WO2022113472A1 - 車両制御装置、および、車両制御方法 - Google Patents

車両制御装置、および、車両制御方法 Download PDF

Info

Publication number
WO2022113472A1
WO2022113472A1 PCT/JP2021/033201 JP2021033201W WO2022113472A1 WO 2022113472 A1 WO2022113472 A1 WO 2022113472A1 JP 2021033201 W JP2021033201 W JP 2021033201W WO 2022113472 A1 WO2022113472 A1 WO 2022113472A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
target
speed
relative
control device
Prior art date
Application number
PCT/JP2021/033201
Other languages
English (en)
French (fr)
Inventor
信幸 高谷
堅一 嶋田
浩司 黒田
太亮 廣瀬
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to DE112021004961.5T priority Critical patent/DE112021004961T5/de
Priority to JP2022565072A priority patent/JP7474352B2/ja
Publication of WO2022113472A1 publication Critical patent/WO2022113472A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/60Velocity or trajectory determination systems; Sense-of-movement determination systems wherein the transmitter and receiver are mounted on the moving object, e.g. for determining ground speed, drift angle, ground track
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0953Predicting travel path or likelihood of collision the prediction being responsive to vehicle dynamic parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/36Devices characterised by the use of optical means, e.g. using infrared, visible, or ultraviolet light
    • G01P3/38Devices characterised by the use of optical means, e.g. using infrared, visible, or ultraviolet light using photographic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/143Alarm means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4042Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/804Relative longitudinal speed

Definitions

  • the present invention relates to a vehicle control device capable of accurately calculating the ground speed of surrounding objects (particularly pedestrians) even when the own vehicle is turning, and a vehicle control method.
  • Patent Document 1 is known as a conventional technique for estimating the movement trajectory of a target.
  • a relative coordinate system with the position of the own vehicle as the origin is set for the own vehicle, and the course of the object is estimated from the past position history (past position history) of the object in this relative coordinate system.
  • there is a method of determining the possibility of collision by estimating the course of the relative coordinate system In this method of determining the possibility of collision by estimating the course of the relative coordinate system, the possibility of collision is determined without grasping the traveling path of the own vehicle. It is not necessary to have a camera or an image processing device for capturing an image of the road condition.
  • Patent Document 1 has the following description as a problem and a solution of a method of estimating a relative coordinate system course from a past position history.
  • Paragraph 0005 In a situation where the steering angle of the own vehicle suddenly changes, the change in the steering angle is reflected later in the estimated course of the object, so that the estimation accuracy is inferior. The situation is likely to occur, for example, when the vehicle avoids obstacles such as parked vehicles, or when the vehicle enters a curve with a small road radius from a straight road. " Paragraph 0012 "Since the estimated course of the roadside object is obtained from the past position history of the roadside object before that, it is difficult to reflect the temporary change in the position of the roadside object, and therefore it is reflected later than the estimated course of the roadside object. It should be noted that this phenomenon frequently occurs for stationary objects having a high relative speed with the own vehicle, such as roadside objects.
  • the relative motion of the object relative to the vehicle is the relative motion of the vehicle relative to the object.
  • the motion state of the own vehicle can be grasped from the vehicle speed and steering angle (or yaw rate, etc.) with little time delay. Therefore, the relative of the stationary object is based on the motion state of the own vehicle. If the course can be estimated, it will be possible to estimate the course with little time delay and high accuracy.
  • Patent Document 1 in a situation where the steering angle changes suddenly such as when the vehicle turns, it is determined whether the surrounding object is a stationary object or a moving object, and the path estimation method is switched according to the determination result, or both methods are combined. The estimation accuracy of the movement route is improved.
  • Patent Document 1 does not describe a method for calculating the target ground speed VTA used when determining whether an object is a stationary object or a moving object.
  • the left figure of FIG. 1 shows a calculation image of the target ground speed VTA under the condition that the own vehicle 1 is traveling straight. Since the own vehicle speed VS is obtained from the amount of rotation of the tires on the premise of the own vehicle 1 traveling straight, the correct own vehicle speed VS can be calculated if the own vehicle 1 is traveling straight, and as a result, it is correct.
  • the target ground speed VTA can be calculated.
  • the accuracy of calculating the own vehicle speed VS deteriorates during the turning of the own vehicle 1 contrary to the above premise.
  • the accuracy is also reduced, and there is a possibility that the stationary object may be erroneously determined as a moving object, or conversely, the moving object may be erroneously determined as a stationary object.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a vehicle control device capable of accurately calculating the ground speed of surrounding objects even when the own vehicle is turning.
  • the vehicle control device of the present invention determines the target based on the output of the target recognition sensor that detects the relative speed of the target and the output of the vehicle speed sensor that detects the own vehicle speed.
  • a vehicle control device that calculates the ground speed, the own vehicle course estimation unit that estimates the course of the own vehicle, the relative peripheral speed calculation unit that calculates the relative peripheral speed of the target with respect to the own vehicle, and the object. It is provided with a ground speed calculation unit for calculating the ground speed of the target by subtracting the relative peripheral speed of the target from the sum of the relative speed of the target and the own vehicle speed.
  • the vehicle control device of the present invention even when the own vehicle is turning, the ground speed of the target around the own vehicle can be accurately calculated.
  • FIG. 2 is a functional block diagram of the driving support system 100 mounted on the own vehicle 1 of this embodiment.
  • the driving support system 100 is a system in which a target recognition sensor 21, a vehicle speed sensor 22, a steering sensor 23, and a yaw rate sensor 24 are present on the input side of the vehicle control device 10, and an alarm device 31 is present on the output side.
  • a target recognition sensor 21, a vehicle speed sensor 22, a steering sensor 23, and a yaw rate sensor 24 are present on the input side of the vehicle control device 10, and an alarm device 31 is present on the output side.
  • CAN Controller Area Network
  • the target recognition sensor 21 is a sensor that acquires information about a target 2 (for example, another vehicle or a pedestrian 2a) around the own vehicle 1, and is, for example, a camera, a millimeter wave radar (MRR), an ultrasonic sensor, or the like. For example, LiDAR. If the target recognition sensor 21 is a camera, the relative position P TR (x TR , y TR ) of the target 2 is sequentially measured from each shooting data, and the target is measured from the displacement of the target 2 in each shooting data. The relative velocity VTR of 2 can be calculated.
  • MRR millimeter wave radar
  • the target recognition sensor 21 is LiDAR
  • the relative position P TR (x TR , y TR ) of the target 2 is directly measured, and the relative velocity V TR of the target 2 is calculated from the displacement of the target 2. Can be done. Further, if the target recognition sensor 21 is a millimeter wave radar, an ultrasonic sensor, or the like, the relative position and relative speed of the target 2 can be directly measured.
  • the target recognition sensor 21 is a camera and LiDAR , and the control content when the target relative velocity VTR is calculated from the time change of the target relative position PTR will be described.
  • the control contents will be described.
  • the control content when the target recognition sensor 21 is a millimeter-wave radar or an ultrasonic sensor and directly measures the target relative velocity VTR will be described.
  • the control content of this embodiment is used when calculating the target relative velocity VTR from the time change of the target relative position PTR . ..
  • the vehicle speed sensor 22 is a sensor that detects the vehicle speed VS.
  • the vehicle speed VS is calculated on the assumption that the vehicle 1 is traveling straight based on the rotation speed of the tire output by the wheel speed sensor. do.
  • the steering sensor 23 is a sensor that acquires the steering angle (amount) of the own vehicle 1, and is, for example, an angle sensor mounted on the steering.
  • the yaw rate sensor 24 is a sensor that acquires the yaw rate ⁇ of the own vehicle 1, for example, an acceleration sensor that detects the acceleration around the vertical axis of the own vehicle 1. Since the yaw rate ⁇ can be calculated by the method described later, the yaw rate sensor 24 may be omitted.
  • the alarm device 31 warns the driver of the possibility of collision with the target 2 via a display display, LED light emission, steering operation, voice notification, etc., and operates. It is a device that encourages the hand to perform an appropriate avoidance action. In FIG. 2, the driver himself is urged to avoid the operation via the alarm device 31, but the vehicle control device 10 directly controls the braking and steering of the own vehicle 1 when there is a possibility of a collision. It is also good.
  • the vehicle control device 10 includes a parameter storage unit 11, a vehicle course estimation unit 12, a relative peripheral speed calculation unit 13, a target ground speed calculation unit 14, and an alarm unit 15. Then, the processing by the own vehicle course estimation unit 12, the relative peripheral speed calculation unit 13, the target-to-ground speed calculation unit 14, and the warning unit 15 is periodically executed, and when a predetermined condition is satisfied, an alarm request is created and an alarm is given. Output to device 31.
  • the vehicle control device 10 is an ECU (Electronic Control Unit) provided with hardware such as an arithmetic unit such as a CPU, a storage device such as a semiconductor memory, and a communication device. Then, each function of the own vehicle course estimation unit 12 and the like is realized by the arithmetic unit executing the program loaded in the storage device, but the following will be described while omitting such a well-known technique as appropriate.
  • ECU Electronic Control Unit
  • the parameter storage unit 11 is a storage device that stores vehicle parameters and alarm parameters.
  • vehicle parameters are parameters mainly used by the vehicle course estimation unit 12, for example, the wheelbase, the gear ratio for converting the steering angle into the tire angle, the distance LS from the front end of the vehicle to the rear wheel axle, and the like. It is a parameter regarding the specifications of the car 1.
  • the alarm parameter is a parameter mainly used by the alarm unit 15, and is a parameter such as a TTC threshold value for comparison with a collision grace time (Time To Collision, hereinafter referred to as “TTC”) of an alarm candidate. ..
  • TTC Time To Collision
  • the own vehicle course estimation unit 12 uses the own vehicle speed VS , the steering angle, the gear ratio for converting the steering angle into the tire angle, and the wheel base to determine the yaw rate ⁇ of the own vehicle 1 and the own vehicle position after a predetermined time. Estimate PS. Details of this process will be described later with reference to FIG.
  • the relative peripheral speed calculation unit 13 calculates the target relative peripheral speed VT ⁇ by using the target relative position PTR , the yaw rate ⁇ , and the position of the rear wheel axle center OS. Details of this process will be described later with reference to FIGS. 5 and 7.
  • the target-to-ground speed calculation unit 14 calculates the target-to-ground speed VTA using the own vehicle speed VS, the target relative speed VTR , and the target relative peripheral speed VT ⁇ . Details of this process will be described later with reference to FIG.
  • the warning unit 15 estimates the relative coordinate system course of the target 2 using the target recognition sensor 21, the own vehicle course estimation unit 12, and the target ground speed calculation unit 14, and calculates the collision possibility and the TTC. Details of this process will be described later with reference to FIGS. 9 to 11.
  • Step S1 First, the own vehicle course estimation unit 12 is based on the wheel base and gear ratio acquired from the parameter storage unit 11, the own vehicle speed VS acquired from the vehicle speed sensor 22, and the steering angle acquired from the steering sensor 23, after a predetermined time.
  • the yaw rate ⁇ of the own vehicle (hereinafter referred to as “estimated time ti ”) and the own vehicle position PS are sequentially calculated, and the ground coordinate system course R1 of the own vehicle 1 is estimated from those trajectories.
  • FIG. 4 is an example of processing by the own vehicle course estimation unit 12 using a general vehicle model formula.
  • the tire angle can be calculated from the steering angle and the gear ratio.
  • the yaw rate ⁇ can be calculated based on the vehicle speed VS ⁇ tire angle ⁇ wheelbase.
  • the turning radius ⁇ can be calculated by wheelbase ⁇ tire angle.
  • the yaw angle ⁇ ( ti ) can be calculated by multiplying the yaw rate ⁇ by the estimated time ti .
  • the vehicle position PS (ti) consisting of the estimated x coordinate x S (ti) and the estimated y coordinate y S (ti) of the vehicle 1 ti ) is calculated. From the locus of the own vehicle position PS ( ti ) thus obtained, the ground coordinate system course R1 of the own vehicle 1 as illustrated in FIG. 9 can be estimated.
  • the yaw rate ⁇ the one measured by the yaw rate sensor 24 can be used, but since the yaw rate sensor 24 picks up the shaking of the vehicle body, if the shaking of the vehicle body is large, the yaw rate ⁇ measured by the yaw rate sensor 24 can be used. The reliability of the sensor deteriorates. On the other hand, since the yaw rate ⁇ calculated by the own vehicle course estimation unit 12 does not have this problem, the yaw rate ⁇ calculated by the own vehicle course estimation unit 12 will be used below.
  • Step S2 Next, the relative peripheral speed calculation unit 13 is based on the distance LS from the front end of the own vehicle to the rear wheel axle acquired from the parameter storage unit 11 and the target relative position PTR acquired from the target recognition sensor 21.
  • the distance LT between the center of the rear wheel axle of the own vehicle 1 and the target is calculated.
  • the reason why the origin of the distance LT is not the center of the front end of the vehicle (the origin of the xy coordinates related to the target relative position PTR ) but the rear wheel axle center OS is that the vehicle 1 has the front wheel as the steering wheel. This is because, as shown in FIG. 6, since the traveling direction is perpendicular to the rear wheel axle, the rear wheel axle center OS can be regarded as the rotation center of the own vehicle 1.
  • Step S3 Further, the relative peripheral velocity calculation unit 13 calculates the target relative peripheral velocity VT ⁇ as shown in FIGS. 7 and 2 by using the yaw rate ⁇ obtained in step S1 and the distance LT obtained in step S2.
  • the target relative peripheral velocity VT ⁇ is a vector perpendicular to the distance LT , and its magnitude can be calculated by multiplying the distance LT by the yaw rate ⁇ .
  • Step S4 Next, the target-to-ground speed calculation unit 14 switches the subsequent processing according to the acquisition method of the target relative velocity VTR .
  • the target recognition sensor 21 is a camera or the like and the target relative velocity VTR is calculated based on the displacements of the target relative position PTR one cycle before and the current target
  • step S5 is performed. move on.
  • the target recognition sensor 21 is a millimeter-wave radar or the like and directly measures the target relative velocity VTR , the process proceeds to step S21.
  • step S5 the case of proceeding to step S5 will be described, and the process of proceeding to step S21 will be described in Example 2.
  • Step S5 Further, as shown in FIGS. 8 and 3, the target ground speed calculation unit 14 uses the own vehicle speed VS, the target relative velocity V TR , and the target relative peripheral speed VT ⁇ to obtain an accurate target ground speed V. Calculate TA . That is, in the conventional technique shown in FIG. 1, since the own vehicle speed VS and the target relative speed V TR are added to calculate the target ground speed V TA , the target relative peripheral speed VT ⁇ when the own vehicle 1 turns. Although the correct target ground speed VTA could not be calculated due to the influence of, in this step, turning by subtracting the target relative peripheral speed VT ⁇ from the sum of the own vehicle speed VS and the target relative speed V TR . It is possible to eliminate the influence of the target relative peripheral velocity VT ⁇ accompanying the target and calculate the accurate target ground speed VT A.
  • Step S6 Next, the warning unit 15 estimates the ground coordinate system course R 2A of the target 2, as shown in FIGS. 9 and 4.
  • the warning unit 15 estimates the ground coordinate system course R 2A of the target 2, as shown in FIGS. 9 and 4.
  • the target-to-ground position P TA (at each estimated time ) ti ) is sequentially calculated, and the ground coordinate system course R 2A of the target 2 is estimated from these trajectories. It is assumed that the estimated time ti used by the warning unit 15 is synchronized with the estimated time ti used by the own vehicle course estimation unit 12.
  • Step S7 Further, the warning unit 15 calculates the estimated relative position PTR ( ti ) for each estimated time ti as shown in FIGS. 10 and 5, and estimates the relative coordinate system course R 2R of the target 2 from the locus. .. Therefore, first, the difference between the target-to-ground position PTA (ti) obtained in step S6 and the own vehicle position P S ( ti ) obtained in step S1 is calculated as the own vehicle position P S ( ti ) at the same estimated time ti . Convert to coordinates with ti ) as the origin.
  • Step S8 As illustrated in FIG. 11, the warning unit 15 creates a vehicle area based on the total length and width of the vehicle 1 and determines whether the relative coordinate system course R2R enters the vehicle area. Then, when the relative coordinate system course R 2R enters the own vehicle area, the target relative position PTR ( ti ) that has entered the own vehicle area is set as an alarm candidate, and the process proceeds to step S9. On the other hand, if the relative coordinate system course R 2R does not enter the own vehicle area, the process of FIG. 3 is terminated.
  • Step S9 The warning unit 15 sets the minimum value of the estimated time ti of the target relative position PTR ( ti ) set as the warning candidate in step S8 as the collision grace time (TTC).
  • Step S10 The alarm unit 15 determines whether the TTC set in step S9 is equal to or less than the threshold value specified by the system. Then, if the TTC is below the threshold value, the process proceeds to step S11. On the other hand, if this is not the case, the process of FIG. 3 is terminated.
  • Step S11 When the TTC is below the threshold value, that is, when it is predicted that the own vehicle 1 will soon collide with the target 2, the alarm unit 15 outputs an alarm request to the alarm device 31. As a result, the alarm device 31 warns the driver of the possibility of contact with the target 2, and the driver can perform the driving operation necessary to avoid contact with the target 2.
  • the conventional vehicle control device for calculating the target-to-ground speed VTA by the method of FIG. 1 cannot appropriately warn of the possibility of collision with the pedestrian 2a, and the vehicle control device 10 of the present embodiment does not properly warn of the possibility of collision with the pedestrian.
  • the own vehicle 1 makes a steady turn at a speed of 10 km / h for turning right after entering the intersection by going straight.
  • the pedestrian 2a suddenly jumps out to the pedestrian crossing at a speed of 5 km / h during the steady turning of the own vehicle 1. That is, the pedestrian 2a collides with the front end of the own vehicle 1 unless appropriate avoidance actions such as braking and steering are taken on the own vehicle 1 side.
  • FIG. 13 shows the actual ground speed (solid line) of the pedestrian 2a, the ground speed calculated by the conventional vehicle control device (dashed line), and the ground speed calculated by the vehicle control device 10 of the present embodiment (broken line). It is a graph showing the relationship. As shown here, the actual pedestrian 2a is initially stopped, and when the time reaches 8 seconds, it suddenly jumps out to the pedestrian crossing at a speed of 5 km / h.
  • the vehicle control device of the prior art erroneously recognizes the ground speed of the pedestrian 2a, which is actually stationary, as about 18.4 km / h at the time of 7 seconds at the start of turning.
  • the error from the actual ground speed gradually improves as the vehicle 1 approaches the pedestrian 2a, but after 9 seconds have passed, it is higher than the actual ground speed of the pedestrian 2a (5 km / h).
  • the slow ground speed may be calculated, or the pedestrian 2a may be determined not to move even though it is moving. For this reason, it has been difficult for the conventional vehicle control device to issue an alarm at an appropriate timing while the own vehicle 1 is turning.
  • the target ground speed VTA close to the actual behavior (solid line) of the pedestrian 2a can be calculated, and the own vehicle 1 is turning. Even so, it can be seen that the behavior of the pedestrian 2a can be accurately grasped.
  • the vehicle control device 10 of the present embodiment even when the own vehicle 1 is turning, the ground speed of the target around the own vehicle can be accurately calculated, and the target can be used at an appropriate timing. Can warn of the possibility of collision. As a result, appropriate avoidance actions such as braking and steering can be taken on the own vehicle 1 side, and a collision between the own vehicle 1 and the pedestrian 2a can be avoided.
  • the target recognition sensor 21 a camera that cannot directly measure the target relative velocity V TR , LiDAR, is used, and the target relative velocity V TR is calculated from the time change of the target relative position P TR .
  • a millimeter wave radar, an ultrasonic sensor, or the like that can directly measure the target relative velocity VTR is used.
  • the target relative velocity V TR is calculated from the time change of the target relative position P TR , the relative peripheral velocity of the target recognition sensor 21 is taken into consideration when calculating the target ground speed VTA .
  • the target relative velocity V TR is directly measured, it is necessary to cancel the influence of the relative peripheral velocity of the target recognition sensor 21 when calculating the target ground speed VTA . Therefore, in this embodiment, under the condition that the target recognition sensor 21 is the millimeter wave radar 21a and the target relative velocity VTR is directly measured by the millimeter wave radar 21a, the steps from step S4 in FIG. 3 are performed. The case of proceeding to S21 will be described.
  • Steps S21 and S22 of this embodiment are processes for canceling the radar relative peripheral velocity V R ⁇ component mixed in the target relative velocity VTR measured by the millimeter wave radar 21a. The details of each will be described below.
  • Step S21 First, the relative peripheral speed calculation unit 13 calculates the radar relative peripheral speed V R ⁇ by using the yaw rate ⁇ and the rear wheel axle center-radar distance LR as shown in FIGS. 14 and 6. It is assumed that the rear wheel axle center-radar distance LR is registered in advance as a vehicle parameter in the parameter storage unit 11. In this way, the radar relative peripheral speed V R ⁇ can be calculated in almost the same manner as the target relative peripheral speed V T ⁇ in FIG. 7, but the vector of the radar relative peripheral speed V R ⁇ is fixed to the own vehicle 1. Because of this part, it is the exact opposite of the target relative peripheral velocity VT ⁇ in FIG. 7.
  • Step S22 Next, as shown in FIGS. 15 and 7, the target ground speed calculation unit 14 uses the own vehicle speed VS, the target relative speed V TR , the target relative peripheral speed VT ⁇ , and the radar relative peripheral speed V R ⁇ . , Calculate the target ground speed VTA .
  • the equation 7 used in this step is obtained by further subtracting the radar relative peripheral velocity V R ⁇ calculated in step S21 from the equation 3 of step S5 of the first embodiment, and the millimeter wave radar 21a determines the target relative velocity V TR . Even in the case of direct measurement, it is possible to suppress the change in peripheral speed due to the turning of the own vehicle 1.
  • the target ground speed VT A may be calculated using the target relative peripheral velocity VT ⁇ component excluding the unmeasurable velocity component and the radar relative peripheral velocity V R ⁇ .
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations.
  • it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • each of the above configurations, functions, processing units, processing means, etc. calculates a part or all of them in the target recognition sensor 21, for example, the relative peripheral speed calculation unit 13 and the target ground speed calculation unit 14.
  • information such as programs, tables, and files that realize each function such as the above configuration and functions can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or an IC card, SD card, DVD, or the like. It can be placed on a recording medium.
  • SSD Solid State Drive
  • 100 ... Driving support system 1 ... Own vehicle, 10 ... Vehicle control device, 11 ... Parameter storage unit, 12 ... Own vehicle course estimation unit, 13 ... Relative peripheral speed calculation unit, 14 ... Target ground speed calculation unit, 15 ... Alarm unit, 21 ... Target recognition sensor, 21a ... Millimeter wave radar, 22 ... Vehicle speed sensor, 23 ... Steering sensor, 24 ... Yaw rate sensor, 31 ... Alarm device, 2 ... Target, 2a ... Pedestrian, PS ... Self Vehicle position, P TR ... Target relative position, P TA ... Target ground position, VS ... Own vehicle speed, V TR ... Target relative speed, V TA ... Target ground speed, VT ⁇ ... Target relative peripheral speed, V R ⁇ ...
  • R 1 Ground coordinate system course of own vehicle
  • R 2A Ground coordinate system course of target
  • R 2R Ground coordinate system course of target
  • OS Rear wheel axle center
  • L S distance between the center of the rear wheel axle and the front end of the vehicle
  • LT distance between the center of the rear wheel axle and the target
  • LR ... the distance between the center of the rear wheel axle and the radar
  • ... yaw rate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Human Computer Interaction (AREA)
  • Power Engineering (AREA)
  • Traffic Control Systems (AREA)

Abstract

自車が旋回中であっても、周囲の物標の対地速度を正確に算出できる車両制御装置を提供することを目的とする。物標の相対速度を検出する物標認識センサの出力と、自車速を検出する車速センサの出力と、に基づいて前記物標の対地速度を算出する車両制御装置であって、前記自車の進路を推定する自車進路推定部と、前記自車に対する前記物標の相対周速度を算出する相対周速度算出部と、前記物標の相対速度と前記自車速の和から、前記物標の相対周速度を減算することで、前記物標の対地速度を算出する対地速度算出部と、を備える車両制御装置。

Description

車両制御装置、および、車両制御方法
 本発明は、自車が旋回中であっても、周囲の物標(特に歩行者)の対地速度を正確に算出することができる車両制御装置、および、車両制御方法に関する。
 近年の車両には、歩行者に対する衝突安全機能の性能向上が求められている。例えば、ENCAP(The European New Car Assessment Programme)では、車両が交差点を右左折する時に、右左折先の道路を横断中の歩行者との衝突可能性を判定し、衝突可能性があれば、事前に運転手に警報を発するシステムが求められている。このような要請に応えるため、近年の運転支援システムでは、自車と対象物(以下「物標」と称する)の衝突可能性を正確に判定すべく、車載センシング装置を利用して、物標の相対的な移動軌跡をより高精度に推定する必要がある。
 物標の移動軌跡を推定する従来技術として、特許文献1が知られている。この文献の0004段落には、「自車位置を原点とする相対座標系を自車に設定し、この相対座標系における対象物の過去の位置履歴(過去位置履歴)から対象物の進路を推定(以下、相対座標系進路推定)して衝突可能性を判定する方法がある。この相対座標系進路推定による判定方法は、自車の走行路を把握することなく衝突可能性を判定するため、道路状況の画像を撮像するためのカメラや画像処理装置を備える必要がない。」との記載がある。
 また、特許文献1には、過去位置履歴から相対座標系進路を推定する方法の課題と解決策として、次の記載がある。
 段落0005「自車の操舵角が急に変化するような状況においては、この操舵角の変化が対象物の推定進路に遅れて反映されるため、その推定精度が劣ることになる。このような状況は、例えば、自車が駐車車両等の障害物を避ける場合や、自車が直線路から道路半径の小さいカーブに進入するような場合に発生し易い。」
 段落0012「路側物の推定進路は、それ以前の路側物の過去位置履歴から求まるため、路側物の位置の一時的な変化が反映され難く、それゆえに、路側物の推定進路に遅れて反映される。なお、この現象は、特に路側物等のように、自車との相対速度の大きい静止物に対して頻繁に発生する。」
 段落0013「物体が静止物(言い換えれば、絶対速度がゼロの物体)であるならば、自車を基準とするその物体の相対運動は、その物体を基準とした場合の自車の相対運動と正反対の関係にある。また、自車の運動状態は、時間的に遅れの少ない車速、操舵角(或いはヨーレート等)から把握できる。従って、自車の運動状態に基づいて静止物の相対的な進路を推定することができれば、時間遅れの少なく、精度の高い進路推定が可能となる。」
特開2007-4711号公報
 特許文献1では、車両旋回時のように操舵角が急変する状況において、周囲物体が静止物か移動物かを判定し、判定結果に応じて進路の推定方法を切り替え、若しくは、両方法を組み合わせて移動経路の推定精度を向上させている。しかし、特許文献1には、物体が静止物か移動物かを判定する際に用いる物標対地速度VTAの算出方法に関する記載はない。
 ここで、物標対地速度VTAを算出する公知技術としては、自車速Vと物標相対速度VTRを加算する方法が知られている。図1を用いて、従来技術による物標対地速度VTAの算出方法を説明する。
 まず、図1左図に、自車1が直進している状況下での物標対地速度VTAの算出イメージを示す。自車速Vは、直進中の自車1を前提としてタイヤの回転量等から求めたものであるため、自車1が直進中であれば正しい自車速Vを算出でき、その結果、正しい物標対地速度VTAを算出できる。
 しかしながら、図1右図に示すように、上記前提に反する自車1の旋回中には、自車速Vの算出精度が劣化するため、従来技術の算出方法では、物標対地速度VTAの精度も低下し、静止物標を移動物標と誤判定したり、逆に、移動物標を静止物標と誤判定したりする惧れがある。
 本発明は、上記問題を鑑みてなされたものであり、自車が旋回中であっても、周囲の物標の対地速度を正確に算出できる車両制御装置を提供することを目的とする。
 上記課題を解決するために、本発明の車両制御装置は、物標の相対速度を検出する物標認識センサの出力と、自車速を検出する車速センサの出力と、に基づいて前記物標の対地速度を算出する車両制御装置であって、前記自車の進路を推定する自車進路推定部と、前記自車に対する前記物標の相対周速度を算出する相対周速度算出部と、前記物標の相対速度と前記自車速の和から、前記物標の相対周速度を減算することで、前記物標の対地速度を算出する対地速度算出部と、を備えるものとした。
 本発明の車両制御装置によれば、自車が旋回中であっても、自車周辺の物標の対地速度を正確に算出することができる。
従来技術による、物標対地速度VTAの算出方法 実施例1の運転支援システムの機能ブロック図 実施例1の車両制御装置による処理のフローチャート 一般的な車両モデル式によるヨーレートωと、自車位置Pの算出ブロック図 後輪車軸中心-物標間の距離Lの算出方法 後輪車軸中心Oを原点とする理由の説明図 物標相対周速度VTθの算出方法 変位から物標相対速度VTRを算出した場合の物標対地速度VTA算出方法 自車と物標の対地座標系進路のイメージ図 物標の相対座標系進路のイメージ図 警報候補判断とTTCから警報判断を行う方法の説明図 実施例1の車両制御装置の効果を説明するための環境のイメージ図 図12における従来・本発明・実際の対地速度の比較結果 実施例2における、レーダ相対周速度VRθの算出方法 実施例2における、物標対地速度VTAの算出方法
 以下、本発明の車両制御装置の実施例について、図面を用いて説明する。
 以下、図2から図13を用いて、実施例1に係る車両制御装置10を説明する。
 図2は、本実施例の自車1に搭載される運転支援システム100の機能ブロック図である。この運転支援システム100は、車両制御装置10の入力側に、物標認識センサ21、車速センサ22、ステアリングセンサ23、ヨーレートセンサ24が存在し、出力側に警報装置31が存在するシステムである。なお、各々は、CAN(Controller Area Network)等によって通信可能に接続されているものとする。
 物標認識センサ21は、自車1の周囲の物標2(例えば、他車や歩行者2a)に関する情報を取得するセンサであり、例えば、カメラ、ミリ波レーダ(MRR)、超音波センサ、LiDARなどである。物標認識センサ21がカメラであれば、各撮影データから物標2の相対位置PTR(xTR,yTR)を逐次計測するとともに、各々の撮影データ中の物標2の変位から物標2の相対速度VTRを算出することができる。物標認識センサ21がLiDARであれば、物標2の相対位置PTR(xTR,yTR)を直接計測するとともに、物標2の変位から物標2の相対速度VTRを算出することができる。また、物標認識センサ21がミリ波レーダ、超音波センサなどであれば、物標2の相対位置と相対速度を直接計測することができる。
 なお、本実施例では、物標認識センサ21がカメラ、LiDARであり、物標相対位置PTRの時間変化から物標相対速度VTRを算出する場合の制御内容を説明し、実施例2では、物標認識センサ21がミリ波レーダ、超音波センサであり、物標相対速度VTRを直接計測する場合の制御内容を説明する。ただし、物標認識センサ21がミリ波レーダ等である場合でも、物標相対位置PTRの時間変化から物標相対速度VTRを算出する場合は、本実施例の制御内容を用いるものとする。
 車速センサ22は、自車速Vを検出するセンサであり、例えば、車輪速センサが出力したタイヤの回転速度に基づいて、自車1が直進中であるという前提での自車速Vを算出する。
 ステアリングセンサ23は、自車1のステアリング角度(量)を取得するセンサであり、例えば、ステアリングに装着された角度センサである。
 ヨーレートセンサ24は、自車1のヨーレートωを取得するセンサであり、例えば、自車1の上下方向軸周りの加速度を検出する加速度センサである。なお、後述する方法でヨーレートωを算出することもできるため、ヨーレートセンサ24を省略しても良い。
 警報装置31は、車両制御装置10が警報要求を出力した場合に、ディスプレイ表示、LED発光、ステアリング操作、音声報知等を介して、物標2との衝突可能性を運転手に警報し、運転手に適当な回避動作を促す装置である。なお、図2では、警報装置31を介して、運転者自身に回避動作を促しているが、衝突可能性がある場合に、自車1の制動や操舵を車両制御装置10が直接制御するシステムとしても良い。
 <車両制御装置10>
 次に、本実施例の車両制御装置10の詳細を説明する。図2に示すように、車両制御装置10は、パラメータ保存部11、自車進路推定部12、相対周速度算出部13、物標対地速度算出部14、警報部15を備えている。そして、自車進路推定部12、相対周速度算出部13、物標対地速度算出部14、警報部15による処理を周期的に実行し、所定条件を満たす場合に、警報要求を作成し、警報装置31に出力する。なお、車両制御装置10は、具体的には、CPU等の演算装置、半導体メモリ等の記憶装置、および、通信装置などのハードウェアを備えたECU(Electronic Control Unit)である。そして、記憶装置にロードされたプログラムを演算装置が実行することで、自車進路推定部12等の各機能を実現するが、以下では、このような周知技術を適宜省略しながら説明する。
 パラメータ保存部11は、車両パラメータと警報パラメータを保存する記憶装置である。車両パラメータは、主に自車進路推定部12で利用されるパラメータであり、例えば、ホイルベース、ステアリング角度をタイヤ角度に変換するギア比、自車前端から後輪車軸まで距離L、等の自車1の諸元に関するパラメータである。また、警報パラメータは、主に警報部15で利用されるパラメータであり、警報候補の衝突猶予時間(Time To Collision、以下「TTC」と称する)と比較するためのTTC閾値、等のパラメータである。
 自車進路推定部12は、自車速Vと、ステアリング角度と、ステアリング角度をタイヤ角度に変換するギア比と、ホイルベースを用いて、自車1のヨーレートωと、所定時間後の自車位置Pを推定する。この処理の詳細は、図4を用いて後述する。
 相対周速度算出部13は、物標相対位置PTR、ヨーレートω、後輪車軸中心Oの位置を用いて、物標相対周速度VTθを算出する。この処理の詳細は、図5、図7を用いて後述する。
 物標対地速度算出部14は、自車速V、物標相対速度VTR、物標相対周速度VTθを用いて、物標対地速度VTAを算出する。この処理の詳細は、図8を用いて後述する。
 警報部15は、物標認識センサ21、自車進路推定部12、物標対地速度算出部14を用いて、物標2の相対座標系進路を推定し、衝突可能性とTTCを算出する。この処理の詳細は、図9から図11を用いて後述する。
 <車両制御装置10での処理の詳細>
 次に、図3のフローチャートを用いて、車両制御装置10が警報出力の要否を判断するまでの処理を順次説明する。
 ステップS1:
 まず、自車進路推定部12は、パラメータ保存部11から取得したホイルベースおよびギア比と、車速センサ22から取得した自車速Vと、ステアリングセンサ23から取得したステアリング角度に基づいて、所定時間後(以下「推定時間t」と称する)のヨーレートωと自車位置Pを順次算出し、それらの軌跡から自車1の対地座標系進路Rを推定する。
 図4は、一般的な車両モデル式を用いた自車進路推定部12での処理の一例である。ここに示すように、タイヤ角度は、ステアリング角度とギア比から算出できる。ヨーレートωは、自車速V×タイヤ角度÷ホイルベースで算出できる。旋回半径ρは、ホイルベース÷タイヤ角度で算出できる。ヨー角θ(t)は、ヨーレートω×推定時間tで算出できる。そして、算出したヨー角θ(t)と旋回半径ρを用いて、自車1の推定x座標x(t)と推定y座標y(t)からなる自車位置P(t)を算出する。このようにして求めた自車位置P(t)の軌跡から、図9に例示するような自車1の対地座標系進路Rを推定することができる。
 なお、ヨーレートωは、ヨーレートセンサ24が計測したものを利用することもできるが、ヨーレートセンサ24は車体の揺れを拾ってしまうため、車体の揺れが大きい場合は、ヨーレートセンサ24が計測したヨーレートωの信頼性が劣化する。一方で、自車進路推定部12が算出したヨーレートωにはこの問題が無いため、以下では、自車進路推定部12が算出したヨーレートωを利用するものとする。
 ステップS2:
 次に、相対周速度算出部13は、パラメータ保存部11から取得した自車前端から後輪車軸まで距離Lと、物標認識センサ21から取得した物標相対位置PTRに基づいて、図5および式1のように自車1の後輪車軸中心-物標間の距離Lを算出する。なお、距離Lの原点を、自車前端中央(物標相対位置PTRに関するxy座標の原点)ではなく、後輪車軸中心Oとした理由は、前輪がステアリングホイールである自車1では、図6のように後輪車軸と進行方向が垂直になるため、後輪車軸中心Oを自車1の回転中心と見做すことができるからである。
Figure JPOXMLDOC01-appb-M000001
 ステップS3:
 また、相対周速度算出部13は、ステップS1で求めたヨーレートωとステップS2で求めた距離Lを用いて、図7および式2のように、物標相対周速度VTθを算出する。
物標相対周速度VTθは、距離Lと垂直になるベクトルであり、大きさは、距離Lにヨーレートωを掛けることで算出できる。
Figure JPOXMLDOC01-appb-M000002
 ステップS4:
 次に、物標対地速度算出部14は、物標相対速度VTRの取得方法に応じて以降の処理を切り替える。具体的には、物標認識センサ21がカメラ等であり、1サイクル前と現在の物標相対位置PTRの変位に基づいて物標相対速度VTRを算出している場合は、ステップS5に進む。一方、物標認識センサ21がミリ波レーダ等であり、物標相対速度VTRを直接計測している場合は、ステップS21に進む。
 この分岐を設けたのは、後者の場合は物標対地速度VTAを算出する際に、ミリ波レーダ等の相対周速度の影響を考慮する必要があるのに対し、前者の場合はカメラ等の相対周速度の影響を考慮する必要が無いためである。なお、本実施例では、ステップS5に進む場合を説明することとし、ステップS21に進む場合の処理は、実施例2で説明する。
 ステップS5:
 また、物標対地速度算出部14は、図8および式3のように、自車速V、物標相対速度VTR、物標相対周速度VTθを用いて、正確な物標対地速度VTAを算出する。すなわち、図1に示した従来技術では、自車速Vと物標相対速度VTRを加算して物標対地速度VTAを算出したため、自車1の旋回時には、物標相対周速度VTθの影響により正しい物標対地速度VTAを算出できなかったが、本ステップでは、自車速Vと物標相対速度VTRの和から、物標相対周速度VTθを減算することで、旋回に伴う物標相対周速度VTθの影響を除去し、正確な物標対地速度VTAを算出することができる。
Figure JPOXMLDOC01-appb-M000003
 ステップS6:
 次に、警報部15は、図9および式4のように、物標2の対地座標系進路R2Aを推定する。本実施例では、時刻tにおける物標相対位置PTR(t)に、物標対地速度VTAと推定時間tの積を加算することで各推定時間の物標対地位置PTA(t)を順次算出し、これらの軌跡から物標2の対地座標系進路R2Aを推定する。なお、警報部15で用いる推定時間tは、自車進路推定部12で用いる推定時間tと同期しているものとする。
Figure JPOXMLDOC01-appb-M000004
 ステップS7:
 また、警報部15は、図10および式5のように推定時間t毎の推定相対位置PTR(t)を算出し、その軌跡から物標2の相対座標系進路R2Rを推定する。そのため、まず、ステップS6で求めた物標対地位置PTA(t)とステップS1で求めた自車位置P(t)の差分を、同じ推定時間tの自車位置P(t)を原点とした座標に変換する。座標変換後の物標位置は自車1のヨー角に変化がない場合の物標位置に相当するため、式5により、推定時間t毎の上記差分の座標を、ヨーレートω×推定時間t=ヨー角θ(t)の分だけ座標回転させる。以上の過程を自車進路推定12で出力したi個のサンプル全てに実行することで、現在の車両視点から見た物標2の移動軌跡である相対座標系進路R2Rを推定することができる。
Figure JPOXMLDOC01-appb-M000005
 ステップS8:
 警報部15は、図11に例示するように、自車1の全長・横幅を元にした自車領域を作成し、相対座標系進路R2Rが自車領域に進入するかを判断する。そして、相対座標系進路R2Rが自車領域に進入する場合は、自車領域に入った物標相対位置PTR(t)を警報候補に設定し、ステップS9に進む。一方、相対座標系進路R2Rが自車領域に進入しない場合は、図3の処理を終了する。
 ステップS9:
 警報部15は、ステップS8にて警報候補に設定された物標相対位置PTR(t)の推定時間tのうち最小値を衝突猶予時間(TTC)に設定する。
 ステップS10:
 警報部15は、ステップS9で設定したTTCがシステムで指定した閾値以下であるかを判断する。そして、TTCが閾値を下回っていた場合は、ステップS11に進む。一方、そうでない場合は、図3の処理を終了する。
 ステップS11:
 TTCが閾値以下であった場合、すなわち、自車1が間もなく物標2に衝突すると予測される場合、警報部15は、警報装置31に警報要求を出力する。これにより、警報装置31から運転者に、物標2との接触可能性が警報され、運転者は、物標2との接触を回避するために必要な運転操作を実行することができる。
 <シミュレーション結果>
 ここで、図12と図13を用いて、本実施例の車両制御装置10の効果を示すシミュレーション結果を説明する。
 図12は、図1の方法で物標対地速度VTAを算出する従来の車両制御装置では歩行者2aとの衝突可能性を適切に警報できず、本実施例の車両制御装置10では歩行者2aとの衝突可能性を適切に警報できる状況の一例である。この例では、自車1は、直進で交差点に進入した後、右折のため時速10km/hで定常旋回を行っている。一方、歩行者2aは、自車1の定常旋回中に時速5km/hで急に横断歩道に飛び出すものとする。つまり、自車1側で制動や操舵等の適切な回避行動をとらなければ、自車1の前端に歩行者2aが衝突してしまう状況である。
 図13は、歩行者2aの実際の対地速度(実線)と、従来の車両制御装置が算出した対地速度(一点鎖線)と、本実施例の車両制御装置10が算出した対地速度(破線)の関係を示したグラフである。ここに示すように、実際の歩行者2aは、当初は停止しており、時刻8秒になった時点で時速5km/hで急に横断歩道に飛び出して来る。
 この場合、従来技術の車両制御装置は、旋回開始時の時刻7秒の時点で、実際には静止している歩行者2aの対地速度を時速約18.4km/hと誤認識してしまう。実際の対地速度との誤差は、自車1が歩行者2aに近づくにつれ、徐々に改善するが、時刻9秒を経過した後には、歩行者2aの実際の対地速度(時速5km/h)より遅い対地速度を算出したり、歩行者2aが動いているにも関わらず、動いていないように判断したりする場合がある。このような理由により、自車1の旋回中には、従来技術の車両制御装置では、適切なタイミングで警報を発することが難しかった。
 これに対し、本実施例の車両制御装置10では、破線で示すように、歩行者2aの実際の挙動(実線)に近い物標対地速度VTAを算出できており、自車1が旋回中であっても、歩行者2aの挙動を正確に把握できていることがわかる。
 従って、本実施例の車両制御装置10によれば、自車1が旋回中であっても、自車周辺の物標の対地速度を正確に算出することができ、適切なタイミングで物標との衝突可能性を警報することができる。その結果、自車1側で制動や操舵等の適切な回避行動をとることができ、自車1と歩行者2aの衝突を回避することができる。
 次に、本発明の実施例2に係る車両制御装置10を説明する。なお、実施例1との共通点は重複説明を省略する。
 実施例1では、物標認識センサ21として、物標相対速度VTRを直接計測できないカメラ、LiDARを利用し、物標相対位置PTRの時間変化から物標相対速度VTRを算出した。一方、本実施例では、物標認識センサ21として、物標相対速度VTRを直接計測できる、ミリ波レーダ、超音波センサ等を利用する。
 上記したように、物標相対位置PTRの時間変化から物標相対速度VTRを算出した場合は、物標対地速度VTAを算出する際に物標認識センサ21の相対周速度を考慮する必要は無いが、物標相対速度VTRを直接計測した場合は、物標対地速度VTAを算出する際に物標認識センサ21の相対周速度の影響を打ち消す必要がある。そこで、本実施例では、物標認識センサ21がミリ波レーダ21aであり、物標相対速度VTRがミリ波レーダ21aによって直接計測されたものである状況下で、図3のステップS4からステップS21に進んだ場合について説明する。
 本実施例のステップS21、S22は、ミリ波レーダ21aが測定した物標相対速度VTRに混入しているレーダ相対周速度VRθ成分を打ち消す処理である。以下、各々の詳細を説明する。
 ステップS21:
 まず、相対周速度算出部13は、図14および式6のように、ヨーレートωと後輪車軸中心-レーダ距離Lを用いて、レーダ相対周速度VRθを算出する。なお、後輪車軸中心-レーダ距離Lは、予めパラメータ保存部11に車両パラメータとして登録されているものとする。このように、図7における物標相対周速度VTθとほぼ同様にレーダ相対周速度VRθを算出することができるが、レーダ相対周速度VRθのベクトルは、自車1に固定されている部分のため、図7の物標相対周速度VTθとは真逆になっている。
Figure JPOXMLDOC01-appb-M000006
 ステップS22:
 次に、物標対地速度算出部14は、図15および式7のように、自車速V、物標相対速度VTR、物標相対周速度VTθ、レーダ相対周速度VRθを用いて、物標対地速度VTAを算出する。本ステップで用いる式7は、実施例1のステップS5の式3から更に、ステップS21で算出したレーダ相対周速度VRθを減算したものであり、ミリ波レーダ21aが物標相対速度VTRを直接計測する場合でも、自車1の旋回に伴う周速度変化を抑えることができる。
Figure JPOXMLDOC01-appb-M000007
 なお、法線方向の速度しか計測できないように、直接計測できない速度成分があるミリ波レーダ21aも存在する。その場合は、計測できない速度成分を除いた物標相対周速度VTθ成分及びレーダ相対周速度VRθを用いて物標対地速度VTAを算出すれば良い。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。
例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば相対周速度算出部13、物標対地速度算出部14を物標認識センサ21内で算出するように設計する等により実現してもよい。また、上記の構成、機能等各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。
100…運転支援システム、1…自車、10…車両制御装置、11…パラメータ保存部、12…自車進路推定部、13…相対周速度算出部、14…物標対地速度算出部、15…警報部、21…物標認識センサ、21a…ミリ波レーダ、22…車速センサ、23…ステアリングセンサ、24… ヨーレートセンサ、31…警報装置、2…物標、2a…歩行者、P…自車位置、PTR…物標相対位置、PTA…物標対地位置、V…自車速、VTR…物標相対速度、VTA…物標対地速度、VTθ…物標相対周速度、VRθ…レーダ相対周速度、R…自車の対地座標系進路、R2A…物標の対地座標系進路、R2R…物標の相対座標系進路、O…後輪車軸中心、L…後輪車軸中心-自車前端間の距離、L…後輪車軸中心-物標間の距離、L…後輪車軸中心-レーダ間の距離、ω…ヨーレート、

Claims (7)

  1.  物標の相対速度を検出する物標認識センサの出力と、
     自車速を検出する車速センサの出力と、
     に基づいて前記物標の対地速度を算出する車両制御装置であって、
     自車の進路を推定する自車進路推定部と、
     前記自車に対する前記物標の相対周速度を算出する相対周速度算出部と、
     前記物標の相対速度と前記自車速の和から、前記物標の相対周速度を減算することで、前記物標の対地速度を算出する対地速度算出部と、
     を備えることを特徴とする車両制御装置。
  2.  請求項1に記載の車両制御装置において、
     前記自車進路推定部は、前記自車速、及び、前記自車のステアリング角度または前記自車に搭載されたヨーレートセンサの出力に基づいて、前記自車の進路を算出することを特徴とする車両制御装置。
  3.  請求項1に記載の車両制御装置において、
     前記物標認識センサが前記物標の相対位置の時間変化から前記物標の相対速度を算出するセンサである場合、
     前記相対周速度算出部が算出する前記相対周速度は、前記自車の後輪車軸中心を原点とした前記物標の相対周速度であることを特徴とする車両制御装置。
  4.  請求項3に記載の車両制御装置において、
     前記物標認識センサが、カメラ、ミリ波レーダ、超音波センサ、または、LiDARであることを特徴とする車両制御装置。
  5.  請求項1に記載の車両制御装置において、
     前記物標認識センサが前記物標の相対速度を直接計測するセンサである場合、
     前記相対周速度算出部が算出する前記相対周速度は、前記自車の後輪軸中心を原点とした前記物標の相対周速度と、前記自車の後輪車軸中心を原点とした前記物標認識センサの相対周速度の和であることを特徴とする車両制御装置。
  6.  請求項5に記載の車両制御装置において、
     前記物標認識センサが、ミリ波レーダ、または、超音波センサであることを特徴とする車両制御装置。
  7.  物標の相対速度を検出する物標認識センサの出力と、
     自車速を検出する車速センサの出力と、
     に基づいて前記物標の対地速度を算出する車両制御方法であって、
     自車の進路を推定するステップと、
     前記自車に対する前記物標の相対周速度を算出するステップと、
     前記物標の相対速度と前記自車速の和から、前記物標の相対周速度を減算することで、前記物標の対地速度を算出するステップと、
     を備えることを特徴とする車両制御方法。
PCT/JP2021/033201 2020-11-30 2021-09-09 車両制御装置、および、車両制御方法 WO2022113472A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112021004961.5T DE112021004961T5 (de) 2020-11-30 2021-09-09 Fahrzeugsteuervorrichtung und fahrzeugsteuerverfahren
JP2022565072A JP7474352B2 (ja) 2020-11-30 2021-09-09 車両制御装置、および、車両制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020197888 2020-11-30
JP2020-197888 2020-11-30

Publications (1)

Publication Number Publication Date
WO2022113472A1 true WO2022113472A1 (ja) 2022-06-02

Family

ID=81755517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033201 WO2022113472A1 (ja) 2020-11-30 2021-09-09 車両制御装置、および、車両制御方法

Country Status (3)

Country Link
JP (1) JP7474352B2 (ja)
DE (1) DE112021004961T5 (ja)
WO (1) WO2022113472A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024069728A1 (ja) * 2022-09-27 2024-04-04 日立Astemo株式会社 車両制御装置
WO2024069679A1 (ja) * 2022-09-26 2024-04-04 日立Astemo株式会社 電子制御装置、車両制御方法、及びプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007004711A (ja) * 2005-06-27 2007-01-11 Denso Corp 車両用進路推定装置
JP2018136240A (ja) * 2017-02-23 2018-08-30 三菱電機株式会社 推定装置、推定方法、推定装置を備えた追尾装置、および推定方法を備えた追尾方法
JP2019215275A (ja) * 2018-06-13 2019-12-19 株式会社デンソーテン 物標検出装置および物標検出方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007004711A (ja) * 2005-06-27 2007-01-11 Denso Corp 車両用進路推定装置
JP2018136240A (ja) * 2017-02-23 2018-08-30 三菱電機株式会社 推定装置、推定方法、推定装置を備えた追尾装置、および推定方法を備えた追尾方法
JP2019215275A (ja) * 2018-06-13 2019-12-19 株式会社デンソーテン 物標検出装置および物標検出方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024069679A1 (ja) * 2022-09-26 2024-04-04 日立Astemo株式会社 電子制御装置、車両制御方法、及びプログラム
WO2024069728A1 (ja) * 2022-09-27 2024-04-04 日立Astemo株式会社 車両制御装置

Also Published As

Publication number Publication date
JPWO2022113472A1 (ja) 2022-06-02
DE112021004961T5 (de) 2023-08-10
JP7474352B2 (ja) 2024-04-24

Similar Documents

Publication Publication Date Title
US11738744B2 (en) Driving support apparatus
CN110352450B (zh) 驾驶辅助方法及驾驶辅助装置
US8428843B2 (en) Method to adaptively control vehicle operation using an autonomic vehicle control system
US8170739B2 (en) Path generation algorithm for automated lane centering and lane changing control system
JP6705414B2 (ja) 動作範囲決定装置
US11155257B2 (en) Automatic parking control device
JP4442520B2 (ja) 車両用進路推定装置
WO2022113472A1 (ja) 車両制御装置、および、車両制御方法
KR20190056977A (ko) 차량 제어 장치
WO2020066646A1 (ja) 走行制御装置、車両及び走行制御方法
WO2018173479A1 (ja) 先行車判定装置及び車両制御システム
JP2019096177A (ja) 車群制御装置
US20200122697A1 (en) Vehicle Traveling Assistance Method and Vehicle Traveling Assistance Device
US11938933B2 (en) Travel control apparatus, vehicle, travel control method, and non-transitory computer-readable storage medium
WO2019207639A1 (ja) 行動選択装置、行動選択プログラム及び行動選択方法
US11794781B2 (en) Autonomous controller for detecting a low-speed target object in a congested traffic situation, a system including the same, and a method thereof
WO2019203160A1 (ja) 運転支援システムおよび方法
CN114466776A (zh) 车辆控制方法、车辆控制装置和包括该车辆控制装置的车辆控制系统
JP2003276538A (ja) 障害物予測装置
CN113561992A (zh) 自动驾驶车辆轨迹生成方法、装置、终端设备及介质
US20200384992A1 (en) Vehicle control apparatus, vehicle, operation method of vehicle control apparatus, and non-transitory computer-readable storage medium
JP4110922B2 (ja) 車両用外界認識装置
US11260884B2 (en) Vehicle control apparatus, vehicle, operation method of vehicle control apparatus, and non-transitory computer-readable storage medium
WO2021044811A1 (ja) 進行路推定装置
KR102286747B1 (ko) Hda 시스템의 시험 평가 장치 및 방법, hda 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897450

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022565072

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21897450

Country of ref document: EP

Kind code of ref document: A1