pixel and the twelfth sub-pixel are The pixels are connected, and the fourth scanning line is connected to the eighth sub-pixel and the eleventh sub-pixel.
  • the fourth scan line is also connected to the tenth sub-pixel.
  • the structural improvement principle of the second pixel unit 120 is similar to the improvement principle of the first pixel unit 110. Similarly, it can be seen that the feed circuit voltage received by each sub-pixel in the second pixel unit 120 can also be reduced, thereby improving The phenomenon of head wrinkles was eliminated.
  • the first subpixel and the seventh subpixel are located in the same column and are both red subpixels, and the first subpixel and the seventh subpixel have opposite polarities in the same frame; the second subpixel and the seventh subpixel are both red subpixels.
  • the eight sub-pixels are located in the same column and are all green sub-pixels.
  • the second and eighth sub-pixels have opposite polarities in the same frame.
  • the third and ninth sub-pixels are located in the same column and are both blue sub-pixels. , the third and ninth sub-pixels have opposite polarities in the same frame; the fourth and tenth sub-pixels are in the same column and are both red sub-pixels, and the fourth and tenth sub-pixels are in the same frame.
  • the polarity in the frame is opposite; the fifth sub-pixel and the eleventh sub-pixel are located in the same column and are both green sub-pixels.
  • the fifth sub-pixel and the eleventh sub-pixel have opposite polarities in the same frame;
  • the sixth sub-pixel and The twelfth sub-pixel is located in the same column and both are blue sub-pixels.
  • the sixth sub-pixel and the twelfth sub-pixel have opposite polarities in the same frame.
  • the first pixel units 110 and the second pixel units 120 are arranged alternately in the second direction DR2.
  • this embodiment provides a display panel, which includes the pixel structure in at least one of the above embodiments, and the display panel is a liquid crystal display panel.
  • the display panel provided by this embodiment is connected to the sub-pixel with the maximum brightness at the same gray level in the same first pixel unit 110 through the scanning line of the next level of the pixel row where the first pixel unit 110 is located. , can reduce the coupling capacitance of the sub-pixel with the highest brightness under the same gray level, thereby reducing the feed-through voltage experienced by the sub-pixel with the highest brightness under the same gray level, thereby alleviating the visual impact. Shaking head wrinkles phenomenon.
  • the pixel structure includes at least one pixel unit 100, a first scan line, a second scan line and a third scan line sequentially arranged along the second direction DR2; The first data line, the second data line and the third data line are sequentially arranged along the first direction DR1.
  • the pixel unit 100 includes a first pixel unit 110.
  • the first pixel unit 110 includes first pixels and second pixels located in the same row and arranged sequentially along the first direction DR1.
  • the first pixel includes first pixels located in the same row and arranged along the first direction DR1.
  • the first sub-pixel, the second sub-pixel and the third sub-pixel are arranged in sequence in the direction DR1.
  • the second pixel includes the fourth, fifth and sixth sub-pixels which are located in the same row and are arranged in sequence in the first direction DR1. sub-pixel.
  • the first scanning line is electrically connected to a part of the sub-pixels in the first pixel unit 110
  • the second scanning line is electrically connected to another part of the sub-pixels in the first pixel unit 110
  • the first pixel unit 110 is in the second direction DR2. is located between the first scan line and the second scan line.
  • the first subpixel and the second subpixel are located between the first data line and the second data line in the first direction DR1, and the third subpixel and the fourth subpixel are located between the second data line and the second data line in the first direction DR1. Between the three data lines, the first data line is connected to the second sub-pixel, and the third data line is connected to the fifth sub-pixel.
  • the pixel structure and display panel provided in this embodiment can reduce the brightness of the second sub-pixel by connecting the first data line and the third data line to the second sub-pixel and the fifth sub-pixel with higher brightness respectively. , the coupling capacitance received by the fifth sub-pixel, thereby reducing the feed-through voltage received by the second sub-pixel and the fifth sub-pixel, thereby reducing the visual shaking head phenomenon.
  • the first data line is connected to the first sub-pixel
  • the second data line is connected to the third sub-pixel
  • the second data line is connected to the fourth sub-pixel
  • the third data line is connected to Sixth sub-pixel.
  • the improved post-feedback circuit voltage Vft of each corresponding subpixel has been correspondingly reduced.
  • the head shake phenomenon can be improved.
  • the feed circuit voltage Vft of the second sub-pixel is a maximum of 0.941V; after the improvement, the feed circuit voltage Vft of the fifth sub-pixel is a maximum of 0.845V.
  • both the second sub-pixel and the fifth sub-pixel can be, but are not limited to, green sub-pixels, for example, they can also be red sub-pixels or blue sub-pixels in the arrangement of other sub-pixels, therefore, the feed path of the green sub-pixel
  • the voltage Vft is reduced by about 0.096V, so it can be inferred that the shaking head wrinkles phenomenon can be significantly improved.
  • the first sub-pixel and the fourth sub-pixel are sub-pixels of the same color
  • the second sub-pixel and the fifth sub-pixel are the sub-pixels of the same color
  • the third sub-pixel and the sixth sub-pixel are the same color sub-pixel. pixels.
  • the first and fourth sub-pixels are both red sub-pixels
  • the second and fifth sub-pixels are both green sub-pixels
  • the third and sixth sub-pixels are both blue. sub-pixel.
  • the first scan line is electrically connected to the first sub-pixel, the third sub-pixel and the sixth sub-pixel, and the second scan line is electrically connected to the second sub-pixel, the fourth sub-pixel and the fifth sub-pixel. sexual connection.
  • the second scan line is electrically connected to the first sub-pixel, the third sub-pixel and the sixth sub-pixel, and the first scan line is electrically connected to the second sub-pixel, the fourth sub-pixel and the fifth sub-pixel. sexual connection.
  • the pixel unit 100 further includes a second pixel unit 120.
  • the second pixel unit 120 is adjacent to the first pixel unit 110 in the second direction DR2.
  • Each sub-pixel in the second pixel unit 120 is connected to the first pixel unit 110.
  • Each sub-pixel in a pixel unit 110 corresponds to a column.
  • the second pixel unit 120 includes third pixels and fourth pixels located in the same row and sequentially arranged along the first direction DR1.
  • the third pixel includes third pixels located in the same row and sequentially arranged along the first direction DR1.
  • the seventh sub-pixel, the eighth sub-pixel, and the ninth sub-pixel, and the fourth pixel includes the tenth, eleventh, and twelfth sub-pixels located in the same row and sequentially arranged along the first direction DR1.
  • the pixel structure further includes fourth scan lines sequentially arranged along the second direction DR2 and fourth data lines sequentially arranged along the first direction DR1, and the second pixel unit 120 is in the second direction DR2. Between the third scan line and the fourth scan line, the second scan line and the third scan line are located between the first pixel unit 110 and the second pixel unit 120 in the second direction DR2. The third scan line and the second scan line A part of the sub-pixels in the pixel unit 120 is electrically connected, the fourth scan line is electrically connected to another part of the sub-pixels in the second pixel unit 120; the second data line is connected to the eighth sub-pixel, and the fourth data line is connected to at the eleventh sub-pixel.
  • the coupling capacitance experienced by the eighth sub-pixel and the eleventh sub-pixel can also be reduced, and the feed circuit voltage received can also be reduced, thereby further improving the head shake phenomenon.
  • the second data line is connected to the seventh sub-pixel
  • the third data line is connected to the ninth sub-pixel
  • the third data line is connected to the tenth sub-pixel
  • the fourth data line is connected to Twelfth sub-pixel.
  • the coupling capacitance experienced by the seventh sub-pixel, the ninth sub-pixel, the tenth sub-pixel and the twelfth sub-pixel can also be reduced, and the feed circuit voltage received can also be reduced, which can further Improve the phenomenon of shaking head wrinkles.
  • the first subpixel and the seventh subpixel are located in the same column and are both red subpixels, and the first subpixel and the seventh subpixel have opposite polarities in the same frame; the second subpixel and the seventh subpixel are both red subpixels.
  • the eight sub-pixels are located in the same column and are all green sub-pixels.
  • the second and eighth sub-pixels have opposite polarities in the same frame.
  • the third and ninth sub-pixels are located in the same column and are both blue sub-pixels. , the third and ninth sub-pixels have opposite polarities in the same frame; the fourth and tenth sub-pixels are in the same column and are both red sub-pixels, and the fourth and tenth sub-pixels are in the same frame.
  • the polarity in the frame is opposite; the fifth sub-pixel and the eleventh sub-pixel are located in the same column and are both green sub-pixels.
  • the fifth sub-pixel and the eleventh sub-pixel have opposite polarities in the same frame;
  • the sixth sub-pixel and The twelfth sub-pixel is located in the same column and both are blue sub-pixels.
  • the sixth sub-pixel and the twelfth sub-pixel have opposite polarities in the same frame.
  • the first pixel unit 110 and the second pixel unit 120 are arranged sequentially in the second direction DR2.
  • the first scan line may be a scan line GL1, the second scan line may be a scan line GL2, the third scan line may be a scan line GL3, and the fourth scan line may be a scan line GL3.
  • scan line GL5 can also be the first scan line...and so on.
  • the first data line may be the data line DL1, the second data line may be the data line DL2, the third data line may be the data line DL4, the fourth data line may be the data line DL4, and the data line DL5 may also be the first data line.
  • the data line DL6 can also be the second data line
  • the data line DL7 can also be the third data line... and so on.
  • connection line starts from the higher part of the corresponding data line and extends diagonally downward or extends through a folded line to the upper area of the corresponding sub-pixel.
  • the specific path of the connection may be that the connection line starts from the lower part of the corresponding data line and extends diagonally upward or extends through a polyline to the lower area of the corresponding sub-pixel.
  • the connection line may be, but is not limited to, integrally formed with the corresponding data line.
  • this embodiment provides a display panel, which includes an array substrate, a color filter substrate disposed opposite to the array substrate, and a liquid crystal layer encapsulated between the array substrate and the color filter substrate.
  • the array substrate Including the pixel structure in at least one embodiment described above, the pixel unit 100 periodically repeats along the first direction DR1 and/or the second direction DR2, and the first direction DR1 is different from the second direction DR2.
  • the display panel provided in this embodiment can reduce the brightness of the second sub-pixel and the fifth sub-pixel by connecting the first data line and the third data line to the second sub-pixel and the fifth sub-pixel with higher brightness respectively.
  • the coupling capacitance experienced by the sub-pixels further reduces the feed-through voltage experienced by the second sub-pixel and the fifth sub-pixel, thus reducing the visual shaking head phenomenon.
  • the pixel structure increases with the corresponding increase in scan lines and data lines and the number of pixel units 100.
  • the pixel units 100 increase along the first direction DR1 in Figure 4.
  • they can also increase along the second direction DR2.
  • Corresponding pixel units therefore, even if there are differences in the size of the pixel structure, the head-shaking phenomenon can be significantly improved.
  • the above-mentioned pixel structure can be, but is not limited to, a fringe-field switching (FFS, Fringe-field switching) type pixel structure or a vertical alignment (VA, Vertical Alignment) type pixel structure, or other pixels that can be adapted to the concept of the present invention.
  • FFS fringe-field switching
  • VA Vertical Alignment
  • the structure is not specifically limited here.
  • one of the source/drain electrodes of the transistor T1 is electrically connected to the data line DL1
  • the gate electrode of the transistor T1 is electrically connected to the scan line GL1
  • the source electrode of the transistor T1 /The other of the drain electrodes is electrically connected to one end of the storage capacitor Cst1 and one end of the liquid crystal capacitor Clc1 through the pixel electrode 11.
  • the other end of the storage capacitor Cst1 is connected to the common voltage signal Acom, and the other end of the liquid crystal capacitor Clc1 is connected to the common voltage.
  • Signal Vcom When the scan signal control transistor T1 in the scan line GL1 is turned on, a coupling capacitance Cpg1 is generated between the pixel electrode 11 and the scan line GL2.
  • one of the source/drain electrodes of the transistor T2 is electrically connected to the data line DL1
  • the gate electrode of the transistor T2 is electrically connected to the scan line GL2
  • the other source/drain electrode of the transistor T2 is electrically connected to the data line DL1.
  • One is electrically connected to one end of the storage capacitor Cst2 and one end of the liquid crystal capacitor Clc2 through the pixel electrode 12.
  • the other end of the storage capacitor Cst2 is connected to the common voltage signal Acom, and the other end of the liquid crystal capacitor Clc2 is connected to the common voltage signal Vcom.

Abstract

一种像素结构及显示面板,像素结构包括多条数据线(DL1, DL2, DL3,……)、多条扫描线(GL1, GL2, GL3,……)以及多个像素行,通过第一像素单元(110)所在的像素行的下一级的扫描线与在同一个第一像素单元(110)中同一灰阶下亮度最大的子像素连接,可以降低同一灰阶下亮度最大的子像素所受到的耦合电容,进而减小该同一灰阶下亮度最大的子像素所受到的馈路电压。

Description

像素结构及显示面板 技术领域
本申请涉及显示技术领域,具体涉及一种像素结构及显示面板。
背景技术
数据线共用(DLS,Data Line Sharing)的像素架构是像素结构中普遍使用的一种节省覆晶薄膜(COF,Chip On Film)进而降低成本的像素架构,如图1所示,这种像素架构是指同一行相邻两个子像素由同一条数据线供电,例如,数据线DL1同时为位于同一行且相邻的子像素R11、子像素G12充电,数据线DL2为位于同一行且相邻的子像素B13、子像素R14充电,数据线DL3为位于同一行且相邻的子像素G15、子像素B16充电;通过两条栅极线先后开启同一行中的对应子像素,例如,栅极线GL1可以用于开启子像素R11、子像素B13、子像素G15,栅极线GL2可以用于开启子像素G12、子像素R14、子像素B16。
也正是由于上述这种同一行子像素存在先后开启的情况,导致同一行相邻的两个像素会有前后开启的时间差,在静止画面情况下,这种时间差在人眼上亮度叠加,人眼并不能分辨出这种亮度差异;但当播放动态画面或者人在摇头观看的情况下,亮、亮或暗、暗的像素相叠加,人眼就会捕捉到条纹或网格状的现象即摇头纹,它会给人不好的视觉观感。当不同的像素亮度有差异的情况下,这种条纹或网格状的现象会变得更加明显。
技术问题
本申请提供一种像素结构及显示面板,以缓解动态情况下容易观察到条纹或网格状现象的技术问题。
技术解决方案
第一方面,本申请提供一种像素结构,其包括沿第一方向依次排列的多条数据线、沿第二方向依次排列的多条扫描线以及沿第二方向依次排列的多个像素行,第一方向与第二方向相互垂直;每一像素行均位于两条相邻的扫描线之间,相邻的两个像素行之间具有两条扫描线;像素行包括多个沿第一方向依次排列的第一像素单元,第一像素单元包括位于同一行且沿第一方向依次排列的 六个子像素,相邻的两条数据线之间具有两个子像素,位于相邻的两条数据线之间的两个子像素与同一条数据线连接;在同一个第一像素单元中,同一灰阶下亮度最大的子像素均连接至第一像素单元所在的像素行的下一级的扫描线。
在其中一些实施方式中,第一像素单元包括位于同一行且沿第一方向依次排布的第一子像素、第二子像素、第三子像素、第四子像素、第五子像素以及第六子像素,其中,第二子像素、第五子像素为同一灰阶下亮度最大的子像素;多条扫描线包括沿第二方向依次排布的第一扫描线、第二扫描线以及第三扫描线,第一扫描线、第一像素单元、第二扫描线以及第三扫描线依次沿第二方向依次排布,第一扫描线与第一子像素、第三子像素以及第六子像素连接,第二扫描线与第二子像素、第五子像素连接。
在其中一些实施方式中,第二扫描线还与第四子像素连接。
在其中一些实施方式中,第一子像素、第四子像素为同一颜色子像素,第二子像素、第五子像素为同一颜色子像素,第三子像素、第六子像素为同一颜色子像素。
在其中一些实施方式中,第二子像素、第五子像素均为绿色子像素。
在其中一些实施方式中,与像素行在第二方向上相邻的另一像素行还包括第二像素单元,第二像素单元包括位于同一行且沿第一方向依次排列的六个子像素,相邻的两条数据线之间具有两个子像素,位于相邻的两条数据线之间的两个子像素与同一条数据线连接;在同一个第二像素单元中,同一灰阶下亮度最大的子像素均连接至第二像素单元所在的像素行的下一级的扫描线。
在其中一些实施方式中,第二像素单元包括位于同一行且沿第一方向依次排布的第七子像素、第八子像素、第九子像素、第十子像素、第十一子像素以及第十二子像素,其中,第八子像素、第十一子像素为同一灰阶下亮度最大的子像素;多条扫描线包括沿第二方向依次排布的第四扫描线,第三扫描线、第二像素单元以及第四扫描线依次沿第二方向依次排布,第三扫描线与第七子像素、第九子像素以及第十二子像素连接,第四扫描线与第八子像素、第十一子像素连接。
在其中一些实施方式中,第四扫描线还与第十子像素连接。
在其中一些实施方式中,第一子像素、第七子像素位于同一列且均为红色 子像素,第一子像素、第七子像素在同一帧中的极性相反;第二子像素、第八子像素位于同一列且均为绿色子像素,第二子像素、第八子像素在同一帧中的极性相反;第三子像素、第九子像素位于同一列且均为蓝色子像素,第三子像素、第九子像素在同一帧中的极性相反;第四子像素、第十子像素位于同一列且均为红色子像素,第四子像素、第十子像素在同一帧中的极性相反;第五子像素、第十一子像素位于同一列且均为绿色子像素,第五子像素、第十一子像素在同一帧中的极性相反;第六子像素、第十二子像素位于同一列且均为蓝色子像素,第六子像素、第十二子像素在同一帧中的极性相反。
在其中一些实施方式中,第一像素单元、第二像素单元在第二方向上依次交替排布。
第二方面,本申请提供一种显示面板,显示面板包括阵列基板、与阵列基板相对设置的彩膜基板、以及封装在阵列基板与彩膜基板之间的液晶层,阵列基板包括上述至少一实施方式中的像素结构。
有益效果
本申请提供的像素结构及显示面板,通过第一像素单元所在的像素行的下一级的扫描线与在同一个第一像素单元中同一灰阶下亮度最大的子像素连接,可以降低该同一灰阶下亮度最大的子像素所受到的耦合电容,进而减小该同一灰阶下亮度最大的子像素所受到的馈路(Feed-through)电压,从而减轻了视觉上的摇头纹现象。
附图说明
图1为相关技术方案中像素结构的第一种结构示意图。
图2为相关技术方案中像素结构的第二种结构示意图。
图3为相关技术方案中像素结构的第三种结构示意图。
图4为本申请实施例提供的像素结构的结构示意图。
图5为图3或者图4中一些子像素的等效电路原理图。
本发明的实施方式
为使本申请的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本申请进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系均为基于附图所示的方位或位置关系,仅是为了便于简化描述本公开,而不是指示或暗示所指的装置或组件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本公开的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本公开的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个组件内部的连通或两个组件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一特征和第二特征直接接触,也可以包括第一特征和第二特征不是直接接触而是通过它们之外的第三特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征的水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征的水平高度小于第二特征。
如图2所示的DLS像素架构包括第一行子像素和第二行子像素,第一行子像素中,自左而右的第一个子像素通过下接方式连接至数据线DL1,自左而右的第二个子像素通过上接方式连接至数据线DL1;自左而右的第三个子像素 通过下接方式连接至数据线DL2,自左而右的第四个子像素通过上接方式连接至数据线DL2;自左而右的第五个子像素通过上接方式连接至数据线DL3,自左而右的第六个子像素通过下接方式连接至数据线DL3;自左而右的第七个子像素、第八个子像素、第九个子像素、第十个子像素、第十一个子像素以及第十二个子像素依次分别重复第一个子像素至第六个子像素的连接方式。扫描线GL1可以连接至第一行子像素中的第一个子像素、第三个子像素、第五个子像素、第七个子像素等等,扫描线GL2可以连接至第一行子像素中的第二个子像素、第四个子像素、第六个子像素、第八个子像素等等。扫描线GL1中的扫描信号可以先控制对应的子像素进行充电,然后扫描线GL2中的扫描信号再控制对应的子像素进行充电;或者,两者充电先后顺序可以对调。
在第二行子像素中,自左而右的第一个子像素通过下接方式连接至数据线DL2,自左而右的第二个子像素通过上接方式连接至数据线DL2;自左而右的第三个子像素通过下接方式连接至数据线DL3,自左而右的第四个子像素通过上接方式连接至数据线DL3;自左而右的第五个子像素通过上接方式连接至数据线DL4,自左而右的第六个子像素通过下接方式连接至数据线DL4;自左而右的第七个子像素、第八个子像素、第九个子像素、第十个子像素、第十一个子像素以及第十二个子像素依次分别重复第一个子像素至第六个子像素的连接方式。扫描线GL3可以连接至第二行子像素中的第一个子像素、第三个子像素、第五个子像素、第七个子像素等等,扫描线GL4可以连接至第一行子像素中的第二个子像素、第四个子像素、第六个子像素、第八个子像素等等。扫描线GL3中的扫描信号可以先控制对应的子像素进行充电,然后扫描线GL4中的扫描信号再控制对应的子像素进行充电;或者,两者充电先后顺序可以对调。
其中,第一行子像素中第二个子像素、第五个子像素和第二行子像素中第二个子像素、第五个子像素均以上接方式连接至对应的数据线,再加上不同的子像素所受到的耦合电容不同,导致类同于第二个子像素、第五个子像素这样的子像素所受到的耦合电容较大,所受到的馈路电压也就大,所导致的摇头纹现象也越严重。
如图3所示的DLS像素架构与图2所示的DLS像素架构类似,各子像素 至对应数据线的连接方式也相同,不同的是两者的极性翻转方式。
其中,R可以用于表征红色子像素,G可以用于表征绿色子像素,B可以用于表征蓝色子像素。
需要进行说明的是,经过长期研究发现,通过实验对比图2和图3两个机种的纯色画面,观察到两个机种的纯绿画面时摇头纹现象最明显,而图3所示机种的蓝色画面时摇头纹现象最轻微,图2所示机种的红色画面时摇头纹现象最轻微。如图3所示的机种在L127灰阶下,绿色子像素、红色子像素、蓝色子像素的亮度比例为14:4:1,而通过分析图5中的等效电路可知,扫描线GL2对连接至扫描线GL1的子像素的像素电极11有较大的耦合电容Cpg1,而扫描线GL3对连接至扫描线GL2的子像素的像素电极12因为距离较远只有较小的耦合电容Cpg2。图3所示的像素架构中,一个周期中的4个像素即第一行子像素中自左至右的第一个子像素至第十二子像内,绿色子像素刚好全部都受到较大的耦合电容Cpg1,蓝色子像素都受到较小的耦合电容Cpg2,根据扫描线关闭引起的馈路电压Vft=(Cgs+Cpg)/Ctotal可知,绿色子像素所受的馈路电压最大,蓝色子像素所受的馈路电压最小;其中,Ctotal为与所有子像素相关的电容之和,例如,其可以为液晶电容Clc、栅源极电容Cgs以及存储电容Cst之和。同理,图2所示的机种,绿色子像素同样所受的馈路电压最大,红色子像素所受的馈路电压最小。
有鉴于此,本实施例提供一种像素结构,如图4所示,该像素结构包括沿第一方向DR1依次排列的多条数据线、沿第二方向DR2依次排列的多条扫描线以及沿第二方向DR2依次排列的多个像素行,第一方向DR1与第二方向DR2相互垂直;每一像素行均位于两条相邻的扫描线之间,相邻的两个像素行之间具有两条扫描线;像素行包括多个沿第一方向DR1依次排列的第一像素单元110,第一像素单元110包括位于同一行且沿第一方向DR1依次排列的六个子像素,相邻的两条数据线之间具有两个子像素,位于相邻的两条数据线之间的两个子像素与同一条数据线连接;在同一个第一像素单元110中,同一灰阶下亮度最大的子像素均连接至第一像素单元110所在的像素行的下一级的扫描线。
可以理解的是,本实施例提供的像素结构,通过第一像素单元110所在的 像素行的下一级的扫描线与在同一个第一像素单元110中同一灰阶下亮度最大的子像素连接,可以降低该同一灰阶下亮度最大的子像素所受到的耦合电容,进而减小该同一灰阶下亮度最大的子像素所受到的馈路(Feed-through)电压,从而减轻了视觉上的摇头纹现象。
在其中一个实施例中,第一像素单元110包括位于同一行且沿第一方向DR1依次排布的第一子像素、第二子像素、第三子像素、第四子像素、第五子像素以及第六子像素,其中,第二子像素、第五子像素为同一灰阶下亮度最大的子像素;多条扫描线包括沿第二方向DR2依次排布的第一扫描线、第二扫描线以及第三扫描线,第一扫描线、第一像素单元110、第二扫描线以及第三扫描线依次沿第二方向DR2依次排布,第一扫描线与第一子像素、第三子像素以及第六子像素连接,第二扫描线与第二子像素、第五子像素连接。
在其中一个实施例中,第二扫描线还与第四子像素连接。
需要进行说明的是,由于第二子像素、第四子像素以及第五子像素分别至对应扫描线的连接方式均进行了改造,使得第二子像素、第四子像素以及第五子像素所受到的耦合电容得到了降低,进而减小了第二子像素、第四子像素以及第五子像素所受到的馈路电压Vft。同时,由于第二子像素、第四子像素以及第五子像素中的至少一个所受到的耦合电容发生了变化,进而也对第一子像素、第三子像素以及第六子像素所处的耦合环境产生了影响,使得第一子像素、第三子像素以及第六子像素对应的馈路电压得以有所改善。其中,各子像素对应的馈路电压的改善具体参见下表1。
可以理解的是,由于各子像素对应的馈路电压的得以降低,进而能够明显改善摇头纹现象。
在其中一个实施例中,第一子像素、第四子像素为同一颜色子像素,第二子像素、第五子像素为同一颜色子像素,第三子像素、第六子像素为同一颜色子像素。
在其中一个实施例中,第一子像素、第四子像素均为红色子像素,第二子像素、第五子像素均为绿色子像素,第三子像素、第六子像素均为蓝色子像素。
在其中一个实施例中,与像素行在第二方向DR2上相邻的另一像素行还包括第二像素单元120,第二像素单元120包括位于同一行且沿第一方向DR1 依次排列的六个子像素,相邻的两条数据线之间具有两个子像素,位于相邻的两条数据线之间的两个子像素与同一条数据线连接;在同一个第二像素单元120中,同一灰阶下亮度最大的子像素均连接至第二像素单元120所在的像素行的下一级的扫描线。
在其中一个实施例中,如图4所示,第二像素单元120包括位于同一行且沿第一方向DR1依次排布的第七子像素、第八子像素、第九子像素、第十子像素、第十一子像素以及第十二子像素,其中,第八子像素、第十一子像素为同一灰阶下亮度最大的子像素;多条扫描线包括沿第二方向DR2依次排布的第四扫描线,第三扫描线、第二像素单元120以及第四扫描线依次沿第二方向DR2依次排布,第三扫描线与第七子像素、第九子像素以及第十二子像素连接,第四扫描线与第八子像素、第十一子像素连接。
在其中一个实施例中,第四扫描线还与第十子像素连接。
可以理解的是,第二像素单元120的构造改进原理与第一像素单元110的改进原理类似,同理可知,第二像素单元120中各子像素所受到的馈路电压同样得以降低,进而改善了摇头纹现象。
在其中一个实施例中,第一子像素、第七子像素位于同一列且均为红色子像素,第一子像素、第七子像素在同一帧中的极性相反;第二子像素、第八子像素位于同一列且均为绿色子像素,第二子像素、第八子像素在同一帧中的极性相反;第三子像素、第九子像素位于同一列且均为蓝色子像素,第三子像素、第九子像素在同一帧中的极性相反;第四子像素、第十子像素位于同一列且均为红色子像素,第四子像素、第十子像素在同一帧中的极性相反;第五子像素、第十一子像素位于同一列且均为绿色子像素,第五子像素、第十一子像素在同一帧中的极性相反;第六子像素、第十二子像素位于同一列且均为蓝色子像素,第六子像素、第十二子像素在同一帧中的极性相反。
在其中一个实施例中,第一像素单元110、第二像素单元120在第二方向DR2上依次交替排布。
在其中一个实施例中,本实施例提供一种显示面板,其包括上述至少一实施例中的像素结构,该显示面板为液晶显示面板。
可以理解的是,本实施例提供的显示面板,通过第一像素单元110所在的 像素行的下一级的扫描线与在同一个第一像素单元110中同一灰阶下亮度最大的子像素连接,可以降低该同一灰阶下亮度最大的子像素所受到的耦合电容,进而减小该同一灰阶下亮度最大的子像素所受到的馈路(Feed-through)电压,从而减轻了视觉上的摇头纹现象。
其中,需要说明的是,图1至图4中的实心原点仅代表子像素分别与对应的数据线、扫描线连接,并不表示对应的数据线、扫描线发生了直接连接。
本实施例提供了一种像素结构,如图4所示,该像素结构包括至少一个像素单元100、沿第二方向DR2依次排布的第一扫描线、第二扫描线以及第三扫描线以及沿第一方向DR1依次排布的第一数据线、第二数据线以及第三数据线。
其中,像素单元100包括第一像素单元110,第一像素单元110包括位于同一行且沿第一方向DR1依次排布的第一像素、第二像素,第一像素包括位于同一行且沿第一方向DR1依次排布的第一子像素、第二子像素、第三子像素,第二像素包括位于同一行且沿第一方向DR1依次排布的第四子像素、第五子像素、第六子像素。
第一扫描线与第一像素单元110中的一部分子像素电性连接,第二扫描线与第一像素单元110中的另一部分子像素电性连接,且第一像素单元110在第二方向DR2上位于第一扫描线与第二扫描线之间。
第一子像素、第二子像素在第一方向DR1上位于第一数据线与第二数据线之间,第三子像素、第四子像素在第一方向DR1上位于第二数据线与第三数据线之间,且第一数据线下接于第二子像素,第三数据线下接于第五子像素。
可以理解的是,本实施例提供的像素结构及显示面板,通过第一数据线、第三数据线分别下接于亮度较高的第二子像素、第五子像素,可以降低第二子像素、第五子像素所受到的耦合电容,进而减小第二子像素、第五子像素所受到的馈路(Feed-through)电压,从而减轻了视觉上的摇头纹现象。
在其中一个实施例中,第一数据线上接于第一子像素,第二数据线上接于第三子像素,第二数据线下接于第四子像素,第三数据线上接于第六子像素。
需要进行说明的是,由于第一子像素、第三子像素、第四子像素以及第六子像素分别至对应数据线的连接方式均进行了改造,使得第一子像素、第三子 像素、第四子像素以及第六子像素所受到的耦合电容得到了降低,进而减小了第一子像素、第三子像素、第四子像素以及第六子像素所受到的馈路电压Vft。各子像素对应的馈路电压的改善具体参见下表1:
表1:
  第一子像素 第二子像素 第三子像素 第四子像素 第五子像素 第六子像素
改善前Vft 0.901V 0.941V 0.885V 0.928V 0.929V 0.899V
改善后Vft 0.850V 0.842V 0.849V 0.842V 0.845V 0.855V
通过上表可以得知:相对于各子像素的改善前馈路电压Vft,各对应子像素的改善后馈路电压Vft均得到了对应下降,对应地,可以改善摇头纹现象。其中,在一个循环周期内,改善前,第二子像素的馈路电压Vft最大为0.941V;改善后,第五子像素的馈路电压Vft最大为0.845V。由于第二子像素、第五子像素均可以但不限于为绿色子像素,例如,在其他子像素的排列方式中也可以为红色子像素或者蓝色子像素,因此,绿色子像素的馈路电压Vft减小约0.096V,如此可以推知,摇头纹现象可以得到明显的改善。
在其中一个实施例中,第一子像素、第四子像素为同一颜色子像素,第二子像素、第五子像素为同一颜色子像素,第三子像素、第六子像素为同一颜色子像素。
在其中一个实施例中,第一子像素、第四子像素均为红色子像素,第二子像素、第五子像素均为绿色子像素,第三子像素、第六子像素均为蓝色子像素。
在其中一个实施例中,第一扫描线与第一子像素、第三子像素以及第六子像素电性连接,第二扫描线与第二子像素、第四子像素以及第五子像素电性连接。
在其中一个实施例中,第二扫描线与第一子像素、第三子像素以及第六子像素电性连接,第一扫描线与第二子像素、第四子像素以及第五子像素电性连接。
在其中一个实施例中,像素单元100还包括第二像素单元120,第二像素单元120与第一像素单元110在第二方向DR2上相邻,第二像素单元120中的各子像素与第一像素单元110中的各子像素对应成列。
在其中一个实施例中,第二像素单元120包括位于同一行且沿第一方向DR1依次排布的第三像素、第四像素,第三像素包括位于同一行且沿第一方向DR1依次排布的第七子像素、第八子像素、第九子像素,第四像素包括位于同一行且沿第一方向DR1依次排布的第十子像素、第十一子像素、第十二子像素。
在其中一个实施例中,像素结构还包括沿第二方向DR2依次排布的第四扫描线和沿第一方向DR1依次排布的第四数据线,第二像素单元120在第二方向DR2上位于第三扫描线与第四扫描线之间,第二扫描线、第三扫描线在第二方向DR2上位于第一像素单元110与第二像素单元120之间,第三扫描线与第二像素单元120中的一部分子像素电性连接,第四扫描线与第二像素单元120中的另一部分子像素电性连接;第二数据线下接于第八子像素,第四数据线下接于第十一子像素。
可以理解的是,第八子像素、第十一子像素所受到的耦合电容同样可以得以减小,所受到的馈路电压也可以得到降低,进而能够进一步改善摇头纹现象。
在其中一个实施例中,第二数据线上接于第七子像素,第三数据线上接于第九子像素,第三数据线下接于第十子像素,第四数据线上接于第十二子像素。
可以理解的是,第七子像素、第九子像素、第十子像素以及第十二子像素所受到的耦合电容同样可以得以减小,所受到的馈路电压也可以得到降低,进而能够进一步改善摇头纹现象。
在其中一个实施例中,第一子像素、第七子像素位于同一列且均为红色子像素,第一子像素、第七子像素在同一帧中的极性相反;第二子像素、第八子像素位于同一列且均为绿色子像素,第二子像素、第八子像素在同一帧中的极性相反;第三子像素、第九子像素位于同一列且均为蓝色子像素,第三子像素、第九子像素在同一帧中的极性相反;第四子像素、第十子像素位于同一列且均为红色子像素,第四子像素、第十子像素在同一帧中的极性相反;第五子像素、第十一子像素位于同一列且均为绿色子像素,第五子像素、第十一子像素在同一帧中的极性相反;第六子像素、第十二子像素位于同一列且均为蓝色子像素,第六子像素、第十二子像素在同一帧中的极性相反。
在其中一个实施例中,第一像素单元110、第二像素单元120在第二方向 DR2上依次排布。
需要进行说明的是,上述各实施例中,第一扫描线可以为扫描线GL1,第二扫描线可以为扫描线GL2,第三扫描线可以为扫描线GL3,第四扫描线可以为扫描线GL4,而扫描线GL5也可以为第一扫描线...等等依次类推。第一数据线可以为数据线DL1,第二数据线可以为数据线DL2,第三数据线可以为数据线DL4,第四数据线可以为数据线DL4,而数据线DL5也可以为第一数据线,数据线DL6也可以为第二数据线,数据线DL7也可以为第三数据线...等等依次类推。
上述各实施例中上接的具体路径可以为连接线由对应数据线的较高处起始,斜向下延伸或者通过折线延伸至对应子像素的上部区域。下接的具体路径可以为连接线由对应数据线的较低处起始,斜向上延伸或者通过折线延伸至对应子像素的下部区域。其中,连接线可以但不限于与对应的数据线一体形成。
在其中一个实施例中,本实施例提供一种显示面板,该显示面板包括阵列基板、与阵列基板相对设置的彩膜基板、以及封装在阵列基板与彩膜基板之间的液晶层,阵列基板包括上述至少一实施例中的像素结构,像素单元100沿第一方向DR1和/或第二方向DR2周期性重复,第一方向DR1异于第二方向DR2。
可以理解的是,本实施例提供的显示面板,通过第一数据线、第三数据线分别下接于亮度较高的第二子像素、第五子像素,可以降低第二子像素、第五子像素所受到的耦合电容,进而减小第二子像素、第五子像素所受到的馈路(Feed-through)电压,从而减轻了视觉上的摇头纹现象。
又,像素结构随着扫描线、数据线的对应增加以及像素单元100的数量增多,例如,图4中沿第一方向DR1增加的像素单元100,同理,其也可以沿第二方向DR2增加对应的像素单元,因此,即使像素结构的尺寸存在区别,也可以显著改善摇头纹现象。
其中,上述像素结构可以但不限于为边缘场开关(FFS,Fringe-field switching)型像素结构或者垂直配向(VA,Vertical Alignment)型像素结构,也可以为其他可以适应于本发明构思的其他像素结构,在此不作具体限制。
如图5所示,在第一子像素中,晶体管T1的源极/漏极中的一个与数据线 DL1电性连接,晶体管T1的栅极与扫描线GL1电性连接,晶体管T1的源极/漏极中的另一个通过像素电极11与存储电容Cst1的一端、液晶电容Clc1的一端电性连接,存储电容Cst1的另一端接入公共电压信号Acom,液晶电容Clc1的另一端接入公共电压信号Vcom。当扫描线GL1中的扫描信号控制晶体管T1打开时,像素电极11与扫描线GL2之间产生耦合电容Cpg1。
在第二子像素中,晶体管T2的源极/漏极中的一个与数据线DL1电性连接,晶体管T2的栅极与扫描线GL2电性连接,晶体管T2的源极/漏极中的另一个通过像素电极12与存储电容Cst2的一端、液晶电容Clc2的一端电性连接,存储电容Cst2的另一端接入公共电压信号Acom,液晶电容Clc2的另一端接入公共电压信号Vcom。当扫描线GL2中的扫描信号控制晶体管T2打开时,像素电极12与扫描线GL3之间产生耦合电容Cpg2。
需要进行说明的是,上述各实施例连接至同一子像素的对应扫描线和/或数据线的技术手段可以单独进行改进,也可以同时进行改进。可以理解的是,无论是单独改进还是同时改进均可以取得对应的改善效果,而同时进行改进能够取得更进一步的改善效果。
可以理解的是,对本领域普通技术人员来说,可以根据本申请的技术方案及其发明构思加以等同替换或改变,而所有这些改变或替换都应属于本申请所附的权利要求的保护范围。

Claims (20)

  1. 一种像素结构,包括:
    沿第一方向依次排列的多条数据线;
    沿第二方向依次排列的多条扫描线,所述第一方向与所述第二方向相互垂直;
    沿所述第二方向依次排列的多个像素行,每一所述像素行均位于两条相邻的所述扫描线之间,相邻的两个所述像素行之间具有两条所述扫描线;
    所述像素行包括多个沿所述第一方向依次排列的第一像素单元,所述第一像素单元包括位于同一行且沿第一方向依次排列的六个子像素,相邻的两条所述数据线之间具有两个所述子像素,位于相邻的两条所述数据线之间的两个所述子像素与同一条所述数据线连接;在同一个所述第一像素单元中,同一灰阶下亮度最大的所述子像素均连接至所述第一像素单元所在的像素行的下一级的所述扫描线。
  2. 根据权利要求1所述的像素结构,其中,第一像素单元包括位于同一行且沿所述第一方向依次排布的第一子像素、第二子像素、第三子像素、第四子像素、第五子像素以及第六子像素,其中,所述第二子像素、所述第五子像素为同一灰阶下亮度最大的所述子像素;
    所述多条扫描线包括沿所述第二方向依次排布的第一扫描线、第二扫描线以及第三扫描线,所述第一扫描线、所述第一像素单元、所述第二扫描线以及所述第三扫描线依次沿所述第二方向依次排布,所述第一扫描线与所述第一子像素、所述第三子像素以及所述第六子像素连接,所述第二扫描线与所述第二子像素、所述第五子像素连接。
  3. 根据权利要求2所述的像素结构,其中,所述第二扫描线还与所述第四子像素连接。
  4. 根据权利要求3所述的像素结构,其中,所述第一子像素、所述第四子像素为同一颜色子像素,所述第二子像素、所述第五子像素为同一颜色子像素,所述第三子像素、所述第六子像素为同一颜色子像素。
  5. 根据权利要求4所述的像素结构,其中,所述第二子像素、所述第五子像素均为绿色子像素。
  6. 根据权利要求2所述的像素结构,其中,与所述像素行在所述第二方向上相邻的另一像素行还包括第二像素单元,所述第二像素单元包括位于同一行且沿第一方向依次排列的六个子像素,相邻的两条所述数据线之间具有两个所述子像素,位于相邻的两条所述数据线之间的两个所述子像素与同一条所述数据线连接;在同一个所述第二像素单元中,同一灰阶下亮度最大的所述子像素均连接至所述第二像素单元所在的像素行的下一级的所述扫描线。
  7. 根据权利要求6所述的像素结构,其中,所述第二像素单元包括位于同一行且沿所述第一方向依次排布的第七子像素、第八子像素、第九子像素、第十子像素、第十一子像素以及第十二子像素,其中,所述第八子像素、所述第十一子像素为同一灰阶下亮度最大的所述子像素;
    所述多条扫描线包括沿所述第二方向依次排布的第四扫描线,所述第三扫描线、所述第二像素单元以及所述第四扫描线依次沿所述第二方向依次排布,所述第三扫描线与所述第七子像素、所述第九子像素以及所述第十二子像素连接,所述第四扫描线与所述第八子像素、所述第十一子像素连接。
  8. 根据权利要求7所述的像素结构,其中,所述第四扫描线还与所述第十子像素连接。
  9. 根据权利要求8所述的像素结构,其中,所述第一子像素、所述第七子像素位于同一列且均为红色子像素,所述第一子像素、所述第七子像素在同一帧中的极性相反;所述第二子像素、所述第八子像素位于同一列且均为绿色子像素,所述第二子像素、所述第八子像素在同一帧中的极性相反;所述第三子像素、所述第九子像素位于同一列且均为蓝色子像素,所述第三子像素、所述第九子像素在同一帧中的极性相反;所述第四子像素、所述第十子像素位于同一列且均为红色子像素,所述第四子像素、所述第十子像素在同一帧中的极性相反;所述第五子像素、所述第十一子像素位于同一列且均为绿色子像素,所述第五子像素、所述第十一子像素在同一帧中的极性相反;所述第六子像素、所述第十二子像素位于同一列且均为蓝色子像素,所述第六子像素、所述第十二子像素在同一帧中的极性相反。
  10. 根据权利要求6所述的像素结构,其中,所述第一像素单元、所述第二像素单元在所述第二方向上依次交替排布。
  11. 一种显示面板,其中,所述显示面板包括阵列基板、与所述阵列基板相对设置的彩膜基板、以及封装在所述阵列基板与所述彩膜基板之间的液晶层,所述阵列基板包括如权利要求1所述的像素结构。
  12. 根据权利要求11所述的显示面板,其中,第一像素单元包括位于同一行且沿所述第一方向依次排布的第一子像素、第二子像素、第三子像素、第四子像素、第五子像素以及第六子像素,其中,所述第二子像素、所述第五子像素为同一灰阶下亮度最大的所述子像素;
    所述多条扫描线包括沿所述第二方向依次排布的第一扫描线、第二扫描线以及第三扫描线,所述第一扫描线、所述第一像素单元、所述第二扫描线以及所述第三扫描线依次沿所述第二方向依次排布,所述第一扫描线与所述第一子像素、所述第三子像素以及所述第六子像素连接,所述第二扫描线与所述第二子像素、所述第五子像素连接。
  13. 根据权利要求12所述的显示面板,其中,所述第二扫描线还与所述第四子像素连接。
  14. 根据权利要求13所述的显示面板,其中,所述第一子像素、所述第四子像素为同一颜色子像素,所述第二子像素、所述第五子像素为同一颜色子像素,所述第三子像素、所述第六子像素为同一颜色子像素。
  15. 根据权利要求14所述的显示面板,其中,所述第二子像素、所述第五子像素均为绿色子像素。
  16. 根据权利要求12所述的显示面板,其中,与所述像素行在所述第二方向上相邻的另一像素行还包括第二像素单元,所述第二像素单元包括位于同一行且沿第一方向依次排列的六个子像素,相邻的两条所述数据线之间具有两个所述子像素,位于相邻的两条所述数据线之间的两个所述子像素与同一条所述数据线连接;在同一个所述第二像素单元中,同一灰阶下亮度最大的所述子像素均连接至所述第二像素单元所在的像素行的下一级的所述扫描线。
  17. 根据权利要求16所述的显示面板,其中,所述第二像素单元包括位于同一行且沿所述第一方向依次排布的第七子像素、第八子像素、第九子像素、第十子像素、第十一子像素以及第十二子像素,其中,所述第八子像素、所述第十一子像素为同一灰阶下亮度最大的所述子像素;
    所述多条扫描线包括沿所述第二方向依次排布的第四扫描线,所述第三扫描线、所述第二像素单元以及所述第四扫描线依次沿所述第二方向依次排布,所述第三扫描线与所述第七子像素、所述第九子像素以及所述第十二子像素连接,所述第四扫描线与所述第八子像素、所述第十一子像素连接。
  18. 根据权利要求17所述的显示面板,其中,所述第四扫描线还与所述第十子像素连接。
  19. 根据权利要求18所述的显示面板,其中,所述第一子像素、所述第七子像素位于同一列且均为红色子像素,所述第一子像素、所述第七子像素在同一帧中的极性相反;所述第二子像素、所述第八子像素位于同一列且均为绿色子像素,所述第二子像素、所述第八子像素在同一帧中的极性相反;所述第三子像素、所述第九子像素位于同一列且均为蓝色子像素,所述第三子像素、所述第九子像素在同一帧中的极性相反;所述第四子像素、所述第十子像素位于同一列且均为红色子像素,所述第四子像素、所述第十子像素在同一帧中的极性相反;所述第五子像素、所述第十一子像素位于同一列且均为绿色子像素,所述第五子像素、所述第十一子像素在同一帧中的极性相反;所述第六子像素、所述第十二子像素位于同一列且均为蓝色子像素,所述第六子像素、所述第十二子像素在同一帧中的极性相反。
  20. 根据权利要求16所述的显示面板,其中,所述第一像素单元、所述第二像素单元在所述第二方向上依次交替排布。
PCT/CN2022/086810 2022-03-23 2022-04-14 像素结构及显示面板 WO2023178757A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210290927.8A CN114690495B (zh) 2022-03-23 2022-03-23 像素结构及显示面板
CN202210290927.8 2022-03-23

Publications (1)

Publication Number Publication Date
WO2023178757A1 true WO2023178757A1 (zh) 2023-09-28

Family

ID=82138952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086810 WO2023178757A1 (zh) 2022-03-23 2022-04-14 像素结构及显示面板

Country Status (2)

Country Link
CN (1) CN114690495B (zh)
WO (1) WO2023178757A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101154361A (zh) * 2006-09-29 2008-04-02 Lg.菲利浦Lcd株式会社 液晶显示器件
CN103149759A (zh) * 2012-11-14 2013-06-12 友达光电股份有限公司 用以产生均匀亮度画面的显示器
US20180033383A1 (en) * 2016-07-26 2018-02-01 Samsung Display Co., Ltd. Display device
CN208156380U (zh) * 2018-03-21 2018-11-27 福建华佳彩有限公司 一种像素排列结构、阵列基板、内嵌式触摸屏及显示装置
CN112540486A (zh) * 2020-12-04 2021-03-23 Tcl华星光电技术有限公司 显示面板及其显示装置
CN112540487A (zh) * 2020-12-04 2021-03-23 Tcl华星光电技术有限公司 显示面板及其显示装置
CN113741107A (zh) * 2021-08-31 2021-12-03 惠科股份有限公司 阵列基板、显示面板及显示设备
CN114170986A (zh) * 2021-12-09 2022-03-11 Tcl华星光电技术有限公司 液晶显示面板及显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103293809B (zh) * 2013-05-28 2015-09-30 深圳市华星光电技术有限公司 抗色偏显示面板
CN104360551B (zh) * 2014-11-10 2017-02-15 深圳市华星光电技术有限公司 阵列基板、液晶面板以及液晶显示器
CN105974702A (zh) * 2016-07-08 2016-09-28 深圳市华星光电技术有限公司 阵列基板及显示装置
CN106292110A (zh) * 2016-09-23 2017-01-04 京东方科技集团股份有限公司 一种阵列基板、显示面板、显示装置
CN110308599B (zh) * 2019-06-28 2022-02-22 武汉天马微电子有限公司 一种阵列基板和显示面板
CN113741105B (zh) * 2020-05-29 2022-11-25 京东方科技集团股份有限公司 阵列基板及其驱动方法和显示装置
CN113253529A (zh) * 2021-06-21 2021-08-13 京东方科技集团股份有限公司 双栅极结构的阵列基板、显示面板以及电子设备
CN113376912B (zh) * 2021-08-12 2021-12-17 惠科股份有限公司 阵列基板及显示面板

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101154361A (zh) * 2006-09-29 2008-04-02 Lg.菲利浦Lcd株式会社 液晶显示器件
CN103149759A (zh) * 2012-11-14 2013-06-12 友达光电股份有限公司 用以产生均匀亮度画面的显示器
US20180033383A1 (en) * 2016-07-26 2018-02-01 Samsung Display Co., Ltd. Display device
CN208156380U (zh) * 2018-03-21 2018-11-27 福建华佳彩有限公司 一种像素排列结构、阵列基板、内嵌式触摸屏及显示装置
CN112540486A (zh) * 2020-12-04 2021-03-23 Tcl华星光电技术有限公司 显示面板及其显示装置
CN112540487A (zh) * 2020-12-04 2021-03-23 Tcl华星光电技术有限公司 显示面板及其显示装置
CN113741107A (zh) * 2021-08-31 2021-12-03 惠科股份有限公司 阵列基板、显示面板及显示设备
CN114170986A (zh) * 2021-12-09 2022-03-11 Tcl华星光电技术有限公司 液晶显示面板及显示装置

Also Published As

Publication number Publication date
CN114690495B (zh) 2023-09-26
CN114690495A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
US8760479B2 (en) Liquid crystal display
CN110308599B (zh) 一种阵列基板和显示面板
KR101607702B1 (ko) 액정 표시 장치
TWI447687B (zh) 液晶顯示器
CN100582900C (zh) 液晶显示器件
KR101383706B1 (ko) 액정 표시 장치 및 그의 구동 방법
US20110241526A1 (en) Display and display panel thereof
CN102428404A (zh) 液晶面板
CN208156380U (zh) 一种像素排列结构、阵列基板、内嵌式触摸屏及显示装置
TWI522718B (zh) 畫素陣列
US20070018930A1 (en) Liquid crystal display
KR20090088729A (ko) 표시 장치
US9500898B2 (en) Liquid crystal display
US20100045884A1 (en) Liquid Crystal Display
KR101286516B1 (ko) 액정표시장치와 그 구동방법
US20120206436A1 (en) Liquid crystal display device and method for driving liquid crystal display device
WO2019192082A1 (zh) 一种液晶显示器
WO2022237113A1 (zh) 显示装置
US7948595B2 (en) Liquid crystal display panel
CN109064988A (zh) 显示面板的驱动方法及显示装置
KR20080079015A (ko) 액정 표시 장치
WO2023178757A1 (zh) 像素结构及显示面板
JP2020522761A (ja) 液晶表示パネル及び装置
US6917407B2 (en) Liquid crystal display device and method of fabricating the same
US8462283B2 (en) Liquid crystal display panel, pixel array substrate and pixel structure thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932816

Country of ref document: EP

Kind code of ref document: A1