WO2023176882A1 - 着色樹脂組成物、硬化物、カラーフィルタ及び画像表示装置 - Google Patents

着色樹脂組成物、硬化物、カラーフィルタ及び画像表示装置 Download PDF

Info

Publication number
WO2023176882A1
WO2023176882A1 PCT/JP2023/010072 JP2023010072W WO2023176882A1 WO 2023176882 A1 WO2023176882 A1 WO 2023176882A1 JP 2023010072 W JP2023010072 W JP 2023010072W WO 2023176882 A1 WO2023176882 A1 WO 2023176882A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
mass
resin composition
colored resin
formula
Prior art date
Application number
PCT/JP2023/010072
Other languages
English (en)
French (fr)
Inventor
紫陽 平岡
宏明 石井
幸治 福岡
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Publication of WO2023176882A1 publication Critical patent/WO2023176882A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements

Definitions

  • the present invention relates to a colored resin composition, a cured product, a color filter, and an image display device.
  • This application claims priority based on Japanese Patent Application No. 2022-040964 filed in Japan on March 16, 2022, the contents of which are incorporated herein.
  • pigment dispersion methods dyeing methods, electrodeposition methods, and printing methods are known as methods for manufacturing color filters used in liquid crystal display devices and the like.
  • the pigment dispersion method which has excellent properties on average in terms of spectral properties, durability, pattern shape, accuracy, etc., is most widely adopted.
  • color filters are required to have higher brightness, higher contrast, and a wider color gamut.
  • Pigments are generally used as coloring materials to determine the color of color filters from the viewpoint of heat resistance, light resistance, etc.
  • pigments are no longer able to meet market demands, especially for high brightness, and color
  • the use of dyes instead of pigments as materials is being actively investigated. For example, studies have been made to use phthalocyanine dyes for green pixel applications (see, for example, Patent Document 1).
  • the present inventors conducted a study and found that in the colored resin composition described in Patent Document 1, the solubility in the developer greatly changes depending on the content ratio of the phthalocyanine dye in the colorant, and the phthalocyanine dye It has been found that when the content ratio of the dye is low, the rate of dissolution into the developer becomes slow. It has also been found that this tendency is particularly pronounced when the pre-bake temperature is relatively low. Furthermore, in the colored resin composition described in Patent Document 1, depending on the content ratio of the phthalocyanine dye in the colorant, there is a possibility that a residue may be generated after development, and the contrast of the obtained green pixels may be reduced. It was also found that there is a risk of the product being inferior.
  • an object of the present invention is to provide a colored resin composition that has a high dissolution rate in a developer and has high production efficiency even when the prebaking temperature is relatively low.
  • Another object of the present invention is to provide a colored resin composition in which the generation of residue is suppressed and the resulting green pixels have excellent contrast.
  • the present inventors have found that the above problem can be solved by setting the content ratio of a specific phthalocyanine compound in the colorant to a specific ratio or more, and have arrived at the present invention. That is, the present invention has the following configuration.
  • a colored resin composition containing (A) a colorant, (B) a solvent, (C) an alkali-soluble resin, (D) a photopolymerization initiator, and (E) a photopolymerizable monomer,
  • the colorant (A) contains a phthalocyanine compound having a chemical structure represented by the following general formula (1) and a yellow colorant,
  • a colored resin composition wherein the content of the phthalocyanine compound in the colorant (A) is 65% by mass or more and 90% by mass or less.
  • a 1 to A 16 each independently represent a hydrogen atom, a halogen atom, or a group represented by the following general formula (2). However, one or more of A 1 to A 16 represents a fluorine atom, and one or more of A 1 to A 16 represents a group represented by the following general formula (2).
  • X represents a divalent linking group.
  • the benzene ring in formula (2) may have any substituent. * represents a bond.
  • [2] The colored resin composition of [1], wherein the content of the phthalocyanine compound in the colorant (A) is 70% by mass or more and 90% by mass or less.
  • [3] The colored resin composition of [1] or [2], wherein the halogen atoms in A 1 to A 16 in formula (1) are fluorine atoms.
  • one or more of A 1 to A 4 is a fluorine atom
  • one or more of A 5 to A 8 is a fluorine atom
  • one of A 9 to A 12 is a fluorine atom.
  • one or more of A 1 to A 4 is a group represented by the formula (2)
  • one or more of A 5 to A 8 is a group represented by the formula (2).
  • the yellow coloring material is C.I. I. Pigment Yellow 138, C. I.
  • a color filter comprising pixels made using the colored resin composition according to any one of [1] to [10].
  • the present invention it is possible to provide a colored resin composition that has a high dissolution rate in a developer and has high production efficiency even when the pre-bake temperature is relatively low. Further, according to the present invention, it is possible to provide a colored resin composition in which the generation of residue is suppressed and the resulting green pixels have excellent contrast.
  • FIG. 1 is a schematic cross-sectional view showing an example of an organic EL element having a color filter according to the present invention.
  • the term "weight average molecular weight” refers to the weight average molecular weight (Mw) in terms of polystyrene measured by GPC (gel permeation chromatography).
  • total solid content shall mean all components other than the solvent in the colored resin composition. Even if components other than the solvent are liquid at room temperature, they are not included in the solvent but included in the total solid content.
  • the "amine value” refers to the amine value in terms of effective solid content unless otherwise specified, and is a value expressed by the amount of base and the mass of KOH equivalent to 1 g of solid content of the dispersant.
  • C.I means color index.
  • the colored resin composition of the present invention comprises (A) a colorant, (B) a solvent, (C) an alkali-soluble resin, (D) a photoinitiator, and (E) a photopolymerizable monomer. Contains. Furthermore, if necessary, other additives other than the above-mentioned components may be blended.
  • (A) Colorant The (A) colorant contained in the colored resin composition of the present invention is a phthalocyanine compound (hereinafter referred to as "phthalocyanine compound") having a chemical structure represented by the following general formula (1). 1)) and yellow colorants.
  • phthalocyanine compound a phthalocyanine compound having a chemical structure represented by the following general formula (1).
  • the content of the phthalocyanine compound (1) in the colorant is 65% by mass or more and 90% by mass or less.
  • a 1 to A 16 each independently represent a hydrogen atom, a halogen atom, or a group represented by the following general formula (2). However, one or more of A 1 to A 16 represents a fluorine atom, and one or more of A 1 to A 16 represents a group represented by the following general formula (2).
  • X represents a divalent linking group.
  • the benzene ring in formula (2) may have any substituent.
  • * represents a bond.
  • the colorant (A) contained in the colored resin composition of the present invention contains a phthalocyanine compound (1), and the content of the phthalocyanine compound (1) in the colorant (A) is 65% by mass or more and 90% by mass or less.
  • Phthalocyanine compound (1) has one or more hydrogen atoms constituting the phthalocyanine skeleton substituted with a fluorine atom with a small atomic radius, and has a structure that does not easily inhibit association between phthalocyanine compounds (1).
  • the alkali-soluble resin (C) contained in the colored resin composition of the present invention is wrapped around the aggregate to form a complex, and the phthalocyanine It is thought that the dissolution rate is faster than when compound (1) is used alone. At this time, if the prebaking temperature is low, association between the phthalocyanine compounds (1) is difficult to occur.
  • the content of the phthalocyanine compound (1) is 65% by mass or more, the association between the phthalocyanine compounds (1) is less likely to be inhibited by other colorants, and even when the pre-bake temperature is low, the phthalocyanine compound (1) )
  • the phthalocyanine compound (1) As the formation of regular aggregates progresses, local aggregation becomes less likely to occur, improving transmittance and contrast, and as the molecular weight increases as aggregates, alkali-soluble resin is formed around them. It is thought that this makes it easier for the particles to wrap around each other, increasing the dissolution rate and suppressing the generation of residue during development.
  • a 1 to A 16 each independently represent a hydrogen atom, a halogen atom, or a group represented by the following general formula (2). However, one or more of A 1 to A 16 represents a fluorine atom, and one or more of A 1 to A 16 represents a group represented by the following general formula (2).
  • X represents a divalent linking group.
  • the benzene ring in formula (2) may have any substituent.
  • * represents a bond.
  • Examples of the halogen atom in A 1 to A 16 include a fluorine atom, a chlorine atom, and a bromine atom. Fluorine atoms are preferred from the viewpoint of high brightness. Further, it is preferable that one or more of A 1 to A 16 is a fluorine atom, more preferably 6 or more fluorine atoms, further preferably 7 or more, particularly preferably 8 or more, and fluorine atoms is 15 or less, preferably 12 or less, and more preferably 10 or less. Setting the value above the lower limit tends to improve the stability of the phthalocyanine compound (1), and setting the value below the upper limit improves the affinity with the dispersant and solvent in the colored resin composition. Tend. The above upper and lower limits can be arbitrarily combined. For example, the number of substituents representing fluorine atoms among A 1 to A 16 is 1 to 15, preferably 6 to 12, more preferably 7 to 12, and even more preferably 8 to 10.
  • X in formula (2) represents a divalent linking group.
  • the divalent linking group is not particularly limited, but includes, for example, an oxygen atom, a sulfur atom, a -N(R a1 )- group (R a1 represents a hydrogen atom or an aliphatic hydrocarbon group having 1 to 6 carbon atoms). ). From the viewpoint of stability during firing, an oxygen atom or a sulfur atom is preferred, and an oxygen atom is more preferred.
  • the benzene ring in formula (2) may have any substituent.
  • Substituents are not particularly limited, but include, for example, a halogen atom, an alkyl group (-R A group), an alkoxy group (-OR A group (however, R A represents an alkyl group)), an alkoxycarbonyl group (-COOR A group (however, R A represents an alkyl group)), aryl group (-R B group), aryloxy group (-OR B group (however, R B represents an aryl group)), aryloxycarbonyl group (-COOR B group (wherein R B represents an aryl group)). From the viewpoint of development solubility and brightness, an alkoxycarbonyl group is preferred.
  • the alkyl group (R A ) contained in these groups may be linear, branched, or cyclic, but is preferably a linear alkyl group from the viewpoint of affinity with organic solvents.
  • the number of carbon atoms in the alkyl group (R A ) is not particularly limited, but is preferably 1 or more, more preferably 2 or more, and preferably 6 or less, more preferably 5 or less, and even more preferably 4 or less. Setting the amount above the lower limit tends to suppress aggregation and suppressing foreign substances, and setting it below the upper limit tends to improve solvent affinity and stability over time. The above upper and lower limits can be arbitrarily combined.
  • the alkyl group preferably has 1 to 6 carbon atoms, more preferably 1 to 5 carbon atoms, and even more preferably 2 to 4 carbon atoms.
  • the alkyl group (R A ) include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group. From the viewpoint of inhibiting aggregation, a methyl group or an ethyl group is preferable, and an ethyl group is more preferable. preferable.
  • the aryl group (R B ) contained in these groups may be an aromatic hydrocarbon ring group or an aromatic heterocyclic group.
  • the number of carbon atoms in the aryl group (R B ) is not particularly limited, but is preferably 4 or more, more preferably 6 or more, preferably 12 or less, more preferably 10 or less, and even more preferably 8 or less. Setting the amount above the lower limit tends to suppress aggregation due to steric repulsion, and setting the amount below the upper limit tends to improve solvent affinity and stability over time.
  • the above upper and lower limits can be arbitrarily combined; for example, the number of carbon atoms in the aryl group is preferably 4 to 12, more preferably 4 to 10, and even more preferably 6 to 8.
  • the aromatic hydrocarbon ring in the aromatic hydrocarbon ring group may be a single ring or a condensed ring.
  • Examples of the aromatic hydrocarbon ring group include a benzene ring, a naphthalene ring, a pentalene ring, an indene ring, an azulene ring, and a heptalene ring, each having one free valence.
  • the aromatic heterocycle in the aromatic heterocyclic group may be a single ring or a condensed ring.
  • aromatic heterocyclic groups include furan rings, thiophene rings, pyrrole rings, 2H-pyran rings, 4H-thiopyran rings, pyridine rings, 1,3-oxazole rings, and isoxazole rings, each having one free valence.
  • the number of substituents is not particularly limited, but the dye molecules stack with each other, improving heat resistance and suppressing a decrease in brightness due to decomposition of the dye. In view of this, it is preferable that the number of substitutions per benzene ring is 1.
  • the substitution position may be o-position, m-position, or p-position, but stacking in a close-packed structure is possible. From this point of view, p-position is preferred.
  • One or more of A 1 to A 16 represents a fluorine atom.
  • one or more of A 1 to A 4 is a fluorine atom
  • one or more of A 5 to A 8 is a fluorine atom.
  • one or more of A 9 to A 12 is a fluorine atom
  • one or more of A 13 to A 16 is a fluorine atom
  • two or more of A 1 to A 4 are is a fluorine atom
  • two or more of A 5 to A 8 are fluorine atoms
  • two or more of A 9 to A 12 are fluorine atoms
  • two or more of A 13 to A 16 are fluorine atoms. More preferably, it is a fluorine atom.
  • one or more of A 1 to A 16 represents a group represented by formula (2).
  • one or more of A 1 to A 4 is a group represented by formula (2)
  • one or more of A 5 to A 8 is a group represented by formula (2).
  • a group represented by formula (2), one or more of A 9 to A 12 is a group represented by formula (2), and one or more of A 13 to A 16 is a group represented by formula (2).
  • Two or more of A 1 to A 4 are preferably groups represented by formula (2), and two or more of A 5 to A 8 are preferably groups represented by formula (2).
  • a group in which two or more of A 9 to A 12 are groups represented by formula (2), and two or more of A 13 to A 16 are groups represented by formula (2).
  • a 2 , A 3 , A 6 , A 7 , A 10 , A 11 , A 14 , and A 15 are groups represented by formula (2). and A 1 , A 4 , A 5 , A 8 , A 9 , A 12 , A 13 , and A 16 are preferably halogen atoms; A 2 , A 3 , A 6 , A 7 , A 10 , A 11 , A 14 , and A 15 are groups represented by formula (2), and A 1 , A 4 , A 5 , A 8 , A 9 , A 12 , A 13 , and A It is particularly preferred that 16 is a fluorine atom.
  • Examples of the phthalocyanine compound (1) include the following compounds.
  • Et represents an ethyl group.
  • a known method can be adopted, for example, the method described in Japanese Patent Application Laid-Open No. 05-345861 can be adopted.
  • the content of the phthalocyanine compound (1) in the colorant (A) in the colored resin composition of the present invention is 65% by mass or more, preferably 70% by mass or more in the total solid content of the colorant (A), and , 90% by mass or less, preferably 85% by mass or less, more preferably 80% by mass or less.
  • the temperature is equal to or higher than the lower limit, the dissolution rate tends to be faster even when the pre-bake temperature is low, and the adhesion to the substrate tends to be better. Furthermore, contrast tends to be high and residues tend to be suppressed. Furthermore, by setting the chromaticity below the upper limit value, there is a tendency that the chromaticity required for a color filter can be ensured.
  • the content of the phthalocyanine compound (1) in the (A) colorant in the colored resin composition is 65 to 90% by mass, preferably 70 to 90% by mass, based on the total solid content of the (A) colorant. , more preferably 70 to 85% by mass, and even more preferably 70 to 80% by mass.
  • Coloring agent contains a yellow coloring material in addition to the phthalocyanine compound (1).
  • the colorant contains a yellow coloring material in addition to the phthalocyanine compound (1), there is a tendency that the color reproducibility required for green pixels can be achieved.
  • the yellow coloring material include yellow pigments and yellow dyes.
  • yellow pigments examples include C.I. I. Pigment Yellow 1, 1:1, 2, 3, 4, 5, 6, 9, 10, 12, 13, 14, 16, 17, 20, 24, 31, 32, 34, 35, 35: 1, 36, 36:1, 37, 37:1, 40, 41, 42, 43, 48, 53, 55, 61, 62, 62:1, 63, 65, 73, 74, 75, 81, 83, 86, 87, 93, 94, 95, 97, 100, 101, 104, 105, 108, 109, 110, 111, 116, 117, 119, 120, 125, 126, 127, 127:1, 128, 129, 133, 134, 136, 137, 138, 139, 142, 147, 148, 150, 151, 153, 154, 155, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 172, 173, 174, 175, 176, 180
  • C. From the viewpoint of high brightness and high color gamut, C. I. Pigment Yellow 83, 117, 129, 138, 139, 154, 155, 180, 185, nickel azo complexes represented by formula (i) are preferred; I. Pigment Yellow 83, 138, 139, 180, 185 and the nickel azo complex represented by formula (i) are more preferred.
  • Examples of the yellow dye include barbituric acid azo dyes, pyridone azo dyes, pyrazolone azo dyes, quinophthalone dyes, and cyanine dyes. Specific examples thereof include specific compounds described in Japanese Patent Application Publication No. 2010-168531.
  • Examples of solvent dyes include C.I. I.
  • Examples include Solvent Yellow 4, 14, 15, 23, 24, 38, 62, 63, 68, 79, 82, 94, 98, 99, 162, and 163.
  • Examples of acid dyes include C.I. I. Acid Green 1, 3, 5, 9, 16, 25, 27, 50, 58, 63, 65, 80, 104, 105, 106, 109, C.
  • a direct dye for example, C.I. I. Direct Yellow 2, 33, 34, 35, 38, 39, 43, 47, 50, 54, 58, 68, 69, 70, 71, 86, 93, 94, 95, 98, 102, 108, 109, 129 , 136, 138, and 141 dyes.
  • a mordant dye for example, C.I. I. Examples include Mordant Yellow 5, 8, 10, 16, 20, 26, 30, 31, 33, 42, 43, 45, 56, 61, 62, 65 dyes.
  • the colorant (A) may contain other colorants in addition to the phthalocyanine compound (1) and the yellow colorant.
  • Other colorants include pigments and dyes.
  • a green coloring material such as a green pigment or a green dye, for example.
  • green pigments include C.I. I. Pigment Green 7, 36, 58, 59, 62, and 63, and C. I. Pigment Green 58 is preferred.
  • solvent dyes include C.I. I. Examples include Solvent Green 1, 3, 4, 5, 7, 28, 29, 32, 33, 34, and 35.
  • acid dyes include C.I. I.
  • Examples include Mordant Green 1, 3, 4, 5, 10, 15, 19, 26, 29, 33, 34, 35, 41, 43, and 53. From the viewpoint of suppressing dye decomposition during thermal firing, C.I. I. Solvent Green 1, 3, 4, 5, 7, 28, 29, 32, 33, 34, and 35 are preferred.
  • the average primary particle diameter of the pigment is preferably 0.2 ⁇ m or less, more preferably 0.1 ⁇ m or less, particularly preferably 0.04 ⁇ m or less.
  • a solvent salt milling method is suitably used.
  • the content ratio of the colorant (A) in the colored resin composition of the present invention is not particularly limited, but is preferably 10% by mass or more, more preferably 15% by mass or more, and 20% by mass in the total solid content of the colored resin composition.
  • the above is more preferable, even more preferably 25% by mass or more, particularly preferably 30% by mass or more, and preferably 80% by mass or less, more preferably 60% by mass or less, even more preferably 50% by mass or less, and 40% by mass.
  • the following are particularly preferred. Setting the value above the lower limit value tends to make it possible to reproduce a wide range of hues, and setting the value below the upper limit value tends to ensure stability over time.
  • the above upper and lower limits can be arbitrarily combined.
  • the content of the colorant (A) in the colored resin composition is preferably 10 to 80% by mass, more preferably 15 to 80% by mass, and further preferably 20 to 60% by mass in the total solid content of the colored resin composition. It is preferably 25 to 50% by weight, even more preferably 30 to 40% by weight.
  • the content of the phthalocyanine compound (1) in the colored resin composition of the present invention is not particularly limited, but is preferably 1% by mass or more, more preferably 3% by mass or more, and 5% by mass in the total solid content of the colored resin composition.
  • the above is more preferable, even more preferably 10% by mass or more, particularly preferably 15% by mass or more, also preferably 50% by mass or less, more preferably 40% by mass or less, even more preferably 30% by mass or less, and 20% by mass.
  • the following are particularly preferred. Setting the value above the lower limit value tends to improve brightness, and setting the value below the upper limit value tends to ensure stability over time.
  • the above upper and lower limits can be arbitrarily combined.
  • the content of the phthalocyanine compound (1) in the colored resin composition is more preferably 3 to 50% by mass, even more preferably 5 to 50% by mass, and 10 to 40% by mass in the total solid content of the colored resin composition. is even more preferred, and 15 to 30% by mass is particularly preferred.
  • the yellow colorant in the total solid content of the colored resin composition of the present invention is preferably 2% by mass or more, more preferably 4% by mass or more, even more preferably 6% by mass or more, and preferably 25% by mass or less, and 20% by mass or more. It is more preferably at most 10% by mass, even more preferably at most 10% by mass. Setting the value above the lower limit value tends to reproduce the color required for green pixels, and setting the value below the upper limit value tends to increase the dissolution rate and further increase the contrast. The above upper and lower limits can be arbitrarily combined.
  • the content of the yellow colorant is preferably 2 to 25% by mass, and 4 to 20% by mass in the total solid content of the colored resin composition. is more preferable, and even more preferably 6 to 10% by mass.
  • the content ratio of the yellow coloring material in the (A) colorant is preferably 5% by mass or more, more preferably 10% by mass or more, even more preferably 15% by mass or more, and 20% by mass or more. Even more preferred. Further, it is preferably 35% by mass or less, more preferably 30% by mass or less. Setting the value above the lower limit value tends to reproduce the color required for green pixels, and setting the value below the upper limit value tends to increase the dissolution rate and further increase the contrast. The above upper and lower limits can be arbitrarily combined. For example, when the colorant (A) contains a yellow colorant, the content of the yellow colorant in the colorant (A) is preferably 5 to 35% by mass, and preferably 10 to 35% by mass. is more preferable, and even more preferably 15 to 30% by mass.
  • the mass-based content ratio of the phthalocyanine compound (1) and the yellow colorant is preferably 1.8 or more, more preferably 2 or more, and even more preferably 2.3 or more. Further, it is preferably 9 or less, more preferably 7 or less, and even more preferably 6 or less. Setting the amount above the lower limit value tends to increase the dissolution rate, and setting it below the upper limit value tends to make it possible to reproduce the color required for a green pixel. The above upper and lower limits can be arbitrarily combined.
  • the content ratio of the phthalocyanine compound (1) and the yellow colorant on a mass basis is 1.8 to 9. It is preferably from 1.8 to 7, even more preferably from 1.8 to 6, even more preferably from 2 to 6.
  • the content thereof is not particularly limited, but is preferably 1% by mass or more, more preferably 3% by mass or more in the total solid content of the colored resin composition.
  • the content is more preferably 5% by mass or more, even more preferably 7% by mass or more, particularly preferably 10% by mass or more, and preferably 30% by mass or less, more preferably 25% by mass or less, and even more preferably 20% by mass or less. Setting the value above the lower limit value tends to make it possible to reproduce a wide range of hues, and setting the value below the upper limit value tends to ensure stability over time.
  • the above upper and lower limits can be arbitrarily combined.
  • the content of the other colorants is preferably 1 to 30% by mass, more preferably 3 to 30% by mass in the total solid content of the colored resin composition. , more preferably 5 to 25% by weight, even more preferably 7 to 25% by weight, particularly preferably 10 to 20% by weight.
  • Examples of the solvent include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono-n-butyl ether, Propylene glycol-t-butyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono-n-butyl ether, methoxymethylpentanol, propylene glycol monoethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monomethyl ether, 3-methyl - Glycol monoalkyl ethers such as 3-methoxybutanol, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, tripropylene glycol methyl ether;
  • Glycol dialkyl ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dipropyl ether, diethylene glycol dibutyl ether, dipropylene glycol dimethyl ether; Ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol mono-n-butyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, propylene glycol monobutyl ether acetate, methoxybutyl Acetate, 3-methoxybutyl acetate, methoxypentyl acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol mono-n
  • Glycol diacetates such as ethylene glycol diacetate, 1,3-butylene glycol diacetate, 1,6-hexanol diacetate; Alkyl acetates such as cyclohexanol acetate; Ethers such as amyl ether, propyl ether, diethyl ether, dipropyl ether, diisopropyl ether, butyl ether, diamyl ether, ethyl isobutyl ether, dihexyl ether; Such as acetone, methyl ethyl ketone, methyl amyl ketone, methyl isopropyl ketone, methyl isoamyl ketone, diisopropyl ketone, diisobutyl ketone, methyl isobutyl ketone, cyclohexanone, ethyl amyl ketone, methyl butyl ketone, methyl hexyl ketone
  • Aromatic hydrocarbons such as benzene, toluene, xylene, and cumene; Amyl formate, ethyl formate, ethyl acetate, butyl acetate, propyl acetate, amyl acetate, methyl isobutyrate, ethylene glycol acetate, ethyl propionate, propyl propionate, butyl butyrate, isobutyl butyrate, methyl isobutyrate, ethyl Caprylate, butyl stearate, ethyl benzoate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, propyl 3-methoxypropionate, 3-methoxypropionate linear or cyclic esters such as butyl, ⁇ -butyrolactone; Alkoxycarboxylic acids such as 3-methoxyprop
  • solvents include, for example, Mineral Spirit, Valsol #2, Apco #18 Solvent, Apco Thinner, Socal Solvent No. 1 and no. 2.
  • Solvesso #150 Shell TS28 Solvent, carbitol, ethyl carbitol, butyl carbitol, methyl cellosolve, ethyl cellosolve, ethyl cellosolve acetate, methyl cellosolve acetate, diglyme (all trade names).
  • solvents may be used alone or in combination of two or more.
  • the solvent (B) is preferably a solvent with a boiling point of 100 to 200°C (under a pressure of 1013.25 [hPa]. Hereinafter, all boiling points are the same). . More preferred is a solvent with a boiling point of 120 to 170°C. Glycol alkyl ether acetates are preferred from the viewpoint of good balance in coating properties, surface tension, etc., and relatively high solubility of constituent components in the composition.
  • Glycol alkyl ether acetates may be used alone or in combination with other solvents. Particularly preferred solvents used in combination are glycol monoalkyl ethers. Propylene glycol monomethyl ether is preferred from the viewpoint of solubility of the constituent components in the composition. Glycol monoalkyl ethers have high polarity, and if the amount added is too large, the pigment tends to aggregate, which tends to reduce the storage stability such as increasing the viscosity of the colored resin composition obtained later. When alkyl ethers are used in combination, the proportion of glycol monoalkyl ethers in the solvent (B) is preferably 5 to 30% by mass, more preferably 5 to 20% by mass.
  • a solvent having a boiling point of 150° C. or higher can be used in combination.
  • the colored resin composition becomes difficult to dry, but it has the effect of making it difficult to destroy the mutual relationships among the constituent components in the pigment dispersion due to rapid drying.
  • the content of the solvent with a boiling point of 150°C or higher in the solvent (B) is preferably 3 to 50% by mass, more preferably 5 to 40% by mass, Particularly preferred is 5 to 30% by weight.
  • the solvent with a boiling point of 150° C. or higher may be a glycol alkyl ether acetate or a glycol alkyl ether, and in this case, there is no need to separately contain a solvent with a boiling point of 150° C. or higher.
  • diethylene glycol mono-n-butyl ether acetate diethylene glycol monoethyl ether acetate, dipropylene glycol methyl ether acetate, 1,3-butylene glycol diacetate, and 1,6-hexanol diacetate.
  • triacetin triacetin.
  • suitable solvents (B) When forming pixels of a color filter by an inkjet method, suitable solvents (B) have a boiling point of preferably 130°C or more and 300°C or less, more preferably 150°C or more and 280°C or less. By setting it to the lower limit or more, the uniformity of the resulting coating film tends to be better, and by setting it to the upper limit or less, it tends to easily reduce the amount of residual solvent during firing.
  • the vapor pressure of the solvent used is preferably 10 mmHg or less, more preferably 5 mmHg or less, still more preferably 1 mmHg or less, from the viewpoint of uniformity of the resulting coating film.
  • the ink emitted from the nozzle is very fine, ranging from several to several tens of pL, so the solvent evaporates and the ink condenses and dries before it lands around the nozzle opening or within the pixel bank. It tends to harden.
  • the solvent (B) contains a solvent with a high boiling point, and specifically, it is preferable that the solvent (B) contains a solvent with a boiling point of 180° C. or higher. It is more preferable to include a solvent with a boiling point of 200°C or higher, and it is particularly preferable to include a solvent with a boiling point of 220°C or higher.
  • the content ratio of the solvent with a boiling point of 180°C or higher in the solvent (B) is preferably 50% by mass or more, more preferably 70% by mass or more, and 90% by mass or more. is most preferred. By setting it to the above lower limit or more, the effect of preventing evaporation of the solvent from the droplets tends to be sufficiently exhibited.
  • solvents with a boiling point of 180°C or higher examples include diethylene glycol mono-n-butyl ether acetate, diethylene glycol monoethyl ether acetate, dipropylene glycol methyl ether acetate, 1,3-butylene glycol diacetate, 1,6-hexanol diacetate, and triacetin. .
  • a solvent having a boiling point lower than 180° C. may be included in order to adjust the viscosity of the colored resin composition and the solubility of the solid content.
  • a solvent having low viscosity, high solubility, and low surface tension is preferable, and for example, ethers, esters, and ketones are preferable.
  • cyclohexanone, dipropylene glycol dimethyl ether, and cyclohexanol acetate are preferred.
  • the ejection stability in the inkjet method may deteriorate.
  • the content of alcohol in the solvent (B) is preferably 20% by mass or less, more preferably 10% by mass or less, and particularly preferably 5% by mass or less.
  • the content ratio of the solvent (B) in the colored resin composition of the present invention is not particularly limited, but its upper limit is preferably 99% by mass or less, more preferably 90% by mass or less, and even more preferably 85% by mass or less. . When the amount is below the upper limit, it tends to be easier to form a coating film.
  • the lower limit of the solvent content is preferably 70% by mass or more, more preferably 75% by mass or more, and even more preferably 80% by mass or more, taking into account the viscosity suitable for coating.
  • the above upper and lower limits can be arbitrarily combined.
  • the content of the solvent in the colored resin composition is preferably 70 to 99% by mass, more preferably 75 to 90% by mass, and even more preferably 80 to 85% by mass.
  • (C) Alkali-soluble resin The colored resin composition of the present invention contains (C) an alkali-soluble resin.
  • C alkali-soluble resin
  • Alkali-soluble resins include, for example, Japanese Unexamined Patent Application No. 7-207211, Japanese Unexamined Patent Application No. 8-259876, Japanese Unexamined Patent Application No. 10-300922, and Japanese Unexamined Patent Application No. 11-140144.
  • Japanese Patent Application Publication No. 11-174224, Japanese Publication No. 2000-56118, and Japanese Publication No. 2003-233179 can be used.
  • Preferred are the following resins (C-1) to (C-5).
  • (C-1) An unsaturated monobasic acid is added to at least a portion of the epoxy groups in the copolymer of an epoxy group-containing (meth)acrylate and another radically polymerizable monomer. or an alkali-soluble resin obtained by adding a polybasic acid anhydride to at least a portion of the hydroxyl groups generated by the addition reaction (hereinafter sometimes referred to as "resin (C-1)").
  • (C-2) Linear alkali-soluble resin containing a carboxyl group in the main chain (hereinafter sometimes referred to as "resin (C-2)").
  • (C-3) A resin in which an epoxy group-containing unsaturated compound is added to the carboxyl group portion of the resin (C-2) (hereinafter sometimes referred to as “resin (C-3)”).
  • (C-4) (meth)acrylic resin (hereinafter sometimes referred to as “resin (C-4)")
  • (C-5) Epoxy (meth)acrylate resin having a carboxyl group (hereinafter sometimes referred to as “resin (C-5)”). Particularly preferred is resin (C-1).
  • Resins (C-2) to (C-5) may be any resin as long as it has solubility to the extent that it can be dissolved in an alkaline developer and the desired development process can be carried out, and each resin is disclosed in Japanese Patent Application Publication No. 2009
  • the resins described in the same item in Japanese Patent No. 025813 can be preferably employed.
  • (C-1) A copolymer of an epoxy group-containing (meth)acrylate and another radically polymerizable monomer, in which an unsaturated monobasic acid is added to at least a portion of the epoxy groups in the copolymer.
  • Examples include resins obtained by adding a monobasic acid, or alkali-soluble resins obtained by adding a polybasic acid anhydride to 10 to 100 mol% of the hydroxyl groups generated by the addition reaction.
  • epoxy group-containing (meth)acrylates examples include glycidyl (meth)acrylate, 3,4-epoxybutyl (meth)acrylate, (3,4-epoxycyclohexyl)methyl (meth)acrylate, and 4-hydroxybutyl (meth)acrylate.
  • An example is acrylate glycidyl ether. Among them, glycidyl (meth)acrylate is preferred.
  • These epoxy group-containing (meth)acrylates may be used alone or in combination of two or more.
  • the other radically polymerizable monomer to be copolymerized with the epoxy group-containing (meth)acrylate is preferably a mono(meth)acrylate having a structure represented by the following general formula (V).
  • R 91 to R 98 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. Note that R 96 and R 98 or R 95 and R 97 may be linked to each other to form a ring.
  • the ring formed by connecting R 96 and R 98 or R 95 and R 97 is preferably an aliphatic ring, and may be either saturated or unsaturated, and Preferably, the number is 5-6.
  • a structure represented by the following general formula (Va), (Vb), or (Vc) is preferable.
  • the mono(meth)acrylates having the structure represented by formula (V) may be used alone or in combination of two or more.
  • mono(meth)acrylate having the structure represented by the formula (V) various known mono(meth)acrylates can be used as long as they have the structure represented by the formula (V), but in particular, the following general formula ( Mono(meth)acrylates represented by VI) are preferred.
  • R 89 represents a hydrogen atom or a methyl group
  • R 90 represents a structure represented by formula (V).
  • a repeating unit derived from a mono(meth)acrylate represented by formula (VI) is contained in a copolymer of an epoxy group-containing (meth)acrylate and another radically polymerizable monomer, the formula (VI)
  • the content of the repeating units derived from the mono(meth)acrylate expressed is preferably 5 to 90 mol%, more preferably 10 to 70 mol%, among the repeating units derived from other radically polymerizable monomers. Particularly preferred is 15 to 50 mol%.
  • Radically polymerizable monomers other than the mono(meth)acrylate represented by formula (VI) are not particularly limited, but include, for example, styrene, styrene ⁇ -, o-, m-, Vinyl aromatics such as p-alkyl, nitro, cyano, amide, and ester derivatives; dienes such as butadiene, 2,3-dimethylbutadiene, isoprene, and chloroprene; methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, sec-butyl (meth)acrylate, tert-butyl (meth)acrylate, (meth) Pentyl acrylate, neopentyl (meth)acrylate, isoamyl (meth)acrylate, hexyl (meth)acryl
  • (Meth)acrylic acid esters ; (meth)acrylic acid amide, (meth)acrylic acid N,N-dimethylamide, (meth)acrylic acid N,N-diethylamide, (meth)acrylic acid N,N-dipropylamide , (meth)acrylic acid amides such as (meth)acrylic acid N,N-di-isopropylamide, (meth)acrylic acid anthracenylamide; (meth)acrylic acid anilide, (meth)acryloylnitrile, acrolein, vinyl chloride , vinyl compounds such as vinylidene chloride, vinyl fluoride, vinylidene fluoride, N-vinylpyrrolidone, vinylpyridine, vinyl acetate; unsaturated dicarboxylic acid diesters such as diethyl citraconate, diethyl maleate, diethyl fumarate, diethyl itaconate, etc.
  • monomaleimides such as N-phenylmaleimide, N-cyclohexylmaleimide, N-laurylmaleimide, and N-(4-hydroxyphenyl)maleimide; and N-(meth)acryloyl phthalimide.
  • styrene, benzyl (meth)acrylate, and monomaleimide are preferred from the viewpoint of imparting excellent heat resistance and strength to the colored resin composition.
  • the copolymer of epoxy group-containing (meth)acrylate and other radically polymerizable monomer contains any repeating unit derived from styrene, benzyl (meth)acrylate, or monomaleimide, other radical polymerization
  • the repeating units derived from the monomer the total content of the repeating units derived from styrene, the repeating units derived from benzyl (meth)acrylate, and the repeating units derived from monomaleimide is 1 to 70 mol%. Preferably, 3 to 50 mol% is more preferable.
  • a known solution polymerization method can be applied to the copolymerization reaction of the epoxy group-containing (meth)acrylate and other radically polymerizable monomers.
  • the solvent used is not particularly limited as long as it is inert to radical polymerization, and commonly used organic solvents can be used.
  • solvents used in the solution polymerization method include ethylene glycol monoalkyl ether acetates such as ethyl acetate, isopropyl acetate, cellosolve acetate, and butyl cellosolve acetate; diethylene glycol monoalkyl ether acetates such as diethylene glycol monomethyl ether acetate, carbitol acetate, and butyl carbitol acetate; Alkyl ether acetates; Propylene glycol monoalkyl ether acetates; Acetate esters such as dipropylene glycol monoalkyl ether acetates; Ethylene glycol dialkyl ethers; Diethylene glycol dialkyl ethers such as methyl carbitol, ethyl carbitol, butyl carbitol ; Triethylene glycol dialkyl ethers; Propylene glycol dialkyl ethers; Dipropylene glycol dialkyl ethers; Ethers such
  • the amount of the solvent used in the solution polymerization method is preferably 30 to 1000 parts by weight, more preferably 50 to 800 parts by weight, based on 100 parts by weight of the resulting copolymer. By controlling the amount of solvent used within the above range, it tends to become easier to control the molecular weight of the copolymer.
  • the radical polymerization initiator used in the copolymerization reaction is not particularly limited as long as it can initiate radical polymerization, and commonly used organic peroxide catalysts and azo compound catalysts can be used. .
  • the organic peroxide catalyst include catalysts classified as known ketone peroxides, peroxyketals, hydroperoxides, diallyl peroxides, diacyl peroxides, peroxy esters, and peroxydicarbonates.
  • radical polymerization initiator used in the copolymerization reaction examples include benzoyl peroxide, dicumyl peroxide, diisopropyl peroxide, di-t-butyl peroxide, t-butyl peroxybenzoate, and t-hexyl peroxybenzoate.
  • the azo compound catalyst examples include azobisisobutyronitrile and azobiscarbonamide.
  • one or more radical polymerization initiators having an appropriate half-life are used depending on the polymerization temperature.
  • the amount of the radical polymerization initiator used is usually 0.5 to 20 parts by weight, preferably 1 to 10 parts by weight, based on 100 parts by weight of the monomers used in the copolymerization reaction.
  • the copolymerization reaction may be carried out by dissolving the monomers and radical polymerization initiator used in the copolymerization reaction in a solvent and raising the temperature while stirring, or by dissolving the monomers and radical polymerization initiator used in the copolymerization reaction in a solvent and raising the temperature while stirring.
  • the monomer may be added dropwise into a heated and stirred solvent, or a radical polymerization initiator may be added to the solvent and the monomer may be added dropwise into the heated solvent. Reaction conditions can be set depending on the target molecular weight.
  • the copolymer of epoxy group-containing (meth)acrylate and other radically polymerizable monomers includes 5 to 90 mol% of repeating units derived from epoxy group-containing (meth)acrylate and other radically polymerizable monomers. It is preferable that the repeating unit consists of 10 to 95 mol% of the repeating unit derived from the epoxy group-containing (meth)acrylate and 20 to 80 mol% of the repeating unit originating from the epoxy group-containing (meth)acrylate and another radically polymerizable monomer.
  • unsaturated monobasic acids can be used, such as unsaturated carboxylic acids having an ethylenically unsaturated double bond.
  • unsaturated monobasic acids to be added to epoxy groups include (meth)acrylic acid; crotonic acid; o-, m-, p-vinylbenzoic acid; or monocarboxylic acids such as (meth)acrylic acid substituted with a cyano group, etc., with (meth)acrylic acid being preferred.
  • One type of unsaturated monobasic acid may be used alone, or two or more types may be used in combination.
  • an unsaturated monobasic acid By adding an unsaturated monobasic acid to an epoxy group, polymerizability can be imparted to the resin (C-1).
  • the unsaturated monobasic acid is added to, for example, 10 to 100 mol%, preferably 30 to 100 mol%, more preferably 50 to 100 mol% of the epoxy groups possessed by the copolymer. By setting it as the above-mentioned lower limit or more, there is a tendency for the stability of the colored resin composition to improve over time.
  • a known method can be used to add an unsaturated monobasic acid to the epoxy group of the copolymer.
  • polybasic acid anhydride to be added to the hydroxyl group generated when an unsaturated monobasic acid is added to the epoxy group of the copolymer
  • a known polybasic acid anhydride can be used.
  • polybasic acid anhydrides include dibasic acid anhydrides such as maleic anhydride, succinic anhydride, itaconic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, and chlorendic anhydride; trimellitic anhydride;
  • examples include anhydrides of acids having three or more bases, such as pyromellitic anhydride, benzophenonetetracarboxylic anhydride, and biphenyltetracarboxylic anhydride. Among these, tetrahydrophthalic anhydride and succinic anhydride are preferred.
  • These polybasic acid anhydrides may be used alone or in combination of two or more.
  • Alkali solubility can be imparted to the resin (C-1) by adding a polybasic acid anhydride to the hydroxyl group generated when an unsaturated monobasic acid is added to the epoxy group of the copolymer.
  • the polybasic acid anhydride contains, for example, 10 to 100 mol%, preferably 20 to 90 mol%, more preferably 30 to 30 mol% of the hydroxyl groups produced by adding an unsaturated monobasic acid to the epoxy group of the copolymer. It is added to 80 mol%.
  • a method for adding a polybasic acid anhydride to a hydroxyl group generated by adding an unsaturated monobasic acid to an epoxy group possessed by the copolymer a known method can be employed.
  • glycidyl (meth)acrylate or a glycidyl ether compound having a polymerizable unsaturated group may be added to some of the generated carboxyl groups. good.
  • a glycidyl ether compound having no polymerizable unsaturated group may be added to a portion of the generated carboxy groups.
  • both a glycidyl ether compound having a polymerizable unsaturated group and a glycidyl ether compound not having a polymerizable unsaturated group may be added.
  • the glycidyl ether compound having no polymerizable unsaturated group include glycidyl ether compounds having a phenyl group or an alkyl group.
  • Commercially available glycidyl ether compounds having no polymerizable unsaturated groups include, for example, Nagase ChemteX's product names "Denacol EX-111", “Denacol EX-121", “Denacol EX-141", and "Denacol EX-141". Denacol EX-145,”"DenacolEX-146,”"DenacolEX-171,” and "Denacol EX-192.”
  • the structure of the resin (C-1) is described in, for example, Japanese Patent Application Publication No. 8-297366 and Japanese Patent Application Publication No. 2001-89533.
  • the weight average molecular weight of the resin (C-1) measured by GPC in terms of polystyrene is not particularly limited, but is preferably from 3,000 to 100,000, particularly preferably from 5,000 to 50,000.
  • the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mw/Mn) of the resin (C-1) is preferably 2.0 to 5.0.
  • an acrylic copolymer resin having an ethylenically unsaturated group in the side chain is preferable.
  • the partial structure containing the side chain having an ethylenically unsaturated group in the acrylic copolymer resin having an ethylenically unsaturated group in the side chain is not particularly limited, but the coating film curability upon exposure to ultraviolet rays and alkaline development From the viewpoint of achieving both alkali solubility and alkali solubility, it is preferable to have, for example, a partial structure represented by the following general formula (CI).
  • R 1 and R 2 each independently represent a hydrogen atom or a methyl group. * represents a bond.
  • the partial structure represented by the formula (CI) from the viewpoint of sensitivity and alkali developability, the partial structure represented by the following general formula (CI') is preferable.
  • R 1 and R 2 each independently represent a hydrogen atom or a methyl group.
  • R x represents a hydrogen atom or a polybasic acid residue.
  • the polybasic acid residue means a monovalent group obtained by removing one OH group from a polybasic acid or its anhydride.
  • polybasic acids include maleic acid, succinic acid, itaconic acid, phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, pyromellitic acid, trimellitic acid, benzophenonetetracarboxylic acid, methylhexahydrophthalic acid, and endomethylene.
  • examples include tetrahydrophthalic acid, chlorendic acid, methyltetrahydrophthalic acid, and biphenyltetracarboxylic acid.
  • maleic acid, succinic acid, itaconic acid, phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, pyromellitic acid, trimellitic acid, and biphenyltetracarboxylic acid are preferred; is more preferable.
  • These polybasic acids may be used alone or in combination of two or more.
  • (c1) When the acrylic copolymer resin having an ethylenically unsaturated group in the side chain has a partial structure represented by formula (CI), (c1) In the acrylic copolymer resin having an ethylenically unsaturated group in the side chain,
  • the content ratio of the partial structure represented by formula (CI) is not particularly limited, but is preferably 10 mol% or more, more preferably 20 mol% or more, even more preferably 30 mol% or more, even more preferably 40 mol% or more.
  • the coating film curability during exposure to ultraviolet rays is particularly preferred, and when setting it below the above upper limit, the alkali solubility during alkali development tends to improve.
  • the above upper and lower limits can be arbitrarily combined.
  • the content of the partial structure represented by formula (CI) in the acrylic copolymer resin having an ethylenically unsaturated group in the side chain (c1) is preferably 10 to 95 mol%, more preferably 20 to 90 mol%. It is preferably 30 to 85 mol%, even more preferably 40 to 80 mol%, particularly preferably 50 to 75 mol%, and most preferably 65 to 70 mol%.
  • (c1) When the acrylic copolymer resin having an ethylenically unsaturated group in the side chain has a partial structure represented by formula (CI'), (c1) the acrylic copolymer resin having an ethylenically unsaturated group in the side chain
  • the content ratio of the partial structure represented by formula (CI') in is not particularly limited, but is preferably 10 mol% or more, more preferably 20 mol% or more, even more preferably 30 mol% or more, and 40 mol% or more.
  • the content of the partial structure represented by formula (CI) in the acrylic copolymer resin having an ethylenically unsaturated group in the side chain (c1) is preferably 10 to 95 mol%, more preferably 20 to 90 mol%. It is preferably 30 to 85 mol%, even more preferably 40 to 80 mol%, particularly preferably 50 to 75 mol%, and most preferably 65 to 70 mol%.
  • R 3 represents a hydrogen atom or a methyl group
  • R 4 represents an alkyl group which may have a substituent, an aromatic ring group which may have a substituent, or a substituent. Represents an optional alkenyl group.
  • R 4 represents an alkyl group that may have a substituent, an aromatic ring group that may have a substituent, or an alkenyl group that may have a substituent.
  • alkyl group for R 4 include linear, branched or cyclic alkyl groups.
  • the number of carbon atoms is preferably 1 or more, more preferably 3 or more, further preferably 5 or more, particularly preferably 8 or more, and preferably 20 or less, more preferably 18 or less, further preferably 16 or less, and 14 or less. It is even more preferable, and 12 or less is particularly preferable.
  • the alkyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 18 carbon atoms, even more preferably 3 to 16 carbon atoms, even more preferably 5 to 14 carbon atoms, and particularly preferably 8 to 12 carbon atoms.
  • Examples of the alkyl group include a methyl group, an ethyl group, a cyclohexyl group, a dicyclopentanyl group, and a dodecanyl group. From the viewpoint of developability, a dicyclopentanyl group and a dodecanyl group are preferred, and a dicyclopentanyl group is more preferred.
  • substituents that the alkyl group may have include methoxy group, ethoxy group, chloro group, bromo group, fluoro group, hydroxy group, amino group, epoxy group, oligoethylene glycol group, phenyl group, and carboxy group. , acryloyl group, and methacryloyl group. From the viewpoint of developability, hydroxy groups and oligoethylene glycol groups are preferred.
  • Examples of the aromatic ring group for R 4 include a monovalent aromatic hydrocarbon ring group and a monovalent aromatic heterocyclic group.
  • the number of carbon atoms is preferably 6 or more, preferably 24 or less, more preferably 22 or less, even more preferably 20 or less, and particularly preferably 18 or less. Setting the value above the lower limit tends to improve lipophilicity and improving solubility in solvents, while setting the value below the upper limit tends to improve hydrophilicity and improve alkali solubility. be.
  • the above upper and lower limits can be arbitrarily combined.
  • the aromatic ring group preferably has 6 to 24 carbon atoms, more preferably 6 to 22 carbon atoms, even more preferably 6 to 20 carbon atoms, and particularly preferably 6 to 18 carbon atoms.
  • the aromatic hydrocarbon ring in the aromatic hydrocarbon ring group may be a single ring or a condensed ring, such as a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a perylene ring, a tetracene ring, and a pyrene ring.
  • the aromatic heterocycle in the aromatic heterocyclic group may be a single ring or a condensed ring, such as a furan ring, a benzofuran ring, a thiophene ring, a benzothiophene ring, a pyrrole ring, a pyrazole ring, and an imidazole ring.
  • oxadiazole ring indole ring, carbazole ring, pyrroloimidazole ring, pyrrolopyrazole ring, pyrrolopyrrole ring, thienopyrrole ring, thienothiophene ring, furopyrrole ring, furofuran ring, thienofuran ring, benzisoxazole ring, benzisothiazole ring, Examples include benzimidazole ring, pyridine ring, pyrazine ring, pyridazine ring, pyrimidine ring, triazine ring, quinoline ring, isoquinoline ring, shinoline ring, quinoxaline ring, phenanthridine ring, perimidine ring, quinazoline ring, quinazolinone ring, and azulene ring.
  • a benzene ring group and a naphthalene ring group are preferable, and a benzene ring group is more preferable.
  • substituents that the aromatic ring group may have include methyl group, ethyl group, propyl group, methoxy group, ethoxy group, chloro group, bromo group, fluoro group, hydroxy group, amino group, and epoxy group.
  • oligoethylene glycol group, phenyl group, and carboxy group From the viewpoint of developability, hydroxy groups and oligoethylene glycol groups are preferred.
  • alkenyl group for R 4 examples include linear, branched or cyclic alkenyl groups.
  • the number of carbon atoms is preferably 2 or more, preferably 22 or less, more preferably 20 or less, even more preferably 18 or less, even more preferably 16 or less, and particularly preferably 14 or less. Setting the value above the lower limit tends to improve lipophilicity and improving solubility in solvents, while setting the value below the upper limit tends to improve hydrophilicity and improve alkali solubility. be.
  • the above upper and lower limits can be arbitrarily combined.
  • the alkenyl group preferably has 2 to 22 carbon atoms, more preferably 2 to 20 carbon atoms, even more preferably 2 to 18 carbon atoms, even more preferably 2 to 16 carbon atoms, and particularly preferably 2 to 14 carbon atoms.
  • alkenyl group examples include vinyl group, allyl group, 2-propen-2-yl group, 2-buten-1-yl group, 3-buten-1-yl group, 2-penten-1-yl group, 3 -penten-2-yl group, hexenyl group, cyclobutenyl group, cyclopentenyl group, and cyclohexenyl group. From the viewpoint of developability, a vinyl group and an allyl group are preferred, and a vinyl group is more preferred.
  • alkenyl group may have examples include methoxy group, ethoxy group, chloro group, bromo group, fluoro group, hydroxy group, amino group, epoxy group, oligoethylene glycol group, phenyl group, and carboxy group.
  • substituents that the alkenyl group may have include methoxy group, ethoxy group, chloro group, bromo group, fluoro group, hydroxy group, amino group, epoxy group, oligoethylene glycol group, phenyl group, and carboxy group.
  • substituents that the alkenyl group may have include methoxy group, ethoxy group, chloro group, bromo group, fluoro group, hydroxy group, amino group, epoxy group, oligoethylene glycol group, phenyl group, and carboxy group.
  • hydroxy groups and oligoethylene glycol groups are preferred.
  • R 4 represents an alkyl group that may have a substituent, an aromatic ring group that may have a substituent, or an alkenyl group that may have a substituent, and has an effect on developability and film strength. From this point of view, an alkyl group or an alkenyl group is preferable, and an alkyl group is more preferable.
  • (c1) When the acrylic copolymer resin having an ethylenically unsaturated group in the side chain has a partial structure represented by formula (CII), (c1) In the acrylic copolymer resin having an ethylenically unsaturated group in the side chain,
  • the content of the partial structure represented by formula (CII) is not particularly limited, but is preferably 1 mol% or more, more preferably 5 mol% or more, even more preferably 10 mol% or more, particularly preferably 20 mol% or more, Moreover, it is preferably 70 mol% or less, more preferably 60 mol% or less, even more preferably 50 mol% or less, and particularly preferably 40 mol% or less.
  • the content of the partial structure represented by formula (CII) in the acrylic copolymer resin having an ethylenically unsaturated group in the side chain (c1) is preferably 1 to 70 mol%, more preferably 5 to 60 mol%. , more preferably 10 to 50 mol%, particularly preferably 20 to 40 mol%.
  • the acrylic copolymer resin contains a partial structure represented by formula (CI)
  • the other partial structure included is represented by the following general formula (CIII) from the viewpoint of suppressing brightness reduction by improving heat resistance.
  • a partial structure is included.
  • R 5 represents a hydrogen atom or a methyl group
  • R 6 represents an alkyl group that may have a substituent, an alkenyl group that may have a substituent, or an alkenyl group that may have a substituent.
  • t represents an integer from 0 to 5.
  • R 6 is an alkyl group that may have a substituent, an alkenyl group that may have a substituent, an alkynyl group that may have a substituent, a hydroxy group, a carboxy group, Represents a halogen atom, an alkoxy group that may have a substituent, a thiol group, or an alkyl sulfide group that may have a substituent.
  • alkyl group for R 6 include linear, branched, or cyclic alkyl groups.
  • the number of carbon atoms is preferably 1 or more, more preferably 3 or more, further preferably 5 or more, and preferably 20 or less, more preferably 18 or less, further preferably 16 or less, even more preferably 14 or less, and even more preferably 12 or less. is particularly preferred. Setting the value above the lower limit tends to improve lipophilicity and improving solubility in solvents, while setting the value below the upper limit tends to improve hydrophilicity and improve alkali solubility. be. The above upper and lower limits can be arbitrarily combined.
  • the alkyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 18 carbon atoms, even more preferably 3 to 16 carbon atoms, even more preferably 3 to 14 carbon atoms, and particularly preferably 5 to 12 carbon atoms.
  • Examples of the alkyl group include a methyl group, an ethyl group, a cyclohexyl group, a dicyclopentanyl group, and a dodecanyl group. From the viewpoint of heat resistance, a dicyclopentanyl group and a dodecanyl group are preferred, and a dicyclopentanyl group is more preferred.
  • substituents that the alkyl group may have include methoxy group, ethoxy group, chloro group, bromo group, fluoro group, hydroxy group, amino group, epoxy group, oligoethylene glycol group, phenyl group, and carboxy group. , acryloyl group, and methacryloyl group. From the viewpoint of developability, hydroxy groups and oligoethylene glycol groups are preferred.
  • alkenyl group for R 6 examples include linear, branched, or cyclic alkenyl groups.
  • the number of carbon atoms is preferably 2 or more, preferably 22 or less, more preferably 20 or less, even more preferably 18 or less, even more preferably 16 or less, and particularly preferably 14 or less. Setting the value above the lower limit tends to improve lipophilicity and improving solubility in solvents, while setting the value below the upper limit tends to improve hydrophilicity and improve alkali solubility. be.
  • the above upper and lower limits can be arbitrarily combined.
  • the alkenyl group preferably has 2 to 22 carbon atoms, more preferably 2 to 20 carbon atoms, even more preferably 2 to 18 carbon atoms, even more preferably 2 to 16 carbon atoms, and particularly preferably 2 to 14 carbon atoms.
  • alkenyl group examples include vinyl group, allyl group, 2-propen-2-yl group, 2-buten-1-yl group, 3-buten-1-yl group, 2-penten-1-yl group, 3 -penten-2-yl group, hexenyl group, cyclobutenyl group, cyclopentenyl group, and cyclohexenyl group. From the viewpoint of exposure sensitivity during UV exposure, vinyl groups and allyl groups are preferred, and vinyl groups are more preferred.
  • alkenyl group may have examples include methoxy group, ethoxy group, chloro group, bromo group, fluoro group, hydroxy group, amino group, epoxy group, oligoethylene glycol group, phenyl group, and carboxy group.
  • substituents that the alkenyl group may have include methoxy group, ethoxy group, chloro group, bromo group, fluoro group, hydroxy group, amino group, epoxy group, oligoethylene glycol group, phenyl group, and carboxy group.
  • substituents that the alkenyl group may have include methoxy group, ethoxy group, chloro group, bromo group, fluoro group, hydroxy group, amino group, epoxy group, oligoethylene glycol group, phenyl group, and carboxy group.
  • hydroxy groups and oligoethylene glycol groups are preferred.
  • alkynyl group for R 6 examples include linear, branched or cyclic alkynyl groups.
  • the number of carbon atoms is preferably 2 or more, preferably 22 or less, more preferably 20 or less, even more preferably 18 or less, even more preferably 16 or less, and particularly preferably 14 or less. Setting the value above the lower limit tends to improve lipophilicity and improving solubility in solvents, while setting the value below the upper limit tends to improve hydrophilicity and improve alkali solubility. be.
  • the above upper and lower limits can be arbitrarily combined.
  • the alkynyl group preferably has 2 to 22 carbon atoms, more preferably 2 to 20 carbon atoms, even more preferably 2 to 18 carbon atoms, even more preferably 2 to 16 carbon atoms, and particularly preferably 2 to 14 carbon atoms.
  • alkynyl group examples include 1-propyn-3-yl group, 1-butyn-4-yl group, 1-pentyn-5-yl group, 2-methyl-3-butyn-2-yl group, 1,4 -pentadiyn-3-yl group, 1,3-pentadiyn-5-yl group, and 1-hexyn-6-yl group.
  • alkynyl group may have examples include methoxy group, ethoxy group, chloro group, bromo group, fluoro group, hydroxy group, amino group, epoxy group, oligoethylene glycol group, phenyl group, and carboxy group.
  • substituents that the alkynyl group may have include methoxy group, ethoxy group, chloro group, bromo group, fluoro group, hydroxy group, amino group, epoxy group, oligoethylene glycol group, phenyl group, and carboxy group.
  • substituents that the alkynyl group may have examples of substituents that the alkynyl group may have examples of substituents that the alkynyl group may have examples of substituents that the alkynyl group may have include methoxy group, ethoxy group, chloro group, bromo group, fluoro group, hydroxy group, amino group, epoxy group, oligoethylene glycol group, phenyl group, and carboxy group.
  • halogen atom for R 6 examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • a fluorine atom is preferred from the viewpoint of storage stability of the acrylic copolymer resin.
  • Examples of the alkoxy group for R 6 include linear, branched, or cyclic alkoxy groups.
  • the number of carbon atoms is preferably 1 or more, preferably 20 or less, more preferably 18 or less, even more preferably 16 or less, even more preferably 14 or less, and particularly preferably 12 or less. Setting the value above the lower limit tends to improve lipophilicity and improving solubility in solvents, while setting the value below the upper limit tends to improve hydrophilicity and improve alkali solubility. be.
  • the above upper and lower limits can be arbitrarily combined.
  • the alkoxy group preferably has 1 to 20 carbon atoms, more preferably 1 to 18 carbon atoms, even more preferably 1 to 16 carbon atoms, even more preferably 1 to 14 carbon atoms, and particularly preferably 1 to 12 carbon atoms.
  • alkoxy group examples include methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, and isobutoxy group.
  • substituents that the alkoxy group may have include methoxy group, ethoxy group, chloro group, bromo group, fluoro group, hydroxy group, amino group, epoxy group, oligoethylene glycol group, phenyl group, and carboxy group. , acryloyl group, and methacryloyl group. From the viewpoint of developability, hydroxy groups and oligoethylene glycol groups are preferred.
  • alkyl sulfide group for R 6 examples include linear, branched or cyclic alkyl sulfide groups.
  • the number of carbon atoms is preferably 1 or more, preferably 20 or less, more preferably 18 or less, even more preferably 16 or less, even more preferably 14 or less, and particularly preferably 12 or less. Setting the value above the lower limit tends to improve lipophilicity and improving solubility in solvents, while setting the value below the upper limit tends to improve hydrophilicity and improve alkali solubility. be.
  • the above upper and lower limits can be arbitrarily combined.
  • the number of carbon atoms in the alkyl sulfide group is preferably 1 to 20, more preferably 1 to 18, even more preferably 1 to 16, even more preferably 1 to 14, and particularly preferably 1 to 12.
  • alkyl sulfide group examples include a methyl sulfide group, an ethyl sulfide group, a propyl sulfide group, and a butyl sulfide group. From the viewpoint of developability, methyl sulfide groups and ethyl sulfide groups are preferred.
  • substituents that the alkyl group in the alkyl sulfide group may have include methoxy group, ethoxy group, chloro group, bromo group, fluoro group, hydroxy group, amino group, epoxy group, oligoethylene glycol group, and phenyl group. group, carboxy group, acryloyl group, and methacryloyl group. From the viewpoint of developability, hydroxy groups and oligoethylene glycol groups are preferred.
  • R 6 is an alkyl group that may have a substituent, an alkenyl group that may have a substituent, an alkynyl group that may have a substituent, a hydroxy group, a carboxy group, a halogen atom, an alkoxy group , represents a hydroxyalkyl group, a thiol group, or an alkyl sulfide group that may have a substituent, and from the viewpoint of developability, a hydroxy group or a carboxy group is preferable, and a carboxy group is more preferable.
  • t represents an integer from 0 to 5. From the viewpoint of ease of manufacture, t is preferably 0.
  • the content ratio of the partial structure represented by formula (CIII) is not particularly limited, but is preferably 1 mol% or more, more preferably 2 mol% or more, even more preferably 5 mol% or more, particularly preferably 8 mol% or more, Further, it is preferably 50 mol% or less, more preferably 40 mol% or less, even more preferably 30 mol% or less, and particularly preferably 20 mol% or less.
  • the value above the lower limit tends to improve heat resistance and suppressing a decrease in brightness
  • setting the value below the upper limit increases the content of other partial structures and tends to improve alkali solubility.
  • the above upper and lower limits can be arbitrarily combined.
  • the content of the partial structure represented by formula (CIII) in the acrylic copolymer resin having an ethylenically unsaturated group in the side chain (c1) is preferably 1 to 50 mol%, more preferably 2 to 40 mol%. , 5 to 30 mol% is more preferable, and 8 to 20 mol% is particularly preferable.
  • R 7 represents a hydrogen atom or a methyl group.
  • (c1) When containing a partial structure represented by formula (CIV) in an acrylic copolymer resin having an ethylenically unsaturated group in its side chain, (c1) an acrylic copolymer resin having an ethylenically unsaturated group in its side chain
  • the content ratio of the partial structure represented by formula (CIV) in is not particularly limited, but is preferably 5 mol% or more, more preferably 10 mol% or more, even more preferably 20 mol% or more, and 80 mol% or less. It is preferably 70% by mole or less, more preferably 60% by mole or less.
  • the content ratio of the partial structure represented by formula (CIV) in the acrylic copolymer resin having an ethylenically unsaturated group in the side chain (c1) is preferably 5 to 80 mol%, and more preferably 10 to 70 mol%, More preferably 20 to 60% mole.
  • the acid value of the alkali-soluble resin is not particularly limited, but is preferably 10 mgKOH/g or more, more preferably 30 mgKOH/g or more, even more preferably 40 mgKOH/g or more, even more preferably 50 mgKOH/g or more, and even more preferably 60 mgKOH/g.
  • the above is particularly preferable, and also preferably 300 mgKOH/g or less, more preferably 250 mgKOH/g or less, even more preferably 200 mgKOH/g or less, even more preferably 150 mgKOH/g or less, and particularly preferably 100 mgKOH/g or less.
  • the alkali solubility tends to improve
  • the content is equal to or less than the upper limit
  • the storage stability and substrate adhesion of the colored resin composition tend to improve.
  • the above upper and lower limits can be arbitrarily combined.
  • the acid value of the alkali-soluble resin (C) is preferably 10 to 300 mgKOH/g, more preferably 30 to 300 mgKOH/g, even more preferably 40 to 250 mgKOH/g, even more preferably 50 to 200 mgKOH/g, and even more preferably 60 to 300 mgKOH/g. 150 mgKOH/g is particularly preferred.
  • the weight average molecular weight of the alkali-soluble resin (C) is not particularly limited, but is preferably 1,000 or more, more preferably 2,000 or more, even more preferably 4,000 or more, even more preferably 6,000 or more, even more preferably 7,000 or more, particularly preferably 8,000 or more, and preferably 30,000 or less, more preferably 20,000 or less, still more preferably 15,000 or less, particularly preferably 10,000 or less.
  • the content is equal to or more than the lower limit, heat resistance and coating film curability tend to improve, and when the content is equal to or less than the upper limit, alkali solubility tends to improve.
  • the above upper and lower limits can be arbitrarily combined.
  • the weight average molecular weight of the alkali-soluble resin (C) is preferably from 1,000 to 30,000, more preferably from 2,000 to 30,000, even more preferably from 4,000 to 20,000, even more preferably from 6,000 to 20,000, even more preferably from 7,000 to 15,000, and even more preferably from 8,000 to 15,000. 10,000 is particularly preferred.
  • the content ratio of the alkali-soluble resin (C) in the colored resin composition of the present invention is not particularly limited, but is preferably 5% by mass or more, more preferably 10% by mass or more, and 20% by mass in the total solid content of the colored resin composition. % or more, even more preferably 30% by mass or more, particularly preferably 40% by mass or more, and preferably 80% by mass or less, more preferably 70% by mass or less, even more preferably 60% by mass or less, and 50% by mass or less. % or less is particularly preferable. Setting the amount at or above the lower limit tends to improve the coating film curability upon exposure to ultraviolet rays, and setting the amount at or below the upper limit tends to improve solubility in the developer and suppress residues.
  • the content of the alkali-soluble resin (C) in the colored resin composition is preferably 5 to 80% by mass, more preferably 10 to 80% by mass, and more preferably 20 to 70% by mass in the total solid content of the colored resin composition. %, even more preferably 30 to 60% by weight, particularly preferably 40 to 50% by weight.
  • the colored resin composition of the present invention contains (D) a photopolymerization initiator.
  • a photopolymerization initiator By containing a photopolymerization initiator, film curability can be imparted by photopolymerization.
  • the photopolymerization initiator can also be used as a mixture (photopolymerization initiation system) with an accelerator (chain transfer agent) and an optionally added additive such as a sensitizing dye.
  • the photopolymerization initiation system is a component that has the function of directly absorbing light or being photosensitized to cause a decomposition reaction or a hydrogen abstraction reaction to generate polymerization-active radicals.
  • photopolymerization initiator examples include metallocene compounds containing titanocene compounds described in Japanese Patent Application Laid-open Nos. 59-152396 and 61-151197, and Japanese Patent Applications 10-39503. Hexaarylbiimidazole derivatives, halomethyl-s-triazine derivatives, N-aryl- ⁇ -amino acids such as N-phenylglycine, N-aryl- ⁇ -amino acid salts, N-aryl- ⁇ -amino acid esters described in publications Examples include radical activators such as, ⁇ -aminoalkylphenone compounds, and oxime ester initiators described in Japanese Patent Application Publication No. 2000-80068.
  • Photopolymerization initiators that can be used in the present invention are listed below. 2-(4-methoxyphenyl)-4,6-bis(trichloromethyl)-s-triazine, 2-(4-methoxynaphthyl)-4,6-bis(trichloromethyl)-s-triazine, 2-(4 Halomethylated triazine derivatives such as -ethoxynaphthyl)-4,6-bis(trichloromethyl)-s-triazine and 2-(4-ethoxycarbonylnaphthyl)-4,6-bis(trichloromethyl)-s-triazine;
  • Benzophenone derivatives such as benzophenone, Michler's ketone, 2-methylbenzophenone, 3-methylbenzophenone, 4-methylbenzophenone, 2-chlorobenzophenone, 4-bromobenzophenone, 2-carboxybenzophenone; 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxyacetophenone, 1-hydroxycyclohexylphenyl ketone, ⁇ -hydroxy-2-methylphenylpropanone, 1-hydroxy-1-methylethyl-(p -isopropylphenyl)ketone, 1-hydroxy-1-(p-dodecylphenyl)ketone, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 1,1,1 -Acetophenone derivatives such as trichloromethyl-(p-butylphenyl)ketone; Thioxanthone derivatives such as thioxanthone, 2-ethyl
  • Benzoic acid ester derivatives such as ethyl p-dimethylaminobenzoate and ethyl P-diethylaminobenzoate; Acridine derivatives such as 9-phenylacridine and 9-(p-methoxyphenyl)acridine; Phenazine derivatives such as 9,10-dimethylbenzphenazine; Anthrone derivatives such as benzanthrone; dicyclopentadienyl-Ti-dichloride, dicyclopentadienyl-Ti-bis-phenyl, dicyclopentadienyl-Ti-bis-2,3,4,5,6-pentafluorophenyl-1-yl, dicyclopentadienyl-Ti-bis-2,3,5,6-tetrafluorophenyl-1-yl, dicyclopentadienyl-Ti-bis-2,4,6-trifluorophenyl-1-yl, Dicyclopen
  • Oxime ester compounds have a structure that absorbs ultraviolet rays, a structure that transmits light energy, and a structure that generates radicals, so they are highly sensitive even in small amounts and are stable against thermal reactions. Therefore, it is possible to design a highly sensitive colored resin composition in a small amount.
  • oxime ester compounds having a carbazole ring which may have a substituent are preferred.
  • oxime ester compounds examples include compounds represented by the following general formula (I-1).
  • R 21a represents a hydrogen atom, an alkyl group that may have a substituent, or an aromatic ring group that may have a substituent.
  • R 21b represents any substituent containing an aromatic ring or a heteroaromatic ring.
  • R 22a represents an alkanoyl group which may have a substituent or an aryloyl group which may have a substituent.
  • the number of carbon atoms in the alkyl group in R 21a is not particularly limited, but from the viewpoint of solubility in solvents and sensitivity to exposure, it is preferably 1 or more, more preferably 2 or more, and preferably 20 or less, more preferably 15 or less. , more preferably 10 or less, particularly preferably 5 or less.
  • the above upper and lower limits can be arbitrarily combined.
  • the alkyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 15 carbon atoms, even more preferably 1 to 10 carbon atoms, even more preferably 1 to 5 carbon atoms, and particularly preferably 2 to 5 carbon atoms.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, a cyclopentylethyl group, and a propyl group.
  • substituents that the alkyl group may have include aromatic ring groups, hydroxyl groups, carboxy groups, halogen atoms, amino groups, amide groups, 4-(2-methoxy-1-methyl)ethoxy-2- Examples include methylphenyl group and N-acetyl-N-acetoxyamino group. From the viewpoint of ease of synthesis, it is preferable that it is unsubstituted.
  • Examples of the aromatic ring group for R 21a include aromatic hydrocarbon ring groups and aromatic heterocyclic groups.
  • the number of carbon atoms in the aromatic ring group is not particularly limited, but is preferably 5 or more from the viewpoint of solubility in the colored resin composition. Further, from the viewpoint of developability, it is preferably 30 or less, more preferably 20 or less, even more preferably 12 or less, and particularly preferably 8 or less. The above upper and lower limits can be arbitrarily combined.
  • the number of carbon atoms in the aromatic ring group is preferably 5 to 30, more preferably 5 to 20, even more preferably 5 to 12, particularly preferably 5 to 8.
  • Examples of the aromatic ring group include a phenyl group, a naphthyl group, a pyridyl group, a furyl group, and a fluorenyl group. From the viewpoint of developability, a phenyl group, a naphthyl group, and a fluorenyl group are preferable, and a phenyl group and a fluorenyl group are more preferable.
  • substituents that the aromatic ring group may have include a hydroxyl group, an alkyl group that may have a substituent, an alkoxy group that may have a substituent, a carboxy group, a halogen atom, Examples include an amino group, an amide group, and an alkyl group.
  • R 21a is preferably an alkyl group that may have a substituent, more preferably an unsubstituted alkyl group, and even more preferably a methyl group.
  • R 21b is any substituent containing an aromatic ring or a heteroaromatic ring.
  • a carbazolyl group that may have a substituent a thioxanthonyl group that may have a substituent, a diphenyl sulfide group that may have a substituent, or A fluorenyl group which may have a substituent, and a group in which these groups are connected to a carbonyl group are preferred.
  • a carbazolyl group that may have a substituent or a group in which a carbazolyl group that may have a substituent and a carbonyl group are preferred.
  • substituents that the carbazolyl group may have include alkyl groups having 1 to 10 carbon atoms such as methyl group and ethyl group; alkoxy groups having 1 to 10 carbon atoms such as methoxy group and ethoxy group; F, Halogen atoms such as Cl, Br, I; acyl groups having 1 to 10 carbon atoms; alkyl ester groups having 1 to 10 carbon atoms; alkoxycarbonyl groups having 1 to 10 carbon atoms; halogenated alkyl groups having 1 to 10 carbon atoms; Aromatic ring group having 4 to 10 carbon atoms; Amino group; Aminoalkyl group having 1 to 10 carbon atoms; Hydroxyl group; Nitro group; CN group; Arylyl group which may have a substituent; a heteroaryloyl group which may have a substituent; and a thenoyl group which may have a substituent.
  • the number of carbon atoms in the alkanoyl group in R22a is not particularly limited, but from the viewpoint of solubility in solvents and sensitivity, it is preferably 2 or more, more preferably 3 or more, and preferably 20 or less, more preferably 15 or less, and It is preferably 10 or less, particularly preferably 5 or less.
  • the above upper and lower limits can be arbitrarily combined.
  • the alkanoyl group preferably has 2 to 20 carbon atoms, more preferably 2 to 15 carbon atoms, even more preferably 2 to 10 carbon atoms, even more preferably 2 to 5 carbon atoms, and particularly preferably 3 to 5 carbon atoms.
  • alkanoyl group examples include an acetyl group, an ethyl group, a propanoyl group, and a butanoyl group.
  • substituents that the alkanoyl group may have include aromatic ring groups, hydroxyl groups, carboxy groups, halogen atoms, amino groups, and amide groups, and from the viewpoint of ease of synthesis, unsubstituted It is preferable.
  • the number of carbon atoms in the aryloyl group in R22a is not particularly limited, but from the viewpoint of solubility in solvents and sensitivity, it is preferably 7 or more, more preferably 8 or more, and preferably 20 or less, more preferably 15 or less, and Preferably it is 10 or less.
  • the above upper and lower limits can be arbitrarily combined.
  • the aryloyl group preferably has 7 to 20 carbon atoms, more preferably 7 to 15 carbon atoms, even more preferably 7 to 10 carbon atoms, and particularly preferably 8 to 10 carbon atoms.
  • Examples of the aryloyl group include a benzoyl group and a naphthoyl group.
  • substituents that the aryloyl group may have include a hydroxyl group, a carboxy group, a halogen atom, an amino group, an amide group, and an alkyl group.From the viewpoint of ease of synthesis, unsubstituted groups are preferable. preferable.
  • Examples of the compound represented by the formula (I-1) include compounds represented by the following general formula (I-2) or (I-3) from the viewpoint of light absorption to the i-line (365 nm) of the exposure light source. It will be done.
  • R 21a and R 22a have the same meanings as in formula (I-1).
  • R 23a represents an alkyl group which may have a substituent.
  • R 24a represents an alkyl group that may have a substituent, an aryloyl group that may have a substituent, a heteroaryloyl group that may have a substituent, or a nitro group.
  • the benzene ring constituting the carbazole ring may be further fused with an aromatic ring to form a polycyclic aromatic ring.
  • the number of carbon atoms in the alkyl group in R 23a is not particularly limited, but from the viewpoint of solubility in solvents, it is preferably 1 or more, more preferably 2 or more, and preferably 20 or less, more preferably 15 or less, and even more preferably It is 10 or less, particularly preferably 5 or less.
  • the above upper and lower limits can be arbitrarily combined.
  • the alkyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 15 carbon atoms, even more preferably 1 to 10 carbon atoms, even more preferably 1 to 5 carbon atoms, and particularly preferably 2 to 5 carbon atoms.
  • alkyl group examples include methyl group, ethyl group, propyl group, butyl group, and cyclohexyl group.
  • substituents that the alkyl group may have include a carbonyl group, a carboxy group, a hydroxy group, a phenyl group, a benzyl group, a cyclohexyl group, and a nitro group. From the viewpoint of ease of synthesis, it is preferable that it is unsubstituted. From the viewpoint of solubility in solvents and ease of synthesis, R 23a is more preferably an ethyl group.
  • the number of carbon atoms in the alkyl group in R24a is not particularly limited, but from the viewpoint of solubility in solvents, it is preferably 1 or more, more preferably 2 or more, and preferably 20 or less, more preferably 15 or less, and even more preferably It is 10 or less, particularly preferably 5 or less.
  • the above upper and lower limits can be arbitrarily combined.
  • the alkyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 15 carbon atoms, even more preferably 1 to 10 carbon atoms, even more preferably 1 to 5 carbon atoms, and particularly preferably 2 to 5 carbon atoms.
  • alkyl group examples include methyl group, ethyl group, propyl group, butyl group, and cyclohexyl group.
  • substituents that the alkyl group may have include a carbonyl group, a carboxy group, a hydroxy group, a phenyl group, a benzyl group, a cyclohexyl group, and a nitro group. From the viewpoint of ease of synthesis, it is preferable that it is unsubstituted.
  • the number of carbon atoms in the aryloyl group in R24a is not particularly limited, but from the viewpoint of solubility in solvents, it is preferably 7 or more, more preferably 8 or more, even more preferably 9 or more, and preferably 20 or less, more preferably It is 15 or less, more preferably 10 or less, particularly preferably 9 or less.
  • the above upper and lower limits can be arbitrarily combined.
  • the aryloyl group preferably has 7 to 20 carbon atoms, more preferably 8 to 15 carbon atoms, even more preferably 9 to 10 carbon atoms, and particularly preferably 9 carbon atoms.
  • Examples of the aryloyl group include a benzoyl group and a naphthoyl group.
  • Examples of the substituent that the aryloyl group may have include a carbonyl group, a carboxy group, a hydroxy group, a phenyl group, a benzyl group, a cyclohexyl group, and a nitro group. From the viewpoint of ease of synthesis, an ethyl group is preferred.
  • the number of carbon atoms in the heteroaryloyl group in R24a is not particularly limited, but from the viewpoint of solubility in solvents, it is preferably 7 or more, more preferably 8 or more, even more preferably 9 or more, and preferably 20 or less, more It is preferably 15 or less, more preferably 10 or less, particularly preferably 9 or less.
  • the above upper and lower limits can be arbitrarily combined.
  • the heteroaryloyl group preferably has 7 to 20 carbon atoms, more preferably 8 to 15 carbon atoms, even more preferably 9 to 10 carbon atoms, and particularly preferably 9 carbon atoms.
  • heteroaryl group examples include a benzoyl group, a fluorobenzoyl group, a chlorobenzoyl group, a bromobenzoyl group, a fluoronaphthoyl group, a chloronaphthoyl group, and a bromonaphthoyl group.
  • substituents that the heteroaryloyl group may have include a carbonyl group, a carboxy group, a hydroxy group, a phenyl group, a benzyl group, a cyclohexyl group, and a nitro group. From the viewpoint of ease of synthesis, it is preferable that it is unsubstituted. From the viewpoint of sensitivity, R 24a is preferably an aryloyl group which may have a substituent, and more preferably a benzoyl group.
  • the benzene ring constituting the carbazole ring may be further fused with an aromatic ring to form a polycyclic aromatic ring.
  • oxime ester compounds examples include OXE-02 and OXE-03 manufactured by BASF, TR-PBG-304 and TR-PBG-314 manufactured by Changzhou Strong Electronics New Materials, and N-1919 manufactured by ADEKA. , NCI-930, and NCI-831.
  • oxime ester compounds include the following compounds.
  • photopolymerization initiators may be used alone or in combination of two or more.
  • a chain transfer agent is a compound that has the function of receiving generated radicals and transferring the received radicals to other compounds.
  • various chain transfer agents can be used as long as they are compounds having the above functions, but examples include compounds containing a mercapto group and carbon tetrachloride, which tend to have a high chain transfer effect. It is more preferable to use a mercapto group-containing compound from the following. This is thought to be because bond cleavage is likely to occur due to the small S--H bond energy, and hydrogen abstraction reactions and chain transfer reactions are likely to occur. Effective for improving sensitivity and surface hardening.
  • Examples of mercapto group-containing compounds include 2-mercaptobenzothiazole, 2-mercaptobenzimidazole, 2-mercaptobenzoxazole, 3-mercapto-1,2,4-triazole, 2-mercapto-4(3H)-quinazoline, Mercapto group-containing compounds with aromatic rings such as ⁇ -mercaptonaphthalene and 1,4-dimethylmercaptobenzene; hexanedithiol, decanedithiol, butanediol bis(3-mercaptopropionate), butanediol bisthioglycolate, Ethylene glycol bis(3-mercaptopropionate), ethylene glycol bisthioglycolate, trimethylolpropane tris(3-mercaptopropionate), trimethylolpropane tristhioglycolate, trishydroxyethyl tristhiopropionate, penta Erythritol tetrakis (3-mer
  • 2-mercaptobenzothiazole and 2-mercaptobenzimidazole are preferable, and as the aliphatic mercapto group-containing compound, trimethylolpropane tris (3-mercaptopropionate), Pentaerythritol Tetrakis (3-Mercaptopropionate), Pentaerythritol Tris (3-Mercaptopropionate), Trimethylolpropane Tris (3-Mercaptobutyrate), Pentaerythritol Tetrakis (3-Mercaptobutyrate), Pentaerythritol Tris (3-mercaptobutyrate), 1,3,5-tris(3-mercaptobutyloxyethyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione are preferred.
  • aliphatic mercapto group-containing compounds are preferred, such as trimethylolpropane tris (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptopropionate), and pentaerythritol tris (3-mercaptopropionate).
  • chain transfer agents may be used alone or in combination of two or more.
  • the content ratio of the photopolymerization initiator (D) is not particularly limited, but is preferably 0.5% by mass or more, and 0.8% by mass or more in the total solid content of the colored resin composition. is more preferable, 1% by mass or more is even more preferable, 1.2% by weight or more is particularly preferable, 10% by weight or less is more preferable, more preferably 8% by weight or less, even more preferably 6% by weight or less, 4% by weight.
  • the following are particularly preferred. Setting the amount above the lower limit value tends to improve the curability of the coating film, and setting it below the upper limit value tends to improve the brightness by reducing visible light absorption. The above upper and lower limits can be arbitrarily combined.
  • the content ratio of the photopolymerization initiator (D) is preferably 0.5 to 10% by mass, more preferably 0.8 to 8% by mass in the total solid content of the colored resin composition. , more preferably 1 to 6% by weight, particularly preferably 1.2 to 4% by weight.
  • the colored resin composition of the present invention contains a chain transfer agent
  • its content is not particularly limited, but it is preferably 0.1% by mass or more, and 0.2% by mass or more in the total solid content of the colored resin composition. is more preferable, more preferably 0.3% by mass or more, particularly preferably 0.4% by mass or more, and preferably 3% by mass or less, more preferably 2.5% by mass or less, even more preferably 2% by mass or less. , 1.5% by mass or less is particularly preferred.
  • the content is equal to or more than the lower limit, solvent resistance tends to be improved, and when the content is equal to or less than the upper limit, storage stability tends to be improved.
  • the above upper and lower limits can be arbitrarily combined.
  • the content thereof is preferably 0.1 to 3% by mass, and 0.2 to 2.5% by mass in the total solid content of the colored resin composition. It is more preferably 0.3 to 2% by mass, even more preferably 0.4 to 1.5% by mass.
  • the colored resin composition of the present invention contains (E) a photopolymerizable monomer.
  • the photopolymerizable monomer is not particularly limited as long as it is a polymerizable low-molecular compound, but it is an addition-polymerizable compound having at least one ethylenic double bond (hereinafter referred to as "ethylenic compound"). ) is preferred.
  • the ethylenic compound is a compound having an ethylenic double bond that undergoes addition polymerization and hardening due to the action of a photopolymerization initiator when the colored resin composition of the present invention is irradiated with actinic rays.
  • the monomer in the present invention means a concept opposite to a so-called polymer substance, and means a concept that includes dimers, trimers, and oligomers in addition to monomers in a narrow sense.
  • the photopolymerizable monomer it is particularly desirable to use a polyfunctional ethylenic monomer having two or more ethylenic double bonds in one molecule.
  • the number of ethylenic double bonds that the polyfunctional ethylenic monomer has is not particularly limited, but is preferably 2 or more, more preferably 4 or more, still more preferably 5 or more, and Preferably it is 8 or less, more preferably 7 or less.
  • the value above the lower limit value tends to result in high sensitivity, and setting the value below the upper limit value tends to improve the solubility in a solvent.
  • the above upper and lower limits can be arbitrarily combined.
  • the number of ethylenic double bonds that the polyfunctional ethylenic monomer has is preferably 2 to 8, more preferably 2 to 7, even more preferably 4 to 7, and particularly preferably 5 to 7.
  • ethylenic compounds include unsaturated carboxylic acids, esters of unsaturated carboxylic acids and monohydroxy compounds, esters of aliphatic polyhydroxy compounds and unsaturated carboxylic acids, and aromatic polyhydroxy compounds and unsaturated carboxylic acids.
  • esters obtained by the esterification reaction between unsaturated carboxylic acids and polyhydric carboxylic acids and polyhydric hydroxy compounds such as the aforementioned aliphatic polyhydroxy compounds and aromatic polyhydroxy compounds, polyisocyanate compounds and (meth)acryloyl
  • Examples include ethylenic compounds having a urethane skeleton that are reacted with a containing hydroxy compound.
  • esters of aliphatic polyhydroxy compounds and unsaturated carboxylic acids include ethylene glycol diacrylate, triethylene glycol diacrylate, trimethylolpropane triacrylate, trimethylolethane triacrylate, pentaerythritol diacrylate, and pentaerythritol triacrylate. , pentaerythritol tetraacrylate, dipentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, and glycerol acrylate.
  • acrylic acid part of these acrylates can be replaced with methacrylic acid ester, itaconic acid ester, which is replaced with itaconic acid part, crotonic acid ester, which is replaced with crotonic acid part, or maleic acid, which is replaced with maleic acid part.
  • esters include esters.
  • esters of aromatic polyhydroxy compounds and unsaturated carboxylic acids include hydroquinone diacrylate, hydroquinone dimethacrylate, resorcin diacrylate, resorcin dimethacrylate, and pyrogallol triacrylate.
  • the ester obtained by the esterification reaction of an unsaturated carboxylic acid, a polyhydric carboxylic acid, and a polyhydric hydroxy compound is not necessarily a single substance, but may be a mixture.
  • condensates of acrylic acid, phthalic acid and ethylene glycol condensates of acrylic acid, maleic acid and diethylene glycol, condensates of methacrylic acid, terephthalic acid and pentaerythritol, condensates of acrylic acid, adipic acid, butanediol and glycerin.
  • condensates of acrylic acid, phthalic acid and ethylene glycol condensates of acrylic acid, maleic acid and diethylene glycol
  • condensates of methacrylic acid, terephthalic acid and pentaerythritol condensates of acrylic acid, adipic acid, butanediol and glycerin.
  • Examples of the ethylenic compound having a urethane skeleton obtained by reacting a polyisocyanate compound with a (meth)acryloyl group-containing hydroxy compound include aliphatic diisocyanates such as hexamethylene diisocyanate and trimethylhexamethylene diisocyanate; cyclohexane diisocyanate, isophorone diisocyanate, etc.
  • Alicyclic diisocyanates aromatic diisocyanates such as tolylene diisocyanate and diphenylmethane diisocyanate, and 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 3-hydroxy(1,1,1-triacryloyloxymethyl)propane, 3- Examples include reactants with (meth)acryloyl group-containing hydroxy compounds such as hydroxy(1,1,1-trimethacryloyloxymethyl)propane.
  • ethylenic compounds used in the present invention include, for example, acrylamides such as ethylenebisacrylamide; allyl esters such as diallyl phthalate; and vinyl group-containing compounds such as divinyl phthalate.
  • the ethylenic compound may be a monomer having an acid value.
  • the monomer having an acid value is an ester of an aliphatic polyhydroxy compound and an unsaturated carboxylic acid, and the unreacted hydroxy group of the aliphatic polyhydroxy compound is reacted with a non-aromatic carboxylic acid anhydride to form an acid group.
  • Preferred are polyfunctional monomers in which the aliphatic polyhydroxy compound is pentaerythritol and/or dipentaerythritol.
  • One type of these monomers may be used alone, but since it is difficult to use a single compound in production, two or more types may be used in combination. Further, if necessary, a polyfunctional monomer having no acid group and a polyfunctional monomer having an acid group may be used in combination as monomers.
  • the preferred acid value of the polyfunctional monomer having an acid group is 0.1 to 40 mgKOH/g, particularly preferably 5 to 30 mgKOH/g. Setting the value above the lower limit tends to improve development and dissolution characteristics, and setting the value below the upper limit allows for better manufacturing and handling, resulting in improved photopolymerization performance, pixel surface smoothness, etc. It tends to improve curing properties. Therefore, when using two or more types of polyfunctional monomers with different acid groups, or when using polyfunctional monomers that do not have acid groups together, the acid groups as a whole of the polyfunctional monomers should be adjusted so that they fall within the above range. is preferred.
  • more preferable polyfunctional monomers having acid groups include dipentaerythritol hexaacrylate, dipentaerythritol pentaacrylate, and dipentaerythritol pentaacrylate succinate ester commercially available as TO1382 manufactured by Toagosei Co., Ltd. as main components. It is a mixture of This polyfunctional monomer and other polyfunctional monomers can also be used in combination. Furthermore, polyfunctional monomers described in paragraphs [0056] and [0057] of Japanese Patent Application Publication No. 2013-140346 can also be used.
  • the polymerizable monomer described in Japanese Patent Application Publication No. 2013-195971 from the viewpoint of improving the chemical resistance of pixels and the linearity of the edges of pixels, it is preferable to use the polymerizable monomer described in Japanese Patent Application Publication No. 2013-195971. From the viewpoint of achieving both the sensitivity of the coating film and the shortening of the development time, it is preferable to use the polymerizable monomer described in Japanese Patent Application Publication No. 2013-195974.
  • the content of the photopolymerizable monomer (E) is not particularly limited, but is preferably more than 0% by mass, more preferably 5% by mass or more in the total solid content of the colored resin composition. , more preferably 10% by mass or more, even more preferably 15% by mass or more, particularly preferably 20% by mass or more, and preferably 70% by mass or less, more preferably 60% by mass or less, even more preferably 50% by mass. % or less, even more preferably 40% by mass or less, particularly preferably 30% by mass or less.
  • the content ratio of the photopolymerizable monomer (E) in the colored resin composition is preferably more than 0% by mass and 70% by mass or less, more preferably 5 to 60% by mass, and 10% by mass or less, more preferably 5 to 60% by mass, based on the total solid content of the colored resin composition. It is more preferably from 15 to 40% by weight, even more preferably from 15 to 40% by weight, particularly preferably from 20 to 30% by weight.
  • the colored resin composition of the present invention may further contain solid contents other than the above-mentioned components, if necessary.
  • solid contents include dispersants, dispersion aids, surfactants, and adhesion improvers.
  • Dispersant dispersion aid
  • the colored resin composition of the present invention contains a pigment as the colorant (A)
  • it preferably contains a dispersant for the purpose of stably dispersing the pigment.
  • a dispersant it is preferable to use a polymer dispersant because it has excellent dispersion stability over time.
  • polymeric dispersants include urethane dispersants, polyethyleneimine dispersants, polyoxyethylene alkyl ether dispersants, polyoxyethylene glycol diester dispersants, sorbitan aliphatic ester dispersants, and aliphatic modified polyesters. Examples include system dispersants.
  • polymer dispersants examples include trade names such as EFKA (registered trademark, manufactured by BASF), DisperBYK (registered trademark, manufactured by BYK Chemie), DISPARON (registered trademark, manufactured by Kusumoto Kasei Co., Ltd.), and SOLSPERSE (registered trademark, manufactured by Lubricant Chemicals). (manufactured by Sol Co., Ltd.), KP (manufactured by Shin-Etsu Chemical Co., Ltd.), Polyflow (manufactured by Kyoeisha Chemical Co., Ltd.), and the dispersant described in Japanese Patent Application Publication No. 2013-119568.
  • EFKA registered trademark, manufactured by BASF
  • DisperBYK registered trademark, manufactured by BYK Chemie
  • DISPARON registered trademark, manufactured by Kusumoto Kasei Co., Ltd.
  • SOLSPERSE registered trademark, manufactured by Lubricant Chemicals
  • a block copolymer having a functional group containing a nitrogen atom is preferable, and an acrylic block copolymer having a functional group containing a nitrogen atom is more preferable.
  • the block copolymer having a functional group containing a nitrogen atom consists of an A block having a quaternary ammonium base and/or an amino group in the side chain, and a B block having no quaternary ammonium base and amino group.
  • AB block copolymers and BAB block copolymers are preferred.
  • Examples of functional groups containing a nitrogen atom include primary to tertiary amino groups and quaternary ammonium bases. From the viewpoint of dispersibility and storage stability, primary to tertiary amino groups are preferred, and tertiary amino groups are more preferred.
  • the structure of the repeating unit having a tertiary amino group in the block copolymer is not particularly limited, it is preferably a repeating unit represented by the following general formula (d1) from the viewpoint of dispersibility and storage stability.
  • R 1 and R 2 each independently have a hydrogen atom, an alkyl group that may have a substituent, an aryl group that may have a substituent, or a substituent. R 1 and R 2 may be bonded to each other to form a cyclic structure.
  • R 3 is a hydrogen atom or a methyl group.
  • X is a divalent linking group.
  • the number of carbon atoms in the optionally substituted alkyl group in R 1 and R 2 of formula (d1) is not particularly limited, but is preferably 1 or more, and preferably 10 or less, and 6 It is more preferably at most 4, and even more preferably at most 4.
  • the number is preferably 1 to 10, more preferably 1 to 6, and even more preferably 1 to 4.
  • the alkyl group include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, and octyl group.
  • a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group are preferable, and a methyl group, an ethyl group, a propyl group, and a butyl group are more preferable.
  • the alkyl group may be linear or branched.
  • the alkyl group may include a cyclic structure such as a cyclohexyl group or a cyclohexylmethyl group.
  • the number of carbon atoms in the optionally substituted aryl group in R 1 and R 2 of formula (d1) is not particularly limited, but is usually 6 or more, preferably 16 or less, and 12 or less. More preferably, it is 8 or less. For example, the number is preferably 6 to 16, more preferably 6 to 12, and even more preferably 6 to 8.
  • aryl group examples include phenyl group, methylphenyl group, ethylphenyl group, dimethylphenyl group, diethylphenyl group, naphthyl group, and anthracenyl group; phenyl group, methylphenyl group, ethylphenyl group, dimethylphenyl group, A diethylphenyl group is preferable, and a phenyl group, a methylphenyl group, and an ethylphenyl group are more preferable.
  • the number of carbon atoms in the optionally substituted aralkyl group in R 1 and R 2 of formula (d1) is not particularly limited, but is preferably 7 or more, and preferably 16 or less, and 12 It is more preferably at most 9, even more preferably at most 9.
  • the number is preferably 7 to 16, more preferably 7 to 12, and even more preferably 7 to 9.
  • the aralkyl group include phenylmethylene group, phenylethylene group, phenylpropylene group, phenylbutylene group, and phenylisopropylene group.
  • a phenylmethylene group, a phenylethylene group, a phenylpropylene group, and a phenylbutylene group are preferred, and a phenylmethylene group and a phenylethylene group are more preferred.
  • R 1 and R 2 are each preferably an alkyl group that may independently have a substituent, and more preferably a methyl group or an ethyl group. .
  • Examples of the substituents that the alkyl group, aralkyl group, and aryl group in formula (d1) may have include a halogen atom, an alkoxy group, a benzoyl group, and a hydroxyl group. From the viewpoint of ease of synthesis, it is preferable that it is unsubstituted.
  • the cyclic structure formed by bonding R 1 and R 2 to each other includes, for example, a 5- to 7-membered nitrogen-containing monocyclic ring or a condensed ring formed by condensing two of these.
  • the nitrogen-containing heterocycle is preferably non-aromatic, and more preferably a saturated ring.
  • the following cyclic structure (IV) can be mentioned, for example.
  • These cyclic structures may further have a substituent.
  • the divalent linking group X is, for example, an alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 12 carbon atoms, a -CONH-R 13 - group, a -COOR 14 - group , R 13 and R 14 are a single bond, an alkylene group having 1 to 10 carbon atoms, or an ether group (alkyloxyalkyl group) having 2 to 10 carbon atoms, preferably a -COO-R 14 - group. It is.
  • the content ratio of the repeating unit represented by formula (d1) in all repeating units of the block copolymer is preferably 1 mol% or more, more preferably 5 mol% or more, even more preferably 10 mol% or more, and 15 mol%. % or more, even more preferably 20 mol% or more, particularly preferably 25 mol% or more, and preferably 90 mol% or less, more preferably 70 mol% or less, even more preferably 50 mol% or less, and 40 mol% or less. % or less is particularly preferable.
  • the above upper and lower limits can be arbitrarily combined.
  • the content of the repeating unit represented by formula (d1) in all repeating units of the block copolymer is preferably 1 to 90 mol%, more preferably 5 to 90 mol%, and 10 to 70 mol%. It is more preferably 15 to 70 mol%, even more preferably 20 to 50 mol%, and particularly preferably 25 to 40 mol%.
  • the block copolymer preferably has a repeating unit represented by the following general formula (d2) from the viewpoint of increasing the compatibility of the dispersant with a binder component such as a solvent and improving dispersion stability.
  • R 10 is an ethylene group or a propylene group
  • R 11 is an alkyl group which may have a substituent
  • R 12 is a hydrogen atom or a methyl group.
  • n is an integer from 1 to 20.
  • the number of carbon atoms in the optionally substituted alkyl group in R 11 of formula (d2) is not particularly limited, but is preferably 1 or more, more preferably 2 or more, and preferably 10 or less, and 6 or less. More preferably, 4 or less is even more preferable.
  • the above upper and lower limits can be arbitrarily combined.
  • the alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, even more preferably 1 to 4 carbon atoms, and particularly preferably 2 to 4 carbon atoms.
  • alkyl group examples include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, and octyl group.
  • a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group are preferable, and a methyl group, an ethyl group, a propyl group, and a butyl group are more preferable.
  • the alkyl group may be linear or branched.
  • the alkyl group may include a cyclic structure such as a cyclohexyl group or a cyclohexylmethyl group.
  • alkyl group may have include a halogen atom, an alkoxy group, a benzoyl group, and a hydroxyl group. From the viewpoint of ease of synthesis, it is preferable that it is unsubstituted.
  • n in formula (d2) is preferably 1 or more, more preferably 2 or more, and is preferably 20 or less, more preferably 10 or less, and even more preferably 5 or less. .
  • the above upper and lower limits can be arbitrarily combined.
  • n is preferably 1 to 10, more preferably 2 to 5.
  • the content ratio of the repeating unit represented by formula (d2) in all repeating units of the block copolymer is preferably 1 mol% or more, more preferably 2 mol% or more, even more preferably 4 mol% or more, and The content is preferably 30 mol% or less, more preferably 20 mol% or less, and even more preferably 10 mol% or less.
  • the content of the repeating unit represented by formula (d2) in all repeating units of the block copolymer is preferably 1 to 30 mol%, more preferably 2 to 20 mol%, and 4 to 10 mol%. More preferred.
  • the block copolymer preferably has a repeating unit represented by the following general formula (d3) from the viewpoint of increasing the compatibility of the dispersant with a binder component such as a solvent and improving dispersion stability.
  • R 8 is an alkyl group that may have a substituent, an aryl group that may have a substituent, or an aralkyl group that may have a substituent.
  • R 9 is a hydrogen atom or a methyl group.
  • the number of carbon atoms in the optionally substituted alkyl group in R 8 of formula (d3) is not particularly limited, but is preferably 1 or more, preferably 10 or less, and more preferably 6 or less.
  • 1 to 10 is preferable, and 1 to 6 is more preferable.
  • alkyl group include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, and octyl group.
  • a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group are preferable, and a methyl group, an ethyl group, a propyl group, and a butyl group are more preferable.
  • the alkyl group may be linear or branched.
  • the alkyl group may include a cyclic structure such as a cyclohexyl group or a cyclohexylmethyl group.
  • the number of carbon atoms in the optionally substituted aryl group in R 8 of formula (d3) is not particularly limited, but is preferably 6 or more, preferably 16 or less, and more preferably 12 or less.
  • 6 to 16 is preferable, and 6 to 12 is more preferable.
  • the aryl group include phenyl group, methylphenyl group, ethylphenyl group, dimethylphenyl group, diethylphenyl group, naphthyl group, and anthracenyl group.
  • a phenyl group, a methylphenyl group, an ethylphenyl group, a dimethylphenyl group, and a diethylphenyl group are preferable, and a phenyl group, a methylphenyl group, and an ethylphenyl group are more preferable.
  • the number of carbon atoms in the optionally substituted aralkyl group in R 8 of formula (d3) is not particularly limited, but is preferably 7 or more, preferably 16 or less, and more preferably 12 or less.
  • 7 to 16 is preferable, and 7 to 12 is more preferable.
  • the aralkyl group include phenylmethylene group, phenylethylene group, phenylpropylene group, phenylbutylene group, and phenylisopropylene group.
  • a phenylmethylene group, a phenylethylene group, a phenylpropylene group, and a phenylbutylene group are preferred, and a phenylmethylene group and a phenylethylene group are more preferred.
  • R 8 is preferably an alkyl group or an aralkyl group, and more preferably a methyl group, an ethyl group, or a phenylmethylene group.
  • substituents that the alkyl group in R 8 may have include a halogen atom and an alkoxy group.
  • substituents that the aryl group or aralkyl group may have include a chain alkyl group, a halogen atom, and an alkoxy group.
  • the chain alkyl group represented by R 8 includes both straight chain and branched chain alkyl groups.
  • the content of the repeating unit represented by formula (d3) in all repeating units of the block copolymer is preferably 30 mol% or more, more preferably 40 mol% or more, even more preferably 50 mol% or more, and It is preferably 80 mol% or less, more preferably 70 mol% or less. Within the above range, it tends to be possible to achieve both dispersion stability and high brightness. The above upper and lower limits can be arbitrarily combined.
  • the content of the repeating unit represented by formula (d3) in all repeating units of the block copolymer is preferably 30 to 80 mol%, more preferably 40 to 80 mol%, and 50 to 70 mol%. More preferred.
  • the block copolymer may have repeating units other than the repeating unit represented by formula (d1), the repeating unit represented by formula (d2), and the repeating unit represented by formula (d3).
  • repeating units include styrene monomers such as styrene and ⁇ -methylstyrene; (meth)acrylate monomers such as (meth)acrylic acid chloride; (meth)acrylamide, N- Examples include repeating units derived from (meth)acrylamide monomers such as methylol acrylamide; vinyl acetate; acrylonitrile; allyl glycidyl ether, crotonic acid glycidyl ether; and N-methacryloylmorpholine.
  • block copolymer having an A block having a repeating unit represented by formula (d1) and a B block not having a repeating unit represented by formula (d1). It is preferable.
  • the block copolymer is preferably an AB block copolymer or a BAB block copolymer. It is more preferable that the B block has a repeating unit represented by formula (d2) and/or a repeating unit represented by formula (d3).
  • Repeating units other than the repeating unit represented by formula (d1) may be contained in the A block.
  • Examples of such repeating units include the above-mentioned repeating units derived from (meth)acrylic acid esters.
  • the content of repeating units other than the repeating unit represented by formula (d1) in the A block is preferably 0 to 50 mol%, more preferably 0 to 20 mol%, and even more preferably 0 mol%.
  • Repeating units other than the repeating unit represented by formula (d2) and the repeating unit represented by formula (d3) may be contained in the B block.
  • Examples of such repeating units include styrene monomers such as styrene and ⁇ -methylstyrene; (meth)acrylate monomers such as (meth)acrylic acid chloride; (meth)acrylamide, N- Examples include repeating units derived from (meth)acrylamide monomers such as methylol acrylamide; vinyl acetate; acrylonitrile; allyl glycidyl ether, crotonic acid glycidyl ether; and N-methacryloylmorpholine.
  • the content of repeating units other than the repeating unit represented by formula (d2) and the repeating unit represented by formula (d3) in block B is preferably 0 to 50 mol%, more preferably 0 to 20 mol%. , more preferably 0 mol %.
  • the acid value of the block copolymer is preferably lower from the viewpoint of dispersibility, particularly preferably 0 mgKOH/g.
  • the acid value represents the number of mg of KOH required to neutralize 1 g of solid content of the dispersant.
  • the amine value of the block copolymer is preferably 30 mgKOH/g or more, more preferably 50 mgKOH/g or more, even more preferably 70 mgKOH/g or more, even more preferably 90 mgKOH/g or more, from the viewpoint of dispersibility and developability. It is particularly preferably 100 mgKOH/g or more, particularly preferably 105 mgKOH/g or more, and preferably 150 mgKOH/g or less, more preferably 130 mgKOH/g or less. The above upper and lower limits can be arbitrarily combined.
  • the amine value herein refers to the amine value in terms of effective solid content, and is a value expressed by the base amount and the equivalent mass of KOH per 1 g of solid content of the dispersant.
  • the weight average molecular weight of the block copolymer is preferably 1,000 to 30,000. When it is within the above range, the dispersion stability becomes good and there is a tendency that dry foreign matter is less likely to be generated during coating by a slit nozzle method.
  • Block copolymers can be produced by known methods. For example, it can be produced by living polymerization of monomers into which each of the repeating units described above is introduced.
  • living polymerization method for example, Japanese Unexamined Patent Publication No. 9-62002, Japanese Unexamined Patent Publication No. 2002-31713, and P. Lutz, P. Masson et al, Polym. Bull. 12, 79 (1984), B. C. Anderson, G. D. Andrews et al, Macromolecules, 14, 1601 (1981), K. Hatada, K. Ute, et al, Polym. J. 17,977 (1985), K. Hatada, K. Ute, et al, Polym. J.
  • the content of the dispersant is not particularly limited, but is preferably 0.001% by mass or more, and 0.01% by mass in the total solid content of the colored resin composition.
  • the above is more preferable, 0.1% by mass or more is still more preferable, 1% by weight or more is even more preferable, 2% by weight or more is especially preferable, 25% by weight or less is preferable, 20% by weight or less is more preferable, 15 It is more preferably at most 10% by mass, particularly preferably at most 10% by mass.
  • the content of the dispersant is preferably 0.001 to 25% by mass, more preferably 0.01 to 25% by mass in the total solid content of the colored resin composition. , more preferably 0.1 to 20% by weight, even more preferably 1 to 15% by weight, particularly preferably 2 to 10% by weight.
  • the content ratio of the dispersant to the pigment is not particularly limited, but is preferably 0.5 parts by mass or more based on 100 parts by mass of the pigment. More preferably 5 parts by mass or more, still more preferably 10 parts by mass or more, even more preferably 15 parts by mass or more, particularly preferably 20 parts by mass or more, and preferably 70 parts by mass or less, more preferably 50 parts by mass.
  • the amount is preferably 40 parts by mass or less, particularly preferably 30 parts by mass or less.
  • the content of the dispersant is preferably 0.5 to 70 parts by mass, more preferably 5 to 70 parts by mass, and 10 to 100 parts by mass. It is more preferably from 15 to 40 parts by weight, even more preferably from 15 to 40 parts by weight, and particularly preferably from 20 to 30 parts by weight.
  • the colored resin composition of the present invention may contain, for example, a pigment derivative as a dispersion aid in order to improve the dispersibility and dispersion stability of the pigment.
  • a pigment derivative include azo, phthalocyanine, quinacridone, benzimidazolone, quinophthalone, isoindolinone, isoindoline, dioxazine, anthraquinone, indanthrene, and perylene.
  • examples include derivatives of perinone, diketopyrrolopyrrole, and dioxazine pigments.
  • Substituents for pigment derivatives include, for example, sulfonic acid groups, sulfonamide groups and quaternary salts thereof, phthalimidomethyl groups, dialkylaminoalkyl groups, hydroxyl groups, carboxy groups, and amide groups directly on the pigment skeleton, or alkyl groups and aryl groups. , a heterocyclic group, etc., preferably a sulfonamide group, a quaternary salt thereof, or a sulfonic acid group, more preferably a sulfonic acid group. Furthermore, a plurality of these substituents may be substituted on one pigment skeleton, or a mixture of compounds having different numbers of substitutions may be used.
  • pigment derivatives include sulfonic acid derivatives of azo pigments, sulfonic acid derivatives of phthalocyanine pigments, sulfonic acid derivatives of quinophthalone pigments, sulfonic acid derivatives of isoindoline pigments, sulfonic acid derivatives of anthraquinone pigments, sulfonic acid derivatives of quinacridone pigments, Examples include sulfonic acid derivatives of diketopyrrolopyrrole pigments and sulfonic acid derivatives of dioxazine pigments.
  • the colored resin composition of the present invention may contain a surfactant, and examples of the surfactant include anionic, cationic, nonionic, amphoteric surfactants, etc. Although various surfactants can be used, nonionic surfactants are preferred since they are less likely to adversely affect various properties.
  • the content of the surfactant is not particularly limited, but is preferably 0.001% by mass or more, more preferably 0.001% by mass or more in the total solid content of the colored resin composition.
  • the content of the surfactant is preferably 0.001 to 10% by mass, more preferably 0.01 to 1% by mass, and more preferably 0.05 to 0.5% by mass based on the total solid content of the colored resin composition. is more preferred, and 0.1 to 0.3% by mass is particularly preferred.
  • the colored resin composition of the present invention may contain an adhesion improver in order to improve the adhesion to the substrate.
  • adhesion improvers include silane coupling agents and titanium coupling agents. Silane coupling agents are preferred. Examples of the silane coupling agent include KBM-402, KBM-403, KBM-502, KBM-5103, KBE-9007, X-12-1048, X-12-1050 (manufactured by Shin-Etsu Silicone Co., Ltd.), and Z-6040. , Z-6043, and Z-6062 (manufactured by Dow Corning Toray Industries). One type of silane coupling agent may be used alone, or two or more types may be used in combination in any combination and ratio.
  • the colored resin composition of the present invention may contain an adhesion improver other than the silane coupling agent. Examples include phosphoric acid adhesion improvers and other adhesion improvers.
  • (meth)acryloyloxy group-containing phosphates are preferred.
  • Phosphoric acid-based adhesion improvers represented by the following general formulas (g1), (g2), and (g3) are preferred.
  • R 51 each independently represents a hydrogen atom or a methyl group.
  • l and l' each independently represent an integer of 1 to 10, and m each independently represents 1, 2 or 3.
  • Other adhesion improvers include, for example, TEGO (registered trademark) Add Bond LTH (manufactured by Evonik). These phosphoric acid-based adhesion improvers and other adhesives may be used alone or in combination of two or more.
  • the colored resin composition of the present invention contains an adhesion improver
  • its content is not particularly limited, but it is preferably 0.1% by mass or more, and 0.2% by mass or more in the total solid content of the colored resin composition. is more preferably 0.3% by mass or more, further preferably 0.4% by mass or more, further preferably 3% by mass or less, more preferably 2% by mass or less, even more preferably 1.5% by mass or less. , 1% by mass or less is particularly preferred.
  • the content is equal to or more than the lower limit, patterning properties tend to be improved and pattern adhesion under high humidity conditions tends to be improved, and when the content is equal to or less than the upper limit, the generation of residue tends to be suppressed.
  • the above upper and lower limits can be arbitrarily combined.
  • the content thereof is preferably 0.1 to 3% by mass, more preferably 0.2 to 2% by mass, and 0.3 to 2% by mass based on the total solid content. More preferably 1.5% by weight, particularly preferably 0.4 to 1% by weight.
  • (A) When preparing a colorant containing a pigment, first weigh the pigment, solvent, and dispersant in predetermined amounts, and in a dispersion treatment step, disperse the colorant containing the pigment to prepare a pigment dispersion. .
  • a paint conditioner, sand grinder, ball mill, roll mill, stone mill, jet mill, homogenizer, etc. can be used. By performing this dispersion treatment, the colorant is made into fine particles, so that the coating properties of the colored resin composition are improved, and the transmittance of pixels on the color filter substrate of the product is improved.
  • a dispersion aid or the like When dispersing the pigment, as mentioned above, it is preferable to use a dispersion aid or the like as appropriate.
  • a dispersion aid or the like When performing the dispersion treatment using a sand grinder, it is preferable to use glass beads or zirconia beads with a diameter of 0.1 to several mm.
  • the temperature during the dispersion treatment is preferably set in a range of 0°C or higher, more preferably room temperature or higher, and preferably 100°C or lower, more preferably 80°C or lower. Note that the dispersion time may be adjusted as appropriate, since the appropriate time varies depending on the composition of the pigment dispersion liquid, the size of the sand grinder, and the like.
  • a solvent, an alkali-soluble resin, a photopolymerization initiator, a photopolymerizable monomer, and if necessary, components other than those mentioned above are mixed into the pigment dispersion obtained by the above dispersion treatment to form a uniform dispersion solution.
  • fine dust may be mixed in, so it is preferable to filter the obtained pigment dispersion liquid using a filter or the like.
  • the cured product of the present invention is obtained by curing the colored resin composition of the present invention.
  • the color filter of the present invention includes pixels created using the colored resin composition of the present invention. An example of a method for manufacturing a color filter will be described below.
  • Substrate (support) The substrate to which the colored resin composition of the present invention is applied is preferably a transparent substrate, and its material is not particularly limited as long as it is transparent and has appropriate strength.
  • Materials include, for example, polyester resins such as polyethylene terephthalate, polyolefin resins such as polypropylene and polyethylene, thermoplastic resin sheets such as polycarbonate, polymethyl methacrylate, and polysulfone, epoxy resins, unsaturated polyester resins, and poly(meth)acrylics.
  • thermosetting resin sheets such as resin based resins, and various types of glasses. Among these, glass or heat-resistant resin is preferred from the viewpoint of heat resistance.
  • the substrate to which the colored resin composition is applied and the substrate provided with the black matrix described below may be treated with corona discharge treatment, ozone treatment, a silane coupling agent, or a urethane-based
  • a thin film formation process using various resins such as resin may also be performed.
  • the thickness of the substrate is preferably 0.05 mm or more, more preferably 0.1 mm or more, and preferably 10 mm or less, more preferably 7 mm or less. For example, it is preferably 0.05 to 10 mm, more preferably 0.1 to 7 mm.
  • the film thickness is preferably 0.01 ⁇ m or more, more preferably 0.05 ⁇ m or more, and preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less.
  • it is preferably 0.01 to 10 ⁇ m, more preferably 0.05 to 5 ⁇ m.
  • the color filter of the present invention can be manufactured by providing a black matrix on a transparent substrate and further forming usually red, green, and blue pixel images.
  • the colored resin composition of the present invention is preferably used as a coating liquid for forming green pixels (resist pattern) among red, green, and blue pixels.
  • a green pixel (resist pattern) forming coating liquid on a resin black matrix forming surface formed on a transparent substrate, or on a metal black matrix forming surface formed using a chromium compound or other light-shielding metal material, A pixel image is formed by performing coating, heating drying, image exposure, development, and baking.
  • the black matrix is formed on a substrate using a light-shielding metal thin film or a colored resin composition for black matrix.
  • a light-shielding metal material for example, metal chromium, chromium compounds such as chromium oxide and chromium nitride, and nickel and tungsten alloys are used, and a plurality of layers of these may be used.
  • a metal light-shielding film is generally formed by a sputtering method. After forming a desired film pattern using a positive photoresist, for chromium, a mixture of ceric ammonium nitrate and perchloric acid and/or nitric acid is used. Other materials are etched using an etching solution appropriate for the material, and finally the positive photoresist is removed using a special remover to form a black matrix. can.
  • a thin film of these metals or metal/metal oxides is formed on a transparent substrate by vapor deposition or sputtering.
  • the coating film is exposed and developed using a photomask having a repeating pattern such as a stripe, mosaic, or triangle to form a resist image.
  • this coating film can be subjected to an etching process to form a black matrix.
  • a colored resin composition containing a black colorant is used to form a black matrix.
  • black colorants such as carbon black, graphite, iron black, aniline black, cyanine black, titanium black, etc., or red, green, blue, etc. appropriately selected from inorganic or organic pigments and dyes.
  • a black matrix can be formed using a colored resin composition containing a mixed black coloring material in a manner similar to the method for forming red, green, and blue pixels described below.
  • the pixel forming step of forming a pixel includes a coating step of coating the colored resin composition on the substrate and a prebaking step of prebaking the coating film obtained in the coating step.
  • a coating process of coating a colored resin composition of one color among red, green, and blue on a substrate provided with a black matrix for example, a coating process of coating a colored resin composition of one color among red, green, and blue on a substrate provided with a black matrix, a pre-baking process of drying (pre-baking) the obtained coating film, and a coating process.
  • a photomask is placed on the film, and pixels are formed by thermal curing or photocuring as required, through an exposure step of image exposure through this photomask, and a development step.
  • a color filter image can be formed by performing these steps for each of the three colored resin compositions of red, green, and blue.
  • the colored resin composition of the present invention is preferably used as a composition for forming a green or blue pixel (resist pattern) among red, green, and blue pixels, and can be used as a composition for forming a green pixel. More preferred. For example, on a resin black matrix forming surface formed on a substrate using a green or blue pixel (resist pattern) forming composition, or on a metal black matrix forming surface formed using a chromium compound or other light-shielding metal material. Pixels are formed thereon by performing coating, drying (pre-baking), image exposure, development, and thermosetting or photocuring.
  • the colored resin composition can be applied onto the substrate by, for example, a spinner method, a wire bar method, a flow coating method, a die coating method, a roll coating method, or a spray coating method.
  • the die coating method significantly reduces the amount of colored resin composition used, has no influence from the mist that adheres when using the spin coating method, and furthermore suppresses the generation of foreign matter. , is preferable from a comprehensive viewpoint.
  • the thickness of the coating film after drying is preferably 0.2 ⁇ m or more, more preferably 0.5 ⁇ m or more, even more preferably 0.8 ⁇ m or more, and preferably 20 ⁇ m or less, more preferably 10 ⁇ m.
  • the thickness is more preferably 5 ⁇ m or less.
  • the thickness is preferably 0.2 to 20 ⁇ m, more preferably 0.5 to 10 ⁇ m, and even more preferably 0.8 to 5 ⁇ m.
  • Pre-bake step The coating film obtained in the coating step is preferably dried (pre-bake) by a drying method using a hot plate, an IR oven, or a convection oven. After pre-drying, it is preferable to heat again and pre-bake.
  • the pre-drying conditions can be appropriately selected depending on the type of the solvent component, the performance of the dryer used, and the like.
  • the drying temperature and drying time are selected depending on the type of solvent component, the performance of the dryer used, etc., but specifically, the drying temperature is preferably 40°C or higher, more preferably 50°C or higher, and The temperature is preferably 80° C. or lower, more preferably 70° C. or lower, and the drying time is preferably 15 seconds or more, more preferably 30 seconds or more, and preferably 5 minutes or less, more preferably 3 minutes or less.
  • the temperature conditions for pre-baking are preferably higher than the pre-drying temperature.
  • the temperature is 80°C or higher, preferably 90°C or higher, particularly preferably 100°C or higher, and preferably 200°C or lower, more preferably 160°C or lower, particularly preferably 130°C or lower.
  • Setting the amount above the lower limit tends to increase the dissolution rate, while setting it below the upper limit tends to cause the binder resin to decompose, induce thermal polymerization, and cause poor development.
  • the above upper and lower limits can be arbitrarily combined; for example, the prebaking temperature is preferably 80 to 200°C, more preferably 90 to 130°C, particularly preferably 100 to 130°C.
  • the drying time for pre-bake depends on the heating temperature, but is preferably 10 seconds or more, more preferably 15 seconds or more, and preferably 10 minutes or less, more preferably 5 minutes or less.
  • Exposure Step In the pixel formation step, it is preferable to have an exposure step after the pre-baking step.
  • the exposure step is performed by overlaying a negative matrix pattern on the coating film obtained through the pre-baking step and irradiating it with an ultraviolet or visible light source through this mask pattern.
  • exposure may be performed after forming an oxygen barrier layer such as a polyvinyl alcohol layer on the photopolymerizable layer.
  • the light source used for the above exposure is not particularly limited.
  • Examples of light sources include lamp light sources such as xenon lamps, halogen lamps, tungsten lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, metal halide lamps, medium-pressure mercury lamps, low-pressure mercury lamps, carbon arcs, fluorescent lamps, argon ion lasers, YAG lasers, etc.
  • Laser light sources include excimer lasers, nitrogen lasers, helium cadmium lasers, and semiconductor lasers.
  • An optical filter can also be used when irradiating light with a specific wavelength.
  • Developing Step In the pixel forming step, it is preferable to include a developing step after the exposure step. After the coating film using the colored resin composition of the present invention is exposed to light in the above exposure step, it is subjected to a development step in which development is performed using an aqueous solution containing a surfactant and an alkaline compound. can be manufactured by forming an image on it.
  • This aqueous solution may further contain an organic solvent, a buffer, a complexing agent, a dye or a pigment.
  • alkaline compounds include sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium silicate, potassium silicate, sodium metasilicate, sodium phosphate, and phosphorus.
  • Inorganic alkaline compounds such as acid potassium, sodium hydrogen phosphate, potassium hydrogen phosphate, sodium dihydrogen phosphate, potassium dihydrogen phosphate, ammonium hydroxide, mono-, di- or triethanolamine, mono-, di- or trimethylamine, mono-, di- or triethylamine, mono- or di-isopropylamine, n-butylamine, mono-, di- or triisopropanolamine, ethyleneimine, ethylenediimine, tetramethylammonium hydroxide (TMAH), choline, etc.
  • Examples include organic alkaline compounds. These alkaline compounds may be used alone or in combination of two or more.
  • surfactants include nonionic surfactants such as polyoxyethylene alkyl ethers, polyoxyethylene alkylaryl ethers, polyoxyethylene alkyl esters, sorbitan alkyl esters, and monoglyceride alkyl esters, and alkylbenzene sulfonic acids.
  • nonionic surfactants such as polyoxyethylene alkyl ethers, polyoxyethylene alkylaryl ethers, polyoxyethylene alkyl esters, sorbitan alkyl esters, and monoglyceride alkyl esters, and alkylbenzene sulfonic acids.
  • anionic surfactants such as salts, alkylnaphthalene sulfonates, alkyl sulfates, alkyl sulfonates, and sulfosuccinic acid ester salts
  • amphoteric surfactants such as alkyl betaines and amino acids.
  • organic solvent examples include isopropyl alcohol, benzyl alcohol, ethyl cellosolve, butyl cellosolve, phenyl cellosolve, propylene glycol, and diacetone alcohol.
  • Organic solvents can be used in combination with aqueous solutions.
  • the development temperature is preferably 10°C or higher, more preferably 15°C or higher, even more preferably 20°C or higher, and preferably 50°C or lower, more preferably 45°C or lower, More preferably, the temperature is 40°C or lower.
  • the temperature is preferably 10 to 50°C, more preferably 15 to 45°C, and even more preferably 20 to 40°C.
  • the developing method can be any method such as an immersion developing method, a spray developing method, a brush developing method, an ultrasonic developing method, or the like.
  • thermosetting Process In the pixel forming process, it is also preferable to include a thermosetting process after the development process.
  • the heat curing conditions in the heat curing process are such that the temperature is preferably 100°C or higher, more preferably 150°C or higher, and preferably 280°C or lower, more preferably 250°C or lower, and the time is preferably 5 minutes. The duration is preferably 60 minutes or less.
  • the formation of one color patterning pixel is completed.
  • a color filter can be manufactured. Note that the order of patterning the four colors is not limited to the above order.
  • the color filter of the present invention can be used as a part of parts of color displays, liquid crystal display devices, etc. by forming transparent electrodes such as ITO on the image as it is.
  • transparent electrodes such as ITO
  • a top coat layer of polyamide, polyimide, or the like may be provided on the image, if necessary.
  • IPS mode planar alignment drive system
  • a transparent electrode may not be formed.
  • Image display device panel
  • the image display device according to the present invention has a color filter manufactured by the manufacturing method according to the present invention.
  • a liquid crystal display device and an organic EL display device will be described in detail as image display devices.
  • [4-1] Liquid Crystal Display Device A method for manufacturing a liquid crystal display device of the present invention will be described.
  • an alignment film is usually formed on the color filter produced by the manufacturing method of the present invention, and after spacers are sprinkled on the alignment film, the liquid crystal display device is bonded to a counter substrate to form a liquid crystal cell. , Inject liquid crystal into the formed liquid crystal cell and connect it to the counter electrode to complete the process.
  • the alignment film is preferably a resin film such as polyimide. Gravure printing and/or flexographic printing are usually used to form the alignment film, and the thickness of the alignment film is several tens of nanometers. After the alignment film is hardened by thermal baking, the surface is treated by irradiation with ultraviolet rays or treatment with a rubbing cloth to obtain a surface condition that allows adjustment of the tilt of the liquid crystal.
  • the size of the spacer is determined according to the gap between the spacer and the opposing substrate, and a size of 2 to 8 ⁇ m is usually suitable. It is also possible to form a photo spacer (PS) of a transparent resin film on the color filter substrate by photolithography and use this instead of the spacer.
  • PS photo spacer
  • As the counter substrate an array substrate is usually used, and a TFT (thin film transistor) substrate is particularly suitable.
  • the bonding gap with the counter substrate varies depending on the use of the liquid crystal display device, but is preferably selected in the range of 2 ⁇ m or more and 8 ⁇ m or less.
  • a sealing material such as epoxy resin.
  • the sealing material is cured by UV irradiation and/or heating, and the periphery of the liquid crystal cell is sealed.
  • the liquid crystal cell whose periphery is sealed is cut into panel units, the pressure is reduced in a vacuum chamber, the liquid crystal injection port is immersed in the liquid crystal, and the liquid crystal is injected into the liquid crystal cell by leaking the inside of the chamber. .
  • the degree of reduced pressure in the liquid crystal cell is preferably 1 x 10 -2 Pa or less, more preferably 1 x 10 -3 or less, and preferably 1 x 10 -7 Pa or more, more preferably 1 x 10 -6 Pa or more. is within the range of For example, it is preferably 1 ⁇ 10 -7 to 1 ⁇ 10 -2 Pa, more preferably 1 ⁇ 10 -6 to 1 ⁇ 10 -3 Pa. Further, it is preferable to heat the liquid crystal cell when the pressure is reduced, and the heating temperature is preferably 30°C or higher, more preferably 50°C or higher, and preferably 100°C or lower, more preferably 90°C or lower. For example, the temperature is preferably 30 to 100°C, more preferably 50 to 90°C.
  • the temperature is preferably kept at a reduced pressure for at least 10 minutes and at most 60 minutes, and then immersed in the liquid crystal.
  • a liquid crystal display device (panel) is completed by curing the liquid crystal injection port of the liquid crystal cell into which the liquid crystal is injected and sealing it with a UV curing resin.
  • the type of liquid crystal is not particularly limited, and may be any conventionally known liquid crystal such as aromatic, aliphatic, polycyclic compounds, lyotropic liquid crystal, thermotropic liquid crystal, etc. Nematic liquid crystals, smectic liquid crystals, cholesteric liquid crystals, and the like are known as thermotropic liquid crystals, but any of them may be used.
  • Organic EL display device When producing an organic EL display device having a color filter produced by the manufacturing method of the present invention, for example, as shown in FIG. A multicolor organic EL device is manufactured by laminating an organic light emitter 500 via an organic protective layer 30 and an inorganic oxide film 40 on a blue color filter in which pixels 20 are formed using the composition.
  • the organic light emitter 500 can be laminated by sequentially forming a transparent anode 50, a hole injection layer 51, a hole transport layer 52, a light emitting layer 53, an electron injection layer 54, and a cathode 55 on the upper surface of the color filter. , a method of bonding an organic light emitter 500 formed on a separate substrate onto the inorganic oxide film 40, and the like.
  • the organic EL element 100 manufactured in this manner is applicable to both passive drive type organic EL display devices and active drive type organic EL display devices.
  • ⁇ Phthalocyanine compound A> A phthalocyanine compound A having the following chemical structure, which was synthesized based on Example 30 of Japanese Patent Publication No. 05-345861, was used.
  • Et in the formula represents ethyl
  • the amine value is 120 mgKOH/g and the acid value is less than 1 mgKOH/g.
  • the content of repeating units represented by the following formulas (1a), (2a), (3a), (4a), and (5a) in all repeating units is less than 1 mol%, 34.5 mol%, and 6 mol%, respectively. .9 mol%, 13.8 mol%, and 6.9 mol%.
  • F-513M tricyclodecane skeleton
  • the inside of the reaction vessel was replaced with air, and 0.7 parts by mass of trisdimethylaminomethylphenol and 0.12 parts by mass of hydroquinone were added to 67 parts by mass of acrylic acid, and the reaction was continued at 120° C. for 6 hours. Thereafter, 15 parts by mass of tetrahydrophthalic anhydride (THPA) and 0.7 parts by mass of triethylamine were added, and the mixture was reacted at 120° C. for 3.5 hours.
  • THPA tetrahydrophthalic anhydride
  • the weight average molecular weight Mw of the thus obtained alkali-soluble resin B measured by GPC in terms of polystyrene was about 9000, the acid value was 24 mgKOH/g, and the double bond equivalent was 260 g/mol.
  • F-513M tricyclodecane skeleton
  • alkali-soluble resin C which has an acid value of 89 mgKOH/g, has the highest solubility.
  • alkali-soluble resin A and alkali-soluble resin B which have low and comparable acid values, alkali-soluble resin B, which contains more glycidyl methacrylate with high hydrophilicity, has higher solubility.
  • ⁇ Alkali-soluble resin D> Prepare a separable flask equipped with a cooling tube as a reaction tank, charge it with 400 parts by mass of propylene glycol monomethyl ether acetate, replace it with nitrogen, and heat it in an oil bath while stirring to raise the temperature of the reaction tank to 90°C. did.
  • an alkali-soluble resin D having a polystyrene-equivalent weight average molecular weight Mw of 9000, an acid value of 101 mgKOH/g, and a double bond equivalent of 550 g/mol as measured by GPC was obtained.
  • Green dye dispersion B was prepared in the same manner as green dye dispersion A, except that phthalocyanine compound A was changed to phthalocyanine compound B and each raw material was blended as shown in Table 1.
  • Me in the formula represents methyl.
  • Colored resin compositions 1 to 8 were prepared by mixing the components listed in Table 2 at the solid content ratios listed.
  • colored resin compositions 1 to 8 propylene glycol monomethyl ether acetate (PGMEA) and propylene glycol monomethyl ether (PGME) were used as solvents so that the total solid content of the colored resin composition was 15% by mass.
  • the mixing ratio (mass ratio) of PGMEA/PGME in the colored resin composition obtained was 90/10.
  • the obtained colored resin composition was spin-coated onto a 50 mm square, 0.7 mm thick glass substrate (manufactured by AGC, AN100) so that the film thickness after thermosetting (baking) was 2.0 ⁇ m. After coating and drying under reduced pressure, it was prebaked on a hot plate at the temperature listed in Table 3 for 90 seconds to produce a colored substrate. Further, after drying under reduced pressure in the same manner, instead of pre-baking, heat curing treatment was performed at 230° C. for 20 minutes in a clean oven to create a colored substrate after baking.
  • the spectral transmission spectrum was measured every 1 nm from wavelength 380 nm to 780 nm using a spectrophotometer U-3310 manufactured by Hitachi, Ltd., and was converted into an absorption spectrum.
  • the value of absorbance at wavelength n is defined as A n
  • the similar value of the colored substrate after firing is defined as A 0 n .
  • the degree of spectral change was defined by the following formula as an index of how much the absorption spectrum of the colored substrate differs from that of the colored substrate after firing. Table 3 shows the calculated degree of spectral change. The smaller the degree of spectral change in the following formula, the more the phthalocyanine compound (1) forms aggregates during pre-baking and is closer to the state after firing to completely form aggregates.
  • the obtained colored resin composition was spin-coated onto a 50 mm square, 0.7 mm thick glass substrate (manufactured by AGC, AN100) so that the film thickness after thermosetting (baking) was 2.0 ⁇ m. and prebaked at 100°C for 90 seconds.
  • exposure treatment was performed using a 2 kW high-pressure mercury lamp at an exposure amount of 40 mJ/cm 2 and an illuminance of 30 mW/cm 2 through an exposure mask having a plurality of linear openings with a width of 1 to 50 ⁇ m.
  • a development process was performed using a 0.04% by mass aqueous potassium hydroxide solution at a developer temperature of 23° C. for 60 seconds.
  • the obtained colored resin composition was spin-coated onto a 50 mm square, 0.7 mm thick glass substrate (manufactured by AGC, AN100) so that the film thickness after thermosetting (baking) was 2.0 ⁇ m. and prebaked at 100°C for 90 seconds.
  • an exposure treatment was performed using a 2kW high-pressure mercury lamp at an exposure amount of 40 mJ/cm 2 and an illuminance of 30 mW/cm 2 , and a heat curing treatment was performed at 230° C. for 20 minutes to prepare a substrate for contrast evaluation.
  • ⁇ Residue evaluation> A patterned substrate was prepared in the same manner as in the adhesion evaluation, and a pattern corresponding to a linear opening with a width of 50 ⁇ m was observed using an optical microscope. If no residue was observed inside the opening, the rating was A. If some residue was observed in the opening but there was no practical problem, it was rated B. If any residue was observed in the opening, it was rated C. The evaluation results are shown in Table 4.
  • the colorant contains a colorant other than the phthalocyanine compound (1), which inhibits the association between the phthalocyanine compounds (1) due to ⁇ - ⁇ stacking with the aromatic ring contained in its structure.
  • the dissolution rate also showed a similar tendency, and as the content ratio of the phthalocyanine compound (1) in the colorant (A) increased, the dissolution rate remained constant when the pre-bake temperature was gradually raised from 80°C. The pre-bake temperature becomes lower. This is because the phthalocyanine compound (1) forms an aggregate, and the alkali-soluble resin (C) contained in the colored resin composition forms a complex around it, and the phthalocyanine compound (1) forms an aggregate.
  • the dissolution rate was faster than when it was used alone.
  • the development time can be shortened.
  • the dissolution rate can be increased with a lower pre-bake temperature, which can contribute to improving the production efficiency of color filters and the like.
  • the solubility of the alkali-soluble resin (C) can be made relatively low, so it is thought that the pattern is less likely to peel off during development and the adhesion is improved.

Abstract

プレベーク温度が低い場合でも現像液溶解速度が速い着色樹脂組成物を提供する。本発明の着色樹脂組成物は、(A)着色剤、(B)溶剤、(C)アルカリ可溶性樹脂、(D)光重合開始剤、及び(E)光重合性モノマーを含有する着色樹脂組成物であって、前記(A)着色剤が、特定の化学構造を有するフタロシアニン化合物及び黄色色材を含有し、前記(A)着色剤中の前記フタロシアニン化合物の含有割合が特定の割合であることを特徴とする。

Description

着色樹脂組成物、硬化物、カラーフィルタ及び画像表示装置
 本発明は、着色樹脂組成物、硬化物、カラーフィルタ及び画像表示装置に関する。
 本願は、2022年3月16日に日本出願された特願2022-040964号に基づき優先権を主張し、その内容をここに援用する。
 従来、液晶表示装置等に用いられるカラーフィルタを製造する方法としては、顔料分散法、染色法、電着法、印刷法が知られている。中でも、分光特性、耐久性、パターン形状及び精度等の観点から、平均的に優れた特性を有する顔料分散法が最も広範に採用されている。
 近年、カラーフィルタに対して、より高輝度、高コントラスト且つ高色域化が要求されている。カラーフィルタの色を決める色材としては、耐熱性、耐光性等の観点から一般には顔料が用いられているが、顔料では特に高輝度については市場要求を満たすことが出来なくなってきており、色材として顔料に替えて染料を用いる検討が盛んにおこなわれている。例えば、緑色画素用途においてはフタロシアニン系染料を用いる検討がなされている(例えば特許文献1参照)。
国際公開第2020/171060号
 本発明者らが検討を行ったところ、特許文献1に記載されている着色樹脂組成物では、着色剤中の前記フタロシアニン系染料の含有比率によって現像液への溶解性が大きく変化し、前記フタロシアニン系染料の含有比率が低い場合、現像液への溶解速度が遅くなることが見出された。特に、プレベーク温度が比較的低い場合に、その傾向が顕著であることも見出された。
 また、特許文献1に記載されている着色樹脂組成物では、着色剤中の前記フタロシアニン系染料の含有比率によっては、現像後の残渣が発生するおそれがあることや、得られる緑色画素のコントラストが劣るおそれがあることも見出された。
 そこで本発明は、プレベーク温度が比較的低い場合であっても現像液への溶解速度が速く、生産効率の高い着色樹脂組成物を提供することを目的とする。
 また、本発明は、残渣の発生が抑制され、得られる緑色画素のコントラストが優れる着色樹脂組成物を提供することを目的とする。
 本発明者らが鋭意検討を行った結果、着色剤中の特定のフタロシアニン化合物の含有比率を特定比率以上とすることで、上記課題を解決することができることを見出し、本発明に至った。
 すなわち、本発明は以下の構成を有する。
[1](A)着色剤、(B)溶剤、(C)アルカリ可溶性樹脂、(D)光重合開始剤、及び(E)光重合性モノマーを含有する着色樹脂組成物であって、
 前記(A)着色剤が、下記一般式(1)で表される化学構造を有するフタロシアニン化合物及び黄色色材を含み、
 前記(A)着色剤中の前記フタロシアニン化合物の含有割合が65質量%以上90質量%以下であることを特徴とする着色樹脂組成物。
Figure JPOXMLDOC01-appb-C000004
(式(1)中、A1~A16は各々独立に、水素原子、ハロゲン原子、又は下記一般式(2)で表される基を表す。ただし、A1~A16のうち1つ以上はフッ素原子を表し、かつ、A1~A16のうち1つ以上は下記一般式(2)で表される基を表す。)
Figure JPOXMLDOC01-appb-C000005
(式(2)中、Xは2価の連結基を表す。式(2)中のベンゼン環は任意の置換基を有していてもよい。*は結合手を表す。)
[2]前記(A)着色剤中の前記フタロシアニン化合物の含有割合が70質量%以上90質量%以下である、[1]の着色樹脂組成物。
[3]前記式(1)中のA1~A16におけるハロゲン原子がフッ素原子である、[1]又は[2]の着色樹脂組成物。
[4]前記式(1)中、A1~A4のうち1つ以上がフッ素原子であり、A5~A8のうち1つ以上がフッ素原子であり、A9~A12のうち1つ以上がフッ素原子であり、かつ、A13~A16のうち1つ以上がフッ素原子である、[1]~[3]のいずれかの着色樹脂組成物。
[5]前記式(2)中のベンゼン環がアルコキシカルボニル基を有する、[1]~[4]のいずれかの着色樹脂組成物。
[6]前記式(2)中のXが酸素原子である、[1]~[5]のいずれかの着色樹脂組成物。
[7]前記式(1)中、A1~A4のうち1つ以上が前記式(2)で表される基であり、A5~A8のうち1つ以上が前記式(2)で表される基であり、A9~A12のうち1つ以上が前記式(2)で表される基であり、かつ、A13~A16のうち1つ以上が前記式(2)で表される基である、[1]~[6]のいずれかの着色樹脂組成物。
[8]前記黄色色材がC.I.ピグメントイエロー138、C.I.ピグメントイエロー185及び下記式(i)で表されるニッケルアゾ錯体からなる群から選ばれる少なくとも1種である、[1]~[7]のいずれかの着色樹脂組成物。
Figure JPOXMLDOC01-appb-C000006
[9]前記(A)着色剤中の前記黄色色材の含有割合が、10質量%以上35質量%以下である、[1]の着色樹脂組成物。
[10]着色樹脂組成物の全固形分における前記(A)着色剤の含有割合が、10質量%以上80質量%以下である、[1]~[9]のいずれかの着色樹脂組成物。
[11][1]~[10]のいずれかの着色樹脂組成物を硬化させてなる、硬化物。
[12][1]~[10]のいずれかの着色樹脂組成物を用いて作成した画素を備える、カラーフィルタ。
[13][12]のカラーフィルタを有する、画像表示装置。
 本発明によれば、プレベーク温度が比較的低い場合であっても現像液への溶解速度が速く、生産効率の高い着色樹脂組成物を提供することができる。
 また、本発明によれば、残渣の発生が抑制され、得られる緑色画素のコントラストが優れる着色樹脂組成物を提供することができる。
図1は、本発明におけるカラーフィルタを有する有機EL素子の一例を示す断面概略図である。
 本発明において、「重量平均分子量」とは、GPC(ゲルパーミエーションクロマトグラフィー)によるポリスチレン換算の重量平均分子量(Mw)をさす。
 本発明において、「全固形分」とは、着色樹脂組成物における溶剤以外の全成分を意味するものとする。溶剤以外の成分が常温で液体であっても、その成分は溶剤には含めず、全固形分に含める。
 本発明において、「アミン価」とは、特に断りのない限り有効固形分換算のアミン価を表し、分散剤の固形分1gあたりの塩基量と当量のKOHの質量で表される値である。
 本発明において、「C.I.」とはカラーインデックスを意味する。
[1]着色樹脂組成物
 本発明の着色樹脂組成物は、(A)着色剤、(B)溶剤、(C)アルカリ可溶性樹脂、(D)光重合開始剤、及び(E)光重合性モノマーを含有する。さらに要すれば、上記成分以外の他の添加物等が配合されていてもよい。
[1-1](A)着色剤
 本発明の着色樹脂組成物に含まれる(A)着色剤は、下記一般式(1)で表される化学構造を有するフタロシアニン化合物(以下、「フタロシアニン化合物(1)」と称する場合がある。)及び黄色色材を含む。(A)着色剤中のフタロシアニン化合物(1)の含有割合は65質量%以上90質量%以下である。
Figure JPOXMLDOC01-appb-C000007
 式(1)中、A1~A16は各々独立に、水素原子、ハロゲン原子、又は下記一般式(2)で表される基を表す。ただし、A1~A16のうち1つ以上はフッ素原子を表し、かつ、A1~A16のうち1つ以上は下記一般式(2)で表される基を表す。
Figure JPOXMLDOC01-appb-C000008
 式(2)中、Xは2価の連結基を表す。式(2)中のベンゼン環は任意の置換基を有していてもよい。*は結合手を表す。
 本発明の着色樹脂組成物に含まれる(A)着色剤は、フタロシアニン化合物(1)を含み、(A)着色剤中のフタロシアニン化合物(1)の含有割合は65質量%以上90質量%以下である。
 フタロシアニン化合物(1)はフタロシアニン骨格を構成する水素原子の1つ以上が原子半径の小さいフッ素原子で置換されており、フタロシアニン化合物(1)同士の会合を阻害しにくい構造であることから、プレベーク時の加熱で分子間距離が縮まった際に会合体を形成することによって、その周囲に本発明の着色樹脂組成物に含まれる(C)アルカリ可溶性樹脂が巻き付くように複合体を形成し、フタロシアニン化合物(1)が単独の場合に比べて溶解速度が速くなると考えられる。このとき、プレベーク温度が低いとフタロシアニン化合物(1)同士の会合が起きにくい。一方で、フタロシアニン化合物(1)の含有割合が65質量%以上であることによって、フタロシアニン化合物(1)同士の会合が他の着色剤によって阻害されにくくなり、プレベーク温度が低い場合でもフタロシアニン化合物(1)の規則的な会合体形成が進むことで、局所的凝集が起こりにくくなることから透過率が向上してコントラストが高くなると共に、会合体として分子量が大きくなることで、その周囲にアルカリ可溶性樹脂が巻き付きやすくなるため溶解速度が速くなり、現像時の残渣発生も抑制されると考えられる。
(A1~A16
 前記式(1)中、A1~A16は各々独立に、水素原子、ハロゲン原子、又は下記一般式(2)で表される基を表す。ただし、A1~A16のうち1つ以上はフッ素原子を表し、かつ、A1~A16のうち1つ以上は下記一般式(2)で表される基を表す。
Figure JPOXMLDOC01-appb-C000009
 式(2)中、Xは2価の連結基を表す。式(2)中のベンゼン環は任意の置換基を有していてもよい。*は結合手を表す。
 A1~A16におけるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子が挙げられる。高輝度化の観点からフッ素原子が好ましい。
 また、A1~A16のうち、1つ以上はフッ素原子であることが好ましく、フッ素原子は6つ以上がより好ましく、7つ以上がさらに好ましく、8つ以上が特に好ましく、また、フッ素原子が15以下であり、12以下が好ましく、10以下がより好ましい。前記下限値以上とすることでフタロシアニン化合物(1)の安定性が向上する傾向があり、また、前記上限値以下とすることで着色樹脂組成物中の分散剤や溶剤との親和性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、A1~A16のうちフッ素原子を表す置換基の個数は、1~15であり、6~12が好ましく、7~12がより好ましく、8~10がさらに好ましい。
(X)
 式(2)中のXは2価の連結基を表す。2価の連結基としては特に限定されないが、例えば、酸素原子、硫黄原子、-N(Ra1)-基(Ra1は水素原子、又は炭素数1~6の脂肪族炭化水素基を表す。)が挙げられる。焼成時の安定性の観点から、酸素原子又は硫黄原子が好ましく、酸素原子がより好ましい。
(ベンゼン環が有していてもよい置換基)
 式(2)中のベンゼン環は任意の置換基を有していてもよい。置換基としては特に限定されないが、例えば、ハロゲン原子、アルキル基(-RA基)、アルコキシ基(-ORA基(ただし、RAはアルキル基を表す。))、アルコキシカルボニル基(-COORA基(ただし、RAはアルキル基を表す。))、アリール基(-RB基)、アリールオキシ基(-ORB基(ただし、RBはアリール基を表す。))、アリールオキシカルボニル基(-COORB基(ただし、RBはアリール基を表す。))が挙げられる。現像溶解性や輝度の観点から、アルコキシカルボニル基が好ましい。
 これらの基に含まれるアルキル基(RA)は、直鎖状でも、分岐鎖状でも、環状でもよいが、有機溶剤との親和性の観点から直鎖状のアルキル基であることが好ましい。
 アルキル基(RA)の炭素数は特に限定されないが、1以上が好ましく、2以上がより好ましく、また、6以下が好ましく、5以下がより好ましく、4以下がさらに好ましい。前記下限値以上とすることで、凝集を抑制し、異物抑制となる傾向があり、また、前記上限値以下とすることで、溶媒親和性が向上し、経時安定性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、アルキル基の炭素数は1~6が好ましく、1~5がより好ましく、2~4がさらに好ましい。
 アルキル基(RA)としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基が挙げられ、凝集抑制の観点から、メチル基又はエチル基が好ましく、エチル基がより好ましい。
 これらの基に含まれるアリール基(RB)は、芳香族炭化水素環基であってもよく、芳香族複素環基であってもよい。
 アリール基(RB)の炭素数は特に限定されないが、4以上が好ましく、6以上がより好ましく、また、12以下が好ましく、10以下がより好ましく、8以下がさらに好ましい。前記下限値以上とすることで立体反発による凝集を抑制する傾向があり、また、前記上限値以下とすることで溶媒親和性が向上し、経時安定性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができ、例えば、アリール基の炭素数は4~12が好ましく、4~10がより好ましく、6~8がさらに好ましい。
 芳香族炭化水素環基における芳香族炭化水素環としては、単環であっても縮合環であってもよい。芳香族炭化水素環基としては、例えば、1個の遊離原子価を有する、ベンゼン環、ナフタレン環、ペンタレン環、インデン環、アズレン環、ヘプタレン環が挙げられる。
 芳香族複素環基における芳香族複素環としては、単環であっても縮合環であってもよい。芳香族複素環基としては、例えば、1個の遊離原子価を有する、フラン環、チオフェン環、ピロール環、2H-ピラン環、4H-チオピラン環、ピリジン環、1,3-オキサゾール環、イソオキサゾール環、1,3-チアゾール環、イソチアゾール環、イミダゾール環、ピラゾール環、フラザン環、ピラジン環、ピリミジン環、ピリダジン環、1,3,5-トリアジン環、ベンゾフラン環 、2-ベンゾフラン環、ベンゾチオフェン環、2-ベンゾチオフェン環、1H-ピロリジン環、インドール環、イソインドール環、インドリジン環、2H-1-ベンゾピラン環、1H-2-ベンゾピラン環、キノリン環、イソキノリン環、4H-キノリジン環、ベンゾイミダゾール環、1H-インダゾール環、キノキサリン環、キナゾリン環、シンノリン環、フタラジン環、1,8-ナフチリジン環、プリン環、プテリジン環が挙げられる。
 式(2)中のベンゼン環が任意の置換基を有する場合、その置換数は特に限定されないが、染料分子同士でπ-πスタッキングして耐熱性が向上し、染料の分解による輝度低下が抑制されるとの観点から、ベンゼン環1つに対して置換数が1であることが好ましい。
 式(2)中のベンゼン環が任意の置換基を有する場合、その置換位置は、o-位でも、m-位でも、p-位でもよいが、最密構造をとるスタッキングが可能になるとの観点から、p-位が好ましい。
 A1~A16のうち1つ以上はフッ素原子を表す。フタロシアニン化合物(1)の二分子間の会合体形成による輝度向上の観点から、A1~A4のうち1つ以上がフッ素原子であり、A5~A8のうち1つ以上がフッ素原子であり、A9~A12のうち1つ以上がフッ素原子であり、かつ、A13~A16のうち1つ以上がフッ素原子であることが好ましく;A1~A4のうち2つ以上がフッ素原子であり、A5~A8のうち2つ以上がフッ素原子であり、A9~A12のうち2つ以上がフッ素原子であり、かつ、A13~A16のうち2つ以上がフッ素原子であることがより好ましい。
 式(1)中、A1~A16のうち1つ以上は式(2)で表される基を表す。有機溶剤への溶解性や輝度の観点から、A1~A4のうち1つ以上が式(2)で表される基であり、A5~A8のうち1つ以上が式(2)で表される基であり、A9~A12のうち1つ以上が式(2)で表される基であり、かつ、A13~A16のうち1つ以上が式(2)で表される基であることが好ましく;A1~A4のうち2つ以上が式(2)で表される基であり、A5~A8のうち2つ以上が式(2)で表される基であり、A9~A12のうち2つ以上が式(2)で表される基であり、かつ、A13~A16のうち2つ以上が式(2)で表される基であることがより好ましい。
 効率的なスタッキングにより輝度低下が抑制されるとの観点から、A2、A3、A6、A7、A10、A11、A14、及びA15が式(2)で表される基であり、かつ、A1、A4、A5、A8、A9、A12、A13、及びA16がハロゲン原子であることが好ましく;A2、A3、A6、A7、A10、A11、A14、及びA15が式(2)で表される基であり、かつ、A1、A4、A5、A8、A9、A12、A13、及びA16がフッ素原子であることが特に好ましい。
 フタロシアニン化合物(1)としては、例えば以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000010
 なお、上記式中、Etはエチル基を表す。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 フタロシアニン化合物(1)の製造方法としては公知の方法を採用することができ、例えば、日本国特開平05-345861号公報に記載の方法を採用することができる。
 本発明の着色樹脂組成物におけるフタロシアニン化合物(1)の(A)着色剤中の含有割合は(A)着色剤の全固形分中に65質量%以上であり、70質量%以上が好ましく、また、90質量%以下であり、85質量%以下が好ましく、80質量%以下がより好ましい。前記下限値以上とすることでプレベーク温度が低い場合でも溶解速度が速くなる傾向があり、基板との密着性が良好となる傾向がある。さらに、コントラストが高くなる傾向があり、残渣を抑制される傾向がある。
 また、前記上限値以下とすることでカラーフィルタに要求される色度を担保できる傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、着色樹脂組成物におけるフタロシアニン化合物(1)の(A)着色剤中の含有割合は、(A)着色剤の全固形分中に65~90質量%であり、70~90質量%が好ましく、70~85質量%がより好ましく、70~80質量%がさらに好ましい。
 (A)着色剤は、フタロシアニン化合物(1)以外に黄色色材を含む。
 (A)着色剤がフタロシアニン化合物(1)以外に黄色色材を含むことにより、緑色画素に要求される色の再現性を達成できる傾向がある。
 黄色色材としては、例えば、黄色顔料、黄色染料が挙げられる。
 黄色顔料としては、例えば、C.I.ピグメントイエロー1、1:1、2、3、4、5、6、9、10、12、13、14、16、17、20、24、31、32、34、35、35:1、36、36:1、37、37:1、40、41、42、43、48、53、55、61、62、62:1、63、65、73、74、75,81、83、86、87、93、94、95、97、100、101、104、105、108、109、110、111、116、117、119、120、125、126、127、127:1、128、129、133、134、136、137、138、139、142、147、148、150、151、153、154、155、157、158、159、160、161、162、163、164、165、166、167、168、169、170、172、173、174、175、176、180、181、182、183、184、185、188、189、190、191、191:1、192、193、194、195、196、197、198、199、200、202、203、204、205、206、207、208、及び下記式(i)で表されるアゾバルビツール酸のニッケルとの1:1錯体又はその互換異性体に、他の化合物が挿入されてなる化合物(以下、「式(i)で表されるニッケルアゾ錯体」と称する場合がある。)が挙げられる。
Figure JPOXMLDOC01-appb-C000014
 式(i)で表されるニッケルアゾ錯体において挿入される他の化合物としては、例えば、下記式(ii)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000015
 高輝度および高色域の観点から、C.I.ピグメントイエロー83、117、129、138、139、154、155、180、185、式(i)で表されるニッケルアゾ錯体が好ましく、C.I.ピグメントイエロー83、138、139、180、185、式(i)で表されるニッケルアゾ錯体がより好ましい。
 黄色染料としては、例えば、バルビツール酸アゾ系染料、ピリドンアゾ系染料、ピラゾロンアゾ系染料、キノフタロン系染料、シアニン系染料が挙げられる。その具体例としては、日本国特開2010-168531号公報に記載の具体的化合物が挙げられる。
 黄色染料としては、カラーインデックスで染料に分類されているものの中で、C.I.ソルベント染料として、例えば、C.I.ソルベント・イエロー4、14、15、23、24、38、62、63、68、79、82、94、98、99、162、163が挙げられる。C.I.アシッド染料として、例えば、C.I.アシッド・グリーン1、3、5、9、16、25、27、50、58、63、65、80、104、105、106、109、C.I.アシッド・イエロー1、3、7、9、11、17、23、25、29、34、36、38、40、42、54、65、72、73、76、79、98、99、111、112、113、114、116、119、123、128、134、135、138、139、140、144、150、155、157、160、161、163、168、169、172、177、178、179、184、190、193、196、197、199、202、203、204、205、207、212、214、220、221、228、230、232、235、238、240、242、243、251やその誘導体が挙げられる。C.I.ダイレクト染料として、例えば、C.I.ダイレクト・イエロー2、33、34、35、38、39、43、47、50、54、58、68、69、70、71、86、93、94、95、98、102、108、109、129、136、138、141の染料が挙げられる。C.I.モーダント染料として、例えば、C.I.モーダント・イエロー5、8、10、16、20、26、30、31、33、42、43、45、56、61、62、65の染料が挙げられる。好ましくは、C.I.ソルベント・イエロー4、14、15、23、24、38、62、63、68、82、94、98、99、162、C.I.アシッド・イエロー1、3、7、9、11、17、23、25、29、34、36、38、40、42、54、65、72、73、76、79、98、99、111、112、113、114、116、119、123、128、134、135、138、139、140、144、150、155、157、160、161、163、168、169、172、177、178、179、184、190、193、196、197、199、202、203、204、205、207、212、214、220、221、228、230、232、235、238、240、242、243、251、23、25、29、34、40、42、72、76、99、111、112、114、116、163、243やその誘導体が挙げられる。
 焼成時の染料分解抑制の観点から、C.I.ソルベント・イエロー4、14、15、23、24、38、62、63、68、79、82、94、98、99、162、163が好ましい。
 (A)着色剤に含まれる黄色色材としては、緑色画素に要求される色の再現性の観点から、C.I.ピグメントイエロー138、185、式(i)で表されるニッケルアゾ錯体が好ましく、C.I.ピグメントイエロー138がより好ましい。
 (A)着色剤は、フタロシアニン化合物(1)及び黄色色材以外に、その他の着色剤を含んでいてもよい。その他の着色剤としては、顔料や染料が挙げられる。本発明の着色樹脂組成物を緑色画素用途に用いる場合には、例えば、緑色顔料、緑色染料の緑色色材を用いることが好ましい。
 緑色顔料としては、例えば、C.I.ピグメントグリーン7、36、58、59、62、63が挙げられ、輝度の観点からC.I.ピグメントグリーン58が好ましい。
 緑色染料としては、カラーインデックスで染料に分類されているものの中で、C.I.ソルベント染料として、例えば、C.I.ソルベントグリーン1、3、4、5、7、28、29、32、33、34、35が挙げられる。C.I.アシッド染料として、例えば、C.I.アシッド・グリーン1、3、5、9、16、25、27、50、58、63、65、80、104、105、106、109、C.I.モーダント・グリーン1、3、4、5、10、15、19、26、29、33、34、35、41、43、53が挙げられる。熱焼成時の染料分解抑制の観点からC.I.ソルベントグリーン1、3、4、5、7、28、29、32、33、34、35が好ましい。
 顔料の平均一次粒子径は、好ましくは0.2μm以下、より好ましくは0.1μm以下、特に好ましくは0.04μm以下である。顔料の微粒化に際しては、例えば、ソルベントソルトミリング法が好適に用いられる。
 本発明の着色樹脂組成物における(A)着色剤の含有割合は特に限定されないが、着色樹脂組成物の全固形分中に10質量%以上が好ましく、15質量%以上がより好ましく、20質量%以上がさらに好ましく、25質量%以上がよりさらに好ましく、30質量%以上が特に好ましく、また、80質量%以下が好ましく、60質量%以下がより好ましく、50質量%以下がさらに好ましく、40質量%以下が特に好ましい。前記下限値以上とすることで広い色相を再現できる傾向があり、また、前記上限値以下とすることで経時安定性を担保できる傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、着色樹脂組成物における(A)着色剤の含有割合は、着色樹脂組成物の全固形分中に10~80質量%が好ましく、15~80質量%より好ましく、20~60質量%がさらに好ましく、25~50質量%がよりさらに好ましく、30~40質量%が特に好ましい。
 本発明の着色樹脂組成物におけるフタロシアニン化合物(1)の含有割合は特に限定されないが、着色樹脂組成物の全固形分中に1質量%以上が好ましく、3質量%以上がより好ましく、5質量%以上がさらに好ましく、10質量%以上がよりさらに好ましく、15質量%以上が特に好ましく、また、50質量%以下が好ましく、40質量%以下がより好ましく、30質量%以下がさらに好ましく、20質量%以下が特に好ましい。前記下限値以上とすることで輝度が向上する傾向があり、また、前記上限値以下とすることで経時安定性を担保できる傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、着色樹脂組成物におけるフタロシアニン化合物(1)の含有割合は、着色樹脂組成物の全固形分中に3~50質量%がより好ましく、5~50質量%がさらに好ましく、10~40質量%がよりさらに好ましく、15~30質量%が特に好ましい。
 本発明の着色樹脂組成物の全固形分中の黄色色材は2質量%以上が好ましく、4質量%以上がより好ましく、6質量%以上がさらに好ましく、また、25質量%以下が好ましく、20質量%以下がより好ましく、10質量%以下がさらに好ましい。前記下限値以上とすることで緑色画素に要求される色を再現できる傾向があり、また、前記上限値以下とすることで溶解速度が速くなる傾向があり、さらにコントラストが高くなる傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、着色樹脂組成物がその他の着色剤として黄色色材を含む場合、黄色色材の含有割合は、着色樹脂組成物の全固形分中に2~25質量%が好ましく、4~20質量%がより好ましく、6~10質量%がさらに好ましい。
 黄色色材の(A)着色剤中の含有割合は、(A)着色剤中に5質量%以上が好ましく、10質量%以上がより好ましく、15質量%以上がさらに好ましく、20質量%以上がよりさらに好ましい。また、35質量%以下が好ましく、30質量%以下がより好ましい。前記下限値以上とすることで緑色画素に要求される色を再現できる傾向があり、また、前記上限値以下とすることで溶解速度が速くなる傾向があり、さらにコントラストが高くなる傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、(A)着色剤が黄色色材を含む場合、黄色色材の(A)着色剤中の含有割合は、(A)着色剤中に5~35質量%が好ましく、10~35質量%がより好ましく、15~30質量%がさらに好ましい。
 フタロシアニン化合物(1)と黄色色材との質量基準の含有比率(フタロシアニン化合物(1)/黄色色材)は、1.8以上が好ましく、2以上がより好ましく、2.3以上がさらに好ましく、また、9以下が好ましく、7以下がより好ましく、6以下がさらに好ましい。前記下限値以上とすることで溶解速度が速くなる傾向があり、また、前記上限値以下とすることで緑色画素に要求される色を再現できる傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、(A)着色剤が黄色色材を含む場合、フタロシアニン化合物(1)と黄色色材との質量基準の含有比率(フタロシアニン化合物(1)/黄色色材)は、1.8~9が好ましく、1.8~7がより好ましく、1.8~6がさらに好ましく、2~6がよりさらに好ましい。
 本発明の着色樹脂組成物がその他の着色剤を含む場合、その含有割合は特に限定されないが、着色樹脂組成物の全固形分中に1質量%以上が好ましく、3質量%以上がより好ましく、5質量%以上がさらに好ましく、7質量%以上がよりさらに好ましく、10質量%以上が特に好ましく、また、30質量%以下が好ましく、25質量%以下がより好ましく、20質量%以下がさらに好ましい。前記下限値以上とすることで広い色相を再現できる傾向があり、また、前記上限値以下とすることで経時安定性を担保できる傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、着色樹脂組成物がその他の着色剤を含む場合、その他の着色剤の含有割合は、着色樹脂組成物の全固形分中に1~30質量%が好ましく、3~30質量%がより好ましく、5~25質量%がさらに好ましく、7~25質量%がよりさらに好ましく、10~20質量%が特に好ましい。
[1-2](B)溶剤
 (B)溶剤は、本発明の着色樹脂組成物や顔料分散液において、(A)着色剤、(C)アルカリ可溶性樹脂、(D)光重合開始剤、(E)光重合性モノマー、その他の成分を溶解又は分散させ、粘度を調節する機能を有する。
 (B)溶剤としては、各成分を溶解または分散させることができるものであればよい。
 (B)溶剤としては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ-n-ブチルエーテル、プロピレングリコール-t-ブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ-n-ブチルエーテル、メトキシメチルペンタノール、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、3-メチル-3-メトキシブタノール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリプロピレングリコールメチルエーテルのようなグリコールモノアルキルエーテル類;
 エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテル、ジプロピレングリコールジメチルエーテルのようなグリコールジアルキルエーテル類;
 エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノ-n-ブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート、メトキシブチルアセテート、3-メトキシブチルアセテート、メトキシペンチルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノ-n-ブチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノエチルエーテルアセテート、3-メチル-3-メトキシブチルアセテートのようなグリコールアルキルエーテルアセテート類;
 エチレングリコールジアセテート、1,3-ブチレングリコールジアセテート、1,6-ヘキサノールジアセテートなどのグリコールジアセテート類;
 シクロヘキサノールアセテートなどのアルキルアセテート類;
アミルエーテル、プロピルエーテル、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ブチルエーテル、ジアミルエーテル、エチルイソブチルエーテル、ジヘキシルエーテルのようなエーテル類;
 アセトン、メチルエチルケトン、メチルアミルケトン、メチルイソプロピルケトン、メチルイソアミルケトン、ジイソプロピルケトン、ジイソブチルケトン、メチルイソブチルケトン、シクロヘキサノン、エチルアミルケトン、メチルブチルケトン、メチルヘキシルケトン、メチルノニルケトン、メトキシメチルペンタノンのようなケトン類;
 エタノール、プロパノール、ブタノール、ヘキサノール、シクロヘキサノール、エチレングリコール、プロピレングリコール、ブタンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、メトキシメチルペンタノール、グリセリン、ベンジルアルコールのような1価又は多価アルコール類;
 n-ペンタン、n-オクタン、ジイソブチレン、n-ヘキサン、ヘキセン、イソプレン、ジペンテン、ドデカンのような脂肪族炭化水素類;
 シクロヘキサン、メチルシクロヘキサン、メチルシクロヘキセン、ビシクロヘキシルのような脂環式炭化水素類;
 ベンゼン、トルエン、キシレン、クメンのような芳香族炭化水素類;
 アミルホルメート、エチルホルメート、酢酸エチル、酢酸ブチル、酢酸プロピル、酢酸アミル、メチルイソブチレート、エチレングリコールアセテート、エチルプロピオネート、プロピルプロピオネート、酪酸ブチル、酪酸イソブチル、イソ酪酸メチル、エチルカプリレート、ブチルステアレート、エチルベンゾエート、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、γ-ブチロラクトンのような鎖状又は環状エステル類;
 3-メトキシプロピオン酸、3-エトキシプロピオン酸のようなアルコキシカルボン酸類;
 ブチルクロライド、アミルクロライドのようなハロゲン化炭化水素類;
 メトキシメチルペンタノンのようなエーテルケトン類;
 アセトニトリル、ベンゾニトリルのようなニトリル類が挙げられる。
 市販の溶剤としては、例えば、ミネラルスピリット、バルソル#2、アプコ#18ソルベント、アプコシンナー、ソーカルソルベントNo.1及びNo.2、ソルベッソ#150、シェルTS28 ソルベント、カルビトール、エチルカルビトール、ブチルカルビトール、メチルセロソルブ、エチルセロソルブ、エチルセロソルブアセテート、メチルセロソルブアセテート、ジグライム(いずれも商品名)が挙げられる。これらの溶媒は、1種を単独で用いてもよく、2種以上を併用してもよい。
 フォトリソグラフィ法にてカラーフィルタの画素を形成する場合、(B)溶剤としては沸点が100~200℃(圧力1013.25[hPa]条件下。以下、沸点に関しては全て同様。)の溶剤が好ましい。より好ましくは120~170℃の沸点をもつ溶剤である。
 塗布性、表面張力などのバランスが良く、組成物中の構成成分の溶解度が比較的高い点からは、グリコールアルキルエーテルアセテート類が好ましい。
 グリコールアルキルエーテルアセテート類は、単独で使用してもよく、他の溶剤を併用してもよい。
 併用する溶剤として、特に好ましいのはグリコールモノアルキルエーテル類である。組成物中の構成成分の溶解性の観点からプロピレングリコールモノメチルエーテルが好ましい。
 グリコールモノアルキルエーテル類は極性が高く、添加量が多すぎると顔料が凝集しやすく、後に得られる着色樹脂組成物の粘度が上がっていくなどの保存安定性が低下する傾向があるので、グリコールモノアルキルエーテル類を併用する場合には、(B)溶剤中のグリコールモノアルキルエーテル類の割合は5~30質量%が好ましく、5~20質量%がより好ましい。
 別の態様として、150℃以上の沸点をもつ溶剤を併用することができる。150℃以上の沸点をもつ溶剤を併用することにより、着色樹脂組成物は乾燥しにくくなるが、急激に乾燥することによる顔料分散液中の構成成分の相互関係の破壊を起こし難くする効果がある。150℃以上の沸点をもつ溶剤を併用する場合には、(B)溶剤中の150℃以上の沸点をもつ溶剤の含有割合は3~50質量%が好ましく、5~40質量%がより好ましく、5~30質量%が特に好ましい。前記下限値以上とすることで、例えばスリットノズル先端で色材成分などが析出・固化して異物欠陥を惹き起こすことを回避しやすい傾向があり、また前記上限値以下とすることで組成物の乾燥速度が遅くなって減圧乾燥プロセスのタクト不良や、プレベークのピン跡といった問題を惹き起こすことを回避しやすい傾向がある。
 沸点150℃以上の溶剤は、グリコールアルキルエーテルアセテート類であっても、またグリコールアルキルエーテル類であってもよく、この場合は、沸点150℃以上の溶剤を別途含有させる必要はない。
 沸点150℃以上の溶剤として、好ましくは、例えば、ジエチレングリコールモノ-n-ブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、1,3-ブチレングリコールジアセテート、1,6-ヘキサノールジアセテート、トリアセチンが挙げられる。
 インクジェット法にてカラーフィルタの画素を形成する場合、(B)溶剤としては、沸点が、好ましくは130℃以上300℃以下、より好ましくは150℃以上280℃以下のものが適当である。前記下限値以上とすることで、得られる塗膜の均一性が良好となる傾向があり、前記上限値以下とすることで、焼成時の残留溶剤を低減しやすい傾向がある。
 溶剤の蒸気圧は、得られる塗膜の均一性の観点から、好ましくは10mmHg以下、より好ましくは5mmHg以下、さらに好ましくは1mmHg以下のものが使用できる。
 インクジェット法によるカラーフィルタ製造において、ノズルから発せられるインクは数~数十pLと非常に微細であるため、ノズル口周辺あるいは画素バンク内に着弾する前に、溶剤が蒸発してインクが濃縮・乾固する傾向がある。これを回避するためには、(B)溶剤が沸点の高い溶剤を含むことが好ましく、具体的には、沸点180℃以上の溶剤を含むことが好ましい。沸点が200℃以上の溶剤を含むことがより好ましく、沸点が220℃以上の溶剤を含むことが特に好ましい。沸点180℃以上である溶剤を含む場合、沸点180℃以上である溶剤の(B)溶剤中の含有割合は50質量%以上であることが好ましく、70質量%以上がより好ましく、90質量%以上が最も好ましい。前記下限値以上とすることで、液滴からの溶剤の蒸発防止効果が十分に発揮されやすい傾向がある。
 沸点180℃以上の溶剤として、ジエチレングリコールモノ-n-ブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、1,3-ブチレングリコールジアセテート、1,6-ヘキサノールジアセテート、トリアセチンが挙げられる。
 着色樹脂組成物の粘度調整や固形分の溶解度調整のために、沸点が180℃より低い溶剤を含んでもよい。このような溶剤としては、低粘度で溶解性が高く、低表面張力である溶剤が好ましく、例えば、エーテル類、エステル類、ケトン類が好ましい。例えば、シクロヘキサノン、ジプロピレングリコールジメチルエーテル、シクロヘキサノールアセテートが好ましい。
 溶剤がアルコール類を含有すると、インクジェット法における吐出安定性が劣化する場合がある。アルコール類を併用する場合には、(B)溶剤中のアルコール類の含有割合は20質量%以下とすることが好ましく、10質量%以下がより好ましく、5質量%以下が特に好ましい。
 本発明の着色樹脂組成物に占める(B)溶剤の含有割合は特に限定されないが、その上限は、好ましくは99質量%以下、より好ましくは90質量%以下、さらに好ましくは85質量%以下である。前記上限値以下とすることで塗布膜を形成しやすくなる傾向がある。一方で、溶剤含有割合の下限は、塗布に適した粘性などを考慮して、好ましくは70質量%以上、より好ましくは75質量%以上、さらに好ましくは80質量%以上である。上記の上限及び下限は任意に組み合わせることができる。例えば、着色樹脂組成物に占める溶剤の含有割合は70~99質量%が好ましく、75~90質量%がより好ましく、80~85質量%がさらに好ましい。
[1-3](C)アルカリ可溶性樹脂
 本発明の着色樹脂組成物は、(C)アルカリ可溶性樹脂を含有する。(C)アルカリ可溶性樹脂を含有することで、光重合による膜硬化性と現像液による溶解性を両立することができる。
 (C)アルカリ可溶性樹脂としては、例えば、日本国特開平7-207211号公報、日本国特開平8-259876号公報、日本国特開平10-300922号公報、日本国特開平11-140144号公報、日本国特開平11-174224号公報、日本国特開2000-56118号公報、日本国特開2003-233179号公報に記載される公知の高分子化合物を使用することができる。
 好ましくは下記(C-1)~(C-5)の樹脂が挙げられる。
 (C-1):エポキシ基含有(メタ)アクリレートと、他のラジカル重合性単量体との共重合体に対し、共重合体が有するエポキシ基の少なくとも一部に不飽和一塩基酸を付加させてなる樹脂、或いは該付加反応により生じた水酸基の少なくとも一部に多塩基酸無水物を付加させて得られる、アルカリ可溶性樹脂(以下「樹脂(C-1)」と称する場合がある。)
 (C-2):主鎖にカルボキシ基を含有する直鎖状アルカリ可溶性樹脂(以下、「樹脂(C-2)」と称する場合がある。)
 (C-3):前記樹脂(C-2)のカルボキシ基部分に、エポキシ基含有不飽和化合物を付加させた樹脂(以下、「樹脂(C-3)」と称する場合がある。)
 (C-4):(メタ)アクリル系樹脂(以下、「樹脂(C-4)」と称する場合がある。)
 (C-5):カルボキシ基を有するエポキシ(メタ)アクリレート樹脂(以下、「樹脂(C-5)」と称する場合がある。)
 特に好ましくは樹脂(C-1)が挙げられる。
 樹脂(C-2)~(C-5)は、アルカリ性の現像液によって溶解され、目的とする現像処理が遂行される程度に溶解性を有するものであればよく、各々、日本国特開2009-025813号公報に同項目として記載されている樹脂を好ましく採用することができる。
 (C-1):エポキシ基含有(メタ)アクリレートと、他のラジカル重合性単量体との共重合体に対し、該共重合体が有するエポキシ基の少なくとも一部に不飽和一塩基酸を付加させてなる樹脂、或いは該付加反応により生じた水酸基の少なくとも一部に多塩基酸無水物を付加させて得られるアルカリ可溶性樹脂
 樹脂(C-1)の好ましい態様の1つとして、「エポキシ基含有(メタ)アクリレート5~90モル%と、他のラジカル重合性単量体10~95モル%との共重合体に対し、該共重合体が有するエポキシ基の10~100モル%に不飽和一塩基酸を付加させてなる樹脂、或いは該付加反応により生じた水酸基の10~100モル%に多塩基酸無水物を付加させて得られるアルカリ可溶性樹脂」が挙げられる。
 エポキシ基含有(メタ)アクリレートとしては、例えば、グリシジル(メタ)アクリレート、3,4-エポキシブチル(メタ)アクリレート、(3,4-エポキシシクロヘキシル)メチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテルが例示できる。中でもグリシジル(メタ)アクリレートが好ましい。これらのエポキシ基含有(メタ)アクリレートは1種を単独で用いてもよく、2種以上を併用してもよい。
 エポキシ基含有(メタ)アクリレートと共重合させる他のラジカル重合性単量体としては、下記一般式(V)で表される構造を有するモノ(メタ)アクリレートが好ましい。
Figure JPOXMLDOC01-appb-C000016
 式(V)中、R91~R98は各々独立して、水素原子、又は炭素数1~3のアルキル基を表す。なお、R96とR98、又はR95とR97とが、互いに連結して環を形成していてもよい。
 式(V)において、R96とR98、又はR95とR97とが連結して形成される環は、脂肪族環であるのが好ましく、飽和又は不飽和の何れでもよく、又、炭素数が5~6であるのが好ましい。
 中でも、式(V)で表される構造としては、下記一般式(Va)、(Vb)、又は(Vc)で表される構造が好ましい。
 アルカリ可溶性樹脂にこれらの構造を導入することによって、本発明の着色樹脂組成物をカラーフィルタ形成用に使用する場合に、該着色樹脂組成物の耐熱性が向上し、該着色樹脂組成物を用いて形成された画素の強度が増す傾向がある。
 式(V)で表される構造を有するモノ(メタ)アクリレートは、1種を単独で用いてもよく、2種以上を併用してもよい。
Figure JPOXMLDOC01-appb-C000017
 式(V)で表される構造を有するモノ(メタ)アクリレートとしては、式(V)で表される構造を有する限り公知の各種のモノ(メタ)アクリレートが使用できるが、特に下記一般式(VI)で表されるモノ(メタ)アクリレートが好ましい。
Figure JPOXMLDOC01-appb-C000018
 式(VI)中、R89は水素原子又はメチル基を表し、R90は式(V)で表される構造を表す。
 エポキシ基含有(メタ)アクリレートと他のラジカル重合性単量体との共重合体において式(VI)で表されるモノ(メタ)アクリレートに由来する繰り返し単位が含まれる場合、式(VI)で表されるモノ(メタ)アクリレートに由来する繰り返し単位の含有割合は、他のラジカル重合性単量体に由来する繰り返し単位中、5~90モル%が好ましく、10~70モル%がさらに好ましく、15~50モル%が特に好ましい。
 式(VI)で表されるモノ(メタ)アクリレート以外の他のラジカル重合性単量体としては、特に限定されるものではないが、例えば、スチレン、スチレンのα-、o-、m-、p-アルキル、ニトロ、シアノ、アミド、エステル誘導体等のビニル芳香族類;ブタジエン、2,3-ジメチルブタジエン、イソプレン、クロロプレン等のジエン類;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸-n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸-n-ブチル、(メタ)アクリル酸-sec-ブチル、(メタ)アクリル酸-tert-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ネオペンチル、(メタ)アクリル酸イソアミル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸-2-エチルヘキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸シクロペンチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸-2-メチルシクロヘキシル、(メタ)アクリル酸ジシクロヘキシル、(メタ)アクリル酸イソボロニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸プロパギル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ナフチル、(メタ)アクリル酸アントラセニル、(メタ)アクリル酸アントラニノニル、(メタ)アクリル酸ピペロニル、(メタ)アクリル酸サリチル、(メタ)アクリル酸フリル、(メタ)アクリル酸フルフリル、(メタ)アクリル酸テトラヒドロフリル、(メタ)アクリル酸ピラニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェネチル、(メタ)アクリル酸クレジル、(メタ)アクリル酸-1,1,1-トリフルオロエチル、(メタ)アクリル酸パーフルオルエチル、(メタ)アクリル酸パーフルオロ-n-プロピル、(メタ)アクリル酸パーフルオロイソプロピル、(メタ)アクリル酸トリフェニルメチル、(メタ)アクリル酸クミル、(メタ)アクリル酸-3-(N,N-ジメチルアミノ)プロピル、(メタ)アクリル酸-2-ヒドロキシエチル、(メタ)アクリル酸-2-ヒドロキシプロピル等の(メタ)アクリル酸エステル類;(メタ)アクリル酸アミド、(メタ)アクリル酸N,N-ジメチルアミド、(メタ)アクリル酸N,N-ジエチルアミド、(メタ)アクリル酸N,N-ジプロピルアミド、(メタ)アクリル酸N,N-ジ-イソプロピルアミド、(メタ)アクリル酸アントラセニルアミド等の(メタ)アクリル酸アミド;(メタ)アクリル酸アニリド、(メタ)アクリロイルニトリル、アクロレイン、塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン、N-ビニルピロリドン、ビニルピリジン、酢酸ビニル等のビニル化合物類;シトラコン酸ジエチル、マレイン酸ジエチル、フマル酸ジエチル、イタコン酸ジエチル等の不飽和ジカルボン酸ジエステル類;N-フェニルマレイミド、N-シクロヘキシルマレイミド、N-ラウリルマレイミド、N-(4-ヒドロキシフェニル)マレイミド等のモノマレイミド類;N-(メタ)アクリロイルフタルイミドが挙げられる。
 これら他のラジカル重合性単量体の中でも、着色樹脂組成物に優れた耐熱性及び強度を付与させるとの観点からは、スチレン、ベンジル(メタ)アクリレート、モノマレイミドが好ましい。
 エポキシ基含有(メタ)アクリレートと他のラジカル重合性単量体との共重合体においてスチレン、ベンジル(メタ)アクリレート、又はモノマレイミドに由来するいずれかの繰り返し単位が含まれる場合、他のラジカル重合性単量体に由来する繰り返し単位中、スチレンに由来する繰り返し単位、ベンジル(メタ)アクリレートに由来する繰り返し単位、及びモノマレイミドに由来する繰り返し単位の含有割合の合計は、1~70モル%が好ましく、3~50モル%がさらに好ましい。
 エポキシ基含有(メタ)アクリレートと他のラジカル重合性単量体との共重合反応には、公知の溶液重合法が適用できる。使用する溶剤はラジカル重合に不活性なものであれば特に限定されるものではなく、通常用いられている有機溶剤を使用することができる。
 溶液重合法に用いられる溶剤としては、例えば、酢酸エチル、酢酸イソプロピル、セロソルブアセテート、ブチルセロソルブアセテート等のエチレングリコールモノアルキルエーテルアセテート類;ジエチレングリコールモノメチルエーテルアセテート、カルビトールアセテート、ブチルカルビトールアセテート等のジエチレングリコールモノアルキルエーテルアセテート類;プロピレングリコールモノアルキルエーテルアセテート類;ジプロピレングリコールモノアルキルエーテルアセテート類等の酢酸エステル類;エチレングリコールジアルキルエーテル類;メチルカルビトール、エチルカルビトール、ブチルカルビトール等のジエチレングリコールジアルキルエーテル類;トリエチレングリコールジアルキルエーテル類;プロピレングリコールジアルキルエーテル類;ジプロピレングリコールジアルキルエーテル類;1,4-ジオキサン、テトラヒドロフラン等のエーテル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;ベンゼン、トルエン、キシレン、オクタン、デカン等の炭化水素類;石油エーテル、石油ナフサ、水添石油ナフサ、ソルベントナフサ等の石油系溶剤;乳酸メチル、乳酸エチル、乳酸ブチル等の乳酸エステル類;ジメチルホルムアミド、N-メチルピロリドンが挙げられる。これらの溶剤は単独で用いてもよく、2種以上を併用してもよい。
 溶液重合法に用いられる溶剤の使用量は、得られる共重合体100質量部に対し、好ましくは30~1000質量部、より好ましくは50~800質量部である。溶剤の使用量を前記範囲内とすることで共重合体の分子量の制御が容易となる傾向がある。
 共重合反応に使用されるラジカル重合開始剤は、ラジカル重合を開始できるものであれば特に限定されるものではなく、通常用いられている有機過酸化物触媒やアゾ化合物触媒を使用することができる。有機過酸化物触媒としては、公知のケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアリルパーオキサイド、ジアシルパーオキサイド、パーオキシエステル、パーオキシジカーボネートに分類される触媒が挙げられる。
 共重合反応に使用されるラジカル重合開始剤としては、例えば、ベンゾイルパーオキサイド、ジクミルパーオキサイド、ジイソプロピルパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルパーオキシベンゾエート、t-ヘキシルパーオキシベンゾエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシ-2-エチルヘキサノエート、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシル-3、3-イソプロピルヒドロパーオキサイド、t-ブチルヒドロパーオキサイド、ジクミルパーオキサイド、ジクミルヒドロパーオキサイド、アセチルパーオキサイド、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、イソブチルパーオキサイド、3,3,5-トリメチルヘキサノイルパーオキサイド、ラウリルパーオキサイド、1,1-ビス(t-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)3,3,5-トリメチルシクロヘキサンが挙げられる。
 アゾ化合物触媒としては、例えば、アゾビスイソブチロニトリル、アゾビスカルボンアミドが挙げられる。
 これらの中から、重合温度に応じて、適当な半減期のラジカル重合開始剤が1種又は2種以上使用される。
 ラジカル重合開始剤の使用量は、共重合反応に使用される単量体の合計100質量部に対して、通常0.5~20質量部、好ましくは1~10質量部である。
 共重合反応は、共重合反応に使用される単量体及びラジカル重合開始剤を溶剤に溶解し、攪拌しながら昇温して行ってもよいし、ラジカル重合開始剤を添加した単量体を、昇温、攪拌した溶剤中に滴下して行ってもよいし、溶剤中にラジカル重合開始剤を添加し昇温した中に単量体を滴下してもよい。
 反応条件は目標とする分子量に応じて設定することができる。
 本発明において、エポキシ基含有(メタ)アクリレートと他のラジカル重合性単量体との共重合体としては、エポキシ基含有(メタ)アクリレートに由来する繰り返し単位5~90モル%と他のラジカル重合性単量体に由来する繰り返し単位10~95モル%とからなるものが好ましく;エポキシ基含有(メタ)アクリレートに由来する繰り返し単位20~80モル%と他のラジカル重合性単量体に由来する繰り返し単位80~20モル%とからなるものがさらに好ましく;エポキシ基含有(メタ)アクリレートに由来する繰り返し単位30~70モル%と他のラジカル重合性単量体に由来する繰り返し単位70~30モル%とからなるものが特に好ましい。
 エポキシ基含有(メタ)アクリレートに由来する繰り返し単位の含有割合を前記下限値以上とすることで、後述する不飽和一塩基酸や多塩基酸無水物の付加量が十分となる傾向がある。
 他のラジカル重合性単量体に由来する繰り返し単位の含有割合を前記下限値以上とすることで、耐熱性や強度が十分となる傾向がある。
 続いて、エポキシ基含有(メタ)アクリレートと他のラジカル重合性単量体との共重合体のエポキシ基に、不飽和一塩基酸(重合性成分)と、多塩基酸無水物(アルカリ可溶性成分)とを反応させる。
 エポキシ基に付加させる不飽和一塩基酸としては、公知の不飽和一塩基酸を使用することができ、例えば、エチレン性不飽和二重結合を有する不飽和カルボン酸が挙げられる。
 エポキシ基に付加させる不飽和一塩基酸としては、例えば、(メタ)アクリル酸;クロトン酸;o-、m-、p-ビニル安息香酸;α-位がハロアルキル基、アルコキシル基、ハロゲン原子、ニトロ基、又はシアノ基などで置換された(メタ)アクリル酸等のモノカルボン酸;が挙げられ、(メタ)アクリル酸が好ましい。不飽和一塩基酸は1種を単独で用いてもよく、2種以上を併用してもよい。
 不飽和一塩基酸をエポキシ基に付加させることにより、樹脂(C-1)に重合性を付与することができる。
 不飽和一塩基酸は、共重合体が有するエポキシ基の、例えば、10~100モル%、好ましくは30~100モル%、より好ましくは50~100モル%に付加させる。前記下限値以上とすることで、着色樹脂組成物の経時安定性が良好となる傾向がある。
 共重合体のエポキシ基に不飽和一塩基酸を付加させる方法としては、公知の方法を採用することができる。
 さらに、共重合体のエポキシ基に不飽和一塩基酸を付加させたときに生じる水酸基に付加させる多塩基酸無水物としては、公知の多塩基酸無水物が使用できる。
 多塩基酸無水物としては、例えば、無水マレイン酸、無水コハク酸、無水イタコン酸、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、無水クロレンド酸等の二塩基酸無水物;無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸無水物、ビフェニルテトラカルボン酸無水物等の三塩基以上の酸の無水物が挙げられる。中でも、テトラヒドロ無水フタル酸、無水コハク酸が好ましい。これらの多塩基酸無水物は1種を単独で用いてもよく、2種以上を併用してもよい。
 多塩基酸無水物を共重合体のエポキシ基に不飽和一塩基酸を付加させたときに生じる水酸基に付加させることにより、樹脂(C-1)にアルカリ可溶性を付与することができる。
 多塩基酸無水物は、共重合体が有するエポキシ基に不飽和一塩基酸を付加させることにより生じる水酸基の、例えば、10~100モル%、好ましくは20~90モル%、より好ましくは30~80モル%に付加させる。前記上限値以下とすることで、現像時の残膜率が良好となる傾向があり、また、前記下限値以上とすることで溶解性が十分となる傾向がある。
 共重合体が有するエポキシ基に不飽和一塩基酸を付加させることにより生じる水酸基に多塩基酸無水物を付加させる方法としては、公知の方法を採用することができる。
 さらに、光感度を向上させるために、多塩基酸無水物を付加させた後、生成したカルボキシ基の一部にグリシジル(メタ)アクリレートや重合性不飽和基を有するグリシジルエーテル化合物を付加させてもよい。
 現像性を向上させるために、生成したカルボキシ基の一部に、重合性不飽和基を有さないグリシジルエーテル化合物を付加させてもよい。
 また、重合性不飽和基を有するグリシジルエーテル化合物及び重合性不飽和基を有さないグリシジルエーテル化合物両方を付加させてもよい。
 重合性不飽和基を有さないグリシジルエーテル化合物としては、例えば、フェニル基やアルキル基を有するグリシジルエーテル化合物が挙げられる。
 重合性不飽和基を有さないグリシジルエーテル化合物の市販品としては、例えば、ナガセケムテックス社製の商品名「デナコールEX-111」、「デナコールEX-121」、「デナコールEX-141」、「デナコールEX-145」、「デナコールEX-146」、「デナコールEX-171」、「デナコールEX-192」が挙げられる。
 樹脂(C-1)の構造は、例えば日本国特開平8-297366号公報や日本国特開2001-89533号公報に記載されている。
 樹脂(C-1)のGPCで測定したポリスチレン換算の重量平均分子量は特に限定されないが、3000~100000が好ましく、5000~50000が特に好ましい。前記下限値以上とすることで、耐熱性や膜強度が良好となる傾向があり、また、前記上限値以下とすることで現像液に対する溶解性が良好となる傾向がある。
 分子量分布の目安として、樹脂(C-1)の重量平均分子量(Mw)の数平均分子量に対する比(Mw/Mn)は、2.0~5.0が好ましい。
 紫外線露光時の塗膜硬化性の観点からは、(C)アルカリ可溶性樹脂の中でも、(c1)側鎖にエチレン性不飽和基を有するアクリル共重合樹脂が好ましい。
 (c1)側鎖にエチレン性不飽和基を有するアクリル共重合樹脂が有する、エチレン性不飽和基を有する側鎖を含む部分構造は特に限定されないが、紫外線露光時の塗膜硬化性とアルカリ現像時のアルカリ溶解性の両立の観点から、例えば、下記一般式(CI)で表される部分構造を有することが好ましい。
Figure JPOXMLDOC01-appb-C000019
 式(CI)中、R1及びR2は各々独立に、水素原子又はメチル基を表す。*は結合手を表す。
 式(CI)で表される部分構造の中でも、感度やアルカリ現像性の観点から、下記一般式(CI’)で表される部分構造が好ましい。
Figure JPOXMLDOC01-appb-C000020
 式(CI’)中、R1及びR2は各々独立に、水素原子又はメチル基を表す。RXは水素原子又は多塩基酸残基を表す。
 多塩基酸残基とは、多塩基酸又はその無水物からOH基を1つ除した1価の基を意味する。多塩基酸としては、例えば、マレイン酸、コハク酸、イタコン酸、フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、ピロメリット酸、トリメリット酸、ベンゾフェノンテトラカルボン酸、メチルヘキサヒドロフタル酸、エンドメチレンテトラヒドロフタル酸、クロレンド酸、メチルテトラヒドロフタル酸、ビフェニルテトラカルボン酸が挙げられる。
 パターニング特性の観点から、マレイン酸、コハク酸、イタコン酸、フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、ピロメリット酸、トリメリット酸、ビフェニルテトラカルボン酸が好ましく、テトラヒドロフタル酸、ビフェニルテトラカルボン酸がより好ましい。
 これらの多塩基酸は1種単独で用いてもよく、2種以上を併用してもよい。
 (c1)側鎖にエチレン性不飽和基を有するアクリル共重合樹脂が式(CI)で表される部分構造を有する場合、(c1)側鎖にエチレン性不飽和基を有するアクリル共重合樹脂における、式(CI)で表される部分構造の含有割合は特に限定されないが10モル%以上が好ましく、20モル%以上がより好ましく、30モル%以上がさらに好ましく、40モル%以上がよりさらに好ましく、50モル%以上が特に好ましく、65モル%以上が最も好ましく、また、95モル%以下が好ましく、90モル%以下がより好ましく、85モル%以下がさらに好ましく、80モル%以下がよりさらに好ましく、75モル%以下が特に好ましく、70モル%以下が最も好ましい。前記下限値以上とすることで紫外線露光時の塗膜硬化性が向上する傾向があり、また、前記上限値以下とすることでアルカリ現像時のアルカリ溶解性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、(c1)側鎖にエチレン性不飽和基を有するアクリル共重合樹脂における、式(CI)で表される部分構造の含有割合は10~95モル%が好ましく、20~90モル%がより好ましく、30~85モル%がさらに好ましく、40~80モル%がよりさらに好ましく、50~75モル%が特に好ましく、65~70モル%が最も好ましい。
 (c1)側鎖にエチレン性不飽和基を有するアクリル共重合樹脂が式(CI’)で表される部分構造を有する場合、(c1)側鎖にエチレン性不飽和基を有するアクリル共重合樹脂における、式(CI’)で表される部分構造の含有割合は特に限定されないが、10モル%以上が好ましく、20モル%以上がより好ましく、30モル%以上がさらに好ましく、40モル%以上がよりさらに好ましく、50モル%以上が特に好ましく、65モル%以上が最も好ましく、また、95モル%以下が好ましく、90モル%以下がより好ましく、85モル%以下がさらに好ましく、80モル%以下がよりさらに好ましく、75モル%以下が特に好ましく、70モル%以下が最も好ましい。前記下限値以上とすることで紫外線露光時の塗膜硬化性が向上する傾向があり、また、前記上限値以下とすることでアルカリ現像時のアルカリ溶解性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、(c1)側鎖にエチレン性不飽和基を有するアクリル共重合樹脂における、式(CI)で表される部分構造の含有割合は10~95モル%が好ましく、20~90モル%がより好ましく、30~85モル%がさらに好ましく、40~80モル%がよりさらに好ましく、50~75モル%が特に好ましく、65~70モル%が最も好ましい。
 (c1)側鎖にエチレン性不飽和基を有するアクリル共重合樹脂が式(CI)で表される部分構造を含む場合、他に含まれる部分構造は特に限定されないが、アルカリ現像時のアルカリ溶解性の観点から、例えば、下記一般式(CII)で表される部分構造を有することも好ましい。
Figure JPOXMLDOC01-appb-C000021
 式(CII)中、R3は水素原子又はメチル基を表し、R4は置換基を有していてもよいアルキル基、置換基を有していてもよい芳香族環基、又は置換基を有していてもよいアルケニル基を表す。
(R4
 式(CII)において、R4は置換基を有していてもよいアルキル基、置換基を有していてもよい芳香族環基、又は置換基を有していてもよいアルケニル基を表す。
 R4におけるアルキル基としては直鎖状、分岐鎖状又は環状のアルキル基が挙げられる。その炭素数は、1以上が好ましく、3以上がより好ましく、5以上がさらに好ましく、8以上が特に好ましく、また、20以下が好ましく、18以下がより好ましく、16以下がさらに好ましく、14以下がよりさらに好ましく、12以下が特に好ましい。前記下限値以上とすることで親油性が向上し、溶剤への溶解性が向上する傾向があり、また、前記上限値以下とすることで親水性が向上し、アルカリ溶解性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、アルキル基の炭素数は1~20が好ましく、1~18がより好ましく、3~16がさらに好ましく、5~14がよりさらに好ましく、8~12が特に好ましい。
 アルキル基としては、例えば、メチル基、エチル基、シクロヘキシル基、ジシクロペンタニル基、ドデカニル基が挙げられる。現像性の観点から、ジシクロペンタニル基、ドデカニル基が好ましく、ジシクロペンタニル基がより好ましい。
 アルキル基が有していてもよい置換基としては、例えば、メトキシ基、エトキシ基、クロロ基、ブロモ基、フルオロ基、ヒドロキシ基、アミノ基、エポキシ基、オリゴエチレングリコール基、フェニル基、カルボキシ基、アクリロイル基、メタクリロイル基が挙げられる。現像性の観点から、ヒドロキシ基、オリゴエチレングリコール基が好ましい。
 R4における芳香族環基としては、1価の芳香族炭化水素環基及び1価の芳香族複素環基が挙げられる。その炭素数は6以上が好ましく、また、24以下が好ましく、22以下がより好ましく、20以下がさらに好ましく、18以下が特に好ましい。前記下限値以上とすることで親油性が向上し、溶剤への溶解性が向上する傾向があり、また、前記上限値以下とすることで親水性が向上し、アルカリ溶解性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、芳香族環基の炭素数は6~24が好ましく、6~22がより好ましく、6~20がさらに好ましく、6~18が特に好ましい。
 芳香族炭化水素環基における芳香族炭化水素環としては、単環であっても縮合環であってもよく、例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環が挙げられる。
 芳香族複素環基における芳香族複素環としては、単環であっても縮合環であってもよく、例えば、フラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、フェナントリジン環、ペリミジン環、キナゾリン環、キナゾリノン環、アズレン環が挙げられる。
 現像性の観点から、ベンゼン環基、ナフタレン環基が好ましく、ベンゼン環基がより好ましい。
 芳香族環基が有していてもよい置換基としては、例えば、メチル基、エチル基、プロピル基、メトキシ基、エトキシ基、クロロ基、ブロモ基、フルオロ基、ヒドロキシ基、アミノ基、エポキシ基、オリゴエチレングリコール基、フェニル基、カルボキシ基が挙げられる。現像性の観点から、ヒドロキシ基、オリゴエチレングリコール基が好ましい。
 R4におけるアルケニル基としては、直鎖状、分岐鎖状又は環状のアルケニル基が挙げられる。その炭素数は、2以上が好ましく、また、22以下が好ましく、20以下がより好ましく、18以下がさらに好ましく、16以下がよりさらに好ましく、14以下が特に好ましい。前記下限値以上とすることで親油性が向上し、溶剤への溶解性が向上する傾向があり、また、前記上限値以下とすることで親水性が向上し、アルカリ溶解性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、アルケニル基の炭素数は2~22が好ましく、2~20がより好ましく、2~18がさらに好ましく、2~16がよりさらに好ましく、2~14が特に好ましい。
 アルケニル基としては、例えば、ビニル基、アリル基、2-プロペン-2-イル基、2-ブテン-1-イル基、3-ブテン-1-イル基、2-ペンテン-1-イル基、3-ペンテン-2-イル基、ヘキセニル基、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基が挙げられる。現像性の観点から、ビニル基、アリル基が好ましく、ビニル基がより好ましい。
 アルケニル基が有していてもよい置換基としては、例えば、メトキシ基、エトキシ基、クロロ基、ブロモ基、フルオロ基、ヒドロキシ基、アミノ基、エポキシ基、オリゴエチレングリコール基、フェニル基、カルボキシ基が挙げられる。現像性の観点から、ヒドロキシ基、オリゴエチレングリコール基が好ましい。
 R4は置換基を有していてもよいアルキル基、置換基を有していてもよい芳香族環基、又は置換基を有していてもよいアルケニル基を表し、現像性と膜強度の観点から、アルキル基又はアルケニル基が好ましく、アルキル基がより好ましい。
 (c1)側鎖にエチレン性不飽和基を有するアクリル共重合樹脂が式(CII)で表される部分構造を有する場合、(c1)側鎖にエチレン性不飽和基を有するアクリル共重合樹脂における式(CII)で表される部分構造の含有割合は特に限定されないが、1モル%以上が好ましく、5モル%以上がより好ましく、10モル%以上がさらに好ましく、20モル%以上が特に好ましく、また、70モル%以下が好ましく、60モル%以下がより好ましく、50モル%以下がさらに好ましく、40モル%以下が特に好ましい。前記下限値以上とすることでアルカリ溶解性が向上する傾向があり、また、前記上限値以下とすることで着色樹脂組成物の保存安定性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、(c1)側鎖にエチレン性不飽和基を有するアクリル共重合樹脂における式(CII)で表される部分構造の含有割合は1~70モル%が好ましく、5~60モル%がより好ましく、10~50モル%がさらに好ましく、20~40モル%が特に好ましい。
 (c1)アクリル共重合樹脂が式(CI)で表される部分構造を含む場合、他に含まれる部分構造として、耐熱性向上による輝度低下抑制の観点から下記一般式(CIII)で表される部分構造が含まれることが好ましい。
Figure JPOXMLDOC01-appb-C000022
 式(CIII)中、R5は水素原子又はメチル基を表し、R6は置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルキニル基、ヒドロキシ基、カルボキシ基、ハロゲン原子、置換基を有していてもよいアルコキシ基、チオール基、又は置換基を有していてもよいアルキルスルフィド基を表す。tは0~5の整数を表す。
(R6
 式(CIII)においてR6は置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルキニル基、ヒドロキシ基、カルボキシ基、ハロゲン原子、置換基を有していてもよいアルコキシ基、チオール基、又は置換基を有していてもよいアルキルスルフィド基を表す。
 R6におけるアルキル基としては、直鎖状、分岐鎖状又は環状のアルキル基が挙げられる。その炭素数は、1以上が好ましく、3以上がより好ましく、5以上がさらに好ましく、また、20以下が好ましく、18以下がより好ましく、16以下がさらに好ましく、14以下がよりさらに好ましく、12以下が特に好ましい。前記下限値以上とすることで親油性が向上し、溶剤への溶解性が向上する傾向があり、また、前記上限値以下とすることで親水性が向上し、アルカリ溶解性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、アルキル基の炭素数は1~20が好ましく、1~18がより好ましく、3~16がさらに好ましく、3~14がよりさらに好ましく、5~12が特に好ましい。
 アルキル基としては、例えば、メチル基、エチル基、シクロヘキシル基、ジシクロペンタニル基、ドデカニル基が挙げられる。耐熱性の観点から、ジシクロペンタニル基、ドデカニル基が好ましく、ジシクロペンタニル基がより好ましい。
 アルキル基が有していてもよい置換基としては、例えば、メトキシ基、エトキシ基、クロロ基、ブロモ基、フルオロ基、ヒドロキシ基、アミノ基、エポキシ基、オリゴエチレングリコール基、フェニル基、カルボキシ基、アクリロイル基、メタクリロイル基が挙げられる。現像性の観点から、ヒドロキシ基、オリゴエチレングリコール基が好ましい。
 R6におけるアルケニル基としては、直鎖状、分岐鎖状又は環状のアルケニル基が挙げられる。その炭素数は、2以上が好ましく、また、22以下が好ましく、20以下がより好ましく、18以下がさらに好ましく、16以下がよりさらに好ましく、14以下が特に好ましい。前記下限値以上とすることで親油性が向上し、溶剤への溶解性が向上する傾向があり、また、前記上限値以下とすることで親水性が向上し、アルカリ溶解性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、アルケニル基の炭素数は2~22が好ましく、2~20がより好ましく、2~18がさらに好ましく、2~16がよりさらに好ましく、2~14が特に好ましい。
 アルケニル基としては、例えば、ビニル基、アリル基、2-プロペン-2-イル基、2-ブテン-1-イル基、3-ブテン-1-イル基、2-ペンテン-1-イル基、3-ペンテン-2-イル基、ヘキセニル基、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基が挙げられる。紫外線露光時の露光感度の観点から、ビニル基、アリル基が好ましく、ビニル基がより好ましい。
 アルケニル基が有していてもよい置換基としては、例えば、メトキシ基、エトキシ基、クロロ基、ブロモ基、フルオロ基、ヒドロキシ基、アミノ基、エポキシ基、オリゴエチレングリコール基、フェニル基、カルボキシ基が挙げられる。現像性の観点から、ヒドロキシ基、オリゴエチレングリコール基が好ましい。
 R6におけるアルキニル基としては、直鎖状、分岐鎖状又は環状のアルキニル基が挙げられる。その炭素数は、2以上が好ましく、また、22以下が好ましく、20以下がより好ましく、18以下がさらに好ましく、16以下がよりさらに好ましく、14以下が特に好ましい。前記下限値以上とすることで親油性が向上し、溶剤への溶解性が向上する傾向があり、また、前記上限値以下とすることで親水性が向上し、アルカリ溶解性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、アルキニル基の炭素数は2~22が好ましく、2~20がより好ましく、2~18がさらに好ましく、2~16がよりさらに好ましく、2~14が特に好ましい。
 アルキニル基としては、例えば、1-プロピン-3-イル基、1-ブチン-4-イル基、1-ペンチン-5-イル基、2-メチル-3-ブチン-2-イル基、1,4-ペンタジイン-3-イル基、1,3-ペンタジイン-5-イル基、1-ヘキシン-6-イル基が挙げられる。
 アルキニル基が有していてもよい置換基としては、例えば、メトキシ基、エトキシ基、クロロ基、ブロモ基、フルオロ基、ヒドロキシ基、アミノ基、エポキシ基、オリゴエチレングリコール基、フェニル基、カルボキシ基が挙げられる。現像性の観点から、ヒドロキシ基、オリゴエチレングリコール基が好ましい。
 R6におけるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。アクリル共重合樹脂の保存安定性の観点からフッ素原子が好ましい。
 R6におけるアルコキシ基としては、直鎖状、分岐鎖状又は環状のアルコキシ基が挙げられる。その炭素数は、1以上が好ましく、また、20以下が好ましく、18以下がより好ましく、16以下がさらに好ましく、14以下がよりさらに好ましく、12以下が特に好ましい。前記下限値以上とすることで親油性が向上し、溶剤への溶解性が向上する傾向があり、また、前記上限値以下とすることで親水性が向上し、アルカリ溶解性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、アルコキシ基の炭素数は1~20が好ましく、1~18がより好ましく、1~16がさらに好ましく、1~14がよりさらに好ましく、1~12が特に好ましい。
 アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基が挙げられる。
 アルコキシ基が有していてもよい置換基としては、例えば、メトキシ基、エトキシ基、クロロ基、ブロモ基、フルオロ基、ヒドロキシ基、アミノ基、エポキシ基、オリゴエチレングリコール基、フェニル基、カルボキシ基、アクリロイル基、メタクリロイル基が挙げられる。現像性の観点から、ヒドロキシ基、オリゴエチレングリコール基が好ましい。
 R6におけるアルキルスルフィド基としては、直鎖状、分岐鎖状又は環状のアルキルスルフィド基が挙げられる。その炭素数は、1以上が好ましく、また、20以下が好ましく、18以下がより好ましく、16以下がさらに好ましく、14以下がよりさらに好ましく、12以下が特に好ましい。前記下限値以上とすることで親油性が向上し、溶剤への溶解性が向上する傾向があり、また、前記上限値以下とすることで親水性が向上し、アルカリ溶解性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。
例えば、アルキルスルフィド基の炭素数は1~20が好ましく、1~18がより好ましく、1~16がさらに好ましく、1~14がよりさらに好ましく、1~12が特に好ましい。
 アルキルスルフィド基としては、例えば、メチルスルフィド基、エチルスルフィド基、プロピルスルフィド基、ブチルスルフィド基が挙げられる。現像性の観点から、メチルスルフィド基、エチルスルフィド基が好ましい。
 アルキルスルフィド基におけるアルキル基が有していてもよい置換基としては、例えば、メトキシ基、エトキシ基、クロロ基、ブロモ基、フルオロ基、ヒドロキシ基、アミノ基、エポキシ基、オリゴエチレングリコール基、フェニル基、カルボキシ基、アクリロイル基、メタクリロイル基が挙げられる。現像性の観点から、ヒドロキシ基、オリゴエチレングリコール基が好ましい。
 R6は置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルキニル基、ヒドロキシ基、カルボキシ基、ハロゲン原子、アルコキシ基、ヒドロキシアルキル基、チオール基、又は置換基を有していてもよいアルキルスルフィド基を表し、現像性の観点から、ヒドロキシ基又はカルボキシ基が好ましく、カルボキシ基がより好ましい。
 式(CIII)においてtは0~5の整数を表す。製造容易性の観点からはtが0であることが好ましい。
 (c1)側鎖にエチレン性不飽和基を有するアクリル共重合樹脂が式(CIII)で表される部分構造を有する場合、(c1)側鎖にエチレン性不飽和基を有するアクリル共重合樹脂における式(CIII)で表される部分構造の含有割合は特に限定されないが、1モル%以上が好ましく、2モル%以上がより好ましく、5モル%以上がさらに好ましく、8モル%以上が特に好ましく、また、50モル%以下が好ましく、40モル%以下がより好ましく、30モル%以下がさらに好ましく、20モル%以下が特に好ましい。前記下限値以上とすることで耐熱性が向上し輝度低下を抑制する傾向があり、また、前記上限値以下とすることでその他部分構造の含有割合が増え、アルカリ溶解性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、(c1)側鎖にエチレン性不飽和基を有するアクリル共重合樹脂における式(CIII)で表される部分構造の含有割合は1~50モル%が好ましく、2~40モル%がより好ましく、5~30モル%がさらに好ましく、8~20モル%が特に好ましい。
 (c1)側鎖にエチレン性不飽和基を有するアクリル共重合樹脂が式(CI)で表される部分構造を有する場合、他に含まれる部分構造として、現像性の観点から下記一般式(CIV)で表される部分構造を有することも好ましい。
Figure JPOXMLDOC01-appb-C000023
 式(CIV)中、R7は水素原子又はメチル基を表す。
 (c1)側鎖にエチレン性不飽和基を有するアクリル共重合樹脂における式(CIV)で表される部分構造を含有する場合、(c1)側鎖にエチレン性不飽和基を有するアクリル共重合樹脂における式(CIV)で表される部分構造の含有割合は特に限定されないが、5モル%以上が好ましく、10モル%以上がより好ましく、20モル%以上がさらに好ましく、また、80モル%以下が好ましく、70モル%以下がより好ましく、60%モル以下がさらに好ましい。前記下限値以上とすることでアルカリ溶解性が向上する傾向があり、また、前記上限値以下とすることで着色樹脂組成物の保存安定性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、(c1)側鎖にエチレン性不飽和基を有するアクリル共重合樹脂における式(CIV)で表される部分構造の含有割合は5~80モル%が好ましく10~70モル%がより好ましく、20~60%モルがさらに好ましい。
 (C)アルカリ可溶性樹脂の酸価は特に限定されないが、10mgKOH/g以上が好ましく、30mgKOH/g以上がより好ましく、40mgKOH/g以上がさらに好ましく、50mgKOH/g以上がよりさらに好ましく、60mgKOH/g以上が特に好ましく、また、300mgKOH/g以下が好ましく、250mgKOH/g以下がより好ましく、200mgKOH/g以下がさらに好ましく、150mgKOH/g以下がよりさらに好ましく、100mgKOH/g以下が特に好ましい。前記下限値以上とすることでアルカリ溶解性が向上する傾向があり、また、前記上限値以下とすることで着色樹脂組成物の保存安定性、基板密着性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、(C)アルカリ可溶性樹脂の酸価は10~300mgKOH/gが好ましく、30~300mgKOH/gがより好ましく、40~250mgKOH/gがさらに好ましく、50~200mgKOH/gがよりさらに好ましく、60~150mgKOH/gが特に好ましい。
 (C)アルカリ可溶性樹脂の重量平均分子量は特に限定されないが、好ましくは1000以上、より好ましくは2000以上、さらに好ましくは4000以上、よりさらに好ましくは6000以上、ことさらに好ましくは7000以上、特に好ましくは8000以上であり、また、好ましくは30000以下、より好ましくは20000以下、さらに好ましくは15000以下、特に好ましくは10000以下である。前記下限値以上とすることで耐熱性や塗膜硬化性が向上する傾向があり、また、前記上限値以下とすることでアルカリ溶解性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、(C)アルカリ可溶性樹脂の重量平均分子量は1000~30000が好ましく、2000~30000がより好ましく、4000~20000がさらに好ましく、6000~20000がよりさらに好ましく、7000~15000がことさら好ましく、8000~10000が特に好ましい。
 本発明の着色樹脂組成物における(C)アルカリ可溶性樹脂の含有割合は特に限定されないが、着色樹脂組成物の全固形分中に5質量%以上が好ましく、10質量%以上がより好ましく、20質量%以上がさらに好ましく、30質量%以上がよりさらに好ましく、40質量%以上が特に好ましく、また、80質量%以下が好ましく、70質量%以下がより好ましく、60質量%以下がさらに好ましく、50質量%以下が特に好ましい。前記下限値以上とすることで紫外線露光時の塗膜硬化性が向上する傾向があり、また、前記上限値以下とすることで現像液溶解性が向上し、残渣を抑制する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、着色樹脂組成物における(C)アルカリ可溶性樹脂の含有割合は、着色樹脂組成物の全固形分中に、5~80質量%が好ましく、10~80質量%がより好ましく、20~70質量%がさらに好ましく、30~60質量%がよりさらに好ましく、40~50質量%が特に好ましい。
[1-4](D)光重合開始剤
 本発明の着色樹脂組成物は(D)光重合開始剤を含有する。(D)光重合開始剤を含有することで光重合による膜硬化性を付与することができる。
 (D)光重合開始剤は、加速剤(連鎖移動剤)及び必要に応じて添加される増感色素等の付加剤との混合物(光重合開始系)として用いることもできる。光重合開始系は、光を直接吸収し、或いは光増感されて分解反応又は水素引き抜き反応を起こし、重合活性ラジカルを発生する機能を有する成分である。
 光重合開始剤としては、例えば、日本国特開昭59-152396号公報、日本国特開昭61-151197号各公報に記載のチタノセン化合物を含むメタロセン化合物や、日本国特開平10-39503号公報に記載のヘキサアリールビイミダゾール誘導体、ハロメチル-s-トリアジン誘導体、N-フェニルグリシン等のN-アリール-α-アミノ酸類、N-アリール-α-アミノ酸塩類、N-アリール-α-アミノ酸エステル類等のラジカル活性剤、α-アミノアルキルフェノン系化合物、日本国特開2000-80068号公報に記載されているオキシムエステル系開始剤が挙げられる。
 本発明で用いることができる光重合開始剤を以下に列挙する。
 2-(4-メトキシフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-メトキシナフチル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-エトキシナフチル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-エトキシカルボニルナフチル)-4,6-ビス(トリクロロメチル)-s-トリアジン等のハロメチル化トリアジン誘導体;
 2-トリクロロメチル-5-(2′-ベンゾフリル)-1,3,4-オキサジアゾール、2-トリクロロメチル-5-〔β-(2′-ベンゾフリル)ビニル〕-1,3,4-オキサジアゾール、2-トリクロロメチル-5-〔β-(2′-(6″-ベンゾフリル)ビニル)〕-1,3,4-オキサジアゾール、2-トリクロロメチル-5一フリル-1,3,4-オキサジアゾール等のハロメチル化オキサジアゾール誘導体;
 2-(2′-クロロフェニル)-4,5-ジフェニルイミダソール2量体、2-(2′-クロロフェニル)-4,5-ビス(3′-メトキシフェニル)イミダゾール2量体、2-(2′-フルオロフェニル)-4,5-ジフェニルイミダゾール2量体、2-(2′-メトキシフェニル)-4,5-ジフェニルイミダゾール2量体、(4′-メトキシフェニル)-4,5-ジフェニルイミダゾール2量体等のイミダゾール誘導体;
 ベンゾインメチルエーテル、ベンゾインフェニルエーテル、ベンゾインイソブチルエーテル、ベンゾインイソプロピルエーテル等のベンゾインアルキルエーテル類;
 2-メチルアントラキノン、2-エチルアントラキノン、2-t-ブチルアントラキノン、1-クロロアントラキノン等のアントラキノン誘導体;
 ベンゾフェノン、ミヒラーズケトン、2-メチルベンゾフェノン、3-メチルベンゾフェノン、4-メチルベンゾフェノン、2-クロロベンゾフェノン、4-ブロモベンゾフェノン、2-カルボキシベンゾフェノン等のベンゾフェノン誘導体;
 2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシアセトフェノン、1-ヒドロキシシクロへキシルフェニルケトン、α-ヒドロキシ-2-メチルフェニルプロパノン、1-ヒドロキシ-1-メチルエチル-(p-イソプロピルフェニル)ケトン、1-ヒドロキシ-1-(p-ドデシルフェニル)ケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、1,1,1-トリクロロメチル-(p一ブチルフェニル)ケトン等のアセトフェノン誘導体;
 チオキサントン、2-エチルチオキサントン、2-イソプロピルチオキサントン、2-クロロチオキサントン、2,4-ジメチルチオキサントン、2、4-ジエチルチオキサントン、2,4-ジイソプロピルチオキサントン等のチオキサントン誘導体;
 p-ジメチルアミノ安息香酸エチル、P-ジエチルアミノ安息香酸エチル等の安息香酸エステル誘導体;
 9-フェニルアクリジン、9-(p-メトキシフェニル)アクリジン等のアクリジン誘導体;
 9,10-ジメチルベンズフェナジン等のフェナジン誘導体;
 ベンズアンスロン等のアンスロン誘導体;
 ジシクロペンタジエニル-Ti-ジクロライド、ジシクロペンタジェニル-Ti-ビス-フェニル、ジシクロペンタジェニル-Ti-ビス-2,3,4,5,6-ペンタフルオロフェニル-1-イル、ジシクロペンタジェニル-Ti-ビス-2,3,5,6-テトラフルオロフェニル-1-イル、ジシクロペンタジェニル-Ti-ビス-2,4,6-トリフルオロフェニ-1-イル、ジシクロペンタジェニル-Ti-2,6-ジプルオロフェニ-1-イル、ジシクロペンタジェニル-Ti-2,4-ジフルオロフェニ-1-イル、ジメチルシクロペンタジェニル-Ti-ビス-2,3,4,5,6-ペンタフルオロフェニ-1-イル、ジメチルシクロペンタジェニル-Ti-ビス-2,6-ジフルオロフェニ-1-イル、ジシクロペンタジェニル-Ti-2,6-ジフルオロ-3-(ピル-1-イル)-フェニ-1-イル等のチタノセン誘導体;
 2-メチル-1[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタン-1-オン、4-ジメチルアミノエチルベンゾエ-ト、4-ジメチルアミノイソアミルベンゾエ-ト、4-ジエチルアミノアセトフェノン、4-ジメチルアミノプロピオフェノン、2-エチルヘキシル-1,4-ジメチルアミノベンゾエート、2,5-ビス(4-ジエチルアミノベンザル)シクロヘキサノン、7-ジエチルアミノ-3-(4-ジエチルアミノベンゾイル)クマリン、4-(ジエチルアミノ)カルコン等のα-アミノアルキルフェノン系化合物;
 1,2-オクタンジオン-1-[4-(フェニルチオ)フェニル]-2-(O-ベンゾイルオキシム)エタノン、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)等のオキシムエステル系化合物。
 感度及び表面性状の観点から、オキシムエステル系化合物(オキシムエステル系光重合開始剤)が好ましい。
 オキシムエステル系化合物は、その構造の中に紫外線を吸収する構造と光エネルギーを伝達する構造とラジカルを発生する構造を併せ持っているために、少量で感度が高く、かつ熱反応に対しては安定であり、少量で高感度な着色樹脂組成物の設計が可能である。特に、露光光源のi線(365nm)に対する光吸収性の観点から、置換基を有していてもよいカルバゾール環を有するオキシムエステル系化合物が好ましい。
 オキシムエステル系化合物としては、例えば、下記一般式(I-1)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000024
 式(I-1)中、R21aは、水素原子、置換基を有していてもよいアルキル基、又は、置換基を有していてもよい芳香族環基を表す。
 R21bは芳香環又はヘテロ芳香環を含む任意の置換基を表す。
 R22aは、置換基を有していてもよいアルカノイル基、又は、置換基を有していてもよいアリーロイル基を表す。
 R21aにおけるアルキル基の炭素数は特に限定されないが、溶剤への溶解性や露光に対する感度の観点から、好ましくは1以上、より好ましくは2以上、また、好ましくは20以下、より好ましくは15以下、さらに好ましくは10以下、特に好ましくは5以下である。上記の上限及び下限は任意に組み合わせることができる。例えば、アルキル基の炭素数は1~20が好ましく、1~15がより好ましく、1~10がさらに好ましく、1~5がよりさらに好ましく、2~5が特に好ましい。
 アルキル基としては、例えば、メチル基、エチル基、プロピル基、シクロペンチルエチル基、プロピル基が挙げられる。
 アルキル基が有していてもよい置換基としては、例えば、芳香族環基、水酸基、カルボキシ基、ハロゲン原子、アミノ基、アミド基、4-(2-メトキシ-1-メチル)エトキシ-2-メチルフェニル基又はN-アセチル-N-アセトキシアミノ基が挙げられる。合成容易性の観点から、無置換であることが好ましい。
 R21aにおける芳香族環基としては、芳香族炭化水素環基及び芳香族複素環基が挙げられる。芳香族環基の炭素数は特に限定されないが、着色樹脂組成物への溶解性の観点から5以上であることが好ましい。また、現像性の観点から30以下であることが好ましく、20以下であることがより好ましく、12以下であることがさらに好ましく、8以下であることが特に好ましい。上記の上限及び下限は任意に組み合わせることができる。例えば、芳香族環基の炭素数は、5~30が好ましく、5~20がより好ましく、5~12がさらに好ましく、5~8が特に好ましい。
 芳香族環基としては、例えば、フェニル基、ナフチル基、ピリジル基、フリル基、フルオレニル基が挙げられる。現像性の観点から、フェニル基、ナフチル基、フルオレニル基が好ましく、フェニル基、フルオレニル基がより好ましい。
 芳香族環基が有していてもよい置換基としては、例えば、水酸基、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基、カルボキシ基、ハロゲン原子、アミノ基、アミド基、アルキル基が挙げられる。現像性の観点から水酸基、カルボキシ基が好ましく、カルボキシ基がより好ましい。置換基を有していてもよいアルキル基や置換基を有していてもよいアルコキシ基における置換基としては、例えば、水酸基、アルコキシ基、ハロゲン原子、ニトロ基が挙げられる。
 現像性の観点から、R21aとしては置換基を有していてもよいアルキル基が好ましく、無置換のアルキル基がより好ましく、メチル基がさらに好ましい。
 R21bは芳香環又はヘテロ芳香環を含む任意の置換基である。溶剤への溶解性や露光に対する感度の観点から、置換基を有していてもよいカルバゾリル基、置換基を有していてもよいチオキサントニル基、置換基を有していてもよいジフェニルスルフィド基又は置換基を有してもよいフルオレニル基、これらの基とカルボニル基とを連結した基が好ましい。露光光源のi線(365nm)に対する光吸収性の観点から、置換基を有していてもよいカルバゾリル基、又は置換基を有していてもよいカルバゾリル基とカルボニル基を連結した基が好ましい。
 カルバゾリル基が有していてもよい置換基としては、例えば、メチル基、エチル基等の炭素数1~10のアルキル基;メトキシ基、エトキシ基などの炭素数1~10のアルコキシ基;F、Cl、Br、Iなどのハロゲン原子;炭素数1~10のアシル基;炭素数1~10のアルキルエステル基;炭素数1~10のアルコキシカルボニル基;炭素数1~10のハロゲン化アルキル基;炭素数4~10の芳香族環基;アミノ基;炭素数1~10のアミノアルキル基;水酸基;ニトロ基;CN基;置換基を有していてもよいアリーロイル基;置換基を有していてもよいヘテロアリーロイル基;置換基を有していてもよいテノイル基が挙げられる。
 R22aにおけるアルカノイル基の炭素数は特に限定されないが、溶剤への溶解性や感度の観点から、好ましくは2以上、より好ましくは3以上、また、好ましくは20以下、より好ましくは15以下、さらに好ましくは10以下、特に好ましくは5以下である。上記の上限及び下限は任意に組み合わせることができる。例えば、アルカノイル基の炭素数は2~20が好ましく、2~15がより好ましく、2~10がさらに好ましく、2~5がよりさらに好ましく、3~5が特に好ましい。
 アルカノイル基としては、例えば、アセチル基、エチロイル基、プロパノイル基、ブタノイル基が挙げられる。
 アルカノイル基が有していてもよい置換基としては、例えば、芳香族環基、水酸基、カルボキシ基、ハロゲン原子、アミノ基、アミド基が挙げられ、合成容易性の観点からは、無置換であることが好ましい。
 R22aにおけるアリーロイル基の炭素数は特に限定されないが、溶剤への溶解性や感度の観点から、好ましくは7以上、より好ましくは8以上、また、好ましくは20以下、より好ましくは15以下、さらに好ましくは10以下である。上記の上限及び下限は任意に組み合わせることができる。例えば、アリーロイル基の炭素数は7~20が好ましく、7~15がより好ましく、7~10がさらに好ましく、8~10が特に好ましい。
 アリーロイル基としては、例えば、ベンゾイル基、ナフトイル基が挙げられる。
 アリーロイル基が有していてもよい置換基としては、例えば、水酸基、カルボキシ基、ハロゲン原子、アミノ基、アミド基、アルキル基が挙げられ、合成容易性の観点からは、無置換であることが好ましい。
 式(I-1)で表される化合物として、露光光源のi線(365nm)に対する光吸収性の観点から、下記一般式(I-2)又は(I-3)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
 式(I-2)及び式(I-3)中、R21a及びR22aは、式(I-1)と同義である。
 R23aは、置換基を有していてもよいアルキル基を表す。
 R24aは、置換基を有していてもよいアルキル基、置換基を有していてもよいアリーロイル基、置換基を有していてもよいヘテロアリーロイル基、又はニトロ基を表す。
 カルバゾール環を構成するベンゼン環は、さらに芳香族環によって縮合されて多環芳香族環となっていてもよい。
 R23aにおけるアルキル基の炭素数は特に限定されないが、溶剤への溶解性の観点から、好ましくは1以上、より好ましくは2以上、また、好ましくは20以下、より好ましくは15以下、さらに好ましくは10以下、特に好ましくは5以下である。上記の上限及び下限は任意に組み合わせることができる。例えば、アルキル基の炭素数は1~20が好ましく、1~15がより好ましく、1~10がさらに好ましく、1~5がよりさらに好ましく、2~5が特に好ましい。
 アルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、シクロヘキシル基が挙げられる。
 アルキル基が有していてもよい置換基としては、例えば、カルボニル基、カルボキシ基、ヒドロキシ基、フェニル基、ベンジル基、シクロヘキシル基、ニトロ基が挙げられる。合成容易性の観点から、無置換であることが好ましい。
 R23aとしては、溶剤への溶解性と合成容易性の観点から、エチル基であることがより好ましい。
 R24aにおけるアルキル基の炭素数は特に限定されないが、溶剤への溶解性の観点から、好ましくは1以上、より好ましくは2以上、また、好ましくは20以下、より好ましくは15以下、さらに好ましくは10以下、特に好ましくは5以下である。上記の上限及び下限は任意に組み合わせることができる。例えば、アルキル基の炭素数は1~20が好ましく、1~15がより好ましく、1~10がさらに好ましく、1~5がよりさらに好ましく、2~5が特に好ましい。
 アルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、シクロヘキシル基が挙げられる。
 アルキル基が有していてもよい置換基としては、例えば、カルボニル基、カルボキシ基、ヒドロキシ基、フェニル基、ベンジル基、シクロヘキシル基、ニトロ基が挙げられる。合成容易性の観点から、無置換であることが好ましい。
 R24aにおけるアリーロイル基の炭素数は特に限定されないが、溶剤への溶解性の観点から、好ましくは7以上、より好ましくは8以上、さらに好ましくは9以上、また、好ましくは20以下、より好ましくは15以下、さらに好ましくは10以下、特に好ましくは9以下である。上記の上限及び下限は任意に組み合わせることができる。例えば、アリーロイル基の炭素数は7~20が好ましく、8~15がより好ましく、9~10がさらに好ましく、9が特に好ましい。
 アリーロイル基としては、例えば、ベンゾイル基、ナフトイル基が挙げられる。
 アリーロイル基が有していてもよい置換基としては、例えば、カルボニル基、カルボキシ基、ヒドロキシ基、フェニル基、ベンジル基、シクロヘキシル基、ニトロ基が挙げられる。合成容易性の観点から、エチル基であることが好ましい。
 R24aにおけるヘテロアリーロイル基の炭素数は特に限定されないが、溶剤への溶解性の観点から、好ましくは7以上、より好ましくは8以上、さらに好ましくは9以上、また、好ましくは20以下、より好ましくは15以下、さらに好ましくは10以下、特に好ましくは9以下である。上記の上限及び下限は任意に組み合わせることができる。例えば、ヘテロアリーロイル基の炭素数は7~20が好ましく、8~15がより好ましく、9~10がさらに好ましく、9が特に好ましい。
 ヘテロアリール基としては、例えば、ベンゾイル基、フルオロベンゾイル基、クロロベンゾイル基、ブロモベンゾイル基、フルオロナフトイル基、クロロナフトイル基、ブロモナフトイル基が挙げられる。
 ヘテロアリーロイル基が有していてもよい置換基としては、例えば、カルボニル基、カルボキシ基、ヒドロキシ基、フェニル基、ベンジル基、シクロヘキシル基、ニトロ基が挙げられる。合成容易性の観点から、無置換であることが好ましい。
 R24aとしては、感度の観点から、置換基を有していてもよいアリーロイル基が好ましく、ベンゾイル基がより好ましい。
 カルバゾール環を構成するベンゼン環は、さらに芳香族環によって縮合されて多環芳香族環となっていてもよい。
 オキシムエステル系化合物の市販品として、例えば、BASF社製のOXE-02、OXE-03、常州強力電子新材料社製のTR-PBG-304、TR-PBG-314、ADEKA社製のN-1919、NCI-930、NCI-831が挙げられる。
 オキシムエステル系化合物として、具体的には以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
 これらの光重合開始剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 (D)光重合開始剤に加えて、さらに連鎖移動剤を用いてもよい。連鎖移動剤とは、発生したラジカルを受け取り、受け取ったラジカルを他の化合物に受け渡す機能を有する化合物である。
 連鎖移動剤としては、上記機能を有する化合物であれば種々の連鎖移動剤を用いることができるが、例えば、メルカプト基含有化合物や、四塩化炭素が挙げられ、連鎖移動効果が高い傾向があることからメルカプト基含有化合物を用いることがより好ましい。S-H結合エネルギーが小さいことによって結合開裂が起こりやすく、水素引きぬき反応や連鎖移動反応を起こしやすいためであると考えられる。感度向上や表面硬化性に有効である。
 メルカプト基含有化合物としては、例えば、2-メルカプトベンゾチアゾール、2-メルカプトベンゾイミダゾール、2-メルカプトベンゾオキサゾール、3-メルカプト-1,2,4-トリアゾール、2-メルカプト-4(3H)-キナゾリン、β-メルカプトナフタレン、1,4-ジメチルメルカプトベンゼン等の芳香族環を有するメルカプト基含有化合物;へキサンジチオール、デカンジチオール、ブタンジオールビス(3-メルカプトプロピオネート)、ブタンジオールビスチオグリコレート、エチレングリコールビス(3-メルカプトプロピオネート)、エチレングリコールビスチオグリコレート、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリメチロールプロパントリスチオグリコレート、トリスヒドロキシエチルトリスチオプロピオネート、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールトリス(3-メルカプトプロピオネート)、ブタンジオールビス(3-メルカプトブチレート)、エチレングリコールビス(3-メルカプトブチレート)、トリメチロールプロパントリス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、ペンタエリスリトールトリス(3-メルカプトブチレート)、1,3,5-トリス(3-メルカプトブチルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン等の脂肪族系のメルカプト基含有化合物が挙げられる。表面平滑性の観点から、メルカプト基を複数有する化合物が好ましい。
 芳香族環を有するメルカプト基含有化合物としては、2-メルカプトベンゾチアゾール、2-メルカプトベンゾイミダゾールが好ましく、脂肪族系のメルカプト基含有化合物としては、トリメチロールプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールトリス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、ペンタエリスリトールトリス(3-メルカプトブチレート)、1,3,5-トリス(3-メルカプトブチルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオンが好ましい。
 感度の面からは、脂肪族系のメルカプト基含有化合物が好ましく、トリメチロールプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールトリス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、ペンタエリスリトールトリス(3-メルカプトブチレート)、1,3,5-トリス(3-メルカプトブチルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオンが好ましく、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)がより好ましい。
 これらの連鎖移動剤は1種を単独で用いてもよく、2種以上を併用してもよい。
 本発明の着色樹脂組成物において、(D)光重合開始剤の含有割合は特に限定されないが、着色樹脂組成物の全固形分中に0.5質量%以上が好ましく、0.8質量%以上がより好ましく、1質量%以上がさらに好ましく、1.2質量%以上が特に好ましく、また、10質量%以下が好ましく、8質量%以下がより好ましく、6質量%以下がさらに好ましく、4質量%以下が特に好ましい。前記下限値以上とすることで塗膜の硬化性が向上する傾向があり、また、前記上限値以下とすることで可視光吸収が低減されることで輝度が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、着色樹脂組成物において、(D)光重合開始剤の含有割合は、着色樹脂組成物の全固形分中に0.5~10質量%が好ましく、0.8~8質量%がより好ましく、1~6質量%がさらに好ましく、1.2~4質量%が特に好ましい。
 本発明の着色樹脂組成物が連鎖移動剤を含有する場合、その含有割合は特に限定されないが、着色樹脂組成物の全固形分中に0.1質量%以上が好ましく、0.2質量%以上がより好ましく、0.3質量%以上がさらに好ましく、0.4質量%以上が特に好ましく、また、3質量%以下が好ましく、2.5質量%以下がより好ましく、2質量%以下がさらに好ましく、1.5質量%以下が特に好ましい。前記下限値以上とすることで耐溶剤性が向上する傾向があり、また、前記上限値以下とすることで保存安定性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、着色樹脂組成物が連鎖移動剤を含有する場合、その含有割合は、着色樹脂組成物の全固形分中に0.1~3質量%が好ましく、0.2~2.5質量%がより好ましく、0.3~2質量%がさらに好ましく、0.4~1.5質量%が特に好ましい。
[1-5](E)光重合性モノマー
 本発明の着色樹脂組成物は(E)光重合性モノマーを含有する。
 (E)光重合性モノマーは、重合可能な低分子化合物であれば特に制限はないが、エチレン性二重結合を少なくとも1つ有する付加重合可能な化合物(以下、「エチレン性化合物」と称す。)が好ましい。エチレン性化合物とは、本発明の着色樹脂組成物が活性光線の照射を受けた場合、光重合開始剤の作用により付加重合し、硬化するようなエチレン性二重結合を有する化合物である。なお、本発明における単量体は、いわゆる高分子物質に相対する概念を意味し、狭義の単量体以外に二量体、三量体、オリゴマーも含有する概念を意味する。
 (E)光重合性モノマーとして、特に、1分子中にエチレン性二重結合を2個以上有する多官能エチレン性単量体を使用することが望ましい。多官能エチレン性単量体が有するエチレン性二重結合の数は特に限定されないが、好ましくは2個以上であり、より好ましくは4個以上であり、さらに好ましくは5個以上であり、また、好ましくは8個以下であり、より好ましくは7個以下である。前記下限値以上とすることで高感度となる傾向があり、前記上限値以下とすることで溶剤への溶解性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、多官能エチレン性単量体が有するエチレン性二重結合の数は2~8が好ましく、2~7がより好ましく、4~7がさらに好ましく、5~7が特に好ましい。
 エチレン性化合物としては、例えば、不飽和カルボン酸、不飽和カルボン酸とモノヒドロキシ化合物とのエステル、脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステル、芳香族ポリヒドロキシ化合物と不飽和カルボン酸とのエステル、不飽和カルボン酸と多価カルボン酸及び前述の脂肪族ポリヒドロキシ化合物、芳香族ポリヒドロキシ化合物等の多価ヒドロキシ化合物とのエステル化反応により得られるエステル、ポリイソシアネート化合物と(メタ)アクリロイル含有ヒドロキシ化合物とを反応させたウレタン骨格を有するエチレン性化合物が挙げられる。
 脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステルとしては、例えば、エチレングリコールジアクリレート、トリエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールエタントリアクリレート、ペンタエリスリトールジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、グリセロールアクリレート等のアクリル酸エステルが挙げられる。また、これらアクリレートのアクリル酸部分を、メタクリル酸部分に代えたメタクリル酸エステル、イタコン酸部分に代えたイタコン酸エステル、クロトン酸部分に代えたクロトン酸エステル、又は、マレイン酸部分に代えたマレイン酸エステルが挙げられる。
 芳香族ポリヒドロキシ化合物と不飽和カルボン酸とのエステルとしては、例えば、ハイドロキノンジアクリレート、ハイドロキノンジメタクリレート、レゾルシンジアクリレート、レゾルシンジメタクリレート、ピロガロールトリアクリレートが挙げられる。
 不飽和カルボン酸と多価カルボン酸及び多価ヒドロキシ化合物とのエステル化反応により得られるエステルは、必ずしも単一物ではなく、混合物であってもよい。例えば、アクリル酸、フタル酸及びエチレングリコールの縮合物、アクリル酸、マレイン酸及びジエチレングリコールの縮合物、メタクリル酸、テレフタル酸及びペンタエリスリトールの縮合物、アクリル酸、アジピン酸、ブタンジオール及びグリセリンの縮合物が挙げられる。
 ポリイソシアネート化合物と(メタ)アクリロイル基含有ヒドロキシ化合物とを反応させたウレタン骨格を有するエチレン性化合物としては、例えば、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート;シクロヘキサンジイソシアネート、イソホロンジイソシアネート等の脂環式ジイソシアネート;トリレンジイソシアネート、ジフェニルメタンジイソシアネート等の芳香族ジイソシアネート等と、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、3-ヒドロキシ(1,1,1-トリアクリロイルオキシメチル)プロパン、3-ヒドロキシ(1,1,1-トリメタクリロイルオキシメチル)プロパン等の(メタ)アクリロイル基含有ヒドロキシ化合物との反応物が挙げられる。
 その他、本発明に用いられるエチレン性化合物としては、例えば、エチレンビスアクリルアミド等のアクリルアミド類;フタル酸ジアリル等のアリルエステル類;ジビニルフタレート等のビニル基含有化合物が挙げられる。
 エチレン性化合物は酸価を有するモノマーであってもよい。酸価を有するモノマーとしては、脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステルであり、脂肪族ポリヒドロキシ化合物の未反応のヒドロキシ基に非芳香族カルボン酸無水物を反応させて酸基を持たせた多官能モノマーが好ましく、このエステルにおいて、脂肪族ポリヒドロキシ化合物がペンタエリスリトール及び/又はジペンタエリスリトールである多官能モノマーが特に好ましい。
 これらのモノマーは1種を単独で用いてもよいが、製造上、単一の化合物を用いることは難しいことから、2種以上を混合して用いてもよい。また、必要に応じてモノマーとして酸基を有しない多官能モノマーと酸基を有する多官能モノマーを併用してもよい。
 酸基を有する多官能モノマーの好ましい酸価としては、0.1~40mgKOH/gであり、特に好ましくは5~30mgKOH/gである。前記下限値以上とすることで現像溶解特性を良好なものとすることができる傾向があり、前記上限値以下とすることで製造や取扱いが良好になり光重合性能、画素の表面平滑性等の硬化性を良好にしやすい傾向がある。従って、異なる酸基の多官能モノマーを2種以上併用する場合、或いは酸基を有しない多官能モノマーを併用する場合、全体の多官能モノマーとしての酸基が上記範囲に入るように調整することが好ましい。
 本発明において、より好ましい酸基を有する多官能モノマーは、東亞合成社製TO1382として市販されているジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールペンタアクリレートのコハク酸エステルを主成分とする混合物である。この多官能モノマーと、他の多官能モノマーを組み合わせて使用することもできる。また、日本国特開2013-140346号公報の段落[0056]や[0057]に記載の多官能モノマーを使用することもできる。
 本発明において、画素の耐薬品性や画素のエッジの直線性を良好にするとの観点からは、日本国特開2013-195971号公報に記載の重合性モノマーを用いることが好ましい。
 塗布膜の感度及び現像時間の短縮を両立するとの観点からは、日本国特開2013-195974号公報に記載の重合性モノマーを用いることが好ましい。
 本発明の着色樹脂組成物において、(E)光重合性モノマーの含有割合は特に限定されないが、着色樹脂組成物の全固形分中に、好ましくは0質量%超、より好ましくは5質量%以上、さらに好ましくは10質量%以上、よりさらに好ましくは15質量%以上、特に好ましくは20質量%以上であり、また、好ましくは70質量%以下、より好ましくは60質量%以下、さらに好ましくは50質量%以下、よりさらに好ましくは40質量%以下、特に好ましくは30質量%以下である。前記下限値以上とすることで塗膜の硬化性が高くなる傾向があり、また、前記上限値以下とすることでアルカリ現像性の低下が抑制される傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、着色樹脂組成物における(E)光重合性モノマーの含有割合は、着色樹脂組成物の全固形分中、0質量%超70質量%以下が好ましく、5~60質量%がより好ましく、10~50質量%がさらに好ましく、15~40質量%がよりさらに好ましく、20~30質量%が特に好ましい。
[1-6]その他の固形分
 本発明の着色樹脂組成物には、さらに、必要に応じ上記成分以外の固形分を配合できる。このような成分としては、例えば、分散剤、分散助剤、界面活性剤、密着向上剤が挙げられる。
[1-6-1]分散剤、分散助剤
 本発明の着色樹脂組成物が(A)着色剤として顔料を含む場合、顔料を安定に分散させる目的で分散剤を含むことが好ましい。分散剤の中でも高分子分散剤を用いると経時の分散安定性に優れるので好ましい。
 高分子分散剤としては、例えば、ウレタン系分散剤、ポリエチレンイミン系分散剤、ポリオキシエチレンアルキルエーテル系分散剤、ポリオキシエチレングリコールジエステル系分散剤、ソルビタン脂肪族エステル系分散剤、脂肪族変性ポリエステル系分散剤を挙げることができる。
 高分子分散剤としては、商品名で、例えば、EFKA(登録商標、BASF社製)、DisperBYK(登録商標、ビックケミー社製)、ディスパロン(登録商標、楠本化成社製)、SOLSPERSE(登録商標、ルーブリゾール社製)、KP(信越化学工業社製)、ポリフロー(共栄社化学社製)、日本国特開2013-119568号公報に記載の分散剤を挙げることができる。
 高分子分散剤としては、分散性や保存安定性の観点から、窒素原子を含む官能基を有するブロック共重合体が好ましく、窒素原子を含む官能基を有するアクリル系ブロック共重合体がより好ましい。
 窒素原子を含む官能基を有するブロック共重合体としては、側鎖に4級アンモニウム塩基及び/又はアミノ基を有するAブロックと、4級アンモニウム塩基及びアミノ基を有さないBブロックとからなる、A-Bブロック共重合体、B-A-Bブロック共重合体が好ましい。
 窒素原子を含む官能基としては、1~3級アミノ基、4級アンモニウム塩基が挙げられる。分散性や保存安定性の観点から、1~3級アミノ基が好ましく、3級アミノ基がより好ましい。
 ブロック共重合体における、3級アミノ基を有する繰り返し単位の構造は特に限定されないが、分散性や保存安定性の観点から、下記一般式(d1)で表される繰り返し単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000030
 式(d1)中、R1及びR2は各々独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、又は置換基を有していてもよいアラルキル基であり、R1及びR2が互いに結合して環状構造を形成してもよい。R3は水素原子又はメチル基である。Xは2価の連結基である。
 式(d1)のR1、R2における、置換基を有していてもよいアルキル基の炭素数は特に限定されないが、好ましくは1以上であり、また、10以下であることが好ましく、6以下であることがより好ましく、4以下であることがさらに好ましい。例えば、1~10が好ましく、1~6がより好ましく、1~4がさらに好ましい。
 アルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基が挙げられる。メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基が好ましく、メチル基、エチル基、プロピル基、ブチル基がより好ましい。アルキル基は直鎖状、分岐鎖状のいずれであってもよい。アルキル基はシクロヘキシル基、シクロヘキシルメチル基のように環状構造を含んでもよい。
 式(d1)のR1、R2における、置換基を有していてもよいアリール基の炭素数は特に限定されないが、通常6以上であり、また、16以下であることが好ましく、12以下であることがより好ましく、8以下であることがさらに好ましい。例えば、6~16が好ましく、6~12がより好ましく、6~8がさらに好ましい。
 アリール基としては、例えば、フェニル基、メチルフェニル基、エチルフェニル基、ジメチルフェニル基、ジエチルフェニル基、ナフチル基、アントラセニル基が挙げられ、フェニル基、メチルフェニル基、エチルフェニル基、ジメチルフェニル基、ジエチルフェニル基が好ましく、フェニル基、メチルフェニル基、エチルフェニル基がより好ましい。
 式(d1)のR1、R2における、置換基を有していてもよいアラルキル基の炭素数は特に限定されないが、好ましくは7以上であり、また、16以下であることが好ましく、12以下であることがより好ましく、9以下であることがさらに好ましい。例えば、7~16が好ましく、7~12がより好ましく、7~9がさらに好ましい。
 アラルキル基としては、例えば、フェニルメチレン基、フェニルエチレン基、フェニルプロピレン基、フェニルブチレン基、フェニルイソプロピレン基が挙げられる。フェニルメチレン基、フェニルエチレン基、フェニルプロピレン基、フェニルブチレン基が好ましく、フェニルメチレン基、フェニルエチレン基がより好ましい。
 分散性、保存安定性、電気信頼性、現像性の観点から、R1及びR2としては、各々独立に置換基を有していてもよいアルキル基が好ましく、メチル基、エチル基がより好ましい。
 式(d1)におけるアルキル基、アラルキル基、アリール基が有していてもよい置換基としては、例えば、ハロゲン原子、アルコキシ基、ベンゾイル基、水酸基が挙げられる。合成の容易さの観点から、無置換であることが好ましい。
 式(d1)において、R1及びR2が互いに結合して形成する環状構造としては、例えば5~7員環の含窒素複素環単環又はこれらが2個縮合してなる縮合環が挙げられる。含窒素複素環は芳香性を有さないものが好ましく、飽和環であればより好ましい。具体的には、例えば下記(IV)の環状構造が挙げられる。
Figure JPOXMLDOC01-appb-C000031
 これらの環状構造は、さらに置換基を有していてもよい。
 式(d1)において、2価の連結基Xとしては、例えば、炭素数1~10のアルキレン基、炭素数6~12のアリーレン基、-CONH-R13-基、-COOR14-基(但し、R13及びR14は単結合、炭素数1~10のアルキレン基、又は炭素数2~10のエーテル基(アルキルオキシアルキル基)である)が挙げられ、好ましくは-COO-R14-基である。
 ブロック共重合体の全繰り返し単位に占める式(d1)で表される繰り返し単位の含有割合は、1モル%以上が好ましく、5モル%以上がより好ましく、10モル%以上がさらに好ましく、15モル%以上がよりさらに好ましく、20モル%以上がことさら好ましく、25モル%以上が特に好ましく、また、90モル%以下が好ましく、70モル%以下がより好ましく、50モル%以下がさらに好ましく、40モル%以下が特に好ましい。前記範囲内の場合には分散安定性と高輝度の両立が可能となる傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、ブロック共重合体の全繰り返し単位に占める式(d1)で表される繰り返し単位の含有割合は、1~90モル%が好ましく、5~90モル%がより好ましく、10~70モル%がさらに好ましく、15~70モル%がよりさらに好ましく、20~50モル%がことさら好ましく、25~40モル%が特に好ましい。
 ブロック共重合体は、分散剤の溶媒等バインダー成分に対する相溶性を高め、分散安定性を向上させるとの観点から、下記一般式(d2)で表される繰り返し単位を有することが好ましい。
Figure JPOXMLDOC01-appb-C000032
 式(d2)中、R10はエチレン基又はプロピレン基であり、R11は置換基を有していてもよいアルキル基であり、R12は水素原子又はメチル基である。nは1~20の整数である。
 式(d2)のR11における、置換基を有していてもよいアルキル基の炭素数は特に限定されないが、1以上が好ましく、2以上がより好ましく、また、10以下が好ましく、6以下がより好ましく、4以下がさらに好ましい。上記の上限及び下限は任意に組み合わせることができる。例えば、アルキル基の炭素数は1~10が好ましく、1~6がより好ましく、1~4がさらに好ましく、2~4が特に好ましい。
 アルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基が挙げられる。メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基が好ましく、メチル基、エチル基、プロピル基、ブチル基がより好ましい。アルキル基は、直鎖状、分岐鎖状のいずれであってもよい。アルキル基は、シクロヘキシル基、シクロヘキシルメチル基のように環状構造を含んでもよい。
 アルキル基が有していてもよい置換基としては、例えば、ハロゲン原子、アルコキシ基、ベンゾイル基、水酸基が挙げられる。合成の容易さの観点から、無置換であることが好ましい。
 式(d2)におけるnは溶媒等バインダー成分に対する相溶性と分散性の観点から、1以上が好ましく、2以上がより好ましく、また、20以下が好ましく、10以下がより好ましく、5以下がさらに好ましい。上記の上限及び下限は任意に組み合わせることができる。例えば、nは1~10が好ましく、2~5がより好ましい。
 ブロック共重合体の全繰り返し単位に占める式(d2)で表される繰り返し単位の含有割合は、1モル%以上が好ましく、2モル%以上がより好ましく、4モル%以上がさらに好ましく、また、30モル%以下が好ましく、20モル%以下がより好ましく、10モル%以下がさらに好ましい。前記範囲内の場合には溶媒等バインダー成分に対する相溶性と分散安定性の両立が可能となる傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、ブロック共重合体の全繰り返し単位に占める式(d2)で表される繰り返し単位の含有割合は、1~30モル%が好ましく、2~20モル%がより好ましく、4~10モル%がさらに好ましい。
 ブロック共重合体は、分散剤の溶媒等バインダー成分に対する相溶性を高め、分散安定性を向上させるという観点から、下記一般式(d3)で表される繰り返し単位を有することが好ましい。
Figure JPOXMLDOC01-appb-C000033
 式(d3)中、R8は置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、又は置換基を有していてもよいアラルキル基である。R9は水素原子又はメチル基である。
 式(d3)のR8における、置換基を有していてもよいアルキル基の炭素数は特に限定されないが、1以上が好ましく、また、10以下が好ましく、6以下がより好ましい。例えば、1~10が好ましく、1~6がより好ましい。
 アルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基が挙げられる。メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基が好ましく、メチル基、エチル基、プロピル基、ブチル基がより好ましい。アルキル基は、直鎖状、分岐鎖状のいずれであってもよい。アルキル基は、シクロヘキシル基、シクロヘキシルメチル基のように環状構造を含んでもよい。
 式(d3)のR8における、置換基を有していてもよいアリール基の炭素数は特に限定されないが、6以上が好ましく、また、16以下が好ましく、12以下がより好ましい。例えば、6~16が好ましく、6~12がより好ましい。
 アリール基としては、例えば、フェニル基、メチルフェニル基、エチルフェニル基、ジメチルフェニル基、ジエチルフェニル基、ナフチル基、アントラセニル基が挙げられる。フェニル基、メチルフェニル基、エチルフェニル基、ジメチルフェニル基、ジエチルフェニル基が好ましく、フェニル基、メチルフェニル基、エチルフェニル基がより好ましい。
 式(d3)のR8における、置換基を有していてもよいアラルキル基の炭素数は特に限定されないが、7以上が好ましく、また、16以下が好ましく、12以下がより好ましい。例えば、7~16が好ましく、7~12がより好ましい。
 アラルキル基としては、例えば、フェニルメチレン基、フェニルエチレン基、フェニルプロピレン基、フェニルブチレン基、フェニルイソプロピレン基が挙げられる。フェニルメチレン基、フェニルエチレン基、フェニルプロピレン基、フェニルブチレン基が好ましく、フェニルメチレン基、フェニルエチレン基がより好ましい。
 溶剤相溶性と分散安定性の観点から、R8としては、アルキル基、アラルキル基が好ましく、メチル基、エチル基、フェニルメチレン基がより好ましい。
 R8における、アルキル基が有していてもよい置換基としては、例えば、ハロゲン原子、アルコキシ基が挙げられる。
 アリール基又はアラルキル基が有していてもよい置換基としては、例えば、鎖状のアルキル基、ハロゲン原子、アルコキシ基が挙げられる。
 R8で示される鎖状のアルキル基には、直鎖状及び分岐鎖状のいずれも含まれる。
 ブロック共重合体の全繰り返し単位に占める式(d3)で表される繰り返し単位の含有割合は、30モル%以上が好ましく、40モル%以上がより好ましく、50モル%以上がさらに好ましく、また、80モル%以下が好ましく、70モル%以下がより好ましい。前記範囲内の場合には分散安定性と高輝度の両立が可能となる傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、ブロック共重合体の全繰り返し単位に占める式(d3)で表される繰り返し単位の含有割合は、30~80モル%が好ましく、40~80モル%がより好ましく、50~70モル%がさらに好ましい。
 ブロック共重合体は、式(d1)で表される繰り返し単位、式(d2)で表される繰り返し単位、式(d3)で表される繰り返し単位以外の繰り返し単位を有していてもよい。そのような繰り返し単位としては、例えば、スチレン、α-メチルスチレンなどのスチレン系単量体;(メタ)アクリル酸クロライドなどの(メタ)アクリル酸塩系単量体;(メタ)アクリルアミド、N-メチロールアクリルアミドなどの(メタ)アクリルアミド系単量体;酢酸ビニル;アクリロニトリル;アリルグリシジルエーテル、クロトン酸グリシジルエーテル;N-メタクリロイルモルホリンに由来する繰り返し単位が挙げられる。
 分散性をより高める観点から、式(d1)で表される繰り返し単位を有するAブロックと、式(d1)で表される繰り返し単位を有さないBブロックとを有する、ブロック共重合体であることが好ましい。ブロック共重合体は、A-Bブロック共重合体又はB-A-Bブロック共重合体であることが好ましい。Bブロックが式(d2)で表される繰り返し単位及び/又は式(d3)で表される繰り返し単位を有することがより好ましい。
 式(d1)で表される繰り返し単位以外の繰り返し単位がAブロック中に含有されていてもよい。そのような繰り返し単位としては、例えば、前述の(メタ)アクリル酸エステル類由来の繰り返し単位が挙げられる。式(d1)で表される繰り返し単位以外の繰り返し単位のAブロック中の含有量は、好ましくは0~50モル%、より好ましくは0~20モル%、さらに好ましくは0モル%である。
 式(d2)で表される繰り返し単位及び式(d3)で表される繰り返し単位以外の繰り返し単位がBブロック中に含有されていてもよい。そのような繰り返し単位としては、例えば、スチレン、α-メチルスチレンなどのスチレン系単量体;(メタ)アクリル酸クロライドなどの(メタ)アクリル酸塩系単量体;(メタ)アクリルアミド、N-メチロールアクリルアミドなどの(メタ)アクリルアミド系単量体;酢酸ビニル;アクリロニトリル;アリルグリシジルエーテル、クロトン酸グリシジルエーテル;N-メタクリロイルモルホリンに由来する繰り返し単位が挙げられる。式(d2)で表される繰り返し単位及び式(d3)で表される繰り返し単位以外の繰り返し単位のBブロック中の含有量は、好ましくは0~50モル%、より好ましくは0~20モル%、さらに好ましくは0モル%である。
 ブロック共重合体の酸価は、分散性の点から、低い方が好ましく、特に0mgKOH/gが好ましい。
 ここで酸価とは、分散剤固形分1gを中和するのに必要なKOHのmg数を表す。
 ブロック共重合体のアミン価は、分散性と現像性の観点から、30mgKOH/g以上が好ましく、50mgKOH/g以上がより好ましく、70mgKOH/g以上がさらに好ましく、90mgKOH/g以上がよりさらに好ましく、100mgKOH/g以上がことさら好ましく、105mgKOH/g以上が特に好ましく、また、150mgKOH/g以下が好ましく、130mgKOH/g以下がより好ましい。上記の上限及び下限は任意に組み合わせることができる。例えば、30~150mgKOH/gが好ましく、50~150mgKOH/gがより好ましく、70~150mgKOH/gがさらに好ましく、90~130mgKOH/gがよりさらに好ましく、100~130mgKOH/gがことさら好ましく、105~130mgKOH/gが特に好ましい。
 ここでアミン価とは、有効固形分換算のアミン価を表し、分散剤の固形分1gあたりの塩基量と当量のKOHの質量で表される値である。
 ブロック共重合体の重量平均分子量は1000~30000が好ましい。前記範囲内である場合には、分散安定性が良好となり、また、スリットノズル方式による塗布時に乾燥異物がより発生しにくくなる傾向がある。
 ブロック共重合体は、公知の方法により製造することができる。例えば、上記各繰り返し単位を導入する単量体をリビング重合することにより製造することができる。
 リビング重合法としては、例えば、日本国特開平9-62002号公報、日本国特開2002-31713号公報や、P.Lutz,P.Masson et al,Polym.Bull.12,79(1984),B.C.Anderson,G.D.Andrews et al,Macromolecules,14,1601(1981),K.Hatada,K.Ute,et al,Polym.J.17,977(1985),K.Hatada,K.Ute,et al,Polym.J.18,1037(1986),右手浩一、畑田耕一、高分子加工、36,366(1987),東村敏延、沢本光男、高分子論文集、46,189(1989),M.Kuroki,T.Aida,J.Am.Chem.Soc,109,4737(1987)、相田卓三、井上祥平、有機合成化学、43,300(1985),D.Y.Sogoh,W.R.Hertler et al,Macromolecules,20,1473(1987)に記載されている公知の方法を採用することができる。
 本発明の着色樹脂組成物が分散剤を含む場合、分散剤の含有割合は特に限定されないが、着色樹脂組成物の全固形分中に、0.001質量%以上が好ましく、0.01質量%以上がより好ましく、0.1質量%以上がさらに好ましく、1質量%以上がよりさらに好ましく、2質量%以上が特に好ましく、また、25質量%以下が好ましく、20質量%以下がより好ましく、15質量%以下がさらに好ましく、10質量%以下が特に好ましい。前記下限値以上とすることで分散性や保存安定性が向上する傾向があり、また、前記上限値以下とすることで電気信頼性や現像性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、着色樹脂組成物が分散剤を含む場合、分散剤の含有割合は、着色樹脂組成物の全固形分中に0.001~25質量%が好ましく、0.01~25質量%がより好ましく、0.1~20質量%がさらに好ましく、1~15質量%がよりさらに好ましく、2~10質量%が特に好ましい。
 本発明の着色樹脂組成物が顔料及び分散剤を含む場合、顔料に対する分散剤の含有割合は特に限定されるものではないが、顔料100質量部に対して、好ましくは0.5質量部以上、より好ましくは5質量部以上、さらに好ましくは10質量部以上、よりさらに好ましくは15質量部以上、特に好ましくは20質量部以上であり、また、好ましくは70質量部以下、より好ましくは50質量部以下、さらに好ましくは40質量部以下、特に好ましくは30質量部以下である。前記範囲内とすることで、分散安定性に優れ、高輝度な着色性樹脂組成物を得ることができる傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、着色樹脂組成物が顔料及び分散剤を含む場合、分散剤の含有割合は、顔料100質量部に対して、0.5~70質量部が好ましく、5~70質量部がより好ましく、10~50質量部がさらに好ましく、15~40質量部がよりさらに好ましく、20~30質量部が特に好ましい。
 本発明の着色樹脂組成物が顔料を含む場合、顔料の分散性の向上、分散安定性の向上のために分散助剤として、例えば、顔料誘導体を含んでいてもよい。
 顔料誘導体としては、具体的には、例えば、アゾ系、フタロシアニン系、キナクリドン系、ベンツイミダゾロン系、キノフタロン系、イソインドリノン系、イソインドリン系、ジオキサジン系、アントラキノン系、インダンスレン系、ペリレン系、ペリノン系、ジケトピロロピロール系、ジオキサジン系顔料の誘導体が挙げられる。顔料誘導体の置換基としては、例えば、スルホン酸基、スルホンアミド基及びその4級塩、フタルイミドメチル基、ジアルキルアミノアルキル基、水酸基、カルボキシ基、アミド基が顔料骨格に直接またはアルキル基、アリール基、複素環基等を介して結合したものが挙げられ、好ましくはスルホンアミド基及びその4級塩、スルホン酸基が挙げられ、より好ましくはスルホン酸基である。またこれら置換基は一つの顔料骨格に複数置換していてもよいし、置換数の異なる化合物の混合物でもよい。顔料誘導体としては、例えば、アゾ顔料のスルホン酸誘導体、フタロシアニン顔料のスルホン酸誘導体、キノフタロン顔料のスルホン酸誘導体、イソインドリン顔料のスルホン酸誘導体、アントラキノン顔料のスルホン酸誘導体、キナクリドン顔料のスルホン酸誘導体、ジケトピロロピロール顔料のスルホン酸誘導体、ジオキサジン顔料のスルホン酸誘導体等が挙げられる。
[1-6-2]界面活性剤
 本発明の着色樹脂組成物は界面活性剤を含有してもよく、界面活性剤としては、アニオン系、カチオン系、非イオン系、両性界面活性剤等、各種の界面活性剤を用いることができるが、諸特性に悪影響を及ぼす可能性が低い点で、非イオン系界面活性剤が好ましい。
 本発明の着色樹脂組成物が界面活性剤を含む場合、界面活性剤の含有割合は特に限定されないが、着色樹脂組成物の全固形分中に好ましくは0.001質量%以上、より好ましくは0.01質量%以上、さらに好ましくは0.05質量%以上、特に好ましくは0.1質量%以上、また、好ましくは10質量%以下、より好ましくは1質量%以下、さらに好ましくは0.5質量%以下、特に好ましくは0.3質量%以下の範囲で用いられる。上記の上限及び下限は任意に組み合わせることができる。例えば、界面活性剤の含有割合は、着色樹脂組成物の全固形分中、0.001~10質量%が好ましく、0.01~1質量%がより好ましく、0.05~0.5質量%がさらに好ましく、0.1~0.3質量%が特に好ましい。
[1-6-3]密着向上剤
 本発明の着色樹脂組成物は、基板との密着性を改善するため、密着向上剤を含有していてもよい。密着向上剤としては例えば、シランカップリング剤、チタンカップリング剤が挙げられる。シランカップリング剤が好ましい。
 シランカップリング剤としては、例えば、KBM-402、KBM-403、KBM-502、KBM-5103、KBE-9007、X-12-1048、X-12-1050(信越シリコーン社製)、Z-6040、Z-6043、Z-6062(東レ・ダウコーニング社製)が挙げられる。シランカップリング剤は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 シランカップリング剤以外の密着向上剤を本発明の着色樹脂組成物に含有させてもよい。例えば、リン酸系密着向上剤、その他の密着向上剤が挙げられる。
 リン酸系密着向上剤としては、(メタ)アクリロイルオキシ基含有ホスフェート類が好ましい。下記一般式(g1)、(g2)、(g3)で表されるリン酸系密着向上剤が好ましい。
Figure JPOXMLDOC01-appb-C000034
 式(g1)、(g2)、(g3)において、R51は各々独立に水素原子又はメチル基を表す。l及びl’は各々独立に1~10の整数、mは各々独立に1、2又は3を表す。
 その他の密着向上剤としては、例えば、TEGO(登録商標)Add Bond LTH(Evonik社製)が挙げられる。これらのリン酸系密着向上剤やその他の密着剤は1種類を単独で用いてもよく、2種以上を併用してもよい。
 本発明の着色樹脂組成物が密着向上剤を含有する場合、その含有割合は特に限定されないが、着色樹脂組成物の全固形分中に0.1質量%以上が好ましく、0.2質量%以上がより好ましく、0.3質量%以上がさらに好ましく、0.4質量%以上が特に好ましく、また、3質量%以下が好ましく、2質量%以下がより好ましく、1.5質量%以下がさらに好ましく、1質量%以下が特に好ましい。前記下限値以上とすることでパターニング特性が向上し、高湿条件下のパターン密着が向上する傾向があり、また、前記上限値以下とすることで残渣発生が抑制される傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、着色樹脂組成物が密着向上剤を含有する場合、その含有割合は、全固形分中に0.1~3質量%が好ましく、0.2~2質量%がより好ましく、0.3~1.5質量%がさらに好ましく、0.4~1質量%が特に好ましい。
[2]着色樹脂組成物の調製
 次に、本発明の着色樹脂組成物を調製する方法を説明する。
 (A)着色剤として顔料を含むものを調製する場合にはまず、顔料、溶剤および分散剤を各所定量秤量し、分散処理工程において、顔料を含む着色剤を分散させて顔料分散液を調製する。この分散処理工程では、ペイントコンディショナー、サンドグラインダー、ボールミル、ロールミル、ストーンミル、ジェットミル、ホモジナイザーなどを使用することができる。この分散処理を行なうことによって着色剤が微粒子化されるため、着色樹脂組成物の塗布特性が向上し、製品のカラーフィルタ基板における画素の透過率が向上する。
 顔料を分散処理する際には、上述の通り、分散助剤などを適宜併用することが好ましい。
 サンドグラインダーを用いて分散処理を行なう場合は、0.1から数mm径のガラスビーズ、又は、ジルコニアビーズを用いることが好ましい。分散処理する際の温度は、好ましくは0℃以上、より好ましくは室温以上、また、好ましくは100℃以下、より好ましくは80℃以下の範囲に設定する。なお、分散時間は、顔料分散液の組成、及びサンドグラインダーの装置の大きさなどにより適正時間が異なるため、適宜調整すればよい。
 上記分散処理によって得られた顔料分散液に、溶剤、アルカリ可溶性樹脂、光重合開始剤、光重合性モノマー、必要に応じて上記以外の成分などを混合し、均一な分散溶液とする。なお、分散処理工程及び混合の各工程においては、微細なゴミが混入することがあるため、得られた顔料分散液をフィルタなどによって、ろ過処理することが好ましい。
 (A)着色剤として顔料を含まない場合には、着色剤、溶剤、アルカリ可溶性樹脂、光重合開始剤、光重合性モノマー、必要に応じて上記以外の成分などを混合し、均一な溶液として得ることができる。得られた溶液をフィルタなどによってろ過処理することが好ましい。
[3]硬化物及びカラーフィルタの製造
 本発明の硬化物は、本発明の着色樹脂組成物を硬化させてなる。
 また、本発明のカラーフィルタは、本発明の着色樹脂組成物を用いて作成した画素を備える。
 以下、カラーフィルタの製造方法の一例について説明する。
[3-1]基板(支持体)
 本発明の着色樹脂組成物を塗布する基板としては、透明基板が好ましく、透明で適度の強度があれば、その材質は特に限定されるものではない。材質としては、例えば、ポリエチレンテレフタレートなどのポリエステル系樹脂、ポリプロピレン、ポリエチレンなどのポリオレフィン系樹脂、ポリカーボネート、ポリメチルメタクリレート、ポリスルホンの熱可塑性樹脂製シート、エポキシ樹脂、不飽和ポリエステル樹脂、ポリ(メタ)アクリル系樹脂などの熱硬化性樹脂シート、又は各種ガラスが挙げられる。この中でも、耐熱性の観点からガラスまたは耐熱性樹脂が好ましい。
 着色樹脂組成物を塗布する基板、後述するブラックマトリクスを設けた基板には、接着性などの表面物性の改良のため、必要に応じ、コロナ放電処理、オゾン処理、シランカップリング剤や、ウレタン系樹脂などの各種樹脂の薄膜形成処理などを行なってもよい。基板の厚さは、好ましくは0.05mm以上、より好ましくは0.1mm以上、また、好ましくは10mm以下、より好ましくは7mm以下の範囲とされる。例えば、好ましくは0.05~10mm、より好ましくは0.1~7mmである。また、各種樹脂の薄膜形成処理を行なう場合、その膜厚は、好ましくは0.01μm以上、より好ましくは0.05μm以上、また、好ましくは10μm以下、より好ましくは5μm以下の範囲である。例えば、好ましくは0.01~10μm、より好ましくは0.05~5μmである。
[3-2]ブラックマトリクス形成工程
 透明基板上にブラックマトリクスを設け、さらに通常は赤色、緑色、青色の画素画像を形成することにより、本発明のカラーフィルタを製造することができる。本発明の着色樹脂組成物は、赤色、緑色、青色の画素のうち、緑色の画素(レジストパターン)形成用塗布液として使用することが好ましい。緑色の画素(レジストパターン)形成用塗布液を用い、透明基板上に形成された樹脂ブラックマトリクス形成面上、又は、クロム化合物その他の遮光金属材料を用いて形成した金属ブラックマトリクス形成面上に、塗布、加熱乾燥、画像露光、現像及び焼成の各処理を行なって画素画像を形成する。
 ブラックマトリクスは、遮光金属薄膜又はブラックマトリクス用着色樹脂組成物を利用して、基板上に形成される。遮光金属材料としては、例えば、金属クロム、酸化クロム、窒化クロムなどのクロム化合物、ニッケルとタングステン合金が用いられ、これらを複数層状に積層させたものであってもよい。
 金属遮光膜は、一般にスパッタリング法によって形成され、ポジ型フォトレジストにより、膜状に所望のパターンを形成した後、クロムに対しては硝酸第二セリウムアンモニウムと過塩素酸及び/又は硝酸とを混合したエッチング液を用い、その他の材料に対しては、材料に応じたエッチング液を用いて蝕刻され、最後にポジ型フォトレジストを専用の剥離剤で剥離することによって、ブラックマトリクスを形成することができる。
 遮光金属薄膜を利用する場合、まず、蒸着又はスパッタリング法などにより、透明基板上にこれら金属又は金属・金属酸化物の薄膜を形成する。次いで、この薄膜上に着色樹脂組成物の塗布膜を形成した後、ストライプ、モザイク、トライアングルなどの繰り返しパターンを有するフォトマスクを用いて、塗布膜を露光・現像し、レジスト画像を形成する。その後、この塗布膜にエッチング処理を施してブラックマトリクスを形成することができる。
 ブラックマトリクス用感光性着色樹脂組成物を利用する場合は、黒色の着色剤を含有する着色樹脂組成物を使用して、ブラックマトリクスを形成する。例えば、カーボンブラック、黒鉛、鉄黒、アニリンブラック、シアニンブラック、チタンブラックなどの黒色色材単独又は複数、もしくは、無機又は有機の顔料、染料の中から適宜選択される赤色、緑色、青色などの混合による黒色色材を含有する着色樹脂組成物を使用し、下記の赤色、緑色、青色の画素を形成する方法と同様にして、ブラックマトリクスを形成することができる。
[3-3]画素形成工程
 画素を形成する画素形成工程は、基板上に前記着色樹脂組成物を塗布する塗布工程及び前記塗布工程で得られた塗布膜をプレベークするプレベーク工程を含む。
 画素形成工程では、例えば、ブラックマトリクスを設けた基板上に、赤色、緑色、青色のうち一色の着色樹脂組成物を塗布する塗布工程、得られた塗布膜を乾燥(プレベーク)するプレベーク工程、塗布膜の上にフォトマスクを重ね、このフォトマスクを介して画像露光する露光工程、現像工程を経て、必要に応じて熱硬化又は光硬化により画素を形成することができる。これらの工程を、赤色、緑色、青色の三色の着色樹脂組成物について各々行なうことによって、カラーフィルタ画像を形成することができる。
 本発明の着色樹脂組成物は、赤色、緑色、青色の画素のうち、緑色又は青色の画素(レジストパターン)形成用組成物として使用することが好ましく、緑色画素形成用組成物として使用することがより好ましい。例えば、緑色又は青色の画素(レジストパターン)形成用組成物を用い、基板上に形成された樹脂ブラックマトリクス形成面上、又は、クロム化合物その他の遮光金属材料を用いて形成した金属ブラックマトリクス形成面上に、塗布、乾燥(プレベーク)、画像露光、現像、及び熱硬化又は光硬化の各処理を行なって画素を形成する。
[3-4]塗布工程
 基板上への着色樹脂組成物の塗布は、例えば、スピナー法、ワイヤーバー法、フローコート法、ダイコート法、ロールコート法、スプレーコート法によって行なうことができる。中でも、ダイコート法によれば、着色樹脂組成物の使用量が大幅に削減され、かつ、スピンコート法によった際に付着するミストなどの影響が全くなく、さらには異物発生が抑制されるなど、総合的な観点から好ましい。
 塗布膜の厚さは、大き過ぎるとパターン現像が困難となるとともに、液晶セル化工程でのギャップ調整が困難となることがある一方で、小さ過ぎると顔料濃度を高めることが困難となり、所望の色発現が不可能となることがある。塗布膜の厚さは、乾燥後の膜厚として、好ましくは0.2μm以上、より好ましくは0.5μm以上、さらに好ましくは0.8μm以上であり、また、好ましくは20μm以下、より好ましくは10μm以下、さらに好ましくは5μm以下である。例えば、0.2~20μmが好ましく、0.5~10μmがより好ましく、0.8~5μmがさらに好ましい。
[3-5]プレベーク工程
 塗布工程で得られた塗布膜の乾燥(プレベーク)は、ホットプレート、IRオーブン、又はコンベクションオーブンを使用した乾燥法によるのが好ましい。予備乾燥を行った後、再度加熱させてプレベークを行うことが好ましい。予備乾燥の条件は、前記溶剤成分の種類、使用する乾燥機の性能などに応じて適宜選択することができる。乾燥温度及び乾燥時間は、溶剤成分の種類、使用する乾燥機の性能などに応じて選択されるが、具体的には、乾燥温度は好ましくは40℃以上、より好ましくは50℃以上、また、好ましくは80℃以下、より好ましくは70℃以下であり、乾燥時間は好ましくは15秒以上、より好ましくは30秒以上、また、好ましくは5分間以下、より好ましくは3分間以下である。
 プレベークの温度条件は、予備乾燥温度より高い温度が好ましい。本発明においては、具体的には、80℃以上、好ましくは90℃以上、特に好ましくは100℃以上、また、好ましくは200℃以下、より好ましくは160℃以下、特に好ましくは130℃以下である。前記下限値以上とすることで溶解速度が速くなる傾向があり、前記上限値以下とすることでバインダー樹脂が分解し、熱重合を誘発して現像不良を生ずる傾向がある。上記上限値及び下限値は任意に組み合わせることができ、例えば、プレベークの温度は80~200℃が好ましく、90~130℃がより好ましく、100~130℃が特に好ましい。
 プレベークの乾燥時間は、加熱温度にもよるが、好ましくは10秒以上、より好ましくは15秒以上、また、好ましくは10分以下、より好ましくは5分以下である。
[3-6]露光工程
 画素形成工程では、プレベーク工程後に露光工程を有することが好ましい。
 露光工程は、プレベーク工程を経て得られた塗布膜上に、ネガのマトリクスパターンを重ね、このマスクパターンを介し、紫外線又は可視光線の光源を照射して行なう。この際、必要に応じ、酸素による光重合性層の感度の低下を防ぐため、光重合性層上にポリビニルアルコール層などの酸素遮断層を形成した後に露光を行なってもよい。上記の露光に使用される光源は、特に限定されるものではない。光源としては、例えば、キセノンランプ、ハロゲンランプ、タングステンランプ、高圧水銀灯、超高圧水銀灯、メタルハライドランプ、中圧水銀灯、低圧水銀灯、カーボンアーク、蛍光ランプなどのランプ光源や、アルゴンイオンレーザー、YAGレーザー、エキシマレーザー、窒素レーザー、ヘリウムカドミニウムレーザー、半導体レーザーなどのレーザー光源が挙げられる。特定の波長の光を照射して使用する場合には、光学フィルタを利用することもできる。
[3-7]現像工程
 画素形成工程では、露光工程後に現像工程を有することが好ましい。
 本発明の着色樹脂組成物を用いた塗布膜に対し、上記露光工程で露光を行なった後、界面活性剤とアルカリ性化合物とを含む水溶液を用いて現像を行なう現像工程を経ることで、基板上に画像を形成して製造することができる。
この水溶液には、さらに有機溶剤、緩衝剤、錯化剤、染料又は顔料を含ませることができる。
 アルカリ性化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、ケイ酸ナトリウム、ケイ酸カリウム、メタケイ酸ナトリウム、リン酸ナトリウム、リン酸カリウム、リン酸水素ナトリウム、リン酸水素カリウム、リン酸二水素ナトリウム、リン酸二水素カリウム、水酸化アンモニウムなどの無機アルカリ性化合物や、モノ-、ジ-又はトリエタノールアミン、モノ-、ジ-又はトリメチルアミン、モノ-、ジ-又はトリエチルアミン、モノ-又はジイソプロピルアミン、n-ブチルアミン、モノ-、ジ-又はトリイソプロパノールアミン、エチレンイミン、エチレンジイミン、テトラメチルアンモニウムヒドロキシド(TMAH)、コリンなどの有機アルカリ性化合物が挙げられる。これらのアルカリ性化合物は、1種単独で用いてもよく、2種以上を併用してもよい。
 界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルアリールエーテル類、ポリオキシエチレンアルキルエステル類、ソルビタンアルキルエステル類、モノグリセリドアルキルエステル類などのノニオン系界面活性剤、アルキルベンゼンスルホン酸塩類、アルキルナフタレンスルホン酸塩類、アルキル硫酸塩類、アルキルスルホン酸塩類、スルホコハク酸エステル塩類などのアニオン性界面活性剤、アルキルベタイン類、アミノ酸類などの両性界面活性剤が挙げられる。
 有機溶剤としては、例えば、イソプロピルアルコール、ベンジルアルコール、エチルセロソルブ、ブチルセロソルブ、フェニルセロソルブ、プロピレングリコール、ジアセトンアルコールが挙げられる。有機溶剤は、水溶液と併用して使用できる。
 現像の条件には特に制限はないが、現像温度は、好ましくは10℃以上、より好ましくは15℃以上、さらに好ましくは20℃以上、また、好ましくは50℃以下、より好ましくは45℃以下、さらに好ましくは40℃以下である。例えば、好ましくは10~50℃、より好ましくは15~45℃、さらに好ましくは20~40℃である。現像方法は、浸漬現像法、スプレー現像法、ブラシ現像法、超音波現像法などの何れかの方法によることができる。
[3-7]熱硬化処理工程
 画素形成工程では、現像工程後に熱硬化処理工程を有することも好ましい。熱硬化処理工程での熱硬化処理条件は、温度は好ましくは100℃以上、より好ましくは150℃以上、また、好ましくは280℃以下、より好ましくは250℃以下であり、時間は好ましくは5分間以上、また、好ましくは60分間以下である。
 上記画素形成工程を経て、一色のパターニング画素形成は終了する。この工程を順次繰り返し、ブラック、赤色、緑色、青色をパターニングし、カラーフィルタを製造することができる。なお、4色のパターニングの順番は、上記した順番に限定されるものではない。
[3-8]透明電極の形成
 本発明におけるカラーフィルタは、このままの状態で画像上にITOなどの透明電極を形成して、カラーディスプレー、液晶表示装置などの部品の一部として使用されるが、表面平滑性や耐久性を高めるため、必要に応じ、画像上にポリアミド、ポリイミドなどのトップコート層を設けることもできる。また一部、平面配向型駆動方式(IPSモード)などの用途においては、透明電極を形成しないこともある。
[4]画像表示装置(パネル)
 本発明における画像表示装置は、本発明の製法で作製されたカラーフィルタを有する。
 以下、画像表示装置として、液晶表示装置及び有機EL表示装置について詳述する。
[4-1]液晶表示装置
 本発明の液晶表示装置の製造方法について説明する。本発明における液晶表示装置は、通常、本発明の製法で作製されたカラーフィルタ上に配向膜を形成し、この配向膜上にスペーサを散布した後、対向基板と貼り合わせて液晶セルを形成し、形成した液晶セルに液晶を注入し、対向電極に結線して完成する。配向膜は、ポリイミド等の樹脂膜が好適である。配向膜の形成には、通常、グラビア印刷法及び/又はフレキソ印刷法が採用され、配向膜の厚さは数10nmとされる。熱焼成によって配向膜の硬化処理を行なった後、紫外線の照射やラビング布による処理によって表面処理し、液晶の傾きを調整しうる表面状態に加工される。
 スペーサは、対向基板とのギャップ(隙間)に応じた大きさのものが用いられ、通常2~8μmのものが好適である。カラーフィルタ基板上に、フォトリソグラフィ法によって透明樹脂膜のフォトスペーサ(PS)を形成し、これをスペーサの代わりに活用することもできる。対向基板としては、通常、アレイ基板が用いられ、特にTFT(薄膜トランジスタ)基板が好適である。
 対向基板との貼り合わせのギャップは、液晶表示装置の用途によって異なるが、好ましくは、2μm以上8μm以下の範囲で選ばれる。対向基板と貼り合わせた後、液晶注入口以外の部分は、エポキシ樹脂等のシール材によって封止する。シール材は、UV照射及び/又は加熱することによって硬化させ、液晶セル周辺がシールされる。
 周辺をシールされた液晶セルは、パネル単位に切断した後、真空チャンバー内で減圧とし、上記液晶注入口を液晶に浸漬した後、チャンバー内をリークすることによって、液晶を液晶セル内に注入する。液晶セル内の減圧度は、好ましくは1×10-2Pa以下、より好ましくは1×10-3以下、また、好ましくは1×10-7Pa以上、より好ましくは1×10-6Pa以上の範囲である。例えば、好ましくは1×10-7~1×10-2Pa、より好ましくは1×10-6~1×10-3Paである。
 また、減圧時に液晶セルを加温するのが好ましく、加温温度は好ましくは30℃以上、より好ましくは50℃以上、また、好ましくは100℃以下、より好ましくは90℃以下の範囲である。例えば、30~100℃が好ましく、50~90℃がより好ましい。
 減圧時の加温保持は、好ましくは、10分間以上60分間以下の範囲とされ、その後、液晶中に浸漬される。液晶を注入した液晶セルは、液晶注入口を、UV硬化樹脂を硬化させて封止することによって、液晶表示装置(パネル)が完成する。
 液晶の種類には特に制限がなく、芳香族系、脂肪族系、多環状化合物等、従来から知られている液晶であって、リオトロピック液晶、サーモトロピック液晶等の何れでもよい。
 サーモトロピック液晶には、ネマティック液晶、スメスティック液晶及びコレステリック液晶等が知られているが、何れであってもよい。
[4-2]有機EL表示装置
 本発明における製法で作製されたカラーフィルタを有する有機EL表示装置を作成する場合、例えば図1に示すように、透明支持基板10上に、本発明の着色樹脂組成物により画素20が形成された青色カラーフィルタ上に有機保護層30及び無機酸化膜40を介して有機発光体500を積層することによって多色の有機EL素子を作製する。
 有機発光体500の積層方法としては、カラーフィルタ上面へ透明陽極50、正孔注入層51、正孔輸送層52、発光層53、電子注入層54、及び陰極55を逐次形成していく方法や、別基板上へ形成した有機発光体500を無機酸化膜40上に貼り合わせる方法などが挙げられる。このようにして作製された有機EL素子100は、パッシブ駆動方式の有機EL表示装置にもアクティブ駆動方式の有機EL表示装置にも適用可能である。
 次に、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。
<フタロシアニン化合物A>
 日本国特開平05-345861号公報の実施例30に基づいて合成した、以下の化学構造を有するフタロシアニン化合物Aを使用した。
Figure JPOXMLDOC01-appb-C000035
 なお、式中のEtはエチルを表す。
<フタロシアニン化合物B>
Figure JPOXMLDOC01-appb-C000036
<分散剤A>
 窒素原子含有官能基を有するAブロックと、親溶媒性基を有するBブロックからなるメタクリル系ABブロック共重合体。下記式(1a)で表される繰り返し単位、下記式(2a)で表される繰り返し単位、下記式(3a)で表される繰り返し単位、下記式(4a)で表される繰り返し単位、及び下記式(5a)で表される繰り返し単位を有する。アミン価は120mgKOH/gであり、酸価は1mgKOH/g未満である。
 全繰り返し単位中における下記式(1a)、(2a)、(3a)、(4a)、及び(5a)で表される繰り返し単位の含有割合はそれぞれ1モル%未満、34.5モル%、6.9モル%、13.8モル%、及び6.9モル%である。
Figure JPOXMLDOC01-appb-C000037
<アルカリ可溶性樹脂A>
 プロピレングリコールモノメチルエーテルアセテート145質量部を窒素置換しながら攪拌し120℃に昇温した。ここにスチレン10質量部、グリシジルメタクリレート85質量部及びトリシクロデカン骨格を有するモノメタクリレート(日立化成社製FA-513M)66質量部を滴下し、さらに120℃で2時間攪拌し続けた。次に反応容器内を空気置換に変え、アクリル酸43質量部にトリスジメチルアミノメチルフェノール0.7質量部及びハイドロキノン0.12質量部を投入し、120℃で6時間反応を続けた。その後、テトラヒドロ無水フタル酸(THPA)20質量部、トリエチルアミン0.7質量部を加え、120℃で3.5時間反応させた。こうして得られたアルカリ可溶性樹脂AのGPCにより測定したポリスチレン換算の重量平均分子量Mwは約8000、酸価は30mgKOH/g、二重結合当量は410g/molであった。
<アルカリ可溶性樹脂B>
 プロピレングリコールモノメチルエーテルアセテート145質量部を窒素置換しながら攪拌し120℃に昇温した。ここにスチレン5質量部、グリシジルメタクリレート132質量部及びトリシクロデカン骨格を有するモノメタクリレート(日立化成社製FA-513M)4質量部を滴下し、さらに120℃で2時間攪拌し続けた。次に反応容器内を空気置換に変え、アクリル酸67質量部にトリスジメチルアミノメチルフェノール0.7質量部及びハイドロキノン0.12質量部を投入し、120℃で6時間反応を続けた。その後、テトラヒドロ無水フタル酸(THPA)15質量部、トリエチルアミン0.7質量部を加え、120℃で3.5時間反応させた。こうして得られたアルカリ可溶性樹脂BのGPCにより測定したポリスチレン換算の重量平均分子量Mwは約9000、酸価は24mgKOH/g、二重結合当量は260g/molであった。
<アルカリ可溶性樹脂C>
 プロピレングリコールモノメチルエーテルアセテート145質量部を窒素置換しながら攪拌し120℃に昇温した。ここにスチレン7質量部、グリシジルメタクリレート92質量部及びトリシクロデカン骨格を有するモノメタクリレート(日立化成社製FA-513M)62質量部を滴下し、さらに120℃で2時間攪拌し続けた。次に反応容器内を空気置換に変え、アクリル酸47質量部にトリスジメチルアミノメチルフェノール0.7質量部及びハイドロキノン0.12質量部を投入し、120℃で6時間反応を続けた。その後、無水コハク酸39質量部、トリエチルアミン0.7質量部を加え、120℃で3.5時間反応させた。こうして得られたアルカリ可溶性樹脂CのGPCにより測定したポリスチレン換算の重量平均分子量Mwは約5700、酸価は89mgKOH/g、二重結合当量は430g/molであった。
 アルカリ可溶性樹脂A~Cのうち、酸価が89mgKOH/gであるアルカリ可溶性樹脂Cが最も溶解性が高い。酸価が低く、かつ同程度であるアルカリ可溶性樹脂Aとアルカリ可溶性樹脂Bについては、親水性の高いグリシジルメタクリレートをより多く含むアルカリ可溶性樹脂Bの方が、溶解性が高い。
<アルカリ可溶性樹脂D>
 反応槽として冷却管を付けたセパラブルフラスコを準備し、プロピレングリコールモノメチルエーテルアセテート400質量部を仕込み、窒素置換した後、攪拌しながらオイルバスで加熱して反応槽の温度を90℃まで昇温した。
 一方、モノマー槽中にジメチル-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート30質量部、メタクリル酸60質量部、メタクリル酸シクロヘキシル110質量部、t-ブチルパーオキシ-2-エチルヘキサノエート5.2質量部、プロピレングリコールモノメチルエーテルアセテート40質量部を仕込み、連鎖移動剤槽にn-ドデシルメルカプタン5.2質量部、プロピレングリコールモノメチルエーテルアセテート27質量部を仕込み、反応槽の温度が90℃に安定してからモノマー槽及び連鎖移動剤槽から滴下を開始し、重合を開始させた。温度を90℃に保ちながら滴下をそれぞれ135分かけて行い、滴下が終了して60分後に昇温を開始して反応槽を110℃にした。
 3時間、110℃を維持した後、セパラブルフラスコにガス導入管を付け、酸素/窒素=5/95(v/v)混合ガスのバブリングを開始した。次いで、反応槽に、メタクリル酸グリシジル39.6質量部、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)0.4質量部、トリエチルアミン0.8質量部を仕込み、そのまま110℃で9時間反応させた。
 室温まで冷却し、GPCにより測定したポリスチレン換算の重量平均分子量Mwが9000、酸価が101mgKOH/g、二重結合当量が550g/molのアルカリ可溶性樹脂Dを得た。
<緑色染料分散液Aの調製>
 表1に記載のとおり、フタロシアニン化合物Aを9.9質量部、分散剤Aを固形分換算で0.1質量部、溶剤としてプロピレングリコールモノメチルエーテルアセテートを72.0質量部(分散剤A由来の溶剤を含む)、プロピレングリコールモノメチルエーテルを18.0質量部、直径0.5mmのジルコニアビーズ225質量部をステンレス容器に充填し、ペイントシェーカーにて6時間分散処理を行った。分散終了後、フィルタによりビーズと分散液を分離して、緑色染料分散液Aを調製した。
<緑色染料分散液Bの調製>
 フタロシアニン化合物Aをフタロシアニン化合物Bに変更し、表1に記載のとおりに各原料を配合した以外は、緑色染料分散液Aと同様の方法で、緑色染料分散液Bを調製した。
<黄色顔料分散液Aの調製>
 表1に記載のとおり、C.I.ピグメントイエロー138を11.4質量部、分散剤Aを固形分換算で2.9質量部、アルカリ可溶性樹脂Dを固形分換算で5.7質量部、溶剤としてプロピレングリコールモノメチルエーテルアセテートを76.0質量部(分散剤A由来の溶剤及びアルカリ可溶性樹脂D由来の溶剤も含む)、プロピレングリコールモノメチルエーテルを4.0質量部、直径0.5mmのジルコニアビーズ225質量部をステンレス容器に充填し、ペイントシェーカーにて6時間分散処理を行った。分散終了後、フィルタによりビーズと分散液を分離して、黄色顔料分散液Aを調製した。
Figure JPOXMLDOC01-appb-T000038
<光重合性モノマーA>
 ペンタエリスリトールテトラアクリレート(ライトアクリレートPE-4A、共栄社化学社製)
<光重合性モノマーB>
 ポリエトキシ化テトラメチロールメタンテトラアクリレート(NKエステル ATM-4E、新中村化学工業社製)
<光重合開始剤A>
 以下の化学構造を有するオキシムエステル系化合物
(4-アセトキシイミノ-5-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-5-オキソペンタン酸メチル)
Figure JPOXMLDOC01-appb-C000039
 なお、式中のMeはメチルを表す。
<界面活性剤A>
 メガファックF-554(DIC社製)
<着色樹脂組成物の調製>
 表2に記載の各成分を、記載の固形分比率で混合し着色樹脂組成物1~8を調製した。
 なお、着色樹脂組成物1~8においては、着色樹脂組成物の全固形分の含有割合が15質量%になるように、溶剤としてプロピレングリコールモノメチルエーテルアセテート(PGMEA)及びプロピレングリコールモノメチルエーテル(PGME)を使用し、得られた着色樹脂組成物中におけるPGMEA/PGMEの混合比(質量比)は90/10であった。
Figure JPOXMLDOC01-appb-T000040
<スペクトル変化度の評価>
 50mm角、厚さ0.7mmのガラス基板(AGC社製、AN100)上に、得られた着色樹脂組成物を熱硬化処理(焼成)後の膜厚が2.0μmとなるようにスピンコート法で塗布し、減圧乾燥させた後、ホットプレート上にて表3に記載の温度で90秒間プレベークし、着色基板を作成した。また、同様の手法で減圧乾燥まで実施した後、プレベークを行わない代わりに、クリーンオーブンにて230℃で20分間の熱硬化処理を行い、焼成後着色基板を作成した。
 得られた着色基板および焼成後着色基板について、日立製作所社製分光光度計U-3310により波長380nmから780nmまで、1nm毎に分光透過スペクトルを測定し、吸収スペクトルへと変換した。着色基板の吸収スペクトルのうち、波長nのときの吸光度の値をAとし、焼成後着色基板における同様の値をA とする。このとき、焼成後着色基板と比較し、着色基板の吸収スペクトルがどれだけ異なるかの指標として、下記数式でスペクトル変化度を定義した。算出したスペクトル変化度を表3に示す。下記数式におけるスペクトル変化度が小さいほど、フタロシアニン化合物(1)がプレベーク中に会合体を形成し、焼成し完全に会合体を形成した後の状態に近いことを示す。
Figure JPOXMLDOC01-appb-M000041
<溶解速度の評価>
 上記の着色基板を、0.04質量%水酸化カリウム水溶液を使用し、現像液温度23℃で現像処理を行い、完全に溶解するまでの時間を測定し、表3に示す。
<密着性の評価>
 50mm角、厚さ0.7mmのガラス基板(AGC社製、AN100)上に、得られた着色樹脂組成物を熱硬化処理(焼成)後の膜厚が2.0μmとなるようにスピンコート法で塗布し、100℃で90秒間プリベークした。次いで、2kW高圧水銀灯により、40mJ/cm2の露光量、照度30mW/cmで、幅1~50μmの複数の直線開口部を有する露光マスクを介して露光処理を行った。その後、0.04質量%水酸化カリウム水溶液を使用し、現像液温度23℃で60秒間現像処理を行った。次いで、1kg/cmの水圧で10秒間スプレー水洗処理を行った。その後、230℃で20分間の熱硬化処理を行い、パターン基板を作成した。光学顕微鏡を用いて、幅1~50μmの複数の直線開口部に対応するパターンを観察した。現像で消失せず残存しているパターンの中で最も細いものの開口部の幅が7μm以下の場合はA、7μmを超え15μm以下の場合はB、15μmを超える場合はCとした。評価結果を表3及び表4に示す。
 開口部の幅が狭いほど、着色樹脂組成物の硬化物と基板との密着性に優れる。
<コントラストの評価>
 50mm角、厚さ0.7mmのガラス基板(AGC社製、AN100)上に、得られた着色樹脂組成物を熱硬化処理(焼成)後の膜厚が2.0μmとなるようにスピンコート法で塗布し、100℃で90秒間プリベークした。次いで、2kW高圧水銀灯により、40mJ/cm2の露光量、照度30mW/cm2で露光処理、230℃で20分間の熱硬化処理を行い、コントラスト評価用基板を作成した。
 得られた基板をコントラストテスターCT-1(壺坂電機社製)を用いて直交平行を測定し、平行/直交にてコントラスト比(1:12000)を求めた。コントラスト比が6000以上はA、4000以上6000未満はB、4000未満はCとした。評価結果を表4に示す。
<残渣の評価>
 密着性評価と同様にパターン基板を作製し、光学顕微鏡を用いて、幅50μmの直線開口部に対応するパターンを観察した。
 開口部内に一切の残渣が観察されない場合はA、開口部に多少残渣が観測されるも実用上問題ない場合はB、開口部に残渣が観測される場合はCとした。評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
 表3から明らかなように、(A)着色剤中のフタロシアニン化合物(1)の含有割合が高くなるにつれて、プレベーク温度が低いときのスペクトル変化度が小さくなる。言い換えれば、(A)着色剤中のフタロシアニン化合物(1)の含有割合が高いほど、フタロシアニン化合物(1)が会合体を形成するために必要なプレベーク温度が低い。特に、比較例2ではプレベーク温度が105℃のときもスペクトル変化度の値がやや大きめであり、フタロシアニン化合物(1)が会合体を形成しきれていないことがわかる。これは、(A)着色剤中にフタロシアニン化合物(1)以外の着色剤が含まれることによって、その構造中に含まれる芳香環とのπ-πスタッキングによりフタロシアニン化合物(1)同士の会合が阻害されるためと考えられる。また、溶解速度も同様の傾向を示し、(A)着色剤中のフタロシアニン化合物(1)の含有割合が高くなるにつれて、プレベーク温度を80℃からだんだんと上昇させていったときに溶解速度が一定となるプレベーク温度が低くなる。これは、フタロシアニン化合物(1)が会合体を形成したために、その周囲に着色樹脂組成物に含有される(C)アルカリ可溶性樹脂が巻き付くように複合体を形成し、フタロシアニン化合物(1)が単独の場合に比べて溶解速度が速くなったと考えられる。
 着色樹脂組成物の溶解速度が速くなることで、現像時間が短くて済む。また、より低いプレベーク温度で溶解速度を速めることができ、カラーフィルタなどの生産効率の向上に寄与することができる。さらには、溶解速度が速いことにより、(C)アルカリ可溶性樹脂の溶解性を相対的に低くすることができるため、現像時にパターンが剥がれにくく、密着性が向上したと考えられる。
 表4の実施例1~3と比較例1~3との比較から明らかなように、(A)着色剤中のフタロシアニン化合物(1)の含有割合が65質量%以上で残渣およびコントラストが大きく改善されることが分かる。これはフタロシアニン化合物(1)の含有割合が大きくなることで、フタロシアニン化合物(1)同士の会合が他の着色剤によって阻害されにくく、フタロシアニン化合物(1)の規則的な会合体形成が進むことによってコントラストが高くなり、また、フタロシアニン化合物(1)の規則的な会合体形成が進むことによって溶解速度が速くなったと考えられる。
 また、表4の比較例4、5から明らかなように、フタロシアニン化合物(1)に該当しないフタロシアニン化合物Bを用いた場合は、(A)着色剤中のフタロシアニン化合物Bの含有割合にかかわらず、残渣およびコントラストが劣ることが分かる。フッ素原子に比べて塩素原子の占有体積が大きく、フタロシアニン化合物の規則的な会合体形成が阻害されたことにより、コントラスト及び溶解速度が向上しなかったと考えられる。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更および変形が可能であることは、当業者にとって明らかである。
 10 透明支持基板
 20 画素
 30 有機保護層
 40 無機酸化膜
 50 透明陽極
 51 正孔注入層
 52 正孔輸送層
 53 発光層
 54 電子注入層
 55 陰極
 100 有機EL素子
 500 有機発光体

Claims (13)

  1.  (A)着色剤、(B)溶剤、(C)アルカリ可溶性樹脂、(D)光重合開始剤、及び(E)光重合性モノマーを含有する着色樹脂組成物であって、
     前記(A)着色剤が、下記一般式(1)で表される化学構造を有するフタロシアニン化合物及び黄色色材を含み、
     前記(A)着色剤中の前記フタロシアニン化合物の含有割合が65質量%以上90質量%以下であることを特徴とする着色樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、A1~A16は各々独立に、水素原子、ハロゲン原子、又は下記一般式(2)で表される基を表す。ただし、A1~A16のうち1つ以上はフッ素原子を表し、かつ、A1~A16のうち1つ以上は下記一般式(2)で表される基を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、Xは2価の連結基を表す。式(2)中のベンゼン環は任意の置換基を有していてもよい。*は結合手を表す。)
  2.  前記(A)着色剤中の前記フタロシアニン化合物の含有割合が70質量%以上90質量%以下である、請求項1に記載の着色樹脂組成物。
  3.  前記式(1)中のA1~A16におけるハロゲン原子がフッ素原子である、請求項1又は2に記載の着色樹脂組成物。
  4.  前記式(1)中、A1~A4のうち1つ以上がフッ素原子であり、A5~A8のうち1つ以上がフッ素原子であり、A9~A12のうち1つ以上がフッ素原子であり、かつ、A13~A16のうち1つ以上がフッ素原子である、請求項1~3のいずれか1項に記載の着色樹脂組成物。
  5.  前記式(2)中のベンゼン環がアルコキシカルボニル基を有する、請求項1~4のいずれか1項に記載の着色樹脂組成物。
  6.  前記式(2)中のXが酸素原子である、請求項1~5のいずれか1項に記載の着色樹脂組成物。
  7.  前記式(1)中、A1~A4のうち1つ以上が前記式(2)で表される基であり、A5~A8のうち1つ以上が前記式(2)で表される基であり、A9~A12のうち1つ以上が前記式(2)で表される基であり、かつ、A13~A16のうち1つ以上が前記式(2)で表される基である、請求項1~6のいずれか1項に記載の着色樹脂組成物。
  8.  前記黄色色材がC.I.ピグメントイエロー138、C.I.ピグメントイエロー185及び下記式(i)で表されるニッケルアゾ錯体からなる群から選ばれる少なくとも1種である、請求項1~7のいずれか1項に記載の着色樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
  9.  前記(A)着色剤中の前記黄色色材の含有割合が、10質量%以上35質量%以下である、請求項1に記載の着色樹脂組成物。
  10.  着色樹脂組成物の全固形分における前記(A)着色剤の含有割合が、10質量%以上80質量%以下である、請求項1~9のいずれか1項に記載の着色樹脂組成物。
  11.  請求項1~10のいずれか1項に記載の着色樹脂組成物を硬化させてなる、硬化物。
  12.  請求項1~10のいずれか1項に記載の着色樹脂組成物を用いて作成した画素を備える、カラーフィルタ。
  13.  請求項12に記載のカラーフィルタを有する、画像表示装置。
PCT/JP2023/010072 2022-03-16 2023-03-15 着色樹脂組成物、硬化物、カラーフィルタ及び画像表示装置 WO2023176882A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-040964 2022-03-16
JP2022040964 2022-03-16

Publications (1)

Publication Number Publication Date
WO2023176882A1 true WO2023176882A1 (ja) 2023-09-21

Family

ID=88023913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010072 WO2023176882A1 (ja) 2022-03-16 2023-03-15 着色樹脂組成物、硬化物、カラーフィルタ及び画像表示装置

Country Status (2)

Country Link
TW (1) TW202402820A (ja)
WO (1) WO2023176882A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020046655A (ja) * 2018-09-14 2020-03-26 Jsr株式会社 感光性着色組成物、カラーフィルタ及び表示素子

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020046655A (ja) * 2018-09-14 2020-03-26 Jsr株式会社 感光性着色組成物、カラーフィルタ及び表示素子

Also Published As

Publication number Publication date
TW202402820A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
KR100984994B1 (ko) 안료 분산액, 컬러 필터용 착색 조성물, 컬러 필터, 액정 표시 장치 및 유기 el 디스플레이
JP5703630B2 (ja) カラーフィルタ用着色樹脂組成物、カラーフィルタ、液晶表示装置及び有機elディスプレイ
KR102491715B1 (ko) 착색 수지 조성물, 컬러 필터, 및 화상 표시 장치
JP7230558B2 (ja) 着色樹脂組成物、カラーフィルタ、及び画像表示装置
JP5316034B2 (ja) カラーフィルタ用着色組成物、カラーフィルタ、及び液晶表示装置
JP7451906B2 (ja) 着色樹脂組成物、カラーフィルタ、及び画像表示装置
JP7003637B2 (ja) 着色樹脂組成物、カラーフィルタ、及び画像表示装置
WO2020171139A1 (ja) 着色樹脂組成物、カラーフィルタ、及び画像表示装置
WO2022038948A1 (ja) 着色樹脂組成物、カラーフィルタ、及び画像表示装置
JP7207173B2 (ja) 着色樹脂組成物、カラーフィルタ、及び画像表示装置
JP2017137483A (ja) 着色樹脂組成物、カラーフィルタ、及び画像表示装置
JP7180545B2 (ja) カラーフィルタ用着色組成物、及び感光性着色樹脂組成物
WO2022039224A1 (ja) 着色樹脂組成物、カラーフィルタ、及び画像表示装置
WO2023176882A1 (ja) 着色樹脂組成物、硬化物、カラーフィルタ及び画像表示装置
WO2023176888A1 (ja) カラーフィルタの製造方法、及び画像表示装置の製造方法
JP7447397B2 (ja) 感光性着色樹脂組成物、カラーフィルタ、及び画像表示装置
WO2024075837A1 (ja) 着色剤含有液、着色樹脂組成物、カラーフィルタ、画像表示装置、及び着色樹脂組成物の製造方法
WO2023063336A1 (ja) 着色樹脂組成物、カラーフィルタ及び画像表示装置
JP7159948B2 (ja) 着色樹脂組成物、カラーフィルタ、及び画像表示装置
JP2024040909A (ja) 着色樹脂組成物、カラーフィルタ、及び画像表示装置
WO2022024876A1 (ja) 着色樹脂組成物、カラーフィルタ、画像表示装置、及び着色剤分散液
JP7395986B2 (ja) 着色樹脂組成物、カラーフィルタ、及び画像表示装置
WO2023095828A1 (ja) 着色樹脂組成物、着色樹脂組成物セット、及びカラーフィルタ
JP7449642B2 (ja) 着色樹脂組成物、カラーフィルタ、及び画像表示装置
JP7124406B2 (ja) 着色樹脂組成物、カラーフィルタ、及び画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770835

Country of ref document: EP

Kind code of ref document: A1