JP4812404B2 - Plasma surface treatment apparatus and surface treatment cylindrical substrate manufacturing method - Google Patents

Plasma surface treatment apparatus and surface treatment cylindrical substrate manufacturing method Download PDF

Info

Publication number
JP4812404B2
JP4812404B2 JP2005323139A JP2005323139A JP4812404B2 JP 4812404 B2 JP4812404 B2 JP 4812404B2 JP 2005323139 A JP2005323139 A JP 2005323139A JP 2005323139 A JP2005323139 A JP 2005323139A JP 4812404 B2 JP4812404 B2 JP 4812404B2
Authority
JP
Japan
Prior art keywords
electrode
surface treatment
plasma
cylindrical substrate
treatment apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005323139A
Other languages
Japanese (ja)
Other versions
JP2007134056A (en
Inventor
小田川健二
満 貞本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2005323139A priority Critical patent/JP4812404B2/en
Publication of JP2007134056A publication Critical patent/JP2007134056A/en
Application granted granted Critical
Publication of JP4812404B2 publication Critical patent/JP4812404B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)

Description

筒型基材のプラズマ表面処理装置および該処理装置を用いた表面処理筒型基材の製造方法に関する。   The present invention relates to a plasma surface treatment apparatus for a cylindrical substrate and a method for manufacturing a surface-treated tubular substrate using the treatment apparatus.

プラズマにより基材の表面処理を施す方法は多数知られている。
例えば、接地側電極と高圧側電極が同軸中心の状態で間にプラスチックチューブを介して対向するかたちで配置されている大気圧グロー放電プラズマによりプラスチックチューブ内面を処理する装置が開示されている(特許文献1)。しかし、この装置では均一な放電プラズマが形成できず、表面処理の均質性に劣るという問題がある。
Many methods for surface treatment of a substrate with plasma are known.
For example, an apparatus that treats the inner surface of a plastic tube with atmospheric pressure glow discharge plasma in which the ground side electrode and the high voltage side electrode are arranged coaxially with each other and facing each other via a plastic tube is disclosed (patent) Reference 1). However, this apparatus has a problem that a uniform discharge plasma cannot be formed and the uniformity of the surface treatment is poor.

また、内側(処理面側)の電極の外周部に、スペーサがガスの流れを確保出来る状態で取り付けられているプラスチックチューブの内面を処理する同軸型の大気圧グロー放電発生装置が開示されている(特許文献2)。しかしこの技術は、プラスチックチューブとプラスチックチューブ安定部材とを隔てるスペーサを設けることで、プラスチックチューブの揺れを防ぎしかもプラズマ発生領域、ガスの流れを確保しようとするものであって、放電プラズマを均一にしようとするものではない。この装置は、スペーサが非導電性の素材(好適にはフッ素樹脂)である為、電極(金属)表面に異種の素材(スペーサ)を取り付ける為の接着処理等の加工が必要であり簡便ではなく、特にチューブの直径が小さい場合には電極の加工が困難である。さらにはガスの流れは良好となるが、プラズマ電界の均質性に劣り、結果として処理の均質性も不十分であるという問題がある。   Also disclosed is a coaxial atmospheric pressure glow discharge generator for treating the inner surface of a plastic tube in which a spacer is secured in a state in which a gas flow can be secured on the outer periphery of the inner (treated surface side) electrode. (Patent Document 2). However, this technology is intended to prevent the plastic tube from shaking and to secure the plasma generation region and gas flow by providing a spacer that separates the plastic tube and the plastic tube stabilizing member. Not trying. In this device, since the spacer is made of a non-conductive material (preferably a fluororesin), processing such as adhesion processing for attaching a different material (spacer) to the electrode (metal) surface is necessary and not simple. Especially when the tube has a small diameter, it is difficult to process the electrode. Furthermore, although the gas flow is good, there is a problem that the homogeneity of the plasma electric field is inferior and as a result, the homogeneity of the processing is also insufficient.

一方、電極に溝部を設けることでグロー放電を均質に安定化させることが知られており、処理側電極の裏面に溝を設けた大気圧プラズマ反応装置が開示されているが(特許文献3)、この装置は、板状の基体を処理するものであり筒型基材の表面処理の均質性を向上できるものではない。
特開2002−60521号公報 特開2002−86580号公報 特開平2−15171号公報
On the other hand, it is known that a glow discharge is uniformly stabilized by providing a groove on the electrode, and an atmospheric pressure plasma reactor having a groove on the back surface of the processing side electrode is disclosed (Patent Document 3). This apparatus treats a plate-like substrate and cannot improve the uniformity of the surface treatment of the cylindrical substrate.
Japanese Patent Laid-Open No. 2002-60521 JP 2002-86580 A Japanese Patent Laid-Open No. 2-15171

本発明は、筒型基材のプラズマ表面処理において、より均質性に優れたプラズマ処理を可能とする装置を簡便に提供すること、および該処理装置を用いた均質に処理された表面処理筒型基材の製造方法を提供することにある。   In the plasma surface treatment of a cylindrical substrate, the present invention simply provides an apparatus that enables plasma treatment with higher homogeneity, and a uniformly treated surface-treated cylinder using the treatment apparatus. It is providing the manufacturing method of a base material.

本発明者は、上記課題を解決する為に、鋭意検討した結果、特定の構造の溝を設けた電極を用いることで上記課題を解決できることを見出し本発明を完成した。
すなわち本発明は、同軸上に配置された筒型基材の外側の電極と、該外側の電極と筒型基材を介して対向するように配置された内側の電極とを有する同軸型のプラズマ表面処理装置において、双方の前記電極が導電性の材質により構成され、これら電極のうちのプラズマ表面処理側の電極の表面に、軸方向にガスが流動できる溝が形成されたことにより、前記導電性の材質により構成された当該電極の表面が凹凸表面となっていることを特徴とする筒型基材のプラズマ表面処理装置である。本発明はまた、上記プラズマ表面処理装置を用いて表面処理を行うことを特徴とする表面処理筒型基材の製造方法である。
As a result of intensive studies to solve the above problems, the present inventor has found that the above problems can be solved by using an electrode provided with a groove having a specific structure, and has completed the present invention.
That is, the present invention relates to a coaxial plasma having an outer electrode of a cylindrical base material arranged coaxially and an inner electrode arranged to face the outer electrode through the cylindrical base material. In the surface treatment apparatus, both the electrodes are made of a conductive material , and a groove through which gas can flow in the axial direction is formed on the surface of the electrode on the plasma surface treatment side of these electrodes. A cylindrical substrate plasma surface treatment apparatus characterized in that the surface of the electrode made of a conductive material has an uneven surface . The present invention also provides a method for producing a surface-treated cylindrical substrate, wherein the surface treatment is performed using the plasma surface treatment apparatus.

本発明は、筒型基材のプラズマ表面処理において、従来よりも表面処理の均質性に優れた装置をより簡便な構造で提供することが可能となり、さらには該装置で表面処理して得られた筒型基材はより均質な処理面を有する為、工業的に極めて価値がある。
また、特に電極の構造が単純である為、内径の小さい筒型基材への適用が容易となる。
In the plasma surface treatment of a cylindrical substrate, the present invention makes it possible to provide an apparatus having a more uniform surface treatment than in the past with a simpler structure, and further obtained by surface treatment with the apparatus. Since the cylindrical base material has a more homogeneous treatment surface, it is extremely valuable industrially.
Moreover, since the structure of the electrode is particularly simple, it can be easily applied to a cylindrical base material having a small inner diameter.

以下、本発明の実施形態について説明する。
〔プラズマ表面処理装置−内面放電タイプ〕
図1は、本発明の一実施形態に係るプラズマ表面処理装置の概略断面図である。本実施形態に係るプラズマ表面処理装置は、筒型基材として円筒型基材の内側表面(内周面)を処理するためのものである。
Hereinafter, embodiments of the present invention will be described.
[Plasma surface treatment equipment-inner surface discharge type]
FIG. 1 is a schematic cross-sectional view of a plasma surface treatment apparatus according to an embodiment of the present invention. The plasma surface treatment apparatus according to this embodiment is for treating the inner surface (inner peripheral surface) of a cylindrical base material as a cylindrical base material.

図1に示すように、本実施形態に係るプラズマ表面処理装置は、処理対象としての円筒型基材3の外側に配置される外電極1と、円筒型基材3の内側に配置される内電極2と、外電極1、内電極2および円筒型基材3を固定する固定具71,72とを備えている。   As shown in FIG. 1, the plasma surface treatment apparatus according to the present embodiment includes an outer electrode 1 disposed outside a cylindrical base material 3 as a processing target, and an inner surface disposed inside the cylindrical base material 3. The electrode 2 and the fixtures 71 and 72 which fix the outer electrode 1, the inner electrode 2, and the cylindrical base material 3 are provided.

外電極1は円筒の形状である。外電極の断面の形状は、本実施形態では穴と同軸の円形としているが、発明の趣旨から明らかなように、処理しようとする基材に従って決めればよく特に限定されない。外電極1の内側同軸上に配置された円筒型基材3が外電極1の内側に嵌合するように、外電極1の内径は、円筒型基材3の外径よりも0〜0.2mm程度大きいことが好ましい。   The outer electrode 1 has a cylindrical shape. In the present embodiment, the cross-sectional shape of the outer electrode is a circle coaxial with the hole. However, as is apparent from the spirit of the invention, it may be determined according to the substrate to be treated, and is not particularly limited. The inner diameter of the outer electrode 1 is 0 to 0. 0 than the outer diameter of the cylindrical base material 3 so that the cylindrical base material 3 arranged on the inner coaxial side of the outer electrode 1 fits inside the outer electrode 1. It is preferably about 2 mm larger.

外電極1の厚さは、特に制限はないが、形状を保持する点からは通常0.5mm以上である。   The thickness of the outer electrode 1 is not particularly limited, but is usually 0.5 mm or more from the viewpoint of maintaining the shape.

外電極1の材質は、導電性を有するものであればよく、具体的には、銅、アルミニウムなどの金属単体や、ステンレス鋼、真鍮等の合金や金属間化合物などから選ばれる。   The material of the outer electrode 1 may be any material as long as it has conductivity. Specifically, the material is selected from simple metals such as copper and aluminum, alloys such as stainless steel and brass, and intermetallic compounds.

外電極1は、図1に示すように、所望により整合器4を介して電源5に電気的に接続されている。   As shown in FIG. 1, the outer electrode 1 is electrically connected to a power source 5 via a matching unit 4 as desired.

内電極2は、本実施形態では全体として略円柱状の形状を有しているが、外電極同様に処理しようとする基材に従って決めればよく、形状については、制限はない。内電極2の外側同軸上に配置された円筒型基材3に対向する部分には、螺旋状の溝2aが形成されている。この螺旋状の溝2aは、軸方向にガスが流動できる溝であり、本実施形態では、軸にそって電極の一方の端から他方の端に一定の方向に連続した(ガスの流れを停滞させない)構造、特に周期的な螺旋構造となっている。ここで電極の端とは、有効な電極の端という意味であり、金属電極としての物理的な端を意味するものではない。また、軸にそって電極の一方の端から他方の端に一定の方向とは、溝の方向が常に一方の端から他方の端に向かっており逆方向に向かうようなことがないことを意味しており、軸に対する傾斜等が一定であることを必ずしも意味するものではない。   Although the inner electrode 2 has a substantially cylindrical shape as a whole in this embodiment, it may be determined according to the base material to be treated in the same manner as the outer electrode, and the shape is not limited. A spiral groove 2 a is formed in a portion facing the cylindrical base material 3 arranged on the outer coaxial side of the inner electrode 2. The spiral groove 2a is a groove through which gas can flow in the axial direction. In this embodiment, the spiral groove 2a is continuous in a certain direction from one end of the electrode to the other end along the axis (the gas flow is stagnated). Not), especially a periodic spiral structure. Here, the end of the electrode means an effective end of the electrode, and does not mean a physical end as a metal electrode. Also, the constant direction from one end of the electrode to the other end along the axis means that the direction of the groove is always from one end to the other end and not in the opposite direction. It does not necessarily mean that the inclination with respect to the axis is constant.

溝間の間隔(溝の中心と溝の中心との距離;以下「p」で表す場合がある。)は、表面処理の均質性の点から、好ましくは0.1〜3.0mm、より好ましくは0.1〜2.0mm、特に好ましくは0.1〜1.5mmである。   The distance between the grooves (distance between the center of the groove and the center of the groove; hereinafter may be represented by “p”) is preferably 0.1 to 3.0 mm, more preferably from the viewpoint of the homogeneity of the surface treatment. Is 0.1 to 2.0 mm, particularly preferably 0.1 to 1.5 mm.

溝の断面形状は、図1ではV字状になっているが、これに限定されることはなく、例えば、台形状、矩形状、半円状等であってもよい。表面処理の均質性の点から、溝の深さは、0.1×p〜1.0×p(mm)であることが好ましく、溝の幅は、0.5×p〜1.0×p(mm)であることが好ましい。ここで、溝の幅とは、溝の最上部の幅を指す。   The cross-sectional shape of the groove is V-shaped in FIG. 1, but is not limited to this, and may be, for example, a trapezoidal shape, a rectangular shape, a semicircular shape, or the like. From the point of homogeneity of the surface treatment, the groove depth is preferably 0.1 × p to 1.0 × p (mm), and the groove width is 0.5 × p to 1.0 ×. It is preferable that it is p (mm). Here, the width of the groove refers to the width of the uppermost portion of the groove.

本実施形態において、内電極2に形成された溝は螺旋状であるが、これに限定されるものではなく、軸方向にガスが流動できる溝であればよい。例えば、図4および図6に示すように直線状であってもよい。図4および図6に示す例では、内電極2の円筒型基材3に対向する部分に、軸に平行に複数の直線状の溝が形成されている。溝間の間隔、断面形状、溝の深さおよび溝の幅は、螺旋状の溝の場合と同様である。   In the present embodiment, the groove formed in the inner electrode 2 has a spiral shape, but is not limited to this, and may be any groove that allows gas to flow in the axial direction. For example, it may be linear as shown in FIGS. In the example shown in FIG. 4 and FIG. 6, a plurality of linear grooves are formed in parallel to the axis in the portion of the inner electrode 2 that faces the cylindrical substrate 3. The interval between the grooves, the cross-sectional shape, the depth of the groove, and the width of the groove are the same as in the case of the spiral groove.

内電極2の外径は、内電極2と同軸上に配置された円筒型基材3が内電極2の外側に嵌合するように、円筒型基材3の内径よりも0〜0.2mm程度小さいことが好ましい。   The outer diameter of the inner electrode 2 is 0 to 0.2 mm from the inner diameter of the cylindrical base material 3 so that the cylindrical base material 3 arranged coaxially with the inner electrode 2 fits outside the inner electrode 2. It is preferable that the degree is small.

内電極2の材質は、導電性を有するものであればよく、具体的には、銅、アルミニウムなどの金属単体や、ステンレス鋼、真鍮等の合金や金属間化合物などから選ばれる。   The material of the inner electrode 2 may be any material as long as it has conductivity. Specifically, the material is selected from simple metals such as copper and aluminum, alloys such as stainless steel and brass, and intermetallic compounds.

内電極2は、図1に示すように、電気的に接地されている。また、接地する側の電極は、外電極1でもよく、この場合、内電極2は所望により整合器4を介して電源5に電気的に接続される。   The inner electrode 2 is electrically grounded as shown in FIG. The electrode on the grounding side may be the outer electrode 1. In this case, the inner electrode 2 is electrically connected to the power source 5 through the matching unit 4 as desired.

固定具71,72は、電気絶縁性を有し、所望の表面処理ができるように外電極1、内電極2および円筒型基材3を支持・固定し得るものであれば特に限定されない。また、固定できれば一方だけでも良い。本実施形態では、固定具71,72には、円柱状の中空部が形成されており、内電極2は、一方の固定具71の中空部を貫通し、他方の固定具72には至らないように設けられている。プラズマ表面処理を行うためのガスは、表面処理側の電極と、基材の表面処理側の間を、電極の一方の端から他方の端へ流れる様にすれば、その導入方法に特に限定されない。例えば、71または72のいずれか一方の固定具と内電極2との間から導入され、内電極2の螺旋状の溝を通って他方の固定具の中空部から排出される(図1では固定具71側から導入されている)。なお、ガスは、例えば図1に示すように、バルブ11を備えたガス配管10から供給される。   The fixtures 71 and 72 are not particularly limited as long as they have electrical insulation and can support and fix the outer electrode 1, the inner electrode 2, and the cylindrical substrate 3 so that a desired surface treatment can be performed. Moreover, if it can fix, only one side is good. In the present embodiment, the fixtures 71 and 72 are formed with a cylindrical hollow portion, and the inner electrode 2 penetrates the hollow portion of one fixture 71 and does not reach the other fixture 72. It is provided as follows. The gas for performing the plasma surface treatment is not particularly limited to the introduction method as long as it flows between the electrode on the surface treatment side and the surface treatment side of the substrate from one end of the electrode to the other end. . For example, it is introduced from between one of the fixtures 71 and 72 and the inner electrode 2 and is discharged from the hollow portion of the other fixture through the spiral groove of the inner electrode 2 (in FIG. 1, it is fixed). It is introduced from the tool 71 side). The gas is supplied from a gas pipe 10 provided with a valve 11, for example, as shown in FIG.

表面処理の対象となる円筒型基材3の大きさは、特に限定されるものではないが、本発明は、内径が1〜10mm、厚みが0.1〜5mmであるような径の小さい筒型基材の表面処理を行う場合に特に有効である。   The size of the cylindrical substrate 3 to be subjected to the surface treatment is not particularly limited, but the present invention is a small diameter cylinder having an inner diameter of 1 to 10 mm and a thickness of 0.1 to 5 mm. This is particularly effective when the surface treatment of the mold substrate is performed.

円筒型基材3(筒型基材)の材質としては、電気絶縁性を有するプラスチック(樹脂)、ガラス、セラミックス等が挙げられる。プラスチックの種類としては特に制限はなく、成型材料、特に筒状に成型できる電気的に絶縁性のものであればどのようなものでもよく、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエチレンテレフタレート等のポリエステル、ポリウレタン、ポリブタジエン、ポリ塩化ビニル、シリコーン樹脂、ポリテトラフルオロエチレン、ポリスチレン等が挙げられる。   Examples of the material of the cylindrical base material 3 (cylindrical base material) include plastic (resin) having electrical insulating properties, glass, ceramics, and the like. The type of plastic is not particularly limited and may be any molding material, particularly any electrically insulating material that can be molded into a cylindrical shape, for example, a polyolefin such as polyethylene or polypropylene, or a polyester such as polyethylene terephthalate. , Polyurethane, polybutadiene, polyvinyl chloride, silicone resin, polytetrafluoroethylene, polystyrene and the like.

〔プラズマ表面処理装置−外面放電タイプ〕
図2は、本発明の他の実施形態に係るプラズマ表面処理装置の概略断面図である。本実施形態に係るプラズマ表面処理装置は、円筒型基材の外側表面(外周面)を処理するためのものである。
[Plasma surface treatment equipment-External discharge type]
FIG. 2 is a schematic cross-sectional view of a plasma surface treatment apparatus according to another embodiment of the present invention. The plasma surface treatment apparatus according to this embodiment is for treating the outer surface (outer peripheral surface) of a cylindrical base material.

図2に示すように、本実施形態に係るプラズマ表面処理装置は、処理対象としての円筒型基材3の外側に配置される外電極1と、円筒型基材3の内側に配置される内電極2と、外電極1、内電極2および円筒型基材3を固定する固定具71,72とを備えている。   As shown in FIG. 2, the plasma surface treatment apparatus according to this embodiment includes an outer electrode 1 disposed on the outer side of a cylindrical substrate 3 as a processing target and an inner electrode disposed on the inner side of the cylindrical substrate 3. The electrode 2 and the fixtures 71 and 72 which fix the outer electrode 1, the inner electrode 2, and the cylindrical base material 3 are provided.

外電極1は円筒の形状である。外電極の断面の形状は、本実施形態では円形としているが、内面放電タイプと同様、特に限定されない。その周壁に螺旋状の溝1aが形成されている。螺旋状の溝1aの構成は、上記内面放電タイプの内電極2に形成されている螺旋状の溝2aの構成と同様である。また、螺旋状の溝の替わりに、前述したような直線状の溝が形成されていてもよい。外電極1の内径、厚さ、材料等は、上記内面放電タイプの外電極1と同様である。   The outer electrode 1 has a cylindrical shape. The cross-sectional shape of the outer electrode is circular in the present embodiment, but is not particularly limited as in the case of the inner surface discharge type. A spiral groove 1a is formed on the peripheral wall. The configuration of the spiral groove 1a is the same as the configuration of the spiral groove 2a formed in the inner surface discharge type inner electrode 2. Further, instead of the spiral groove, a linear groove as described above may be formed. The inner diameter, thickness, material and the like of the outer electrode 1 are the same as those of the inner surface discharge type outer electrode 1.

内電極2は、溝が形成されていない以外、基本的には上記内面放電タイプの内電極2と同様の構成を有する。図2では、内電極2の一端部は縮径しているが、これに限定されるものではない。内電極2の外径(円筒型基材3と嵌合する部分)、材料等は、上記内面放電タイプの内電極2と同様である。   The inner electrode 2 basically has the same configuration as that of the inner surface discharge type inner electrode 2 except that no groove is formed. In FIG. 2, one end of the inner electrode 2 has a reduced diameter, but is not limited thereto. The outer diameter of the inner electrode 2 (part fitted with the cylindrical substrate 3), material, and the like are the same as those of the inner surface discharge type inner electrode 2.

固定具71,72は、電気絶縁性を有し、所望の表面処理ができるように外電極1、内電極2および円筒型基材3を支持・固定し得るものであれば特に限定されない。また、固定できれば一方だけでも良い。本実施形態では、固定具71,72には空隙部が設けられており、プラズマ表面処理を行うためのガスは、表面処理側の電極と、基材の表面処理側の間を、電極の一方の端から他方の端へ流れる様にすれば、その導入方法に特に限定されない。例えば、71または72のいずれか一方の固定具と内電極2との間から導入され、内電極2の螺旋状の溝を通って他方の固定具の中空部から排出される(図1では固定具71側から導入されている)。なお、ガスは、例えば図2に示すように、バルブ11を備えたガス配管10から供給される。   The fixtures 71 and 72 are not particularly limited as long as they have electrical insulation and can support and fix the outer electrode 1, the inner electrode 2, and the cylindrical substrate 3 so that a desired surface treatment can be performed. Moreover, if it can fix, only one side is good. In the present embodiment, the fixtures 71 and 72 are provided with gaps, and the gas for performing the plasma surface treatment is performed between the electrode on the surface treatment side and the surface treatment side of the base material. The introduction method is not particularly limited as long as it flows from one end to the other end. For example, it is introduced from between one of the fixtures 71 and 72 and the inner electrode 2 and is discharged from the hollow portion of the other fixture through the spiral groove of the inner electrode 2 (in FIG. 1, it is fixed). It is introduced from the tool 71 side). The gas is supplied from a gas pipe 10 provided with a valve 11, for example, as shown in FIG.

表面処理の対象となる円筒型基材3の大きさや材質は、上記内面放電タイプの円筒型基材3の大きさや材質と同様である。   The size and material of the cylindrical base material 3 to be surface-treated are the same as the size and material of the inner surface discharge type cylindrical base material 3.

上記プラズマ表面処理装置(内面放電タイプ/外面放電タイプ)によれば、均質性に優れた表面処理を行うことができる。特に、上記プラズマ表面処理装置は、スペーサ等の部材を必要とすることなく、簡便な構造で構成することができるとともに、電極の構造が単純であるため、内径の小さい円筒基材への適用が容易であるという利点を有する。   According to the plasma surface treatment apparatus (inner surface discharge type / outer surface discharge type), surface treatment with excellent homogeneity can be performed. In particular, the plasma surface treatment apparatus can be configured with a simple structure without the need for a member such as a spacer, and since the electrode structure is simple, it can be applied to a cylindrical substrate having a small inner diameter. It has the advantage of being easy.

〔表面処理筒型基材の製造方法〕
上記プラズマ表面処理装置(内面放電タイプ/外面放電タイプ)を使用して表面処理筒型基材を製造するには、以下のようにして円筒型基材3に対してプラズマ表面処理を行えばよい。なお、円筒型基材3は、例えば図1または図2に示すように、固定具71,72によってプラズマ表面処理装置にセットする。
[Method for producing surface-treated cylindrical substrate]
In order to produce a surface-treated cylindrical substrate using the plasma surface treatment apparatus (internal discharge type / external discharge type), plasma surface treatment may be performed on the cylindrical substrate 3 as follows. . The cylindrical substrate 3 is set in a plasma surface treatment apparatus by fixtures 71 and 72 as shown in FIG. 1 or FIG.

プラズマ表面処理時の圧力は、装置コスト、処理コストを考慮すれば、真空ポンプ等を要さない大気圧近傍が好ましい。具体的には0.01〜0.12MPaである。   The pressure at the time of plasma surface treatment is preferably in the vicinity of atmospheric pressure that does not require a vacuum pump or the like in consideration of apparatus cost and processing cost. Specifically, it is 0.01 to 0.12 MPa.

電源5としては、例えば交流電源装置を使用することができ、単一周波数であってもよいし、周期的なパルス状の電圧を発生するものであってもよく、プラスチックの成型物等、基材をプラズマ処理する際に利用される通常の装置が利用でき特に制限はない。   As the power source 5, for example, an AC power source device can be used. The power source 5 may be a single frequency or a unit that generates a periodic pulse voltage. A normal apparatus used when plasma-treating the material can be used and there is no particular limitation.

周波数が高い電源装置、例えば0.1MHz以上の高周波電源装置を使用すると、周波数の増加に伴いプラズマ密度を高くすることができる。ただし、高周波化に伴い筒型基材および/または電極の温度上昇が問題となるために、高周波電力を時間変調する機能を備えている高周波電源装置を使用することが望ましい。   When a power supply device having a high frequency, for example, a high frequency power supply device of 0.1 MHz or more is used, the plasma density can be increased as the frequency increases. However, since the temperature rise of the cylindrical base material and / or the electrode becomes a problem as the frequency becomes higher, it is desirable to use a high frequency power supply device having a function of time-modulating the high frequency power.

外電極1と内電極2との間に印加される周期的なパルス状の電圧は、電極間にプラズマが発生するのに必要な電界強度を有するように適宜調整される。アーク放電の発生の防止と放電プラズマの安定形成を考慮すると、電界強度は1〜100kV/cmの範囲にすることが好ましい。   The periodic pulse voltage applied between the outer electrode 1 and the inner electrode 2 is appropriately adjusted so as to have an electric field strength necessary for generating plasma between the electrodes. Considering prevention of occurrence of arc discharge and stable formation of discharge plasma, the electric field strength is preferably in the range of 1 to 100 kV / cm.

また、パルスの立ち上がり時間は、できるだけ速いことが好ましく、具体的には100μs以下にすることが好ましい。立ち上がり時間を速くすることで、電極間に存在するガスの電離が効率よく行える。一方、パルスの立ち下がり時間も、立ち上がり時間と同様、できるだけ速いことが好ましく、100μs以下にすることが好ましい。   The pulse rise time is preferably as fast as possible, specifically 100 μs or less. By increasing the rise time, ionization of the gas existing between the electrodes can be performed efficiently. On the other hand, the fall time of the pulse is preferably as fast as possible, similarly to the rise time, and is preferably 100 μs or less.

パルス幅(パルスの継続時間)は、放電プラズマの安定形成とアーク放電の発生の防止を考慮すると、0.1〜1000μsの範囲にすることが好ましい。パルスの繰り返し周波数は、表面処理の時間とアーク放電の発生防止を考慮すると、好ましくは0.1〜100kHzの範囲で選ばれる。パルス波形は、インパルスや方形波の他に、正弦波を除いた、三角波やノゴギリ波等であってもよく、上記の条件を満たしていれば特に限定されない。   The pulse width (pulse duration) is preferably in the range of 0.1 to 1000 μs in consideration of stable formation of discharge plasma and prevention of arc discharge. The pulse repetition frequency is preferably selected in the range of 0.1 to 100 kHz in consideration of surface treatment time and prevention of arc discharge. The pulse waveform may be a triangular wave or a sawtooth wave excluding a sine wave in addition to an impulse and a square wave, and is not particularly limited as long as the above conditions are satisfied.

ガスの導入手段としては、例えば、バルブ、チューブ、継手等の配管部材、マスフローコントローラ、気化器等から構成される。   Examples of the gas introduction means include a piping member such as a valve, a tube, and a joint, a mass flow controller, and a vaporizer.

ガスとしては、放電プラズマ形成に必須な不活性ガス単独の場合と、必要に応じて少量の反応性ガスを不活性ガスに加えた混合ガスが用いられる場合とがある。ここで不活性ガスとは、ヘリウム、アルゴン等の希ガスおよび窒素ガスの中から選ばれる1種類以上の単独あるいは混合ガスを指す。また、窒素ガス等、不活性ガスを反応性ガスに用いても良い。   As the gas, there are a case where an inert gas essential for forming discharge plasma is used alone, and a case where a mixed gas obtained by adding a small amount of reactive gas to the inert gas as required is used. Here, the inert gas refers to one or more kinds of single or mixed gas selected from rare gases such as helium and argon and nitrogen gas. Further, an inert gas such as nitrogen gas may be used as the reactive gas.

反応性ガスを不活性ガスに少量添加する場合、反応性ガスとしては、基材をプラズマ処理する際に上記のような不活性ガスに混合するガスとして、周知のものが利用できる。例えば、メタン、四フッ化メタン、エチレン、プロピレン、テトラフルオロエチレン、ヘキサフルオロプロピレン、二酸化炭素、酸素、亜酸化窒素、三フッ化窒素、シラン、ジシラン、トリメチルシラン、テトラメチルシラン、アンモニア等が挙げられる。その添加量についても周知の好ましい範囲とすればよく、通常、不活性ガスに対して0.001〜5.0体積%が好ましい。   When a small amount of the reactive gas is added to the inert gas, a known gas can be used as the reactive gas to be mixed with the inert gas as described above when the substrate is subjected to plasma treatment. For example, methane, tetrafluoromethane, ethylene, propylene, tetrafluoroethylene, hexafluoropropylene, carbon dioxide, oxygen, nitrous oxide, nitrogen trifluoride, silane, disilane, trimethylsilane, tetramethylsilane, ammonia, etc. It is done. The addition amount may be within a well-known preferable range, and is usually preferably 0.001 to 5.0% by volume with respect to the inert gas.

上記プラズマ表面処理装置では、円筒型基材3の処理面と、溝が形成された内電極2または外電極1とは、近接して設置されているため、上記のようにしてプラズマ表面処理を行うと、ガスの大部分は、内電極2または外電極1に形成された溝を通じて流れ、放電プラズマが形成される空間も、内電極2または外電極1の溝の中が主体となると考えられる。電極に形成されたガスの流動が可能な溝により、放電プラズマは非常に狭い空間に閉じ込める事ができるようになるため、放電空間には、より高エネルギーの活性種が励起される。これにより、高密度の安定した放電プラズマを円筒型基材3の処理面の極近傍に、且つ処理面の全体を覆うように形成する事ができ、均質性に優れた表面処理を行うことが可能となるものと思われる。   In the plasma surface treatment apparatus, since the treatment surface of the cylindrical substrate 3 and the inner electrode 2 or the outer electrode 1 in which the groove is formed are disposed in proximity to each other, the plasma surface treatment is performed as described above. When this is done, most of the gas flows through the grooves formed in the inner electrode 2 or the outer electrode 1, and the space in which the discharge plasma is formed is considered to be mainly in the grooves of the inner electrode 2 or the outer electrode 1. . Since the discharge plasma can be confined in a very narrow space due to the gas flow groove formed in the electrode, higher-energy active species are excited in the discharge space. Thereby, a high-density stable discharge plasma can be formed in the very vicinity of the treatment surface of the cylindrical substrate 3 so as to cover the entire treatment surface, and a surface treatment excellent in homogeneity can be performed. It seems to be possible.

以上説明したプラズマ表面処理装置または表面処理筒型基材の製造方法によれば、様々な筒型基材の表面処理を提供することができる。例えば、(a)筒型基材の表面に親水性を付与する処理(親水化処理)、(b)筒型基材の表面に疎水性を付与する処理(疎水化処理)、(c)モノマーを含有したガスを用いて筒型基材の表面に重合膜を形成する処理、(d)モノマー溶液を筒型基材の表面にコーティングしその後該筒型基材の表面にプラズマ処理を行うことで重合膜を形成する処理、(e)筒型基材の表面にプラズマ処理を行った後該筒型基材の内面に重合性モノマーを供給して重合膜を形成する処理、(f)金属水素化合物等の金属成分を含んだ化合物を含有したガスを用いて筒型基材の表面に金属酸化物などのセラミックス膜を形成する処理、(g)筒型基材の表面をエッチングする処理等を挙げることができる。上記プラズマ表面処理装置または表面処理筒型基材の製造方法は、特に、窒素による親水化処理に好適である。   According to the plasma surface treatment apparatus or the method for producing a surface-treated cylindrical base material described above, various surface treatments for the cylindrical base material can be provided. For example, (a) treatment for imparting hydrophilicity to the surface of the cylindrical substrate (hydrophilization treatment), (b) treatment for imparting hydrophobicity to the surface of the cylindrical substrate (hydrophobization treatment), (c) monomer A process of forming a polymerized film on the surface of the cylindrical base material using a gas containing benzene, (d) coating the monomer solution on the surface of the cylindrical base material, and then performing a plasma treatment on the surface of the cylindrical base material (E) a process for forming a polymerized film by supplying a polymerizable monomer to the inner surface of the cylindrical base material after performing a plasma treatment on the surface of the cylindrical base material, (f) a metal A process of forming a ceramic film such as a metal oxide on the surface of the cylindrical base material using a gas containing a compound containing a metal component such as a hydrogen compound, (g) a process of etching the surface of the cylindrical base material, etc. Can be mentioned. The plasma surface treatment apparatus or the method for producing a surface-treated cylindrical substrate is particularly suitable for a hydrophilic treatment with nitrogen.

以下、実施例等により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例等に限定されるものではない。
(親水化処理の評価方法)
親水性は、水滴接触角により評価した。筒型基材の内面及び外表面の接触角の測定方法を図3に示す。
EXAMPLES Hereinafter, although an Example etc. demonstrate this invention further more concretely, the scope of the present invention is not limited to these Examples etc.
(Evaluation method for hydrophilization treatment)
Hydrophilicity was evaluated by the water droplet contact angle. A method for measuring the contact angle between the inner surface and the outer surface of the cylindrical substrate is shown in FIG.

測定試料に1〜2μlの水滴を基材に滴下した後、10秒間待って、図3に定めた定義に従い、水滴接触角を測定した。測定には、協和表面科学(株)製の接触角計(CA−X型)を用いた。この場合、液滴の観察画像から、画像解析により接触角を求める。具体的には、液滴と基材の形状は、円の一部として近似できるものとし、液滴の底面の両端と上端の3点を指定して接触角を算出する。この方法では、図3に示すΘ、Θを求める事ができる。同一の観察画像に対するΘ、Θの測定結果より、筒型基材の水滴接触角を算出した。 After dropping 1 to 2 μl of water droplets onto the measurement sample, the water droplet contact angle was measured according to the definition defined in FIG. For the measurement, a contact angle meter (CA-X type) manufactured by Kyowa Surface Science Co., Ltd. was used. In this case, the contact angle is obtained by image analysis from the observation image of the droplet. Specifically, it is assumed that the shape of the droplet and the substrate can be approximated as a part of a circle, and the contact angle is calculated by designating three points, both ends and the upper end of the bottom surface of the droplet. In this method, Θ 1 and Θ 2 shown in FIG. 3 can be obtained. From the measurement results of Θ 1 and Θ 2 for the same observation image, the water droplet contact angle of the cylindrical substrate was calculated.

水滴接触角は、実施例の各サンプル毎に、筒型基材を幅4mmに5等分し、それぞれを半分に割った計10個の測定試料につき、処理面側を一箇所づつ測定し、計10点の測定結果より、次の通り判断した。   For each sample of the example, the water droplet contact angle is measured on the treatment surface side one by one for a total of 10 measurement samples obtained by dividing the cylindrical substrate into 4 mm widths and dividing each into half. Judgment was made as follows from the measurement results of a total of 10 points.

平均値:10点の平均値で25°以下であると特に良好と言える。     Average value: It is said that the average value of 10 points is particularly good when it is 25 ° or less.

バラツキ:10点の測定値の最大値と最小値の差。10°以下であると特に良好と言える。     Variation: Difference between the maximum and minimum values of 10 measured values. It can be said that it is particularly good when it is 10 ° or less.

〔実施例1〕
実施例1で用いたプラズマ表面処理装置を図1に示す。電極の部分は断面図の形式で示した。この放電プラズマ処理装置は、外径が6.0mm、内径が4.0mm、長さが20mmの筒型型プラスチック基材3の内面処理を行うために設計されたものである。
[Example 1]
The plasma surface treatment apparatus used in Example 1 is shown in FIG. The electrode portion is shown in the form of a cross-sectional view. This discharge plasma processing apparatus is designed for the inner surface treatment of a cylindrical plastic substrate 3 having an outer diameter of 6.0 mm, an inner diameter of 4.0 mm, and a length of 20 mm.

内径が6.2mm、幅が16mmの銅製のリングを外電極1とし、M4ネジ溝(JIS B0205−1:2001)を有するステンレス製の棒を内電極2とした。内電極2の外径(最大部分)は、3.98mmである。この場合、内電極2には螺旋状の溝が形成されており、溝間の間隔は0.7mm、溝の深さは約0.4mm、溝の幅は約0.6mmである。両電極は、同軸上で対向するように配置されている。内電極に螺旋状の溝を形成した事により、電極溝に沿ってガスのフローが可能であり、電極自体にガスの流路が確保されている。   A copper ring having an inner diameter of 6.2 mm and a width of 16 mm was used as the outer electrode 1, and a stainless steel rod having an M4 screw groove (JIS B0205-1: 2001) was used as the inner electrode 2. The outer diameter (maximum part) of the inner electrode 2 is 3.98 mm. In this case, the inner electrode 2 is formed with spiral grooves, the interval between the grooves is 0.7 mm, the depth of the grooves is about 0.4 mm, and the width of the grooves is about 0.6 mm. Both electrodes are arranged so as to face each other on the same axis. By forming a spiral groove in the inner electrode, gas can flow along the electrode groove, and a gas flow path is secured in the electrode itself.

高密度ポリエチレン(HDPE)製の筒型基材3を外電極1に挿入し、電気絶縁性の固定具71,72で固定するとともに、内電極2を挿入した。電気絶縁性の固定具71側から、バルブ11、ガス導入配管10を介してガスを内電極2と筒型基材3の間に導入した。外電極1と内電極2の間に、時間変調可能な13.56MHzの高周波電源5を、整合器4を介して接続し、内電極2を電気的に接地した。 ガスは窒素ガスを用い、その流量は、0.5l/mmin.とした。高周波電源の時間変調の条件を変調周波数600Hz、デューティ比(変調周期の中で高周波電力が印加されている期間の割合)0.01、高周波電力が印加されている期間の投入電力を30Wとし、300秒間放電プラズマ処理を行った。処理時の圧力は0.10MPaとした。尚、時間平均した投入電力は、高周波電力が印加されている期間の投入電力にデューティ比をかけた0.3Wとなる。結果を表1に示す。   A cylindrical base material 3 made of high-density polyethylene (HDPE) was inserted into the outer electrode 1 and fixed with electrically insulating fixtures 71 and 72, and the inner electrode 2 was inserted. From the electrically insulating fixture 71 side, gas was introduced between the inner electrode 2 and the cylindrical substrate 3 through the valve 11 and the gas introduction pipe 10. A 13.56 MHz high-frequency power source 5 capable of time modulation was connected between the outer electrode 1 and the inner electrode 2 via a matching unit 4, and the inner electrode 2 was electrically grounded. Nitrogen gas was used as the gas, and the flow rate was 0.5 l / mmin. It was. The time modulation condition of the high frequency power source is a modulation frequency of 600 Hz, a duty ratio (ratio of a period during which the high frequency power is applied in the modulation cycle) 0.01, and an input power during the period during which the high frequency power is applied is 30 W, A discharge plasma treatment was performed for 300 seconds. The pressure during the treatment was 0.10 MPa. The time-averaged input power is 0.3 W obtained by multiplying the input power during the period when the high-frequency power is applied by the duty ratio. The results are shown in Table 1.

接触角の平均値は17.4degと十分に親水化されていた。処理バラツキは、6.1degと小さく、均質な処理がされていた。   The average value of the contact angle was 17.4 deg and was sufficiently hydrophilic. Processing variation was as small as 6.1 deg, and uniform processing was performed.

また、処理時に基材と電極の間から見られる放電プラズマの状態観察からは、電極周囲に沿って均質な光が観察された。   In addition, from the observation of the state of the discharge plasma observed between the substrate and the electrode during the treatment, uniform light was observed along the periphery of the electrode.

〔実施例2〕
外径が3.95mmで、溝間の間隔が0.7mmで軸方向に平行な直線状の溝を形成した電極棒を内電極2として使用した(図4参照)以外は、実施例1と同様にして、HDPE製の基材内面の放電プラズマ処理を試みた。電極に形成した溝の深さは約0.25mm、溝の幅は約0.5mmであり、内電極には計18本の溝が形成されている。この場合、内電極に軸方向に平行な溝を形成した事により、電極溝に沿ってガスのフローが可能であり、電極自体にガスの流路が確保されている。結果を表1に示す。
[Example 2]
Example 1 except that an electrode rod having an outer diameter of 3.95 mm, an interval between the grooves of 0.7 mm, and a linear groove parallel to the axial direction was used as the inner electrode 2 (see FIG. 4). Similarly, discharge plasma treatment of the inner surface of the HDPE substrate was attempted. The depth of the groove formed on the electrode is about 0.25 mm, the width of the groove is about 0.5 mm, and a total of 18 grooves are formed on the inner electrode. In this case, by forming a groove parallel to the axial direction in the inner electrode, a gas flow is possible along the electrode groove, and a gas flow path is secured in the electrode itself. The results are shown in Table 1.

接触角の平均値は14.7degと十分に親水化されていた。処理バラツキは、2.8degと小さく、均質な処理がされていた。   The average value of the contact angle was 14.7 deg and was sufficiently hydrophilic. Processing variation was as small as 2.8 deg, and uniform processing was performed.

また、処理時に基材と電極の間から見られる放電プラズマの目視状態観察からは、電極周囲に沿って均質な光が観察された。   Further, from the visual observation of the discharge plasma seen from between the substrate and the electrode during the treatment, homogeneous light was observed along the periphery of the electrode.

〔実施例3〕
外径が3.95mmで、溝間の間隔が1.0mmで軸方向に平行な直線状の溝を形成した電極棒を内電極2として使用した(図4参照)以外は、実施例1と同様にして、HDPE製の基材内面の放電プラズマ処理を試みた。電極に形成した溝の深さは約0.4mm、溝の幅は約0.8mmであり、内電極には計12本の溝が形成されている。この場合、内電極に軸方向に平行な溝を形成した事により、電極溝に沿ってガスのフローが可能であり、電極自体にガスの流路が確保されている。結果を表1に示す。
Example 3
Example 1 except that an electrode rod having an outer diameter of 3.95 mm, an interval between the grooves of 1.0 mm, and a linear groove parallel to the axial direction was used as the inner electrode 2 (see FIG. 4). Similarly, discharge plasma treatment of the inner surface of the HDPE substrate was attempted. The depth of the groove formed on the electrode is about 0.4 mm, the width of the groove is about 0.8 mm, and a total of 12 grooves are formed on the inner electrode. In this case, by forming a groove parallel to the axial direction in the inner electrode, a gas flow is possible along the electrode groove, and a gas flow path is secured in the electrode itself. The results are shown in Table 1.

接触角の平均値は20.2degと十分に親水化されていた。処理バラツキは、5.8degと小さく、均質な処理がされていた。   The average value of the contact angle was sufficiently hydrophilized at 20.2 deg. Processing variation was as small as 5.8 deg, and uniform processing was performed.

また、処理時に基材と電極の間から見られる放電プラズマの目視状態観察からは、電極周囲に沿って均質な光が観察された。   Further, from the visual observation of the discharge plasma seen from between the substrate and the electrode during the treatment, homogeneous light was observed along the periphery of the electrode.

〔比較例1〕
外径が3.18mmで、表面がフラットな電極棒を内電極2として使用した(図5参照)以外は、実施例1と同様にして、HDPE製の基材内面の放電プラズマ処理を試みた。この場合、ガスのフローは可能であるが、表面がフラットなため電極自体にガスの流路は確保されていない。結果を表1に示す。この場合、放電プラズマを形成させる事ができなかった。
[Comparative Example 1]
Except for using an electrode rod having an outer diameter of 3.18 mm and a flat surface as the inner electrode 2 (see FIG. 5), the discharge plasma treatment of the inner surface of the HDPE substrate was attempted in the same manner as in Example 1. . In this case, gas flow is possible, but since the surface is flat, a gas flow path is not secured in the electrode itself. The results are shown in Table 1. In this case, discharge plasma could not be formed.

〔実施例4〕
外径が3.95mmで、溝間の間隔が4.0mmで軸方向に平行な直線状の溝を形成した電極棒を内電極2として使用した(図6参照)以外は、実施例1と同様にして、HDPE製の基材内面の放電プラズマ処理を試みた。電極に形成した溝の深さは約0.5mm、溝の幅は約1.0mmであり、内電極には計3本の溝が形成されている。この場合、内電極に軸方向に平行な溝を形成した事により、電極溝に沿ってガスのフローが可能であり、電極自体にガスの流路が確保されている。結果を表1に示す。
Example 4
Example 1 except that an electrode rod having an outer diameter of 3.95 mm, an interval between the grooves of 4.0 mm, and a linear groove parallel to the axial direction was used as the inner electrode 2 (see FIG. 6). Similarly, discharge plasma treatment of the inner surface of the HDPE substrate was attempted. The depth of the groove formed in the electrode is about 0.5 mm, the width of the groove is about 1.0 mm, and a total of three grooves are formed in the inner electrode. In this case, by forming a groove parallel to the axial direction in the inner electrode, a gas flow is possible along the electrode groove, and a gas flow path is secured in the electrode itself. The results are shown in Table 1.

〔比較例2〕
外径が3.95mmで、溝間の間隔が1.0mmで周方向に溝を形成した電極棒を内電極2として使用した(図7参照)以外は、実施例1と同様にして、HDPE製の基材内面の放電プラズマ処理を試みた。電極に形成した溝の深さは約0.5mm、溝の幅は約0.8mmであり、内電極には計20本の溝が周方向に形成されている。この場合、基材3の内径と内電極2の外径が非常に近く、電極自体にガスの流路は確保されていないため、圧力損失が高くガスをフローする事が容易ではない。結果を表1に示す。この場合、比較例1と同様、放電プラズマを形成させる事ができなかった。
[Comparative Example 2]
HDPE was carried out in the same manner as in Example 1 except that an electrode rod having an outer diameter of 3.95 mm, an interval between grooves of 1.0 mm, and grooves formed in the circumferential direction was used as the inner electrode 2 (see FIG. 7). An attempt was made to perform a discharge plasma treatment on the inner surface of the manufactured substrate. The depth of the groove formed in the electrode is about 0.5 mm, the width of the groove is about 0.8 mm, and a total of 20 grooves are formed in the circumferential direction on the inner electrode. In this case, the inner diameter of the substrate 3 and the outer diameter of the inner electrode 2 are very close, and a gas flow path is not secured in the electrode itself, so that the pressure loss is high and it is not easy to flow the gas. The results are shown in Table 1. In this case, as in Comparative Example 1, discharge plasma could not be formed.

〔比較例3〕
外径が3.18mmで、表面がフラットな電極棒に、非導電性スペーサ4として厚みが0.32mm、幅1mmのポリイミド樹脂を軸方向と平行にスペーサ間の間隔3.3mmで取り付けたものを内電極2として使用した(図8参照)以外は、実施例1と同様にして、HDPE製の基材内面の放電プラズマ処理を試みた。この場合、ガスのフローは可能であるが、電極表面がフラットなため電極自体にガスの流路は確保されていない。結果を表1に示す。この場合、放電プラズマを形成させる事ができなかった。
[Comparative Example 3]
A non-conductive spacer 4 having a thickness of 0.32 mm and a width of 1 mm of polyimide resin attached to an electrode rod having an outer diameter of 3.18 mm and a flat surface in parallel with the axial direction at an interval of 3.3 mm between the spacers. Was used as the inner electrode 2 (see FIG. 8), and a discharge plasma treatment was performed on the inner surface of the HDPE substrate in the same manner as in Example 1. In this case, gas flow is possible, but since the electrode surface is flat, no gas flow path is secured in the electrode itself. The results are shown in Table 1. In this case, discharge plasma could not be formed.

Figure 0004812404
Figure 0004812404

(考察)
電極に軸方向の溝を設けると均一な放電プラズマが発生し親水化処理ができる。特に実施例1〜3のように、表面に溝間の間隔の小さい微細な溝を形成すると、親水化処理は十分で、バラツキも少ないことが判った。
(Discussion)
When an axial groove is provided in the electrode, uniform discharge plasma is generated and a hydrophilic treatment can be performed. In particular, as in Examples 1 to 3, it was found that when fine grooves with small intervals between the grooves were formed on the surface, the hydrophilization treatment was sufficient and there was little variation.

本発明によれば、従来よりも表面処理の均質性に優れた装置をより簡便な構造で提供することが可能となり、さらには該装置で表面処理して得られた筒型基材は、より均質な処理面を有する為、工業的に極めて価値がある。   According to the present invention, it is possible to provide a device having a more uniform surface treatment than in the past with a simpler structure, and moreover, the cylindrical base material obtained by surface treatment with the device is more Since it has a homogeneous treatment surface, it is extremely valuable industrially.

本発明の一実施形態に係るプラズマ表面処理装置(実施例1で使用)の概略断面図である。It is a schematic sectional drawing of the plasma surface treatment apparatus (used in Example 1) which concerns on one Embodiment of this invention. 本発明の他の実施形態に係るプラズマ表面処理装置の概略断面図である。It is a schematic sectional drawing of the plasma surface treatment apparatus which concerns on other embodiment of this invention. 円筒型基材の水滴接触角の特定方法を説明する図である。It is a figure explaining the identification method of the water droplet contact angle of a cylindrical base material. 本発明の他の実施形態に係るプラズマ表面処理装置の電極部分(実施例2,3で使用)の概略図である。It is the schematic of the electrode part (used by Example 2, 3) of the plasma surface treatment apparatus which concerns on other embodiment of this invention. 比較例1で使用したプラズマ表面処理装置の電極部分の概略図である。3 is a schematic view of an electrode portion of the plasma surface treatment apparatus used in Comparative Example 1. FIG. 本発明の他の実施形態に係るプラズマ表面処理装置の電極部分(実施例4で使用)の概略図である。It is the schematic of the electrode part (used in Example 4) of the plasma surface treatment apparatus which concerns on other embodiment of this invention. 比較例2で使用したプラズマ表面処理装置の電極部分の概略図である。It is the schematic of the electrode part of the plasma surface treatment apparatus used in the comparative example 2. 比較例3で使用したプラズマ表面処理装置の電極部分の概略図である。6 is a schematic view of an electrode portion of a plasma surface treatment apparatus used in Comparative Example 3. FIG.

符号の説明Explanation of symbols

1…外電極
1a…外電極の内面に形成された螺旋状の溝
2…内電極
2a…内電極の表面に形成された螺旋状の溝
3…円筒型基材
4…整合器
5…電源
6…非導電性スペーサ
71,72…固定具
10…ガス配管
11…バルブ
DESCRIPTION OF SYMBOLS 1 ... Outer electrode 1a ... Helical groove | channel 2 formed in the inner surface of an outer electrode ... Inner electrode 2a ... Spiral groove | channel 3 formed in the surface of an inner electrode ... Cylindrical base material 4 ... Matching device 5 ... Power supply 6 ... Non-conductive spacers 71, 72 ... Fixing tool 10 ... Gas pipe 11 ... Valve

Claims (11)

同軸上に配置された筒型基材の外側の電極と、該外側の電極と筒型基材を介して対向するように配置された内側の電極とを有する同軸型のプラズマ表面処理装置において、双方の前記電極が導電性の材質により構成され、これら電極のうちのプラズマ表面処理側の電極の表面に、軸方向にガスが流動できる溝が形成されたことにより、前記導電性の材質により構成された当該電極の表面が凹凸表面となっていることを特徴とする筒型基材のプラズマ表面処理装置。   In a coaxial plasma surface treatment apparatus having an outer electrode of a cylindrical substrate arranged coaxially and an inner electrode arranged to face the outer electrode via the cylindrical substrate, Both of the electrodes are made of a conductive material, and a groove capable of flowing gas in the axial direction is formed on the surface of the electrode on the plasma surface treatment side of these electrodes, so that the electrode is made of the conductive material. A plasma surface treatment apparatus for a cylindrical substrate, wherein the surface of the electrode is an uneven surface. 溝間の間隔[p(mm)]が0.1〜3.0mmの間隔である請求項1記載のプラズマ表面処理装置。   The plasma surface treatment apparatus according to claim 1, wherein an interval [p (mm)] between the grooves is an interval of 0.1 to 3.0 mm. 溝間の間隔をp(mm)とすると、溝の深さが0.1×p〜1.0×p(mm)、幅が0.5×p〜1.0×p(mm)である請求項1記載のプラズマ表面処理装置。 Assuming that the interval between the grooves is p (mm), the depth of the grooves is 0.1 × p to 1.0 × p (mm), and the width is 0.5 × p to 1.0 × p (mm). The plasma surface treatment apparatus according to claim 1. プラズマ表面処理側の電極が内側の電極である請求項1記載のプラズマ表面処理装置。   The plasma surface treatment apparatus according to claim 1, wherein the electrode on the plasma surface treatment side is an inner electrode. 筒型基材の内径が1〜10mm、厚みが0.1〜5mmである請求項1記載のプラズマ表面処理装置。   The plasma surface treatment apparatus according to claim 1, wherein the cylindrical substrate has an inner diameter of 1 to 10 mm and a thickness of 0.1 to 5 mm. 溝の構造が軸にそって電極の一方の端から他方の端に一定の方向に連続した構造である請求項1記載のプラズマ表面処理装置。   2. The plasma surface treatment apparatus according to claim 1, wherein the groove has a structure that is continuous in a certain direction from one end of the electrode to the other end along the axis. 請求項1〜6のプラズマ表面処理装置を用いて表面処理を行うことを特徴とする表面処理筒型基材の製造方法。   A method for producing a surface-treated cylindrical base material, wherein the surface treatment is performed using the plasma surface treatment apparatus according to claim 1. プラズマ表面処理が0.01〜0.12MPaの圧力下での処理である請求項7記載の表面処理筒型基材の製造方法。   The method for producing a surface-treated cylindrical substrate according to claim 7, wherein the plasma surface treatment is a treatment under a pressure of 0.01 to 0.12 MPa. 筒型基材が樹脂である請求項7記載の表面処理筒型基材の製造方法。   The method for producing a surface-treated cylindrical substrate according to claim 7, wherein the cylindrical substrate is a resin. プラズマ処理が窒素による親水化処理である請求項9記載の表面処理筒型基材の製造方法。   The method for producing a surface-treated cylindrical substrate according to claim 9, wherein the plasma treatment is a hydrophilic treatment with nitrogen. 筒型基材の内径が1〜10mm、厚みが0.1〜5mmである請求項7記載の表面処理筒型基材の製造方法。   The method for producing a surface-treated cylindrical substrate according to claim 7, wherein the cylindrical substrate has an inner diameter of 1 to 10 mm and a thickness of 0.1 to 5 mm.
JP2005323139A 2005-11-08 2005-11-08 Plasma surface treatment apparatus and surface treatment cylindrical substrate manufacturing method Expired - Fee Related JP4812404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005323139A JP4812404B2 (en) 2005-11-08 2005-11-08 Plasma surface treatment apparatus and surface treatment cylindrical substrate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005323139A JP4812404B2 (en) 2005-11-08 2005-11-08 Plasma surface treatment apparatus and surface treatment cylindrical substrate manufacturing method

Publications (2)

Publication Number Publication Date
JP2007134056A JP2007134056A (en) 2007-05-31
JP4812404B2 true JP4812404B2 (en) 2011-11-09

Family

ID=38155557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005323139A Expired - Fee Related JP4812404B2 (en) 2005-11-08 2005-11-08 Plasma surface treatment apparatus and surface treatment cylindrical substrate manufacturing method

Country Status (1)

Country Link
JP (1) JP4812404B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023229313A1 (en) * 2022-05-24 2023-11-30 주식회사 이노플라즈텍 Plasma device for powder surface treatment using horizontal electrodes

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4839269B2 (en) * 2007-06-18 2011-12-21 株式会社日立ハイテクノロジーズ Electrode for production of reaction cell for automatic analyzer, and production method using the electrode
JP5119031B2 (en) 2008-04-15 2013-01-16 株式会社日立ハイテクノロジーズ Reaction cell manufacturing method and automatic analyzer equipped with reaction cell
JP5645157B2 (en) * 2010-06-03 2014-12-24 国立大学法人東京工業大学 Plasma device
JP2014095575A (en) * 2012-11-08 2014-05-22 Asahi Organic Chemicals Industry Co Ltd Ultrasonic flowmeter manufacturing method, ultrasonic flowmeter, and fluid control device with ultrasonic flowmeter
JPWO2021256030A1 (en) * 2020-06-19 2021-12-23
KR102607066B1 (en) * 2023-05-18 2023-11-29 주식회사 이노플라즈텍 Plasma device for surface treatment of powder using horizontal plate electrode

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5456672A (en) * 1977-10-14 1979-05-07 Toray Ind Inc High polymer tube having modified inner surface
JPS62240170A (en) * 1986-04-11 1987-10-20 Akira Kanekawa Torch
JP3691933B2 (en) * 1997-05-27 2005-09-07 積水化学工業株式会社 Method of processing inner surface of container body or cylindrical body using plasma
JP4342709B2 (en) * 2000-09-12 2009-10-14 大倉工業株式会社 Plastic tube manufacturing apparatus and plastic tube manufacturing method using the apparatus
JP4923364B2 (en) * 2001-09-10 2012-04-25 株式会社安川電機 Reactive gas generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023229313A1 (en) * 2022-05-24 2023-11-30 주식회사 이노플라즈텍 Plasma device for powder surface treatment using horizontal electrodes

Also Published As

Publication number Publication date
JP2007134056A (en) 2007-05-31

Similar Documents

Publication Publication Date Title
JP4812404B2 (en) Plasma surface treatment apparatus and surface treatment cylindrical substrate manufacturing method
EP2153704B1 (en) Enhancing plasma surface modification using high intensity and high power ultrasonic acoustic waves
Fang et al. Surface treatment of polyethylene terephthalate to improving hydrophilicity using atmospheric pressure plasma jet
JP4953255B2 (en) Nozzle for plasma generator, plasma generator, plasma surface treatment apparatus, plasma generation method and plasma surface treatment method
JP2004527073A (en) Apparatus for generating low-temperature plasma at atmospheric pressure
EP1907596A1 (en) Injection type plasma treatment apparatus and method
JP6625728B2 (en) Plasma generator
JP2002511905A (en) Gas injection system for plasma processing equipment
US20070235427A1 (en) Apparatus and method for treating a workpiece with ionizing gas plasma
US20140178604A1 (en) Dual-Zone, Atmospheric-Pressure Plasma Reactor for Materials Processing
US20130209703A1 (en) Hollow-cathode gas lance for the interior coating of containers
JP2009087697A (en) Plasma generator
JP5336691B2 (en) Plasma generator, surface treatment apparatus, light source, plasma generation method, surface treatment method, and light irradiation method
JP5555930B2 (en) Method for processing inner surface of plastic bottle and apparatus for processing inner surface of plastic bottle
JP3280994B2 (en) Atmospheric pressure glow plasma reaction method in tube
JP5030850B2 (en) Plasma processing equipment
KR101067504B1 (en) Electrode for generating plamsa and plasma generator
Jin et al. Comparative study of the surface cleaning for Ar-/He-based plasma jets at atmospheric pressure
JP5126983B2 (en) Plasma generator
JP2012188701A (en) Apparatus and method for forming coating film
JP2010251162A (en) Plasma treatment device
JP2002020514A (en) Method for modifying surface of fluororesin
US20140335285A1 (en) System of surface treatment and the method thereof
JP4501272B2 (en) Surface treatment method
JP7081740B2 (en) A method of controlling the etching profile of a punctate etching module and a punctate etching module using an annular creeping discharge plasma device.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080708

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110823

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees