JP4839269B2 - Electrode for production of reaction cell for automatic analyzer, and production method using the electrode - Google Patents

Electrode for production of reaction cell for automatic analyzer, and production method using the electrode Download PDF

Info

Publication number
JP4839269B2
JP4839269B2 JP2007159656A JP2007159656A JP4839269B2 JP 4839269 B2 JP4839269 B2 JP 4839269B2 JP 2007159656 A JP2007159656 A JP 2007159656A JP 2007159656 A JP2007159656 A JP 2007159656A JP 4839269 B2 JP4839269 B2 JP 4839269B2
Authority
JP
Japan
Prior art keywords
electrode
cell
corona discharge
resin
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007159656A
Other languages
Japanese (ja)
Other versions
JP2008309728A (en
Inventor
伸一 谷口
隆史 井上
美和子 中原
宏明 石澤
弘之 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2007159656A priority Critical patent/JP4839269B2/en
Publication of JP2008309728A publication Critical patent/JP2008309728A/en
Application granted granted Critical
Publication of JP4839269B2 publication Critical patent/JP4839269B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Measuring Cells (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

本発明は、生化学的な分析反応や免疫反応などの医療診断用の自動分析装置に用いる分光測光分析用反応セルの内壁表面の部分的改質方法、改質用電極及び該反応セルを搭載した自動分析装置に関する。   The present invention includes a partial modification method for the inner wall surface of a reaction cell for spectrophotometric analysis used in an automatic analyzer for medical diagnosis such as biochemical analysis reaction and immune reaction, a modification electrode, and the reaction cell. Related to the automated analyzer.

医療診断用の臨床検査においては、血液や尿などの生体サンプル中のタンパク、糖、脂質、酵素、ホルモン、無機イオン、疾患マーカー等の生化学分析や免疫学的分析を行う。臨床検査では、複数の検査項目を信頼度高くかつ高速に処理する必要があるため、その大部分を自動分析装置で実行している。従来、自動分析装置としては、例えば、血清等のサンプルに所望の試薬を混合して反応させた反応液を分析対象とし、その吸光度を測定することで生化学分析を行う生化学分析装置が知られている。この種の生化学分析装置は、サンプル及び試薬を収納する容器、サンプル及び試薬を注入する反応セルを備え、サンプル及び試薬を反応セルに自動注入する機構と、反応セル内のサンプル及び試薬を混合する自動攪拌機構、反応中または反応が終了したサンプルの分光スペクトルを測定する機構、分光スペクトル測定を終了後の反応溶液を吸引・排出し反応セルを洗浄する自動洗浄機構等を備えて構成されている(例えば特許文献1)。   In clinical tests for medical diagnosis, biochemical analysis and immunological analysis of proteins, sugars, lipids, enzymes, hormones, inorganic ions, disease markers, etc. in biological samples such as blood and urine are performed. In clinical examination, since it is necessary to process a plurality of examination items with high reliability and at high speed, most of the examination items are executed by an automatic analyzer. Conventionally, as an automatic analyzer, for example, a biochemical analyzer that performs biochemical analysis by measuring the absorbance of a reaction solution obtained by mixing a desired reagent with a sample such as serum and reacting it is known. It has been. This type of biochemical analyzer includes a container for storing a sample and a reagent, a reaction cell for injecting the sample and the reagent, a mechanism for automatically injecting the sample and the reagent into the reaction cell, and mixing the sample and the reagent in the reaction cell. Automatic stirring mechanism, a mechanism for measuring the spectral spectrum of the sample during or after the reaction, an automatic cleaning mechanism for aspirating and discharging the reaction solution after the spectral spectrum measurement is completed, and washing the reaction cell, etc. (For example, Patent Document 1).

自動分析装置の分野では、サンプル及び試薬の微量化が大きな技術的課題となっている。すなわち、分析項目数の増大に伴い、単項目に割くことのできるサンプル量が少量化し、サンプル自体が貴重で多量に準備できない場合もあり、従来は高度な分析とされていた微量サンプルの分析がルーチン的に行われるようになってきた。また、分析内容が高度化するにつれて、一般に試薬が高価となり、コスト面からも試薬微量化への要請がある。このようなサンプル及び試薬の微量化は、反応セルの小型化を進める強い動機でもある。また、反応セルの小型化や必要なサンプル及び試薬の少量化は、分析スループットの向上や低廃液化にも繋がる利点がある。   In the field of automatic analyzers, miniaturization of samples and reagents has become a major technical issue. In other words, with the increase in the number of analysis items, the amount of sample that can be divided into single items has decreased, and the sample itself may be valuable and cannot be prepared in large quantities. It has come to be done routinely. In addition, as the analysis content becomes more sophisticated, reagents are generally more expensive, and there is a demand for reducing the amount of reagents in terms of cost. Such a small amount of sample and reagent is also a strong motivation for further miniaturization of the reaction cell. In addition, miniaturization of the reaction cell and a reduction in the amount of necessary samples and reagents have advantages that lead to improvement in analysis throughput and low waste liquid.

ここで、一般的な自動分析装置に用いる反応セル(反応容器とも呼ばれる)はガラスまたは合成樹脂等で形成されるのが一般的である。例えば、特許文献2によると、反応セルの材質としては、吸水率が低く、透湿度が低く、全光線透過率が高く、屈折率が低く、成型収縮率の低い樹脂材料から選ばれる。具体的には、ポリシクロオレフィン、ポリカーボネート樹脂、アクリル樹脂、ポリスチレン樹脂から選択される1種が好ましく例示される。また、特許文献2は、合成樹脂製反応セルに関する課題として、生体サンプルと試薬をセル内に流入する際に発生する気泡がセル内壁に付着して測定ができなくなる初期的な検出障害の低減を挙げている。この際、気泡付着の原因としてはセル内壁表面の濡れ性が低いことを挙げている。   Here, a reaction cell (also called a reaction vessel) used for a general automatic analyzer is generally formed of glass or synthetic resin. For example, according to Patent Document 2, the material of the reaction cell is selected from resin materials having low water absorption, low moisture permeability, high total light transmittance, low refractive index, and low molding shrinkage. Specifically, one type selected from polycycloolefin, polycarbonate resin, acrylic resin, and polystyrene resin is preferably exemplified. In addition, Patent Document 2 discloses a problem related to a synthetic resin reaction cell, which is to reduce initial detection failure in which bubbles generated when a biological sample and a reagent flow into the cell adhere to the inner wall of the cell and cannot be measured. Cite. At this time, the cause of bubble adhesion is that the wettability of the cell inner wall surface is low.

一般的な合成樹脂(プラスチック、高分子樹脂とも呼ばれる)表面の濡れ性を上げる、すなわち表面を親水化する有効な手段としては、酸素プラズマ処理、オゾン処理、オゾン水処理、コロナ放電処理、UV処理などが知られている。また、非特許文献1によると、高分子樹脂の一種であるポリエチレン表面をコロナ放電処理により酸化することで表面に過酸化物(パーオキサイド)を導入後、グラフトポリマーを形成することで表面改質が可能である。また、特許文献3は、オゾン処理によるプラスチック容器の酸化、親水化を報告している。   Effective synthetic resin (also called plastic or polymer resin) surface wettability, that is, effective means for hydrophilizing the surface include oxygen plasma treatment, ozone treatment, ozone water treatment, corona discharge treatment, and UV treatment. Etc. are known. According to Non-Patent Document 1, surface modification by forming a graft polymer after introducing peroxide on the surface by oxidizing the polyethylene surface, which is a kind of polymer resin, by corona discharge treatment. Is possible. Patent Document 3 reports oxidation and hydrophilization of a plastic container by ozone treatment.

特許第1706358号公報Japanese Patent No. 1706358 特開2005−30763号公報JP 2005-30763 A 特開2000−346765号公報JP 2000-346765 A Journal of Polymer Science: Part A: Polymer Chemistry, Vol.26, 3309-3322.Journal of Polymer Science: Part A: Polymer Chemistry, Vol.26, 3309-3322.

自動分析装置の分野では、サンプル及び試薬の微量化が一層進む趨勢にあり、また装置の小型化への要請も高まる一方である。このため従来問題視しなかった新たな課題として以下の2つの問題が浮上した。従来から用いていた反応セルの大きさは気泡に比べ十分大きかったため、気泡が光軸にかかっても実用的な範囲内では吸光度がばらつくことは少なく、トラブルとなることは極めて稀であったが、反応セル容量の微量化を進める実験の中で、気泡の影響が顕在化してくることが分かってきた。この問題の原因は、反応セルの素材に用いている透明樹脂の疎水性である。そこで、反応セルの内壁表面を親水化してみたところ気泡付着が起こらなくなることを確認した。   In the field of automatic analyzers, the amount of samples and reagents is becoming increasingly small, and the demand for miniaturization of the apparatus is increasing. For this reason, the following two problems have emerged as new problems that have not been regarded as problems. The size of the reaction cell used in the past was sufficiently large compared to bubbles, so even if the bubbles hit the optical axis, the absorbance hardly fluctuated within the practical range, and it was extremely rare to have trouble. It has been found that the influence of bubbles becomes obvious in experiments for reducing the reaction cell volume. The cause of this problem is the hydrophobicity of the transparent resin used for the reaction cell material. Therefore, when the inner wall surface of the reaction cell was hydrophilized, it was confirmed that bubble adhesion did not occur.

しかし、反応セル内壁表面の親水処理を全面的に実行すると、第二の問題が浮上した。反応セルの内壁を底から一番上の開口部まで親水化すると、検査液が毛管現象で反応セルの縁まで登り、隣接する反応セルの試薬と混ざり合う相互汚染が起こり易くなるのである。   However, when the hydrophilic treatment on the inner wall surface of the reaction cell was performed entirely, the second problem emerged. When the inner wall of the reaction cell is hydrophilized from the bottom to the top opening, the test solution rises to the edge of the reaction cell by capillary action, and cross-contamination that mixes with the reagent of the adjacent reaction cell easily occurs.

また、前記と似た現象であるが、一度使用した反応セルは洗浄終了後順次使用されるが、反応セルの内面に残った反応液の成分が次の分析に混入し、測定データに悪影響する場合がある。この現象をクロスコンタミネーションと呼ぶ。反応液成分で反応セルの内面に残る可能性があるものは、脂質のほかタンパク質や無機イオンなど親水性のものもある。   In addition, although the phenomenon is similar to the above, reaction cells that have been used once are used in sequence after cleaning, but the components of the reaction solution remaining on the inner surface of the reaction cell are mixed in the next analysis, which adversely affects measurement data. There is a case. This phenomenon is called cross contamination. Some of the reaction liquid components that may remain on the inner surface of the reaction cell include hydrophilic substances such as proteins and inorganic ions in addition to lipids.

反応セルの小型化は相互汚染を助長する傾向にあり、将来はより大きな問題となると予想される。自動分析装置の小型化、サンプル・試薬の少量化という恒常的なトレンドに対処するためには、上記二つの問題を解決する必要がある。
また、自動分析の単位時間当たりの分析数(スループット)を向上するため、自動分析装置に使用する反応セルは自動分析装置上に多数装着されることが一般的である。従って、上記二つの問題を解決する際には、複数のセルを同時または逐次的に親水化処理できる必要がある。また、分析の正確性、再現性向上のため、反応セル表面の処理した領域の親水性が均一であり、かつ反応セル間の処理バラツキを抑制することが求められる。
Miniaturization of reaction cells tends to promote cross-contamination and is expected to become a bigger problem in the future. In order to cope with the constant trend of miniaturization of automatic analyzers and a small amount of samples and reagents, it is necessary to solve the above two problems.
Further, in order to improve the number of analyzes per unit time (throughput) of automatic analysis, a large number of reaction cells used in the automatic analyzer are generally mounted on the automatic analyzer. Therefore, when solving the above two problems, it is necessary that a plurality of cells can be hydrophilized simultaneously or sequentially. In addition, in order to improve the accuracy and reproducibility of analysis, it is required that the treated region of the reaction cell surface has a uniform hydrophilic property and suppresses processing variations between reaction cells.

本発明は、これらの要請に応えることを目的とする。   The present invention aims to meet these needs.

これらの問題を解決するには、複数の反応セルの内壁を同時または逐次的に親水化する必要があるが、その親水化領域を、反応セルの底から分光分析に必要な高さまでに限定しなければならない。合成樹脂表面を親水化する有効な手段としては、酸素プラズマ処理、オゾン処理、オゾン水処理、コロナ放電処理、UV処理などの候補がある。しかし、これらはいずれも平面形状の物体を処理する目的に向いており、本特許の扱うような特殊な立体構造物(図1参照)の表面に対して一段で目的を達成するような簡単な方法は一般にはなかなか見当たらない。また領域を限定して処理することも容易ではない。例えば、特許文献3において、オゾン処理によるプラスチック容器の酸化、親水化が述べられているが、この方法では、プラスチック容器を部分限定的に酸化処理することはできず、プラスチック容器を部分限定的に親水化することはできない。また、本特許の扱うような特殊な立体構造物(図1参照)の表面は閉空間を形成しており、上記プラズマ処理などでは、閉空間内でプラズマ密度が一定せず、セル内壁表面に均一に処理することも容易ではない。   To solve these problems, the inner walls of multiple reaction cells must be hydrophilized simultaneously or sequentially, but the hydrophilized region is limited to the height required for spectroscopic analysis from the bottom of the reaction cell. There must be. Effective means for hydrophilizing the surface of the synthetic resin include candidates such as oxygen plasma treatment, ozone treatment, ozone water treatment, corona discharge treatment, and UV treatment. However, these are all suitable for the purpose of processing an object having a planar shape, and are simple enough to achieve the purpose in a single step with respect to the surface of a special three-dimensional structure (see FIG. 1) handled by this patent. In general, it is difficult to find a method. In addition, it is not easy to process by limiting the area. For example, Patent Document 3 describes the oxidation and hydrophilization of a plastic container by ozone treatment. However, in this method, the plastic container cannot be partially oxidized and the plastic container is partially limited. It cannot be hydrophilized. In addition, the surface of a special three-dimensional structure (see FIG. 1) as handled by this patent forms a closed space. In the above plasma processing, the plasma density is not constant in the closed space, and the surface of the cell inner wall is not fixed. It is not easy to process uniformly.

そこで、発明者らは、二つの電極の間に対象物を挟んで放電処理するコロナ放電法の応用を思いついた。この方法では、合成樹脂からなる反応セルブロックを外側から取り囲む外部電極と、ユニットセルの一つ一つに挿入される棒状の内部電極との間でコロナ放電を発生させる(図4参照)。この際、セルの分光測光面の外側表裏には外部電極面が近接するので、対向する棒状電極との間で放電し、分光測光面の内壁両面にコロナ放電処理が掛かる。また外部電極をユニットセルのすき間や底面に設置することで、非測光面や底面にもコロナ放電処理を施せる。また必要に応じて、セル外壁の一部又は全部を処理することも可能である。今回は、反応セル内壁の測光面をコロナ放電処理の対象とした。   Thus, the inventors have come up with an application of a corona discharge method in which an object is sandwiched between two electrodes for discharge treatment. In this method, corona discharge is generated between an external electrode surrounding a reaction cell block made of synthetic resin from the outside and a rod-shaped internal electrode inserted into each unit cell (see FIG. 4). At this time, since the external electrode surfaces are close to the outer front and back surfaces of the spectrophotometric surface of the cell, discharge is performed between the opposing rod-shaped electrodes, and both inner walls of the spectrophotometric surface are subjected to corona discharge treatment. In addition, by installing external electrodes on the gaps and the bottom surface of the unit cell, the corona discharge treatment can also be performed on the non-photometric surface and the bottom surface. Moreover, it is also possible to process a part or all of the cell outer wall as required. This time, the photometric surface of the inner wall of the reaction cell was the target of corona discharge treatment.

コロナ放電処理は大気などの酸素を含んだ雰囲気中で行うため、合成樹脂表面には酸素原子が導入される。酸素原子は、水酸基、エーテル基、カルボニル基、カルボキシル基といった形態で合成樹脂表面に導入されるが、これらはみな親水性の官能基であるため、もともとの疎水性の高い合成樹脂表面の親水性が向上する。合成樹脂表面の親水性は水の接触角の低下によって測定されるが、上記の方法でコロナ放電処理したセルブロックの内壁は接触角が低下し、親水性が向上していることが判った。また、酸素原子の導入状態が、XPS(X線光電子スペクトル)の測定結果から確認できた。   Since the corona discharge treatment is performed in an atmosphere containing oxygen such as air, oxygen atoms are introduced into the surface of the synthetic resin. Oxygen atoms are introduced into the surface of the synthetic resin in the form of hydroxyl groups, ether groups, carbonyl groups, and carboxyl groups. Since these are all hydrophilic functional groups, the hydrophilicity of the original synthetic resin surface with high hydrophobicity Will improve. The hydrophilicity of the surface of the synthetic resin was measured by a decrease in the contact angle of water, but it was found that the inner wall of the cell block subjected to the corona discharge treatment by the above method had a decreased contact angle and improved hydrophilicity. Moreover, the introduction state of oxygen atoms could be confirmed from the measurement result of XPS (X-ray photoelectron spectrum).

また、放電は内外の電極が対向する領域でのみ起こるので、処理領域を限定できる可能性がある。実際、セル内部に挿入する電極の配置と電極形状を適切化し、セル外部に配置する対向電極の高さを適切化することで、親水化領域は電極が対向する領域即ちコロナ放電の起こる領域だけに限定できることを確認した。即ち、コロナ放電処理によって、透明合成樹脂からなる反応セルの底から所定の高さまでの内壁表面だけを親水化処理することができる。コロナ放電は電極間の距離が近いと起こりやすい性質や、電極表面に突起構造があると放電が起こりやすいことを利用することで、面内に均一な親水性を持つセル表面を構築し、同時にセルロット間の均一性を高めることができる。   In addition, since the discharge occurs only in the region where the inner and outer electrodes face each other, there is a possibility that the processing region can be limited. In fact, by optimizing the arrangement and shape of the electrodes to be inserted inside the cell, and by optimizing the height of the counter electrode arranged outside the cell, the hydrophilic area is only the area where the electrodes face each other, that is, the area where corona discharge occurs. It was confirmed that it can be limited to. That is, only the inner wall surface from the bottom of the reaction cell made of transparent synthetic resin to a predetermined height can be hydrophilized by corona discharge treatment. By utilizing the property that corona discharge is likely to occur when the distance between the electrodes is short, and the fact that discharge is likely to occur if there is a protruding structure on the electrode surface, a cell surface with uniform hydrophilicity in the surface is built, and at the same time Uniformity between cell lots can be improved.

コロナ放電処理された表面の親水性は、処理によって導入された水酸基、エーテル基、カルボニル基、カルボキシル基に基づくが、処理条件を強化すると、さらに上位の酸化物である過酸化物(パーオキサイド)も生成することが判った。   The hydrophilicity of the corona discharge-treated surface is based on the hydroxyl group, ether group, carbonyl group, and carboxyl group introduced by the treatment, but if the treatment conditions are strengthened, the higher-level oxide peroxide (peroxide) Was also found to produce.

自動分析装置に使用する反応セルは多数装着されることが一般的であることは既に述べた。本発明により、複数のセルをコロナ放電により同時に又は逐次的に親水化処理でき、処理した領域の性質が均一であり、かつセル間の処理バラツキを少なくできた。なお、本発明は複数のセルまたは単数のセルいずれにも適用可能である。   As described above, it is common that a large number of reaction cells are used in the automatic analyzer. According to the present invention, a plurality of cells can be hydrophilized simultaneously or sequentially by corona discharge, the properties of the treated regions are uniform, and the processing variation between cells can be reduced. Note that the present invention can be applied to either a plurality of cells or a single cell.

なおコロナ放電処理したセルは、外観上全く変化はなく、分光分析に必要な300nm−800nmの波長域の透明性も十分であり、光学特性にも何ら悪影響はない。   The cell subjected to the corona discharge treatment has no change in appearance, has sufficient transparency in the wavelength range of 300 nm to 800 nm necessary for spectroscopic analysis, and has no adverse effect on the optical characteristics.

以上のように、本発明によれば、自動分析装置用反応セルの内壁に安定した親水化処理を、領域を限定して実行することができる。また、本発明の電極と製造法によれば、コロナ放電の立ち上がりが均一であり、処理したセル表面の親水性の均一性や、処理したセルロット間の均一性も高い。また、セルを多数処理した後も、安定して均一に処理、製造できる。従って攪拌における気泡付着の問題を起こさず、セル間の相互汚染の問題も解決し、信頼性と再現性の高い臨床化学検査を実現する自動分析装置を提供できる。   As described above, according to the present invention, it is possible to carry out a stable hydrophilic treatment on the inner wall of a reaction cell for an automatic analyzer with a limited area. Moreover, according to the electrode and the manufacturing method of the present invention, the rise of the corona discharge is uniform, and the hydrophilicity uniformity of the treated cell surface and the uniformity among the treated cell lots are high. Further, even after a large number of cells are processed, they can be processed and manufactured stably and uniformly. Accordingly, it is possible to provide an automatic analyzer that does not cause the problem of bubble adhesion in stirring, solves the problem of cross-contamination between cells, and realizes clinical chemistry tests with high reliability and reproducibility.

本発明によれば、気泡吸着を嫌う分光測光面のセル閉口部に近い領域に限定してセル内壁の親水化処理を施すことができ、セル内壁のそれより開口部側の領域を疎水性のまま保持できる。また、セル表面の処理した領域の親水性や酸素濃度は領域内で均一に保たれ、かつ各ロット間の処理領域の親水性や酸素濃度のバラツキが少ない。このため、気泡吸着による分光透過率の変化が発生せず、測定データの精度や再現性が向上する。また、セル開口部領域の疎水性は、試薬やサンプルの濡れ上がりを防止するため、反応セル間のサンプルの相互汚染を防止し、データの信頼性を向上させる。これらの効果は、サンプル・試薬の微量化にも寄与し、自動分析装置のランニングコスト低減にも貢献する。   According to the present invention, the cell inner wall can be subjected to a hydrophilic treatment only in the region close to the cell closing portion of the spectrophotometric surface that does not like bubble adsorption, and the region closer to the opening than that of the cell inner wall is made hydrophobic. Can be held as is. In addition, the hydrophilicity and oxygen concentration of the treated area on the cell surface are kept uniform in the area, and there is little variation in the hydrophilicity and oxygen concentration of the treated area between lots. For this reason, the change in spectral transmittance due to bubble adsorption does not occur, and the accuracy and reproducibility of measurement data are improved. In addition, the hydrophobicity of the cell opening region prevents wetting of the reagent and sample, thereby preventing cross-contamination of samples between reaction cells and improving data reliability. These effects contribute to the miniaturization of samples and reagents, and also contribute to reducing the running cost of the automatic analyzer.

次に、本発明を実施例により詳細に説明するが、本発明は下記実施例に限定されるものではない。
<実施例1>コロナ放電処理による局所的親水化―その1―
自動分析装置用反応セル(以下、“セル”と呼称する。)として、ポリシクロオレフィンを素材として射出成形によって作製した。ちなみにセル素材としては、ポリシクロオレフィン、ポリカーボネート樹脂、アクリル樹脂、ポリスチレン樹脂から選択される1種であればかまわない。低吸水率、低透湿度、高い全光線透過率、低屈折率、低成型収縮率の観点からポリシクロオレフィンを選択することが望ましい。
EXAMPLES Next, although an Example demonstrates this invention in detail, this invention is not limited to the following Example.
Example 1 Local Hydrophilization by Corona Discharge Treatment-Part 1-
A reaction cell for an automatic analyzer (hereinafter referred to as “cell”) was produced by injection molding using polycycloolefin as a raw material. Incidentally, the cell material may be one selected from polycycloolefin, polycarbonate resin, acrylic resin, and polystyrene resin. It is desirable to select a polycycloolefin from the viewpoint of low water absorption, low moisture permeability, high total light transmittance, low refractive index, and low mold shrinkage.

本実施例では4個の単セルを一体成形したセルブロックとして形成したものを用いた。図1に、セルブロックの斜視外観図を示す。成型したセルブロック50は、4個の単セル51からなる。セルブロック50の長辺101は60mm、短辺102は10mm、高さ103は40mmである。単セル51を自動分析装置に搭載した際には、サンプルと試薬の反応経過及び反応結果を分光スペクトルにより測定する。個々の単セルには、測定用の光が透過する2つの面(測光面)と測定用の光が透過しない非測光面がある。図2に、単セルを非測光面の長軸で2つに分割した断面図示す。単セルは、非測光面外壁部111、非測光面内壁部112、測光面外壁部113、測光面内壁部114、底面115からなる。この詳細を、図3に単セル断面斜視外観図として示す。単セルの内壁部の寸法は、非測光面の半分の長さ116が3mm、測光面の長さ117が4mm、高さ118が30mm、単セル肉厚150が1mmであり、閉口部130、開口部140を備えている。   In this embodiment, a cell block formed by integrally molding four single cells was used. FIG. 1 shows a perspective external view of a cell block. The molded cell block 50 includes four single cells 51. The long side 101 of the cell block 50 is 60 mm, the short side 102 is 10 mm, and the height 103 is 40 mm. When the single cell 51 is mounted on the automatic analyzer, the reaction progress and the reaction result of the sample and the reagent are measured by the spectrum. Each single cell has two surfaces (photometry surfaces) through which measurement light is transmitted and a non-photometry surface through which measurement light is not transmitted. FIG. 2 is a cross-sectional view of a single cell divided into two along the long axis of the non-photometric surface. The single cell includes a non-photometric surface outer wall portion 111, a non-photometric surface inner wall portion 112, a photometric surface outer wall portion 113, a photometric surface inner wall portion 114, and a bottom surface 115. The details are shown in FIG. The dimension of the inner wall portion of the single cell is such that the half length 116 of the non-photometric surface is 3 mm, the length 117 of the photometric surface is 4 mm, the height 118 is 30 mm, the single cell thickness 150 is 1 mm, An opening 140 is provided.

全ての単セル51内にエタノール500μlを注入して24時間放置し、エタノールを除去した後、真空デシケーターに入れ乾燥することで単セル内壁表面を清浄化した。次にコロナ放電局所処理を施した。なお、上記エタノールによる内壁表面の清浄化は行わずに、コロナ放電局所処理をしても良い。   500 μl of ethanol was injected into all the single cells 51 and left for 24 hours. After removing the ethanol, the inner wall surface of the single cell was cleaned by placing in a vacuum desiccator and drying. Next, corona discharge local treatment was performed. In addition, you may perform a corona discharge local process, without performing the cleaning of the inner wall surface by the said ethanol.

図4に、コロナ放電局所処理の模式図を示す。洗浄・乾燥したセルブロック50の4個の単セル51の測光面を陰極板218で挟み込んだ。陰極板は、配線216を介してアース217につながれている。   FIG. 4 shows a schematic diagram of the corona discharge local treatment. The photometric surfaces of the four single cells 51 of the cleaned and dried cell block 50 were sandwiched between the cathode plates 218. The cathode plate is connected to the ground 217 via the wiring 216.

陰極板の高さを調整することで、セル内壁のコロナ放電処理面の高さを限定することができる。また、陰極板とセルの間に誘電体や絶縁体を挿入しても良い。また、陰極板とセルは密着してもよいし、適切な距離離れていても良い。   By adjusting the height of the cathode plate, the height of the corona discharge treatment surface of the cell inner wall can be limited. Further, a dielectric or an insulator may be inserted between the cathode plate and the cell. Further, the cathode plate and the cell may be in close contact with each other, or may be separated by an appropriate distance.

本実施例では各単セルの底面から14mmまでの内壁が処理されるように陰極板の高さを決めた。その後、各単セル51内部にコロナ放電棒状(円柱状)電極214をそれぞれの単セルの底面中心に向かって底面から1mmの高さまで入れた。コロナ放電棒状電極214の径は最大箇所で2mm、長さは50mmであり、陽極213と配線212を介してコロナ放電源211につながれている。コロナ放電電源としては、ナビタス社製ポリダインを使用した。ついで、大気中において電圧6kV印加によって、単セル内壁部の所望の高さにコロナ放電処理した。この時の電極周辺の構成を矢印219の方向から見た様子を図5に示す。コロナ放電処理される測光面の面内領域での親水性の均一性、及び同時処理されるセル間の均一性を保つために以下の構成により放電処理した。   In this example, the height of the cathode plate was determined so that the inner wall from the bottom surface of each single cell to 14 mm was processed. Thereafter, a corona discharge rod-shaped (cylindrical) electrode 214 was placed inside each single cell 51 from the bottom to a height of 1 mm toward the center of the bottom of each single cell. The diameter of the corona discharge rod-like electrode 214 is 2 mm at the maximum and the length is 50 mm, and is connected to the corona discharge source 211 via the anode 213 and the wiring 212. As the corona discharge power source, polydyne manufactured by Navitas was used. Next, a corona discharge treatment was applied to the desired height of the inner wall of the single cell by applying a voltage of 6 kV in the atmosphere. FIG. 5 shows a state in which the configuration around the electrode at this time is viewed from the direction of the arrow 219. In order to maintain hydrophilic uniformity in the in-plane region of the photometric surface subjected to corona discharge treatment and uniformity between cells subjected to simultaneous treatment, discharge treatment was performed with the following configuration.

セル51内に棒状電極214を挿入した。棒状電極は金属製で、角柱状でも円柱状でも良い。本実施例ではステンレス製の円柱状電極を使用した。棒状電極214は電極径が大きい領域601と電極径が小さい領域602からなる。領域601と領域602の境界線と同じ高さになるよう、対向電極61と62の高さを調整した。セル底から対向電極上端の距離632とセル底から電極境界線までの距離631を等しくすることで、処理を望むセル内壁を処理した。本実施例では、距離631及び632を14mmとした。なお、領域601の電極エッジは、面取りをR0.5mm程度で施しても良い。   A rod-shaped electrode 214 was inserted into the cell 51. The rod-like electrode is made of metal and may be prismatic or cylindrical. In this embodiment, a stainless steel cylindrical electrode was used. The rod-shaped electrode 214 includes a region 601 having a large electrode diameter and a region 602 having a small electrode diameter. The heights of the counter electrodes 61 and 62 were adjusted to be the same height as the boundary line between the region 601 and the region 602. By making the distance 632 from the cell bottom to the upper end of the counter electrode equal to the distance 631 from the cell bottom to the electrode boundary line, the cell inner wall desired to be processed was processed. In this embodiment, the distances 631 and 632 are 14 mm. Note that the electrode edge of the region 601 may be chamfered with a radius of about R0.5 mm.

一般に電極間距離が近くなるほど、コロナ放電エネルギーが高くなる法則を利用した。電極径が大きい領域の方が、電極径が小さい領域よりも対向電極に近いため、コロナ放電が起こりやすく放電エネルギーが高い。従って、対向電極との距離が近い領域601から対向電極に向かい優先的にコロナ放電が発生する。この際、上記に示したとおり、距離631と距離632が等しいので、放電を所望する領域を均一に処理できる。かつ曖昧に処理される領域を抑制でき、セル内壁表面でコロナ放電処理された領域と未処理の領域とが明瞭に差が付くと考えた。本実施例で使用した電極の領域601の電極径は2mmであり、領域602の電極径は1mmであり、領域601はセル幅610を超えないようにした。   In general, the law is used in which the corona discharge energy increases as the distance between the electrodes decreases. Since the region with a large electrode diameter is closer to the counter electrode than the region with a small electrode diameter, corona discharge is likely to occur and the discharge energy is high. Accordingly, corona discharge is preferentially generated from the region 601 that is close to the counter electrode toward the counter electrode. At this time, since the distance 631 is equal to the distance 632 as described above, the region where discharge is desired can be uniformly processed. Moreover, it was possible to suppress the area to be processed in an ambiguous manner, and it was considered that there was a clear difference between the area subjected to the corona discharge treatment on the cell inner wall surface and the untreated area. The electrode diameter of the electrode region 601 used in this example was 2 mm, the electrode diameter of the region 602 was 1 mm, and the region 601 did not exceed the cell width 610.

棒状電極をセル底部の中心になるように配置し、棒状電極とセル測光面301、302との距離613、距離614を等しくすることが、2面ある測光面の均一性及び再現性ある処理に重要である。また、セル測光面301と対向電極61の距離611、セル測光面302と対向電極62の距離612である時、距離611と612を等しくすることが、2面ある測光面の均一処理及び再現性ある処理に重要である。本実施例では距離611と612を等しくし、2mmとした。領域602とセルとの距離621、距離622を等しくした。   Disposing the rod-shaped electrode so as to be at the center of the cell bottom and making the distance 613 and the distance 614 between the rod-shaped electrode and the cell photometric surfaces 301 and 302 equal to each other can achieve uniformity and reproducibility of the two photometric surfaces. is important. Also, when the distance 611 between the cell photometric surface 301 and the counter electrode 61 and the distance 612 between the cell photometric surface 302 and the counter electrode 62, making the distances 611 and 612 equal makes the uniform processing and reproducibility of the two photometric surfaces. It is important for certain processes. In this embodiment, the distances 611 and 612 are made equal to 2 mm. The distance 621 and the distance 622 between the region 602 and the cell are made equal.

なお、距離611と612の差分が2mm以内であれば、2面ある測光面の均一処理に支障は無い。また、距離613と614の差分が1mm以内であれば、2面ある測光面の均一処理に支障は無いことを確認した。
この時、反応セルの底部外壁や非測光面の外壁に陰極板を設けておけば、反応セルの底面や非測光面にもコロナ放電処理できる。すなわち、陰極板を設置する位置により、コロナ放電処理位置を限定できる。本実施例では、対向電極218と219のみを配置した。
If the difference between the distances 611 and 612 is within 2 mm, there is no problem in uniform processing of the two photometric surfaces. In addition, if the difference between the distances 613 and 614 is within 1 mm, it was confirmed that there is no problem in uniform processing of the two photometric surfaces.
At this time, if a cathode plate is provided on the bottom outer wall of the reaction cell or the outer wall of the non-photometric surface, corona discharge treatment can be performed on the bottom surface or non-photometric surface of the reaction cell. That is, the corona discharge treatment position can be limited by the position where the cathode plate is installed. In this embodiment, only the counter electrodes 218 and 219 are arranged.

図6に、上記方法でコロナ放電局所処理した後の単セルの断面斜視外観図を示す。セル51の測光面内壁部114のうち底面115から境界線119までの部分120にコロナ放電処理できた。この時、境界線119を境目として閉口部130側が親水性、開口部側が疎水性となり、親水性に明確な差がついた。この時、図に示された測光面の対向面の内壁部にも同様にコロナ放電局所処理できた。同様のコロナ放電局所処理は、セルブロックに備わる複数個の単セルの全てに同時に施すことができた。   FIG. 6 shows a cross-sectional perspective external view of a single cell after the corona discharge local treatment by the above method. Corona discharge treatment could be performed on the portion 120 from the bottom surface 115 to the boundary line 119 in the photometric surface inner wall portion 114 of the cell 51. At this time, with the boundary line 119 as a boundary, the closed portion 130 side became hydrophilic and the opening portion side became hydrophobic, and there was a clear difference in hydrophilicity. At this time, the corona discharge local treatment could be similarly performed on the inner wall portion of the surface opposite to the photometric surface shown in the figure. Similar corona discharge local treatment could be performed simultaneously on all of the plurality of single cells provided in the cell block.

なお、陰極板を測光面のみならず非測光面や底面に設置することで、非測光面や底面にもコロナ放電処理を施すことができる。以下の実施例1〜6では、測光面のみをコロナ放電処理したセルを準備した例を示す。なお、測光面のうち、分光スペクトルを測定する際に光が透過する領域(測光部)に気泡が付着していなければ、検出障害を無くすことができる。   In addition, by installing the cathode plate not only on the photometric surface but also on the non-photometric surface and the bottom surface, the corona discharge treatment can be performed on the non-photometric surface and the bottom surface. In Examples 1 to 6 below, an example is shown in which a cell in which only the photometric surface is subjected to corona discharge treatment is prepared. It should be noted that detection bubbles can be eliminated if bubbles do not adhere to a region (photometry unit) through which light is transmitted when measuring a spectral spectrum.

表1に、セル内の測光面内壁表面に関して、セル底からの距離に応じた水の接触角を示す。なおコロナ放電処理時間は10秒であるが、適切化した結果1秒以上20秒以下であれば同様の結果である。   Table 1 shows the contact angle of water according to the distance from the cell bottom with respect to the photometric surface inner wall surface in the cell. The corona discharge treatment time is 10 seconds, but if the result of optimization is 1 second to 20 seconds, the same result is obtained.

Figure 0004839269
Figure 0004839269

接触角の測定には、協和界面科学製Drop Master 500を使用した。処理を施したセル表面にシリンジを利用して純水1μlを滴下し、着滴0.5秒後の静的接触角をθ/2法で測定した。測定には、処理を施したサンプルを6つ用意し、測光面内壁表面のセル底からの距離1mmから2mmおきに測定を行い、6つのサンプル間での平均値を求めた。
その結果、セル底からの距離が15mm以上の場合、コロナ放電処理前のセル表面と同様の結果であり、水との接触角は89度から91度であった。一方、処理を望んだ領域であるセル底からの距離が1mmから13mmの間では、コロナ放電処理をすることにより水との接触角は約40度へ低下した。このように、コロナ放電処理を選択的に施せることを確認した。すなわち、コロナ放電処理によりセル表面に領域を限定して親水性を付与することができる。セル底からの距離14mmを境に親水性に明確な差がついた。
For measurement of the contact angle, Drop Master 500 manufactured by Kyowa Interface Science was used. Using a syringe, 1 μl of pure water was dropped onto the treated cell surface, and the static contact angle 0.5 seconds after the landing was measured by the θ / 2 method. For the measurement, six treated samples were prepared, and measurement was performed at intervals of 1 mm to 2 mm from the cell bottom of the photometric surface inner wall surface, and an average value among the six samples was obtained.
As a result, when the distance from the cell bottom was 15 mm or more, the result was the same as the cell surface before the corona discharge treatment, and the contact angle with water was 89 to 91 degrees. On the other hand, when the distance from the cell bottom, which is the region where treatment was desired, was between 1 mm and 13 mm, the contact angle with water was reduced to about 40 degrees by the corona discharge treatment. Thus, it was confirmed that the corona discharge treatment can be selectively performed. That is, hydrophilicity can be imparted by limiting the area on the cell surface by corona discharge treatment. There was a clear difference in hydrophilicity at a distance of 14 mm from the cell bottom.

次に、コロナ放電処理表面の元素分析をXPS(X線光電子分光)によって実施した結果、表2に酸素原子存在比率(%)を示す。なお、酸素原子存在比率は以下酸素濃度とも記す。以下、測定には、SHIMADZU−CRATOS製X線光電子分光(XPS)装置を使用し、炭素と酸素と窒素の原子存在比率を比較するために、1400eV〜−20eVの範囲で、Pass Energyを20eVとしてワイドスキャンをおこなった。   Next, elemental analysis of the corona discharge treated surface was performed by XPS (X-ray photoelectron spectroscopy), and Table 2 shows the oxygen atom abundance ratio (%). The oxygen atom abundance ratio is hereinafter also referred to as oxygen concentration. Hereinafter, for the measurement, a SHIMADZU-CRATOS X-ray photoelectron spectroscopy (XPS) apparatus is used. In order to compare the atomic ratio of carbon, oxygen, and nitrogen, the pass energy is set to 20 eV in the range of 1400 eV to -20 eV. A wide scan was performed.

Figure 0004839269
Figure 0004839269

表2に示すように、セル底からの距離が15mm以上の場合、コロナ放電処理前のセル表面と同様、酸素の原子存在率は検出下限以下の0原子%であった。一方、処理を望んだ領域であるセル底からの距離が1mmから13mmの間では、酸素原子存在率は平均12原子%であった。コロナ放電処理によって酸素が導入され、ポリシクロオレフィンが酸化され、親水化されている。   As shown in Table 2, when the distance from the cell bottom was 15 mm or more, as in the cell surface before the corona discharge treatment, the oxygen atom abundance was 0 atomic% below the detection lower limit. On the other hand, when the distance from the cell bottom, which is the region where treatment was desired, was between 1 mm and 13 mm, the oxygen atom abundance ratio was 12 atom% on average. Oxygen is introduced by corona discharge treatment, and the polycycloolefin is oxidized and hydrophilized.

次に処理面内での均一性、処理したセルロット間での均一性について述べる。上記の方法で処理したセル10個それぞれの親水性領域(6箇所)を接触角測定した結果、セル底から14mmまでの接触角は平均で40度、標準偏差(σ)が1度であった。なお、親水性領域の接触角の平均値と標準偏差(σ)の合計が、85度以下であれば自動分析装置用反応セルとして十分な性質を有していることを確認した。同様にセル親水性領域の酸素濃度のバラツキについても、XPS測定の結果、平均値12原子%であり、標準偏差(σ)は約0.6原子%であった。   Next, the uniformity within the processing surface and the uniformity among the processed cell lots will be described. As a result of measuring the contact angle of each of the 10 cells treated by the above method (6 locations), the average contact angle from the cell bottom to 14 mm was 40 degrees and the standard deviation (σ) was 1 degree. . In addition, when the sum of the average value of the contact angle of the hydrophilic region and the standard deviation (σ) was 85 degrees or less, it was confirmed that the hydrophilic cell had sufficient properties as a reaction cell for an automatic analyzer. Similarly, as for the variation in oxygen concentration in the cell hydrophilic region, as a result of XPS measurement, the average value was 12 atomic%, and the standard deviation (σ) was about 0.6 atomic%.

表1に示した接触角の低減の観点からも、表2に示したXPSの酸素原子存在率の観点からも、処理を望んだ領域の親水性の均一性が高いことがわかる。処理したセルロット間の均一性についても確認できた。   From the viewpoint of reducing the contact angle shown in Table 1 and from the viewpoint of the oxygen atom abundance ratio of XPS shown in Table 2, it can be seen that the uniformity of hydrophilicity in the region desired to be treated is high. The uniformity among the processed cell lots was also confirmed.

次に、コロナ放電処理したセルに純水150μlを注水した際の気泡付着の有無を調べた結果、気泡付着は起こらなかった。したがって、セル内壁部の一部にコロナ放電処理を施すことで、安定な親水化処理可能であることを確認できた。また、コロナ放電処理しなかった部分の接触角は90度のままであり、コロナ放電未処理のセル表面と同様であった。すなわち、反応セル内壁にコロナ放電処理を選択的に施すことができ、安定な親水性部分と疎水性部分を内壁部に有する反応セルを作製できた。   Next, as a result of examining the presence or absence of bubble adhesion when 150 μl of pure water was poured into a cell subjected to corona discharge treatment, bubble adhesion did not occur. Therefore, it was confirmed that a stable hydrophilization treatment was possible by performing a corona discharge treatment on a part of the cell inner wall. Further, the contact angle of the portion not subjected to the corona discharge treatment remained 90 degrees, which was the same as that of the cell surface not subjected to corona discharge treatment. That is, the inner wall of the reaction cell could be selectively subjected to corona discharge treatment, and a reaction cell having a stable hydrophilic portion and hydrophobic portion on the inner wall portion could be produced.

次に、10秒間のコロナ放電処理したセルを室温放置した後のセル内に水を150μl注入した際の気泡付着の有無を調べた。表3に経過日数と日数経過後の気泡付着の有無を示す。   Next, the presence or absence of bubbles was examined when 150 μl of water was injected into the cell after the cell treated with corona discharge for 10 seconds was left at room temperature. Table 3 shows the number of elapsed days and the presence or absence of bubbles after the passage of days.

Figure 0004839269
Figure 0004839269

経過日数0日、60日でセル内に水を150μl注入した際には、気泡付着が無く、経過日数が120日、180日でも気泡付着が無いことを確認した。従って、本発明により作製した反応セルは長期の保管後にも使用可能である。   When 150 μl of water was injected into the cell at 0 and 60 days, it was confirmed that no bubbles were attached and no bubbles were attached even after 120 days and 180 days. Therefore, the reaction cell prepared according to the present invention can be used even after long-term storage.

本実施例の反応セルは、自動分析装置用反応セルとして、気泡付着が起こらず、攪拌安定性と透明性を有しており、かつセル間のサンプル・試薬の相互汚染を防止できることを確認した。   The reaction cell of this example was confirmed as a reaction cell for an autoanalyzer, which does not cause bubble adhesion, has stirring stability and transparency, and can prevent cross-contamination of samples and reagents between the cells. .

また、図4に示したコロナ放電処理は他の形状のセルブロックに対しても可能である。図7に示すように、セル91の複数で測光面92を共用するセルブロック90では、測光面の親水化したい領域の外壁を陰極板218で挟むことで、セル内壁のコロナ放電処理面の高さを限定し、コロナ処理を行うことができる。測光面を親水化しておくことで、測光領域を光が透過し溶液を検出する際に、気泡が付着せず安定な測定を実施できる。電極配置、電極形状、電極間距離を先に述べた通りに適正化することで実施でき、同様の反応セルを作製できる。
<実施例2>コロナ放電処理による局所的親水化―その2―
実施例1と同様にコロナ放電処理によるセル内壁部の局所的親水化を施した。用いた棒状電極214は、実施例1と同様に円柱状のものを使用し、領域602の電極径は実施例1と同様1mmとした。本実施例2では、電極径が大きい領域601を図8にしめすような山型領域603とする電極を使用することとした。一般にフラット構造よりも局所的に突起があるほうが、電界集中しやすくコロナ放電強度が強いので、処理するセルロット間で放電の立ち上がりタイミングがばらつかず、処理したセルの親水性がセルロット間でばらつかない。本実施例では溝深さ641を0.3mmとし、ピッチ(溝の間隔)642を0.5mmとすることとした。図8A―A’での断面線の一部を図9に示す。なお、この溝深さとピッチは上記に限定されず、色々な溝深さとピッチを組み合わせることができる。実施例1と同様な電極配置、挿入位置、電極間距離とすることで、セル表面の閉口部側が親水性、開口部側が疎水性となり、親水性に明確な差がついた。同様のコロナ放電局所処理は、セルブロックに備わる複数個の単セルの全てに同時に施すことができた。山型電極を使用したことで、放電のロット間バラツキが低減でき、処理後のセルを評価したところ、実施例1と同様に接触角のバラツキや酸素濃度のバラツキを低減できた。
Further, the corona discharge treatment shown in FIG. 4 can be applied to other shapes of cell blocks. As shown in FIG. 7, in the cell block 90 in which a plurality of cells 91 share the photometric surface 92, the outer wall of the region to be hydrophilized on the photometric surface is sandwiched between cathode plates 218, so that the height of the corona discharge treatment surface of the cell inner wall is increased. The corona treatment can be performed by limiting the thickness. By making the photometric surface hydrophilic, it is possible to carry out stable measurement without bubbles adhering when light is transmitted through the photometric region and a solution is detected. It can be implemented by optimizing the electrode arrangement, electrode shape, and interelectrode distance as described above, and a similar reaction cell can be produced.
<Example 2> Local hydrophilization by corona discharge treatment-Part 2-
Similar to Example 1, the cell inner wall was locally hydrophilized by corona discharge treatment. The rod-shaped electrode 214 used was a columnar one as in Example 1, and the electrode diameter of the region 602 was set to 1 mm as in Example 1. In Example 2, an electrode having a mountain-shaped region 603 as shown in FIG. 8 is used as the region 601 having a large electrode diameter. In general, local protrusions are more prone to electric field concentration and corona discharge intensity is stronger than flat structures, so the discharge rise timing does not vary between the processed cell lots, and the hydrophilicity of the processed cells varies between the cell lots. Absent. In this embodiment, the groove depth 641 is set to 0.3 mm, and the pitch (groove interval) 642 is set to 0.5 mm. FIG. 9 shows a part of the cross-sectional line in FIG. 8A-A ′. The groove depth and pitch are not limited to the above, and various groove depths and pitches can be combined. By using the same electrode arrangement, insertion position, and inter-electrode distance as in Example 1, the closed surface side of the cell surface was hydrophilic and the open side was hydrophobic, and there was a clear difference in hydrophilicity. Similar corona discharge local treatment could be performed simultaneously on all of the plurality of single cells provided in the cell block. By using the chevron-shaped electrode, it was possible to reduce the discharge lot-to-lot variation, and when the treated cell was evaluated, it was possible to reduce the contact angle variation and the oxygen concentration variation as in Example 1.

また、図4に示したコロナ放電処理は他の形状のセルブロックに対しても可能である。図7に示すように、セル91の複数で測光面92を共用するセルブロック90では、測光面の親水化したい領域の外壁を陰極板218で挟むことで、セル内壁のコロナ放電処理面の高さを限定し、コロナ処理を行うことができる。測光面を親水化しておくことで、測光領域を光が透過し溶液を検出する際に、気泡が付着せず安定な測定を実施できる。電極配置、電極形状、電極間距離を先に述べた通りにすることで実施でき、同様の反応セルを作製できる。   Further, the corona discharge treatment shown in FIG. 4 can be applied to other shapes of cell blocks. As shown in FIG. 7, in the cell block 90 in which a plurality of cells 91 share the photometric surface 92, the outer wall of the region to be hydrophilized on the photometric surface is sandwiched between cathode plates 218, so that the height of the corona discharge treatment surface of the cell inner wall is increased. The corona treatment can be performed by limiting the thickness. By making the photometric surface hydrophilic, it is possible to carry out stable measurement without bubbles adhering when light is transmitted through the photometric region and a solution is detected. It can be carried out by setting the electrode arrangement, the electrode shape, and the distance between the electrodes as described above, and a similar reaction cell can be produced.

本実施例の反応セルは、自動分析装置用反応セルとして、気泡付着が起こらず、攪拌安定性と透明性を有しており、かつセル間のサンプル・試薬の相互汚染を防止できることを確認した。
<実施例3>コロナ放電処理による局所的親水化―その3―
実施例1と同様にコロナ放電処理によるセル内壁部の局所的親水化を施した。用いた棒状電極214は、実施例1と同様に円柱状のものを使用し、領域602の電極径は実施例1と同様1mmとした。本実施例3では、電極径が大きい領域601を図10に示すようなあやめ型領域604を有する電極を使用することとした。一般にフラット構造よりも局所的に突起があるほうが、電界集中しやすくコロナ放電強度が強いので、処理するセルロット間で放電の立ち上がりタイミングがばらつかず、処理したセルの親水性がセルロット間でばらつかない。図9に示すような格子状又は網目状の刻み目は、一般にローレット加工により達成できるので、利用した。
The reaction cell of this example was confirmed as a reaction cell for an autoanalyzer, which does not cause bubble adhesion, has stirring stability and transparency, and can prevent cross-contamination of samples and reagents between the cells. .
<Example 3> Local hydrophilization by corona discharge treatment-Part 3-
Similar to Example 1, the cell inner wall was locally hydrophilized by corona discharge treatment. The rod-shaped electrode 214 used was a columnar one as in Example 1, and the electrode diameter of the region 602 was set to 1 mm as in Example 1. In Example 3, an electrode having an iris region 604 as shown in FIG. 10 is used for the region 601 having a large electrode diameter. In general, local protrusions are more prone to electric field concentration and corona discharge intensity is stronger than flat structures, so the discharge rise timing does not vary between the processed cell lots, and the hydrophilicity of the processed cells varies between the cell lots. Absent. A grid-like or mesh-like notch as shown in FIG. 9 is generally used because it can be achieved by knurling.

図10中のA−A’で示す線で断面の一部をあらわした場合の模式図を図11に示す。本実施例では溝深さ651を0.3mmとし、ピッチ(溝の間隔)652を0.5mmとすることとした。図9中のB−B’で示す線で断面の一部をあらわした場合の模式図を図12に示す。本実施例では溝深さ653を0.3mmとし、ピッチ(溝の間隔)654を0.5mmとすることとした。なお、この溝深さとピッチは上記に限定されるものではない。実施例1と同様な電極配置、挿入位置、電極間距離とすることで、セル表面の閉口部側が親水性、開口部側が疎水性となり、親水性に明確な差がついた。同様のコロナ放電局所処理は、セルブロックに備わる複数個の単セルの全てに同時に施すことができた。実施例2と同様に電極表面に突起を有するあやめ型電極を使用したことで、放電のロット間バラツキが低減でき、処理後のセルを評価したところ、実施例1と同様に接触角のバラツキや酸素濃度のバラツキを低減できた。   FIG. 11 is a schematic diagram in which a part of the cross section is represented by a line indicated by A-A ′ in FIG. 10. In this embodiment, the groove depth 651 is set to 0.3 mm, and the pitch (groove interval) 652 is set to 0.5 mm. FIG. 12 shows a schematic diagram in which a part of the cross section is represented by a line indicated by B-B ′ in FIG. 9. In this embodiment, the groove depth 653 is set to 0.3 mm, and the pitch (groove interval) 654 is set to 0.5 mm. The groove depth and pitch are not limited to the above. By using the same electrode arrangement, insertion position, and inter-electrode distance as in Example 1, the closed surface side of the cell surface was hydrophilic and the open side was hydrophobic, and there was a clear difference in hydrophilicity. Similar corona discharge local treatment could be performed simultaneously on all of the plurality of single cells provided in the cell block. As in Example 2, the use of the iris electrode having protrusions on the electrode surface can reduce the discharge lot-to-lot variation, and the treated cell was evaluated. As in Example 1, the contact angle variation and The variation of oxygen concentration was reduced.

また、図4に示したコロナ放電処理は他の形状のセルブロックに対しても可能である。図7に示すように、セル91の複数で測光面92を共用するセルブロック90では、測光面の親水化したい領域の外壁を陰極板218で挟むことで、セル内壁のコロナ放電処理面の高さを限定し、コロナ処理を行うことができる。測光面を親水化しておくことで、測光領域を光が透過し溶液を検出する際に、気泡が付着せず安定な測定を実施できる。電極配置、電極形状、電極間距離を先に述べた通りにすることで実施でき、同様の反応セルを作製できる。   Further, the corona discharge treatment shown in FIG. 4 can be applied to other shapes of cell blocks. As shown in FIG. 7, in the cell block 90 in which a plurality of cells 91 share the photometric surface 92, the outer wall of the region to be hydrophilized on the photometric surface is sandwiched between cathode plates 218, so that the height of the corona discharge treatment surface of the cell inner wall is increased. The corona treatment can be performed by limiting the thickness. By making the photometric surface hydrophilic, it is possible to carry out stable measurement without bubbles adhering when light is transmitted through the photometric region and a solution is detected. It can be carried out by setting the electrode arrangement, the electrode shape, and the distance between the electrodes as described above, and a similar reaction cell can be produced.

本実施例の反応セルは、自動分析装置用反応セルとして、気泡付着が起こらず、攪拌安定性と透明性を有しており、かつセル間のサンプル・試薬の相互汚染を防止できることを確認した。
<実施例4>コロナ放電処理による局所的親水化―その4―
実施例1と同様にコロナ放電処理によるセル内壁部の局所的親水化を施した。用いた棒状電極を図13に示す。円柱状の棒状電極70を使用し、径が0.1mmの中空領域702、吸引口701を備えている。なお、本実施例で使用する電極径は、実施例1と同様に大きい電極領域704と小さい電極領域705を有する電極とした。なお、本実施例では、中空領域と吸引口があれば、1種の電極径でストレート型を使用してもよい。実施例1と同様に適切な電極配置、適切な挿入位置、適切な電極間距離にした。さらに、放電時にダイヤフラムポンプを利用して、吸引口と中空領域を介して、空気を流速20cc/分で吸引することで、矢印703に示す方向で空気の流れを作り、コロナ放電でできたプラズマがセル表面の所望の処理領域をはみ出さないようにした。その結果、セル表面の閉口部側が親水性、開口部側が疎水性となり、親水性に明確な差がついた。同様のコロナ放電局所処理は、セルブロックに備わる複数個の単セルの全てに同時に施すことができた。この結果、放電のロット間バラツキが低減でき、処理後のセルを評価したところ、実施例1と同様に接触角のバラツキや酸素濃度のバラツキを低減できた。なお、上記流速は、1cc/分〜200cc/分の範囲で実施できる。
The reaction cell of this example was confirmed as a reaction cell for an autoanalyzer, which does not cause bubble adhesion, has stirring stability and transparency, and can prevent cross-contamination of samples and reagents between the cells. .
Example 4 Local Hydrophilization by Corona Discharge Treatment—Part 4—
Similar to Example 1, the cell inner wall was locally hydrophilized by corona discharge treatment. The rod-shaped electrode used is shown in FIG. A cylindrical rod-like electrode 70 is used, and a hollow region 702 having a diameter of 0.1 mm and a suction port 701 are provided. The electrode diameter used in this example was an electrode having a large electrode region 704 and a small electrode region 705 as in Example 1. In this embodiment, if there are a hollow region and a suction port, a straight type may be used with one type of electrode diameter. Similar to Example 1, an appropriate electrode arrangement, an appropriate insertion position, and an appropriate interelectrode distance were used. Further, a plasma generated by corona discharge is created by using a diaphragm pump at the time of discharge to draw air at a flow rate of 20 cc / min through a suction port and a hollow region, thereby creating an air flow in the direction indicated by arrow 703. Was not allowed to protrude from the desired treatment area on the cell surface. As a result, the closed surface side of the cell surface became hydrophilic and the open side was hydrophobic, and there was a clear difference in hydrophilicity. Similar corona discharge local treatment could be performed simultaneously on all of the plurality of single cells provided in the cell block. As a result, variation between discharge lots could be reduced, and the cells after treatment were evaluated. As in Example 1, variation in contact angle and variation in oxygen concentration could be reduced. In addition, the said flow rate can be implemented in the range of 1 cc / min-200 cc / min.

また、図4に示したコロナ放電処理は他の形状のセルブロックに対しても可能である。図7に示すように、セル91の複数で測光面92を共用するセルブロック90では、測光面の親水化したい領域の外壁を陰極板218で挟むことで、セル内壁のコロナ放電処理面の高さを限定し、コロナ処理を行うことができる。測光面を親水化しておくことで、測光領域を光が透過し溶液を検出する際に、気泡が付着せず安定な測定を実施できる。電極配置、電極形状、電極間距離を先に述べた通りにすることで実施でき、同様の反応セルを作製できる。   Further, the corona discharge treatment shown in FIG. 4 can be applied to other shapes of cell blocks. As shown in FIG. 7, in the cell block 90 in which a plurality of cells 91 share the photometric surface 92, the outer wall of the region to be hydrophilized on the photometric surface is sandwiched between cathode plates 218, so that the height of the corona discharge treatment surface of the cell inner wall is increased. The corona treatment can be performed by limiting the thickness. By making the photometric surface hydrophilic, it is possible to carry out stable measurement without bubbles adhering when light is transmitted through the photometric region and a solution is detected. It can be carried out by setting the electrode arrangement, the electrode shape, and the distance between the electrodes as described above, and a similar reaction cell can be produced.

本実施例の反応セルは、自動分析装置用反応セルとして、気泡付着が起こらず、攪拌安定性と透明性を有しており、かつセル間のサンプル・試薬の相互汚染を防止できることを確認した。
<実施例5>コロナ放電処理による局所的親水化―その5―
実施例1と同様にコロナ放電処理によるセル内壁部の局所的親水化を施した。用いた棒状電極を図14に示す。円柱状の棒状電極80を使用した。なお、本実施例で使用する電極径は、実施例1と同様に大小の電極径を有する電極とした。なお、本実施例では、1種の電極径でストレート型を使用してもよい。実施例1と同様に適切な電極配置、適切な挿入位置、適切な電極間距離にした。さらに、セル内壁表面で処理を望まない領域には、セルと同じ素材の樹脂でできたマスク81を配置し、コロナ放電でできたプラズマがセル表面の所望の処理領域をはみ出さないようにした。その結果、実施例1と同様の効果があり、セル表面の閉口部側が親水性、開口部側が疎水性となり、親水性に明確な差がついた。同様のコロナ放電局所処理は、セルブロックに備わる複数個の単セルの全てに同時に施すことができた。この結果、放電のロット間バラツキが低減でき、処理後のセルを評価したところ、実施例1と同様に接触角のバラツキや酸素濃度のバラツキを低減できた。
The reaction cell of this example was confirmed as a reaction cell for an autoanalyzer, which does not cause bubble adhesion, has stirring stability and transparency, and can prevent cross-contamination of samples and reagents between the cells. .
<Example 5> Local hydrophilization by corona discharge treatment-Part 5-
Similar to Example 1, the cell inner wall was locally hydrophilized by corona discharge treatment. The rod-shaped electrode used is shown in FIG. A cylindrical rod-shaped electrode 80 was used. The electrode diameter used in this example was an electrode having a large and small electrode diameter as in Example 1. In this embodiment, a straight type may be used with one type of electrode diameter. Similar to Example 1, an appropriate electrode arrangement, an appropriate insertion position, and an appropriate interelectrode distance were used. Furthermore, a mask 81 made of the same material resin as the cell is arranged in the area where the treatment is not desired on the cell inner wall surface so that the plasma produced by corona discharge does not protrude from the desired treatment area on the cell surface. . As a result, the same effect as in Example 1 was obtained, and the closed side of the cell surface was hydrophilic and the open side was hydrophobic, and there was a clear difference in hydrophilicity. Similar corona discharge local treatment could be performed simultaneously on all of the plurality of single cells provided in the cell block. As a result, variation between discharge lots could be reduced, and the cells after treatment were evaluated. As in Example 1, variation in contact angle and variation in oxygen concentration could be reduced.

また、上記のマスクの位置に限らず、コロナ放電処理を施したくない部分を反応セルと同素材のマスクであらかじめ覆った後、コロナ放電処理をすることで部分限定的に処理することも可能である。   Moreover, not only the position of the above-mentioned mask but also a portion that is not desired to be subjected to corona discharge treatment can be treated in a limited manner by covering it with a mask made of the same material as the reaction cell in advance and then performing corona discharge treatment. is there.

また、図4に示したコロナ放電処理は他の形状のセルブロックに対しても可能である。図7に示すように、セル91の複数で測光面92を共用するセルブロック90では、測光面の親水化したい領域の外壁を陰極板218で挟むことで、セル内壁のコロナ放電処理面の高さを限定し、コロナ処理を行うことができる。測光面を親水化しておくことで、測光領域を光が透過し溶液を検出する際に、気泡が付着せず安定な測定を実施できる。電極配置、電極形状、電極間距離を先に述べた通りにすることで実施でき、同様の反応セルを作製できる。   Further, the corona discharge treatment shown in FIG. 4 can be applied to other shapes of cell blocks. As shown in FIG. 7, in the cell block 90 in which a plurality of cells 91 share the photometric surface 92, the outer wall of the region to be hydrophilized on the photometric surface is sandwiched between cathode plates 218, so that the height of the corona discharge treatment surface of the cell inner wall is increased. The corona treatment can be performed by limiting the thickness. By making the photometric surface hydrophilic, it is possible to carry out stable measurement without bubbles adhering when light is transmitted through the photometric region and a solution is detected. It can be carried out by setting the electrode arrangement, the electrode shape, and the distance between the electrodes as described above, and a similar reaction cell can be produced.

本実施例の反応セルは、自動分析装置用反応セルとして、気泡付着が起こらず、攪拌安定性と透明性を有しており、かつセル間のサンプル・試薬の相互汚染を防止できることを確認した。   The reaction cell of this example was confirmed as a reaction cell for an autoanalyzer, which does not cause bubble adhesion, has stirring stability and transparency, and can prevent cross-contamination of samples and reagents between the cells. .

なお、本実施例5のようなマスクによる部分限定的な処理方法を実施例1〜4の電極形状の場合に適用しても良い。   In addition, you may apply the partial limitation processing method by a mask like this Example 5 in the case of the electrode shape of Examples 1-4.

また、図15に示すように、上記実施形態に追加して、棒状電極80の一部を厚手の絶縁性樹脂でできたマスク82で覆うことで、放電領域を限定することも可能である。この棒状電極をマスクで覆う方法は、実施例1〜4においても使用でき、セル表面の部分処理に有効である。
<実施例6>自動分析装置における実施例
上記実施例1〜5で作製した反応セルを使用した自動分析の実施例を述べる。なお、本実施例では実施例1で作製した反応セルを使用した例を述べる。なお、実施例1〜5で作製した反応セルを1種または複数種を同時に使用しても良い。
As shown in FIG. 15, in addition to the above embodiment, the discharge region can be limited by covering a part of the rod-shaped electrode 80 with a mask 82 made of a thick insulating resin. This method of covering the rod-like electrode with a mask can also be used in Examples 1 to 4, and is effective for partial treatment of the cell surface.
<Example 6> Example in an automatic analyzer An example of automatic analysis using the reaction cells prepared in Examples 1 to 5 will be described. In this example, an example using the reaction cell prepared in Example 1 will be described. In addition, you may use 1 type or multiple types of reaction cells produced in Examples 1-5 simultaneously.

図16は、本発明による自動分析装置の構成例を示す図であり、次にその基本動作を述べる。1はサンプル収納部機構であり、この機構1には、一つ以上のサンプルセル25が配置されている。ここでは、ディスク状の機構部に搭載されたサンプル収納部機構であるサンプルディスク機構の例で説明するが、サンプル収納部機構の他の形態としては自動分析装置で一般的に用いられているサンプルラックまたはサンプルホルダー状の形態であってもよい。またここで言うサンプルとは、反応セルで反応させるために使用する被検査溶液のことを指し、採集検体原液でもよく、またそれを希釈や前処理等の加工処理をした溶液であってもよい。サンプルセル25内のサンプルは、サンプル供給用分注機構2のサンプルノズル27によって抽出され、所定の反応セルに注入される。5は試薬ディスク機構であり、この機構5は、多数の試薬容器6を備えている。また、機構5には、試薬供給用分注機構7が配置されており、試薬は、この機構7の試薬ノズル28によって、吸引され所定の反応セルに注入される。10は分光光度計、26は集光フィルタつき光源であり、分光光度計10と集光フィルタつき光源26の間に、測定対象を収容する反応ディスク3が配置される。この反応ディスク3の外周上には、例えば、親水性部分と疎水性部分を内壁部に有する120個の反応セル4が設置されている。なお、この親水性部分は反応セルの閉口部側に限定されているが、測光領域を十分に包含する面積を有している。一方、疎水性部分は反応セルの開口部側にあり、溶液の毛管現象による濡れ上がりを防止している。また、反応ディスク3の全体は、恒温槽9によって、所定の温度に保持されている。11は反応セル洗浄機構であり、洗浄剤容器13から洗浄剤は供給される。19はコンピュータ、23はインターフェース、18はLog変換器及びA/D変換器、17は試薬用ピペッタ、16は洗浄水ポンプ、15はサンプルピペッタである。また、20はプリンタ、21はCRT、22は記憶装置としてのフロッピー(登録商標)ディスクやハードディスク、24は操作パネルである。サンプルディスク機構は駆動部200により、試薬ディスク機構は駆動部201により、反応ディスクは駆動部202により、それぞれインターフェースを介して制御並びに駆動されている。また自動分析装置の各部はインターフェースを介してコンピュータにより制御される。   FIG. 16 is a diagram showing a configuration example of the automatic analyzer according to the present invention, and the basic operation will be described next. Reference numeral 1 denotes a sample storage unit mechanism, in which one or more sample cells 25 are arranged. Here, an example of a sample disk mechanism that is a sample storage unit mechanism mounted on a disk-shaped mechanism unit will be described. However, as another form of the sample storage unit mechanism, a sample generally used in an automatic analyzer It may be in the form of a rack or sample holder. The sample here refers to a solution to be inspected used for reaction in the reaction cell, and may be a collected specimen stock solution or a solution obtained by subjecting it to a processing such as dilution or pretreatment. . The sample in the sample cell 25 is extracted by the sample nozzle 27 of the sample supply dispensing mechanism 2 and injected into a predetermined reaction cell. Reference numeral 5 denotes a reagent disk mechanism. This mechanism 5 includes a large number of reagent containers 6. The mechanism 5 is provided with a reagent supply dispensing mechanism 7, and the reagent is sucked and injected into a predetermined reaction cell by the reagent nozzle 28 of the mechanism 7. Reference numeral 10 denotes a spectrophotometer, and 26 denotes a light source with a condensing filter. Between the spectrophotometer 10 and the light source 26 with a condensing filter, a reaction disk 3 that accommodates a measurement target is disposed. On the outer periphery of the reaction disk 3, for example, 120 reaction cells 4 having a hydrophilic portion and a hydrophobic portion on the inner wall portion are installed. This hydrophilic portion is limited to the closed portion side of the reaction cell, but has an area sufficiently including the photometric region. On the other hand, the hydrophobic portion is on the opening side of the reaction cell, and prevents wetting due to the capillary action of the solution. Further, the entire reaction disk 3 is held at a predetermined temperature by a thermostatic chamber 9. Reference numeral 11 denotes a reaction cell cleaning mechanism, and the cleaning agent is supplied from the cleaning agent container 13. Reference numeral 19 is a computer, 23 is an interface, 18 is a Log converter and A / D converter, 17 is a reagent pipetter, 16 is a washing water pump, and 15 is a sample pipettor. Reference numeral 20 denotes a printer, 21 denotes a CRT, 22 denotes a floppy (registered trademark) disk or hard disk as a storage device, and 24 denotes an operation panel. The sample disk mechanism is controlled and driven by the driving unit 200, the reagent disk mechanism is driven by the driving unit 201, and the reaction disk is controlled and driven by the driving unit 202, respectively. Each part of the automatic analyzer is controlled by a computer via an interface.

上述の構成において、操作者は、操作パネル24を用いて分析依頼情報の入力を行う。操作者が入力した分析依頼情報は、マイクロコンピュータ19内のメモリに記憶される。サンプルセル25に入れられ、サンプルディスク収納部機構1の所定の位置にセットされた測定対象サンプルはマイクロコンピュータ19のメモリに記憶された分析依頼情報に従って、サンプルピペッタ15及びサンプル供給用分注機構2のサンプルノズル27によって、反応セルに所定量分注される。サンプルノズル27は水洗浄される。当該反応セルに試薬供給用分注機構7の試薬ノズル28によって、所定量の試薬が分注される。試薬ノズル28は水洗浄された後、次の反応セルのための試薬を分注する。サンプルと試薬の混合液は、撹拌機構8の攪拌棒29や超音波素子によって撹拌される。撹拌機構8は順次、次の反応セルの混合液を撹拌する。親水性部分と疎水性部分から成る反応セルを用いれば、攪拌によって巻きこまれた気泡がセル内壁表面の測光領域に吸着することがないので分析データに影響を与えることがない。   In the above configuration, the operator inputs analysis request information using the operation panel 24. The analysis request information input by the operator is stored in a memory in the microcomputer 19. The sample to be measured, which is put in the sample cell 25 and set at a predetermined position in the sample disk storage unit mechanism 1, is in accordance with the analysis request information stored in the memory of the microcomputer 19 and the sample pipettor 15 and the sample supply dispensing mechanism. A predetermined amount is dispensed into the reaction cell by the two sample nozzles 27. The sample nozzle 27 is washed with water. A predetermined amount of reagent is dispensed into the reaction cell by the reagent nozzle 28 of the reagent supply dispensing mechanism 7. After the reagent nozzle 28 is washed with water, it dispenses a reagent for the next reaction cell. The mixed solution of the sample and the reagent is stirred by the stirring rod 29 of the stirring mechanism 8 or the ultrasonic element. The stirring mechanism 8 sequentially stirs the liquid mixture in the next reaction cell. If a reaction cell composed of a hydrophilic part and a hydrophobic part is used, the bubbles encased by agitation will not be adsorbed to the photometric region on the inner wall surface of the cell, so that analysis data will not be affected.

反応セル4は恒温槽9により一定温度に保持されており、反応と測光容器の両方を兼ねる。反応の過程は集光フィルタつき光源26から光を供給し、一定時間ごとに反応セルの親水性部分が分光光度計10によって測光され、設定された1つまたは1つ以上の波長を用いて混合液の吸光度は測定される。測定の際、集光フィルタつき光源を用いることで、反応セルの親水性部分のみを選択的に光透過させることができる。   The reaction cell 4 is maintained at a constant temperature by a thermostat 9 and serves as both a reaction and a photometric container. In the reaction process, light is supplied from a light source 26 with a condensing filter, and the hydrophilic portion of the reaction cell is measured by a spectrophotometer 10 at regular intervals and mixed using one or more set wavelengths. The absorbance of the liquid is measured. By using a light source with a condensing filter at the time of measurement, only the hydrophilic portion of the reaction cell can be selectively transmitted.

反応セルの親水性部分は気泡付着が起こらないため、吸光測定のばらつきが少なく精度が高い。同様に反応セルの内壁部に親水性部分があるため、反応セルの測光面や底面に検出障害となる気泡が吸着しないので、反応セルに光を透過させる領域を底面近くに設定できる。したがって、反応セルに入れるサンプルや試薬の量を大幅に減らすことができ、ユーザのランニングコスト低減の観点から有用である。本発明の反応セルを使用することで、試薬とサンプル溶液を合わせた反応溶液量を従来の1/2またはそれ以下に低減して自動分析を実施できた。   Since the bubble adhesion does not occur in the hydrophilic part of the reaction cell, there is little variation in absorption measurement and the accuracy is high. Similarly, since there is a hydrophilic portion on the inner wall portion of the reaction cell, bubbles that become a detection hindrance are not adsorbed on the photometric surface and bottom surface of the reaction cell, so that the region through which light passes through the reaction cell can be set near the bottom surface. Therefore, the amount of sample and reagent put into the reaction cell can be greatly reduced, which is useful from the viewpoint of reducing the running cost of the user. By using the reaction cell of the present invention, the amount of the reaction solution including the reagent and the sample solution can be reduced to 1/2 or less than the conventional amount, and automatic analysis can be performed.

測定された吸光度は、Log変換器及びA/D変換器18、インターフェース23を介してコンピュータ19に取り込まれる。取り込まれた吸光度は濃度値に換算され、濃度値はフロッピー(登録商標)ディスクやハードディスク22に保存したり、プリンタ20に出力される。また、CRT21に検査データを表示させることもできる。測定が終了した反応セル4は反応セル洗浄機構(ノズルアーム)11により水洗浄される。洗浄の終了した反応セルは吸引ノズル12により水を吸引された後、次の分析に順次使用される。   The measured absorbance is taken into the computer 19 via the Log converter and A / D converter 18 and the interface 23. The absorbed absorbance is converted into a concentration value, and the concentration value is stored in a floppy (registered trademark) disk or hard disk 22 or output to the printer 20. In addition, inspection data can be displayed on the CRT 21. The reaction cell 4 that has been measured is washed with water by a reaction cell washing mechanism (nozzle arm) 11. After the washing is completed, water is sucked by the suction nozzle 12 and then used sequentially for the next analysis.

このように、親水性部分と疎水性部分を内壁部に有する反応セル4を搭載して自動分析を行った結果、毛管現象で検査液が反応セルの開口部まで登る現象は無かった。すなわち、隣接する反応セルの試薬と混ざり合う相互汚染やクロスコンタミネーションがおこらなかった。また、気泡吸着がないため、測定誤差が低減した。一方、反応セルの内壁を底から開口部まで親水化すると相互汚染やクロスコンタミネーションが起こった。   Thus, as a result of mounting the reaction cell 4 having a hydrophilic portion and a hydrophobic portion on the inner wall portion and performing automatic analysis, there was no phenomenon in which the test solution climbed to the opening of the reaction cell by capillary action. That is, cross-contamination and cross-contamination mixed with reagents in adjacent reaction cells did not occur. Moreover, since there was no bubble adsorption, the measurement error was reduced. On the other hand, cross-contamination and cross-contamination occurred when the inner wall of the reaction cell was made hydrophilic from the bottom to the opening.

なお、本実施例では、測光面内壁部の底面から所望の高さまでの部分を局所的に親水化した反応セルを用いて、反応溶液量を極小化した場合に自動分析を行った例を示したが、本発明は上記の親水化する領域の大きさや反応溶液量に限定されるものではない。また、測光領域の内壁部の親水性が高い反応セルであれば、気泡付着がなく、かつ相互汚染やクロスコンタミネーションが起こらずに安定な自動分析を実施できる。   This example shows an example in which automatic analysis was performed when the amount of the reaction solution was minimized using a reaction cell in which a portion from the bottom surface of the inner wall of the photometric surface to a desired height was locally hydrophilized. However, the present invention is not limited to the size of the region to be hydrophilized or the amount of the reaction solution. In addition, if the reaction cell has a high hydrophilicity on the inner wall portion of the photometric region, it is possible to carry out stable automatic analysis without causing bubbles and without causing cross-contamination and cross-contamination.

さらに、反応セル内に注水すると、セルの親水部分の親水性をより高めることができ、一層安定な分析が実施できる。なお、ここで注水に用いる水は純水でもよいが、純水に限らず親水性をさらに高める効果をもった添加剤を添加した溶液でもよい。また、同効果を得るためには、液状に限らず微粉末や霧状や気体状のものを用いてもよい。したがって、反応セルを水浸漬させた後、自動分析装置を使用するのが望ましい。   Furthermore, when water is poured into the reaction cell, the hydrophilicity of the hydrophilic portion of the cell can be further increased, and a more stable analysis can be performed. The water used for water injection here may be pure water, but is not limited to pure water, and may be a solution to which an additive having an effect of further improving hydrophilicity is added. In order to obtain the same effect, not only liquid but also fine powder, mist, or gas may be used. Therefore, it is desirable to use an automatic analyzer after the reaction cell is immersed in water.

上記のように本発明の電極を用いて、本発明の製造方法により作製した反応セルは、自動分析装置に搭載し、自動分析するのに有用である。   As described above, the reaction cell produced by the production method of the present invention using the electrode of the present invention is mounted on an automatic analyzer and useful for automatic analysis.

セルブロックの斜視外観図。The perspective external view of a cell block. 分割セルの斜視外観図。The perspective external view of a division cell. 分割セルの斜視外観図。The perspective external view of a division cell. コロナ放電局所処理の模式図。The schematic diagram of corona discharge local treatment. コロナ放電局所処理の断面模式図。The cross-sectional schematic diagram of a corona discharge local process. コロナ放電局所処理後の分割セルの斜視外観図。The perspective external view of the division | segmentation cell after a corona discharge local process. コロナ放電局所処理の模式図。The schematic diagram of corona discharge local treatment. 電極外観図。FIG. 電極断面図。FIG. 電極外観図。FIG. 電極断面図。FIG. 電極断面図。FIG. コロナ放電局所処理の断面模式図。The cross-sectional schematic diagram of a corona discharge local process. コロナ放電局所処理の断面模式図。The cross-sectional schematic diagram of a corona discharge local process. コロナ放電局所処理の断面模式図。The cross-sectional schematic diagram of a corona discharge local process. 自動分析装置の構成例を示す図。The figure which shows the structural example of an automatic analyzer.

符号の説明Explanation of symbols

1…サンプル収納部機構、2…サンプル供給用分注機構、3…反応ディスク、4…反応セル、5…試薬ディスク機構、6…試薬容器、7…試薬供給用分注機構、8…撹拌機構、9…恒温槽、10…分光光度計、11…反応セル洗浄機構、12…吸引ノズル、13…洗浄剤容器、15…サンプルピペッタ、16…洗浄水ポンプ、17…試薬用ピペッタ、18…Log変換器及びA/D変換器、19…コンピュータ、20…プリンタ、21…CRT、22…フロッピー(登録商標)ディスクやハードディスク、23…インターフェース、24…操作パネル、25…サンプルセル、26…集光フィルタつき光源、27…サンプルノズル、28…試薬ノズル、29…撹拌棒、50…セルブロック、51…単セル、61…対向電極、62…対向電極、70…電極、80…電極、81…マスク、82…マスク、90…セルブロック、91…セル、92…測光面、101…長辺、102…短辺、103…高さ、111…非測光面外壁、112…非測光面内壁、113…測光面外壁、114…測光面内壁、115…底面、116…非測光面の半分の長さ、117…測光面の長さ、118…内壁高さ、119…境界線、120…コロナ放電処理部分、130…閉口部、140…開口部、150…単セル肉厚、160…領域、161…境界線、162…境界線、200…駆動部、201…駆動部、202…駆動部、211…コロナ放電源、212…配線、213…陽極、214…電極、216…配線、217…アース、218…陰極板、219…矢印、301…測光面、302…測光面、601…領域、602…領域、603…領域、604…領域、610…セル幅、611…距離、612…距離、613…距離、614…距離、621…距離、622…距離、631…距離、632…距離、641…深さ、642…ピッチ、651…深さ、652…ピッチ、653…深さ、654…ピッチ、701…吸引口、702…中空領域、703…矢印、704…領域、705…領域。   DESCRIPTION OF SYMBOLS 1 ... Sample storage part mechanism, 2 ... Dispensing mechanism for sample supply, 3 ... Reaction disk, 4 ... Reaction cell, 5 ... Reagent disk mechanism, 6 ... Reagent container, 7 ... Dispensing mechanism for reagent supply, 8 ... Stirring mechanism , 9 ... Thermostatic bath, 10 ... Spectrophotometer, 11 ... Reaction cell washing mechanism, 12 ... Suction nozzle, 13 ... Cleaning agent container, 15 ... Sample pipetter, 16 ... Washing water pump, 17 ... Reagent pipettor, 18 ... Log converter and A / D converter, 19 ... computer, 20 ... printer, 21 ... CRT, 22 ... floppy disk or hard disk, 23 ... interface, 24 ... operation panel, 25 ... sample cell, 26 ... collection Light source with optical filter, 27 ... sample nozzle, 28 ... reagent nozzle, 29 ... stirring rod, 50 ... cell block, 51 ... single cell, 61 ... counter electrode, 62 ... counter electrode, 70 ... Electrode, 80 ... Electrode, 81 ... Mask, 82 ... Mask, 90 ... Cell block, 91 ... Cell, 92 ... Photometric surface, 101 ... Long side, 102 ... Short side, 103 ... Height, 111 ... Non-photometric surface outer wall, 112 ... Non-photometric surface inner wall, 113 ... Photometric surface outer wall, 114 ... Photometric surface inner wall, 115 ... Bottom surface, 116 ... Half length of non-photometric surface, 117 ... Length of photometric surface, 118 ... Inner wall height, 119 ... Boundary line, 120 ... corona discharge treatment part, 130 ... closing part, 140 ... opening part, 150 ... single cell thickness, 160 ... region, 161 ... boundary line, 162 ... boundary line, 200 ... drive part, 201 ... drive part , 202, driving unit, 211, corona discharge source, 212, wiring, 213, anode, 214, electrode, 216, wiring, 217, ground, 218, cathode plate, 219, arrow, 301, photometry surface, 302, photometry surface , 601... Region, 60 ... area, 603 ... area, 604 ... area, 610 ... cell width, 611 ... distance, 612 ... distance, 613 ... distance, 614 ... distance, 621 ... distance, 622 ... distance, 631 ... distance, 632 ... distance, 641 ... Depth, 642 ... pitch, 651 ... depth, 652 ... pitch, 653 ... depth, 654 ... pitch, 701 ... suction port, 702 ... hollow area, 703 ... arrow, 704 ... area, 705 ... area.

Claims (10)

開口部と底面を有する樹脂製セルの内壁表面を親水化処理するための電極であって、
前記開口部を介してセル内部に挿入される電極棒と、前記電極棒に対向するように前記セルの外部に配置される電極板とを有し、
前記電極板の高さ方向の大きさは、前記セルの高さよりも小さいとともに、前記電極棒よりも電極棒の先端方向に突出して配置され
前記電極棒は、前記電極板に対向していない部分にマスクを有することを特徴とする電極。
An electrode for hydrophilizing the inner wall surface of a resin cell having an opening and a bottom surface,
An electrode rod inserted into the cell through the opening, and an electrode plate disposed outside the cell so as to face the electrode rod;
The size in the height direction of the electrode plate is smaller than the height of the cell, and is arranged to protrude in the tip direction of the electrode rod from the electrode rod ,
Said electrode rod, the electrode characterized by Rukoto to having a mask portion not facing the electrode plate.
請求項1に記載の電極であって、
前記電極棒の前記電極板に対向する部分の径が、前記電極棒の他の部分の径よりも大きいことを特徴とする電極。
The electrode according to claim 1,
An electrode characterized in that a diameter of a portion of the electrode rod facing the electrode plate is larger than a diameter of another portion of the electrode rod.
請求項2に記載の電極であって、
電極径の大きい部分に突起形状を有することを特徴とする電極。
The electrode according to claim 2, wherein
An electrode having a protruding shape in a portion having a large electrode diameter.
請求項1乃至3のいずれかに記載の電極であって、
前記電極棒は、空気を吸引するための中空領域を有することを特徴とする電極
The electrode according to any one of claims 1 to 3,
Said electrode rod, the electrode characterized by having a hollow region for sucking the air.
請求項1乃至のいずれかに記載の電極であって、
列の状態に並んで設けられた複数の前記電極棒と、
対向する二枚の前記電極板とを有し、
前記複数の電極棒は、前記二枚の電極板の間に配置されていることを特徴とする電極。
The electrode according to any one of claims 1 to 4 ,
A plurality of the electrode rods arranged side by side in a row;
Two opposing electrode plates,
The plurality of electrode bars are disposed between the two electrode plates.
開口部と底面を有する樹脂製セルの製造方法において、
樹脂製セルの内部に前記開口部を介して第一の電極を挿入し、第一の電極に対向するセル外部をに第二の電極を配置する工程と、
前記第一の電極と前記第二の電極とでコロナ放電させ、前記樹脂セルの内壁表面を親水化する工程とを有し、
前記第二の電極は、前記セルの開口部側の端は、前記開口部よりも突出せず、前記セルの底面側の端は、前記底面よりも突出するように配置され、
前記第一の電極は、前記第二の電極に対向していない部分にマスクを有することを特徴とする樹脂製セルの製造方法。
In the method of manufacturing a resin cell having an opening and a bottom surface,
Inserting the first electrode into the resin cell through the opening and disposing the second electrode outside the cell facing the first electrode;
Corona discharge between the first electrode and the second electrode, and the step of hydrophilizing the inner wall surface of the resin cell,
The second electrode is arranged such that an end on the opening side of the cell does not protrude from the opening, and an end on the bottom side of the cell protrudes from the bottom surface,
Said 1st electrode has a mask in the part which is not facing said 2nd electrode, The manufacturing method of the resin-made cells characterized by the above-mentioned.
請求項に記載の樹脂製セルの製造方法であって、
前記第一の電極の前記第二の電極に対向する棒部分の径が、前記第一の電極の他の部分の径よりも大きいことを特徴とする樹脂製セルの製造方法。
It is a manufacturing method of the resin-made cells of Claim 6 ,
The method of manufacturing a resin cell, wherein a diameter of a rod portion of the first electrode facing the second electrode is larger than a diameter of another portion of the first electrode.
請求項に記載の樹脂製セルの製造方法であって、
前記第一の電極は、径の大きい部分に突起形状を有することを特徴とする樹脂製セルの製造方法。
It is a manufacturing method of the resin-made cells according to claim 7 ,
The method of manufacturing a resin cell, wherein the first electrode has a protruding shape in a portion having a large diameter.
請求項乃至のいずれかに記載の樹脂製セルの製造方法であって、
前記第一の電極は中空部分を有し、前記コロナ放電時に前記中空部分から前記セル内部の雰囲気空気を吸引することを特徴とするセルの製造方法。
A method for producing a resin cell according to any one of claims 6 to 8 ,
Said 1st electrode has a hollow part, The atmospheric air inside the said cell is attracted | sucked from the said hollow part at the time of the said corona discharge, The manufacturing method of the cell characterized by the above-mentioned.
請求項乃至のいずれかに記載の樹脂製セルの製造方法であって、
前記樹脂製セルは、複数のセルを列の状態で並んで有するセルブロックの状態で製造され、
前記電極を配置する工程では、複数の第一の電極を、前記セルブロックの複数のセルにそれぞれ挿入するとともに、二枚の前記第二の電極を、前記セルの列及び前記複数の第一の電極を間に挟んで対向させて配置することを特徴とする樹脂製セルの製造方法。
A method for producing a resin cell according to any one of claims 6 to 9 ,
The resin cell is manufactured in a state of a cell block having a plurality of cells arranged in a row,
In the step of arranging the electrodes, a plurality of first electrodes are inserted into a plurality of cells of the cell block, respectively, and two of the second electrodes are inserted into the row of cells and the plurality of first electrodes. A method for producing a resinous cell, wherein the electrodes are arranged to face each other with an electrode in between.
JP2007159656A 2007-06-18 2007-06-18 Electrode for production of reaction cell for automatic analyzer, and production method using the electrode Expired - Fee Related JP4839269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007159656A JP4839269B2 (en) 2007-06-18 2007-06-18 Electrode for production of reaction cell for automatic analyzer, and production method using the electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007159656A JP4839269B2 (en) 2007-06-18 2007-06-18 Electrode for production of reaction cell for automatic analyzer, and production method using the electrode

Publications (2)

Publication Number Publication Date
JP2008309728A JP2008309728A (en) 2008-12-25
JP4839269B2 true JP4839269B2 (en) 2011-12-21

Family

ID=40237452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007159656A Expired - Fee Related JP4839269B2 (en) 2007-06-18 2007-06-18 Electrode for production of reaction cell for automatic analyzer, and production method using the electrode

Country Status (1)

Country Link
JP (1) JP4839269B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5620634B2 (en) 2008-06-05 2014-11-05 株式会社日立ハイテクノロジーズ Spectrophotometric resin cell and method for producing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58225113A (en) * 1982-06-22 1983-12-27 Unitika Ltd Preparation of polyester-polyolefin copolymer
JP3242977B2 (en) * 1992-03-25 2001-12-25 イーシー化学株式会社 Plasma treatment method for inner surface of container and apparatus using the same
JP2003020350A (en) * 2001-07-09 2003-01-24 Nippon Paint Co Ltd Electric discharge treatment method for inside surface of object to be treated and electric discharge treatment apparatus
JP4564822B2 (en) * 2004-10-27 2010-10-20 株式会社日立ハイテクノロジーズ Reaction vessel and automatic analyzer using the same
JP4812404B2 (en) * 2005-11-08 2011-11-09 三井化学株式会社 Plasma surface treatment apparatus and surface treatment cylindrical substrate manufacturing method

Also Published As

Publication number Publication date
JP2008309728A (en) 2008-12-25

Similar Documents

Publication Publication Date Title
JP4584878B2 (en) Reaction cell for automatic analyzer, automatic analyzer equipped with the reaction cell, and analysis method
JP5097737B2 (en) Automatic analyzer and sample dispensing nozzle
JP3985872B2 (en) container
EP0670483A2 (en) Liquid mixing method
JP4956533B2 (en) Cartridge, residual liquid removal method and automatic analyzer
JP4251627B2 (en) Chemical analyzer and dispensing method thereof
JP2004361421A (en) Container
CN1260737A (en) System and mfg. of small volume transferer
JP6462844B2 (en) Automatic analyzer
JP2006349638A (en) Method and apparatus for homogenizing trace quantity of liquid
CN112014581A (en) Automated analyzer and method for performing chemical, biochemical and/or immunochemical analyses
JP5620634B2 (en) Spectrophotometric resin cell and method for producing the same
CN112041076A (en) Automatic analyzer and optical measuring method for obtaining a measuring signal from a liquid medium
JP4839269B2 (en) Electrode for production of reaction cell for automatic analyzer, and production method using the electrode
JP5000752B2 (en) Method for manufacturing reaction cell for automatic analyzer
CN101561447B (en) Reaction container and preparing method thereof, manufacturing apparatus of reaction container and automatic analyzing apparatus with reaction container
WO2013046806A1 (en) Cell series structure for analysis device
RU2772562C1 (en) Reaction vessel for an automatic analyser
CN101836118A (en) Cleaning device and analysis device
US20210025882A1 (en) Apparatus for accelerating uniform reaction of reactants with reactants on porous substrate, system containing the apparatus, and coater
JP5703173B2 (en) Dispensing nozzle cleaning method, cleaning device, and analyzer equipped with the same
JPH02281143A (en) Reaction container for automatic chemical analysis
JPS6319520A (en) Liquid level detector
JP2004361422A (en) Container
JP2016050796A (en) Reaction cell for automatic analyzer, automatic analyzer on which the reaction cell is mounted, and analytic method using the automatic analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111003

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4839269

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees