WO2023176803A1 - Plasma irradiation device - Google Patents

Plasma irradiation device Download PDF

Info

Publication number
WO2023176803A1
WO2023176803A1 PCT/JP2023/009748 JP2023009748W WO2023176803A1 WO 2023176803 A1 WO2023176803 A1 WO 2023176803A1 JP 2023009748 W JP2023009748 W JP 2023009748W WO 2023176803 A1 WO2023176803 A1 WO 2023176803A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
electrode
lid
plasma irradiation
irradiation device
Prior art date
Application number
PCT/JP2023/009748
Other languages
French (fr)
Japanese (ja)
Inventor
達也 松尾
健一郎 宮里
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Publication of WO2023176803A1 publication Critical patent/WO2023176803A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles

Definitions

  • the present invention relates to a plasma irradiation device.
  • This application claims priority to Japanese Patent Application No. 2022-039487 filed in Japan on March 14, 2022, the contents of which are incorporated herein.
  • a plasma irradiation device is used for the surface treatment.
  • the plasma irradiation device has a pair of opposing electrodes.
  • a plasma irradiation device applies a voltage while introducing gas (plasma generation gas) between a pair of electrodes to generate a discharge between the electrodes, generate plasma around the generated discharge, and convert the generated plasma into a plasma. Irradiate with generated gas.
  • Patent Document 1 discloses that a high frequency generator has a tubular conductive housing and an electrode coaxially in a nozzle path, and that a high frequency generator is arranged between the electrode and the housing so that gas flowing in the nozzle path is excited in the nozzle path.
  • a plasma irradiation device has been proposed that applies a voltage between. According to the invention of Patent Document 1, the effect of forming a film by plasma irradiation is improved.
  • an object of the present invention is to provide a plasma irradiation device with high processing efficiency.
  • the present invention has the following aspects. ⁇ 1> comprising a plasma irradiator, a power supply device that supplies electricity to the plasma irradiation device, and a gas supply device that supplies plasma generation gas to the plasma irradiation device
  • the plasma irradiator includes: A cylindrical or polygonal cylindrical housing having an internal space; a first lid covering an opening (A) at one end of the housing and having a first electrode; a second lid covering the opening (B) at the other end of the housing and having a second electrode; an extension electrode extending from the second lid toward the first lid, electrically connected to the second electrode, and electrically spaced apart from the first electrode; a discharge part that discharges between the first electrode and the extension electrode within the housing; a rectifier that causes the plasma-generating gas to flow along the inner surface of the casing and from the direction of the first electrode to the direction of the second electrode; has A plasma irradiation device, wherein the first lid has a plasma irradiation port.
  • the extension electrode has a cylindrical shape or a polygonal cylindrical shape, The extension electrode also serves as the casing, The plasma irradiation device according to ⁇ 1>, wherein the first lid closes the opening (A) via an insulator located at the periphery of the opening (A).
  • the extension electrode is located along the inner surface of the housing around the axis of the housing in a space surrounded by the housing, the first lid, and the second lid, The plasma irradiation device according to ⁇ 1>, wherein some or all of the extension electrodes are continuous for a length of 50% or more of the circumference around the axis of the housing.
  • ⁇ 4> The plasma irradiation device according to any one of ⁇ 1> to ⁇ 3>, wherein the second lid has a convex portion or a concave portion on a surface facing the internal space.
  • ⁇ 5> The plasma irradiation device according to any one of ⁇ 1> to ⁇ 4>, wherein the first lid has a convex portion or a concave portion on a surface facing the internal space.
  • ⁇ 6> The plasma irradiation device according to any one of ⁇ 1> to ⁇ 5>, wherein a periphery of the plasma irradiation port is covered with an insulator.
  • ⁇ 7> The plasma irradiation device according to any one of ⁇ 1> to ⁇ 6>, wherein the rectifier is configured to make the plasma generation gas a swirling flow around the axis of the housing.
  • the rectifier has a gas introduction path that is inclined in the same direction with respect to a circumference centered on the axis of the housing and communicates between the inside and outside of the housing.
  • ⁇ 10> The plasma irradiation device according to ⁇ 9>, wherein the vent is formed in the second lid, between the second lid and the housing, or in the housing.
  • ⁇ 12> The plasma irradiation device according to any one of ⁇ 1> to ⁇ 11>, comprising two or more of the plasma irradiators.
  • FIG. 1 is a longitudinal cross-sectional view of a plasma irradiation device according to an embodiment of the present invention.
  • 2 is a sectional view taken along line II-II in FIG. 1.
  • FIG. It is a process diagram explaining the plasma irradiation method. It is a process diagram explaining the plasma irradiation method.
  • FIG. 3 is a longitudinal cross-sectional view of a plasma irradiation device according to another embodiment of the present invention.
  • 6 is a sectional view taken along line VI-VI in FIG. 5.
  • FIG. FIG. 3 is a longitudinal cross-sectional view of a plasma irradiation device according to another embodiment of the present invention.
  • FIG. 7 is a sectional view of a second lid body showing another embodiment of the present invention.
  • FIG. 3 is a plan view of a plasma irradiation device according to another embodiment of the present invention.
  • 1 is a drawing showing an example of a method for moving a plasma irradiation device according to an embodiment of the present invention with respect to a surface to be processed.
  • 2 is a graph showing the evaluation results of Example 1 and Comparative Examples 1 and 2.
  • FIG. 3 is a schematic front view of a plasma irradiation device according to another embodiment of the present invention. 7 is a graph showing the relationship between the height of the vent and the length of the plasma flame in Example 2.
  • FIG. 1 is a schematic front view of a plasma irradiation device according to an embodiment of the present invention.
  • the plasma irradiation device of the present invention includes a plasma irradiation device, a gas supply device, and a power supply device.
  • the plasma irradiator of the present invention includes a cylindrical or rectangular cylindrical housing, a first lid having a first electrode, a second lid having a second electrode, an extension electrode, a discharge section, and a rectifier. It has a section.
  • FIG. 1 is a schematic cross-sectional view of a plasma irradiation device according to an embodiment of the present invention, including a longitudinal section of a plasma irradiation device.
  • FIG. 14 is a schematic front view of a plasma irradiation apparatus according to an embodiment of the present invention.
  • the plasma irradiation device 1 shown in FIGS. 1 and 14 includes a plasma irradiator 2.
  • the plasma irradiator 2 is connected to a power supply 70 via a wiring 50.
  • the plasma irradiator 2 is connected to a gas supply device 80 via a pipe 60.
  • the power supply device 70 may be any power source that can supply electricity to the plasma irradiator 2 .
  • the gas supply device 80 only needs to be able to supply the plasma generation gas to the plasma irradiation device, and examples thereof include a blower pump, a gas cylinder, and the like.
  • the plasma irradiator 2 has a cylindrical housing 10, a first lid 20, and a second lid 30.
  • the first lid 20 closes one opening (A) of the housing 10 via the annular insulator 40 .
  • the second lid 30 closes the other opening (B) of the housing 10.
  • the plasma irradiator 2 has an internal space 12 in a housing 10 surrounded by the housing 10, a first lid 20, and a second lid 30.
  • a wiring 50 is connected to the first lid 20 and the second lid 30.
  • a pipe 60 is connected to the annular insulator 40 .
  • the plasma irradiator 2 of this embodiment is a device that forms an arc column between electrodes and generates plasma by bringing plasma generation gas into contact with the arc column.
  • the housing 10 has conductivity. Since the housing 10 has conductivity, the housing 10 functions as an extension electrode. That is, in this embodiment, the extension electrode also serves as the housing 10. With this configuration, the extension electrode is exposed inside the housing 10.
  • the housing 10 can be, for example, a cylindrical molded body of conductive metal. In this embodiment, the housing 10 has a cylindrical shape, but the present invention is not limited to this, and the housing 10 may have a polygonal cylindrical shape. Examples of the conductive metal constituting the housing 10 include stainless steel, aluminum, copper, and tungsten.
  • the height H10 of the casing 10 is appropriately determined depending on the applied voltage, and is preferably, for example, 20 to 150 mm, more preferably 30 to 60 mm.
  • the height H10 is the length from one opening (A) to the other opening (B) in the housing 10.
  • the inner diameter D10 of the casing 10 is appropriately determined depending on the flow rate of the plasma generating gas, and is preferably, for example, 20 to 100 mm, more preferably 30 to 50 mm.
  • the inner diameter D10 is within the above range, the flow direction of the plasma generating gas within the housing 10 can be better controlled, and the treatment area of the irradiated plasma can be made larger.
  • the inner diameter D10 is the diameter of the circumscribed circle of the opening of the housing 10 in plan view.
  • the ratio of the inner diameter D10 to the height H10 of the housing 10 is preferably from 0.05 to 10, more preferably from 0.1 to 4.0, and from 0.2 to More preferably, it is 2. When the ratio D10/H10 is within this range, the Bernoulli effect associated with swirling flow can be easily obtained.
  • the thickness of the casing 10 is, for example, 1 to 10 mm.
  • At least the inner surface of the casing 10 may be made of conductive metal. That is, the housing 10 may be a cylindrical insulator whose inner surface is coated with a conductive metal (coating). When the housing 10 is a covered body, the conductive metal covering the inner surface is connected to the second electrode and electrically separated from the first electrode.
  • the first lid body 20 has a first electrode.
  • the first electrode functions as a ground electrode.
  • the first lid body 20 has a lid main body 21 made of a first electrode and an insulating nozzle 26.
  • a wiring 50 is connected to the lid main body 21.
  • the first lid body 20 is connected to the housing 10 via the annular insulator 40, so that the lid body 21, which is the first electrode, is electrically separated from the housing 10 (i.e., the extension electrode). .
  • the lower end (boundary with the annular insulator 40) of the housing 10 (extended electrode) and the lid main body 21 (first electrode) that is spaced apart from this constitute a discharge section. .
  • the lid main body 21 has a plasma irradiation port (hereinafter sometimes simply referred to as "irradiation port") 22 that communicates between the inside and outside of the housing 10 .
  • the lid main body 21 has a first annular convex portion 24 that projects from the first lid 20 toward the second lid 30 .
  • the first annular convex portion 24 goes around the periphery of the irradiation port 22 .
  • the lid body 21 has a second annular convex portion 25 that protrudes to the opposite side of the internal space 12 (that is, to the outside of the plasma irradiator 2).
  • the second annular convex portion 25 goes around the periphery of the irradiation port 22 .
  • An annular insulating nozzle 26 is joined to the second annular convex portion 25 .
  • the insulating nozzle 26 covers the periphery of the irradiation port 22 in the second annular convex portion 25 and a part of the inner surface of the irradiation port 22 .
  • the lid main body 21 may be anything that functions as an electrode, and may be, for example, a flat plate of conductive metal.
  • the conductive metal include stainless steel, aluminum, copper, and tungsten.
  • the insulating nozzle 26 only needs to have insulation properties.
  • the insulating nozzle 26 include molded bodies of ceramics, resin, and the like. From the viewpoint of durability, the insulating nozzle 26 is preferably a molded ceramic body. Examples of ceramics include aluminum oxide (alumina).
  • the height H24 of the first annular convex portion 24 is, for example, 5 to 10 mm, although it is not particularly limited. When the height H24 is within the above range, the arc column can be rotated faster about the axis O1 during plasma irradiation. By rotating the arc column faster, high-density plasma can be irradiated over a wider area.
  • the distance H20 from the tip of the first annular convex portion 24 to the insulating nozzle 26 is, for example, 5 to 20 mm.
  • the distance H20 is equal to or greater than the above lower limit value, discharge to the object to be treated can be better prevented and plasma can be irradiated more stably.
  • the height H20 is less than or equal to the above upper limit value, deactivation of plasma can be suppressed and the processing effect can be further enhanced.
  • the opening diameter R22 of the irradiation port 22 is not particularly limited, but is, for example, 3 to 20 mm.
  • the opening diameter R22 is equal to or larger than the lower limit value, the plasma ejected from the irradiation port 22 is diffused, and the processing area can be further increased.
  • the aperture diameter R22 is equal to or less than the above upper limit value, the density of the plasma ejected from the irradiation port 22 can be increased, and the processing effect on the irradiation distance can be further enhanced (more plasma can be delivered further away).
  • the aperture diameter is the diameter of the circumscribed circle of the irradiation port 22 in plan view.
  • the height H26 of the insulating nozzle 26 is, for example, 3 to 15 mm, although it is not particularly limited. When the height H26 is greater than or equal to the above lower limit value, discharge to the object to be treated can be better prevented and plasma can be irradiated more stably. When the height H26 is less than or equal to the above upper limit value, deactivation of the plasma can be suppressed and the processing effect can be further enhanced.
  • the height H26 is the length of the through hole that constitutes the irradiation port 22 in the insulating nozzle 26.
  • the width W26 of the insulating nozzle 26 is, for example, 10 to 30 mm, although it is not particularly limited.
  • the width W26 is the distance from the periphery of the irradiation port 22 to the outer edge of the insulating nozzle 26.
  • the thickness T26 of the insulating nozzle 26 is, for example, 3 to 15 mm, although it is not particularly limited. When the thickness T26 is equal to or greater than the above lower limit value, discharge to the object to be treated can be better prevented and plasma can be irradiated more stably. When the thickness T26 is less than or equal to the above upper limit value, deactivation of plasma can be suppressed and the processing effect can be further enhanced.
  • the thickness T26 is the thickness of the insulating nozzle 26 that covers the periphery of the irradiation port 22 of the second annular convex portion 25.
  • the lid main body 21 may be one in which a first electrode made of a conductive metal is provided on an insulating flat plate (composite type).
  • the composite lid body 21 may include, for example, an insulating flat plate having a through hole (irradiation hole) and a first electrode located within or near the through hole.
  • examples of the first electrode include a net-like body or needle-like body provided within the through-hole, or an annular body covering the periphery of the through-hole.
  • the first electrode is connected to the wiring 50 and electrically separated from the casing 10 (extension electrode).
  • the second lid body 30 has a second electrode.
  • the second electrode functions as a high voltage electrode.
  • the second lid body 30 consists of a second electrode. Therefore, the wiring 50 connected to the second lid 30 is connected to the second electrode.
  • the second lid body 30 has a third annular convex portion 34 coaxial with the irradiation port 22 .
  • the third annular protrusion 34 protrudes from the second lid 30 toward the first lid 20. That is, the third annular convex portion 34 is open toward the internal space 12.
  • the second lid body 30 may be anything that functions as an electrode, and may be, for example, a flat plate of conductive metal.
  • the conductive metal is the same as the conductive metal constituting the lid main body 21.
  • the metal forming the lid main body 21 and the metal forming the second lid 30 may be the same or different.
  • the height H34 of the third annular convex portion 34 is, for example, 3 to 10 mm. When the height H34 is within the above range, the arc column can be rotated faster about the axis O1 during plasma irradiation. By rotating the arc column faster, high-density plasma can be irradiated over a wider area.
  • the opening diameter D34 of the third annular convex portion 34 is, for example, 5 to 20 mm. When the opening diameter D34 is within the above range, the arc column can be rotated faster about the axis O1 during plasma irradiation. By rotating the arc column faster, high-density plasma can be irradiated over a wider area.
  • the ratio (D22/D34) of the opening diameter D22 of the irradiation port 22 to the opening diameter D34 of the third annular convex portion 34 is preferably 0.12 to 8.0, and preferably 0.25 to 4.0. It is more preferably 0.5 to 2.0. When this ratio D22/D34 is within this range, the stability and generation efficiency of plasma can be improved.
  • the second lid body 30 may be of a composite type. Even when the second lid body 30 is a composite type, the second electrode is connected to the wiring 50 and electrically connected to the housing 10.
  • the aspect of the composite body of the second lid body 30 is the same as the aspect of the composite body of the lid body body 21 in the first lid body 20.
  • the annular insulator 40 is an annular insulator in a plan view.
  • the shape of the annular insulator 40 can be determined as appropriate depending on the shape of the housing 10 in plan view.
  • the annular insulator 40 has four gas introduction passages 42. Each gas introduction path 42 penetrates from the inner peripheral surface to the outer peripheral surface of the annular insulator 40 .
  • the gas introduction path 42 is connected to the piping 60 on the outer peripheral surface of the annular insulator 40 .
  • the annular insulator 40 is the rectifier.
  • the annular insulator 40 only needs to be able to prevent electrical conduction between the lid body 21 (first electrode) and the housing 10 (extension electrode).
  • the annular insulator 40 include a resin molded body, a ceramic molded body, and the like.
  • An example of the material for the resin molded body is fluororesin.
  • Examples of the fluororesin include polytetrafluoroethylene (PTFE).
  • Examples of materials for the ceramic mix molded body include alumina and the like.
  • the thickness T40 of the annular insulator 40 is, for example, 3 to 10 mm, although it is not particularly limited. When the thickness T40 is equal to or greater than the above lower limit, the lid main body 21 and the housing 10 can be insulated more reliably. When the thickness T40 is less than or equal to the above upper limit value, electric discharge occurs more reliably between the housing 10 and the lid main body 21 when voltage is applied to the first electrode and the second electrode.
  • the four gas introduction paths 42 are located at 90° intervals around the axis O1 in plan view.
  • the number of gas introduction paths 42 is not limited to four, and may be three or less, or five or more. However, from the viewpoint of further increasing the strength of the annular insulator 40 and generating swirling flow within the housing 10 more efficiently, the number of gas introduction passages 42 is preferably 2 to 8, more preferably 4 to 6. . In addition, depending on the number of gas introduction passages 42, the interval between adjacent gas introduction passages 42 in the circumferential direction of the virtual circle Q1 can be determined as appropriate. From the viewpoint of generating swirling flow more efficiently within the housing 10, it is preferable that the intervals between the introduction passages 42 are substantially equal.
  • the number of gas introduction paths 42 is not limited to four, and may be three or less, or five or more. However, from the viewpoint of further increasing the strength of the annular insulator 40 and generating swirling flow within the housing 10 more efficiently, the number of gas introduction passages 42 is preferably 2 to 8, more preferably 4 to 6. . In addition, depending on the number of gas introduction passages 42, the interval between adjacent gas introduction passages 42 in the circumferential direction of the virtual circle Q1 can be determined as appropriate. Therefore, the positions of the gas introduction passages 42 are preferably arranged at intervals of 45 to 180 degrees, more preferably at intervals of 90 to 60 degrees, about the axis O1 in plan view.
  • the angle ⁇ 1 between the tangent O3 of the virtual circle Q1 and the axis O2 is preferably 0 to 60°, more preferably 0 to 30°, and 0 to 15° is more preferred.
  • an upward flow S1 which will be described later, can be generated more easily.
  • the virtual circle Q1 is a circle centered on the axis O1. In this embodiment, the virtual circle Q1 coincides with the inner circumference of the annular insulator 40.
  • the opening diameter of the gas introduction path 42 is not particularly limited, but is preferably, for example, 1 to 10 mm, more preferably 3 to 5 mm. If the opening diameter of the gas introduction path 42 is equal to or larger than the above lower limit value, a decrease in the flow rate or flow velocity of the plasma generating gas due to pressure loss can be suppressed. When the opening diameter of the gas introduction path 42 is less than or equal to the above upper limit value, the inflow speed of the plasma generating gas into the internal space 12 can be further increased, and a swirling flow within the internal space 12 can be generated more reliably.
  • the opening diameter is the diameter of the circumscribed circle of the opening shape of the gas introduction passage 42 as viewed from the direction of the axis O2.
  • the opening of the gas introduction path 42 (the opening to the internal space 12) is preferably located at or near the lowest part of the internal space 12 from the viewpoint of more easily generating an upward flow S1, which will be described later.
  • the opening of the gas introduction path 42 is The position of the lower end is preferably within the range of 0 to 99%, more preferably within the range of 0 to 50%, and even more preferably within the range of 0 to 25%.
  • the wiring 50 is not particularly limited as long as it can supply power from the power source to the first electrode and the second electrode.
  • the piping 60 may be anything that can supply the plasma generation gas from the gas supply device to the plasma irradiator 2, and may be, for example, a metal or resin pipe or tube.
  • a method of using the plasma irradiation device 1 will be explained below using FIGS. 3 and 4.
  • a plasma generating gas is supplied to the pipe 60 from the gas supply device.
  • the plasma generation gas flows through the pipe 60 and flows into the internal space 12 via the gas introduction path 42 . Since the four gas introduction paths 42 are inclined in the same direction with respect to the circumference of the virtual circle Q1, the plasma-generating gas flowing into the internal space 12 rotates around the axis O1 along the inner surface of the casing 10. It becomes an upward flow S1 and flows from the first lid body 20 toward the second lid body 30.
  • Examples of the plasma generating gas include rare gases such as helium, neon, argon, and krypton, nitrogen, oxygen, and air. These gases may be used alone or in combination of two or more.
  • the amount of plasma-generating gas supplied into the interior space 12 is appropriately determined in consideration of the capacity of the interior space 12.
  • the supply rate (flow rate) of the plasma-generating gas into the internal space 12 is appropriately determined in consideration of the inner diameter D10 and the like.
  • the flow rate of the plasma generating gas is, for example, 6 to 36 m/sec. is preferably 12 to 24 m/sec. is more preferable. If the flow velocity of the plasma-generating gas is equal to or higher than the lower limit value, the upward flow S1 can be more easily generated, and the downward flow S2, which will be described later, can be generated more easily.
  • the passage time of the plasma-generating gas to the arc column can be increased, and the processing effect can be further enhanced. That is, the time that the plasma-generating gas is in contact with the arc column within the housing 10 is increased, the probability of excitation of the plasma-generating gas is increased, and the processing effect can be further enhanced.
  • the AC voltage applied between the electrodes is preferably 10 to 40 kVpp (Volt peak to peak), more preferably 15 to 30 kVpp, even more preferably 20 to 25 kVpp.
  • the processing effect can be further enhanced. If the alternating current voltage is below the above upper limit value, wear of the electrodes due to discharge can be further suppressed.
  • the above-mentioned "AC voltage applied between the electrodes” is a voltage value (initial voltage value) until the arc column is stabilized and the plasma is stabilized. Usually, after the plasma stabilizes, the AC voltage applied between the electrodes becomes lower than the initial voltage value.
  • the arc generated by the discharge C extends toward the second lid body 30 due to the upward flow S1.
  • an arc column P1 is generated between the second lid 30 (second electrode) and the lid main body 21 (first electrode).
  • the arc column P1 receives the turning force of the downward flow S2 and turns around the axis O1.
  • the end of the arc column P1 occurs at the edge (the corner of the tip) of the third annular convex portion 34, and the end of the arc column P1 moves along the edge of the third annular convex portion 34.
  • the contact points between the arc column P1 and the first electrode and the second electrode constantly move, thereby reducing wear and tear on each electrode due to Joule heating.
  • the generated arc pillar P1 is not in contact with the casing 10, so that wear and tear on the casing 10 can be suppressed.
  • the downward flow S2 goes from the second lid body 30 toward the irradiation port 22, it becomes plasma P2 generated by the arc column P1 and ejects from the irradiation port.
  • the ejected plasma P2 is irradiated onto the surface to be treated to perform surface treatment on the surface to be treated.
  • the processing area can be increased.
  • the internal space surrounded by the first lid body, the second lid body, and the casing includes the rectifying part that causes the plasma generation gas to flow in a specific direction. It produces an upward flow and a downward flow inside the upward flow. By discharging in a state where upward flow and downward flow occur, an arc column can be generated at a low voltage.
  • the plasma irradiation device of this embodiment since the downward flow flows along the arc column within the internal space, the contact time between the downward flow of plasma generation gas and the arc column becomes longer. Therefore, the density of the generated plasma increases.
  • the plasma irradiation device of this embodiment since the plasma is ejected from the irradiation port in a swirling state, the irradiation area can be increased. According to the plasma irradiation device of the present embodiment, the arc column does not come into contact with the casing, and the end of the arc column moves while rotating.Therefore, wear and tear on the casing and electrodes can be suppressed. According to the plasma irradiation device of this embodiment, since it has an insulating nozzle, the periphery of the irradiation port is covered with an insulating material. This prevents discharge between the plasma irradiator and the object to be processed, and allows better control of the direction of the irradiated plasma.
  • the extension electrode also serves as the casing.
  • the present invention is not limited thereto, and the extension electrode and the casing may be separate bodies. An embodiment in which the extension electrode and the casing are separate bodies will be described below.
  • the plasma irradiation apparatus 100 shown in FIGS. 5 and 6 includes a plasma irradiation device 102.
  • the plasma irradiator 102 includes a cylindrical housing 110, a first lid 20, a second lid 30, and an extension electrode 114.
  • the housing 110 is a molded insulator. Examples of the insulator constituting the housing 110 include glass and ceramics such as alumina.
  • An extension electrode 114 separate from the housing 110 is located in the internal space of the housing 110.
  • the extension electrode 114 is a triangular flat plate curved along the inner surface of the casing 110, with the apex 116 located near the first lid 20.
  • the apex 116 and the lid main body 21 (first electrode) electrically separated from the apex 116 constitute a discharge section.
  • the extension electrode 114 may be a rectangular flat plate curved along the inner surface of the housing 110 (that is, a portion of a cylinder cut out in the circumferential direction).
  • a virtual circle Q2 is a circle centered on the axis O1 and having the inner surface of the extension electrode 114 as its circumference.
  • the length (path) L114 of the inner surface of the extension electrode 114 is preferably 50% or more of the length of the circumference of the virtual circle Q2. If the length L114 is 50% or more of the circumference length of the virtual circle Q2, when a voltage is applied to the first electrode and the second electrode, there will be no discharge between the extended electrode and the first electrode. (part) easily generates discharge.
  • a region in which the length L114 is 50% or more of the circumference of the virtual circle Q2 may be located in at least a part of the extension electrode 114, and all L114 of the extension electrode 114 is in the virtual circle Q2.
  • the length of the circumference is preferably 50% or more.
  • the extension electrode is not limited to a flat plate shape, but may be a spiral shape.
  • the plasma irradiation apparatus 200 in FIG. 7 includes a plasma irradiator 202.
  • the plasma irradiator 202 has a helical extension electrode 214 .
  • One end of the extension electrode 214 is connected to the second lid 30 (second electrode), and the other end (tip) 216 of the extension electrode 214 is close to the lid body 21.
  • the tip 216 of the extension electrode 214 and the lid main body 21 constitute a discharge section.
  • the extension electrode may have a slit or a through hole as long as it does not affect the formation of an upward flow, regardless of whether the extension electrode also serves as the casing or is independent from the casing.
  • the second lid body has the third annular convex portion, but the present invention is not limited thereto.
  • the second lid 330 may have a recess 334 that opens into the internal space 112. By having the recess 334, one end of the generated arc column is located at the periphery (edge) of the recess 334 and moves along the edge.
  • the second lid (second electrode) does not need to have either an annular protrusion or a recess. However, from the viewpoint of better turning the arc column, it is preferable that the second electrode has a convex portion or a concave portion.
  • the first lid may have a recess like the recess 334 instead of the second annular projection, or it may have neither an annular projection nor a recess. good.
  • the first electrode has a convex portion or a concave portion.
  • the plasma irradiation device of the present invention may have two or more plasma irradiators.
  • four plasma irradiators 2 are arranged in a line in the Y direction.
  • the plasma irradiation apparatus 400 irradiates the surface to be processed with plasma from the plasma irradiator 2 while transporting the object A1 to be processed in the X direction (MD direction). That is, the plasma irradiation apparatus 400 has a movement mechanism that relatively moves in the direction of the surface to be processed. Examples of the moving mechanism include a conveyor that transports the object to be processed A1 in the X direction.
  • the plasma irradiation device 400 may have a movement mechanism that reciprocates the four plasma irradiators 2 lined up in the Y direction in the Y direction.
  • the plasma irradiator 2 can be reciprocated in the Y direction while moving the workpiece A1 in the X direction, thereby irradiating plasma over a wider range.
  • the plasma irradiation device of the present invention may include a movement mechanism that moves the plasma irradiator in a circular motion relative to the surface to be treated.
  • the moving mechanism for circularly moving the plasma irradiator 2 or the workpiece A2 so that the axis O1 moves on the circumference of a virtual circle Q3 on the surface to be processed of the workpiece A2.
  • the virtual circle Q3 is a circle centered on the perpendicular line O4 at an arbitrary position on the surface to be processed.
  • the discharge section is formed by the gap between the extension electrode and the first electrode, but the present invention is not limited thereto.
  • the discharge part may be, for example, an igniter located within the interior space.
  • a swirling upward flow is formed by supplying the plasma generating gas, but the present invention is not limited to this.
  • the rectifying section may be a member that supplies gas that generates a swirling flow to the internal space separately from the plasma-generating gas, or may be a rotating blade that stirs the plasma-generating gas in the internal space.
  • the rectifying section generates an upward flow that is a swirling flow.
  • the present invention is not limited to this, and the rectifier only needs to be able to form an upward flow from the first lid toward the second lid along the inner surface of the casing. Therefore, the rectifier may be a gas introduction path that separates from each other as it goes from the first lid to the second lid. Thereby, the plasma-generating gas is blown toward the inner surface of the casing from the direction of the first lid body, and the plasma-generating gas is made into an upward flow.
  • the plasma irradiation device may include a vent that communicates between the inside and outside of the internal space and is formed separately from the plasma irradiation port.
  • a vent that communicates between the inside and outside of the internal space and is formed separately from the plasma irradiation port.
  • the configurations described with reference to FIGS. 1 to 10 can be applied as appropriate.
  • a vent 340 is provided between the second lid 30 and the upper end of the housing 10.
  • the position where the vent 340 is provided is not limited to this, and for example, the vent 340 may be provided in the second lid 30 or may be provided in the housing 10.
  • the ventilation hole 340 is provided between the second lid 30 and the upper end of the housing 10
  • the height H340 of the ventilation hole 340 can be easily changed. This is preferable because the opening area of 340 can be easily adjusted appropriately.
  • the pressure in the internal space can be adjusted to a suitable range, and the plasma flame blowout length L200 (mm) can be increased.
  • the plasma flame blowout length L200 increases, especially when the surface to be treated has unevenness, it becomes possible for the plasma to reach deep positions in the recesses of the surface to be treated, so that the treatment effect by the plasma becomes even more effective. improves.
  • the inner wall of the housing 10 and the bottom surface of the second lid body 30 are connected by the support portion 340. It is preferable that this support portion 340 is configured to be able to adjust the height H340 of the vent 340. In this way, the height H340 of the vent 340 does not need to be fixed to a constant value, but it is preferable that the height H340 is, for example, 0.5 mm to 1.8 mm, and 0.5 mm to 1. 7 mm is more preferable, and 0.5 mm to 1.6 mm is particularly preferable. Further, there is no particular restriction on the width of the vent 340, and the vent 340 may be formed in a slit shape over the entire circumference of the upper end of the housing 10.
  • the width of the ventilation hole 340 is preferably 10 to 100%, more preferably 40 to 100%, and even more preferably 60 to 100% of the entire circumference of the upper end of the housing 10.
  • the height H340 of the vent 340 and the width of the vent 340 can be adjusted as appropriate depending on the volume of the internal space.
  • the ratio (A10 (mm 2 )/V10 (mm 3 )) of the opening area A10 (mm 2 ) of the vent 340 to the volume V10 (mm 3 ) of the internal space is 0.001 to 0.006. It is preferable to set it to be 0.002 to 0.006, even more preferably to be 0.002 to 0.004, and even more preferably to be 0.0025 to 0.0035.
  • vent port 340 may be configured as a relatively small opening, and a pressure reducing means such as a pressure reducing pump may be connected thereto to obtain a desired effect of increasing the length of the plasma flame emitted.
  • the plasma irradiation device of the present invention can irradiate a wide range of plasma with high plasma density to improve processing efficiency. Therefore, the plasma irradiation device of the present invention is suitable for surface treatment such as roughening the surface of plastic, metal, glass, etc., surface modification such as introduction of functional groups, and removal of organic matter attached to the surface (surface cleaning). It is.
  • Example 1 A plasma irradiation device similar to the plasma irradiation device 1 shown in FIG. 1 was manufactured according to the following specifications. Using the fabricated plasma irradiation device, reagent wetting was measured. The results are shown in FIGS. 11 and 12.
  • the polyethylene terephthalate (PET) film was irradiated with plasma at the irradiation distance (distance from the irradiation port) shown in FIG. 11 while moving the film in its longitudinal direction at 300 mm/s.
  • a wetting reagent of 56 dyn was applied to the plasma-irradiated PET film in a band shape of 3 mm in width extending in the direction (TD direction) perpendicular to the length (transfer direction) of the PET film.
  • the length of the wet area (processed width) observed in the TD direction of the PET film was measured. The results are shown in FIG.
  • Example 1 The processing width was measured in the same manner as in Example 1, except that the plasma generating gas was flowed along the inner surface of the housing from the second lid to the first lid. The results are shown in FIG.
  • Comparative example 2 The processing width was measured in the same manner as Comparative Example 1 except that the specifications of the first lid body were changed.
  • the first lid in this example has a shape that approaches the second lid as it goes from the irradiation port toward the outer edge. That is, the first lid body of this example has a shape that narrows from the outer edge toward the irradiation port.
  • Example 1 to which the present invention was applied had a wider processing range than Comparative Examples 1 and 2. That is, in Example 1, plasma effective for surface treatment was irradiated over a wide range. This confirmed that the processing efficiency could be improved by applying the present invention.
  • Example 2 A plasma irradiation device was manufactured in the same manner as in Example 1, except that the supporting portion 340 was used to form a vent hole 340 as shown in FIG. 12. The produced plasma irradiation device was operated under the same operating conditions as in Example 1, and the plasma flame blowout length (mm) was measured. At this time, measurements were performed while changing the height H340 of the vent 340 to 0 mm, 0.5 mm, 1.0 mm, 1.2 mm, 1.6 mm, and 2.0 mm. Note that the vent 340 was a slit-shaped opening formed all around the upper end of the housing 10 .
  • the plasma flame blowout length (mm) was the longest length of the light emitting part in the visible range in a windless environment with no obstruction in the space below the gas blowout.
  • the results are shown in FIG. 13.
  • the plasma flame The blowout length (mm) increased significantly.
  • Plasma irradiation device 2 102, 202, 302 Plasma irradiation device 10, 110 Housing 12, 112 Internal space 20 First lid body 21 Lid body body 22 Irradiation port 26 Insulating nozzle 30, 330 Second lid 34 Third annular convex portion 334 Recess 40 Annular insulator 42 Gas introduction path 50 Wiring 60 Piping 70 Power feeder 80 Gas feeder A, A2 Workpiece O1 Axis

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Plasma Technology (AREA)

Abstract

This plasma irradiation device comprises a plasma irradiator (2), an electric power supplier, and a gas supplier. The plasma irradiator (2) has: a case (10); a first lid body (20) having a first electrode and an irradiation hole (22); a second lid body (30) having a second electrode; an extension electrode that extends from the second lid body (30) toward the first lid body (20), the extension electrode connecting to the second electrode and being electrically isolated from the first electrode; a discharge portion that discharges electricity between the first electrode and the extension electrode; and a rectifying portion that causes the plasma generation gas to flow along the inner surface of the case (10), from the direction of the first electrode toward the direction of the second electrode.

Description

プラズマ照射装置Plasma irradiation device
 本発明は、プラズマ照射装置に関する。
 本願は、2022年3月14日に日本に出願された特願2022-039487号について優先権を主張し、その内容をここに援用する。
The present invention relates to a plasma irradiation device.
This application claims priority to Japanese Patent Application No. 2022-039487 filed in Japan on March 14, 2022, the contents of which are incorporated herein.
 プラスチック、金属又はガラス等に対して、表面の粗面化や官能基導入等の改質(表面改質)、表面に付着した有機物の除去(表面洗浄)等(以下、表面改質と表面洗浄とを総じて「表面処理」ということがある)には、プラズマ照射装置が用いられている。
 プラズマ照射装置は、対向する一対の電極を有する。プラズマ照射装置は、一対の電極間にガス(プラズマ生成ガス)を導入しつつ電圧を印加することで、電極間に放電を生じ、生じた放電の周りにプラズマを生成し、生成したプラズマをプラズマ生成ガスと共に照射する。
For plastics, metals, glass, etc., modifications such as surface roughening and introduction of functional groups (surface modification), removal of organic matter attached to the surface (surface cleaning), etc. (hereinafter referred to as surface modification and surface cleaning) A plasma irradiation device is used for the surface treatment.
The plasma irradiation device has a pair of opposing electrodes. A plasma irradiation device applies a voltage while introducing gas (plasma generation gas) between a pair of electrodes to generate a discharge between the electrodes, generate plasma around the generated discharge, and convert the generated plasma into a plasma. Irradiate with generated gas.
 特許文献1には、管状で導電性のハウジングと電極とをノズル経路内に同軸方向に有し、ノズル経路内を流れるガスがノズル経路内で励起されるように、高周波発生器が電極とハウジングとの間に電圧を印加する、プラズマ照射装置が提案されている。
 特許文献1の発明によれば、プラズマ照射による被膜形成効果の向上が図られている。
Patent Document 1 discloses that a high frequency generator has a tubular conductive housing and an electrode coaxially in a nozzle path, and that a high frequency generator is arranged between the electrode and the housing so that gas flowing in the nozzle path is excited in the nozzle path. A plasma irradiation device has been proposed that applies a voltage between.
According to the invention of Patent Document 1, the effect of forming a film by plasma irradiation is improved.
特表2003-514114号公報Special Publication No. 2003-514114
 しかしながら、プラズマ照射装置には、表面処理をより効率的に行えること(処理効率の向上)が求められている。処理効率を高めるために、単に投入電力を高めると、電極等を部材の損耗が激しくなる。
 そこで、本発明は、処理効率の高いプラズマ照射装置を目的とする。
However, plasma irradiation devices are required to be able to perform surface treatment more efficiently (improvement in treatment efficiency). If the input power is simply increased in order to improve processing efficiency, the wear and tear of electrodes and other members will be severe.
Therefore, an object of the present invention is to provide a plasma irradiation device with high processing efficiency.
 本発明は、以下の態様を有する。
<1>
 プラズマ照射器と、前記プラズマ照射器に電気を供給する給電器と、前記プラズマ照射器にプラズマ生成ガスを供給するガス供給器とを有し、
 前記プラズマ照射器は、
 内部空間を有する円筒状又は多角筒状の筐体と、
 前記筐体の一端の開口部(A)を覆い、第一電極を有する第一蓋体と、
 前記筐体の他端の開口部(B)を覆い、第二電極を有する第二蓋体と、
 前記第二蓋体から前記第一蓋体に向かって伸び、前記第二電極と電気的に接続しかつ前記第一電極と電気的に離間する延長電極と、
 前記筐体内で前記第一電極と前記延長電極との間に放電する放電部と、
 前記プラズマ生成ガスを、前記筐体の内面に沿わせ、かつ前記第一電極の方向から前記第二電極の方向に流す整流部と、
を有し、
 前記第一蓋体は、プラズマ照射口を有している、プラズマ照射装置。
<2>
 前記延長電極は、円筒状又は多角筒状であり、
 前記延長電極は、前記筐体を兼ねており、
 前記第一蓋体は、前記開口部(A)の周縁に位置する絶縁体を介して、前記開口部(A)を塞ぐ、<1>に記載のプラズマ照射装置。
<3>
 前記延長電極は、前記筐体と前記第一蓋体と前記第二蓋体とで囲われた空間内に、前記筐体の軸線回りで前記筐体の内面に沿って位置し、
 前記延長電極の一部又は全部は、前記筐体の軸線回りの円周の長さの50%以上の長さで連なっている、<1>に記載のプラズマ照射装置。
<4>
 前記第二蓋体は、前記内部空間に対向する面に凸部又は凹部を有する、<1>~<3>のいずれかに記載のプラズマ照射装置。
<5>
 前記第一蓋体は、前記内部空間に対向する面に凸部又は凹部を有する、<1>~<4>のいずれかに記載のプラズマ照射装置。
<6>
 前記プラズマ照射口の周縁は、絶縁体で覆われている、<1>~<5>のいずれかに記載のプラズマ照射装置。
<7>
 前記整流部は、前記プラズマ生成ガスを前記筐体の軸線回りの旋回流とするよう構成されている、<1>~<6>のいずれかに記載のプラズマ照射装置。
<8>
 前記整流部は、前記筐体の軸線を中心とした円周に対して同方向に傾斜し、前記筐体の内外を連通するガス導入路を有する、<7>に記載のプラズマ照射装置。
<9>
 前記内部空間の内外を連通し、かつ、前記プラズマ照射口とは別に形成される通気口を備える、<1>~<8>のいずれか記載のプラズマ照射装置。
<10>
 前記通気口は、前記第二蓋体、前記第二蓋体と前記筐体との間、又は前記筐体に形成されている<9>に記載のプラズマ照射装置。

<11>
 被処理面に対して、前記プラズマ照射口を前記被処理面の面方向に相対的に移動させる移動機構を有する<1>~<10>のいずれかに記載のプラズマ照射装置。
<12>
 前記プラズマ照射器を2つ以上有する、<1>~<11>のいずれかに記載のプラズマ照射装置。
The present invention has the following aspects.
<1>
comprising a plasma irradiator, a power supply device that supplies electricity to the plasma irradiation device, and a gas supply device that supplies plasma generation gas to the plasma irradiation device,
The plasma irradiator includes:
A cylindrical or polygonal cylindrical housing having an internal space;
a first lid covering an opening (A) at one end of the housing and having a first electrode;
a second lid covering the opening (B) at the other end of the housing and having a second electrode;
an extension electrode extending from the second lid toward the first lid, electrically connected to the second electrode, and electrically spaced apart from the first electrode;
a discharge part that discharges between the first electrode and the extension electrode within the housing;
a rectifier that causes the plasma-generating gas to flow along the inner surface of the casing and from the direction of the first electrode to the direction of the second electrode;
has
A plasma irradiation device, wherein the first lid has a plasma irradiation port.
<2>
The extension electrode has a cylindrical shape or a polygonal cylindrical shape,
The extension electrode also serves as the casing,
The plasma irradiation device according to <1>, wherein the first lid closes the opening (A) via an insulator located at the periphery of the opening (A).
<3>
The extension electrode is located along the inner surface of the housing around the axis of the housing in a space surrounded by the housing, the first lid, and the second lid,
The plasma irradiation device according to <1>, wherein some or all of the extension electrodes are continuous for a length of 50% or more of the circumference around the axis of the housing.
<4>
The plasma irradiation device according to any one of <1> to <3>, wherein the second lid has a convex portion or a concave portion on a surface facing the internal space.
<5>
The plasma irradiation device according to any one of <1> to <4>, wherein the first lid has a convex portion or a concave portion on a surface facing the internal space.
<6>
The plasma irradiation device according to any one of <1> to <5>, wherein a periphery of the plasma irradiation port is covered with an insulator.
<7>
The plasma irradiation device according to any one of <1> to <6>, wherein the rectifier is configured to make the plasma generation gas a swirling flow around the axis of the housing.
<8>
The plasma irradiation device according to <7>, wherein the rectifier has a gas introduction path that is inclined in the same direction with respect to a circumference centered on the axis of the housing and communicates between the inside and outside of the housing.
<9>
The plasma irradiation device according to any one of <1> to <8>, comprising a vent hole that communicates between the inside and outside of the internal space and is formed separately from the plasma irradiation port.
<10>
The plasma irradiation device according to <9>, wherein the vent is formed in the second lid, between the second lid and the housing, or in the housing.

<11>
The plasma irradiation apparatus according to any one of <1> to <10>, including a moving mechanism that moves the plasma irradiation port relative to the surface to be processed in the in-plane direction of the surface to be processed.
<12>
The plasma irradiation device according to any one of <1> to <11>, comprising two or more of the plasma irradiators.
 本発明のプラズマ照射装置によれば、処理効率を高められる。 According to the plasma irradiation device of the present invention, processing efficiency can be improved.
本発明の一実施形態に係るプラズマ照射装置の縦断面図である。FIG. 1 is a longitudinal cross-sectional view of a plasma irradiation device according to an embodiment of the present invention. 図1のII-II断面図である。2 is a sectional view taken along line II-II in FIG. 1. FIG. プラズマ照射方法を説明する工程図である。It is a process diagram explaining the plasma irradiation method. プラズマ照射方法を説明する工程図である。It is a process diagram explaining the plasma irradiation method. 本発明の他の実施形態に係るプラズマ照射装置の縦断面図である。FIG. 3 is a longitudinal cross-sectional view of a plasma irradiation device according to another embodiment of the present invention. 図5のVI-VI断面図である。6 is a sectional view taken along line VI-VI in FIG. 5. FIG. 本発明の他の実施形態に係るプラズマ照射装置の縦断面図である。FIG. 3 is a longitudinal cross-sectional view of a plasma irradiation device according to another embodiment of the present invention. 本発明の他の実施形態を示す第二蓋体の断面図である。FIG. 7 is a sectional view of a second lid body showing another embodiment of the present invention. 本発明の他の実施形態に係るプラズマ照射装置の平面図である。FIG. 3 is a plan view of a plasma irradiation device according to another embodiment of the present invention. 本発明の一実施形態に係るプラズマ照射装置を、被処理面に対して移動させる方法の一例を示す図面である。1 is a drawing showing an example of a method for moving a plasma irradiation device according to an embodiment of the present invention with respect to a surface to be processed. 実施例1並びに比較例1及び2の評価結果を示すグラフである。2 is a graph showing the evaluation results of Example 1 and Comparative Examples 1 and 2. 本発明の他の実施形態に係るプラズマ照射装置の概略正面図である。FIG. 3 is a schematic front view of a plasma irradiation device according to another embodiment of the present invention. 実施例2における通気口の高さとプラズマ炎の吹出し長さとの関係を示すグラフである。7 is a graph showing the relationship between the height of the vent and the length of the plasma flame in Example 2. FIG. 本発明の一実施形態に係るプラズマ照射装置の概略正面図である。1 is a schematic front view of a plasma irradiation device according to an embodiment of the present invention.
 本明細書及び特許請求の範囲において、数値範囲を示す「~」は、その前後に記載した数値を下限値及び上限値として含むことを意味する。 In the present specification and claims, "~" indicating a numerical range means that the numerical values listed before and after it are included as lower and upper limits.
 本発明のプラズマ照射装置は、プラズマ照射器と、ガス供給器と、給電器とを有する。本発明のプラズマ照射器は、円筒状又は角筒状の筐体と、第一電極を有する第一蓋体と、第二電極を有する第二蓋体と、延長電極と、放電部と、整流部とを有する。
 以下、図面を参照して、一実施形態に係るプラズマ照射装置を説明する。
The plasma irradiation device of the present invention includes a plasma irradiation device, a gas supply device, and a power supply device. The plasma irradiator of the present invention includes a cylindrical or rectangular cylindrical housing, a first lid having a first electrode, a second lid having a second electrode, an extension electrode, a discharge section, and a rectifier. It has a section.
Hereinafter, a plasma irradiation apparatus according to an embodiment will be described with reference to the drawings.
(プラズマ照射装置)
 図1は、本発明の一実施形態に係るプラズマ照射装置の模式的な断面図であり、プラズマ照射器の縦断面を含む。
 また、図14は、本発明の一実施形態に係るプラズマ照射装置の概略正面図である。
 図1及び図14のプラズマ照射装置1は、プラズマ照射器2を有する。プラズマ照射器2は、配線50を介して給電器70と接続している。プラズマ照射器2は、配管60を介してガス供給器80と接続している。
(Plasma irradiation device)
FIG. 1 is a schematic cross-sectional view of a plasma irradiation device according to an embodiment of the present invention, including a longitudinal section of a plasma irradiation device.
Moreover, FIG. 14 is a schematic front view of a plasma irradiation apparatus according to an embodiment of the present invention.
The plasma irradiation device 1 shown in FIGS. 1 and 14 includes a plasma irradiator 2. The plasma irradiation device 1 shown in FIGS. The plasma irradiator 2 is connected to a power supply 70 via a wiring 50. The plasma irradiator 2 is connected to a gas supply device 80 via a pipe 60.
 給電器70は、プラズマ照射器2に電気を給電できる電源であればよい。
 ガス供給器80は、プラズマ生成ガスをプラズマ照射器に供給できればよく、送風ポンプ、ガスボンベ等を例示できる。
The power supply device 70 may be any power source that can supply electricity to the plasma irradiator 2 .
The gas supply device 80 only needs to be able to supply the plasma generation gas to the plasma irradiation device, and examples thereof include a blower pump, a gas cylinder, and the like.
 プラズマ照射器2は、円筒状の筐体10と、第一蓋体20と、第二蓋体30とを有する。第一蓋体20は、環状絶縁体40を介して、筐体10の一方の開口部(A)を塞いでいる。第二蓋体30は筐体10の他方の開口部(B)を塞いでいる。プラズマ照射器2は、筐体10内に、筐体10と第一蓋体20と第二蓋体30とで囲まれた内部空間12を有する。
 第一蓋体20及び第二蓋体30には、配線50が接続している。環状絶縁体40には、配管60が接続している。
 本実施形態のプラズマ照射器2は、電極間にアーク柱を形成し、アーク柱にプラズマ生成ガスが接触することでプラズマを生成する装置である。
The plasma irradiator 2 has a cylindrical housing 10, a first lid 20, and a second lid 30. The first lid 20 closes one opening (A) of the housing 10 via the annular insulator 40 . The second lid 30 closes the other opening (B) of the housing 10. The plasma irradiator 2 has an internal space 12 in a housing 10 surrounded by the housing 10, a first lid 20, and a second lid 30.
A wiring 50 is connected to the first lid 20 and the second lid 30. A pipe 60 is connected to the annular insulator 40 .
The plasma irradiator 2 of this embodiment is a device that forms an arc column between electrodes and generates plasma by bringing plasma generation gas into contact with the arc column.
 本実施形態において、筐体10は、導電性を有する。筐体10が導電性を有することで、筐体10は延長電極として機能する。即ち、本実施形態において、延長電極は筐体10を兼ねている。この構成により、延長電極は、筐体10に内部に露出している。
 筐体10は、例えば、導電性金属の円筒の成形体を例示できる。なお、本実施形態では、筐体10が円筒状であるが、本発明はこれに限定されず、筐体10が多角筒状でもよい。
 筐体10を構成する導電性金属としては、ステンレス、アルミニウム、銅、タングステン等を例示できる。
In this embodiment, the housing 10 has conductivity. Since the housing 10 has conductivity, the housing 10 functions as an extension electrode. That is, in this embodiment, the extension electrode also serves as the housing 10. With this configuration, the extension electrode is exposed inside the housing 10.
The housing 10 can be, for example, a cylindrical molded body of conductive metal. In this embodiment, the housing 10 has a cylindrical shape, but the present invention is not limited to this, and the housing 10 may have a polygonal cylindrical shape.
Examples of the conductive metal constituting the housing 10 include stainless steel, aluminum, copper, and tungsten.
 筐体10の高さH10は、印加電圧に応じて適宜決定され、例えば、20~150mmが好ましく、30~60mmがより好ましい。高さH10は、筐体10における一方の開口部(A)から他方の開口部(B)までの長さである。高さH10が上記範囲内であると、筐体10内での放電によって生じるアーク柱を安定して形成して、プラズマ照射器2の各部材(電極等)の消耗を抑制できる。
 筐体10の内径D10は、プラズマ生成ガスの流量に応じて適宜決定され、例えば、20~100mmが好ましく、30~50mmがより好ましい。内径D10が上記範囲内であると、筐体10内でのプラズマ生成ガスの流れ方向をより良好に制御して、照射するプラズマの処理面積をより大きくできる。なお、筐体10が多角筒状である場合、内径D10は、平面視における筐体10の開口部の外接円の直径である。
 尚、筐体10の高さH10に対する内径D10の比(D10/H10)は、0.05~10であることが好ましく、0.1~4.0であることがより好ましく、0.2~2であることが更に好ましい。比D10/H10がこの範囲内であると、旋回流に伴うベルヌーイ効果を容易に得られやすい。
 筐体10の厚さ(周壁の厚さ)は、例えば、1~10mmとされる。
 筐体10は、少なくとも内面が導電性金属であればよい。即ち、筐体10は、円筒状の絶縁体の内面に導電性金属を被覆したもの(被覆体)でもよい。筐体10が被覆体である場合、内面を被覆している導電性金属は第二電極と接続し、第一電極と電気的に離間する。
The height H10 of the casing 10 is appropriately determined depending on the applied voltage, and is preferably, for example, 20 to 150 mm, more preferably 30 to 60 mm. The height H10 is the length from one opening (A) to the other opening (B) in the housing 10. When the height H10 is within the above range, an arc column generated by discharge within the housing 10 can be stably formed, and wear and tear on each member (electrode, etc.) of the plasma irradiator 2 can be suppressed.
The inner diameter D10 of the casing 10 is appropriately determined depending on the flow rate of the plasma generating gas, and is preferably, for example, 20 to 100 mm, more preferably 30 to 50 mm. When the inner diameter D10 is within the above range, the flow direction of the plasma generating gas within the housing 10 can be better controlled, and the treatment area of the irradiated plasma can be made larger. Note that when the housing 10 has a polygonal cylindrical shape, the inner diameter D10 is the diameter of the circumscribed circle of the opening of the housing 10 in plan view.
The ratio of the inner diameter D10 to the height H10 of the housing 10 (D10/H10) is preferably from 0.05 to 10, more preferably from 0.1 to 4.0, and from 0.2 to More preferably, it is 2. When the ratio D10/H10 is within this range, the Bernoulli effect associated with swirling flow can be easily obtained.
The thickness of the casing 10 (thickness of the peripheral wall) is, for example, 1 to 10 mm.
At least the inner surface of the casing 10 may be made of conductive metal. That is, the housing 10 may be a cylindrical insulator whose inner surface is coated with a conductive metal (coating). When the housing 10 is a covered body, the conductive metal covering the inner surface is connected to the second electrode and electrically separated from the first electrode.
 第一蓋体20は、第一電極を有する。本実施形態において、第一電極は接地電極として機能する。
 第一蓋体20は、第一電極からなる蓋体本体21と、絶縁ノズル26とを有する。
 配線50が、蓋体本体21に接続している。第一蓋体20は、環状絶縁体40を介して筐体10に接続することで、第一電極である蓋体本体21は筐体10(即ち、延長電極)と電気的に離間している。
 本実施形態において、筐体10(延長電極)の下端(環状絶縁体40との境界)と、これと離間している蓋体本体21(第一電極)とで、放電部を構成している。
The first lid body 20 has a first electrode. In this embodiment, the first electrode functions as a ground electrode.
The first lid body 20 has a lid main body 21 made of a first electrode and an insulating nozzle 26.
A wiring 50 is connected to the lid main body 21. The first lid body 20 is connected to the housing 10 via the annular insulator 40, so that the lid body 21, which is the first electrode, is electrically separated from the housing 10 (i.e., the extension electrode). .
In this embodiment, the lower end (boundary with the annular insulator 40) of the housing 10 (extended electrode) and the lid main body 21 (first electrode) that is spaced apart from this constitute a discharge section. .
 蓋体本体21は、筐体10の内外を連通するプラズマ照射口(以下、単に「照射口」と称することもある。)22を有する。
 蓋体本体21は、第一蓋体20から第二蓋体30に向かい突出する第一環状凸部24を有する。第一環状凸部24は、照射口22の周縁を周回する。
 蓋体本体21は、内部空間12の反対側(即ち、プラズマ照射器2の外方)に突出する第二環状凸部25を有する。第二環状凸部25は、照射口22の周縁を周回する。
 第二環状凸部25には、環状の絶縁ノズル26が接合している。絶縁ノズル26は、第二環状凸部25における照射口22の周縁と照射口22の内面の一部を覆っている。
The lid main body 21 has a plasma irradiation port (hereinafter sometimes simply referred to as "irradiation port") 22 that communicates between the inside and outside of the housing 10 .
The lid main body 21 has a first annular convex portion 24 that projects from the first lid 20 toward the second lid 30 . The first annular convex portion 24 goes around the periphery of the irradiation port 22 .
The lid body 21 has a second annular convex portion 25 that protrudes to the opposite side of the internal space 12 (that is, to the outside of the plasma irradiator 2). The second annular convex portion 25 goes around the periphery of the irradiation port 22 .
An annular insulating nozzle 26 is joined to the second annular convex portion 25 . The insulating nozzle 26 covers the periphery of the irradiation port 22 in the second annular convex portion 25 and a part of the inner surface of the irradiation port 22 .
 本実施形態において、蓋体本体21は、電極として機能するものであればよく、例えば、導電性金属の平板を例示できる。導電性金属としては、ステンレス、アルミニウム、銅、タングステン等を例示できる。
 絶縁ノズル26は、絶縁性を有すればよい。絶縁ノズル26としては、セラミックス、樹脂等の成形体を例示できる。耐久性の観点から、絶縁ノズル26はセラミックスの成形体が好ましい。セラミックスとしては、酸化アルミニウム(アルミナ)等を例示できる。
In this embodiment, the lid main body 21 may be anything that functions as an electrode, and may be, for example, a flat plate of conductive metal. Examples of the conductive metal include stainless steel, aluminum, copper, and tungsten.
The insulating nozzle 26 only needs to have insulation properties. Examples of the insulating nozzle 26 include molded bodies of ceramics, resin, and the like. From the viewpoint of durability, the insulating nozzle 26 is preferably a molded ceramic body. Examples of ceramics include aluminum oxide (alumina).
 第一環状凸部24の高さH24は、特に限定されないが、例えば5~10mmとされる。高さH24が上記範囲内であると、プラズマを照射する際に、軸線O1を中心にして、アーク柱をより速く回転できる。アーク柱をより速く回転することで、プラズマ密度の高いプラズマをより広範囲に照射できる。
 第一蓋体20において、第一環状凸部24の突端から絶縁ノズル26までの距離H20は、例えば、5~20mmとされる。距離H20が上記下限値以上であると、被処理物への放電をより良好に防止し、より安定してプラズマを照射できる。高さH20が上記上限値以下であると、プラズマの失活を抑制し、処理効果をより高められる。
The height H24 of the first annular convex portion 24 is, for example, 5 to 10 mm, although it is not particularly limited. When the height H24 is within the above range, the arc column can be rotated faster about the axis O1 during plasma irradiation. By rotating the arc column faster, high-density plasma can be irradiated over a wider area.
In the first lid body 20, the distance H20 from the tip of the first annular convex portion 24 to the insulating nozzle 26 is, for example, 5 to 20 mm. When the distance H20 is equal to or greater than the above lower limit value, discharge to the object to be treated can be better prevented and plasma can be irradiated more stably. When the height H20 is less than or equal to the above upper limit value, deactivation of plasma can be suppressed and the processing effect can be further enhanced.
 照射口22の開口径R22は、特に限定されないが、例えば、3~20mmとされる。開口径R22が上記下限値以上であると、照射口22から噴出するプラズマは拡散し、処理面積をより高められる。開口径R22が上記上限値以下であると、照射口22から噴出するプラズマの密度を高めることができ、照射距離に対する処理効果をより高められる(より遠くにより多くのプラズマを届ける)。なお、照射口22が多角形である場合、開口径は、平面視における照射口22の外接円の直径である。 The opening diameter R22 of the irradiation port 22 is not particularly limited, but is, for example, 3 to 20 mm. When the opening diameter R22 is equal to or larger than the lower limit value, the plasma ejected from the irradiation port 22 is diffused, and the processing area can be further increased. When the aperture diameter R22 is equal to or less than the above upper limit value, the density of the plasma ejected from the irradiation port 22 can be increased, and the processing effect on the irradiation distance can be further enhanced (more plasma can be delivered further away). Note that when the irradiation port 22 is polygonal, the aperture diameter is the diameter of the circumscribed circle of the irradiation port 22 in plan view.
 絶縁ノズル26の高さH26は、特に限定されないが、例えば、3~15mmとされる。高さH26が上記下限値以上であると、被処理物への放電をより良好に防止し、より安定してプラズマを照射できる。高さH26が上記上限値以下であると、プラズマの失活を抑制し、処理効果をより高められる。高さH26は、絶縁ノズル26において照射口22を構成する貫通口の長さである。
 絶縁ノズル26の幅W26は、特に限定されないが、例えば、10~30mmとされる。幅W26が上記下限値以上であると、被処理物への放電をより良好に防止し、より安定してプラズマを照射できる。幅W26は、絶縁ノズル26における照射口22の周縁から外縁までの距離である。
 絶縁ノズル26の厚さT26は、特に限定されないが、例えば、3~15mmとされる。厚さT26が上記下限値以上であると、被処理物への放電をより良好に防止し、より安定してプラズマを照射できる。厚さT26が上記上限値以下であると、プラズマの失活を抑制し、処理効果をより高められる。厚さT26は、第二環状凸部25の照射口22の周縁を覆う絶縁ノズル26の厚さである。
The height H26 of the insulating nozzle 26 is, for example, 3 to 15 mm, although it is not particularly limited. When the height H26 is greater than or equal to the above lower limit value, discharge to the object to be treated can be better prevented and plasma can be irradiated more stably. When the height H26 is less than or equal to the above upper limit value, deactivation of the plasma can be suppressed and the processing effect can be further enhanced. The height H26 is the length of the through hole that constitutes the irradiation port 22 in the insulating nozzle 26.
The width W26 of the insulating nozzle 26 is, for example, 10 to 30 mm, although it is not particularly limited. When the width W26 is equal to or larger than the above lower limit value, discharge to the object to be treated can be better prevented and plasma can be irradiated more stably. The width W26 is the distance from the periphery of the irradiation port 22 to the outer edge of the insulating nozzle 26.
The thickness T26 of the insulating nozzle 26 is, for example, 3 to 15 mm, although it is not particularly limited. When the thickness T26 is equal to or greater than the above lower limit value, discharge to the object to be treated can be better prevented and plasma can be irradiated more stably. When the thickness T26 is less than or equal to the above upper limit value, deactivation of plasma can be suppressed and the processing effect can be further enhanced. The thickness T26 is the thickness of the insulating nozzle 26 that covers the periphery of the irradiation port 22 of the second annular convex portion 25.
 なお、蓋体本体21は、絶縁性の平板に導電性金属の第一電極が設けられたものでもよい(複合型)。複合型の蓋体本体21は、例えば、貫通口(照射口)を有する絶縁性の平板と、貫通口内又はその近傍に位置する第一電極とを有するものを例示できる。絶縁性の平板と第一電極との組み合わせにおいて、第一電極としては、貫通口内に設けられた網状体もしくは針状体、又は貫通口の周縁を覆う環状体等を例示できる。この場合においても、第一電極は、配線50と接続し、かつ筐体10(延長電極)と電気的に離間する。 Note that the lid main body 21 may be one in which a first electrode made of a conductive metal is provided on an insulating flat plate (composite type). The composite lid body 21 may include, for example, an insulating flat plate having a through hole (irradiation hole) and a first electrode located within or near the through hole. In the combination of the insulating flat plate and the first electrode, examples of the first electrode include a net-like body or needle-like body provided within the through-hole, or an annular body covering the periphery of the through-hole. Also in this case, the first electrode is connected to the wiring 50 and electrically separated from the casing 10 (extension electrode).
 第二蓋体30は、第二電極を有する。本実施形態において、第二電極は高電圧電極として機能する。
 本実施形態において、第二蓋体30は第二電極からなる。このため、第二蓋体30に接続している配線50は、第二電極に接続している。
 第二蓋体30は、照射口22と同軸の円環状の第三環状凸部34を有する。第三環状凸部34は、第二蓋体30から第一蓋体20に向けて突出している。即ち、第三環状凸部34は、内部空間12に向けて開口している。
The second lid body 30 has a second electrode. In this embodiment, the second electrode functions as a high voltage electrode.
In this embodiment, the second lid body 30 consists of a second electrode. Therefore, the wiring 50 connected to the second lid 30 is connected to the second electrode.
The second lid body 30 has a third annular convex portion 34 coaxial with the irradiation port 22 . The third annular protrusion 34 protrudes from the second lid 30 toward the first lid 20. That is, the third annular convex portion 34 is open toward the internal space 12.
 本実施形態において、第二蓋体30は、電極として機能するものであればよく、例えば、導電性金属の平板を例示できる。導電性金属としては、蓋体本体21を構成する導電性金属と同様である。蓋体本体21を構成する金属と第二蓋体30を構成する金属とは同じでもよいし、異なってもよい。 In the present embodiment, the second lid body 30 may be anything that functions as an electrode, and may be, for example, a flat plate of conductive metal. The conductive metal is the same as the conductive metal constituting the lid main body 21. The metal forming the lid main body 21 and the metal forming the second lid 30 may be the same or different.
 第三環状凸部34の高さH34は、例えば、3~10mmとされる。高さH34が上記範囲内であると、プラズマを照射する際に、軸線O1を中心にして、アーク柱をより速く回転できる。アーク柱をより速く回転することで、プラズマ密度の高いプラズマをより広範囲に照射できる。
 第三環状凸部34の開口径D34は、例えば、5~20mmとされる。開口径D34が上記範囲内であると、プラズマを照射する際に、軸線O1を中心にして、アーク柱をより速く回転できる。アーク柱をより速く回転することで、プラズマ密度の高いプラズマをより広範囲に照射できる。
 尚、照射口22の開口径D22の第三環状凸部34の開口径D34に対する比(D22/D34)は、0.12~8.0であることが好ましく、0.25~4.0であることがより好ましく、0.5~2.0であることが更に好ましい。この比D22/D34がこの範囲内にあることにより、プラズマの安定性及び発生効率を高めることができる。
The height H34 of the third annular convex portion 34 is, for example, 3 to 10 mm. When the height H34 is within the above range, the arc column can be rotated faster about the axis O1 during plasma irradiation. By rotating the arc column faster, high-density plasma can be irradiated over a wider area.
The opening diameter D34 of the third annular convex portion 34 is, for example, 5 to 20 mm. When the opening diameter D34 is within the above range, the arc column can be rotated faster about the axis O1 during plasma irradiation. By rotating the arc column faster, high-density plasma can be irradiated over a wider area.
The ratio (D22/D34) of the opening diameter D22 of the irradiation port 22 to the opening diameter D34 of the third annular convex portion 34 is preferably 0.12 to 8.0, and preferably 0.25 to 4.0. It is more preferably 0.5 to 2.0. When this ratio D22/D34 is within this range, the stability and generation efficiency of plasma can be improved.
 なお、第二蓋体30は、複合型でもよい。第二蓋体30が複合型の場合においても、第二電極は、配線50と接続しており、筐体10と電気的に接続している。第二蓋体30の複合体の態様は、第一蓋体20における蓋体本体21の複合体の態様と同様である。 Note that the second lid body 30 may be of a composite type. Even when the second lid body 30 is a composite type, the second electrode is connected to the wiring 50 and electrically connected to the housing 10. The aspect of the composite body of the second lid body 30 is the same as the aspect of the composite body of the lid body body 21 in the first lid body 20.
 環状絶縁体40は、平面視円環状の絶縁体である。環状絶縁体40の形状は、筐体10の平面視形状に応じて適宜決定できる。
 図1~2に示すように、環状絶縁体40は、4つのガス導入路42を有する。それぞれのガス導入路42は、環状絶縁体40の内周面から外周面にかけて貫通している。環状絶縁体40の外周面において、ガス導入路42は配管60と接続している。
 本実施形態において、環状絶縁体40が整流部である。
The annular insulator 40 is an annular insulator in a plan view. The shape of the annular insulator 40 can be determined as appropriate depending on the shape of the housing 10 in plan view.
As shown in FIGS. 1-2, the annular insulator 40 has four gas introduction passages 42. Each gas introduction path 42 penetrates from the inner peripheral surface to the outer peripheral surface of the annular insulator 40 . The gas introduction path 42 is connected to the piping 60 on the outer peripheral surface of the annular insulator 40 .
In this embodiment, the annular insulator 40 is the rectifier.
 環状絶縁体40は、蓋体本体21(第一電極)と筐体10(延長電極)との通電を防止できればよい。環状絶縁体40としては、樹脂成形体、セラミックス成形体等を例示できる。樹脂成形体の素材としては、フッ素樹脂を例示できる。フッ素樹脂としては、ポリテトラフルオロエチレン(PTFE)等を例示できる。セランミックス成形体の素材としては、アルミナ等を例示できる。
 環状絶縁体40の厚さT40は、特に限定されないが、例えば、3~10mmとされる。厚さT40が上記下限値以上であると、蓋体本体21と筐体10とをより確実に絶縁できる。厚さT40が上記上限値以下であると、第一電極及び第二電極に電圧を印加した際に、筐体10と蓋体本体21との間でより確実に放電する。
The annular insulator 40 only needs to be able to prevent electrical conduction between the lid body 21 (first electrode) and the housing 10 (extension electrode). Examples of the annular insulator 40 include a resin molded body, a ceramic molded body, and the like. An example of the material for the resin molded body is fluororesin. Examples of the fluororesin include polytetrafluoroethylene (PTFE). Examples of materials for the ceramic mix molded body include alumina and the like.
The thickness T40 of the annular insulator 40 is, for example, 3 to 10 mm, although it is not particularly limited. When the thickness T40 is equal to or greater than the above lower limit, the lid main body 21 and the housing 10 can be insulated more reliably. When the thickness T40 is less than or equal to the above upper limit value, electric discharge occurs more reliably between the housing 10 and the lid main body 21 when voltage is applied to the first electrode and the second electrode.
 4つのガス導入路42は、平面視において、軸線O1回りに90°間隔で位置していている。 The four gas introduction paths 42 are located at 90° intervals around the axis O1 in plan view.
 ガス導入路42の数は、4つに限定されず、3つ以下でもよいし、5つ以上でもよい。但し、環状絶縁体40の強度をより高め、かつ筐体10内で旋回流をより効率的に発生させる観点から、ガス導入路42の数は、2~8が好ましく、4~6がより好ましい。
 加えて、ガス導入路42の数に応じて、仮想円Q1の円周方向で隣り合うガス導入路42同士の間隔は、適宜決定できる。筐体10内で旋回流をより効率的に発生させる観点からは、導入路42同士の間隔は実質的に等しいことが好ましい。
The number of gas introduction paths 42 is not limited to four, and may be three or less, or five or more. However, from the viewpoint of further increasing the strength of the annular insulator 40 and generating swirling flow within the housing 10 more efficiently, the number of gas introduction passages 42 is preferably 2 to 8, more preferably 4 to 6. .
In addition, depending on the number of gas introduction passages 42, the interval between adjacent gas introduction passages 42 in the circumferential direction of the virtual circle Q1 can be determined as appropriate. From the viewpoint of generating swirling flow more efficiently within the housing 10, it is preferable that the intervals between the introduction passages 42 are substantially equal.
 ガス導入路42の数は、4つに限定されず、3つ以下でもよいし、5つ以上でもよい。但し、環状絶縁体40の強度をより高め、かつ筐体10内で旋回流をより効率的に発生させる観点から、ガス導入路42の数は、2~8が好ましく、4~6がより好ましい。
 加えて、ガス導入路42の数に応じて、仮想円Q1の円周方向で隣り合うガス導入路42同士の間隔は、適宜決定できる。従って、ガス導入路42の位置は、平面視において、軸線O1回りに45~180°間隔が好ましく、90~60°間隔がより好ましい。
The number of gas introduction paths 42 is not limited to four, and may be three or less, or five or more. However, from the viewpoint of further increasing the strength of the annular insulator 40 and generating swirling flow within the housing 10 more efficiently, the number of gas introduction passages 42 is preferably 2 to 8, more preferably 4 to 6. .
In addition, depending on the number of gas introduction passages 42, the interval between adjacent gas introduction passages 42 in the circumferential direction of the virtual circle Q1 can be determined as appropriate. Therefore, the positions of the gas introduction passages 42 are preferably arranged at intervals of 45 to 180 degrees, more preferably at intervals of 90 to 60 degrees, about the axis O1 in plan view.
 ガス導入路42の軸線O2と仮想円Q1との交点43において、仮想円Q1の接線O3と軸線O2とのなす角度θ1は、0~60°が好ましく、0~30°がより好ましく、0~15°がさらに好ましい。角度θ1が上記範囲内であると、後述する上昇流S1をより容易に生成できる。
 なお、仮想円Q1は、軸線O1を中心とする円である。本実施形態においては、仮想円Q1は、環状絶縁体40の内周と一致している。
At the intersection 43 between the axis O2 of the gas introduction path 42 and the virtual circle Q1, the angle θ1 between the tangent O3 of the virtual circle Q1 and the axis O2 is preferably 0 to 60°, more preferably 0 to 30°, and 0 to 15° is more preferred. When the angle θ1 is within the above range, an upward flow S1, which will be described later, can be generated more easily.
Note that the virtual circle Q1 is a circle centered on the axis O1. In this embodiment, the virtual circle Q1 coincides with the inner circumference of the annular insulator 40.
 ガス導入路42の開口径は、特に限定されないが、例えば1~10mmが好ましく、3~5mmがより好ましい。ガス導入路42の開口径が上記下限値以上であれば、圧力損失によるプラズマ生成ガスの流量又は流速の減少を抑制できる。ガス導入路42の開口径が上記上限値以下であると、内部空間12内へのプラズマ生成ガスの流入速度をより高め、内部空間12内での旋回流をより確実に発生できる。なお、ガス導入路42の開口部が多角形である場合、開口径は、軸線O2方向から見たガス導入路42の開口形状の外接円の直径である。
 また、ガス導入路42の開口部(内部空間12に対する開口部)は、後述する上昇流S1をより容易に生成させる観点から、内部空間12の最下部かそれに近い位置とすることが好ましい。より具体的には、筐体10の高さH10について、筐体10の最下部の高さを0%とし、最上部の高さを100%としたときに、ガス導入路42の開口部の下端部の位置が0~99%の範囲内にあることが好ましく、0~50%の範囲内にあることがより好ましく、0~25%の範囲内にあることが更に好ましい。
The opening diameter of the gas introduction path 42 is not particularly limited, but is preferably, for example, 1 to 10 mm, more preferably 3 to 5 mm. If the opening diameter of the gas introduction path 42 is equal to or larger than the above lower limit value, a decrease in the flow rate or flow velocity of the plasma generating gas due to pressure loss can be suppressed. When the opening diameter of the gas introduction path 42 is less than or equal to the above upper limit value, the inflow speed of the plasma generating gas into the internal space 12 can be further increased, and a swirling flow within the internal space 12 can be generated more reliably. Note that when the opening of the gas introduction passage 42 is polygonal, the opening diameter is the diameter of the circumscribed circle of the opening shape of the gas introduction passage 42 as viewed from the direction of the axis O2.
Further, the opening of the gas introduction path 42 (the opening to the internal space 12) is preferably located at or near the lowest part of the internal space 12 from the viewpoint of more easily generating an upward flow S1, which will be described later. More specifically, regarding the height H10 of the casing 10, when the height of the bottom of the casing 10 is 0% and the height of the top is 100%, the opening of the gas introduction path 42 is The position of the lower end is preferably within the range of 0 to 99%, more preferably within the range of 0 to 50%, and even more preferably within the range of 0 to 25%.
 配線50は、電源から第一電極及び第二電極に給電できるものであれば特に限定されない。 The wiring 50 is not particularly limited as long as it can supply power from the power source to the first electrode and the second electrode.
 配管60は、ガス供給器からプラズマ生成ガスをプラズマ照射器2に供給できるものであればよく、例えば、金属もしくは樹脂のパイプ又はチューブを例示できる。 The piping 60 may be anything that can supply the plasma generation gas from the gas supply device to the plasma irradiator 2, and may be, for example, a metal or resin pipe or tube.
 プラズマ照射装置1の使用方法について、図3~4を用いて以下に説明する。
 ガス供給器から配管60にプラズマ生成ガスを供給する。プラズマ生成ガスは、配管60内を通流し、ガス導入路42を経由して、内部空間12内に流入する。4つのガス導入路42は仮想円Q1の円周に対して同方向に傾斜しているため、内部空間12に流入したプラズマ生成ガスは、筐体10の内面に沿い、軸線O1回りに旋回する上昇流S1となって、第一蓋体20から第二蓋体30に向かって流れる。
A method of using the plasma irradiation device 1 will be explained below using FIGS. 3 and 4.
A plasma generating gas is supplied to the pipe 60 from the gas supply device. The plasma generation gas flows through the pipe 60 and flows into the internal space 12 via the gas introduction path 42 . Since the four gas introduction paths 42 are inclined in the same direction with respect to the circumference of the virtual circle Q1, the plasma-generating gas flowing into the internal space 12 rotates around the axis O1 along the inner surface of the casing 10. It becomes an upward flow S1 and flows from the first lid body 20 toward the second lid body 30.
 プラズマ生成ガスとしては、例えば、ヘリウム、ネオン、アルゴン、クリプトン等の希ガス、窒素、酸素、空気等を例示できる。これらのガスは、1種単独でもよいし、2種以上の組み合わせでもよい。 Examples of the plasma generating gas include rare gases such as helium, neon, argon, and krypton, nitrogen, oxygen, and air. These gases may be used alone or in combination of two or more.
 内部空間12内へのプラズマ生成ガスの供給量は、内部空間12の容量を勘案して適宜決定する。
 内部空間12内へのプラズマ生成ガスの供給速度(流速)は、内径D10等を勘案して適宜決定される。プラズマ生成ガスの流速は、例えば、6~36m/sec.が好ましく、12~24m/sec.がより好ましい。プラズマ生成ガスの流速が上記下限値以上であれば、上昇流S1をより容易に生成し、かつ後述する下降流S2をより容易に生成できる。プラズマ生成ガスの流速が上記上限値以下であれば、アーク柱に対するプラズマ生成ガスの通過時間を長くして、処理効果をより高められる。即ち、筐体10内で、プラズマ生成ガスがアーク柱に接する時間を長くして、プラズマ生成ガスの励起確率を高めて、処理効果をより高められる。
The amount of plasma-generating gas supplied into the interior space 12 is appropriately determined in consideration of the capacity of the interior space 12.
The supply rate (flow rate) of the plasma-generating gas into the internal space 12 is appropriately determined in consideration of the inner diameter D10 and the like. The flow rate of the plasma generating gas is, for example, 6 to 36 m/sec. is preferably 12 to 24 m/sec. is more preferable. If the flow velocity of the plasma-generating gas is equal to or higher than the lower limit value, the upward flow S1 can be more easily generated, and the downward flow S2, which will be described later, can be generated more easily. If the flow rate of the plasma-generating gas is below the above-mentioned upper limit, the passage time of the plasma-generating gas to the arc column can be increased, and the processing effect can be further enhanced. That is, the time that the plasma-generating gas is in contact with the arc column within the housing 10 is increased, the probability of excitation of the plasma-generating gas is increased, and the processing effect can be further enhanced.
 上昇流S1は、第二蓋体30に至ると、第二蓋体30の内面(内部空間12に面する面)に衝突し、次いで、上昇流S1の内側を下降流S2となって、照射口22に向かう。この時、下降流S2は、上昇流S1の旋回力を受け、旋回しつつ照射口22に向かう(図3)。 When the ascending flow S1 reaches the second lid body 30, it collides with the inner surface of the second lid body 30 (the surface facing the internal space 12), and then the inside of the ascending flow S1 becomes a descending flow S2, which is irradiated. Head towards mouth 22. At this time, the downward flow S2 receives the swirling force of the upward flow S1 and heads toward the irradiation port 22 while rotating (FIG. 3).
 図4に示すように、上昇流S1と下降流S2とが生じた状態で、蓋体本体21(第一電極)と第二蓋体30(第二電極)とに間に交流電圧を印加すると、筐体10(延長電極)と蓋体本体21(第一電極)との間で放電Cを生じる。なお、図4においては、上昇流S1の図示を省略している。 As shown in FIG. 4, when an AC voltage is applied between the lid main body 21 (first electrode) and the second lid 30 (second electrode) in a state where an upward flow S1 and a downward flow S2 are generated, , a discharge C is generated between the housing 10 (extended electrode) and the lid main body 21 (first electrode). Note that in FIG. 4, illustration of the upward flow S1 is omitted.
 電極間に印加する交流電圧は、10~40kVpp(Volt peak to peak)が好ましく、15~30kVppがより好ましく、20~25kVppがさらに好ましい。交流電圧が上記下限値以上であれば、処理効果をより高められる。交流電圧が上記上限値以下であれば、放電による電極の消耗をより抑制できる。
 なお、上述の「電極間に印加する交流電圧」は、アーク柱が安定してプラズマが安定するまでの間の電圧値(初期電圧値)である。通常、プラズマが安定した後に、電極間に印加する交流電圧は、初期電圧値に比べて低くなる。
The AC voltage applied between the electrodes is preferably 10 to 40 kVpp (Volt peak to peak), more preferably 15 to 30 kVpp, even more preferably 20 to 25 kVpp. When the alternating current voltage is equal to or higher than the above lower limit value, the processing effect can be further enhanced. If the alternating current voltage is below the above upper limit value, wear of the electrodes due to discharge can be further suppressed.
Note that the above-mentioned "AC voltage applied between the electrodes" is a voltage value (initial voltage value) until the arc column is stabilized and the plasma is stabilized. Usually, after the plasma stabilizes, the AC voltage applied between the electrodes becomes lower than the initial voltage value.
 放電Cにより生じたアークは、上昇流S1によって第二蓋体30の方向に伸びる。アークが第二蓋体30に達すると、第二蓋体30(第二電極)と蓋体本体21(第一電極)との間で、アーク柱P1を生じる。アーク柱P1は、下降流S2の旋回力を受けて、軸線O1回りに旋回する。加えて、アーク柱P1の端部は、第三環状凸部34のエッジ(突端の角部)に生じ、アーク柱P1の端部が、第三環状凸部34のエッジに沿って移動する。アーク柱P1が軸線O1回りに旋回しつつ移動することで、アーク柱P1と第一電極及び第二電極との接点が常時移動して、各電極へのジュール加熱による損耗を低減する。この際、生じたアーク柱P1は、筐体10と接触していないため、筐体10の損耗を抑制できる。
 下降流S2は、第二蓋体30から照射口22に向かう間に、アーク柱P1によって生成したプラズマP2となって照射口から噴出する。
 噴出したプラズマP2を被処理面に照射し、被処理面に表面処理を施す。この時、照射口22に絶縁ノズル26が設けられているため、蓋体本体21と被処理物との間の放電を防止し、プラズマP2の照射方向を制御できる。加えて、照射されるプラズマP2は、軸線O1回りに旋回しているため、処理面積を大きくできる。
The arc generated by the discharge C extends toward the second lid body 30 due to the upward flow S1. When the arc reaches the second lid 30, an arc column P1 is generated between the second lid 30 (second electrode) and the lid main body 21 (first electrode). The arc column P1 receives the turning force of the downward flow S2 and turns around the axis O1. In addition, the end of the arc column P1 occurs at the edge (the corner of the tip) of the third annular convex portion 34, and the end of the arc column P1 moves along the edge of the third annular convex portion 34. As the arc column P1 moves while rotating around the axis O1, the contact points between the arc column P1 and the first electrode and the second electrode constantly move, thereby reducing wear and tear on each electrode due to Joule heating. At this time, the generated arc pillar P1 is not in contact with the casing 10, so that wear and tear on the casing 10 can be suppressed.
While the downward flow S2 goes from the second lid body 30 toward the irradiation port 22, it becomes plasma P2 generated by the arc column P1 and ejects from the irradiation port.
The ejected plasma P2 is irradiated onto the surface to be treated to perform surface treatment on the surface to be treated. At this time, since the insulating nozzle 26 is provided in the irradiation port 22, it is possible to prevent electric discharge between the lid main body 21 and the object to be processed, and to control the irradiation direction of the plasma P2. In addition, since the irradiated plasma P2 rotates around the axis O1, the processing area can be increased.
 本実施形態のプラズマ照射装置によれば、第一蓋体と第二蓋体と筐体とで囲まれた内部空間に、プラズマ生成ガスを特定の方向に流す整流部を有するため、内部空間に上昇流と、上昇流の内側の下降流とを生じる。上昇流と下降流とが生じた状態で放電することで、低い電圧でアーク柱を生じることができる。
 本実施形態のプラズマ照射装置によれば、内部空間内で下降流がアーク柱に沿って流れるため、下降流であるプラズマ生成ガスとアーク柱との接触時間が長くなる。このため、生じるプラズマの密度が高くなる。
 本実施形態のプラズマ照射装置によれば、プラズマが旋回した状態で照射口から噴出されるため、照射面積を大きくできる。
 本実施形態のプラズマ照射装置によれば、アーク柱が筐体と接触せず、かつアーク柱の端部が旋回しつつ移動している、このため、筐体、電極の損耗を抑制できる。
 本実施形態のプラズマ照射装置によれば、絶縁ノズルを有するため、照射口の周縁が絶縁材で覆われている。これにより、プラズマ照射器と被処理物との間での放電を防止し、照射するプラズマの方向をより良好に制御できる。
According to the plasma irradiation device of this embodiment, the internal space surrounded by the first lid body, the second lid body, and the casing includes the rectifying part that causes the plasma generation gas to flow in a specific direction. It produces an upward flow and a downward flow inside the upward flow. By discharging in a state where upward flow and downward flow occur, an arc column can be generated at a low voltage.
According to the plasma irradiation device of this embodiment, since the downward flow flows along the arc column within the internal space, the contact time between the downward flow of plasma generation gas and the arc column becomes longer. Therefore, the density of the generated plasma increases.
According to the plasma irradiation device of this embodiment, since the plasma is ejected from the irradiation port in a swirling state, the irradiation area can be increased.
According to the plasma irradiation device of the present embodiment, the arc column does not come into contact with the casing, and the end of the arc column moves while rotating.Therefore, wear and tear on the casing and electrodes can be suppressed.
According to the plasma irradiation device of this embodiment, since it has an insulating nozzle, the periphery of the irradiation port is covered with an insulating material. This prevents discharge between the plasma irradiator and the object to be processed, and allows better control of the direction of the irradiated plasma.
(他の実施形態)
 上述の実施形態では、延長電極が筐体を兼ねていている。しかしながら、本発明はこれに限定されず、延長電極と筐体とは、別体でもよい。以下、延長電極と筐体とが別体である一実施形態について説明する。
 図5~6のプラズマ照射装置100は、プラズマ照射器102を有する。
 プラズマ照射器102は、円筒状の筐体110と第一蓋体20と第二蓋体30と延長電極114と、を有する。
 筐体110は、絶縁体の成形物である。筐体110を構成する絶縁体としては、ガラス、アルミナ等のセラミックスを例示できる。
(Other embodiments)
In the embodiments described above, the extension electrode also serves as the casing. However, the present invention is not limited thereto, and the extension electrode and the casing may be separate bodies. An embodiment in which the extension electrode and the casing are separate bodies will be described below.
The plasma irradiation apparatus 100 shown in FIGS. 5 and 6 includes a plasma irradiation device 102.
The plasma irradiator 102 includes a cylindrical housing 110, a first lid 20, a second lid 30, and an extension electrode 114.
The housing 110 is a molded insulator. Examples of the insulator constituting the housing 110 include glass and ceramics such as alumina.
 筐体110の内部空間には、筐体110とは別体の延長電極114が位置している。 延長電極114は、三角形の平板を筐体110の内面に沿って湾曲させ、頂点116を第一蓋体20の近傍に位置させたものである。本実施形態において、頂点116と、頂点116と電気的に離間した蓋体本体21(第一電極)とで、放電部を構成している。なお、延長電極114は、矩形の平板を筐体110の内面に沿って湾曲させたもの(即ち、円筒の周方向の一部を切り取ったもの)でもよい。 An extension electrode 114 separate from the housing 110 is located in the internal space of the housing 110. The extension electrode 114 is a triangular flat plate curved along the inner surface of the casing 110, with the apex 116 located near the first lid 20. In this embodiment, the apex 116 and the lid main body 21 (first electrode) electrically separated from the apex 116 constitute a discharge section. Note that the extension electrode 114 may be a rectangular flat plate curved along the inner surface of the housing 110 (that is, a portion of a cylinder cut out in the circumferential direction).
 軸線O1を中心とし、延長電極114の内面を円周とする円を仮想円Q2とする。延長電極114の内面の長さ(道のり)L114は、仮想円Q2の円周の長さに対して、50%以上が好ましい。長さL114が、仮想円Q2の円周の長さに対して50%以上であれば、第一電極及び第二電極に電圧を印加した際に、延長電極と第一電極との間(放電部)で容易に放電を生じる。延長電極114において、長さL114が仮想円Q2の円周の長さの50%以上となる領域は、延長電極114の少なくとも一部にあればよく、延長電極114の全てのL114が仮想円Q2の円周の長さの50%以上であることが好ましい。 A virtual circle Q2 is a circle centered on the axis O1 and having the inner surface of the extension electrode 114 as its circumference. The length (path) L114 of the inner surface of the extension electrode 114 is preferably 50% or more of the length of the circumference of the virtual circle Q2. If the length L114 is 50% or more of the circumference length of the virtual circle Q2, when a voltage is applied to the first electrode and the second electrode, there will be no discharge between the extended electrode and the first electrode. (part) easily generates discharge. In the extension electrode 114, a region in which the length L114 is 50% or more of the circumference of the virtual circle Q2 may be located in at least a part of the extension electrode 114, and all L114 of the extension electrode 114 is in the virtual circle Q2. The length of the circumference is preferably 50% or more.
 また、延長電極は、平板状に限られず、螺旋形でもよい。
 図7のプラズマ照射装置200は、プラズマ照射器202を有する。プラズマ照射器202は、螺旋形の延長電極214を有している。延長電極214の一端は第二蓋体30(第二電極)に接続し、延長電極214の他端(先端)216は蓋体本体21と近接している。本実施形態において、延長電極214の先端216と蓋体本体21とで、放電部を構成している。
Further, the extension electrode is not limited to a flat plate shape, but may be a spiral shape.
The plasma irradiation apparatus 200 in FIG. 7 includes a plasma irradiator 202. The plasma irradiator 202 has a helical extension electrode 214 . One end of the extension electrode 214 is connected to the second lid 30 (second electrode), and the other end (tip) 216 of the extension electrode 214 is close to the lid body 21. In this embodiment, the tip 216 of the extension electrode 214 and the lid main body 21 constitute a discharge section.
 また、延長電極は、筐体を兼ねているか又は筐体と独立しているかにかかわらず、上昇流の形成に影響しない範囲で、スリット、貫通口を有してもよい。 In addition, the extension electrode may have a slit or a through hole as long as it does not affect the formation of an upward flow, regardless of whether the extension electrode also serves as the casing or is independent from the casing.
 上述の実施形態では、第二蓋体は第三環状凸部を有するが、本発明はこれに限定されない。図8のプラズマ照射装置300のプラズマ照射器302のように、第二蓋体330は、内部空間112に開口する凹部334を有してもよい。凹部334を有することで、生じたアーク柱の一端は凹部334の周縁(エッジ)に位置し、かつエッジに沿って移動する。
 第二蓋体(第二電極)は、環状凸部及び凹部のいずれをも有しなくてもよい。但し、アーク柱をより良好に旋回させる観点から、第二電極は凸部又は凹部を有することが好ましい。
 第二蓋体と同様に、第一蓋体は第二環状凸部に代えて、凹部334のような凹部を有してもよいし、環状凸部及び凹部のいずれをも有しなくてもよい。但し、アーク柱をより良好に旋回させる観点から、第一電極は凸部又は凹部を有することが好ましい。
In the embodiment described above, the second lid body has the third annular convex portion, but the present invention is not limited thereto. Like the plasma irradiator 302 of the plasma irradiator 300 in FIG. 8, the second lid 330 may have a recess 334 that opens into the internal space 112. By having the recess 334, one end of the generated arc column is located at the periphery (edge) of the recess 334 and moves along the edge.
The second lid (second electrode) does not need to have either an annular protrusion or a recess. However, from the viewpoint of better turning the arc column, it is preferable that the second electrode has a convex portion or a concave portion.
Similar to the second lid, the first lid may have a recess like the recess 334 instead of the second annular projection, or it may have neither an annular projection nor a recess. good. However, from the viewpoint of better turning the arc column, it is preferable that the first electrode has a convex portion or a concave portion.
 本発明のプラズマ照射装置は、2つ以上のプラズマ照射器を有してもよい。
 図9のプラズマ照射装置400は、4つのプラズマ照射器2が、Y方向に一列で並んでいる。プラズマ照射装置400は、被処理物A1をX方向(MD方向)に移送しつつ、プラズマ照射器2からプラズマを被処理面に照射する。即ち、プラズマ照射装置400は、被処理面の面方向に相対移動させる移動機構を有する。移動機構としては、被処理物A1をX方向に移送するコンベア等を例示できる。
 あるいは、プラズマ照射装置400は、Y方向に並んだ4つのプラズマ照射器2をY方向に往復する移動機構を有してもよい。この移動機構を有することで、被処理物A1をX方向に移動しつつ、プラズマ照射器2をY方向に往復させて、より広範囲にプラズマを照射できる。
The plasma irradiation device of the present invention may have two or more plasma irradiators.
In the plasma irradiation apparatus 400 of FIG. 9, four plasma irradiators 2 are arranged in a line in the Y direction. The plasma irradiation apparatus 400 irradiates the surface to be processed with plasma from the plasma irradiator 2 while transporting the object A1 to be processed in the X direction (MD direction). That is, the plasma irradiation apparatus 400 has a movement mechanism that relatively moves in the direction of the surface to be processed. Examples of the moving mechanism include a conveyor that transports the object to be processed A1 in the X direction.
Alternatively, the plasma irradiation device 400 may have a movement mechanism that reciprocates the four plasma irradiators 2 lined up in the Y direction in the Y direction. By having this moving mechanism, the plasma irradiator 2 can be reciprocated in the Y direction while moving the workpiece A1 in the X direction, thereby irradiating plasma over a wider range.
 また、本発明のプラズマ照射装置は、被処理面に対して、プラズマ照射器を相対的に円運動させる移動機構を有してもよい。円運動させる移動機構としては、図10に示すように、被処理物A2の被処理面上の仮想円Q3の円周上を軸線O1が移動するように、プラズマ照射器2又は被処理物A2を移動させる移動機構を例示できる。仮想円Q3は、被処理面における任意の位置の垂線O4を中心とする円である。 Furthermore, the plasma irradiation device of the present invention may include a movement mechanism that moves the plasma irradiator in a circular motion relative to the surface to be treated. As shown in FIG. 10, the moving mechanism for circularly moving the plasma irradiator 2 or the workpiece A2 so that the axis O1 moves on the circumference of a virtual circle Q3 on the surface to be processed of the workpiece A2. An example of a moving mechanism that moves the . The virtual circle Q3 is a circle centered on the perpendicular line O4 at an arbitrary position on the surface to be processed.
 上述の実施形態では、延長電極と第一電極とのギャップで放電部を構成しているが、本発明はこれに限定されない。放電部は、例えば、内部空間内に位置するイグナイターでもよい。 In the above-described embodiment, the discharge section is formed by the gap between the extension electrode and the first electrode, but the present invention is not limited thereto. The discharge part may be, for example, an igniter located within the interior space.
 上述の実施形態では、プラズマ生成ガスの供給によって、旋回する上昇流を形成しているが、本発明はこれに限定されない。整流部は、プラズマ生成ガスとは別に、旋回流を生じる気体を内部空間に供給する部材でもよいし、内部空間内のプラズマ生成ガスを攪拌する回転羽根でもよい。 In the embodiments described above, a swirling upward flow is formed by supplying the plasma generating gas, but the present invention is not limited to this. The rectifying section may be a member that supplies gas that generates a swirling flow to the internal space separately from the plasma-generating gas, or may be a rotating blade that stirs the plasma-generating gas in the internal space.
 上述の実施形態では、整流部が旋回流である上昇流を生じている。しかしながら、本発明はこれに限定されず、整流部は、筐体の内面に沿い第一蓋体から第二蓋体に向かう上昇流を形成できればよい。従って、整流部は、第一蓋体から第二蓋体に向かうに従い互いに離れるガス導入路でもよい。これにより、プラズマ生成ガスを第一蓋体の方向から筐体の内面に向けて吹き付け、プラズマ生成ガスを上昇流とする。 In the embodiment described above, the rectifying section generates an upward flow that is a swirling flow. However, the present invention is not limited to this, and the rectifier only needs to be able to form an upward flow from the first lid toward the second lid along the inner surface of the casing. Therefore, the rectifier may be a gas introduction path that separates from each other as it goes from the first lid to the second lid. Thereby, the plasma-generating gas is blown toward the inner surface of the casing from the direction of the first lid body, and the plasma-generating gas is made into an upward flow.
 また、本発明の更に他の実施形態においては、プラズマ照射装置は、前記内部空間の内外を連通し、かつ、前記プラズマ照射口とは別に形成される通気口を備えていても良い。この通気口以外の構成については、図1~10に参照して説明した構成を適宜適用することができる。 In yet another embodiment of the present invention, the plasma irradiation device may include a vent that communicates between the inside and outside of the internal space and is formed separately from the plasma irradiation port. As for the configuration other than this vent, the configurations described with reference to FIGS. 1 to 10 can be applied as appropriate.
 本実施形態について、図12に参照して説明する。
 図12に示すプラズマ照射装置1においては、通気口340が、第二蓋体30と筐体10の上端部との間に設けられている。前記通気口340を設ける位置はこれに限定されず、例えば、前記第二蓋体30に通気口340を設けても良いし、前記筐体10に通気口340を設けても良い。しかし、図12に示すように、通気口340を、第二蓋体30と筐体10の上端部との間に設けると、通気口340の高さH340を容易に変更でき、それにより通気口340の開口面積を適切に調整し易いため、好ましい。
This embodiment will be described with reference to FIG. 12.
In the plasma irradiation device 1 shown in FIG. 12, a vent 340 is provided between the second lid 30 and the upper end of the housing 10. The position where the vent 340 is provided is not limited to this, and for example, the vent 340 may be provided in the second lid 30 or may be provided in the housing 10. However, as shown in FIG. 12, if the ventilation hole 340 is provided between the second lid 30 and the upper end of the housing 10, the height H340 of the ventilation hole 340 can be easily changed. This is preferable because the opening area of 340 can be easily adjusted appropriately.
 上記の通気口340を設けることにより、前記内部空間における圧力を好適な範囲に調整し、プラズマ炎の吹出し長さL200(mm)を増大させることができる。プラズマ炎の吹出し長さL200が大きくなると、特に被処理面に凹凸があるような場合、被処理面の凹部の深い位置までプラズマを到達させることが可能になるため、プラズマによる処理効果がより一層向上する。 By providing the above vent 340, the pressure in the internal space can be adjusted to a suitable range, and the plasma flame blowout length L200 (mm) can be increased. When the plasma flame blowout length L200 increases, especially when the surface to be treated has unevenness, it becomes possible for the plasma to reach deep positions in the recesses of the surface to be treated, so that the treatment effect by the plasma becomes even more effective. improves.
 図12においては、支持部340により、筐体10の内壁と第二蓋体30の底面とが連結されている。この支持部340が、通気口340の高さH340を調節可能に構成されていることが好ましい。
 このように、通気口340の高さH340は一定値に固定されている必要はないが、高さH340としては、例えば、0.5mm~1.8mmであることが好ましく、0.5mm~1.7mmであることがより好ましく、0.5mm~1.6mmであることが特に好ましい。
 また、通気口340の幅についても特に制限はなく、筐体10の上端部全周に亘って、通気口340がスリット状に形成されていても良い。例えば、通気口340の幅は、筐体10の上端部全周に対して10~100%であることが好ましく、40~100%であることがより好ましく、60~100%であることがより好ましい。
 また、通気口340の高さH340や通気口340の幅については、前記内部空間の体積に応じて適宜調節することもできる。例えば、前記内部空間の体積V10(mm)に対する前記通気口340の開口部面積A10(mm)の比(A10(mm)/V10(mm))が、0.001~0.006となるようにすることが好ましく、0.002~0.006となるようにすることがより好ましく、0.002~0.004となるようにすることがさらに好ましく、0.0025~0.0035となるようにすることが特に好ましい。
 更には、前記通気口340は比較的小さい開口部として、そこに減圧ポンプなどの減圧手段を接続して、所望のプラズマ炎の吹出し長さ増大効果が得られるよう構成しても良い。
In FIG. 12, the inner wall of the housing 10 and the bottom surface of the second lid body 30 are connected by the support portion 340. It is preferable that this support portion 340 is configured to be able to adjust the height H340 of the vent 340.
In this way, the height H340 of the vent 340 does not need to be fixed to a constant value, but it is preferable that the height H340 is, for example, 0.5 mm to 1.8 mm, and 0.5 mm to 1. 7 mm is more preferable, and 0.5 mm to 1.6 mm is particularly preferable.
Further, there is no particular restriction on the width of the vent 340, and the vent 340 may be formed in a slit shape over the entire circumference of the upper end of the housing 10. For example, the width of the ventilation hole 340 is preferably 10 to 100%, more preferably 40 to 100%, and even more preferably 60 to 100% of the entire circumference of the upper end of the housing 10. preferable.
Further, the height H340 of the vent 340 and the width of the vent 340 can be adjusted as appropriate depending on the volume of the internal space. For example, the ratio (A10 (mm 2 )/V10 (mm 3 )) of the opening area A10 (mm 2 ) of the vent 340 to the volume V10 (mm 3 ) of the internal space is 0.001 to 0.006. It is preferable to set it to be 0.002 to 0.006, even more preferably to be 0.002 to 0.004, and even more preferably to be 0.0025 to 0.0035. It is particularly preferable to make it so that
Furthermore, the vent port 340 may be configured as a relatively small opening, and a pressure reducing means such as a pressure reducing pump may be connected thereto to obtain a desired effect of increasing the length of the plasma flame emitted.
 上述の通り、本発明のプラズマ照射装置は、プラズマ密度の高いプラズマを広範囲に照射して、処理効率を高められる。このため、本発明のプラズマ照射装置は、プラスチック、金属又はガラス等の表面の粗面化や官能基導入等の表面改質、表面に付着した有機物の除去(表面洗浄)等の表面処理に好適である。 As described above, the plasma irradiation device of the present invention can irradiate a wide range of plasma with high plasma density to improve processing efficiency. Therefore, the plasma irradiation device of the present invention is suitable for surface treatment such as roughening the surface of plastic, metal, glass, etc., surface modification such as introduction of functional groups, and removal of organic matter attached to the surface (surface cleaning). It is.
 本発明のプラズマ照射装置について、以下に実施例を示してその効果を説明するが、本発明のプラズマ照射装置は、以下の実施例に限定されない。 The effects of the plasma irradiation device of the present invention will be described below with reference to Examples, but the plasma irradiation device of the present invention is not limited to the following Examples.
(実施例1)
 下記仕様に従い、図1のプラズマ照射装置1と同様のプラズマ照射装置を作製した。作製したプラズマ照射装置を用い、濡れ試薬測定を行った。その結果を図11~12に示す。
(Example 1)
A plasma irradiation device similar to the plasma irradiation device 1 shown in FIG. 1 was manufactured according to the following specifications. Using the fabricated plasma irradiation device, reagent wetting was measured. The results are shown in FIGS. 11 and 12.
<仕様>
≪筐体≫
・素材:ステンレスの円筒。
・高さH10:50mm。
・内径D10:36mm。
・厚さ:2mm。
≪第一蓋体≫
・蓋体本体の素材:ステンレス。
・絶縁ノズルの素材:アルミナ。
・距離H20:10mm。
・高さH24:5mm。
・高さH26:8mm。
・開口径R22:8mm。
・厚さT26:5mm。
≪第二電極≫
・素材:ステンレス。
・高さH34:5mm。
・開口径D34:12mm。
≪環状絶縁体≫
・素材:PTFE。
・内径:36mm。
・厚さT40:5mm。
・ガス導入路の開口径:3mm。
・ガス導入路の長さ:4mm。
・ガス導入路の数:4。
・ガス導入路の間隔:90°。
<Specifications>
≪Housing≫
-Material: Stainless steel cylinder.
・Height H10: 50mm.
・Inner diameter D10: 36mm.
・Thickness: 2mm.
≪First lid body≫
・Material of the lid body: Stainless steel.
- Insulating nozzle material: alumina.
・Distance H20: 10mm.
・Height H24: 5mm.
・Height H26: 8mm.
・Opening diameter R22: 8mm.
・Thickness T26: 5mm.
≪Second electrode≫
・Material: Stainless steel.
・Height H34: 5mm.
・Opening diameter D34: 12mm.
≪Annular insulator≫
-Material: PTFE.
・Inner diameter: 36mm.
・Thickness T40: 5mm.
・Opening diameter of gas introduction path: 3mm.
・Length of gas introduction path: 4mm.
・Number of gas introduction channels: 4.
・Gas introduction path spacing: 90°.
 作成したプラズマ照射装置について、下記運転条件で運転した。
<運転条件>
・プラズマ生成ガス:圧縮空気。
・プラズマ生成ガスの供給量:20L/min.。
・プラズマ生成ガスの供給速度:11.79m/sec.。
・電源設定電力:1392W。
・電源周波数:30kHz。
・印加電圧:放電前=23kVpp、アーク柱安定後=7kVpp。
The produced plasma irradiation device was operated under the following operating conditions.
<Operating conditions>
・Plasma generation gas: Compressed air.
- Supply amount of plasma generation gas: 20L/min. .
- Supply speed of plasma generation gas: 11.79 m/sec. .
- Power setting power: 1392W.
・Power frequency: 30kHz.
- Applied voltage: before discharge = 23 kVpp, after arc column stabilization = 7 kVpp.
<濡れ試薬測定>
 図11の照射距離(照射口からの距離)で、ポリエチレンテレフテレート(PET)フィルムをその長手方向に300mm/sで移動させつつ、PETフィルムにプラズマを照射した。
 プラズマを照射したPETフィルムに対して、56dynの濡れ試薬をPETフィルムの長手(移送方向)に直行する方向(TD方向)に伸びる幅3mmの帯状に塗布した。PETフィルムのTD方向に認められた濡れ領域の長さ(処理幅)を測定した。この結果を図11に示す。
<Wetting reagent measurement>
The polyethylene terephthalate (PET) film was irradiated with plasma at the irradiation distance (distance from the irradiation port) shown in FIG. 11 while moving the film in its longitudinal direction at 300 mm/s.
A wetting reagent of 56 dyn was applied to the plasma-irradiated PET film in a band shape of 3 mm in width extending in the direction (TD direction) perpendicular to the length (transfer direction) of the PET film. The length of the wet area (processed width) observed in the TD direction of the PET film was measured. The results are shown in FIG.
(比較例1)
 第二蓋体から第一蓋体に向けて、筐体の内面に沿ってプラズマ生成ガスを流した以外は、実施例1と同様にして、処理幅を測定した。その結果を図11に示す。
(Comparative example 1)
The processing width was measured in the same manner as in Example 1, except that the plasma generating gas was flowed along the inner surface of the housing from the second lid to the first lid. The results are shown in FIG.
(比較例2)
 第一蓋体の仕様を変更した以外は、比較例1と同様にして、処理幅を測定した。
 本例における第一蓋体は、照射口から外縁に向かうに従って第二蓋体に近づく形状である。即ち、本例の第一蓋体は、外縁から照射口に向かって窄まる形状である。 
(Comparative example 2)
The processing width was measured in the same manner as Comparative Example 1 except that the specifications of the first lid body were changed.
The first lid in this example has a shape that approaches the second lid as it goes from the irradiation port toward the outer edge. That is, the first lid body of this example has a shape that narrows from the outer edge toward the irradiation port.
 図11に示すように、本発明を適用した実施例1は、比較例1、2に比べて、処理幅が広かった。即ち、実施例1は、表面処理に有効なプラズマを幅広く照射していた。
 これにより、本発明を適用することで、処理効率を高められることを確認できた。
As shown in FIG. 11, Example 1 to which the present invention was applied had a wider processing range than Comparative Examples 1 and 2. That is, in Example 1, plasma effective for surface treatment was irradiated over a wide range.
This confirmed that the processing efficiency could be improved by applying the present invention.
(実施例2)
 図12示すようにこの支持部340を用いて通気口340を形成可能な構成とした以外は、実施例1と同様にしてのプラズマ照射装置を作製した。
 作製したプラズマ照射装置について、実施例1と同様の運転条件で運転し、プラズマ炎吹出し長さ(mm)を測定した。この際、通気口340の高さH340を0mm、0.5mm、1.0mm、1.2mm、1.6mm、及び2.0mmに変更して、測定を行った。尚、この通気口340は、筐体10の上端部全周に亘って形成されたスリット状の開口部であった。
 また、プラズマ炎吹出し長さ(mm)は、ガス吹き出し下部空間に障害物がなく、無風の環境下における可視域の発光部の最長長さとした。
 結果を、図13に示す。
 図13に示す結果から明らかな通り、通気口340が無い場合と比較して、通気口340の高さH340が0.5mm、1.0mm、1.2mm及び1.6mmの場合は、プラズマ炎吹出し長さ(mm)が有意に増加した。
(Example 2)
A plasma irradiation device was manufactured in the same manner as in Example 1, except that the supporting portion 340 was used to form a vent hole 340 as shown in FIG. 12.
The produced plasma irradiation device was operated under the same operating conditions as in Example 1, and the plasma flame blowout length (mm) was measured. At this time, measurements were performed while changing the height H340 of the vent 340 to 0 mm, 0.5 mm, 1.0 mm, 1.2 mm, 1.6 mm, and 2.0 mm. Note that the vent 340 was a slit-shaped opening formed all around the upper end of the housing 10 .
Further, the plasma flame blowout length (mm) was the longest length of the light emitting part in the visible range in a windless environment with no obstruction in the space below the gas blowout.
The results are shown in FIG. 13.
As is clear from the results shown in FIG. 13, when the height H340 of the vent hole 340 is 0.5 mm, 1.0 mm, 1.2 mm, and 1.6 mm, the plasma flame The blowout length (mm) increased significantly.
1、100、200、300、400 プラズマ照射装置
2、102、202、302 プラズマ照射器
10、110 筐体
12、112 内部空間
20 第一蓋体
21 蓋体本体
22 照射口
26 絶縁ノズル
30、330 第二蓋体
34 第三環状凸部
334 凹部
40 環状絶縁体
42 ガス導入路
50 配線
60 配管
70 給電器
80 ガス供給器
A、A2 被処理物
O1 軸線
1, 100, 200, 300, 400 Plasma irradiation device 2, 102, 202, 302 Plasma irradiation device 10, 110 Housing 12, 112 Internal space 20 First lid body 21 Lid body body 22 Irradiation port 26 Insulating nozzle 30, 330 Second lid 34 Third annular convex portion 334 Recess 40 Annular insulator 42 Gas introduction path 50 Wiring 60 Piping 70 Power feeder 80 Gas feeder A, A2 Workpiece O1 Axis

Claims (12)

  1.  プラズマ照射器と、前記プラズマ照射器に電気を供給する給電器と、前記プラズマ照射器にプラズマ生成ガスを供給するガス供給器とを有し、
     前記プラズマ照射器は、
     内部空間を有する円筒状又は多角筒状の筐体と、
     前記筐体の一端の開口部(A)を覆う、第一電極を有する第一蓋体と、
     前記筐体の他端の開口部(B)を覆う、第二電極を有する第二蓋体と、
     前記第二蓋体から前記第一蓋体に向かって伸び、前記第二電極と電気的に接続しかつ前記第一電極と電気的に離間する延長電極と、
     前記筐体内で前記第一電極と前記延長電極との間に放電する放電部と、
     前記プラズマ生成ガスを、前記筐体の内面に沿わせ、かつ前記第一電極の方向から前記第二電極の方向に流す整流部と、
    を有し、
     前記第一蓋体は、プラズマ照射口を有している、プラズマ照射装置。
    comprising a plasma irradiator, a power supply device that supplies electricity to the plasma irradiation device, and a gas supply device that supplies plasma generation gas to the plasma irradiation device,
    The plasma irradiator is
    A cylindrical or polygonal cylindrical housing having an internal space;
    a first lid having a first electrode that covers an opening (A) at one end of the housing;
    a second lid having a second electrode that covers the opening (B) at the other end of the housing;
    an extension electrode extending from the second lid toward the first lid, electrically connected to the second electrode, and electrically spaced apart from the first electrode;
    a discharge part that discharges between the first electrode and the extension electrode within the housing;
    a rectifier that causes the plasma-generating gas to flow along the inner surface of the casing and from the direction of the first electrode to the direction of the second electrode;
    has
    A plasma irradiation device, wherein the first lid has a plasma irradiation port.
  2.  前記延長電極は、円筒状又は多角筒状であり、
     前記延長電極は、前記筐体を兼ねており、
     前記第一蓋体は、前記開口部(A)の周縁に位置する絶縁体を介して、前記開口部(A)を塞ぐ、請求項1に記載のプラズマ照射装置。
    The extension electrode has a cylindrical shape or a polygonal cylindrical shape,
    The extension electrode also serves as the casing,
    The plasma irradiation device according to claim 1, wherein the first lid closes the opening (A) via an insulator located at a periphery of the opening (A).
  3.  前記延長電極は、前記筐体と前記第一蓋体と前記第二蓋体とで囲われた空間内に、前記筐体の軸線回りで前記筐体の内面に沿って位置し、
     前記延長電極の一部又は全部は、前記筐体の軸線回りの円周の長さの50%以上の長さで連なっている、請求項1に記載のプラズマ照射装置。
    The extension electrode is located along the inner surface of the housing around the axis of the housing in a space surrounded by the housing, the first lid, and the second lid,
    The plasma irradiation device according to claim 1, wherein a part or all of the extension electrodes are continuous for a length of 50% or more of the circumference around the axis of the casing.
  4.  前記第二蓋体は、前記内部空間に対向する面に凸部又は凹部を有する、請求項1~3のいずれか一項に記載のプラズマ照射装置。 The plasma irradiation device according to any one of claims 1 to 3, wherein the second lid has a convex portion or a concave portion on a surface facing the internal space.
  5.  前記第一蓋体は、前記内部空間に対向する面に凸部又は凹部を有する、請求項1~4のいずれか一項に記載のプラズマ照射装置。 The plasma irradiation device according to any one of claims 1 to 4, wherein the first lid has a convex portion or a concave portion on a surface facing the internal space.
  6.  前記プラズマ照射口の周縁は、絶縁体で覆われている、請求項1~5のいずれか一項に記載のプラズマ照射装置。 The plasma irradiation device according to any one of claims 1 to 5, wherein the periphery of the plasma irradiation port is covered with an insulator.
  7.  前記整流部は、前記プラズマ生成ガスを前記筐体の軸線回りの旋回流とするよう構成されている、請求項1~6のいずれか一項に記載のプラズマ照射装置。 The plasma irradiation device according to any one of claims 1 to 6, wherein the rectifier is configured to make the plasma generation gas a swirling flow around the axis of the casing.
  8.  前記整流部は、前記筐体の軸線を中心とした円周に対して同方向に傾斜し、前記筐体の内外を連通するガス導入路を有する、請求項7に記載のプラズマ照射装置。 The plasma irradiation device according to claim 7, wherein the rectifier has a gas introduction path that is inclined in the same direction with respect to a circumference centered on the axis of the casing and communicates between the inside and outside of the casing.
  9.  前記内部空間の内外を連通し、かつ、前記プラズマ照射口とは別に形成される通気口を備える、請求項1~8のいずれか記載のプラズマ照射装置。 The plasma irradiation device according to any one of claims 1 to 8, further comprising a vent hole that communicates the inside and outside of the internal space and is formed separately from the plasma irradiation port.
  10.  前記通気口は、前記第二蓋体、前記第二蓋体と前記筐体との間、又は前記筐体に形成されている請求項9に記載のプラズマ照射装置。 The plasma irradiation device according to claim 9, wherein the vent is formed in the second lid, between the second lid and the housing, or in the housing.
  11.  被処理面に対して、前記プラズマ照射口を前記被処理面の面方向に相対的に移動させる移動機構を有する請求項1~10のいずれか一項に記載のプラズマ照射装置。 The plasma irradiation apparatus according to any one of claims 1 to 10, further comprising a moving mechanism that moves the plasma irradiation port relative to the surface to be processed in the in-plane direction of the surface to be processed.
  12.  前記プラズマ照射器を2つ以上有する、請求項1~11のいずれか一項に記載のプラズマ照射装置。 The plasma irradiation device according to any one of claims 1 to 11, comprising two or more of the plasma irradiators.
PCT/JP2023/009748 2022-03-14 2023-03-14 Plasma irradiation device WO2023176803A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022039487 2022-03-14
JP2022-039487 2022-03-14

Publications (1)

Publication Number Publication Date
WO2023176803A1 true WO2023176803A1 (en) 2023-09-21

Family

ID=88023880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009748 WO2023176803A1 (en) 2022-03-14 2023-03-14 Plasma irradiation device

Country Status (2)

Country Link
TW (1) TW202406635A (en)
WO (1) WO2023176803A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070196249A1 (en) * 2003-06-20 2007-08-23 Alexander Fridman Vortex reactor and method of using it
US20080056961A1 (en) * 2006-09-02 2008-03-06 Igor Matveev Triple Helical Flow Vortex Reactor
JP2008066058A (en) * 2006-09-06 2008-03-21 Noritsu Koki Co Ltd Plasma generation nozzle, plasma generating device, and work treatment device using it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070196249A1 (en) * 2003-06-20 2007-08-23 Alexander Fridman Vortex reactor and method of using it
US20080056961A1 (en) * 2006-09-02 2008-03-06 Igor Matveev Triple Helical Flow Vortex Reactor
JP2008066058A (en) * 2006-09-06 2008-03-21 Noritsu Koki Co Ltd Plasma generation nozzle, plasma generating device, and work treatment device using it

Also Published As

Publication number Publication date
TW202406635A (en) 2024-02-16

Similar Documents

Publication Publication Date Title
EP2702839B1 (en) Method for processing a gas and a device for performing the method
EP2153705B1 (en) Enhancing gas-phase reaction in a plasma using high intensity and high power ultrasonic acoustic waves
US9661732B2 (en) Plasma generation apparatus
EP1705965A1 (en) Method and system for plasma treatment under high pressure
KR20020003503A (en) Plasma treatment apparatus and plasma treatment method
JP2004165145A (en) Method and apparatus for processing substrate by atmospheric pressure glow plasma (apg)
US20030047540A1 (en) Arrangement for generating an active gas jet
EP3432691B1 (en) Plasma generator
JP2006278191A (en) Plasma jet generating electrode
WO2023176803A1 (en) Plasma irradiation device
JP2010009890A (en) Plasma processing device
WO2011073170A1 (en) An apparatus and a method and a system for treating a surface with at least one gliding arc source
JP5031634B2 (en) Plasma processing apparatus and plasma processing method
TWI392403B (en) Plasma jet electrode device and system thereof
JP4812404B2 (en) Plasma surface treatment apparatus and surface treatment cylindrical substrate manufacturing method
JP6446289B2 (en) Barrier film forming apparatus and barrier film forming method
JPH11176557A (en) Electric discharge electrode for ion generating apparatus
CZ306119B6 (en) Method of generating low-temperature plasma, plasma treatment process of fluids, powder materials and solid substances by making use of such low-temperature plasma and apparatus for making the same
JP2012172208A (en) Method and device for treating inner surface of plastic bottle
JP2016081842A (en) Plasma processing device
JP5635788B2 (en) Deposition equipment
JP5088667B2 (en) Plasma processing equipment
JP2003007497A (en) Atmospheric pressure plasma processing equipment
KR20060103908A (en) Plasma discharger
JP3846303B2 (en) Surface treatment apparatus and surface treatment method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770758

Country of ref document: EP

Kind code of ref document: A1