WO2023176250A1 - 基準操舵角決定方法及び車両制御装置 - Google Patents

基準操舵角決定方法及び車両制御装置 Download PDF

Info

Publication number
WO2023176250A1
WO2023176250A1 PCT/JP2023/004964 JP2023004964W WO2023176250A1 WO 2023176250 A1 WO2023176250 A1 WO 2023176250A1 JP 2023004964 W JP2023004964 W JP 2023004964W WO 2023176250 A1 WO2023176250 A1 WO 2023176250A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering angle
vehicle
steering
lateral movement
amount
Prior art date
Application number
PCT/JP2023/004964
Other languages
English (en)
French (fr)
Inventor
駿甫 佃
Original Assignee
日野自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日野自動車株式会社 filed Critical 日野自動車株式会社
Publication of WO2023176250A1 publication Critical patent/WO2023176250A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits

Definitions

  • the present disclosure relates to a reference steering angle determining method and a vehicle control device for determining a reference steering angle.
  • Patent Document 1 discloses that it is determined whether the vehicle is in a straight-ahead state based on the absolute value of the vehicle's yaw rate and the temporal change in the yaw rate, and the steering angle of the steering wheel is determined when the vehicle is in a straight-ahead state. It is stated that it should be set as the midpoint.
  • Patent Document 2 discloses that when the difference between the vehicle yaw rate and the front wheel yaw rate, or the difference between the vehicle yaw rate and the rear wheel yaw rate becomes less than a predetermined threshold, the steering angle is estimated from the detected steering angle and the yaw rate of the steering angle sensor. It is described that the difference between the calculated steering angle and the estimated steering angle is set as the midpoint of the steering angle.
  • the steering angle when the vehicle is traveling straight is set as the standard steering angle of the steering wheel. Therefore, in order to determine the standard steering angle, it is necessary to calculate the steering angle over a long distance including a straight section. It is necessary to drive within the section.
  • the standard steering angle can be determined by driving the vehicle stationary on a roller tester to simulate a straight section. It is possible to decide. However, in this case, large-scale equipment including a roller tester is required.
  • an object of the present disclosure is to provide a reference steering angle determining method and a vehicle control device that can determine a reference steering angle without traveling a long distance.
  • a reference steering angle determination method includes the steps of measuring the amount of lateral movement of the vehicle when the vehicle is driven a certain distance from a start point to an end point with the steering of the vehicle fixed at a first steering angle. Yes, and the lateral direction is a direction parallel to the width direction of the vehicle at the starting point. The theoretical value of the vehicle when the vehicle is driven a certain distance with the step and the vehicle steering angle set to the second steering angle.
  • the second steering angle is a step of calculating the amount of lateral movement of the steering wheel, and the second steering angle is a steering angle in which the amount of deviation from the steering center point falls within a preset tolerance range. and determining the first steering angle as a reference steering angle serving as a reference for the steering angle of the vehicle when the amount of movement is less than or equal to the theoretical amount of lateral movement.
  • the second steering angle is a steering angle whose deviation from the center point of the steering wheel falls within the allowable range, so the amount of lateral movement measured when the steering wheel is fixed at the first steering angle causes the steering wheel to move to the second If the first steering angle is less than or equal to the theoretical amount of lateral movement when set to the steering angle, it can be said that the first steering angle is a steering angle at which the amount of deviation from the midpoint falls within the allowable range. Therefore, in such a case, by determining the first steering angle as the reference steering angle of the vehicle, the reference steering angle can be appropriately set.
  • the standard steering angle is determined using the amount of lateral movement of the vehicle, not the steering angle when the vehicle is traveling straight.
  • the reference steering angle can be determined without running the vehicle.
  • the theoretical lateral movement amount may be calculated based on the second steering angle, the wheel base of the vehicle, and a certain distance. By using the second steering angle, the wheel base of the vehicle, and the fixed distance, it is possible to appropriately calculate the theoretical amount of lateral movement.
  • a vehicle control device provides measurement for acquiring a measured value of the amount of lateral movement of a vehicle when the vehicle travels a certain distance from a start point to an end point with the steering of the vehicle fixed at a first steering angle.
  • the measured value acquisition section is a value acquisition section
  • the lateral direction is a direction parallel to the width direction of the vehicle at the starting point. The vehicle is driven a certain distance with the steering of the vehicle set to a second steering angle.
  • the second steering angle is a theoretical value calculation unit that calculates a theoretical value of the amount of lateral movement of the vehicle when , the theoretical value calculation unit determines the first steering angle as a reference steering angle serving as a reference for the steering angle of the vehicle when the measured value of the lateral movement amount is less than or equal to the theoretical value of the lateral movement amount.
  • the reference steering angle is determined using the amount of lateral movement of the vehicle rather than the steering angle when the vehicle is moving straight, so the vehicle can be driven over a long distance.
  • the reference steering angle can be determined without
  • the vehicle control device of one embodiment may further include a steering angle control section that controls a steering actuator of the vehicle using the reference steering angle determined by the determination section.
  • the reference steering angle determined by the determination unit is a steering angle with a small deviation from the midpoint, so by controlling the steering actuator using the reference steering angle, it is possible to drive the vehicle in the intended direction. becomes.
  • a reference steering angle can be determined without traveling a long distance.
  • FIG. 3 is a flowchart illustrating a reference steering angle determining method according to an embodiment.
  • FIG. 1 is a block diagram showing a functional configuration of a vehicle equipped with a vehicle control device according to an embodiment.
  • FIG. 3 is a diagram showing an example of a travel trajectory of a vehicle.
  • FIG. 1 is a flowchart illustrating a reference steering angle determination method according to an embodiment.
  • This reference steering angle determining method is a method for determining a reference steering angle.
  • the reference steering angle is a steering angle that causes the vehicle 1 to move straight, and serves as a reference for the steering angle of the vehicle.
  • the ideal steering angle at which the vehicle 1 travels completely straight is referred to as the midpoint of the steering.
  • the amount of deviation from the midpoint of the reference steering angle is required to fall within a preset tolerance range.
  • FIG. 2 is a block diagram showing the functional configuration of a vehicle 1 equipped with a vehicle control device 10 according to an embodiment that executes a reference steering angle determination method.
  • the vehicle 1 is, for example, a large vehicle such as a truck, trailer, or bus. Note that the vehicle 1 may be a small car.
  • the vehicle 1 includes a steering angle sensor 2, a vehicle speed sensor 3, an engine actuator 4, a brake actuator 5, a steering actuator 6, and a vehicle control device 10.
  • the steering angle sensor 2 measures the steering angle (rotation amount of the steering shaft) of the vehicle 1.
  • the steering angle sensor 2 outputs information indicating the measured steering angle of the vehicle 1 to the vehicle control device 10.
  • Vehicle speed sensor 3 detects the speed of vehicle 1.
  • a wheel speed sensor that is provided on the drive shaft of the vehicle 1 and detects the rotational speed of the wheels is used.
  • Vehicle speed sensor 3 outputs information indicating the measured speed of vehicle 1 to vehicle control device 10 .
  • the engine actuator 4 controls the driving force of the vehicle 1 by changing the amount of air supplied to the engine (for example, changing the throttle opening) according to a control signal from the vehicle control device 10. Note that when the vehicle 1 is a hybrid vehicle or an electric vehicle, the engine actuator 4 controls the driving force of a motor that is a power source.
  • the brake actuator 5 controls the brake system according to a control signal from the vehicle control device 10 to control the braking force of the vehicle 1.
  • a brake system for example, a hydraulic brake system is used.
  • the brake actuator 5 may control both the hydraulic brake system and the regenerative brake system.
  • the steering actuator 6 controls the drive of the electric power steering system according to a control signal from the vehicle control device 10. By controlling the drive of the electric power steering system, the steering angle of the steering wheel of the vehicle 1 is controlled.
  • the vehicle control device 10 is an electronic control unit that includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a CAN (Controller Area Network) communication circuit, and the like.
  • the vehicle control device 10 is connected to a communication network using, for example, a CAN communication circuit, and is communicably connected to each component of the vehicle 1.
  • the vehicle control device 10 operates a CAN communication circuit to input and output data based on a signal output by the CPU, stores the data in the RAM, loads a program stored in the ROM into the RAM, By executing the programs loaded into the RAM, various functions described below are realized.
  • Various information may be input to the vehicle control device 10 using an input/output device.
  • the vehicle control device 10 may be composed of a plurality of electronic control units.
  • the vehicle control device 10 includes a steering angle control section 11, a travel control section 12, a measured value acquisition section 13, a theoretical value calculation section 14, a determination section 15, and a storage section 16 as a functional configuration.
  • the steering angle control unit 11 determines a target steering angle, and controls the steering actuator 6 to reach the target steering angle. More specifically, the steering angle control unit 11 acquires a standard steering angle of the steering wheel, and controls the steering actuator 6 so that the steering angle of the vehicle 1 becomes the target steering angle based on the acquired standard steering angle. At this time, if the reference steering angle is not accurate, there will be a mismatch between the target steering angle and the actual steering angle, and there is a possibility that the vehicle will not be able to travel in the intended direction.
  • the travel control unit 12 outputs control signals to the engine actuator 4 and brake actuator 5 to control the travel of the vehicle 1.
  • the measured value acquisition unit 13 acquires a measured value of the amount of lateral movement of the vehicle 1 when the vehicle 1 is driven a certain distance with the steering wheel of the vehicle 1 fixed at the first steering angle. For example, the measured value acquisition unit 13 acquires data input by an operator using an input/output device as a measured value.
  • the theoretical value calculation unit 14 calculates a theoretical value of the amount of lateral movement of the vehicle 1 when the vehicle 1 is driven a certain distance with the steering of the vehicle 1 set to the second steering angle.
  • the determining unit 15 determines the reference steering angle based on the measured value of the amount of lateral movement and the theoretical value of the amount of lateral movement.
  • the storage unit 16 is a database that stores various information. Details of the functions of the measured value acquisition section 13, theoretical value calculation section 14, determination section 15, and storage section 16 will be described later.
  • the steering angle control section 11 first controls the steering actuator 6 to set the steering of the vehicle 1 to a first steering angle (step ST1).
  • the first steering angle is, for example, a steering angle estimated by the operator to be the midpoint.
  • the travel control unit 12 controls the engine actuator 4 and the brake actuator 5, or the vehicle 1 is caused to travel a certain travel distance L by the operator's operation (step ST2).
  • the vehicle 1 travels a constant travel distance L from the starting point P1 to the ending point P2 along an arcuate trajectory centered on the turning center C.
  • the direction connecting the starting point P1 and the turning center C that is, the direction parallel to the vehicle width direction at the starting point P1
  • the vehicle 1 moves laterally when traveling from the starting point P1 to the ending point P2. This lateral movement amount Em is determined according to the first steering angle and the travel distance L.
  • the lateral movement amount Em of the vehicle 1 is measured (step ST3).
  • the lateral movement amount Em is determined by, for example, an operator measuring the lateral distance between the starting point P1 and the ending point P2 using a scale or a measuring tape.
  • the operator inputs the measured value of the lateral movement amount Em into the vehicle control device 10 using, for example, an input/output device.
  • the measured value acquisition unit 13 acquires the measured value of the input lateral movement amount Em, and stores it in the storage unit 16.
  • the theoretical value calculation unit 14 calculates the theoretical lateral movement amount Ec of the vehicle 1 when the vehicle 1 is driven a certain distance with the steering wheel of the vehicle 1 set to the second steering angle.
  • the second steering angle is a steering angle in which the amount of deviation from the center point of the steering falls within an allowable range. That is, the difference between the midpoint and the second steering angle is less than or equal to the predetermined threshold.
  • the second steering angle is a steering angle that is an upper limit value or a lower limit value of an allowable range of deviation amount from the center point of the steering wheel.
  • equation (3) is transformed as shown in equation (4) below.
  • Equation (6) the relationship between the second steering angle ⁇ and the curvature K is expressed as in the following equation (6).
  • l represents the wheel base of the vehicle 1
  • A represents the stability factor
  • V represents the speed of the vehicle 1.
  • the wheelbase l and stability factor A are design values determined according to the characteristics of the vehicle.
  • the theoretical value calculation unit 14 calculates the theoretical lateral movement amount Ec of the vehicle 1 when the steering wheel of the vehicle 1 is set to the second steering angle ⁇ and the vehicle 1 travels a certain travel distance L, according to equation (7). calculate. That is, the theoretical value calculation unit 14 calculates the theoretical lateral movement amount Ec based on the second steering angle ⁇ , the wheel base l of the vehicle 1, and the travel distance L.
  • the theoretical lateral movement amount Ec calculated by the theoretical value calculation unit 14 is stored in the storage unit 16.
  • the determining unit 15 determines whether the measured lateral movement amount Em is less than or equal to the theoretical lateral movement amount Ec calculated by the theoretical value calculation unit 14 (step ST5). If the measured lateral movement amount Em is less than or equal to the theoretical lateral movement amount Ec, it can be said that the deviation amount from the midpoint of the first steering angle is within the permissible range. Therefore, the determining unit 15 determines the first steering angle as the reference steering angle (step ST6). The determining unit 15 then stores the determined reference steering angle in the storage unit 16.
  • the steering angle control unit 11 controls the steering angle of the vehicle 1 based on the reference steering angle stored in the storage unit 16. Since the first steering angle is a highly accurate reference steering angle that allows the vehicle 1 to travel straight, controlling the steering based on this reference steering angle reduces the deviation between the actual steering angle and the target steering angle. It becomes possible to drive the vehicle in the intended direction.
  • the measured lateral movement amount Em is larger than the theoretical lateral movement amount Ec, it is considered that the deviation amount from the midpoint of the first steering angle is not within the allowable range. 1 steering angle is not set as the reference steering angle. In that case, the first steering angle may be changed and the processes of steps ST1 to ST6 may be performed again.
  • the lateral movement amount Em measured when the vehicle travels a predetermined travel distance L from the starting point P1 to the ending point P2 is theoretically
  • the first steering angle is determined as the reference steering angle.
  • the reference steering angle is determined by comparing the measured value and the theoretical value of the amount of lateral movement, not the steering angle when the vehicle 1 is traveling straight. The reference steering angle can be determined without driving the vehicle over a long distance.
  • SYMBOLS 1 Vehicle, 6... Steering actuator, 10... Vehicle control device, 11... Steering angle control part, 13... Measured value acquisition part, 14... Theoretical value calculation part, 15... Determination part, C... Turning center, Ec, Em... Lateral movement amount, l...Wheelbase, P1...Start point, P2...End point.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

一態様に係る基準操舵角決定方法は、車両のステアリングを第1操舵角に固定した状態で車両を始点から終点まで一定距離だけ走行させたときの車両の横方向の移動量を計測するステップであり、横方向は、始点における車両の幅方向に平行な方向である、該ステップと、車両のステアリングを第2操舵角に設定した状態で車両を一定距離だけ走行させたときの車両の理論上の横方向の移動量を計算するステップであり、第2操舵角は、ステアリングの中点に対するずれ量が予め設定された許容範囲内に収まる操舵角である、該ステップと、計測された横方向の移動量が、理論上の横方向の移動量以下であるときに第1操舵角を車両の操舵角の基準となる基準操舵角として決定するステップと、を含む。

Description

基準操舵角決定方法及び車両制御装置
 本開示は、基準操舵角を決定する基準操舵角決定方法及び車両制御装置に関する。
 従来、車両の操舵角が目標操舵角になるようにステアリングを制御する技術が用いられている。ステアリングを制御するには、操舵角の基準となる基準操舵角を設定し、当該基準操舵角を基準としてステアリングの操舵角を制御することが必要となる。基準操舵角を決定する手法として、下記特許文献1及び2に記載の方法が知られている。
 特許文献1には、車両のヨーレートの絶対値と、ヨーレートの時間変化とに基づいて車両が直進状態となったか否かを判定し、車両が直進状態となったときの操舵角をステアリングホイールの中点として設定することが記載されている。特許文献2には、車両のヨーレートと前輪ヨーレートとの差、又は、車両のヨーレートと後輪ヨーレートとの差が所定の閾値以下となったときに、舵角センサの検出舵角とヨーレートから推定された推定舵角との差を舵角の中点として設定することが記載されている。
特開2013-14226号公報 特許2017-197073号公報
 特許文献1に記載の装置では、車両が直進状態となったときの操舵角をステアリングの基準操舵角として設定しているので、基準操舵角を決定するためには、直線区間を含む長距離の区間を走行する必要がある。基準操舵角を決定するために、車両を長距離に亘って走行させることができない環境の場合には、ローラテスタ上で車両を定置走行させ、直線区間を擬似的に再現することで基準操舵角を決定することが考えられる。しかしながら、この場合には、ローラテスタを含む大規模な設備が必要となる。
 そこで、本開示は、長距離に亘って走行をすることなく基準操舵角を決定することができる基準操舵角決定方法及び車両制御装置を提供することを目的とする。
 一態様に係る基準操舵角決定方法は、車両のステアリングを第1操舵角に固定した状態で車両を始点から終点まで一定距離だけ走行させたときの車両の横方向の移動量を計測するステップであり、横方向は、始点における車両の幅方向に平行な方向である、該ステップと、車両のステアリングを第2操舵角に設定した状態で車両を一定距離だけ走行させたときの車両の理論上の横方向の移動量を計算するステップであり、第2操舵角は、ステアリングの中点に対するずれ量が予め設定された許容範囲内に収まる操舵角である、該ステップと、計測された横方向の移動量が、理論上の横方向の移動量以下であるときに第1操舵角を車両の操舵角の基準となる基準操舵角として決定するステップと、を含む。
 第2操舵角は、ステアリングの中点に対するずれ量が許容範囲内に収まる操舵角であるので、ステアリングを第1操舵角に固定したときに計測された横方向の移動量が、ステアリングを第2操舵角に設定したときの理論上の横方向の移動量以下である場合には、第1操舵角は中点に対するずれ量が許容範囲内に収まる操舵角であるといえる。したがって、このような場合に第1操舵角を車両の基準操舵角として決定することで、適切に基準操舵角を設定することができる。本態様の基準操舵角決定方法では、車両が直進しているときの操舵角ではなく、車両の横方向の移動量を用いて基準操舵角を決定しているので、車両を長距離に亘って走行させることなく基準操舵角を決定することができる。
 一実施形態の基準操舵角決定方法は、第2操舵角と、車両のホイールベースと、一定距離とに基づいて理論上の横方向の移動量を算出してもよい。第2操舵角と、車両のホイールベースと、一定距離とを用いることで、理論上の横方向の移動量を適切に算出することができる。
 一態様に係る車両制御装置は、車両のステアリングを第1操舵角に固定した状態で車両を始点から終点まで一定距離だけ走行させたときの車両の横方向の移動量の計測値を取得する計測値取得部であり、横方向は、始点における車両の幅方向に平行な方向である、該計測値取得部と、車両のステアリングを第2操舵角に設定した状態で車両を一定距離だけ走行させたときの車両の横方向の移動量の理論値を計算する理論値算出部であり、第2操舵角は、ステアリングの中点に対するずれ量が予め設定された許容範囲内に収まる操舵角である、該理論値算出部と、横方向の移動量の計測値が、横方向の移動量の理論値以下であるときに第1操舵角を車両の操舵角の基準となる基準操舵角として決定する決定部と、を備える。
 本態様の車両制御装置では、車両が直進しているときの操舵角ではなく、車両の横方向の移動量を用いて基準操舵角を決定しているので、車両を長距離に亘って走行させることなく基準操舵角を決定することができる。
 一実施形態の車両制御装置は、決定部によって決定された基準操舵角を用いて車両の操舵アクチュエータを制御する操舵角制御部を更に備えてもよい。決定部によって決定された基準操舵角は、中点に対するずれ量の小さい操舵角であるので、当該基準操舵角を用いて操舵アクチュエータを制御することにより、車両を意図した方向に走行させることが可能となる。
 本発明の一態様及び種々の実施形態によれば、長距離に亘って走行をすることなく基準操舵角を決定することができる。
一実施形態に係る基準操舵角決定方法を示すフローチャートである。 一実施形態に係る車両制御装置を搭載する車両の機能的構成を示すブロック図である。 車両の走行軌跡の一例を示す図である。
 以下、図面を参照して種々の実施形態に係る基準操舵角決定方法及び車両制御装置について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附すこととし、同一又は相当の部分に対する重複した説明は省略する。
 図1は、一実施形態に係る基準操舵角決定方法を示すフローチャートである。この基準操舵角決定方法は、基準操舵角を決定する方法である。
 基準操舵角は、車両1を直進させる操舵角であり、車両の操舵角の基準となる。本明細書では、車両1が完全な直進状態となる理想的な操舵角をステアリングの中点という。基準操舵角の中点に対するずれ量は、予め設定された許容範囲内に収めることが要求される。
 まず、基準操舵角決定方法に用いられる車両制御装置について説明する。図2は、基準操舵角決定方法を実行する一実施形態に係る車両制御装置10を搭載する車両1の機能的構成を示すブロック図である。車両1は、例えばトラック、トレーラー又はバス等の大型車である。なお車両1は、小型車であってもよい。図2に示すように、車両1は、操舵角センサ2、車速センサ3、エンジンアクチュエータ4、ブレーキアクチュエータ5、操舵アクチュエータ6、及び、車両制御装置10を備えている。
 操舵角センサ2は、車両1の操舵角(操舵軸の回転量)を計測する。操舵角センサ2はは、計測された車両1の操舵角を示す情報を車両制御装置10に出力する。車速センサ3は、車両1の速度を検出する。車速センサ3としては、例えば、車両1のドライブシャフトに設けられ、車輪の回転速度を検出する車輪速センサが用いられる。車速センサ3は、計測された車両1の速度を示す情報を車両制御装置10に出力する。
 エンジンアクチュエータ4は、車両制御装置10の制御信号に応じてエンジンに対する空気の供給量を変更(例えばスロットル開度を変更)して、車両1の駆動力を制御する。なお、車両1がハイブリッド車又は電気自動車である場合には、エンジンアクチュエータ4は、動力源であるモータの駆動力を制御する。
 ブレーキアクチュエータ5は、車両制御装置10からの制御信号に応じてブレーキシステムを制御して、車両1の制動力を制御する。ブレーキシステムとしては、例えば液圧ブレーキシステムが用いられる。なお、車両1が回生ブレーキシステムを備えている場合、ブレーキアクチュエータ5は、液圧ブレーキシステム及び回生ブレーキシステムの両方を制御してもよい。
 操舵アクチュエータ6は、車両制御装置10からの制御信号に応じて電動パワーステアリングシステムの駆動を制御する。電動パワーステアリングシステムの駆動が制御されることにより、車両1のステアリングの操舵角が制御される。
 車両制御装置10は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、CAN(Controller Area Network)通信回路などを有する電子制御ユニットである。車両制御装置10は、例えばCAN通信回路を用いて通信するネットワークに接続され、車両1の各構成要素と通信可能に接続される。車両制御装置10は、例えば、CPUが出力する信号に基づいて、CAN通信回路を動作させてデータを入出力し、データをRAMに記憶し、ROMに記憶されているプログラムをRAMにロードし、RAMにロードされたプログラムを実行することで、後述する各種機能を実現する。車両制御装置10には、入出力装置を用いて各種情報が入力可能であってもよい。なお、車両制御装置10は、複数の電子制御ユニットから構成されてもよい。
 車両制御装置10は、機能的構成として、操舵角制御部11、走行制御部12、計測値取得部13、理論値算出部14、決定部15及び記憶部16を備えている。操舵角制御部11は、目標操舵角を決定し、当該目標操舵角になるように操舵アクチュエータ6を制御する。より詳細には、操舵角制御部11は、ステアリングの基準操舵角を取得し、取得した基準操舵角を基準として車両1の操舵角が目標操舵角になるように操舵アクチュエータ6を制御する。このとき、基準操舵角が正確でない場合には、目標操舵角と実際の操舵角との間に不整合が生じ、車両が意図した方向に走行させることができない恐れがある。
 走行制御部12は、エンジンアクチュエータ4及びブレーキアクチュエータ5に制御信号を出力し、車両1の走行を制御する。
 計測値取得部13は、車両1のステアリングを第1操舵角に固定した状態で、車両1を一定距離だけ走行させたときの車両1の横方向の移動量の計測値を取得する。例えば、計測値取得部13は、オペレータが入出力装置を用いて入力したデータを計測値として取得する。理論値算出部14は、車両1のステアリングを第2操舵角に設定した状態で車両1を一定距離だけ走行させたときの車両1の横方向の移動量の理論値を計算する。決定部15は、横方向の移動量の計測値と横方向の移動量の理論値とに基づいて、基準操舵角を決定する。記憶部16は、各種情報を記憶するデータベースである。計測値取得部13、理論値算出部14、決定部15及び記憶部16の機能の詳細については後述する。
 以下、図1を参照して、車両制御装置10によって実行される基準操舵角決定方法について説明する。図1に示すように、この方法では、まず操舵角制御部11が、操舵アクチュエータ6を制御して、車両1のステアリングを第1操舵角に設定する(ステップST1)。第1操舵角は、例えばオペレータが中点であると推定した操舵角である。
 次に、ステアリングを第1操舵角に固定した状態で、走行制御部12がエンジンアクチュエータ4及びブレーキアクチュエータ5を制御し、或いは、オペレータの操作によって車両1を一定の走行距離Lだけ走行させる(ステップST2)。これにより、図3に示すように、車両1は、旋回中心Cを中心とする円弧状の軌跡に沿って始点P1から終点P2まで一定の走行距離Lだけ走行する。以下の説明では、始点P1と旋回中心Cとを結ぶ方向(すなわち、始点P1における車幅方向に平行な方向)を横方向という。図3に示すように、車両1は、始点P1から終点P2まで走行するときに横方向に移動する。この横方向の移動量Emは、第1操舵角及び走行距離Lに応じて定まる。
 次に、車両1の横方向の移動量Emを計測する(ステップST3)。横方向の移動量Emは、例えばオペレータがスケール又はメジャーを用いて始点P1と終点P2との横方向の距離を計測することによって求められる。横方向の移動量Emが計測されると、オペレータは、例えば入出力装置を用いて横方向の移動量Emの計測値を車両制御装置10に入力する。計測値取得部13は、入力された横方向の移動量Emの計測値を取得し、記憶部16に保存する。
 次に、理論値算出部14が、車両1のステアリングを第2操舵角に設定した状態で車両1を一定距離だけ走行させたときの車両1の理論上の横方向の移動量Ecを計算する(ステップST4)。第2操舵角は、ステアリングの中点に対するずれ量が許容範囲内に収まる操舵角である。すなわち、中点と第2操舵角との差は、所定の閾値以下である。例えば、第2操舵角は、ステアリングの中点に対するずれ量の許容範囲の上限値又は下限値となる操舵角である。
 理論上の横方向の移動量Ecを算出するための理論値算出部14の処理について説明する。図3に示すように、車両1を第2操舵角で走行させたときの旋回角度をθとし、旋回半径をRとすると、車両1の走行距離Lは、式(1)のように表される。
Figure JPOXMLDOC01-appb-M000001
 また、図3の関係から横方向の移動量Ecは、式(2)のように表現される。式(2)を変形すると、式(3)のように表される。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 ここで、旋回角度θが十分小さいと仮定した場合、sinθ=θ、cosθ=1とみなすことができるので、式(3)は、下記式(4)のように変形される。
Figure JPOXMLDOC01-appb-M000004
 旋回半径Rは曲率Kの逆数であるので、式(1)の関係を用いて式(4)を書き換えると、横方向の移動量Ecは、式(5)のように表現される。
Figure JPOXMLDOC01-appb-M000005
 ここで、第2操舵角δと曲率Kとの関係との関係は、下記式(6)のように表される。なお、式(6)において、lは車両1のホイールベースを表しており、Aはスタビリティファクタを表しており、Vは車両1の速度を表している。ホイールベースl及びスタビリティファクタAは、車両の特性に応じて定められる設計値である。
Figure JPOXMLDOC01-appb-M000006
 式(5)に式(6)を代入すると、横方向の移動量Ecは、下記式(7)のように表現される。
Figure JPOXMLDOC01-appb-M000007
 理論値算出部14は、式(7)に従って、車両1のステアリングを第2操舵角δに設定して一定の走行距離Lだけ走行したときの車両1の理論上の横方向の移動量Ecを算出する。すなわち、理論値算出部14は、第2操舵角δと、車両1のホイールベースlと、走行距離Lとに基づいて理論上の横方向の移動量Ecを算出する。理論値算出部14によって算出された理論上の横方向の移動量Ecは、記憶部16に記憶される。
 次に、決定部15が、計測された横方向の移動量Emが、理論値算出部14によって算出された理論上の横方向の移動量Ec以下であるか否かを判定する(ステップST5)。計測された横方向の移動量Emが理論上の横方向の移動量Ec以下である場合には、第1操舵角の中点に対するずれ量は、許容範囲に収まっているといえる。そこで、決定部15は、第1操舵角を基準操舵角として決定する(ステップST6)。そして、決定部15は、決定した基準操舵角を記憶部16に保存する。
 操舵角制御部11は、記憶部16に記憶された基準操舵角を基準として車両1の操舵角を制御する。第1操舵角は、車両1を直進させる高い精度の基準操舵角であるので、この基準操舵角を基準としてステアリングを制御することにより、実際の操舵角と目標操舵角とのずれが小さくなり、車両を意図した方向に走行させることが可能となる。
 一方、測定された横方向の移動量Emが理論上の横方向の移動量Ecよりも大きい場合には、第1操舵角の中点に対するずれ量が許容範囲内にないと考えられるので、第1操舵角を基準操舵角に設定しない。その場合には、第1操舵角を変更してステップST1~ST6の処理が再び行ってもよい。
 以上説明したように、一実施形態の基準操舵角決定方法では、車両を始点P1から終点P2まで所定の走行距離Lだけ走行させたときに計測された横方向の移動量Emが、理論上の横方向の移動量Ec以下であるときに、第1操舵角を基準操舵角として決定する。上述した基準操舵角決定方法では、車両1が直進しているときの操舵角ではなく、横方向の移動量の計測値及び理論値を比較して基準操舵角を決定しているので、車両1を長距離に亘って走行させることなく基準操舵角を決定することができる。
 以上、種々の実施形態に係る車両制御装置10について説明してきたが、上述した実施形態に限定されることなく発明の要旨を変更しない範囲で種々の変形態様を構成可能である。上述した種々の実施形態は、矛盾が生じない範囲で組み合わせることが可能である。
 1…車両、6…操舵アクチュエータ、10…車両制御装置、11…操舵角制御部、13…計測値取得部、14…理論値算出部、15…決定部、C…旋回中心、Ec,Em…横方向の移動量、l…ホイールベース、P1…始点、P2…終点。

 

Claims (4)

  1.  車両のステアリングを第1操舵角に固定した状態で前記車両を始点から終点まで一定距離だけ走行させたときの前記車両の横方向の移動量を計測するステップであり、前記横方向は、前記始点における前記車両の幅方向に平行な方向である、該ステップと、
     前記車両のステアリングを第2操舵角に設定した状態で前記車両を前記一定距離だけ走行させたときの前記車両の理論上の横方向の移動量を計算するステップであり、前記第2操舵角は、前記ステアリングの中点に対するずれ量が予め設定された許容範囲内に収まる操舵角である、該ステップと、
     計測された前記横方向の移動量が、前記理論上の前記横方向の移動量以下であるときに前記第1操舵角を前記車両の操舵角の基準となる基準操舵角として決定するステップと、
    を含む、基準操舵角決定方法。
  2.  前記第2操舵角と、前記車両のホイールベースと、前記一定距離とに基づいて前記理論上の前記横方向の移動量を算出する、請求項1に記載の基準操舵角決定方法。
  3.  車両のステアリングを第1操舵角に固定した状態で前記車両を始点から終点まで一定距離だけ走行させたときの前記車両の横方向の移動量の計測値を取得する計測値取得部であり、前記横方向は、前記始点における前記車両の幅方向に平行な方向である、該計測値取得部と、
     前記車両のステアリングを第2操舵角に設定した状態で前記車両を前記一定距離だけ走行させたときの前記車両の横方向の移動量の理論値を計算する理論値算出部であり、前記第2操舵角は、前記ステアリングの中点に対するずれ量が予め設定された許容範囲内に収まる操舵角である、該理論値算出部と、
     前記横方向の移動量の計測値が、前記横方向の移動量の理論値以下であるときに前記第1操舵角を前記車両の操舵角の基準となる基準操舵角として決定する決定部と、
    を備える、車両制御装置。
  4.  前記決定部によって決定された前記基準操舵角を用いて前記車両の操舵アクチュエータを制御する操舵角制御部を更に備える、請求項3に記載の車両制御装置。

     
PCT/JP2023/004964 2022-03-18 2023-02-14 基準操舵角決定方法及び車両制御装置 WO2023176250A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022043763A JP2023137518A (ja) 2022-03-18 2022-03-18 基準操舵角決定方法及び車両制御装置
JP2022-043763 2022-03-18

Publications (1)

Publication Number Publication Date
WO2023176250A1 true WO2023176250A1 (ja) 2023-09-21

Family

ID=88022872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004964 WO2023176250A1 (ja) 2022-03-18 2023-02-14 基準操舵角決定方法及び車両制御装置

Country Status (2)

Country Link
JP (1) JP2023137518A (ja)
WO (1) WO2023176250A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0818A (ja) * 1994-06-20 1996-01-09 Mitsubishi Agricult Mach Co Ltd 移動農機の直進制御装置
JPH09282035A (ja) * 1996-04-11 1997-10-31 Toyota Motor Corp 車両の自動操舵制御装置
JP2016146061A (ja) * 2015-02-06 2016-08-12 国立研究開発法人農業・食品産業技術総合研究機構 走行制御装置
JP2019099141A (ja) * 2017-12-05 2019-06-24 株式会社豊田自動織機 無人フォークリフトの走行制御装置、無人フォークリフトの走行制御方法、無人牽引車の走行制御装置、無人牽引車の走行制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0818A (ja) * 1994-06-20 1996-01-09 Mitsubishi Agricult Mach Co Ltd 移動農機の直進制御装置
JPH09282035A (ja) * 1996-04-11 1997-10-31 Toyota Motor Corp 車両の自動操舵制御装置
JP2016146061A (ja) * 2015-02-06 2016-08-12 国立研究開発法人農業・食品産業技術総合研究機構 走行制御装置
JP2019099141A (ja) * 2017-12-05 2019-06-24 株式会社豊田自動織機 無人フォークリフトの走行制御装置、無人フォークリフトの走行制御方法、無人牽引車の走行制御装置、無人牽引車の走行制御方法

Also Published As

Publication number Publication date
JP2023137518A (ja) 2023-09-29

Similar Documents

Publication Publication Date Title
US6522956B2 (en) Method and device for estimating a transverse acceleration at an axle of a semitrailer or a trailer of a vehicle combination
EP2433840B1 (en) Motion control unit for vehicle based on jerk information
US20190176784A1 (en) Wheel controller for a vehicle
CN109941342B (zh) 估计转向力矩的方法和装置、用于车辆的横向控制的方法
CN110073172B (zh) 用于确定机动车的相对位置的方法、用于机动车的位置确定系统和机动车
US10814907B2 (en) Steering correction for steer-by-wire
CN110712676A (zh) 转向系统的齿条力估计
CN104245463A (zh) 机动车辆轨迹校正方法和相应的机动车辆轨迹校正装置
JP3363869B2 (ja) 前後に連続して走行する車両の左右方向制御のための測定・制御システム及び方法
CN114787014A (zh) 车载道路摩擦估计
WO2022113472A1 (ja) 車両制御装置、および、車両制御方法
CN113335313B (zh) 车辆角度偏差标定方法、装置、电子设备及存储介质
CN115195690A (zh) 车辆控制系统
CN114435325A (zh) 用于控制车辆上的车轮的控制单元和方法
CN108860137B (zh) 失稳车辆的控制方法、装置及智能车辆
WO2023176250A1 (ja) 基準操舵角決定方法及び車両制御装置
US20230373468A1 (en) Determination apparatus of center of gravity position, and determination method thereof
Xu et al. Yaw rate based trailer hitch angle estimation for trailer backup assist
GB2435102A (en) Friction estimation for vehicle control systems
KR100737472B1 (ko) 자동차에서 조향각 센서 자동 셋팅장치 및 방법
US20230020675A1 (en) System and method for determining axle load
JPH10147252A (ja) 車両状態量取得装置
JP7231517B2 (ja) 追従走行システム
CN102822023B (zh) 用于监控机动车辆的轨迹的监控系统和方法
JP5754265B2 (ja) タイヤ接地長推定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770211

Country of ref document: EP

Kind code of ref document: A1