JP4564822B2 - Reaction vessel and automatic analyzer using the same - Google Patents

Reaction vessel and automatic analyzer using the same Download PDF

Info

Publication number
JP4564822B2
JP4564822B2 JP2004311682A JP2004311682A JP4564822B2 JP 4564822 B2 JP4564822 B2 JP 4564822B2 JP 2004311682 A JP2004311682 A JP 2004311682A JP 2004311682 A JP2004311682 A JP 2004311682A JP 4564822 B2 JP4564822 B2 JP 4564822B2
Authority
JP
Japan
Prior art keywords
reaction vessel
reaction
wettability
liquid
automatic analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004311682A
Other languages
Japanese (ja)
Other versions
JP2006125897A (en
Inventor
克明 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2004311682A priority Critical patent/JP4564822B2/en
Publication of JP2006125897A publication Critical patent/JP2006125897A/en
Application granted granted Critical
Publication of JP4564822B2 publication Critical patent/JP4564822B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は血液,尿等の生体サンプルを定量あるいは定性分析する自動分析装置に係り、特に試料と試薬を反応させる反応容器及びそれを備えた自動分析装置に関する。   The present invention relates to an automatic analyzer for quantitatively or qualitatively analyzing biological samples such as blood and urine, and more particularly to a reaction container for reacting a sample and a reagent and an automatic analyzer equipped with the same.

自動分析装置においてはサンプル中の測定対象成分と反応して色が変る試薬を用い、試料と試薬を反応容器内で混合してその反応の進行を反応液を透過した光の吸光度変化に基づき測定している。反応容器の材質としては一般的にプラスチックやガラスが使用される。プラスチック反応容器は、成形時に用いる可塑剤が表面に残っている場合、濡れ性が悪く反応容器内面に気泡がつきやすいものがある。光束が透過する部分に気泡がつくと、測定結果に大きな誤差を与えてしまう懸念がある。一方、ガラス製の反応容器は濡れ性が良すぎる場合がある。その場合、液体の毛管現象により液面のU字現象(メニスカス)が激しくなるために透過測光できる液面高さが減り、反応液が少ない場合は充分に光度計の光束高さに足りる液面高さが確保できず、反応液量低減には限界がある。特に近年の自動分析装置では反応液量の低減のため、反応容器(反応セル)の径が小さくなる傾向にあるため、メニスカスの影響が大きくなってきている。   The automatic analyzer uses a reagent that changes color when it reacts with the measurement target component in the sample. The sample and reagent are mixed in the reaction vessel, and the progress of the reaction is measured based on the change in absorbance of the light transmitted through the reaction solution. is doing. Generally, plastic or glass is used as the material for the reaction vessel. Some plastic reaction containers have poor wettability when the plasticizer used at the time of molding remains on the surface, and air bubbles tend to stick to the inner surface of the reaction container. There is a concern that if a bubble is formed in a portion through which the light beam is transmitted, a large error is given to the measurement result. On the other hand, a glass reaction container may have too good wettability. In that case, the liquid surface height that can be measured by transmission is reduced because the U-shaped phenomenon (meniscus) of the liquid surface becomes intense due to the capillary action of the liquid, and when the reaction liquid is small, the liquid surface is sufficient to the luminous flux height of the photometer. Height cannot be secured, and there is a limit to reducing the amount of the reaction solution. In particular, in recent automatic analyzers, the diameter of the reaction vessel (reaction cell) tends to be reduced in order to reduce the amount of the reaction solution, so that the influence of the meniscus is increasing.

またガラスはプラスチックに比べ濡れ性が高すぎるため反応容器を洗浄して再利用する場合、充分に洗浄しきれず前の反応液が残ってしまう、いわゆるキャリオーバが発生するという懸念があった。   In addition, since glass has too high wettability compared to plastic, when the reaction vessel is washed and reused, there is a concern that a so-called carryover may occur in which the previous reaction solution remains without being sufficiently washed.

特許文献1には、反応容器壁面に付着した気泡に超音波を照射して気泡を除去する技術が開示されている。   Patent Document 1 discloses a technology for removing bubbles by irradiating bubbles attached to the reaction vessel wall surface with ultrasonic waves.

特開2004−45113号公報JP 2004-45113 A

特許文献1記載の技術はプラスチック製反応容器を用いた場合でも気泡の付着を防止できるというものであるが、気泡の除去のために専用の超音波照射装置を設けると、コスト高が懸念される。   The technique described in Patent Document 1 is capable of preventing the adhesion of bubbles even when a plastic reaction vessel is used. However, if a dedicated ultrasonic irradiation device is provided for removing bubbles, there is a concern about high costs. .

そのような積極的な機構を用いずに、反応容器自体がプラスチック製,ガラス製のそれぞれの長所を兼ね備えたものであることが望ましい。本発明の目的は、反応容器内部の光度計の光束が透過する部分に気泡が付着しにくく、反応液の微量化も可能で、かつ反応容器の洗浄不足に起因する反応液のキャリオーバも低く抑えられる自動分析装置用の反応容器及びそれを用いた自動分析装置を提供することにある。   It is desirable that the reaction vessel itself has both advantages of plastic and glass without using such an aggressive mechanism. The object of the present invention is to prevent bubbles from adhering to the portion of the photometer inside the reaction vessel where light flux is transmitted, to reduce the amount of the reaction solution, and to keep the reaction solution carry-over due to insufficient washing of the reaction vessel low. It is another object of the present invention to provide a reaction container for an automatic analyzer and an automatic analyzer using the same.

プラスチック反応容器内壁の一部(透光部とその周辺)に濡れ性を良くする表面処理を施すようにする。濡れ性を良くする方法としてはオゾン水を表面に浸漬する方法が良い。また、一部分のみを行うにはマスキングなどを行って濡れ性を向上させたくないところはオゾン水がかからないようにすれば良い。   A surface treatment for improving wettability is performed on a part of the inner wall of the plastic reaction vessel (the light transmitting portion and its periphery). As a method of improving wettability, a method of immersing ozone water on the surface is preferable. Further, in order to perform only a part, masking or the like is performed so that the wettability should not be improved so that ozone water is not applied.

本発明によれば、反応容器内面の透光部分に気泡が付着することを防止でき信頼性の高い分析測光ができる。   According to the present invention, it is possible to prevent bubbles from adhering to the translucent portion of the inner surface of the reaction vessel and perform highly reliable analytical photometry.

また、反応容器の透光部およびその近傍のみを濡れ性を改善しているので反応液の液面が平坦になるので反応液が微量でも測光できるようになり、さらに反応容器による反応液のキャリオーバも少なく押さえることができる。   In addition, since the wettability is improved only in the translucent part of the reaction vessel and its vicinity, the reaction solution level is flattened so that light can be measured even with a small amount of reaction solution, and the reaction solution is carried over by the reaction vessel. You can hold down even less.

現在の自動分析装置においては、反応容器に試料を分注し、それに試薬を添加して攪拌しその反応液の吸光度変化を測定して試料に含まれる成分を定量分析する方法がとられている。吸光度を測定する方法は図1に示したように反応容器1を反応ディスク2に配列させ反応容器がランプ3から発せられた光軸4を横切る瞬間に光度計5にて測定する。   In the current automatic analyzer, a method is used in which a sample is dispensed into a reaction vessel, a reagent is added to the reaction vessel, and the mixture is stirred and the change in absorbance of the reaction solution is measured to quantitatively analyze the components contained in the sample. . As shown in FIG. 1, the absorbance is measured by a photometer 5 at the moment when the reaction vessel 1 is arranged on the reaction disk 2 and the reaction vessel crosses the optical axis 4 emitted from the lamp 3.

試薬を試薬ノズル11から吐出添加した際、あるいは反応液を撹拌する際に往々にして気泡を巻き込むことがある。反応容器の内面の透光部に気泡が付着すると測光精度に大きな誤差を発生させてしまうことになる。反応容器の濡れ性が悪いと気泡9が内面に付着しやすくなる(図2)。この場合でも、反応容器の内面を濡れ性が良いと、気泡が付着しないで浮上する。   When the reagent is discharged and added from the reagent nozzle 11 or when the reaction solution is stirred, air bubbles are often involved. If air bubbles adhere to the light transmitting portion on the inner surface of the reaction vessel, a large error will occur in the photometric accuracy. If the wettability of the reaction vessel is poor, bubbles 9 are likely to adhere to the inner surface (FIG. 2). Even in this case, if the wettability is good on the inner surface of the reaction vessel, the bubbles float without being attached.

また、光量を確保するために、この光度計の光軸4はある程度の幅および高さを持っている必要がある。そうでないと光量がかせげず光度計のS/Nが悪くなってしまうことになる。昨今のユーザ要求である試薬量の低減を達成するために反応液面が光軸ぎりぎりまで下げるように設計されることが多い。反応容器の材質としてガラスを用いたり、プラスチックでも内面全体を濡れ性を良くすると毛管現象により図3のように反応液の液面10がU字になってしまい液面が光軸4をかすってしまうという不具合がおきる。したがってガラスを用いたり、内面全体を濡れ性を良くしたプラスチックは使用できない。そこで、図1に示したようにプラスチック反応容器の透光面となる部分のみを濡れ性を良くするようにする(図1で濡れ性を良くしたところは、6,7である)。そうすると光軸透光部よりわずかに多くの反応液を確保することで反応液の液面11は図4のように水平平坦になる。そうすることにより最小限の反応液により最大の光量を確保して測定することができる。また、ガラスを用いたり、内面全体を濡れ性を良くしたプラスチック反応容器は反応容器のキャリオーバが大きくなってしまう欠点がある。キャリオーバとは反応容器を洗って次の分析に再利用した場合、洗浄が不十分となって前の反応液が残ってしまい次の反応液を汚染してしまうことである。反応容器を洗浄する場合は反応容器全体を洗う必要があるために洗浄液を口元まで注入する。内面全体が濡れ性が良いと僅かに残った反応液と洗浄液の混在液が内面全体にわたって残ってしまい(一種の吸着)キャリオーバが増大してしまうことになる。図1に示した本実施例によれば、透光部付近といったほんの一部分を濡れ性を良くしただけなので(面積比で約1/15)キャリオーバを大幅に低減できる。また、反応液の攪拌は最近は超音波非侵襲攪拌が行われることが多く、そうすれば反応液に攪拌に使用した超音波攪拌素子を用いて、洗浄液に入った反応容器に超音波を照射すれば、洗浄は充分に行える。超音波照射範囲は濡れ性を良くした透光部だけでよく、この部分は必ず反応液を攪拌するうえで超音波を照射しなければならない高さのところであり、攪拌と洗浄がひとつの攪拌素子で行えるのは一石二鳥である。反応容器に用いるプラスチックとしては、環状ポリオレフィン系樹脂,ポリカーボネート樹脂,アクリル樹脂,ポリスチレン樹脂が好適である。   Further, in order to secure the light quantity, the optical axis 4 of this photometer needs to have a certain width and height. Otherwise, the amount of light cannot be reduced, and the S / N of the photometer will deteriorate. In order to achieve a reduction in reagent amount, which is a recent user requirement, the reaction liquid surface is often designed to be lowered to the limit of the optical axis. If glass is used as the material of the reaction vessel or if the entire inner surface of plastic is made to have good wettability, the liquid level 10 of the reaction liquid becomes U-shaped as shown in FIG. The problem that it ends up occurs. Therefore, it is not possible to use glass or plastic with improved wettability on the entire inner surface. Therefore, as shown in FIG. 1, the wettability is improved only in the portion that becomes the light-transmitting surface of the plastic reaction container (the places where the wettability was improved in FIG. 1 are 6 and 7). Then, by securing a slightly larger amount of the reaction liquid than the optical axis translucent part, the liquid surface 11 of the reaction liquid becomes horizontal and flat as shown in FIG. By doing so, the maximum amount of light can be secured and measured with a minimum amount of reaction solution. Further, a plastic reaction vessel using glass or having good wettability on the entire inner surface has a drawback that the carry-over of the reaction vessel becomes large. Carryover means that when a reaction vessel is washed and reused for the next analysis, the washing becomes insufficient and the previous reaction solution remains and contaminates the next reaction solution. When washing the reaction vessel, it is necessary to wash the entire reaction vessel, so the washing solution is poured into the mouth. If the entire inner surface has good wettability, a slightly mixed liquid of the reaction solution and the cleaning solution remains over the entire inner surface (a kind of adsorption) and carry-over increases. According to the present embodiment shown in FIG. 1, the carry-over can be greatly reduced because the wettability is improved only in a part such as the vicinity of the light-transmitting portion (area ratio is about 1/15). In addition, recently, reaction liquid is often agitated by ultrasonic non-invasive stirring, and by using the ultrasonic stirring element used for stirring the reaction liquid, the reaction container in the cleaning liquid is irradiated with ultrasonic waves. If so, the cleaning can be performed sufficiently. The ultrasonic irradiation range may be only the translucent part with good wettability, and this part is at a height that must be irradiated with ultrasonic waves to stir the reaction solution, and stirring and washing are one stirring element. You can do two birds with one stone. As the plastic used for the reaction vessel, cyclic polyolefin resin, polycarbonate resin, acrylic resin, and polystyrene resin are suitable.

反応容器の内面の一部を濡れ性を良くする方法を図5に示した。オゾン液を浸漬することにより、表面の活性値が変化し大変濡れやすくなる。反応容器内にオゾン液を流すためのゴムでできた配管ブッシュ12を挿入する。挿入した際、密着部15を反応容器内面に押し付け、密着部からはオゾン液が漏れないようにする。オゾン液を注入口13から流し、排出口14より排出する。そうすることにより透光面内面にオゾン液が接するように流れる。それにより反応容器の下部の透光部付近の内表面6,7の濡れ性が改善される。   A method for improving the wettability of a part of the inner surface of the reaction vessel is shown in FIG. By immersing the ozone liquid, the activity value of the surface changes and it becomes very easy to get wet. A piping bush 12 made of rubber for flowing ozone solution is inserted into the reaction vessel. When inserted, the close contact portion 15 is pressed against the inner surface of the reaction vessel so that the ozone liquid does not leak from the close contact portion. The ozone liquid flows from the inlet 13 and is discharged from the outlet 14. By doing so, the ozone liquid flows in contact with the inner surface of the translucent surface. As a result, the wettability of the inner surfaces 6 and 7 in the vicinity of the translucent part at the bottom of the reaction vessel is improved.

ほかに、濡れ性を良くする方法として、プラズマ照射方法がある。   In addition, there is a plasma irradiation method as a method for improving wettability.

本発明では、反応容器内面の透光部とその周辺を濡れ性を良くしているので、透光部に気泡が付着することが少ない。また、最少液面高さ付近の反応容器内面は濡れ性が悪いままなのでメニスカスは小さくて済むので液面は平坦な状態が維持されており、測光に必要な液高さが確保されている。また、濡れ性を良くしたのは透光面という一部だけを行っておりそれによるキャリオーバの増大は最小限に抑えられている(キャリオーバの量は反応容器内壁全部を濡れ性を良くした場合の1/20に抑えられている)。   In the present invention, since the wettability is improved between the translucent portion on the inner surface of the reaction vessel and the periphery thereof, bubbles are less likely to adhere to the translucent portion. Further, the inner surface of the reaction vessel near the minimum liquid level remains poor in wettability, so that the meniscus can be small, so that the liquid level is kept flat and the liquid level necessary for photometry is secured. In addition, only a part of the translucent surface is used to improve the wettability, and the increase in carryover due to this is minimized (the amount of carryover is the case when the entire inner wall of the reaction vessel is made wettable. 1/20).

本発明を実施する自動分析装置の測光部分構成を示す図。The figure which shows the photometry partial structure of the automatic analyzer which implements this invention. 濡れ性が悪いときの反応容器内の液体の様子を示す図。The figure which shows the mode of the liquid in the reaction container when wettability is bad. 濡れ性が良すぎるときの反応容器内の液体の様子を示す図。The figure which shows the mode of the liquid in reaction container when wettability is too good. 発明実施時の反応容器内の液体の様子を示す図。The figure which shows the mode of the liquid in the reaction container at the time of invention implementation. 本発明における表面処理方法(濡れ性向上方法)の一例を示す図。The figure which shows an example of the surface treatment method (wetting property improvement method) in this invention.

符号の説明Explanation of symbols

1…反応容器、4…光軸、6…濡れ性を良くした内面、8…反応液面、9…気泡、16…オゾン水。

DESCRIPTION OF SYMBOLS 1 ... Reaction container, 4 ... Optical axis, 6 ... Inner surface which improved wettability, 8 ... Reaction liquid surface, 9 ... Air bubble, 16 ... Ozone water.

Claims (4)

試料と試薬を混合する反応容器であって、
該反応容器の内壁の、光度計の光束が透過する部分の濡れ性が、該内壁の光束が透過しない部分の濡れ性に比べ良いことを特徴とする反応容器。
A reaction vessel for mixing a sample and a reagent,
Reaction vessel of the inner wall of the reaction vessel, wettability of the portion where the light flux of the light meter is transmitted, characterized in that the light flux of the inner wall may compared with the wettability of the portion which does not transmit.
請求項1記載の反応容器であって、The reaction vessel according to claim 1, wherein
前記反応容器の内壁部の濡れ性の良い部分の形状が光度計の光束形状に合わせて円形、または四角形形状となっていることを特徴とする反応容器。A reaction vessel characterized in that the shape of the wettable portion of the inner wall of the reaction vessel is circular or square according to the luminous flux shape of the photometer.
請求項1又は2に記載の反応容器において、In the reaction container according to claim 1 or 2,
該反応容器が環状ポリオレフィン系樹脂,ポリカーボネート樹脂,アクリル樹脂,ポリスチレン樹脂から選択された1種であることを特徴とする反応容器。The reaction vessel is one selected from cyclic polyolefin resin, polycarbonate resin, acrylic resin, and polystyrene resin.
試料を反応容器に分注するサンプル分注手段と、Sample dispensing means for dispensing the sample into the reaction vessel;
該反応容器中の液体の光学的性質の変化を測定する測定手段と、Measuring means for measuring a change in the optical properties of the liquid in the reaction vessel;
を備えた自動分析装置において、In an automatic analyzer equipped with
前記反応容器が請求項1乃至3のいずれかに記載の反応容器からなることを特徴とする自動分析装置。An automatic analyzer comprising the reaction container according to any one of claims 1 to 3.
JP2004311682A 2004-10-27 2004-10-27 Reaction vessel and automatic analyzer using the same Expired - Fee Related JP4564822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004311682A JP4564822B2 (en) 2004-10-27 2004-10-27 Reaction vessel and automatic analyzer using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004311682A JP4564822B2 (en) 2004-10-27 2004-10-27 Reaction vessel and automatic analyzer using the same

Publications (2)

Publication Number Publication Date
JP2006125897A JP2006125897A (en) 2006-05-18
JP4564822B2 true JP4564822B2 (en) 2010-10-20

Family

ID=36720796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004311682A Expired - Fee Related JP4564822B2 (en) 2004-10-27 2004-10-27 Reaction vessel and automatic analyzer using the same

Country Status (1)

Country Link
JP (1) JP4564822B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002850A (en) * 2006-06-20 2008-01-10 Olympus Corp Container and analyzer
JP2008286539A (en) 2007-05-15 2008-11-27 Hitachi High-Technologies Corp Reaction cell for autoanalyzer, and method for surface finishing of the same
JP4839269B2 (en) * 2007-06-18 2011-12-21 株式会社日立ハイテクノロジーズ Electrode for production of reaction cell for automatic analyzer, and production method using the electrode
JP5119031B2 (en) 2008-04-15 2013-01-16 株式会社日立ハイテクノロジーズ Reaction cell manufacturing method and automatic analyzer equipped with reaction cell
JP5373868B2 (en) * 2011-08-29 2013-12-18 株式会社日立ハイテクノロジーズ Method for manufacturing reaction cell for automatic analyzer
USD978375S1 (en) 2013-03-13 2023-02-14 Abbott Laboratories Reagent container
US9535082B2 (en) 2013-03-13 2017-01-03 Abbott Laboratories Methods and apparatus to agitate a liquid
US10058866B2 (en) 2013-03-13 2018-08-28 Abbott Laboratories Methods and apparatus to mitigate bubble formation in a liquid
USD962471S1 (en) 2013-03-13 2022-08-30 Abbott Laboratories Reagent container
JP6214944B2 (en) * 2013-07-11 2017-10-18 東芝メディカルシステムズ株式会社 Analysis equipment
JP2016067322A (en) * 2014-09-30 2016-05-09 富士フイルム株式会社 Plastic container
JPWO2022163657A1 (en) * 2021-01-26 2022-08-04

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60205236A (en) * 1984-03-29 1985-10-16 Sharp Corp Turbidity detector
JPH06323986A (en) * 1993-05-12 1994-11-25 Hitachi Ltd Reaction cell for automatic chemical analyzer
JPH06341945A (en) * 1993-05-31 1994-12-13 Moritetsukusu:Kk Liquid observation window
JP2003098068A (en) * 2001-09-25 2003-04-03 Hitachi Ltd Plane cell and analyzer using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60205236A (en) * 1984-03-29 1985-10-16 Sharp Corp Turbidity detector
JPH06323986A (en) * 1993-05-12 1994-11-25 Hitachi Ltd Reaction cell for automatic chemical analyzer
JPH06341945A (en) * 1993-05-31 1994-12-13 Moritetsukusu:Kk Liquid observation window
JP2003098068A (en) * 2001-09-25 2003-04-03 Hitachi Ltd Plane cell and analyzer using the same

Also Published As

Publication number Publication date
JP2006125897A (en) 2006-05-18

Similar Documents

Publication Publication Date Title
JP4564822B2 (en) Reaction vessel and automatic analyzer using the same
JP4251627B2 (en) Chemical analyzer and dispensing method thereof
US7787116B2 (en) Cuvette
JP5203979B2 (en) Automatic analyzer
JP4584878B2 (en) Reaction cell for automatic analyzer, automatic analyzer equipped with the reaction cell, and analysis method
US7364698B2 (en) Automatic analyzer
KR100863287B1 (en) Chamber Apparatus for Assaying Quality of Water
TW201418710A (en) Reaction vessel, assay device, and measuring method
JP6462844B2 (en) Automatic analyzer
JPWO2017145672A1 (en) Automatic analyzer and cleaning method
JP4185859B2 (en) Automatic analyzer
CN110869769B (en) Test suite, test method and dispensing device
JP2008002850A (en) Container and analyzer
TWI476406B (en) Reaction cassette and assay device
JP2004251797A (en) Automatic analyzer
JP2009264858A (en) Living body analyzing device, and method for quantifying and agitating sample using it
JPS6412345B2 (en)
JP5000752B2 (en) Method for manufacturing reaction cell for automatic analyzer
CN106471376A (en) Automatic analysing apparatus
JP2008286552A (en) Reactor and absorbance analyzer
CN110352355A (en) Automatic analysing apparatus and automatic analysis method
JPH0114931Y2 (en)
TWI343478B (en)
CN211927666U (en) Reaction device for photometric colorimetric detection
US8790598B2 (en) Reaction cuvette for automatic analyzer and method of surface treatment for reaction cuvette

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060515

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4564822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees