WO2023176526A1 - オーディオアンプ回路、車載電子機器 - Google Patents
オーディオアンプ回路、車載電子機器 Download PDFInfo
- Publication number
- WO2023176526A1 WO2023176526A1 PCT/JP2023/008154 JP2023008154W WO2023176526A1 WO 2023176526 A1 WO2023176526 A1 WO 2023176526A1 JP 2023008154 W JP2023008154 W JP 2023008154W WO 2023176526 A1 WO2023176526 A1 WO 2023176526A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- node
- voltage
- circuit
- power supply
- reference voltage
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 claims description 22
- 230000005236 sound signal Effects 0.000 claims description 22
- 238000012544 monitoring process Methods 0.000 claims description 19
- 239000004065 semiconductor Substances 0.000 claims description 8
- 239000000758 substrate Substances 0.000 claims description 6
- 238000010586 diagram Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 102220042509 rs112033303 Human genes 0.000 description 2
- 102000001301 EGF receptor Human genes 0.000 description 1
- 101000851181 Homo sapiens Epidermal growth factor receptor Proteins 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 102220007331 rs111033633 Human genes 0.000 description 1
- 102220008337 rs1437698471 Human genes 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/52—Circuit arrangements for protecting such amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/21—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
- H03F3/217—Class D power amplifiers; Switching amplifiers
Definitions
- the present disclosure relates to audio circuits.
- In-vehicle audio systems and car navigation systems are equipped with audio circuits.
- the audio circuit operates using voltage from the vehicle battery as a power source. Since batteries fluctuate significantly from their rated voltage (for example, 14.4V) during use, such semiconductor integrated circuits are required to operate normally even under severe fluctuations in battery voltage, and are tested before shipping. Performance is tested through load dump tests and cold crank tests. For example, in a load dump test, an overvoltage of around 40V is transiently applied to a power supply terminal of a semiconductor integrated circuit.
- the present disclosure has been made in view of the above problems, and one exemplary purpose of a certain aspect thereof is to provide an audio amplifier circuit that is capable of overvoltage protection while retaining an audio playback function.
- An aspect according to one embodiment relates to an audio amplifier circuit.
- the audio amplifier circuit includes an input gain circuit that amplifies an analog audio signal, a pulse modulator that includes an integrator and generates a pulse signal having a pulse width that corresponds to the output signal of the input gain circuit, and a power supply terminal that receives a power supply voltage.
- a driver that receives the power supply voltage and amplifies the pulse signal; a bias circuit that supplies the first reference voltage to the input gain circuit and the second reference voltage to the integrator; and an internal voltage source that generates the internal power supply voltage.
- the bias circuit includes a first voltage divider circuit whose input node receives an internal power supply voltage, a buffer whose input node is connected to an output node of the first voltage divider circuit and whose output node signal is a first reference voltage, and an input node. a second voltage divider circuit which receives a power supply voltage and whose output node signal is a second reference voltage; a resistor connected between the output node of the buffer and the output node of the second voltage divider circuit; and a clamp circuit that controls the voltage at the output node of the first voltage divider circuit so that the voltage does not exceed a limit voltage set below the internal power supply voltage.
- This audio amplifier circuit includes an input gain circuit that amplifies an analog audio signal, a pulse modulator that includes an integrator and generates a pulse signal having a pulse width that corresponds to the output signal of the input gain circuit, and a power supply that receives a power supply voltage. a terminal, a driver that receives the power supply voltage and amplifies the pulse signal, a bias circuit that supplies the first reference voltage to the input gain circuit and the second reference voltage to the integrator, and an internal voltage that generates the internal power supply voltage.
- a source and.
- the bias circuit has a capacitor connected to a first node that receives an internal power supply voltage, a second node that receives the power supply voltage, a third node that generates the first reference voltage, and a fourth node that generates the second reference voltage.
- a fifth node to be connected a first resistor connected between the first node and the fifth node, a second resistor connected between the fifth node and ground, and an input node connected to the fifth node.
- It includes a fifth resistor connected thereto, and a clamp circuit that receives a monitoring signal according to the second reference voltage and sinks a current from the third node according to an error between the second reference voltage and the monitoring signal.
- an audio amplifier circuit that is capable of overvoltage protection while retaining the audio playback function.
- FIG. 1 is a circuit diagram of an in-vehicle audio system including an audio amplifier circuit according to an embodiment.
- FIG. 2 is a level diagram of the in-vehicle audio system of FIG. 1.
- FIG. 3 is a circuit diagram of the bias circuit of FIG. 1.
- FIG. 4 is a diagram illustrating the operation of the audio amplifier circuit of FIG. 1.
- FIG. 5 is a diagram illustrating the operation of the audio amplifier circuit of FIG. 1.
- An audio amplifier circuit includes an input gain circuit that amplifies an analog audio signal, a pulse modulator that includes an integrator and generates a pulse signal having a pulse width according to an output signal of the input gain circuit, and a power source.
- a power supply terminal that receives the voltage
- a driver that receives the power supply voltage and amplifies the pulse signal
- a bias circuit that supplies the first reference voltage to the input gain circuit and the second reference voltage to the integrator, and the internal power supply voltage. and an internal voltage source for generating the voltage.
- the bias circuit includes a first voltage divider circuit whose input node receives an internal power supply voltage, a buffer whose input node is connected to an output node of the first voltage divider circuit and whose output node signal is a first reference voltage, and an input node. a second voltage divider circuit which receives a power supply voltage and whose output node signal is a second reference voltage; a resistor connected between the output node of the buffer and the output node of the second voltage divider circuit; and a clamp circuit that controls the voltage at the output node of the first voltage divider circuit so that the voltage does not exceed a limit voltage set below the internal power supply voltage.
- the first reference voltage and the second reference voltage are proportional to the power supply voltage.
- the clamp circuit becomes active and the second reference voltage is clamped to a predetermined limit voltage.
- the first reference voltage becomes lower as the power supply voltage becomes higher. According to this configuration, the center level of the amplified audio signal can be increased to follow the power supply voltage while protecting the circuit from overvoltage, so that the audio signal can be continued to be reproduced.
- the clamp circuit may be a shunt regulator.
- the clamp circuit receives a shunt transistor connected between an output node of the second voltage divider circuit and ground, a monitoring signal responsive to a second reference voltage, and a predetermined reference voltage, and the output of the clamp circuit receives a shunt transistor connected between an output node of the second voltage divider circuit and ground. and an error amplifier connected to the control terminal of the transistor.
- An audio amplifier circuit includes an input gain circuit that amplifies an analog audio signal, a pulse modulator that includes an integrator and generates a pulse signal having a pulse width according to an output signal of the input gain circuit, and a power source.
- a power supply terminal that receives the voltage
- a driver that receives the power supply voltage and amplifies the pulse signal
- a bias circuit that supplies the first reference voltage to the input gain circuit and the second reference voltage to the integrator, and the internal power supply voltage. and an internal voltage source for generating the voltage.
- the bias circuit has a capacitor connected to a first node that receives an internal power supply voltage, a second node that receives the power supply voltage, a third node that generates the first reference voltage, and a fourth node that generates the second reference voltage.
- a fifth node to be connected a first resistor connected between the first node and the fifth node, a second resistor connected between the fifth node and ground, and an input node connected to the fifth node.
- It includes a fifth resistor connected thereto, and a clamp circuit that receives a monitoring signal according to the second reference voltage and sinks a current from the third node according to an error between the second reference voltage and the monitoring signal.
- the first reference voltage and the second reference voltage are proportional to the power supply voltage.
- the clamp circuit is activated and the first reference voltage is adjusted such that the second reference voltage maintains a predetermined target level. This allows audio signals to continue to be played while protecting the circuit from overvoltage.
- the clamp circuit receives a shunt transistor connected between the third node and ground, a monitoring signal responsive to a second reference voltage, and a predetermined reference voltage, the output of which is connected to a control terminal of the shunt transistor. and a connected error amplifier.
- the integrator includes an operational amplifier receiving a second reference voltage at a non-inverting input terminal, a capacitor connected between an inverting input node and an output node of the operational amplifier, an inverting input node of the operational amplifier, and a pulse modulator. and a feedback resistor connected between an inverting input node of the operational amplifier and an output node of the driver.
- the resistance value of the input resistor is Ri and the resistance value of the feedback resistor is Rf
- the resistance value of the fifth resistor may be Ri
- the resistance values of the third resistor and the fourth resistor may be 2 ⁇ Rf.
- the audio amplifier circuit may be monolithically integrated on one semiconductor substrate.
- “Integration” includes cases where all of the circuit components are formed on a semiconductor substrate, cases where the main components of the circuit are integrated, and some of the components are integrated to adjust the circuit constants.
- a resistor, a capacitor, etc. may be provided outside the semiconductor substrate.
- a state in which member A is connected to member B refers to not only a case where member A and member B are physically directly connected, but also a state in which member A and member B are electrically connected. This also includes cases in which they are indirectly connected via other members that do not substantially affect the connection state or impair the functions and effects achieved by their combination.
- a state in which member C is connected (provided) between member A and member B refers to a state in which member A and member C or member B and member C are directly connected. In addition, it also includes cases where they are indirectly connected via other members that do not substantially affect their electrical connection state or impair the functions and effects achieved by their combination.
- FIG. 1 is a circuit diagram of an in-vehicle audio system 100 including an audio amplifier circuit 200 according to an embodiment.
- the in-vehicle audio system 100 includes an in-vehicle battery (hereinafter simply referred to as battery) 102, a filter 104, a speaker 106, and an audio amplifier circuit 200.
- battery hereinafter simply referred to as battery
- the Battery 102 produces a battery voltage V BAT rated at 12V.
- the audio amplifier circuit 200 is a functional IC (Integrated Circuit) integrated on one semiconductor substrate, and the audio amplifier circuit 200 is supplied with a battery voltage V BAT as a power supply voltage V CC .
- the audio amplifier circuit 200 receives an input audio signal V IN from a sound source (not shown), amplifies the input audio signal V IN , and drives the speaker 106 as a load.
- the in-vehicle audio system 100 is completely differential, and the input audio signal V AUD is a differential signal including V AUDN and V AUDP of opposite phases.
- the audio amplifier circuit 200 receives differential signals V AUDN and V AUDP at differential input terminals INN and INP from a sound source (not shown) via a coupling capacitor. Further, a speaker 106 is connected to differential output terminals OUTP and OUTN of the audio amplifier circuit 200 via a filter 104.
- the subscript P attached to a signal or terminal represents a positive phase
- the subscript N represents a negative phase. When both normal phase and negative phase components are collectively referred to, the subscripts are omitted.
- the audio amplifier circuit 200 is a class D amplifier (switching amplifier), and generates a pulse drive signal having a duty cycle according to the input audio signal V IN .
- a high frequency component is removed from the pulse drive signal V DRV by a filter 104 , and an analog audio signal V OUT in the audio band is supplied to the speaker 106 .
- a power supply terminal VCC of the audio amplifier circuit 200 is connected to the battery 102 and receives the power supply voltage VCC .
- An external capacitor C1 is connected to the capacitor connection terminal FILA.
- the pulse drive signals V DRVP and V DRVN have an amplitude equal to the power supply voltage V CC .
- the audio amplifier circuit 200 includes an input gain circuit 210, a PWM (Pulse Width Modulation) circuit 220, a driver circuit 230, an internal voltage source 240, and a bias circuit 250.
- the input gain circuit 210, the PWM circuit 220, and the driver circuit 230 each have the same configuration for a positive phase signal and a negative phase signal, respectively.
- Internal voltage source 240 generates internal power supply voltage V REGD .
- Input gain circuit 210 operates using internal power supply voltage V REGD supplied from internal voltage source 240 as a power supply voltage. Furthermore, the input gain circuit 210 is supplied with a first reference voltage V FIL from the bias circuit 250 .
- the first reference voltage V FIL is equal to or greater than the maximum amplitude of V AUD .
- the first reference voltage V FIL is a voltage 1/2 times the internal power supply voltage V REGD .
- V FIL V REGD /2...(1)
- the internal power supply voltage V REGD may be, for example, 5.3V, and the first reference voltage V FIL may be 2.65V.
- Input gain circuit 210 amplifies input audio signal V AUD .
- the input gain circuit 210N amplifies the negative phase audio signal V AUDN
- the input gain circuit 210P amplifies the normal phase audio signal V AUDP .
- the gains of the input gain circuits 210N and 210P are assumed to be g1 .
- a differential audio signal V AUDN is input to the input terminal INN via a coupling capacitor.
- V INP V AUDP + V FIL ...
- V P g 1 ⁇ V AUDP +V FIL (5) It is.
- PWM circuit 220 is a feedback type pulse modulator.
- PWM circuit 220 includes integrators 222P, 222N, comparators 224P, 224N, and oscillator 226.
- the PWM circuit 220 is supplied with a second reference voltage V FILP from the bias circuit 250 .
- the integrator 222P receives the output signal VN of the input gain circuit 210N at the front stage and the drive pulse VDRVP generated by the driver circuit 230P at the rear stage.
- the second reference voltage V FILP is input to the non-inverting input node of the integrator 222P.
- the integrator 222P functions as an error amplifier, and calculates the error between the integrated value (smoothed voltage) of the voltage obtained by internally dividing the two voltages VN and VDRVP by the resistor Ri and the resistor Rf, and the second reference voltage VFILP . amplify.
- the comparator 224P compares the output voltage V ERRP of the integrator 222P with the triangular wave periodic signal generated by the oscillator 226, and generates a pulse signal S PWMP .
- the power supply voltage of the comparator 224P is the internal power supply voltage V REGD , the high level of the pulse signal S PWMP is V REGD , and the low level of the pulse signal S PWMP is 0V.
- Driver circuit 230 includes a driver circuit 230P and a driver circuit 230N.
- a power supply voltage V CC is supplied to the driver circuit 230P.
- the driver circuit 230P receives the pulse signal S PWMP and generates a drive pulse V DRVP in which the power supply voltage V CC is at a high level and the GND (0V) is at a low level.
- An external filter 104 removes the carrier wave component of the drive pulse V DRVP to generate an output voltage V OUTP .
- Integrator 222P, comparator 224P, and driver circuit 230P form a feedback loop. Due to this feedback loop, the DC component of the output voltage V OUTP (and V DRVP ) becomes V FILP , and the AC component (audio component) becomes g 1 ⁇ ( ⁇ g 2 ) ⁇ V AUDN .
- the integrator 222N and comparator 224N operate similarly.
- the DC component of the output voltage V OUTN (and V DRVN ) is V FILP
- the AC component (audio component) is g 1 ⁇ ( ⁇ g 2 ) ⁇ V INP .
- FIG. 2 is a level diagram of the in-vehicle audio system 100 of FIG. 1.
- FIG. 2 shows the voltage V INN of the differential input terminal INN, the output signal V N of the input gain circuit 210N, the PWM signal SPWMP , the drive signal V DRVP , and the output voltage V OUTP .
- the first reference voltage V FIL is 1/2 of the internal power supply voltage V REGD
- the voltage V INN is a signal obtained by superimposing the audio signal V AUDN on the bias level V FIL .
- the bias level of the output signal V N of the input gain circuit 210N is V FIL , and the signal amplitude (AC component) is g 1 times the input signal V AUDN .
- the drive signal V DRVP is a pulse signal that sets the power supply voltage V CC to a high level and sets the ground voltage GND (0V) to a low level.
- the duty cycle of the drive signal VDRVP is equal to the duty cycle of the PWM signal SPWMP .
- the bias level of the output signal V OUTP is V CC /2, and its signal amplitude (AC component) is g 1 ⁇ ( ⁇ g 2 ) times the input signal V AUDN .
- the voltage V SPK applied across the speaker 106 is V OUTP ⁇ V OUTN , and the signal amplitude is twice the output signal V OUTP .
- FIG. 3 is a circuit diagram of the bias circuit 250 of FIG. 1.
- the bias circuit 250 includes a first voltage dividing circuit 252, a buffer 254, a second voltage dividing circuit 256, a clamp circuit 258, and a resistor Ro.
- First voltage divider circuit 252 receives internal power supply voltage V REGD at its input node.
- the first voltage dividing circuit 252 includes resistors R11 and R12. Resistor R11 is connected between the input node of first voltage dividing circuit 252 and capacitor connection terminal FILA, and resistor R12 is connected between capacitor connection terminal FILA and ground.
- the input node of the buffer 254 is connected to the output node of the first voltage dividing circuit 252, that is, the capacitor connection terminal FILA.
- Second voltage divider circuit 256 receives power supply voltage V CC at its input node.
- the voltage generated at the output node FILP of the second voltage dividing circuit 256 is the second reference voltage V FILP .
- the second voltage dividing circuit 256 includes resistors R21 and R22. Resistor R21 is connected between the input node and output node of second voltage divider circuit 256, and resistor R22 is connected between the output node of second voltage divider circuit 256 and ground.
- Resistor Ro is connected between the output node of buffer 254 and the output node of second voltage divider circuit 256.
- the clamp circuit 258 controls the voltage at the output node of the first voltage divider circuit 252 so that the second reference voltage V FILP does not exceed a limit voltage V LIM set below the internal power supply voltage V REGD .
- V REGD 5.3V
- the limit voltage V LIM can be 5V. That is, clamp circuit 258 is inactive when V CC ⁇ 2 ⁇ V LIM , and active when V CC >2 ⁇ V LIM .
- Resistor R22 includes resistors R22a and R22b connected in series.
- a voltage V MON obtained by dividing the second reference voltage V FILP is generated at a connection node between the resistors R22a and R22b.
- the clamp circuit 258 monitors this divided voltage (referred to as a monitoring voltage) V MON , and sinks a sink current I ADJ from the capacitor connection terminal FILA so that the monitoring voltage V MON does not exceed the reference voltage V BGR . do.
- the clamp circuit 258 is a shunt regulator and includes a bandgap reference circuit 260, an operational amplifier OA31, resistors R31 and R32, and a shunt transistor Q31.
- Bandgap reference circuit 260 generates a reference voltage V BGR of 1.2V.
- Shunt transistor Q31 is connected between the output node of second voltage dividing circuit 256, that is, capacitor connection terminal FILA, and ground.
- the operational amplifier OA31 is an error amplifier, and receives the monitoring signal V MON and the reference voltage V BGR according to the second reference voltage V FILP .
- the output of the operational amplifier OA31 is divided by resistors R31 and R32 and supplied to the control terminal (base) of the shunt transistor Q31.
- the clamp circuit 258 adjusts the current amount of the sink current I ADJ by feedback in the state of V CC >2 ⁇ V LIM , that is, in the state of V MON > V BGR , and the voltage of the capacitor connection terminal FILA decreases. As a result, the monitoring voltage V MON becomes equal to the reference voltage V BGR .
- FIG. 4 is a diagram illustrating the operation of the audio amplifier circuit 200 of FIG. 1.
- the horizontal axis shows the power supply voltage VCC , and the vertical axis shows various voltages. Note that the gain g2 of the PWM circuit 220 is 9 dB.
- V FILA first reference voltage V FIL
- V FILP second reference voltage V FILP
- monitoring voltage V MON monitoring voltage
- various voltages when the clamp circuit 258 is activated are shown as solid lines (w/clamp), and various voltages when it is not activated are shown as broken lines (w/o clamp).
- the battery voltage V BAT may be approximately 9-14.4V for a 12V battery, and 18-30V for a 24V battery.
- the voltage V FILP increases linearly with respect to the power supply voltage V CC .
- the voltage V FILP can be maintained at a voltage level that allows the audio signal to be amplified without clipping.
- FIG. 5 is a diagram illustrating the operation of the audio amplifier circuit 200 of FIG. 1.
- the gain g2 of the PWM circuit 220 is 14 dB.
- This audio amplifier circuit 200 operates so that the second reference voltage V FILP does not exceed a limit voltage V LIM set below the internal power supply voltage V REGD . This makes it possible to increase resistance to overvoltage while suppressing an increase in circuit area due to the adoption of high-voltage elements such as DMOS (Double-Diffused MOS).
- DMOS Double-Diffused MOS
- the first reference voltage V FIL V FILA
- V FILA the first reference voltage
- V DRVP V DRVN
- An audio amplifier circuit an input gain circuit that amplifies analog audio signals; a pulse modulator that includes an integrator and generates a pulse signal having a pulse width according to the output signal of the input gain circuit; a power supply terminal that receives the power supply voltage; a driver that receives the power supply voltage and amplifies the pulse signal; a bias circuit that supplies a first reference voltage to the input gain circuit and a second reference voltage to the integrator; an internal voltage source that generates an internal power supply voltage; Equipped with The bias circuit is a first voltage divider circuit receiving the internal power supply voltage at an input node; a buffer whose input node is connected to the output node of the first voltage divider circuit, and whose output node signal is the first reference voltage; a second voltage divider circuit receiving the power supply voltage at an input node and having a signal at an output node being the second reference voltage; a resistor connected between the output node of the buffer and the output node of the second voltage divider circuit; a clamp circuit that controls the voltage at
- the clamp circuit is a shunt transistor connected between the output node of the second voltage divider circuit and ground; an error amplifier that receives a monitoring signal according to the second reference voltage and a predetermined reference voltage, and whose output is connected to the control terminal of the shunt transistor;
- the audio amplifier circuit according to item 1 or 2 comprising:
- An audio amplifier circuit an input gain circuit that amplifies analog audio signals; a pulse modulator that includes an integrator and generates a pulse signal having a pulse width depending on the output signal of the input gain circuit; a power supply terminal that receives the power supply voltage; a driver that receives the power supply voltage and amplifies the pulse signal; a bias circuit that supplies a first reference voltage to the input gain circuit and a second reference voltage to the integrator; an internal voltage source that generates an internal power supply voltage; Equipped with The bias circuit is a first node receiving the internal power supply voltage; a second node receiving the power supply voltage; a third node where the first reference voltage is generated; a fourth node where the second reference voltage is generated; a fifth node to which the capacitor is connected; a first resistor connected between the first node and the fifth node; a second resistor connected between the fifth node and ground; a buffer whose input node is connected to the fifth node; a third resistor connected between the second node and the fourth
- the clamp circuit is a shunt transistor connected between the third node and ground; an error amplifier that receives the monitoring signal and a predetermined reference voltage, and whose output is connected to the control terminal of the shunt transistor;
- the audio amplifier circuit according to item 4 comprising:
- the integrator is an operational amplifier receiving the second reference voltage at a non-inverting input terminal; a capacitor connected between the inverting input node and the output node of the operational amplifier; an input resistor connected between the inverting input node of the operational amplifier and the input node of the pulse modulator; a feedback resistor connected between the inverting input node of the operational amplifier and the output node of the driver; including; When the resistance value of the input resistor is Ri and the resistance value of the feedback resistor is Rf, the resistance value of the fifth resistor is Ri, and the resistance values of the third resistor and the fourth resistor are 2 ⁇ Rf.
- the audio amplifier circuit according to item 4 or 5.
- the present disclosure relates to audio circuits.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Amplifiers (AREA)
- Tone Control, Compression And Expansion, Limiting Amplitude (AREA)
Abstract
第1分圧回路252は、入力ノードに内部電源電圧VREGDを受ける。バッファ254は、入力ノードが第1分圧回路252の出力ノードFILAと接続される。第2分圧回路256は、入力ノードに電源電圧VCCを受ける。第1分圧回路252の出力ノードFILAの電圧が第1基準電圧VFILであり、第2分圧回路256の出力ノードFILPの電圧が第2基準電圧VFILPである。抵抗Roは、バッファ254の出力ノードと、第2分圧回路256の出力ノードFILPの間に接続される。クランプ回路258は、第2基準電圧VFILPが、内部電源電圧VREGD以下に定めたリミット電圧VLIMを超えないように、第1分圧回路252の出力ノードFILAの電圧を制御する。
Description
本開示は、オーディオ回路に関する。
車載用オーディオシステムやカーナビゲーションシステムは、オーディオ回路を備える。オーディオ回路は、車載バッテリからの電圧を電源として動作する。バッテリは、使用中に定格電圧(たとえば14.4V)から大きく変動することから、このような半導体集積回路には、バッテリ電圧の過酷な変動下でも正常に動作することが要求され、出荷前には、ロードダンプ試験やコールドクランク試験などによって性能がテストされる。たとえばロードダンプ試験では、40V付近の過電圧が、半導体集積回路の電源端子に過渡的に印加される。
車載用のオーディオ回路の種類によっては、24Vのバッテリが誤って接続された場合においても、オーディオ再生が可能であることが要求されるものがある。
本開示は係る課題に鑑みてなされたものであり、そのある態様の例示的な目的のひとつは、オーディオ再生機能を残しつつ、過電圧保護が可能なオーディオアンプ回路の提供にある。
一実施形態に係る態様は、オーディオアンプ回路に関する。オーディオアンプ回路は、アナログオーディオ信号を増幅する入力ゲイン回路と、積分器を含み、入力ゲイン回路の出力信号に応じたパルス幅を有するパルス信号を生成するパルス変調器と、電源電圧を受ける電源端子と、電源電圧を受け、パルス信号を増幅するドライバと、入力ゲイン回路に第1基準電圧を供給し、積分器に第2基準電圧を供給するバイアス回路と、内部電源電圧を生成する内部電圧源と、を備える。バイアス回路は、入力ノードに内部電源電圧を受ける第1分圧回路と、入力ノードが第1分圧回路の出力ノードと接続され、出力ノードの信号が第1基準電圧であるバッファと、入力ノードに電源電圧を受け、出力ノードの信号が第2基準電圧である第2分圧回路と、バッファの出力ノードと、第2分圧回路の出力ノードの間に接続される抵抗と、第2基準電圧が、内部電源電圧以下に定めたリミット電圧を超えないように、第1分圧回路の出力ノードの電圧を制御するクランプ回路と、を備える。
本開示の別の態様もまた、オーディオアンプ回路に関する。このオーディオアンプ回路は、アナログオーディオ信号を増幅する入力ゲイン回路と、積分器を含み、入力ゲイン回路の出力信号に応じたパルス幅を有するパルス信号を生成するパルス変調器と、電源電圧を受ける電源端子と、電源電圧を受け、パルス信号を増幅するドライバと、入力ゲイン回路に第1基準電圧を供給し、積分器に第2基準電圧を供給するバイアス回路と、内部電源電圧を生成する内部電圧源と、を備える。バイアス回路は、内部電源電圧を受ける第1ノードと、電源電圧を受ける第2ノードと、第1基準電圧が発生する第3ノードと、第2基準電圧が発生する第4ノードと、キャパシタが接続されるべき第5ノードと、第1ノードと第5ノードの間に接続された第1抵抗と、第5ノードと接地の間に接続された第2抵抗と、入力ノードが第5ノードと接続されたバッファと、第2ノードと第4ノードの間に接続された第3抵抗と、第4ノードと接地の間に接続された第4抵抗と、バッファの出力ノードと第4ノードの間に接続された第5抵抗と、第2基準電圧に応じた監視信号を受け、第2基準電圧と監視信号の誤差に応じた電流を第3ノードからシンクするクランプ回路と、を備える。
なお、以上の構成要素を任意に組み合わせたもの、構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明あるいは本開示の態様として有効である。さらに、この項目(課題を解決するための手段)の記載は、本発明の欠くべからざるすべての特徴を説明するものではなく、したがって、記載されるこれらの特徴のサブコンビネーションも、本発明たり得る。
本開示のある態様によれば、オーディオ再生機能を残しつつ、過電圧保護が可能なオーディオアンプ回路を提供できる。
(実施形態の概要)
本開示のいくつかの例示的な実施形態の概要を説明する。この概要は、後述する詳細な説明の前置きとして、実施形態の基本的な理解を目的として、1つまたは複数の実施形態のいくつかの概念を簡略化して説明するものであり、発明あるいは開示の広さを限定するものではない。この概要は、考えられるすべての実施形態の包括的な概要ではなく、すべての実施形態の重要な要素を特定することも、一部またはすべての態様の範囲を線引きすることも意図していない。便宜上、「一実施形態」は、本明細書に開示するひとつの実施形態(実施例や変形例)または複数の実施形態(実施例や変形例)を指すものとして用いる場合がある。
本開示のいくつかの例示的な実施形態の概要を説明する。この概要は、後述する詳細な説明の前置きとして、実施形態の基本的な理解を目的として、1つまたは複数の実施形態のいくつかの概念を簡略化して説明するものであり、発明あるいは開示の広さを限定するものではない。この概要は、考えられるすべての実施形態の包括的な概要ではなく、すべての実施形態の重要な要素を特定することも、一部またはすべての態様の範囲を線引きすることも意図していない。便宜上、「一実施形態」は、本明細書に開示するひとつの実施形態(実施例や変形例)または複数の実施形態(実施例や変形例)を指すものとして用いる場合がある。
一実施形態に係るオーディオアンプ回路は、アナログオーディオ信号を増幅する入力ゲイン回路と、積分器を含み、入力ゲイン回路の出力信号に応じたパルス幅を有するパルス信号を生成するパルス変調器と、電源電圧を受ける電源端子と、電源電圧を受け、パルス信号を増幅するドライバと、入力ゲイン回路に第1基準電圧を供給し、積分器に第2基準電圧を供給するバイアス回路と、内部電源電圧を生成する内部電圧源と、を備える。バイアス回路は、入力ノードに内部電源電圧を受ける第1分圧回路と、入力ノードが第1分圧回路の出力ノードと接続され、出力ノードの信号が第1基準電圧であるバッファと、入力ノードに電源電圧を受け、出力ノードの信号が第2基準電圧である第2分圧回路と、バッファの出力ノードと、第2分圧回路の出力ノードの間に接続される抵抗と、第2基準電圧が、内部電源電圧以下に定めたリミット電圧を超えないように、第1分圧回路の出力ノードの電圧を制御するクランプ回路と、を備える。
電源電圧がある電圧レベルより低い状態では、第1基準電圧および第2基準電圧は、電源電圧に比例する。電源電圧がある電圧レベルを超えると、クランプ回路がアクティブとなり、第2基準電圧が、所定のリミット電圧にクランプされる。クランプ回路がアクティブであるとき、第1基準電圧は、電源電圧が高いほど、低くなる。この構成によれば、過電圧から回路を保護しつつも、増幅後のオーディオ信号のセンターレベルを、電源電圧に追従して増大させることができるため、オーディオ信号を再生し続けることができる。
一実施形態において、クランプ回路は、シャントレギュレータであってもよい。
一実施形態において、クランプ回路は、第2分圧回路の出力ノードと接地の間に接続されたシャントトランジスタと、第2基準電圧に応じた監視信号と所定の基準電圧を受け、その出力がシャントトランジスタの制御端子と接続されたエラーアンプと、を含んでもよい。
一実施形態に係るオーディオアンプ回路は、アナログオーディオ信号を増幅する入力ゲイン回路と、積分器を含み、入力ゲイン回路の出力信号に応じたパルス幅を有するパルス信号を生成するパルス変調器と、電源電圧を受ける電源端子と、電源電圧を受け、パルス信号を増幅するドライバと、入力ゲイン回路に第1基準電圧を供給し、積分器に第2基準電圧を供給するバイアス回路と、内部電源電圧を生成する内部電圧源と、を備える。バイアス回路は、内部電源電圧を受ける第1ノードと、電源電圧を受ける第2ノードと、第1基準電圧が発生する第3ノードと、第2基準電圧が発生する第4ノードと、キャパシタが接続されるべき第5ノードと、第1ノードと第5ノードの間に接続された第1抵抗と、第5ノードと接地の間に接続された第2抵抗と、入力ノードが第5ノードと接続されたバッファと、第2ノードと第4ノードの間に接続された第3抵抗と、第4ノードと接地の間に接続された第4抵抗と、バッファの出力ノードと第4ノードの間に接続された第5抵抗と、第2基準電圧に応じた監視信号を受け、第2基準電圧と監視信号の誤差に応じた電流を第3ノードからシンクするクランプ回路と、を備える。
電源電圧がある電圧レベルより低い状態では、第1基準電圧および第2基準電圧は、電源電圧に比例する。電源電圧がある電圧レベルを超えると、クランプ回路がアクティブとなり、第2基準電圧が、所定の目標レベルを維持するように、第1基準電圧が調節される。これにより、過電圧から回路を保護しつつ、オーディオ信号を再生し続けることができる。
一実施形態において、クランプ回路は、第3ノードと接地の間に接続されたシャントトランジスタと、第2基準電圧に応じた監視信号と所定の基準電圧を受け、その出力がシャントトランジスタの制御端子と接続されたエラーアンプと、を含んでもよい。
一実施形態において、積分器は、非反転入力端子に第2基準電圧を受けるオペアンプと、オペアンプの反転入力ノードと出力ノードの間に接続されたキャパシタと、オペアンプの反転入力ノードと、パルス変調器の入力ノードの間に接続された入力抵抗と、オペアンプの反転入力ノードと、ドライバの出力ノードの間に接続されたフィードバック抵抗と、を含んでもよい。入力抵抗の抵抗値をRi、フィードバック抵抗の抵抗値をRfとするとき、第5抵抗の抵抗値はRiであり、第3抵抗および第4抵抗の抵抗値は2×Rfであってもよい。
一実施形態において、オーディオアンプ回路は、ひとつの半導体基板に一体集積化されてもよい。「一体集積化」とは、回路の構成要素のすべてが半導体基板上に形成される場合や、回路の主要構成要素が一体集積化される場合が含まれ、回路定数の調節用に一部の抵抗やキャパシタなどが半導体基板の外部に設けられていてもよい。回路を1つのチップ上に集積化することにより、回路面積を削減することができるとともに、回路素子の特性を均一に保つことができる。
(実施形態)
以下、好適な実施形態について、図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施形態は、開示および発明を限定するものではなく例示であって、実施形態に記述されるすべての特徴やその組み合わせは、必ずしも開示および発明の本質的なものであるとは限らない。
以下、好適な実施形態について、図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施形態は、開示および発明を限定するものではなく例示であって、実施形態に記述されるすべての特徴やその組み合わせは、必ずしも開示および発明の本質的なものであるとは限らない。
本明細書において、「部材Aが、部材Bと接続された状態」とは、部材Aと部材Bが物理的に直接的に接続される場合のほか、部材Aと部材Bが、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。
同様に、「部材Cが、部材Aと部材Bの間に接続された(設けられた)状態」とは、部材Aと部材C、あるいは部材Bと部材Cが直接的に接続される場合のほか、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。
図1は、実施形態に係るオーディオアンプ回路200を備える車載オーディオシステム100の回路図である。車載オーディオシステム100は、車載バッテリ(以下、単にバッテリという)102、フィルタ104、スピーカ106およびオーディオアンプ回路200を備える。
バッテリ102は、定格12Vのバッテリ電圧VBATを生成する。オーディオアンプ回路200は、ひとつの半導体基板に集積化された機能IC(Integrated Circuit)であり、オーディオアンプ回路200には、電源電圧VCCとしてバッテリ電圧VBATが供給されている。オーディオアンプ回路200は、図示しない音源からの入力オーディオ信号VINを受け、入力オーディオ信号VINを増幅し、負荷であるスピーカ106を駆動する。本実施形態において、車載オーディオシステム100は完全差動で構成されており、入力オーディオ信号VAUDは、逆相のVAUDN,VAUDPを含む差動信号である。
オーディオアンプ回路200は、図示しない音源からカップリングキャパシタを介して、差動入力端子INN,INPに、差動信号VAUDN,VAUDPを受ける。またオーディオアンプ回路200の差動出力端子OUTP,OUTNには、フィルタ104を介してスピーカ106が接続される。信号や端子に付される添え字のPは正相を表し、添え字のNは逆相を表す。正相と逆相の両成分を総称する場合には、添え字を省略して表記する。
オーディオアンプ回路200は、D級アンプ(スイッチングアンプ)であり、入力オーディオ信号VINに応じたデューティサイクルを有するパルス駆動信号を生成する。パルス駆動信号VDRVは、フィルタ104によって高周波成分が除去され、オーディオ帯域のアナログオーディオ信号VOUTがスピーカ106に供給される。
オーディオアンプ回路200の電源端子VCCは、バッテリ102と接続され、電源電圧VCCを受ける。キャパシタ接続端子FILAには、外付けのキャパシタC1が接続される。パルス駆動信号VDRVP,VDRVNは、電源電圧VCCと等しい振幅を有する。
オーディオアンプ回路200は、入力ゲイン回路210、PWM(Pulse Width Modulation)回路220、ドライバ回路230、内部電圧源240、バイアス回路250を備える。入力ゲイン回路210、PWM回路220、ドライバ回路230はそれぞれ、正相信号と逆相信号それぞれに対して同じ構成を有する。
内部電圧源240は、内部電源電圧VREGDを生成する。
入力ゲイン回路210は、内部電圧源240から供給される内部電源電圧VREGDを電源電圧として動作する。また入力ゲイン回路210には、バイアス回路250から第1基準電圧VFILが供給される。第1基準電圧VFILは、VAUDの最大振幅と等しいか、それより大きい。本実施形態において、第1基準電圧VFILは、内部電源電圧VREGDの1/2倍の電圧である。
VFIL=VREGD/2 …(1)
内部電源電圧VREGDは、たとえば5.3Vであり、第1基準電圧VFILは2.65Vとすることができる。
VFIL=VREGD/2 …(1)
内部電源電圧VREGDは、たとえば5.3Vであり、第1基準電圧VFILは2.65Vとすることができる。
入力ゲイン回路210は、入力オーディオ信号VAUDを増幅する。具体的には、入力ゲイン回路210Nは、逆相オーディオ信号VAUDNを増幅し、入力ゲイン回路210Pは、正相オーディオ信号VAUDPを増幅する。入力ゲイン回路210N,210Pのゲインをg1とする。
入力端子INNには、カップリングキャパシタを介して、差動オーディオ信号VAUDNが入力される。入力端子INNの信号VINNは、
VINN=VAUDN+VFIL …(2)
である。入力ゲイン回路210Nの出力信号は、
VN=g1×VAUDN+VFIL …(3)
である。
VINN=VAUDN+VFIL …(2)
である。入力ゲイン回路210Nの出力信号は、
VN=g1×VAUDN+VFIL …(3)
である。
同様に、入力端子INPの信号VINPは、
VINP=VAUDP+VFIL …(4)
であり、入力ゲイン回路210Pの出力信号は、
VP=g1×VAUDP+VFIL …(5)
である。
VINP=VAUDP+VFIL …(4)
であり、入力ゲイン回路210Pの出力信号は、
VP=g1×VAUDP+VFIL …(5)
である。
PWM回路220は、フィードバック型のパルス変調器である。PWM回路220は、積分器222P,222N、コンパレータ224P,224N、オシレータ226を含む。PWM回路220には、バイアス回路250から、第2基準電圧VFILPが供給される。
積分器222Pは、前段の入力ゲイン回路210Nの出力信号VNと、後段のドライバ回路230Pが生成する駆動パルスVDRVPを受ける。積分器222Pの非反転入力ノードには、第2基準電圧VFILPが入力されている。積分器222Pは、誤差増幅器として機能し、2つの電圧VNとVDRVPを抵抗Riおよび抵抗Rfによって内分した電圧の積分値(平滑化した電圧)と、第2基準電圧VFILPとの誤差を増幅する。
コンパレータ224Pは、積分器222Pの出力電圧VERRPと、オシレータ226が生成する三角波の周期信号を比較し、パルス信号SPWMPを生成する。コンパレータ224Pの電源電圧は、内部電源電圧VREGDであり、パルス信号SPWMPのハイレベルはVREGDであり、パルス信号SPWMPのローレベルは、0Vである。
ドライバ回路230は、ドライバ回路230Pおよびドライバ回路230Nを含む。ドライバ回路230Pには、電源電圧VCCが供給される。ドライバ回路230Pは、パルス信号SPWMPを受け、電源電圧VCCがハイレベル、GND(0V)がローレベルである駆動パルスVDRVPを生成する。外付けのフィルタ104によって駆動パルスVDRVPの搬送波成分が除去され、出力電圧VOUTPが生成される。
積分器222P、コンパレータ224P、ドライバ回路230Pはフィードバックループを形成している。このフィードバックループにより、出力電圧VOUTP(およびVDRVP)の直流成分は、VFILPとなり、交流成分(オーディオ成分)は、g1×(-g2)×VAUDNとなる。g2は、PWM回路220のゲインであり、g2=Rf/Riである。
積分器222N,コンパレータ224Nについても同様に動作する。出力電圧VOUTN(およびVDRVN)の直流成分は、VFILPとなり、交流成分(オーディオ成分)は、g1×(-g2)×VINPとなる。
以上が車載オーディオシステム100の全体の構成である。図2は、図1の車載オーディオシステム100のレベルダイアグラムである。図2には、差動入力端子INNの電圧VINN、入力ゲイン回路210Nの出力信号VN、PWM信号SPWMP、駆動信号VDRVP、出力電圧VOUTPが示される。
第1基準電圧VFILは、内部電源電圧VREGDの1/2であり、電圧VINNは、バイアスレベルVFILにオーディオ信号VAUDNを重畳した信号である。
入力ゲイン回路210Nの出力信号VNのバイアスレベルは、VFILであり、信号振幅(交流成分)は、入力信号VAUDNのg1倍である。
PWM信号SPWMPは、内部電源電圧VREGDをハイレベル、接地電圧GND(0V)をローレベルとするパルス信号であり、そのデューティサイクルは、電圧VNに応じている。具体的には、VN=VFILのときに、PWM信号SPWMPのデューティサイクルは50%となる。積分器222Pは反転増幅器であるから、VNがVFILより低くなると、PWM信号SPWMPのデューティサイクルは50%より高くなり、VNがVFILより高くなると、デューティサイクルは50%より低くなる。
駆動信号VDRVPは、電源電圧VCCをハイレベル、接地電圧GND(0V)をローレベルとするパルス信号である。駆動信号VDRVPのデューティサイクルは、PWM信号SPWMPのデューティサイクルと等しい。
出力信号VOUTPのバイアスレベルは、VCC/2であり、その信号振幅(交流成分)は、入力信号VAUDNのg1×(-g2)倍である。
スピーカ106の両端間に印加される電圧VSPKは、VOUTP-VOUTNであり、信号振幅は、出力信号VOUTPの2倍となる。
続いてバイアス回路250の構成を説明する。
図3は、図1のバイアス回路250の回路図である。バイアス回路250は、第1分圧回路252、バッファ254、第2分圧回路256、クランプ回路258、抵抗Roを備える。
第1分圧回路252は、入力ノードに内部電源電圧VREGDを受ける。第1分圧回路252は、抵抗R11,R12を含む。抵抗R11は、第1分圧回路252の入力ノードとキャパシタ接続端子FILAの間に接続され、抵抗R12は、キャパシタ接続端子FILAと接地の間に接続される。
第1分圧回路252の抵抗R11,R12の抵抗値を等しく定めるとき(R11=R12)、キャパシタ接続端子FILAの電圧VFILAは、
VFILA=VREGD/2 …(6)
となる。
VFILA=VREGD/2 …(6)
となる。
バッファ254は、入力ノードが第1分圧回路252の出力ノード、すなわちキャパシタ接続端子FILAと接続される。バッファ254の出力ノードの信号が第1基準電圧VFILであり、これはキャパシタ接続端子FILAの電圧VFILAと等しい。したがって通常状態(非過電圧状態)における第1基準電圧VFILは、
VFIL=VFILA=VREGD/2 …(7)
となる。
VFIL=VFILA=VREGD/2 …(7)
となる。
第2分圧回路256は、入力ノードに電源電圧VCCを受ける。第2分圧回路256の出力ノードFILPに発生する電圧が第2基準電圧VFILPである。第2分圧回路256は、抵抗R21,R22を含む。抵抗R21は、第2分圧回路256の入力ノードと出力ノードの間に接続され、抵抗R22は、第2分圧回路256の出力ノードと接地の間に接続される。
抵抗Roは、バッファ254の出力ノードと、第2分圧回路256の出力ノードの間に接続される。抵抗Ro,R21,R22の抵抗値の比は、Ri:2Rf:2Rfとすることができる。Ro=Ri、R21=R22=2×Rfとしてもよい。なお上述のように、g2=Rf/Riであるから、
Ro:R21:R22=1:2g2:2g2
とすることができる。このとき、第2基準電圧VFILPは、通常状態において以下の式(8)で表される。
Ro:R21:R22=1:2g2:2g2
とすることができる。このとき、第2基準電圧VFILPは、通常状態において以下の式(8)で表される。
クランプ回路258は、第2基準電圧VFILPが、内部電源電圧VREGD以下に定めたリミット電圧VLIMを超えないように、第1分圧回路252の出力ノードの電圧を制御する。たとえばVREGD=5.3Vのとき、リミット電圧VLIMは、5Vとすることができる。つまり、クランプ回路258は、VCC<2×VLIMであるときには非アクティブであり、VCC>2×VLIMのときにアクティブとなる。
抵抗R22は、直列に接続される抵抗R22aとR22bを含む。抵抗R22aとR22bの接続ノードには、第2基準電圧VFILPを分圧した電圧VMONが発生する。クランプ回路258は、この分圧後の電圧(監視電圧という)VMONを監視し、監視電圧VMONが、基準電圧VBGRを超えないように、キャパシタ接続端子FILAから、シンク電流IADJをシンクする。
クランプ回路258は、シャントレギュレータであり、バンドギャップリファレンス回路260、オペアンプOA31、抵抗R31,R32、シャントトランジスタQ31を含む。
バンドギャップリファレンス回路260は、1.2Vの基準電圧VBGRを生成する。シャントトランジスタQ31は、第2分圧回路256の出力ノード、つまりキャパシタ接続端子FILAと接地の間に接続される。オペアンプOA31は、エラーアンプであり、第2基準電圧VFILPに応じた監視信号VMONと基準電圧VBGRを受ける。オペアンプOA31の出力は、抵抗R31,R32によって分圧され、シャントトランジスタQ31の制御端子(ベース)に供給される。
クランプ回路258によって、VCC>2×VLIMの状態では、つまりVMON>VBGRの状態では、フィードバックによってシンク電流IADJの電流量が調節され、キャパシタ接続端子FILAの電圧が低下し、その結果、監視電圧VMONが基準電圧VBGRと等しくなる。
VCC<2×VLIMの状態、つまりVMON<VBGRの状態では、シャントトランジスタQ31はオフとなり、シンク電流IADJはゼロであるから、キャパシタ接続端子FILAの電圧には影響は与えない。このときの第2基準電圧VFILPは、式(8)で表される。
以上がバイアス回路250の構成である。続いて図1の車載オーディオシステム100の動作を説明する。
図4は、図1のオーディオアンプ回路200の動作を説明する図である。横軸は電源電圧VCCを、縦軸は、各種電圧を示す。なお、PWM回路220のゲインg2は9dBである。
具体的には、キャパシタ接続端子FILAの電圧VFILA(第1基準電圧VFIL)、第2基準電圧VFILP、監視電圧VMONが示されている。比較のために、クランプ回路258を動作させたときの各種電圧を実線(w/ clamp)、動作させないときの各種電圧を破線(w/o clamp)で示す。
バッテリ電圧VBATは、12Vバッテリの場合、9~14.4V程度であり、24Vバッテリの場合、18~30Vでありうる。オーディオアンプ回路200は、12Vのバッテリ102を想定して設計されており、14.4Vからマージンを考慮して、18Vを動作最大電圧として設計されるものとする。また、24Vバッテリが誤って接続された場合にも、1Wのオーディオ再生を維持することが求められ、したがって、オーディオアンプ回路200は、VCC=30Vを過電圧保護の電圧として設計されるものとする。
クランプ回路258を動作させない場合、電源電圧VCCが過電圧となったときに、電圧VFILPは電源電圧VCCに対して線形に上昇していく。これに対して、クランプ回路258を動作させることで、電源電圧VCCが過電圧となっても、電圧VFILPを、オーディオ信号をクリップせずに増幅できる電圧レベルに保つことができる。
図5は、図1のオーディオアンプ回路200の動作を説明する図である。図5において、PWM回路220のゲインg2は14dBである。
以上がオーディオアンプ回路200の動作である。
このオーディオアンプ回路200では、第2基準電圧VFILPが内部電源電圧VREGD以下に定めたリミット電圧VLIMを超えないように動作する。これにより、DMOS(Double-Diffused MOS)などの高耐圧素子の採用による回路面積の増大を抑えつつ、過電圧に対する耐性を高めることができる。
オーディオアンプ回路200の利点は、比較技術との対比によって明確となる。比較技術では、電源電圧VCCが過電圧となると、第1基準電圧VFIL(VFILA)は低下させずに、第2基準電圧VFILPだけをクランプするものとする。この場合、駆動電圧VDRVP(VDRVN)のバイアス電圧(中点電圧)が、VCC/2からずれてしまう。
これに対して、実施形態に係るオーディオアンプ回路200では、電源電圧VCCが過電圧となったときに、電源電圧VCCの上昇にともなって、第1基準電圧VFIL(VFILA)が低下する。これにより、駆動電圧VDRVP(VDRVN)のバイアス電圧(中点電圧)を、VCC/2に維持することができる。
本実施形態によれば、動作保証電源電圧範囲で最適なゲイン設定を行っても、24Vのバッテリが誤って接続された場合に、1W相当の出力が可能である。逆に言えば、過電圧動作を想定して、PWM回路220のゲインg2を高く設定する必要がなくなるため、ノイズおよびオフセット電圧の特性を悪化させることなく、過電圧状態での動作を実現できる。
(付記)
本明細書には以下の技術が開示される。
本明細書には以下の技術が開示される。
(項目1)
オーディオアンプ回路であって、
アナログオーディオ信号を増幅する入力ゲイン回路と、
積分器を含み、前記入力ゲイン回路の出力信号に応じたパルス幅を有するパルス信号を生成するパルス変調器と、
電源電圧を受ける電源端子と、
前記電源電圧を受け、前記パルス信号を増幅するドライバと、
前記入力ゲイン回路に第1基準電圧を供給し、前記積分器に第2基準電圧を供給するバイアス回路と、
内部電源電圧を生成する内部電圧源と、
を備え、
前記バイアス回路は、
入力ノードに前記内部電源電圧を受ける第1分圧回路と、
入力ノードが前記第1分圧回路の出力ノードと接続され、出力ノードの信号が前記第1基準電圧であるバッファと、
入力ノードに前記電源電圧を受け、出力ノードの信号が前記第2基準電圧である第2分圧回路と、
前記バッファの前記出力ノードと、前記第2分圧回路の前記出力ノードの間に接続される抵抗と、
前記第2基準電圧が、前記内部電源電圧以下に定めたリミット電圧を超えないように、前記第1分圧回路の前記出力ノードの電圧を制御するクランプ回路と、
を備える、オーディオアンプ回路。
オーディオアンプ回路であって、
アナログオーディオ信号を増幅する入力ゲイン回路と、
積分器を含み、前記入力ゲイン回路の出力信号に応じたパルス幅を有するパルス信号を生成するパルス変調器と、
電源電圧を受ける電源端子と、
前記電源電圧を受け、前記パルス信号を増幅するドライバと、
前記入力ゲイン回路に第1基準電圧を供給し、前記積分器に第2基準電圧を供給するバイアス回路と、
内部電源電圧を生成する内部電圧源と、
を備え、
前記バイアス回路は、
入力ノードに前記内部電源電圧を受ける第1分圧回路と、
入力ノードが前記第1分圧回路の出力ノードと接続され、出力ノードの信号が前記第1基準電圧であるバッファと、
入力ノードに前記電源電圧を受け、出力ノードの信号が前記第2基準電圧である第2分圧回路と、
前記バッファの前記出力ノードと、前記第2分圧回路の前記出力ノードの間に接続される抵抗と、
前記第2基準電圧が、前記内部電源電圧以下に定めたリミット電圧を超えないように、前記第1分圧回路の前記出力ノードの電圧を制御するクランプ回路と、
を備える、オーディオアンプ回路。
(項目2)
前記クランプ回路は、シャントレギュレータである、項目1に記載のオーディオアンプ回路。
前記クランプ回路は、シャントレギュレータである、項目1に記載のオーディオアンプ回路。
(項目3)
前記クランプ回路は、
前記第2分圧回路の前記出力ノードと接地の間に接続されたシャントトランジスタと、
前記第2基準電圧に応じた監視信号と所定の基準電圧を受け、その出力が前記シャントトランジスタの制御端子と接続されたエラーアンプと、
を含む、項目1または2に記載のオーディオアンプ回路。
前記クランプ回路は、
前記第2分圧回路の前記出力ノードと接地の間に接続されたシャントトランジスタと、
前記第2基準電圧に応じた監視信号と所定の基準電圧を受け、その出力が前記シャントトランジスタの制御端子と接続されたエラーアンプと、
を含む、項目1または2に記載のオーディオアンプ回路。
(項目4)
オーディオアンプ回路であって、
アナログオーディオ信号を増幅する入力ゲイン回路と、
積分器を含み、前記入力ゲイン回路の出力信号に応じたパルス幅を有するパルス信号を生成するパルス変調器と、
電源電圧を受ける電源端子と、
前記電源電圧を受け、前記パルス信号を増幅するドライバと、
前記入力ゲイン回路に第1基準電圧を供給し、前記積分器に第2基準電圧を供給するバイアス回路と、
内部電源電圧を生成する内部電圧源と、
を備え、
前記バイアス回路は、
前記内部電源電圧を受ける第1ノードと、
前記電源電圧を受ける第2ノードと、
前記第1基準電圧が発生する第3ノードと、
前記第2基準電圧が発生する第4ノードと、
キャパシタが接続されるべき第5ノードと、
前記第1ノードと前記第5ノードの間に接続された第1抵抗と、
前記第5ノードと接地の間に接続された第2抵抗と、
入力ノードが前記第5ノードと接続されたバッファと、
前記第2ノードと前記第4ノードの間に接続された第3抵抗と、
前記第4ノードと前記接地の間に接続された第4抵抗と、
前記バッファの出力ノードと前記第4ノードの間に接続された第5抵抗と、
前記第2基準電圧に応じた監視信号を受け、前記第2基準電圧と前記監視信号の誤差に応じた電流を前記第3ノードからシンクするクランプ回路と、
を備える、オーディオアンプ回路。
オーディオアンプ回路であって、
アナログオーディオ信号を増幅する入力ゲイン回路と、
積分器を含み、前記入力ゲイン回路の出力信号に応じたパルス幅を有するパルス信号を生成するパルス変調器と、
電源電圧を受ける電源端子と、
前記電源電圧を受け、前記パルス信号を増幅するドライバと、
前記入力ゲイン回路に第1基準電圧を供給し、前記積分器に第2基準電圧を供給するバイアス回路と、
内部電源電圧を生成する内部電圧源と、
を備え、
前記バイアス回路は、
前記内部電源電圧を受ける第1ノードと、
前記電源電圧を受ける第2ノードと、
前記第1基準電圧が発生する第3ノードと、
前記第2基準電圧が発生する第4ノードと、
キャパシタが接続されるべき第5ノードと、
前記第1ノードと前記第5ノードの間に接続された第1抵抗と、
前記第5ノードと接地の間に接続された第2抵抗と、
入力ノードが前記第5ノードと接続されたバッファと、
前記第2ノードと前記第4ノードの間に接続された第3抵抗と、
前記第4ノードと前記接地の間に接続された第4抵抗と、
前記バッファの出力ノードと前記第4ノードの間に接続された第5抵抗と、
前記第2基準電圧に応じた監視信号を受け、前記第2基準電圧と前記監視信号の誤差に応じた電流を前記第3ノードからシンクするクランプ回路と、
を備える、オーディオアンプ回路。
(項目5)
前記クランプ回路は、
前記第3ノードと接地の間に接続されたシャントトランジスタと、
前記監視信号と所定の基準電圧を受け、その出力が前記シャントトランジスタの制御端子と接続されたエラーアンプと、
を含む、項目4に記載のオーディオアンプ回路。
前記クランプ回路は、
前記第3ノードと接地の間に接続されたシャントトランジスタと、
前記監視信号と所定の基準電圧を受け、その出力が前記シャントトランジスタの制御端子と接続されたエラーアンプと、
を含む、項目4に記載のオーディオアンプ回路。
(項目6)
前記積分器は、
非反転入力端子に前記第2基準電圧を受けるオペアンプと、
前記オペアンプの反転入力ノードと出力ノードの間に接続されたキャパシタと、
前記オペアンプの前記反転入力ノードと、前記パルス変調器の入力ノードの間に接続された入力抵抗と、
前記オペアンプの前記反転入力ノードと、前記ドライバの出力ノードの間に接続されたフィードバック抵抗と、
を含み、
前記入力抵抗の抵抗値をRi、前記フィードバック抵抗の抵抗値をRfとするとき、前記第5抵抗の抵抗値はRiであり、前記第3抵抗および前記第4抵抗の抵抗値は2×Rfである、項目4または5に記載のオーディオアンプ回路。
前記積分器は、
非反転入力端子に前記第2基準電圧を受けるオペアンプと、
前記オペアンプの反転入力ノードと出力ノードの間に接続されたキャパシタと、
前記オペアンプの前記反転入力ノードと、前記パルス変調器の入力ノードの間に接続された入力抵抗と、
前記オペアンプの前記反転入力ノードと、前記ドライバの出力ノードの間に接続されたフィードバック抵抗と、
を含み、
前記入力抵抗の抵抗値をRi、前記フィードバック抵抗の抵抗値をRfとするとき、前記第5抵抗の抵抗値はRiであり、前記第3抵抗および前記第4抵抗の抵抗値は2×Rfである、項目4または5に記載のオーディオアンプ回路。
(項目7)
ひとつの半導体基板に一体集積化される、項目1から6のいずれかに記載のオーディオアンプ回路。
ひとつの半導体基板に一体集積化される、項目1から6のいずれかに記載のオーディオアンプ回路。
(項目8)
項目1から7のいずれかに記載のオーディオアンプ回路を備える、車載電子機器。
項目1から7のいずれかに記載のオーディオアンプ回路を備える、車載電子機器。
本開示は、オーディオ回路に関する。
100 車載オーディオシステム
102 バッテリ
104 フィルタ
106 スピーカ
200 オーディオアンプ回路
210 入力ゲイン回路
220 PWM回路
222 積分器
224 コンパレータ
226 オシレータ
230 ドライバ回路
240 内部電圧源
250 バイアス回路
252 第1分圧回路
254 バッファ
256 第2分圧回路
258 クランプ回路
Ro 抵抗
102 バッテリ
104 フィルタ
106 スピーカ
200 オーディオアンプ回路
210 入力ゲイン回路
220 PWM回路
222 積分器
224 コンパレータ
226 オシレータ
230 ドライバ回路
240 内部電圧源
250 バイアス回路
252 第1分圧回路
254 バッファ
256 第2分圧回路
258 クランプ回路
Ro 抵抗
Claims (8)
- オーディオアンプ回路であって、
アナログオーディオ信号を増幅する入力ゲイン回路と、
積分器を含み、前記入力ゲイン回路の出力信号に応じたパルス幅を有するパルス信号を生成するパルス変調器と、
電源電圧を受ける電源端子と、
前記電源電圧を受け、前記パルス信号を増幅するドライバと、
前記入力ゲイン回路に第1基準電圧を供給し、前記積分器に第2基準電圧を供給するバイアス回路と、
内部電源電圧を生成する内部電圧源と、
を備え、
前記バイアス回路は、
入力ノードに前記内部電源電圧を受ける第1分圧回路と、
入力ノードが前記第1分圧回路の出力ノードと接続され、出力ノードの信号が前記第1基準電圧であるバッファと、
入力ノードに前記電源電圧を受け、出力ノードの信号が前記第2基準電圧である第2分圧回路と、
前記バッファの前記出力ノードと、前記第2分圧回路の前記出力ノードの間に接続される抵抗と、
前記第2基準電圧が、前記内部電源電圧以下に定めたリミット電圧を超えないように、前記第1分圧回路の前記出力ノードの電圧を制御するクランプ回路と、
を備える、オーディオアンプ回路。 - 前記クランプ回路は、シャントレギュレータである、請求項1に記載のオーディオアンプ回路。
- 前記クランプ回路は、
前記第2分圧回路の前記出力ノードと接地の間に接続されたシャントトランジスタと、
前記第2基準電圧に応じた監視信号と所定の基準電圧を受け、その出力が前記シャントトランジスタの制御端子と接続されたエラーアンプと、
を含む、請求項1または2に記載のオーディオアンプ回路。 - オーディオアンプ回路であって、
アナログオーディオ信号を増幅する入力ゲイン回路と、
積分器を含み、前記入力ゲイン回路の出力信号に応じたパルス幅を有するパルス信号を生成するパルス変調器と、
電源電圧を受ける電源端子と、
前記電源電圧を受け、前記パルス信号を増幅するドライバと、
前記入力ゲイン回路に第1基準電圧を供給し、前記積分器に第2基準電圧を供給するバイアス回路と、
内部電源電圧を生成する内部電圧源と、
を備え、
前記バイアス回路は、
前記内部電源電圧を受ける第1ノードと、
前記電源電圧を受ける第2ノードと、
前記第1基準電圧が発生する第3ノードと、
前記第2基準電圧が発生する第4ノードと、
キャパシタが接続されるべき第5ノードと、
前記第1ノードと前記第5ノードの間に接続された第1抵抗と、
前記第5ノードと接地の間に接続された第2抵抗と、
入力ノードが前記第5ノードと接続されたバッファと、
前記第2ノードと前記第4ノードの間に接続された第3抵抗と、
前記第4ノードと前記接地の間に接続された第4抵抗と、
前記バッファの出力ノードと前記第4ノードの間に接続された第5抵抗と、
前記第2基準電圧に応じた監視信号を受け、前記第2基準電圧と前記監視信号の誤差に応じた電流を前記第3ノードからシンクするクランプ回路と、
を備える、オーディオアンプ回路。 - 前記クランプ回路は、
前記第3ノードと接地の間に接続されたシャントトランジスタと、
前記監視信号と所定の基準電圧を受け、その出力が前記シャントトランジスタの制御端子と接続されたエラーアンプと、
を含む、請求項4に記載のオーディオアンプ回路。 - 前記積分器は、
非反転入力端子に前記第2基準電圧を受けるオペアンプと、
前記オペアンプの反転入力ノードと出力ノードの間に接続されたキャパシタと、
前記オペアンプの前記反転入力ノードと、前記パルス変調器の入力ノードの間に接続された入力抵抗と、
前記オペアンプの前記反転入力ノードと、前記ドライバの出力ノードの間に接続されたフィードバック抵抗と、
を含み、
前記入力抵抗の抵抗値をRi、前記フィードバック抵抗の抵抗値をRfとするとき、前記第5抵抗の抵抗値はRiであり、前記第3抵抗および前記第4抵抗の抵抗値は2×Rfである、請求項4または5に記載のオーディオアンプ回路。 - ひとつの半導体基板に一体集積化される、請求項1から6のいずれかに記載のオーディオアンプ回路。
- 請求項1から7のいずれかに記載のオーディオアンプ回路を備える、車載電子機器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202380016041.7A CN118511429A (zh) | 2022-03-17 | 2023-03-03 | 音频放大电路、车载电子设备 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022043071 | 2022-03-17 | ||
JP2022-043071 | 2022-03-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023176526A1 true WO2023176526A1 (ja) | 2023-09-21 |
Family
ID=88023653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/008154 WO2023176526A1 (ja) | 2022-03-17 | 2023-03-03 | オーディオアンプ回路、車載電子機器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN118511429A (ja) |
WO (1) | WO2023176526A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011188045A (ja) * | 2010-03-05 | 2011-09-22 | Yamaha Corp | 増幅回路 |
JP2021072551A (ja) * | 2019-10-31 | 2021-05-06 | ローム株式会社 | オーディオ回路、それを用いた電子機器および車載オーディオシステム |
JP2021071930A (ja) * | 2019-10-31 | 2021-05-06 | ローム株式会社 | 半導体集積回路、車載電子部品、車載電子機器 |
-
2023
- 2023-03-03 WO PCT/JP2023/008154 patent/WO2023176526A1/ja unknown
- 2023-03-03 CN CN202380016041.7A patent/CN118511429A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011188045A (ja) * | 2010-03-05 | 2011-09-22 | Yamaha Corp | 増幅回路 |
JP2021072551A (ja) * | 2019-10-31 | 2021-05-06 | ローム株式会社 | オーディオ回路、それを用いた電子機器および車載オーディオシステム |
JP2021071930A (ja) * | 2019-10-31 | 2021-05-06 | ローム株式会社 | 半導体集積回路、車載電子部品、車載電子機器 |
Also Published As
Publication number | Publication date |
---|---|
CN118511429A (zh) | 2024-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2639899B1 (en) | Dc coupling type laser drive circuit and drive method for semiconductor laser element | |
US6724260B2 (en) | Low power current feedback amplifier | |
US20080129377A1 (en) | Voltage regulator with current sink for diverting external current and digital amplifier including the same | |
JP3995927B2 (ja) | リニア集積回路に周波数安定度改善のためにラプラス変換零を加える方法および回路 | |
US10797664B2 (en) | Apparatuses and methods for a chopper instrumentation amplifier | |
TW201428443A (zh) | 二級低壓降線性電源供應系統與方法 | |
US20080180080A1 (en) | Linear voltage regulator with improved large transient response | |
US7227390B1 (en) | Apparatus and method for a driver with an adaptive drive strength for a class D amplifier | |
US8902005B2 (en) | Apparatus and method for wide common mode difference | |
WO2023176526A1 (ja) | オーディオアンプ回路、車載電子機器 | |
JP7271393B2 (ja) | 半導体集積回路、車載電子部品、車載電子機器 | |
US7362157B2 (en) | Circuit arrangement with a transistor having a reduced reverse current | |
EP1887830A2 (en) | Protection circuit and load current detection circuit | |
US20210351756A1 (en) | Power amplifier and overcurrent protection circuit | |
US7439801B2 (en) | Amplifier circuit with multiple power supplies | |
US6731165B1 (en) | Electronic amplifier | |
US20230238926A1 (en) | Audio circuit | |
US11936349B2 (en) | Audio circuit, electronic device and vehicle audio system with the audio circuit | |
US9100731B2 (en) | Low power microphone circuits for vehicles | |
US6456140B1 (en) | Voltage level translation circuits | |
US8912843B2 (en) | Ultra low cut-off frequency filter | |
WO2023190209A1 (ja) | オーディオアンプ回路、車載電子機器 | |
US8675889B2 (en) | Two wire autobias vehicular microphone system having user input functionality and method of forming same | |
US20090243392A1 (en) | Methods for shifting common mode between different power domains and apparatus thereof | |
US11435771B2 (en) | Low dropout regulator (LDO) circuit with smooth pass transistor partitioning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23770483 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024507748 Country of ref document: JP Kind code of ref document: A |