JPH02281143A - Reaction container for automatic chemical analysis - Google Patents

Reaction container for automatic chemical analysis

Info

Publication number
JPH02281143A
JPH02281143A JP10420789A JP10420789A JPH02281143A JP H02281143 A JPH02281143 A JP H02281143A JP 10420789 A JP10420789 A JP 10420789A JP 10420789 A JP10420789 A JP 10420789A JP H02281143 A JPH02281143 A JP H02281143A
Authority
JP
Japan
Prior art keywords
reagent storage
container
container body
storage chamber
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10420789A
Other languages
Japanese (ja)
Inventor
Kozo Muramatsu
村松 興三
Yamao Itou
伊藤 日本男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP10420789A priority Critical patent/JPH02281143A/en
Publication of JPH02281143A publication Critical patent/JPH02281143A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PURPOSE:To make it possible to perform highly accurate measurement by forming a least a part of a container as a light transmitting part comprising a material which allows optical measurement of liquid contained in a reagent containing chamber. CONSTITUTION:Specified amounts of different reagents (a) and (b) are contained in reagent containing chambers 16 and 18 beforehand. A sample is supplied into one or both of the containing chambers 16 and 18 with an appropriate sample feeding means. After the sample is supplied, a thin tube shaped needle is inserted into a cap 12 at the side of one chamber 16. A gas feeding and exhausting pump is connected to said needle. When a gas is fed into the containing chamber 16 in a reaction container A, the liquid in the containing chamber 16 is sent into the containing chamber 18 through a small groove 23 in a conducting member 22. Conversely, when the gas in the containing chamber 16 is exhausted with the pump, the liquid in the containing chamber 18 flows into the containing chamber 16. When the feeding and the exhausting of the gas with said pump are repeated by the required times, the reagents (a) and (b) and the sample are sufficiently mixed. Thereafter, the container A is mounted, and the optical measurement of the objective components is performed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、被検試料と試薬とを混合し、この混合液中の
成分について光学的に測定を行なうための自動化学分析
用反応容器に関する。詳しくは、複数の試薬収納室内に
収容された複数の試薬と例えば血清などの被検試料とを
一つの容器内において混合し、そのまま光学的測定を行
なうことができる自動化学分析用反応容器に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a reaction vessel for automatic chemical analysis for mixing a test sample and a reagent and optically measuring components in this mixed solution. . Specifically, the present invention relates to a reaction container for automatic chemical analysis in which a plurality of reagents housed in a plurality of reagent storage chambers and a test sample such as serum can be mixed in one container and subjected to optical measurement as is.

[従来の技術] 生化学分析、免疫分析などの臨床化学分析の分野におい
て分析を行なう場合、分析用容器は分析装置に固定され
て使用されており、洗浄、取り外し等に大きな手間を要
している。また、この分析装置には試薬分注機構や洗浄
機構等を設ける必要があった。
[Prior art] When performing analysis in the field of clinical chemistry analysis such as biochemical analysis and immunoassay, the analysis container is fixed to the analyzer and requires a lot of effort to clean and remove. There is. Furthermore, this analyzer required a reagent dispensing mechanism, a cleaning mechanism, and the like.

かかる問題点を解決しようとするものとして、反応容器
を分析装置に対し容易に着脱できるもの(ディスポーザ
ブル)とし、かつ2以上の試薬が互いに混ざり合わずに
容器に入れられており、しかも光学的な測定が可能な容
器が望まれている。
In order to solve these problems, the reaction container is made to be easily attachable to and detachable from the analyzer (disposable), two or more reagents are placed in the container without mixing with each other, and optical A container that allows measurements is desired.

従来、血清中の成分を光学的に測定するために、試薬が
封入された透明な合成樹脂製の袋内に血清を注入して混
合した後、光学的分析装置にセットすることが行なわれ
ている。この袋は内部が2室に区画されており、一方の
第1室に液体試薬が封入され、他方の第2室に固体試薬
(錠剤)が封入されている。この第2室にはセプタムと
称されるサンプル(血清)の注入口が設けられている。
Conventionally, in order to optically measure components in serum, serum was injected into a transparent synthetic resin bag containing reagents, mixed, and then set in an optical analyzer. There is. The interior of this bag is divided into two chambers, one of which is a first chamber filled with a liquid reagent and a second chamber filled with a solid reagent (tablet). This second chamber is provided with a sample (serum) injection port called a septum.

血清は該セプタムから他方の室に注入され、次いで袋を
手で操作して両室の区画部を破って第1室内の液体試薬
を第2室内に供給し、液体試薬に錠剤を溶解させると共
に、血清と反応させる。
Serum is injected from the septum into the other chamber, and the bag is then manually manipulated to break the compartments between the two chambers, dispensing the liquid reagent in the first chamber into the second chamber, dissolving the tablet in the liquid reagent, and dissolving the tablet in the liquid reagent. , react with serum.

血清が反応した後は、袋ごと方形の測定セル内に詰める
。このセルは透光材料よりなっており、袋が充填された
セルは光学的測定装置にセットされ、光学的測定(例え
ば特定波長の吸光度測定)されることにより血清中の成
分の濃度検出等が行なわれる。
After the serum has reacted, the whole bag is packed into a rectangular measurement cell. This cell is made of a transparent material, and the cell filled with the bag is set in an optical measuring device, and by performing optical measurements (for example, measuring absorbance at a specific wavelength), it is possible to detect the concentration of components in serum. It is done.

[発明が解決しようとする課題] 上記の従来の測定法にあっては、血清との反応液を内蔵
する袋がセル内に充填されるものであるから、セル内に
は反応液のほかに合成樹脂製の袋が存在する。従って、
セル内面と袋外面との間に空隙が介在して吸光度測定時
の光路長が変化したり、袋が吸光度測定時の外乱因子(
乱反射、吸収等)として作用したりすることにより誤差
が生じ、測定精度が低いものとならざるを得なかった。
[Problems to be Solved by the Invention] In the conventional measurement method described above, a bag containing a reaction solution with serum is filled into the cell, so there is a bag containing the reaction solution in the cell. There are bags made of synthetic resin. Therefore,
There may be a gap between the inner surface of the cell and the outer surface of the bag, which may change the optical path length during absorbance measurement, or the bag may cause a disturbance factor (
Diffuse reflection, absorption, etc.) may cause errors, resulting in low measurement accuracy.

[課題を解決するための手段] 請求項(1)の自動化学分析用反応容器は、複数の試薬
収納室と、試薬収納室同志を連通ずる細孔とを有する容
器であって、該容器の少なくとも一部は試薬収納室内に
収容した液の光学的測定が可能な材質よりなる光透過部
となっており、各試薬収納室には被検試料の供給又は気
体の給排用の開口が設けられると共に、該開口が軟質材
料にて封じられていることを特徴とするものである。
[Means for Solving the Problem] The reaction container for automatic chemical analysis according to claim (1) is a container having a plurality of reagent storage chambers and a pore that communicates the reagent storage chambers with each other, At least a part of the reagent storage chamber is a light transmitting part made of a material that allows optical measurement of the liquid contained in the chamber, and each reagent storage chamber is provided with an opening for supplying a test sample or supplying and discharging gas. In addition, the opening is sealed with a soft material.

請求項(2)、(3)の自動化学分析用反応容器は、複
数の試薬収納室を有し、かつ各試薬収納室の上面部は開
放口となっている容器本体と、該容器本体に蓋装された
蓋体とを有し、前記容器本体は試薬収納室内に収容した
液の光学的測定が可能な材質よりなり、前記蓋体は斜体
の刺通可能な軟質材料よりなるものに関する。
The reaction container for automatic chemical analysis according to claims (2) and (3) includes a container main body having a plurality of reagent storage chambers, each reagent storage chamber having an open opening at the upper surface thereof; The container body is made of a material capable of optically measuring the liquid contained in the reagent storage chamber, and the lid is made of a diagonal pierceable soft material.

請求項(2)においては、前記容器本体には試薬収納室
同志を連通ずる細孔が設けられている。
In claim (2), the container body is provided with a pore that communicates the reagent storage chambers with each other.

請求項(3)においては、容器本体の仕切壁を跨ぐよう
に導通部材が設けられ、この導通部材に形成された細孔
又は細溝により試薬収納室同志が連通されている。
In claim (3), a conductive member is provided so as to straddle the partition wall of the container body, and the reagent storage chambers are communicated with each other through the pores or narrow grooves formed in the conductive member.

[作用] 請求項(1)〜(3)の自動化学分析用反応容器におい
ては、各試薬収納室にそれぞれ異なる試薬が予め収容さ
れている。
[Function] In the reaction container for automatic chemical analysis according to claims (1) to (3), different reagents are stored in each reagent storage chamber in advance.

例えば血清などの被検試料は斜体を有する注射器等の注
入器に採取されており、自動化学分析用反応容器の軟質
材料の部分に該斜体を刺通し、該被検試料が試薬収納室
内に注入される。次いで、気体給排機に連通した斜体を
軟質材料の部分に刺通し、ある試薬収納室に対し気体を
給排する。当該試薬収納室に給気すると、該試薬収納室
内の試薬は他の試薬収納室に圧送され、逆に該試薬収納
室から排気すると、該試薬収納室内に他の試薬収納室か
ら試薬が流入する。
For example, a test sample such as serum is collected in a syringe or other injector having an italic shape.The diagonal is pierced through the soft material of a reaction container for automatic chemical analysis, and the test sample is injected into a reagent storage chamber. Ru. Next, a diagonal body communicating with a gas supply/discharge device is pierced through the soft material to supply/discharge gas to a certain reagent storage chamber. When air is supplied to the reagent storage chamber, the reagent in the reagent storage chamber is pumped to another reagent storage chamber, and conversely, when air is exhausted from the reagent storage chamber, reagents flow into the reagent storage chamber from other reagent storage chambers. .

従って、この気体の給排を所要回数行なうことにより被
検試料と複数の試薬との混合が行なわれる。
Therefore, by supplying and discharging this gas a required number of times, the test sample and the plurality of reagents are mixed.

この自動化学分析用反応容器は、かかる混合が十分に行
な−われた後、分光光度計等の光学的測定装置にセット
され、光学的測定が行なわれる。
After this reaction container for automatic chemical analysis has been sufficiently mixed, it is set in an optical measuring device such as a spectrophotometer, and optical measurements are performed.

この場合、自動化学分析用反応容器は、容器本体が透光
性を有するものであるか、又は透光部分か設けられてい
るものであるから、そのまま自動化学分析用反応容器を
光学的測定用のセルとして使用可能である。また、袋等
の介在物が容器内に存在せず、光路長が一定になると共
に、光の乱反射や吸収がなく、測定精度が著しく高いも
のとなる。
In this case, since the reaction container for automatic chemical analysis has a translucent container body or is provided with a transparent part, the reaction container for automatic chemical analysis can be used as is for optical measurement. It can be used as a cell. In addition, there are no inclusions such as bags inside the container, the optical path length is constant, there is no diffuse reflection or absorption of light, and the measurement accuracy is extremely high.

なお、請求項(2)、(3)において蓋体が着脱自在で
あるときには、被検試料を容器内に供給する時に該蓋体
を容器本体から外し、ピペットなどにより直接に試薬収
納室内に被検試料を供給するようにしても良い。
In addition, in claims (2) and (3), when the lid is removable, the lid is removed from the container body when supplying the test sample into the container, and the lid is placed directly into the reagent storage chamber with a pipette or the like. A test sample may also be supplied.

[実施例] 以下図面を参照して実施例について説明する。[Example] Examples will be described below with reference to the drawings.

第1図〜第7図は本発明の実施例に係る自動化学分析用
反応容器Aの構成を示すものであり、第1図は斜視図、
第2図は組立斜視図、第3図は縦断面図、第4図は容器
本体の平面図、第5図は導通部材の正面図、第6図は右
側面図、第7図は底面図である。
1 to 7 show the structure of a reaction vessel A for automatic chemical analysis according to an embodiment of the present invention, and FIG. 1 is a perspective view;
Figure 2 is an assembled perspective view, Figure 3 is a vertical sectional view, Figure 4 is a plan view of the container body, Figure 5 is a front view of the conductive member, Figure 6 is a right side view, and Figure 7 is a bottom view. It is.

符号10は容器本体であり、その上部に蓋体12が被装
されている。容器本体1oは、その内部が底面から立ち
上がる仕切壁14により試薬収納室16及び18が形成
されたものであり、仕切壁14は容器本体10と一体的
に設け−られている。なお、容器本体10の両側面の中
途高さの部分は傾斜面20となっており、試薬収納室1
6.18は上部の方が下部よりも液面面積が大きくなる
よう構成されている。なお、容器本体10の上部は、該
側面部分において円弧形に湾曲した形状となっている。
Reference numeral 10 is a container body, and a lid 12 is placed on the top of the container body. The interior of the container body 1o has reagent storage chambers 16 and 18 formed by a partition wall 14 rising from the bottom surface, and the partition wall 14 is provided integrally with the container body 10. Note that the mid-height portions of both sides of the container body 10 are sloped surfaces 20, and the reagent storage chamber 1
6.18 is constructed so that the upper part has a larger liquid surface area than the lower part. Note that the upper part of the container body 10 has an arcuate shape at the side surface portion.

仕切壁14を跨ぐように導通部材22が配置されている
。この導通部材22は、第5〜7図にも示す如く、仕切
壁14の両側に沿って下方に延在する一対の脚部22a
、22b及びこれら脚部22a、22b同志を連結する
連結部22cを有しており、その内面部分には脚部22
aの下端から連結部22cに至り、さらに該連結部22
cから脚部22bの下端に至るまで細溝23が形成され
ている。
A conductive member 22 is arranged so as to straddle the partition wall 14. As shown in FIGS. 5 to 7, this conductive member 22 has a pair of leg portions 22a extending downward along both sides of the partition wall 14.
.
from the lower end of a to the connecting portion 22c, and furthermore, the connecting portion 22c.
A narrow groove 23 is formed from c to the lower end of the leg portion 22b.

第3図に示す如く、仕切壁14は容器本体10の上面よ
りも若干高さが低くなっており、仕切壁14を跨ぐよう
に導通部材22を仕切壁14に装着した場合に、連結部
22cの上面が容器本体10の上端面と面一になるよう
構成されている。
As shown in FIG. 3, the height of the partition wall 14 is slightly lower than the top surface of the container body 10, and when the conductive member 22 is attached to the partition wall 14 so as to straddle the partition wall 14, the connecting portion 22c The upper surface is configured to be flush with the upper end surface of the container body 10.

なお、脚部22a、22bの下端は試薬収納室16.1
8の底面から僅かに離反するようにそれらの長さが設定
されている。
Note that the lower ends of the legs 22a and 22b are connected to the reagent storage chamber 16.1.
Their lengths are set so that they are slightly separated from the bottom surface of 8.

この容器本体10は後述する光学的測定を行なう際の光
を透過させ得る透光性材料(例えばポリスチレン)にて
構成されている。また、蓋体12は軟質材料にて構成さ
れており、容器本体10に対し着脱自在とされている。
The container body 10 is made of a translucent material (for example, polystyrene) that allows light to pass through when performing optical measurements to be described later. Further, the lid body 12 is made of a soft material and is detachable from the container body 10.

なお、容器本体10の肉厚は1mm程度が好適であり、
容器本体10の幅と奥行きはいずれも5〜10mm程度
が好適である。細溝23の幅と深さは03〜2mm程度
が好適である。
Note that the thickness of the container body 10 is preferably about 1 mm.
The width and depth of the container body 10 are both preferably about 5 to 10 mm. The width and depth of the narrow groove 23 are preferably about 0.3 to 2 mm.

このように構成された自動化学分析用反応容器の使用方
法について第8図〜第11図を参照して次に説明する。
A method of using the reaction vessel for automated chemical analysis constructed as described above will be explained next with reference to FIGS. 8 to 11.

試薬収納室16.18には予め異なる試薬a、bが所定
量だけ収納されている。血清等の被検試料(サンプル)
はマイクロシリンジ24又はマイクロピペット26等の
適宜のサンプル供給手段により試薬収納室16.18の
一方又は双方に供給される。マイクロシリンジの場合で
あれば、第9図(a)の如く該マイクロシリンジ24の
針24aを蓋体12に刺通して試薬収納室に供給するこ
とができる。マイクロピペットの場合であれば、第9図
(b)に示す如く蓋体12を外して試薬収納室に供給す
ることができる。
Different reagents a and b are stored in predetermined amounts in the reagent storage chambers 16 and 18 in advance. Test specimen (sample) such as serum
is supplied to one or both of the reagent storage chambers 16, 18 by a suitable sample supply means such as a microsyringe 24 or a micropipette 26. In the case of a microsyringe, the needle 24a of the microsyringe 24 can be inserted into the lid 12 to supply the reagent to the reagent storage chamber, as shown in FIG. 9(a). In the case of a micropipette, the lid 12 can be removed to supply the reagent to the reagent storage chamber, as shown in FIG. 9(b).

サンプルを供給した後、第10図(a)に示す如く、一
方の室16側の蓋体12に細管状の二ドル28を刺通し
、該ニードル28に空気等の気体の給排用ポンプ30を
配管32にて接続する。
After supplying the sample, as shown in FIG. 10(a), a thin tube-shaped needle 28 is pierced through the lid 12 on one side of the chamber 16, and a pump 30 for supplying and discharging gas such as air is connected to the needle 28. Connect with piping 32.

なお、他方の室18側の蓋体の別のニードル33を刺通
しておき、該室18内を大気に連通させる。
Note that another needle 33 of the lid on the side of the other chamber 18 is pierced to communicate the inside of the chamber 18 with the atmosphere.

ポンプ30にて反応容器A内の試薬収納室16内に気体
を供給すると、該試薬収納室16内の液は導通部材22
の細溝23を通って試薬収納室18内に送り込まれ、逆
にポンプ30にて試薬収納室16内の気体を排出すると
、第10図(b)の如く、試薬収納室18内の液が試薬
収納室16内に流れ込む。従って、とのポンプ30によ
る気体の給排を所要回数繰り返すことにより試薬a、b
及びサンプルが十分に混合される。
When gas is supplied into the reagent storage chamber 16 in the reaction container A with the pump 30, the liquid in the reagent storage chamber 16 flows through the conduction member 22.
When the gas in the reagent storage chamber 16 is pumped through the narrow groove 23 of the reagent storage chamber 18 and the gas in the reagent storage chamber 16 is discharged by the pump 30, the liquid in the reagent storage chamber 18 is discharged as shown in FIG. 10(b). It flows into the reagent storage chamber 16. Therefore, by repeating the supply and discharge of gas by the pump 30 a required number of times, the reagents a and b are
and the sample is thoroughly mixed.

試薬及びサンプルの混合が十分に行なわれた後、例えば
第11図に示す光学的測定装置34にこの容器Aを装着
してサンプル中の目的成分の光学的測定を行なう。なお
、第11図において符号36は恒温槽を示す。また、3
8は回転円盤であり、容器Aは該回転円盤38に形成さ
れた容器装着部38aに係止され、該容器Aの下部は恒
温槽36内にて一定温度に維持されるよう構成されてい
る。符号40は発光装置、42は受光装置であり、該発
光装置40からの光が反応容器A及び該反応容器A内の
液を透過して受光装置42に至り、例えば300〜10
00μmの光の吸光度を測定して濁度変化が測定される
。もちろん、特定波長の吸光度を測定しても良い。回転
円盤38には多数の反応容器Aが取り付けられ、該回転
円盤38を回転することにより各容器A内のサンプル分
析が順次に行なわれる。同一の容器Aを一定時間毎に繰
り返し測定して濁度等の経時変化を測定しても良い。
After the reagent and sample are sufficiently mixed, the container A is attached to an optical measuring device 34 shown in FIG. 11, for example, to optically measure the target component in the sample. In addition, in FIG. 11, the reference numeral 36 indicates a constant temperature bath. Also, 3
Reference numeral 8 denotes a rotating disk, and the container A is locked to a container mounting portion 38a formed on the rotating disk 38, and the lower part of the container A is configured to be maintained at a constant temperature in a constant temperature bath 36. . Reference numeral 40 denotes a light emitting device, and 42 denotes a light receiving device. Light from the light emitting device 40 passes through the reaction container A and the liquid in the reaction container A and reaches the light receiving device 42. For example, 300 to 10
Changes in turbidity are measured by measuring the absorbance of light at 00 μm. Of course, absorbance at a specific wavelength may also be measured. A large number of reaction vessels A are attached to the rotating disk 38, and by rotating the rotating disk 38, samples in each vessel A are sequentially analyzed. The same container A may be repeatedly measured at regular intervals to measure changes in turbidity and the like over time.

以上の説明から明らかな通り、本実施例によると反応容
器本体10が透光性材料にて構成されており、容器Aを
光学的測定用のセルとしてそのまま使用することができ
る。この反応容器A内には袋等の介在物が存在せず、光
路長が一定になる。
As is clear from the above description, according to this embodiment, the reaction container body 10 is made of a translucent material, and the container A can be used as it is as a cell for optical measurement. There are no inclusions such as bags in the reaction vessel A, and the optical path length is constant.

また、袋による光の乱反射や吸収がない。従って、極め
て精度の良い測定を行なうことができる。
Also, there is no diffuse reflection or absorption of light by the bag. Therefore, extremely accurate measurements can be performed.

なお、上記態様に係る容器本体10は射出成形法により
容器に製造できる。
Note that the container body 10 according to the above embodiment can be manufactured into a container by an injection molding method.

上記実施例にあっては、仕切壁14を跨ぐように細溝2
3付の導通部材22が設けられていたが、本発明にあり
では第12図に示す如くキャピラリ等の細孔付の導通部
材44を用いても良い。
In the above embodiment, the narrow groove 2 is formed so as to straddle the partition wall 14.
Although three conductive members 22 were provided, in the present invention, a conductive member 44 with pores such as a capillary may be used as shown in FIG.

また、上記実施例にあっては試薬収納室16.18は2
個設置されていたが、本発明にあっては第13図の如く
、3個以上の試薬収納室を設けるようにしても良い。な
お、第3の試薬収納室は符号17で示されている。
In addition, in the above embodiment, the reagent storage chambers 16.18 are 2
However, in the present invention, as shown in FIG. 13, three or more reagent storage chambers may be provided. Note that the third reagent storage chamber is indicated by the reference numeral 17.

第14図、第15図、第16図は容器本体10の形状が
異なる実施例を説明するものである。第14図にあって
は、試薬収納室16.18が円柱形とされ、試薬収納室
16.18は直接に接するように近接配置されている。
FIG. 14, FIG. 15, and FIG. 16 explain embodiments in which the shape of the container body 10 is different. In FIG. 14, the reagent storage chambers 16.18 are cylindrical and are arranged close to each other so as to be in direct contact with each other.

第15図にあっては、試薬収納室16.18は円柱□形
とされ、かつ各試薬収納室16.18は離反している。
In FIG. 15, the reagent storage chambers 16.18 have a cylindrical square shape, and the reagent storage chambers 16.18 are separated from each other.

第16図にあっては、試薬収納室16.18は角柱形と
され、かつ所定距離だけ離反されて設けられている。第
15図、第16図の実施例にあっては試薬収納室16.
18は一体の蓋体にて被装されているが、別体の蓋体と
しても良い。
In FIG. 16, the reagent storage chambers 16, 18 are prismatic and spaced apart by a predetermined distance. In the embodiments shown in FIGS. 15 and 16, the reagent storage chamber 16.
Although 18 is covered with an integrated lid, it may be a separate lid.

゛第14図〜第16図にあっては試薬収納室は2個設置
されているが、3個以上設置しても良い。
Although two reagent storage chambers are installed in FIGS. 14 to 16, three or more reagent storage chambers may be installed.

なお、第12図〜第16図において、(a)図は容器本
体の平面図、(b)図は容器の縦断面図を示している。
In FIGS. 12 to 16, (a) is a plan view of the container body, and (b) is a vertical sectional view of the container.

第17図は本発明の別の実施例に係る自動化学分析用反
応容器の斜視図、第18図は同正面図、第19図は第1
7図の19−19線に沿う縦断面図、第20図は第19
図の20−20線に沿う断面図である。この実施例に係
る自動化学分析用反応容器Bも、容器本体10とそれに
被さる蓋体12とを備えており、容器本体10内は仕切
壁14によって二つの試薬収納室16.18に区画され
ている。本実施例にあっては、容器本体1゜の底面部分
に細孔48が設けられ、該細孔48により試薬収納室1
6.18同志が連通されている。また、仕切壁14は容
器本体1oの上端面にまで達する高さを有している。
FIG. 17 is a perspective view of a reaction container for automatic chemical analysis according to another embodiment of the present invention, FIG. 18 is a front view of the same, and FIG. 19 is a first
A vertical cross-sectional view along the line 19-19 in Figure 7, and Figure 20 is the 19th section.
FIG. 2 is a cross-sectional view taken along line 20-20 in the figure. The reaction container B for automated chemical analysis according to this embodiment also includes a container body 10 and a lid 12 that covers it, and the inside of the container body 10 is divided by a partition wall 14 into two reagent storage chambers 16 and 18. There is. In this embodiment, a pore 48 is provided at the bottom of the 1° container body, and the pore 48 allows the reagent storage chamber 1 to be opened.
6.18 Comrades are communicating. Furthermore, the partition wall 14 has a height that reaches the upper end surface of the container body 1o.

この自動化学分析用反応容器Bにあっても、試薬収納室
16.18内に予め異なる試薬を入れ、その後サンプル
を容器B内に供給した後、空気を一方の試薬収納室に対
し給排することにより各試薬及びサンプルを十分に混合
することができる。
Even in this reaction container B for automatic chemical analysis, different reagents are placed in the reagent storage chambers 16 and 18 in advance, and after a sample is supplied into the container B, air is supplied to and discharged from one of the reagent storage chambers. This allows each reagent and sample to be thoroughly mixed.

なお、前記細孔48は十分に小径とされており、各試薬
収納室16.18に別々の試薬を収納しておいても、こ
れらが混ざり合うことが全く又は殆どない。
Note that the pores 48 have a sufficiently small diameter, so that even if different reagents are stored in each reagent storage chamber 16, 18, there is no or almost no mixing of these reagents.

なお、第17〜20図に示す態様において、室16.1
8内に収容する液体が水、アルコール等であるときには
、細孔48の内径(直径)は0.3〜1.0mm程度が
好適である。
In addition, in the embodiment shown in FIGS. 17 to 20, the chamber 16.1
When the liquid contained in the pores 8 is water, alcohol, etc., the inner diameter (diameter) of the pores 48 is preferably about 0.3 to 1.0 mm.

もちろん、本発明においては、液体は水、アルコール以
外であっても良く、例えばAFP (αフェトプロティ
ン)を測定するときには、AFP用ラテうク液とAFP
用安定化液を用いることができる。
Of course, in the present invention, the liquid may be other than water or alcohol. For example, when measuring AFP (α-fetoprotein), AFP latte fluid and AFP
A stabilizing solution can be used.

第17〜20図にあっては、試薬収納室は2個設置され
ているが、本発明にあっては、第21図に示す如く、3
個以上の試薬収納室を設けても良い。この場合、試薬収
納室は第22図に示す如く互いに離れて設置されていて
も良い。また、第23図に示す如く、試薬収納室は円柱
形など各種形状とすることができる。なお、第21〜2
3図において、(a)図は容器本体10の平面図、(b
)図は容器Bの縦断面図、(C)図は同右側面図である
In Figs. 17 to 20, two reagent storage chambers are installed, but in the present invention, three reagent storage chambers are installed as shown in Fig. 21.
More than one reagent storage chamber may be provided. In this case, the reagent storage chambers may be installed apart from each other as shown in FIG. 22. Further, as shown in FIG. 23, the reagent storage chamber can have various shapes such as a cylindrical shape. In addition, the 21st to 2nd
3, (a) is a plan view of the container body 10, and (b) is a plan view of the container body 10.
) is a vertical cross-sectional view of container B, and FIG. 2(C) is a right side view of the same.

第24図は本発明のさらに別の実施例に係る自動化学分
析用反応容器Cの斜視図、第25図は第24図の25−
25線に沿う断面図を示している。本実施例にあっては
、容器本体10の上面部分にプレート50が一体的に設
けられており、プレート50には開口52が形成されて
いる。そして、この間口52に軟質材料よりなるキャッ
プ54が装着されている。第24.25図に示す実施例
にあっても、反応容器C内の試薬収納室16.18には
別々の試薬が予め収納されており、マイクロシリンジ又
はマイクロピペット等により試薬を容器C内に供給し、
一方の室に対し気体を給排することにより各試薬とサン
プルとを十分に混合し、そのまま光学的測定装置にセッ
トすることができる。
FIG. 24 is a perspective view of a reaction vessel C for automatic chemical analysis according to still another embodiment of the present invention, and FIG.
25 is a cross-sectional view taken along line 25. In this embodiment, a plate 50 is integrally provided on the upper surface of the container body 10, and an opening 52 is formed in the plate 50. A cap 54 made of a soft material is attached to this opening 52. Even in the embodiment shown in Figures 24 and 25, separate reagents are stored in advance in the reagent storage chambers 16 and 18 in the reaction container C, and the reagents are introduced into the container C using a microsyringe or a micropipette. supply,
By supplying and discharging gas to one chamber, each reagent and sample can be sufficiently mixed, and the chamber can be set in an optical measuring device as it is.

なお、本発明にあっては、容器の一部分のみを透光性と
しても良い。例えば、第24図の2点鎖線56で囲まれ
る部分とその対向面部分のみを透光性としても良い。
In addition, in the present invention, only a portion of the container may be made translucent. For example, only the portion surrounded by the two-dot chain line 56 in FIG. 24 and the opposing surface portion may be made transparent.

本発明において、上記蓋体12、キャップ54を構成す
る軟質材料としてはSBRゴム、シリコンゴム、ニトリ
ルゴム等を用いることができる。
In the present invention, the soft material constituting the lid 12 and the cap 54 may be SBR rubber, silicone rubber, nitrile rubber, or the like.

[効果コ 以上の通り、本発明の請求項(1)〜(3)の自動化学
分析用反応容器によると、該容器を光学的測定用のセル
としてそのまま使用することができる。そして、光路長
が一定であり極めて高精度の測定を行なうことができる
[Effects] As described above, according to the reaction container for automatic chemical analysis according to claims (1) to (3) of the present invention, the container can be used as it is as a cell for optical measurement. Furthermore, since the optical path length is constant, extremely highly accurate measurements can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係る自動化学分析用反応容器
の斜視図、第2図は組立斜視図、第3図は縦断面図、第
4図は容器本体の平面図、第5図は導通部材の正面図、
第6図は同右側面図、第7図は底面図である。第8図、
第9図及び第10図はサンプルの混合方法を示す縦断面
図である。第11図は光学的測定方法を示す説明図であ
る。第12図、第13図、第14図、第15図、第16
図はそれぞれ本発明の別の実施例を示す構成図である。 第17図は異なる実施例を示す斜視図、第18図は同正
面図、第19図は第17図の19−19線に沿う断面図
、第20図は第19図の2020線に沿う断面図である
。第21図、第22図及び第23図はそれぞれ別の実施
例を示す構成図である。第24図は異なる実施例を示す
斜視図、第25図は同縦断面図である。 A、B、C・・・自動化学分析用反応容器、0・・・容
器本体、 2・・・蓋体、 4・・・仕切壁、 22・・・導通部材。
Fig. 1 is a perspective view of a reaction container for automatic chemical analysis according to an embodiment of the present invention, Fig. 2 is an assembled perspective view, Fig. 3 is a vertical sectional view, Fig. 4 is a plan view of the main body of the container, and Fig. 5 is a front view of the conductive member,
FIG. 6 is a right side view of the same, and FIG. 7 is a bottom view. Figure 8,
FIGS. 9 and 10 are longitudinal cross-sectional views showing a method of mixing samples. FIG. 11 is an explanatory diagram showing an optical measurement method. Figure 12, Figure 13, Figure 14, Figure 15, Figure 16
Each figure is a configuration diagram showing another embodiment of the present invention. Fig. 17 is a perspective view showing a different embodiment, Fig. 18 is a front view of the same, Fig. 19 is a sectional view taken along line 19-19 in Fig. 17, and Fig. 20 is a sectional view taken along line 2020 in Fig. 19. It is a diagram. FIG. 21, FIG. 22, and FIG. 23 are configuration diagrams showing different embodiments. FIG. 24 is a perspective view showing a different embodiment, and FIG. 25 is a longitudinal sectional view of the same. A, B, C... Reaction container for automatic chemical analysis, 0... Container body, 2... Lid, 4... Partition wall, 22... Conductive member.

Claims (3)

【特許請求の範囲】[Claims] (1)複数の試薬収納室と、試薬収納室同志を連通する
細孔とを有する容器であって、該容器の少なくとも一部
は試薬収納室内に収容した液の光学的測定が可能な材質
よりなる光透過部となっており、各試薬収納室には被検
試料の供給又は気体の給排用の開口が設けられると共に
、該開口が軟質材料にて封じられていることを特徴とす
る自動化学分析用反応容器。
(1) A container having a plurality of reagent storage chambers and a pore that communicates the reagent storage chambers, and at least a portion of the container is made of a material that allows optical measurement of the liquid contained in the reagent storage chambers. Each reagent storage chamber is provided with an opening for supplying a test sample or supplying and discharging gas, and the opening is sealed with a soft material. Reaction vessel for chemical analysis.
(2)複数の試薬収納室を有し、かつ各試薬収納室の上
面部は開放口となっている容器本体と、該容器本体に蓋
装された蓋体とを有し、 前記容器本体は試薬収納室内に収容した液の光学的測定
が可能な材質よりなり、前記蓋体は針体の刺通可能な軟
質材料よりなり、 かつ、前記容器本体には試薬収納室同志を連通する細孔
が設けられていることを特徴とする自動化学分析用反応
容器。
(2) A container body having a plurality of reagent storage chambers, each reagent storage chamber having an open opening at the top, and a lid fitted to the container body; The container body is made of a material that allows optical measurement of the liquid contained in the reagent storage chamber, the lid is made of a soft material that can be penetrated by a needle, and the container body has a pore that communicates between the reagent storage chambers. A reaction vessel for automatic chemical analysis, characterized in that it is provided with.
(3)仕切壁によって仕切られた複数の試薬収納室を有
し、かつ各試薬収納室の上面部は開放口となっている容
器本体と、該容器本体に蓋装された蓋体とを有し、 前記容器本体は試薬収納室内に収容した液の光学的測定
が可能な材質よりなり、前記蓋体は針体の刺通可能な軟
質材料よりなり、 かつ、前記試薬収納室は、前記仕切壁を跨ぐ導通部材に
形成された細孔又は細溝により連通されていることを特
徴とする自動化学分析用反応容器。
(3) It has a plurality of reagent storage chambers partitioned by partition walls, and each reagent storage chamber has a container body with an open opening at the top, and a lid fitted to the container body. The container body is made of a material that allows optical measurement of the liquid contained in the reagent storage chamber, the lid is made of a soft material that can be penetrated by a needle, and the reagent storage chamber is made of a material that allows optical measurement of the liquid contained in the reagent storage chamber. 1. A reaction container for automatic chemical analysis, characterized in that the reaction container is communicated by a pore or narrow groove formed in a conductive member that spans the wall.
JP10420789A 1989-04-24 1989-04-24 Reaction container for automatic chemical analysis Pending JPH02281143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10420789A JPH02281143A (en) 1989-04-24 1989-04-24 Reaction container for automatic chemical analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10420789A JPH02281143A (en) 1989-04-24 1989-04-24 Reaction container for automatic chemical analysis

Publications (1)

Publication Number Publication Date
JPH02281143A true JPH02281143A (en) 1990-11-16

Family

ID=14374528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10420789A Pending JPH02281143A (en) 1989-04-24 1989-04-24 Reaction container for automatic chemical analysis

Country Status (1)

Country Link
JP (1) JPH02281143A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013140022A (en) * 2011-12-28 2013-07-18 Sysmex Corp Specimen measurement device and specimen measurement method
CN105319163A (en) * 2014-08-05 2016-02-10 株式会社东芝 Specimen measurement apparatus and specimen measurement method
CN108344615A (en) * 2018-01-24 2018-07-31 杭州安弼晟生物科技有限公司 A kind of circulating tumor cell capture systems and control method
CN108359639A (en) * 2018-01-24 2018-08-03 杭州安弼晟生物科技有限公司 A kind of circulating tumor cell capture systems

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515093A (en) * 1974-05-28 1976-01-16 Uoojinton Baiokemikaru Corp Tsukaisutehannoki

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515093A (en) * 1974-05-28 1976-01-16 Uoojinton Baiokemikaru Corp Tsukaisutehannoki

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013140022A (en) * 2011-12-28 2013-07-18 Sysmex Corp Specimen measurement device and specimen measurement method
CN105319163A (en) * 2014-08-05 2016-02-10 株式会社东芝 Specimen measurement apparatus and specimen measurement method
US9897599B2 (en) 2014-08-05 2018-02-20 Toshiba Medical Systems Corporation Specimen measurement apparatus and specimen measurement method
CN105319163B (en) * 2014-08-05 2018-06-22 东芝医疗系统株式会社 Sample measurement device and sample assay method
CN108344615A (en) * 2018-01-24 2018-07-31 杭州安弼晟生物科技有限公司 A kind of circulating tumor cell capture systems and control method
CN108359639A (en) * 2018-01-24 2018-08-03 杭州安弼晟生物科技有限公司 A kind of circulating tumor cell capture systems
CN108344615B (en) * 2018-01-24 2020-10-23 杭州安弼晟生物科技有限公司 Circulating tumor cell capturing system and control method

Similar Documents

Publication Publication Date Title
US8198090B2 (en) Cartridge, residual liquid removing method, and automatic analyzer
US4088448A (en) Apparatus for sampling, mixing the sample with a reagent and making particularly optical analyses
US4251159A (en) Disposable multi-chamber cuvette
US4883763A (en) Sample processor card for centrifuge
JP3985872B2 (en) container
EP0160282B1 (en) Processor card for centrifuge
US5147609A (en) Assay element
EP1921439B1 (en) Measuring device, measuring instrument and method of measuring
EP3148700B1 (en) Single column microplate system and carrier for analysis of biological samples
JP6261736B2 (en) Multiwell cuvette with integrated reaction and detection means
JP3923968B2 (en) Container usage
CA1048911A (en) Reaction container for chemical analysis
CN105413599A (en) Reaction vessel, reaction vessel arrangement and method for analyzing a substance
JPH0432984B2 (en)
EP2976151B1 (en) Pipette tip containing reagent pad
HU194046B (en) Sample holding device for discrete analysis of liquid materials to be analysed
JPH02281143A (en) Reaction container for automatic chemical analysis
US3475102A (en) Measuring assembly for spectrophotometric analyzing apparatus
US3877877A (en) Plastic cell for mixing two liquids or a liquid and a solid
KR20200052559A (en) Cartridge for in vitro diagnostics analyzer
US8420030B2 (en) Well plate for holding a sample during analysis and a method for preparing a sample for analysis
JP2004521645A (en) Supply tray for multiwell inspection equipment
WO2014072053A1 (en) Microcuvette for biochemical assays
JPH1194730A (en) Transparent lid for micro-plate with recessed surface
CN107064484A (en) Self-priming Dry-type biochemical detection means