WO2023178721A1 - 半导体光学检测方法及系统 - Google Patents
半导体光学检测方法及系统 Download PDFInfo
- Publication number
- WO2023178721A1 WO2023178721A1 PCT/CN2022/084029 CN2022084029W WO2023178721A1 WO 2023178721 A1 WO2023178721 A1 WO 2023178721A1 CN 2022084029 W CN2022084029 W CN 2022084029W WO 2023178721 A1 WO2023178721 A1 WO 2023178721A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- signal
- detection
- intensity
- optical system
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 159
- 239000004065 semiconductor Substances 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims abstract description 26
- 238000007689 inspection Methods 0.000 title abstract description 12
- 238000002310 reflectometry Methods 0.000 claims abstract description 23
- 238000001514 detection method Methods 0.000 claims description 153
- 229920006395 saturated elastomer Polymers 0.000 claims description 19
- 239000003086 colorant Substances 0.000 claims description 9
- 238000001579 optical reflectometry Methods 0.000 claims description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000005286 illumination Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003313 weakening effect Effects 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N2021/0106—General arrangement of respective parts
- G01N2021/0112—Apparatus in one mechanical, optical or electronic block
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
- G01N2021/8887—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
Definitions
- the present invention relates to the field of optical detection technology, and in particular, to a semiconductor optical detection method and system.
- the optical system mainly includes an illumination system 101, an imaging lens 102 and a detector 103.
- the illumination system 101 is responsible for providing the illumination light required for detection
- the imaging lens 102 is used to collect the light signal to be measured from the target
- the detector 103 is responsible for converting the light signal into a digital signal.
- different parts of the target usually have different reflectivities. Taking process silicon wafers as an example, the reflectivity distribution in different areas can reach 10% to 90%. Therefore, in a shot, there are likely to be some areas It is still very dark but some areas have been overexposed, which seriously affects the detection effect.
- the purpose of the present invention is to provide a semiconductor optical detection method and system, which can quickly detect the surface of targets with different reflectivities and greatly improve the detection efficiency.
- the semiconductor optical detection method of the present invention includes:
- An optical system is used to photograph the sample to be tested to obtain an initial picture, and the sample to be tested is divided into several signal areas according to the signal strengths of different areas in the initial picture;
- the detection light source is configured according to the target light intensity configuration information
- the target to be measured is photographed through the optical system to obtain the detection result.
- the beneficial effect of the semiconductor optical detection method of the present invention is that: in the above method, the sample to be tested is detected and analyzed through the optical system, thereby dividing the surface of the sample to be tested into several signal areas, and then using different configurations of light intensities to detect and analyze the sample.
- the sample is tested to obtain the target light intensity configuration information that meets the detection requirements, so that the detection light source can be configured later through the target light intensity configuration information, and multiple targets to be tested can be quickly detected through the configured optical system to ensure detection. While the results are accurate, it can effectively improve detection efficiency.
- the sample to be tested is divided into several signal areas according to the signal strengths of different areas in the initial picture, including:
- the signal strengths of different areas in the initial picture are obtained, and based on the difference in signal intensity in different areas of the initial picture, the initial picture is placed in the area to be tested. The corresponding area on the sample is divided into several signal areas.
- the sample to be tested is divided into several signal areas according to the signal strengths of different areas in the initial picture, including:
- the saturated light signal is adjusted in the optical system, and the sample to be tested is photographed again with the optical system to obtain a new initial picture until no area in the new initial picture appears to be saturated with light signals;
- the signal strengths of different areas in the initial picture are obtained, and the corresponding areas of the initial picture on the sample to be tested are divided into several signal areas based on the differences in signal strengths of different areas of the initial picture.
- the detection light source includes three light sources: red light, green light and blue light.
- the signal strength Di in the i-th signal area satisfies the following formula:
- the number of the signal areas is n
- ⁇ iR is the red light reflectance in the i-th signal area
- ⁇ iG is the green light reflectivity in the i-th signal area
- ⁇ iB is the red light reflectivity in the i-th signal area.
- p R is the red light intensity in the detection light source
- ⁇ R is the optical efficiency of the optical system for red light
- p G is the green light intensity in the detection light source
- Light intensity ⁇ G is the optical efficiency of the optical system for green light
- p B is the blue light intensity in the detection light source
- ⁇ B is the optical efficiency of the optical system for blue light
- i and n are both positive Integer, 0 ⁇ i ⁇ n.
- the method further includes:
- the light intensity information corresponding to the detected light source is used as the target light intensity configuration information
- the target to be measured is photographed through the optical system to obtain the detection result.
- the beneficial effect is that: taking into account the impact of the noise coefficient on the optical system, the original determination of the target light intensity configuration information based on the variance is changed to the determination of the target light intensity configuration information based on the signal-to-noise ratio variance, thereby effectively reducing the noise coefficient of different colors of light. influence and improve the accuracy of subsequent detection results.
- the signal-to-noise ratio variance satisfies the following formula:
- p R is the red light intensity in the detection light source
- p G is the green light intensity in the detection light source
- p B is the blue light intensity in the detection light source
- ⁇ NR is the noise of red light Coefficient
- eta NG is the noise coefficient of green light
- eta NB is the noise coefficient of blue light
- B is the second preset threshold
- i and n are both positive integers, 0 ⁇ i ⁇ n.
- the optical system includes:
- Light-emitting components used to provide light sources
- a reflective component configured to reflect the light source to a target area and receive the reflected light reflected back from the target area
- the light-emitting component includes a plurality of monochromatic light sources, a first dichroic prism and a focusing lens.
- the light generated by the monochromatic light source passes through the first dichroic prism and is transmitted to the focusing lens and then focused.
- the focusing lens transmits the focused light to the reflective component.
- the receiver includes several receiving components, the number of the receiving components is the same as the number of the monochromatic light sources, the receiving components include a second dichroic prism, a filter and a color camera, and the third The dichroic prism is used to reflect the reflected light to the filter, the filter is used to filter the reflected light, and the color camera is used to filter the reflected light. The light is processed to obtain the final detection result.
- the invention provides a semiconductor optical detection system, including:
- An area dividing module is used to use an optical system to photograph the sample to be tested to obtain an initial picture, and divide the sample to be tested into several signal areas according to the signal strengths of different areas in the initial picture;
- An information acquisition module used to acquire the reflectivity information of each signal area and the system optical efficiency information of each color light in the optical system
- Intensity calculation module used to adjust the light intensity of different configurations of detection light sources in the optical system, and calculate the signal area of the optical system with different light intensities based on the reflectivity information and the system optical efficiency information. signal strength in;
- Target acquisition module used to calculate the variance between the signal intensity in the signal area and the preset detection intensity, and use the light intensity information corresponding to the optical system as the target light intensity when the variance is less than the first preset threshold.
- a detection module configured to configure the detection light source according to the target light intensity configuration information, and then photograph the target to be measured through the optical system to obtain a detection result.
- the area division module detects and analyzes the sample to be tested through the optical system, thereby dividing the surface of the sample to be tested into several signal areas, and then uses different configurations of light It is important to test the sample to be tested to obtain the target light intensity configuration information that meets the detection requirements, so that the detection module can subsequently configure the detection light source through the target light intensity configuration information, and quickly detect multiple targets to be tested through the configured optical system. Detection can effectively improve detection efficiency while ensuring accurate detection results.
- Figure 1 is a schematic structural diagram of automatic optical inspection equipment in the prior art
- Figure 2 is a flow chart of a semiconductor optical detection method according to an embodiment of the present invention.
- Figure 3 is a schematic structural diagram of an optical system used in the semiconductor optical detection method according to the embodiment of the present invention.
- Figure 4 is a schematic structural diagram of a light-emitting component in an optical system according to an embodiment of the present invention.
- Figure 5 is a schematic structural diagram of a receiver in an optical system according to an embodiment of the present invention.
- Figure 6 is a structural block diagram of a semiconductor optical detection system according to an embodiment of the present invention.
- FIG. 7 is a schematic diagram of the execution process of the semiconductor optical detection method according to the embodiment of the present invention.
- embodiments of the present invention provide a semiconductor optical detection method. Referring to Figure 2, it includes the following steps:
- S201 Use an optical system to photograph the sample to be tested to obtain an initial picture, and divide the sample to be tested into several signal areas according to the signal strengths of different areas in the initial picture.
- an optical system is used to photograph the sample to be tested to obtain a complete initial picture of the sample to be tested, so as to subsequently divide the sample to be tested into regions based on the initial picture.
- the initial picture at least includes a complete image of the sample to be tested, so as to facilitate complete region division of the sample to be tested.
- the process of dividing the test sample corresponding to the initial picture into several signal areas includes at least the following two situations.
- the first situation after determining that no optical signal saturation occurs in the area of the initial picture, obtain the signal strengths of different areas in the initial picture, and convert the initial picture according to the difference in signal intensity in different areas of the initial picture.
- the corresponding area on the sample to be tested is divided into several signal areas.
- the optical system includes a detection light source.
- the optical system takes a picture of the sample to be tested and obtains a complete initial picture, if there is no light signal saturation in each area of the initial picture, it indicates that the current initial picture is If the picture meets the requirements, you can use this pair to obtain the signal strength of each position in the initial picture, and according to the different signal strengths on the initial picture, divide the corresponding area of the initial picture on the sample to be tested into several signal areas for subsequent convenience Get the reflectivity of each signal area.
- the saturated light signal is adjusted in the optical system, and the optical system is used to shoot the image to be viewed again. Test samples to obtain a new initial picture until no area in the new initial picture appears to be saturated with light signals;
- the signal strengths of different areas in the initial picture are obtained, and the corresponding areas of the initial picture on the sample to be tested are divided into several signal areas based on the differences in signal strengths of different areas of the initial picture.
- the intensity of the red light in the detection light source is correspondingly reduced.
- use the optical system after weakening the light intensity of the detection light source to take another picture of the sample to be tested and obtain a new initial picture, and adjust it repeatedly until there is no area where the light signal is saturated in the initial picture taken by the adjusted optical system.
- each adjustment in the optical system weakens the current light signal intensity by 50%.
- the saturated red light in the optical system is 255 bit, then it is 128 bit after weakening, so that each of the initial pictures taken can be The intensity of the light signal in an area can be detected.
- the attenuation amplitude of the optical signal intensity of the detection light source is set according to different situations, and it only needs to be greater than 0 and less than 100%, which will not be described again here.
- the light intensity in the detection light source is first increased to the maximum, and then gradually reduced by detecting whether the light signal is saturated to complete the adjustment process.
- this solution can also adjust the light intensity in the detection light source from weak to strong until a picture that meets the detection requirements is obtained, which will not be described again here.
- the light signal intensity of each area in the initial picture is obtained, and the corresponding value can be obtained according to the obtained light signal intensity.
- the reflectance information of each area in the initial image is thus obtained, and the reflectance information of each signal area in the sample to be measured is obtained, and the illumination efficiency information of different color light signals in the optical system is calculated based on the intensity of the detected light signal.
- the detection light source includes three light sources: red light, green light and blue light.
- the number of the signal areas is n
- ⁇ iR is the red light reflectance in the i-th signal area
- ⁇ iG is the green light reflectance in the i-th signal area
- ⁇ iB is the red light reflectivity in the i-th signal area.
- p R is the red light intensity in the detection light source
- ⁇ R is the optical efficiency of the optical system for red light
- p G is the green light intensity in the detection light source
- Light intensity ⁇ G is the optical efficiency of the optical system for green light
- p B is the blue light intensity in the detection light source
- ⁇ B is the optical efficiency of the optical system for blue light
- i and n are both positive Integer, 0 ⁇ i ⁇ n.
- S204 Calculate the variance between the signal intensity in the signal area and the preset detection intensity, and when the variance is less than the first preset threshold, use the light intensity information corresponding to the detection light source as the target light intensity configuration information.
- the entire process is divided into a light intensity setting stage and a detection stage.
- the light intensity setting stage after placing the sample to be tested in the area to be tested, the light intensity of the three colors is set to 100%, and Take photos of the sample to be tested through the currently set optical system, and calculate the reflectivity of each position of the sample to be tested relative to the three colors of light based on the signal strength. If the signal is saturated with a certain color of light, appropriately reduce the corresponding light Then continue to take new photos until the light color saturation does not appear in the new photos.
- the color light combination and light intensity configuration with the best detection effect are calculated by calculating the variance, and the detection light source is adjusted and configured accordingly.
- Subsequent targets to be tested are detected through the adjusted optical system, and the color cameras are processed separately. Signal data of different color channels in the picture to facilitate the rapid detection process of the target to be measured.
- the detection light source in order to adjust the detection light source to a light intensity configuration suitable for the current sample to be tested, by continuously adjusting the light intensity configuration of the detection light source, several sets of corresponding signal intensities on different initial pictures are obtained, and then based on calculation The obtained several sets of signal strengths calculate the variance between the signal strength and the preset detection strength, record it as the first variance, and after the first variance is less than the first preset threshold, the current first variance corresponds to a
- the light intensity information of the detection light source corresponding to the group signal intensity is used as the target light intensity configuration information, and the detection light source is configured according to the target light intensity configuration information, and the subsequent target to be measured is detected through the optical system after completing the configuration, so that It is suitable for detecting defects on the surface of the target to be tested, thereby obtaining accurate detection results, and can meet the detection process of a large number of targets to be tested in the same batch, improving detection efficiency.
- each set of signal intensity data contains n signal intensity numbers
- the method further includes:
- the light intensity information corresponding to the detected light source is used as the target light intensity configuration information
- the detection light source is configured according to the target light intensity configuration information
- the target to be measured is photographed through the optical system to obtain the detection result.
- the original determination of the target light intensity configuration information based on the variance is changed to the determination of the target light intensity configuration information based on the variance of the signal-to-noise ratio, thereby effectively reducing the noise of different colors of light.
- the influence of the coefficient improves the accuracy of subsequent detection results.
- the main difference from the aforementioned detection method is that the signal-to-noise ratio variance in the optical system and the size of the second preset threshold are calculated by using the noise coefficients of different colors of light and the signal intensity calculated previously.
- the light intensity information corresponding to the detection light source whose noise ratio variance is less than the second preset threshold is used as the target light intensity configuration information.
- the rest of the process is basically the same as the above, thus effectively reducing the impact of the system on the detection results in the morning and improving the accuracy of the detection results. sex.
- the system noise includes optical noise and electrical noise.
- the signal-to-noise ratio variance satisfies the following formula:
- p R is the red light intensity in the detection light source
- p G is the green light intensity in the detection light source
- p B is the blue light intensity in the detection light source
- ⁇ NR is the noise of red light Coefficient
- eta NG is the noise coefficient of green light
- eta NB is the noise coefficient of blue light
- B is the second preset threshold
- i and n are both positive integers, 0 ⁇ i ⁇ n.
- the optical system includes:
- Reflective component 32 used to reflect the light source to the target area and receive the reflected light reflected back from the target area
- Receiver 33 is used to receive the reflected light and detect the reflected light.
- the light-emitting component 33 includes several monochromatic light sources, a first dichroic prism and a focusing lens.
- the light generated by the monochromatic light source passes through the first dichroic prism and is transmitted to the focusing lens and then focused. , and transmit the focused light to the reflective component through the focusing lens.
- the light-emitting component 31 includes three monochromatic light sources, namely a red light source 311, a green light source 312 and a blue light source 313.
- the light generated by the red light source 311, the green light source 312 and the blue light source 313 passes through the first dichroic prism. 314 reaches the focusing lens 315 after reflection, thereby generating detection light rays that are gathered together.
- the reflective component 32 transmits the detection light to the surface of the target to be measured, the reflective component 32 transmits the reflected light to the receiver 33 again through the reflection of the target to be measured, thereby completing the detection process through the receiver 33 .
- the receiver 33 includes several receiving components 331.
- the number of the receiving components 331 is the same as the number of the monochromatic light sources, so
- the receiving component 331 includes a second dichroic prism 3311, a filter 3312 and a color camera 3313.
- the second dichroic prism 3311 is used to reflect the reflected light to the filter 3312.
- the filter 3312 is used for In order to filter the reflected light, the color camera 3313 is used to process the filtered reflected light to obtain the final detection result.
- the invention also discloses a semiconductor optical detection system.
- Figure 6 which includes:
- the area division module 601 is used to use an optical system to photograph the sample to be tested to obtain an initial picture, and divide the sample to be tested into several signal areas according to the signal strengths of different areas in the initial picture;
- the information acquisition module 602 is used to acquire the reflectivity information of each signal area and the system optical efficiency information of each color light in the optical system;
- the intensity calculation module 603 is used to adjust the light intensity of different configurations of the detection light sources in the optical system, and calculate the signal output of the optical system with different light intensities based on the reflectivity information and the system optical efficiency information. signal strength in the area;
- the target acquisition module 604 is used to calculate the variance between the signal intensity in the signal area and the preset detection intensity, and use the light intensity information corresponding to the detection light source as the target light when the variance is less than the first preset threshold. Strong configuration information;
- the detection module 605 is configured to, after configuring the detection light source according to the target light intensity configuration information, photograph the target to be measured through the optical system to obtain a detection result.
Landscapes
- Chemical & Material Sciences (AREA)
- Biochemistry (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Signal Processing (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明提供了一种半导体光学检测方法及系统,半导体光学检测方法包括采用光学系统对待测样本进行拍摄以得到初始图片,根据初始图片中不同区域的信号强度的大小将待测样本划分为若干个信号区域;获取反射率信息和系统光学效率信息;调整所述光学系统中的检测光源不同配置的光强,并根据反射率信息和系统光学效率信息计算得到不同光强的光学系统在信号区域中的信号强度;计算信号区域中的信号强度与预设检测强度之间的方差,以获取目标光强配置信息;按照目标光强配置信息对检测光源进行配置后,通过光学系统对待测目标进行拍摄以获取检测结果。本发明能够对具有不同反射率的目标进行表面快速检测,大幅度提高了检测效率。
Description
交叉引用
本申请要求2022年03月24日提交的申请号为2022102961671的中国申请的优先权。上述申请的内容以引用方式被包含于此。
本发明涉及光学检测技术领域,尤其涉及一种半导体光学检测方法及系统。
近年来,集成电路发展愈加迅速,而由于集成电路持续向更小的外形尺寸发展,对微小尺寸快速而精准的检测能力也变得越发重要,因此使用自动光学检测设备(Auto Optical Inspection,AOI)替代传统的人工目检,已成为技术发展的必然趋势。AOI设备凭借其高速率、高准确度地定位和识别微小缺陷的能力,在半导体、通讯、汽车、医疗等领域广泛使用。
目前的AOI设备通常如图1所示,包括光学系统、物料转移系统、数据处理系统等。其中光学系统主要包括照明系统101、成像镜头102和探测器103。照明系统101负责提供检测所需的照明光,成像镜头102用于收集来自目标的待测光信号,探测器103负责将光信号转化为数字信号。但是由于设计结构多样化,目标的不同部分通常具有不同的反射率,以工艺硅片为例,不同区域的反射率分布可达10%~90%,因此在一次拍摄中,很可能存在部分区域仍然很暗但部分区域已经过曝的情况,严重影响检测效果。
传统的AOI检测设备在处理这种问题时,通常采用的方法有两种,一种是牺牲检测效果保证检测速度,即选取适当的照明光强,并接受测试结果的 部分区域饱和及部分区域较暗,另一种是牺牲检测速度保证检测效果,即调节照明光强度,分别使用不同光强对待测目标进行多次拍摄,然后对不同区域分别选取合适的光强拍摄的结果来进行处理,以得到准确的检测结果,但拍照多次检测较慢,影响检测效率。
因此,有必要提供一种新型的半导体光学检测方法及系统以解决现有技术中存在的上述问题。
发明概要
本发明的目的在于提供一种半导体光学检测方法及系统,能够对具有不同反射率的目标进行表面快速检测,大幅度提高了检测效率。
为实现上述目的,本发明的所述一种半导体光学检测方法,包括:
采用光学系统对待测样本进行拍摄以得到初始图片,根据所述初始图片中不同区域的信号强度的大小将所述待测样本划分为若干个信号区域;
获取每一个所述信号区域的反射率信息和所述光学系统中每一种颜色光的系统光学效率信息;
调整所述光学系统中的检测光源的不同配置的光强,并根据所述反射率信息和所述系统光学效率信息计算得到不同光强的所述光学系统在所述信号区域中的信号强度;
计算所述信号区域中的信号强度与预设检测强度之间的方差,在所述方差小于第一预设阈值时将所述检测光源对应的光强信息作为目标光强配置信息;
按照所述目标光强配置信息对所述检测光源进行配置后,通过所述光学系统对待测目标进行拍摄以获取检测结果。
本发明所述半导体光学检测方法的有益效果在于:在上述方法中,通过光学系统对待测样本进行检测分析,从而将待测样本表面划分为若干个信号区域,之后通过不同配置的光强对待测样本进行测试以得到满足检测要求的目标光强配置信息,以便于后续通过目标光强配置信息对检测光源进行配置,并通过配置后的光学系统对多个待测目标进行快速检测,在保证检测结果准确的同时,能够有效提高检测效率。
可选的,所述根据所述初始图片中不同区域的信号强度的大小将所述待测样本划分为若干个信号区域,包括:
在确定所述初始图片的区域中没有出现光信号饱和之后,获取所述初始图片中不同区域的信号强度,根据所述初始图片不同区域信号强度的不同,将所述初始图片在所述待测样本上对应的区域划分为若干个信号区域。
可选的,所述根据所述初始图片中不同区域的信号强度的大小将所述待测样本划分为若干个信号区域,包括:
在确定所述初始图片的区域中出现至少一种颜色的光信号饱和后,在所述光学系统中调整出现饱和的光信号,并用所述光学系统再次拍摄所述待测样本以得到新的初始图片,直至新的所述初始图片中没有区域出现光信号饱和;
获取所述初始图片中不同区域的信号强度,根据所述初始图片不同区域信号强度的不同,将所述初始图片在所述待测样本上对应的区域划分为若干 个信号区域。
可选的,所述检测光源包括红光、绿光和蓝光三种光源。
可选的,第i个所述信号区域中的信号强度Di满足如下公式:
D
i=ρ
iR×p
Rη
R+ρ
iG×p
Gη
G+ρ
iB×p
Bη
B
其中,所述信号区域的数量为n个,ρ
iR为第i个所述信号区域中的红光反射率,ρ
iG为第i个所述信号区域中的绿光反射率,ρ
iB为第i个所述信号区域中的蓝光反射率,p
R为所述检测光源中的红光光强,η
R为所述光学系统对红光的光学效率,p
G为所述检测光源中的绿光光强,η
G为所述光学系统对绿光的光学效率,p
B为所述检测光源中的蓝光光强,η
B为所述光学系统对蓝光的光学效率,i和n均为正整数,0<i≤n。
可选的,在调整所述光学系统中的检测光源不同配置的光强,并根据所述反射率信息和所述系统光学效率信息计算得到不同光强的所述光学系统在所述信号区域中的信号强度后,所述方法还包括:
获取所述检测光源中不同颜色光的噪声系数;
根据所述噪声系数与所述方差计算所述检测光源中光信号的信噪比方差;
在所述信噪比方差小于第二预设阈值时将所述检测光源对应的光强信息作为目标光强配置信息;
按照所述目标光强配置信息对所述检测光源进行配置后,通过所述光学系统对待测目标进行拍摄以获取检测结果。其有益效果在于:考虑到噪声系数对光学系统的影响,从原来的根据方差确定目标光强配置信息更改为根据 信噪比方差确定目标光强配置信息,从而有效减小不同颜色光的噪声系数的影响,提高后续检测结果的准确性。
可选的,所述信噪比方差满足如下公式:
其中,p
R为所述检测光源中的红光光强,p
G为所述检测光源中的绿光光强,p
B为所述检测光源中的蓝光光强,η
NR为红光的噪声系数,η
NG为绿光的噪声系数,η
NB为蓝光的噪声系数,B为第二预设阈值,i和n均为正整数,0<i≤n。
可选的,所述光学系统包括:
发光组件,用于提供光源;
反射组件,用于将所述光源反射至目标区域并接收从所述目标区域反射回来的反射光;
接收器,用于接收所述反射光并对所述反射光进行检测;
其中,所述发光组件包括若干个单色光源、第一分光棱镜和聚焦透镜,所述单色光源产生的光线经过所述第一分光棱镜后传输到所述聚焦透镜后聚焦,并通过所述聚焦透镜将聚焦后的光线传输到所述反射组件。
可选的,所述接收器包括若干个接收组件,所述接收组件的数量与所述单色光源的数量相同,所述接收组件包括第二分光棱镜、滤光片和彩色相机,所述第二分光棱镜用于将所述反射光反射到所述滤光片,所述滤光片用于对所述反射光进行滤光处理,所述彩色相机用于对滤光处理后的所述反射光进 行处理以得到最终的检测结果。
本发明提供了一种半导体光学检测系统,包括:
区域划分模块,用于采用光学系统对待测样本进行拍摄以得到初始图片,根据所述初始图片中不同区域的信号强度的大小将所述待测样本划分为若干个信号区域;
信息获取模块,用于获取每一个所述信号区域的反射率信息和所述光学系统中每一种颜色光的系统光学效率信息;
强度计算模块,用于调整所述光学系统中的检测光源不同配置的光强,并根据所述反射率信息和所述系统光学效率信息计算得到不同光强的所述光学系统在所述信号区域中的信号强度;
目标获取模块,用于计算所述信号区域中的信号强度与预设检测强度之间的方差,在所述方差小于第一预设阈值时将所述光学系统对应的光强信息作为目标光强配置信息;
检测模块,用于按照所述目标光强配置信息对所述检测光源进行配置后,通过所述光学系统对待测目标进行拍摄以获取检测结果。
本发明所述半导体光学检测系统的有益效果在于:在上述系统中,区域划分模块通过光学系统对待测样本进行检测分析,从而将待测样本表面划分为若干个信号区域,之后通过不同配置的光强对待测样本进行测试以得到满足检测要求的目标光强配置信息,以便于检测模块后续通过目标光强配置信息对检测光源进行配置,并通过配置后的光学系统对多个待测目标进行快速检测,在保证检测结果准确的同时,能够有效提高检测效率。
图1为现有技术中的自动光学检测设备的结构示意图;
图2为本发明实施例所述半导体光学检测方法的流程图;
图3为本发明实施例所述半导体光学检测方法中使用的光学系统的结构示意图;
图4为本发明实施例所述光学系统中发光组件的结构示意图;
图5为本发明实施例所述光学系统中的接收器的结构示意图;
图6为本发明实施例所述半导体光学检测系统的结构框图;
图7为本发明实施例所述半导体光学检测方法的执行过程示意图。
发明内容
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。除非另外定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本文中使用的“包括”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。
针对现有技术存在的问题,本发明的实施例提供了一种半导体光学检测方法,参考图2,包括如下步骤:
S201、采用光学系统对待测样本进行拍摄以得到初始图片,根据所述初 始图片中不同区域的信号强度的大小将所述待测样本划分为若干个信号区域。
在一些实施例中,采用光学系统对待测样本进行拍摄以得到待测样本完整的初始图片,以便于后续根据初始图片对待测样本进行区域划分。
需要说明的是,所述初始图片至少包括所述待测样本的完整图像,以便于对待测样本进行完整的区域划分。
而根据初始图片中不同区域的信号强度的大小,将初始图片对应的待测样本划分为若干个信号区域的过程至少如下包括两种情况。
第一种情况:在确定所述初始图片的区域中没有出现光信号饱和之后,获取所述初始图片中不同区域的信号强度,根据所述初始图片不同区域信号强度的不同,将所述初始图片在所述待测样本上对应的区域划分为若干个信号区域。
具体的,所述光学系统包括检测光源,当光学系统对待测样本进行拍摄得到一张完整的初始图片之后,如果初始图片的每个区域中都没有出现光信号饱和的情况,则表明当前的初始图片符合要求,可以按此对获取初始图片中每一个位置的信号强度,并根据初始图片上不同的信号强度,将初始图片在待测样本上对应的区域划分为若干个信号区域,以便于后续获取每一个信号区域的反射率。
而针对第二种情况:在确定所述初始图片的区域中出现至少一种颜色的光信号饱和后,在所述光学系统中调整出现饱和的光信号,并用所述光学系统再次拍摄所述待测样本以得到新的初始图片,直至新的所述初始图片中没 有区域出现光信号饱和;
获取所述初始图片中不同区域的信号强度,根据所述初始图片不同区域信号强度的不同,将所述初始图片在所述待测样本上对应的区域划分为若干个信号区域。
具体的,当通过光学系统得到待测样本的初始图片之后,当初始图片的任意一处区域出现一种或者多种颜色的光信号饱和之后,则表示此处的光信号强度无法准确获知,因此需要对光学系统中出现光信号饱和的颜色对应的光进行调整,并对待测样本进行再次拍摄,以使得新的初始图片中没有光信号饱和的区域。
在一些实施例中,在对光学系统的调整过程中,比如在初始图片中,是光学系统中的红色光在某一个区域出现饱和,则对应减小所述检测光源中的红色光的强度,并以减弱检测光源光强之后的光学系统再次拍摄待测样本后得到新的初始图片,反复调整,直至调整之后的光学系统拍摄的初始图片中没有出现光信号饱和的区域。
在另外一些实施例中,所述光学系统中每次调整将当前的光信号强度减弱50%,比如光学系统中饱和的红光为255bit,则减弱之后为128bit,以便于拍摄的初始图片中每一个区域中的光信号强度都能够被检测到。
其中,所述检测光源的光信号强度的减弱幅度根据不同的情况设定,只需满足大于0,小于100%即可,此处不再赘述。
需要说明的是,在第二种情况的调整过程中,是先将检测光源中的光强调至最大,并通过检测是否出现光信号饱和的方式再逐渐减小,以完成调整 过程。但是在实际检测过程中,本方案也可以是将检测光源中的光强由弱到强依次调整,直至得到满足检测要求的图片,此处不再赘述。
S202、获取每一个所述信号区域的反射率信息和所述光学系统中每一种颜色光的系统光学效率信息。
而当通过调整后的光学系统对待测样本拍摄得到的初始图片中没有光信号饱和的区域之后,获取初始图片中每一个区域光信号强度的大小,根据得到的光信号强度的大小就可以对应得到初始图片中每一个区域的反射率信息,从而也就得到待测样本中每一个信号区域的反射率信息,并根据检测出的光信号强度计算得到光学系统中不同颜色光信号的光照效率信息。
S203、调整所述光学系统中的检测光源不同配置的光强,并根据所述反射率信息和所述系统光学效率信息计算得到不同光强的所述光学系统在所述信号区域中的信号强度。
在一些实施例中,所述检测光源包括红光、绿光和蓝光三种光源。
在上述基础上,当光学系统中有第i个所述信号区域中的信号强度Di的计算过程如下:
也就是满足如下公式:
D
i=ρ
iR×p
Rη
R+ρ
iG×p
Gη
G+ρ
iB×p
Bη
B
其中,所述信号区域的数量为n个,ρ
iR为第i个所述信号区域中的红光反射率,ρ
iG为第i个所述信号区域中的绿光反射率,ρ
iB为第i个所述信号区域中的蓝光反射率,p
R为所述检测光源中的红光光强,η
R为所述光学系统对红光的光学效率,p
G为所述检测光源中的绿光光强,η
G为所述光学系统对绿光的光学效率,p
B为所述检测光源中的蓝光光强,η
B为所述光学系统对蓝光的光学效率,i和n均为正整数,0<i≤n。
S204、计算所述信号区域中的信号强度与预设检测强度之间的方差,在所述方差小于第一预设阈值时将所述检测光源对应的光强信息作为目标光强配置信息。
S205、按照所述目标光强配置信息对所述检测光源进行配置后,通过所述光学系统对待测目标进行拍摄以获取检测结果。
具体的,参考图7,整个过程分为光强设置阶段和检测阶段,在光强设置阶段,将待测样本放置在待测区之后,分别将三种颜色的光强设置为100%,并通过当前设置的光学系统对待测样本拍摄照片,根据信号强度计算出待测样本各处位置分别相对三种颜色光的反射率,如果出现信号某种颜色光饱和的情况,则适当降低对应的光强后继续拍摄新的照片,直至新拍摄的照片中没有出现光颜色饱和的情况。
之后通过计算方差的方式计算出检测效果最佳的颜色光组合以及光强配置,并以此对检测光源进行调整配置,通过调整之后的光学系统对后续的待测目标进行检测,分别处理彩色相机图片中不同颜色通道的信号数据,以便于完成对待测目标的快速检测过程。
在本实施例中,为了将检测光源调整到适合当前待测样本的光强配置,通过不断调整检测光源的光强配置,从而得到若干组在不同的初始图片上对应的信号强度,之后根据计算得到的若干组信号强度计算信号强度与预设检测强度之间的方差,记为第一方差,并在第一方差小于第一预设阈值之后,将当前的第一方差对应的一组信号强度所对应的检测光源的光强信息作为目标光强配置信息,并根据目标光强配置信息对检测光源进行配置,并通过完成配置之后的光学系统对后续的待测目标进行检测,以便于检测出待测目标表面的缺陷,从而得到准确的检测结果,而且能够满足同一批次大量的待测目标的检测过程,提高了检测效率。
在一些实施例中,假设预设检测强度为200,对检测光源不断调整而得到M组不同初始图片上的信号强度的数据之后,每一组信号强度数据中都包含n个信号强度数,计算M组信号强度数据与预设检测强度之间的第一 方差S2,其中:
计算M组信号强度数据与预设检测强度200之间的方差,并将M组信号强度数据中最小的方差对应的检测光源的光强信息作为目标光强配置信息,并采用目标光强配置信息对检测光源进行配置之后,对后续批量的待测目标进行拍摄检测以获取检测结果。
在另外一些实施例中,在调整所述光学系统中的检测光源不同配置的光强,并根据所述反射率信息和所述系统光学效率信息计算得到不同光强的所述光学系统在所述信号区域中的信号强度后,所述方法还包括:
获取所述光学系统中不同颜色光的噪声系数;
根据所述噪声系数与所述方差计算所述光学系统中光信号的信噪比方差;
在所述信噪比方差小于第二预设阈值时将所述检测光源对应的光强信息作为目标光强配置信息;
按照所述目标光强配置信息对所述检测光源进行配置后,通过所述光学系统对待测目标进行拍摄以获取检测结果。
在本实施例中,考虑到噪声系数对光学系统的影响,从原来的根据方差确定目标光强配置信息更改为根据信噪比方差确定目标光强配置信息,从而有效减小不同颜色光的噪声系数的影响,提高后续检测结果的准确性。
在本实施例中,与前述的检测方法的主要区别是在于通过不同颜色光的噪声系数和前述计算得到的信号强度计算光学系统中的信噪比方差与第二 预设阈值的大小,将信噪比方差小于第二预设阈值的检测光源对应的光强信息作为目标光强配置信息,其余过程与前述基本相同,从而有效减小了系统早上对检测结果的影响,提高了检测结果的准确性。
在一些实施例中,所述系统噪声包括光噪声和电噪声。
在一些实施例中,所述信噪比方差满足如下公式:
其中,p
R为所述检测光源中的红光光强,p
G为所述检测光源中的绿光光强,p
B为所述检测光源中的蓝光光强,η
NR为红光的噪声系数,η
NG为绿光的噪声系数,η
NB为蓝光的噪声系数,B为第二预设阈值,i和n均为正整数,0<i≤n。
在一些实施例中,参考图3,所述光学系统包括:
发光组件31,用于提供光源;
反射组件32,用于将所述光源反射至目标区域并接收从所述目标区域反射回来的反射光;
接收器33,用于接收所述反射光并对所述反射光进行检测。
其中,参考图4,所述发光组件33包括若干个单色光源、第一分光棱镜和聚焦透镜,所述单色光源产生的光线经过所述第一分光棱镜后传输到所述聚焦透镜后聚焦,并通过所述聚焦透镜将聚焦后的光线传输到所述反射组件。
具体的,所述发光组件31包括三个单色光源,分别为红色光源311、绿 色光源312和蓝色光源313,红色光源311、绿色光源312和蓝色光源313产生的光线通过第一分光棱镜314反射后到达聚焦透镜315,从而产生汇聚在一起的检测光线。而反射组件32将检测光线传输到待测目标表面之后,通过待测目标的反射的作用,反射组件32再次将反射光传输到接收器33,从而通过接收器33完成检测过程。
在一些实施例中,采用在接收端处理检测结果的方法,参考图5,所述接收器33包括若干个接收组件331,所述接收组件331的数量与所述单色光源的数量相同,所述接收组件331包括第二分光棱镜3311、滤光片3312和彩色相机3313,所述第二分光棱镜3311用于将所述反射光反射到所述滤光片3312,所述滤光片3312用于对所述反射光进行滤光处理,所述彩色相机3313用于对滤光处理后的所述反射光进行处理以得到最终的检测结果。
本发明还公开了一种半导体光学检测系统,参考图6,包括:
区域划分模块601,用于采用光学系统对待测样本进行拍摄以得到初始图片,根据所述初始图片中不同区域的信号强度的大小将所述待测样本划分为若干个信号区域;
信息获取模块602,用于获取每一个所述信号区域的反射率信息和所述光学系统中每一种颜色光的系统光学效率信息;
强度计算模块603,用于调整所述光学系统中的检测光源不同配置的光强,并根据所述反射率信息和所述系统光学效率信息计算得到不同光强的所述光学系统在所述信号区域中的信号强度;
目标获取模块604,用于计算所述信号区域中的信号强度与预设检测强 度之间的方差,在所述方差小于第一预设阈值时将所述检测光源对应的光强信息作为目标光强配置信息;
检测模块605,用于按照所述目标光强配置信息对所述检测光源进行配置后,通过所述光学系统对待测目标进行拍摄以获取检测结果。
由于上述的半导体光学检测系统中模块的原理、工作过程与前述中的半导体光学检测方法中的过程一一对应,此处不再赘述。
虽然在上文中详细说明了本发明的实施方式,但是对于本领域的技术人员来说显而易见的是,能够对这些实施方式进行各种修改和变化。但是,应理解,这种修改和变化都属于权利要求书中所述的本发明的范围和精神之内。而且,在此说明的本发明可有其它的实施方式,并且可通过多种方式实施或实现。
Claims (10)
- 一种半导体光学检测方法,其特征在于,包括:采用光学系统对待测样本进行拍摄以得到初始图片,根据所述初始图片中不同区域的信号强度的大小将所述待测样本划分为若干个信号区域;获取每一个所述信号区域的反射率信息和所述光学系统中每一种颜色光的系统光学效率信息;调整所述光学系统中的检测光源的不同配置的光强,并根据所述反射率信息和所述系统光学效率信息计算得到不同光强的所述光学系统在所述信号区域中的信号强度;计算所述信号区域中的信号强度与预设检测强度之间的方差,在所述方差小于第一预设阈值时将所述检测光源对应的光强信息作为目标光强配置信息;按照所述目标光强配置信息对所述检测光源进行配置后,通过所述光学系统对待测目标进行拍摄以获取检测结果。
- 根据权利要求1所述的半导体光学检测方法,其特征在于,所述根据所述初始图片中不同区域的信号强度的大小将所述待测样本划分为若干个信号区域,包括:在确定所述初始图片的区域中没有出现光信号饱和之后,获取所述初始图片中不同区域的信号强度,根据所述初始图片不同区域信号强度的不同,将所述初始图片在所述待测样本上对应的区域划分为若干个信号区域。
- 根据权利要求1所述的半导体光学检测方法,其特征在于,所述根 据所述初始图片中不同区域的信号强度的大小将所述待测样本划分为若干个信号区域,包括:在确定所述初始图片的区域中出现至少一种颜色的光信号饱和后,在所述光学系统中调整出现饱和的光信号,并用所述光学系统再次拍摄所述待测样本以得到新的初始图片,直至新的所述初始图片中没有区域出现光信号饱和;获取所述初始图片中不同区域的信号强度,根据所述初始图片不同区域信号强度的不同,将所述初始图片在所述待测样本上对应的区域划分为若干个信号区域。
- 根据权利要求1所述的半导体光学检测方法,其特征在于,所述检测光源包括红光、绿光和蓝光三种光源。
- 根据权利要求4所述的半导体光学检测方法,其特征在于,第i个所述信号区域中的信号强度Di满足如下公式:D i=ρ iR×p Rη R+ρ iG×p Gη G+ρ iB×p Bη B其中,所述信号区域的数量为n个,ρ iR为第i个所述信号区域中的红光反射率,ρ iG为第i个所述信号区域中的绿光反射率,ρ iB为第i个所述信号区域中的蓝光反射率,p R为所述检测光源中的红光光强,η R为所述光学系统对红光的光学效率,p G为所述检测光源中的绿光光强,η G为所述光学系统对绿光的光学效率,p B为所述检测光源中的蓝光光强,η B为所述光学系统对蓝光的光学效率,i和n均为正整数,0<i≤n。
- 根据权利要求2所述的半导体光学检测方法,其特征在于,在调整 所述光学系统中的检测光源的不同配置的光强,并根据所述反射率信息和所述系统光学效率信息计算得到不同光强的所述光学系统在所述信号区域中的信号强度后,所述方法还包括:获取所述检测光源中不同颜色光的噪声系数;根据所述噪声系数与所述方差计算所述检测光源中光信号的信噪比方差;在所述信噪比方差小于第二预设阈值时将所述检测光源对应的光强信息作为目标光强配置信息;按照所述目标光强配置信息对所述检测光源进行配置后,通过所述光学系统对待测目标进行拍摄以获取检测结果。
- 根据权利要求1至7任一项所述的半导体光学检测方法,其特征在于,所述光学系统包括:发光组件,用于提供光源;反射组件,用于将所述光源反射至目标区域并接收从所述目标区域反射回来的反射光;接收器,用于接收所述反射光并对所述反射光进行检测;其中,所述发光组件包括若干个单色光源、第一分光棱镜和聚焦透镜,所述单色光源产生的光线经过所述第一分光棱镜后传输到所述聚焦透镜后聚焦,并通过所述聚焦透镜将聚焦后的光线传输到所述反射组件。
- 根据权利要求8所述的半导体光学检测方法,其特征在于,所述接收器包括若干个接收组件,所述接收组件的数量与所述单色光源的数量相同,所述接收组件包括第二分光棱镜、滤光片和彩色相机,所述第二分光棱镜用于将所述反射光反射到所述滤光片,所述滤光片用于对所述反射光进行滤光处理,所述彩色相机用于对滤光处理后的所述反射光进行处理以得到最终的检测结果。
- 一种半导体光学检测系统,其特征在于,包括:区域划分模块,用于采用光学系统对待测样本进行拍摄以得到初始图片,根据所述初始图片中不同区域的信号强度的大小将所述待测样本划分为若干个信号区域;信息获取模块,用于获取每一个所述信号区域的反射率信息和所述光学系统中每一种颜色光的系统光学效率信息;强度计算模块,用于调整所述光学系统中的检测光源不同配置的光强,并根据所述反射率信息和所述系统光学效率信息计算得到不同光强的所述光学系统在所述信号区域中的信号强度;目标获取模块,用于计算所述信号区域中的信号强度与预设检测强度之间的方差,在所述方差小于第一预设阈值时将所述检测光源对应的光强信息作为目标光强配置信息;检测模块,用于按照所述目标光强配置信息对所述检测光源进行配置后,通过所述光学系统对待测目标进行拍摄以获取检测结果。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210296167.1 | 2022-03-24 | ||
CN202210296167.1A CN114813770A (zh) | 2022-03-24 | 2022-03-24 | 半导体光学检测方法及系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023178721A1 true WO2023178721A1 (zh) | 2023-09-28 |
Family
ID=82531136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/084029 WO2023178721A1 (zh) | 2022-03-24 | 2022-03-30 | 半导体光学检测方法及系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114813770A (zh) |
WO (1) | WO2023178721A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190250107A1 (en) * | 2016-10-26 | 2019-08-15 | Board Of Regents, The University Of Texas System | High Throughput, High Resolution Optical Metrology For Reflective And Transmissive Nanophotonic Devices |
CN110166704A (zh) * | 2019-05-30 | 2019-08-23 | 深圳市道创智能创新科技有限公司 | 多光谱相机的校准方法及装置 |
CN111174702A (zh) * | 2020-01-22 | 2020-05-19 | 无锡微视传感科技有限公司 | 一种自适应结构光投射模组及测量方法 |
CN113155845A (zh) * | 2021-04-09 | 2021-07-23 | 武汉精测电子集团股份有限公司 | 一种光源及其设置方法、光学检测方法及系统 |
-
2022
- 2022-03-24 CN CN202210296167.1A patent/CN114813770A/zh active Pending
- 2022-03-30 WO PCT/CN2022/084029 patent/WO2023178721A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190250107A1 (en) * | 2016-10-26 | 2019-08-15 | Board Of Regents, The University Of Texas System | High Throughput, High Resolution Optical Metrology For Reflective And Transmissive Nanophotonic Devices |
CN110166704A (zh) * | 2019-05-30 | 2019-08-23 | 深圳市道创智能创新科技有限公司 | 多光谱相机的校准方法及装置 |
CN111174702A (zh) * | 2020-01-22 | 2020-05-19 | 无锡微视传感科技有限公司 | 一种自适应结构光投射模组及测量方法 |
CN113155845A (zh) * | 2021-04-09 | 2021-07-23 | 武汉精测电子集团股份有限公司 | 一种光源及其设置方法、光学检测方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN114813770A (zh) | 2022-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8908026B2 (en) | Imaging method and microscope device | |
TWI491871B (zh) | 用於光學檢測的照明系統及使用其之檢測系統、檢測方法 | |
US4958373A (en) | Defect-recognition processing apparatus | |
KR100472129B1 (ko) | 결함 검사 장치 및 결함 검사 방법 | |
CN115144405B (zh) | 基于光学检测的Mini LED晶圆外观缺陷检测方法 | |
US20130070244A1 (en) | Evaluation device and evaluation method | |
CN102685544A (zh) | 用于检测图像传感器的装置及检测方法 | |
KR20100053687A (ko) | 촬영 화상에 기초한 검사 방법 및 검사 장치 | |
CN115629079A (zh) | 一种薄膜表面缺陷检测系统及方法 | |
US7474339B2 (en) | Image-processing device with a first image sensor and a second image sensor | |
US7394048B2 (en) | Focusing device, focusing method and a pattern inspecting apparatus | |
WO2023178721A1 (zh) | 半导体光学检测方法及系统 | |
TWI834843B (zh) | 檢查裝置及檢查方法 | |
KR20070113655A (ko) | 박막의 두께 측정 방법 및 이를 수행하기 위한 장치 | |
US20080170772A1 (en) | Apparatus for determining positions of objects contained in a sample | |
CN116300035A (zh) | 基于三相机的多波段图像边缘灰度梯度对焦装置及方法 | |
JP2017203674A (ja) | 変化度合い導出装置、変化度合い導出方法及びプログラム | |
CN211652599U (zh) | 一种用于采集标准图像的图像采集系统 | |
JP2004286584A (ja) | 欠陥検査装置 | |
JPH0943097A (ja) | カラーフィルター欠陥検査装置 | |
JP3384577B2 (ja) | 顕微鏡用写真撮影装置 | |
CN111380875B (zh) | 一种缺陷检测方法及系统 | |
CN114827586B (zh) | 一种基于图像传感器量子效率的相机辐照后成像分辨率退化评估方法 | |
JPH05313224A (ja) | カメラ用自動露出決定装置 | |
US12073556B2 (en) | Defect inspection system and semiconductor fabrication apparatus including a defect inspection apparatus using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22932782 Country of ref document: EP Kind code of ref document: A1 |