WO2023176208A1 - Reaction furnace for moisture generation - Google Patents

Reaction furnace for moisture generation Download PDF

Info

Publication number
WO2023176208A1
WO2023176208A1 PCT/JP2023/004136 JP2023004136W WO2023176208A1 WO 2023176208 A1 WO2023176208 A1 WO 2023176208A1 JP 2023004136 W JP2023004136 W JP 2023004136W WO 2023176208 A1 WO2023176208 A1 WO 2023176208A1
Authority
WO
WIPO (PCT)
Prior art keywords
main body
reactor
catalyst layer
platinum catalyst
coated
Prior art date
Application number
PCT/JP2023/004136
Other languages
French (fr)
Japanese (ja)
Inventor
圭志 平尾
幸男 皆見
牧人 吉田
Original Assignee
株式会社フジキン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジキン filed Critical 株式会社フジキン
Priority to JP2024507575A priority Critical patent/JPWO2023176208A1/ja
Priority to KR1020247010039A priority patent/KR20240052957A/en
Publication of WO2023176208A1 publication Critical patent/WO2023176208A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B5/00Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum

Definitions

  • the present invention relates to a moisture generation reactor that is mainly used in semiconductor manufacturing equipment and generates moisture by reacting hydrogen gas and oxygen gas.
  • This reactor for moisture generation 1C includes a reactor body 6 in which an inlet-side furnace body member 3 having an inlet 2 for raw material gas and an outlet-side furnace body member 5 having an outlet 4 for moisture gas are welded and joined to face each other;
  • a first reflecting plate 7 is disposed inside the reactor main body 6 to face the outlet 4 and is fixed to the inner wall surface of the reactor main body 6 while maintaining a gap G2.
  • a second reflecting plate 8 is disposed facing the inlet 2 and fixed to the inner wall surface of the reactor main body 6 while maintaining a gap G1, and a platinum catalyst layer is provided on the inner wall surface of the outlet side reactor main body member 5. 9 is coated. Note that, for ease of understanding, the platinum catalyst layer is exaggerated with broken lines.
  • the moisture generation reactor 1C having the above configuration supplies oxygen gas and hydrogen gas into the reactor body 6 through the raw material gas inlet 2, and performs a catalytic reaction lower than the ignition point (500 to 580°C) between hydrogen gas and oxygen gas.
  • a catalytic reaction By causing a catalytic reaction with the platinum catalyst layer 9 at a temperature (400° C. or lower), high-purity moisture gas can be generated and taken out from the moisture gas outlet without combustion.
  • the moisture generation reactor 1C shown in FIG. 6 is provided with a tapered portion 10 at the peripheral edge of the first reflecting plate 7 on the side facing the inner wall surface of the reactor main body 6, thereby preventing unexpected ignition and combustion. Moisture can be produced stably without any problems. That is, since the catalytic reaction occurs strongly at the portion that enters the gap G2 between the first reflecting plate 7 and the reactor main body 6, the provision of the tapered portion 10 prevents the raw material gas from rapidly flowing into the gap G2. By suppressing the occurrence of strong catalytic reactions, local temperature spikes are prevented and ignition is prevented.
  • the above-mentioned conventional moisture generation reactor can achieve a moisture generation rate of 98% while preventing the risk of ignition, and has consistently achieved a high moisture generation rate.
  • an object of the present invention is to provide a moisture generation reactor that can achieve a higher moisture generation rate while preventing the risk of ignition.
  • a moisture generating reactor includes a reactor main body having a gas inlet and an outlet, and an inner part of the reactor main body disposed opposite to the outlet.
  • a first reflecting plate that is fixed within the reactor main body while maintaining a gap with the wall surface and has a tapered portion on a peripheral edge facing the inner wall surface of the reactor main body; and a coating on the inner wall surface of the reactor main body. and a second platinum catalyst layer coated on the outer surface of the first reflecting plate on the side facing the reactor main body and inside the tapered part.
  • the second platinum catalyst layer may be coated on the outer surface except for a portion where the ring-shaped spacer contacts the first reflective plate.
  • the second platinum catalyst layer may be coated on the inner side of the ring-shaped spacer.
  • the first platinum catalyst layer and the second platinum catalyst layer may be coated on the entire inner wall surface of the reactor main body and the entire surface of the first reflector plate with a barrier film.
  • a tapered portion is disposed opposite to the inlet, is fixed within the reactor main body while maintaining a gap with the inner wall surface of the reactor main body, and has a tapered portion on a peripheral edge facing the inner wall surface of the reactor main body.
  • the apparatus may further include a second reflecting plate having a barrier film coated on its entire surface and not coated with a platinum catalyst layer.
  • the second platinum catalyst layer is coated on the outer surface of the first reflecting plate on the side facing the reactor main body and inside the tapered part, thereby preventing the risk of ignition. , higher moisture generation rate can be achieved.
  • FIG. 1 is a sectional view showing a first embodiment of a moisture generation reactor according to the present invention.
  • 2 is a partially enlarged view of FIG. 1.
  • FIG. 2 is a sectional view taken along line III-III in FIG. 1.
  • FIG. 4 is a sectional view showing a modification of the form shown in FIG. 3.
  • FIG. 2 is a sectional view showing a second embodiment of the moisture generation reactor according to the present invention.
  • FIG. 1 is a cross-sectional view showing a conventional moisture generation reactor.
  • Embodiments of the moisture generating reactor according to the present invention will be described below with reference to FIGS. 1 to 5.
  • the same or similar components are given the same reference numerals throughout all the figures and all the embodiments, including the prior art.
  • a moisture generation reactor 1A includes a reactor main body 6 having an inlet 2 for raw material gas (oxygen and hydrogen) and an outlet 4 for moisture gas and unreacted raw material gas. , are disposed facing the outlet 4, are fixed in the reactor main body 6 while maintaining a gap G2 with the inner wall surface of the reactor main body 6, and are tapered at the peripheral edge facing the inner wall surface of the reactor main body 6.
  • a first reflecting plate 7 having a section 10; a first platinum catalyst layer 9 coated on the inner wall surface of the reactor main body 6; a second platinum catalyst layer 11 coated on the outer surface of the catalyst.
  • the moisture generation reactor 1A is equipped with a second reflection plate 8.
  • the second reflecting plate 8 is disposed to face the inlet 2 and is fixed within the reactor main body 6 while maintaining a gap G1 with the inner wall surface of the reactor main body 6.
  • a tapered portion 12 is provided at the opposing peripheral edge portions.
  • the second reflecting plate 8 has a function of efficiently diffusing the raw material gas flowing in from the inlet 2 into the reactor main body 6.
  • the reactor main body 6 has an inlet side furnace main body member 3 and an outlet side furnace main body member 5 joined together, and has a short cylindrical outer shape.
  • An internal space P is formed by the recess 3a of the inlet furnace main body member 3 and the recess 5a of the outlet furnace main body member 5.
  • the respective peripheral flange portions 3b and 5b of the recessed portion 3a and the recessed portion 5a are butted and welded to be joined.
  • the gas inlet 2 is provided in the inlet-side furnace main body member 3.
  • the moisture gas outlet 4 is provided in the outlet side furnace main body member 5.
  • the first platinum catalyst layer 9 is mainly coated on the outlet side furnace main body member 5.
  • the inlet-side furnace main body member 3 may also have a first platinum catalyst layer 9 coated on the inner surface of the peripheral flange portion 3b.
  • the second reflecting plate 8 When the second reflecting plate 8 is coated with a platinum catalyst layer, a catalytic reaction occurs within the gap G1 immediately after the gas enters the furnace.
  • the second reflecting plate 8 has a smaller heat capacity than the reactor main body, so it easily becomes high temperature, and it cannot radiate heat to the outside like the reactor main body 6. Therefore, if the second reflecting plate 8 is coated with a platinum catalyst layer, it will cause ignition. there's a possibility that. Therefore, it is desirable that the second reflective plate 8 is not coated with a platinum catalyst layer.
  • the second reflecting plate 8 and the first reflecting plate 7 both have a disk shape.
  • the second reflecting plate 8 and the first reflecting plate 7 are attached to the inner wall surface of the reactor main body 6 substantially parallel to each other with gaps G1 and G2 interposed therebetween, and the tapered parts 10 and 12 gradually increase toward the outer periphery of the reactor. The distance from the inner wall surface of the main body 6 is increased.
  • the reactor body 6, the first reflecting plate 7, and the second reflecting plate 8 can be formed of stainless steel, but may also be formed of other materials such as nickel alloy, aluminum alloy, iron-chromium-aluminum alloy, etc. You can also.
  • the inner surface of the reactor main body 6, the surface of the first reflecting plate 7, and the surface of the second reflecting plate 8 are entirely coated with a barrier coating 13 that is inert to oxygen and hydrogen.
  • a first platinum catalyst layer 9 and a second platinum catalyst layer 11 are coated on the barrier coating 13 .
  • the barrier coating prevents impurities in the base material such as stainless steel that constitutes the reactor main body 6 etc. from being released to the outside, and also prevents them from diffusing into the platinum catalyst layer, thereby preventing deterioration of the platinum catalyst layer. To prevent.
  • barrier coating 13 a known material can be used.
  • a barrier coating for example, TiN, Al2O3 , TiCN , TiAlN , Cr2O3 , SiO2 , CrN, Y2O3 , or Y2O3 and other metal oxides ( Ta2O5 , Mixed materials with ( SiO2 , TiO2 , ZrO2 , Al2O3 , HfO2 , La2O3 , CeO2 , Ce2O3 , MgO, ThO2 ) are known.
  • the barrier film 13 can be formed by an ion plating method, an ion sputtering method, a PVD method such as a vacuum evaporation method, a chemical vapor deposition method (CVD method), a hot press method, a thermal spray method, or the like.
  • the thickness of the barrier coating 13 can be approximately 0.1 ⁇ m to 5 ⁇ m.
  • the first platinum catalyst layer 9 and the second platinum catalyst layer 11 can be formed by a vacuum deposition method, an ion plating method, a sputtering method, a chemical vapor deposition method, a hot press method, or the like.
  • the thickness of the first platinum catalyst layer 9 and the second platinum catalyst layer 11 is preferably 0.1 ⁇ m to 3 ⁇ m. Note that, for ease of understanding, the platinum catalyst layer is shown in an exaggerated manner with a broken line in FIG.
  • the first reflecting plate 7 is fixed to the reactor main body 6 with a fixing screw 15 via a ring-shaped spacer 14.
  • a gap G2 is maintained between the first reflecting plate 7 and the inner wall surface of the reactor main body 6 by the ring-shaped spacer 14 through which the fixing screw 15 passes.
  • the second reflection plate 8 is fixed to the reactor main body 6 with a fixing screw 17 via a ring-shaped spacer 16.
  • the gaps G1 and G2 are preferably 0.5 to 1.0 mm, and are set to 0.5 mm in the illustrated example.
  • the barrier coating is also provided on each surface of the ring-shaped spacers 14 and 16 and the fixing screws 15 and 17.
  • the fixing screws 15 are arranged radially inside the tapered portion 10 of the first reflecting plate 7 along the tapered portion 10 at predetermined angular intervals (for example, four locations at 90° intervals).
  • the catalytic reaction increases and a higher moisture generation rate can be obtained.
  • the tapered portion 10 prevents the raw material gas from rapidly entering the gap G2, thereby preventing a drastic rise in temperature.
  • the second platinum catalyst layer 11 is also coated on the tapered portion 10, the first platinum catalyst Combined with the reaction with layer 9, the catalytic reaction becomes stronger, the temperature rises rapidly, and there is a risk of ignition. Therefore, the second platinum catalyst layer 11 is coated on the surface inside the tapered part 10, excluding the tapered part 10.
  • the ring-shaped spacer 14 may contact the second platinum catalyst layer 11 when tightening the fixing screw 15.
  • the second platinum catalyst layer 11 is damaged and ignites due to this. Therefore, it is preferable that the second platinum catalyst layer 11 not be coated on the portion that contacts the ring-shaped spacer 14, and it is preferable that the second platinum catalyst layer 11 be coated in a circular shape radially inside the ring-shaped spacer 14.
  • the second platinum catalyst layer 11 be spaced a predetermined distance L (FIGS. 2 and 3) from the ring-shaped spacer 14. .
  • the distance L can be 4 to 7 mm.
  • the inner surface of the tapered portion 10 may be coated with the second platinum catalyst layer 11, except for only the contact area with the ring-shaped spacer 14.
  • the first platinum catalyst layer 9 can also be coated except for only the contact area with the ring-shaped spacer 14.
  • the amount of unreacted gas flowing into the gap G2 decreases as it approaches the outlet 4, and the amount of unreacted gas flowing into the middle of the gap G2 decreases. Even if there is a platinum catalyst layer on both sides, a reaction (temperature rise) that would lead to ignition does not occur. Thereby, a higher rate of moisture generation can be achieved while avoiding the risk of ignition.
  • FIG. 5 shows a second embodiment of the moisture generation reactor according to the present invention.
  • the moisture generation reactor 1B of the second embodiment includes a slightly thicker first reflecting plate 7, but does not include the second reflecting plate 8 of the first embodiment, and is accordingly more compact.
  • the rest of the configuration of the second embodiment is the same as that of the first embodiment, so detailed explanation will be omitted.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

[Problem] To provide a reaction furnace for moisture generation capable of achieving a higher moisture generation ratio while preventing the risk of ignition. [Solution] The present invention comprises: a reaction furnace main body 6 which has an inlet 2 and an outlet 4 for a gas; a first reflecting plate 7 which is disposed to face the outlet 4, and fixed to the inside of the reaction furnace main body 6 while maintaining a gap G2 with an inner wall surface of the reaction furnace main body 6, and which has a tapered portion 10 at a peripheral edge portion facing the inner wall surface of the reaction furnace main body 6; a first platinum catalyst layer 9 which is coated on the inner wall surface of the reaction furnace main body 6; and a second platinum catalyst layer 11 which is coated on an outer surface of the first reflecting plate 7, which is a side opposing the reaction furnace main body 6 and disposed more inward than the tapered portion 10.

Description

水分発生用反応炉Reactor for moisture generation
 本発明は、主として半導体製造装置において利用され、水素ガスと酸素ガスとを反応させて水分を発生させる水分発生用反応炉に関する。 The present invention relates to a moisture generation reactor that is mainly used in semiconductor manufacturing equipment and generates moisture by reacting hydrogen gas and oxygen gas.
 従来、この種の反応炉として、図6に示すような水分発生用反応炉1Cが知られている。この水分発生用反応炉1Cは、原料ガスの入口2を有する入口側炉本体部材3と水分ガスの出口4を有する出口側炉本体部材5とを対向状に溶接接合した反応炉本体6と、反応炉本体6の内部において出口4と対向状に配置されて反応炉本体6の内壁面と間隙G2を保持して固定された第1反射板7と、反応炉本体6の内部において原料ガスの入口2と対向状に配置されて反応炉本体6の内壁面と間隙G1を保持して固定されたた第2反射板8と、を備え、出口側炉本体部材5の内壁面に白金触媒層9がコーティングされている。なお、理解容易のために、白金触媒層を破線で誇張して図示している。 Conventionally, a moisture generation reactor 1C as shown in FIG. 6 has been known as this type of reactor. This reactor for moisture generation 1C includes a reactor body 6 in which an inlet-side furnace body member 3 having an inlet 2 for raw material gas and an outlet-side furnace body member 5 having an outlet 4 for moisture gas are welded and joined to face each other; A first reflecting plate 7 is disposed inside the reactor main body 6 to face the outlet 4 and is fixed to the inner wall surface of the reactor main body 6 while maintaining a gap G2. A second reflecting plate 8 is disposed facing the inlet 2 and fixed to the inner wall surface of the reactor main body 6 while maintaining a gap G1, and a platinum catalyst layer is provided on the inner wall surface of the outlet side reactor main body member 5. 9 is coated. Note that, for ease of understanding, the platinum catalyst layer is exaggerated with broken lines.
 上記構成の水分発生用反応炉1Cは、原料ガスの入口2を通じて反応炉本体6内に酸素ガス、水素ガスを供給し、水素ガスと酸素ガスとの着火点(500~580℃)より低い触媒反応温度(400℃以下)で白金触媒層9と触媒反応させることにより、燃焼させることなく、高純度の水分ガスを発生させ、水分ガス取出口から取り出すことができる。 The moisture generation reactor 1C having the above configuration supplies oxygen gas and hydrogen gas into the reactor body 6 through the raw material gas inlet 2, and performs a catalytic reaction lower than the ignition point (500 to 580°C) between hydrogen gas and oxygen gas. By causing a catalytic reaction with the platinum catalyst layer 9 at a temperature (400° C. or lower), high-purity moisture gas can be generated and taken out from the moisture gas outlet without combustion.
 また、図6に示す水分発生用反応炉1Cは、第1反射板7の周縁部で反応炉本体6の内壁面と対向する側にテーパー部10を設けることにより、予期しない発火燃焼を生じさせることなく、安定して水分を生成することができる。即ち、触媒反応は第1反射板7と反応炉本体6との間の間隙G2に入る部分で強く反応するため、テーパー部10を設けることにより、間隙G2に前記原料ガスが急激に流入しないようにして、強い触媒反応の発生を抑えることにより、温度の局所的な急上昇を防ぎ、発火を防止している。 In addition, the moisture generation reactor 1C shown in FIG. 6 is provided with a tapered portion 10 at the peripheral edge of the first reflecting plate 7 on the side facing the inner wall surface of the reactor main body 6, thereby preventing unexpected ignition and combustion. Moisture can be produced stably without any problems. That is, since the catalytic reaction occurs strongly at the portion that enters the gap G2 between the first reflecting plate 7 and the reactor main body 6, the provision of the tapered portion 10 prevents the raw material gas from rapidly flowing into the gap G2. By suppressing the occurrence of strong catalytic reactions, local temperature spikes are prevented and ignition is prevented.
特開2000-169109号公報Japanese Patent Application Publication No. 2000-169109
 上記従来の水分発生用反応炉は、発火の危険性を防ぎつつ水分発生率98%を実現することができ、安定的に高い水分発生率が達成されている。しかしながら、発火の危険性を防ぎつつも、水分発生率を更に高めたいという要望がある。 The above-mentioned conventional moisture generation reactor can achieve a moisture generation rate of 98% while preventing the risk of ignition, and has consistently achieved a high moisture generation rate. However, there is a desire to further increase the moisture generation rate while preventing the risk of ignition.
 そこで、本発明は、発火の危険性を防ぎつつ、より高い水分発生率を達成し得る水分発生用反応炉を提供することを目的とする。 Therefore, an object of the present invention is to provide a moisture generation reactor that can achieve a higher moisture generation rate while preventing the risk of ignition.
 上記目的を達成するために、本発明の一態様に係る水分発生用反応炉は、ガスの入口及び出口を有する反応炉本体と、前記出口に対向状に配設され、前記反応炉本体の内壁面と間隙を保持して前記反応炉本体内に固定されるとともに、前記反応炉本体の内壁面と対向する周縁部にテーパー部を有する第1反射板と、前記反応炉本体の内壁面にコーティングされた第1白金触媒層と、前記第1反射板の前記反応炉本体と対向する側であって前記テーパー部より内側の外表面にコーティングされた第2白金触媒層と、を備える。 In order to achieve the above object, a moisture generating reactor according to one aspect of the present invention includes a reactor main body having a gas inlet and an outlet, and an inner part of the reactor main body disposed opposite to the outlet. a first reflecting plate that is fixed within the reactor main body while maintaining a gap with the wall surface and has a tapered portion on a peripheral edge facing the inner wall surface of the reactor main body; and a coating on the inner wall surface of the reactor main body. and a second platinum catalyst layer coated on the outer surface of the first reflecting plate on the side facing the reactor main body and inside the tapered part.
 前記第1反射板と前記反応炉本体の内壁面との間に介在されて、前記間隙を保持するためのリング状スペーサと、前記リング状スペーサを通して前記第1反射板を前記反応炉本体に固定する固定ネジと、を更に備え、前記第2白金触媒層は、前記リング状スペーサが前記第1反射板と当接する部分を除く前記外表面にコーティングされていてもよい。 a ring-shaped spacer interposed between the first reflecting plate and an inner wall surface of the reactor main body to maintain the gap; and fixing the first reflecting plate to the reactor main body through the ring-shaped spacer. The second platinum catalyst layer may be coated on the outer surface except for a portion where the ring-shaped spacer contacts the first reflective plate.
 前記第2白金触媒層は、前記リング状スペーサより内側にコーティングされ得る。 The second platinum catalyst layer may be coated on the inner side of the ring-shaped spacer.
 前記反応炉本体の内壁面全面及び前記第1反射板全面にバリア皮膜をコーティングした上に前記第1白金触媒層および前記第2白金触媒層がコーティングされていてもよい。 The first platinum catalyst layer and the second platinum catalyst layer may be coated on the entire inner wall surface of the reactor main body and the entire surface of the first reflector plate with a barrier film.
 前記入口に対向状に配設され、前記反応炉本体の内壁面と間隙を保持して前記反応炉本体内に固定されるとともに、前記反応炉本体の内壁面と対向する周縁部にテーパー部を有する第2反射板を更に備え、前記第2反射板は、全面にバリア被膜がコーティングされ、白金触媒層がコーティングされていない構成としてもよい。 A tapered portion is disposed opposite to the inlet, is fixed within the reactor main body while maintaining a gap with the inner wall surface of the reactor main body, and has a tapered portion on a peripheral edge facing the inner wall surface of the reactor main body. The apparatus may further include a second reflecting plate having a barrier film coated on its entire surface and not coated with a platinum catalyst layer.
 本発明によれば、前記第1反射板の前記反応炉本体と対向する側であって前記テーパー部より内側の外表面に第2白金触媒層をコーティングしたことにより、発火の危険性を防ぎつつ、より高い水分発生率を達成することができる。 According to the present invention, the second platinum catalyst layer is coated on the outer surface of the first reflecting plate on the side facing the reactor main body and inside the tapered part, thereby preventing the risk of ignition. , higher moisture generation rate can be achieved.
本発明に係る水分発生用反応炉の第1実施形態を示す断面図である。FIG. 1 is a sectional view showing a first embodiment of a moisture generation reactor according to the present invention. 図1の部分拡大図である。2 is a partially enlarged view of FIG. 1. FIG. 図1のIII-III線断面図である。2 is a sectional view taken along line III-III in FIG. 1. FIG. 図3に示された形態の変更例を示す断面図である。4 is a sectional view showing a modification of the form shown in FIG. 3. FIG. 本発明に係る水分発生用反応炉の第2実施形態を示す断面図である。FIG. 2 is a sectional view showing a second embodiment of the moisture generation reactor according to the present invention. 従来の水分発生用反応炉を示す断面図である。FIG. 1 is a cross-sectional view showing a conventional moisture generation reactor.
 本発明に係る水分発生用反応炉の実施形態について、以下に図1~図5を参照して説明する。なお、従来技術を含め、全図及び全実施例を通じて、同一又は類似の構成要素に同符号を付している。 Embodiments of the moisture generating reactor according to the present invention will be described below with reference to FIGS. 1 to 5. In addition, the same or similar components are given the same reference numerals throughout all the figures and all the embodiments, including the prior art.
 図1を参照して、第1実施形態に係る水分発生用反応炉1Aは、原料ガス(酸素及び水素)の入口2及び水分ガス及び未反応の原料ガスの出口4を有する反応炉本体6と、出口4に対向状に配設され、反応炉本体6の内壁面と間隙G2を保持して反応炉本体6内に固定されるとともに、反応炉本体6の内壁面と対向する周縁部にテーパー部10を有する第1反射板7と、反応炉本体6の内壁面にコーティングされた第1白金触媒層9と、第1反射板7の反応炉本体6と対向する側でテーパー部10より内側の外表面にコーティングされた第2白金触媒層11と、を備える。 Referring to FIG. 1, a moisture generation reactor 1A according to the first embodiment includes a reactor main body 6 having an inlet 2 for raw material gas (oxygen and hydrogen) and an outlet 4 for moisture gas and unreacted raw material gas. , are disposed facing the outlet 4, are fixed in the reactor main body 6 while maintaining a gap G2 with the inner wall surface of the reactor main body 6, and are tapered at the peripheral edge facing the inner wall surface of the reactor main body 6. a first reflecting plate 7 having a section 10; a first platinum catalyst layer 9 coated on the inner wall surface of the reactor main body 6; a second platinum catalyst layer 11 coated on the outer surface of the catalyst.
 更に、水分発生用反応炉1Aは、第2反射板8を備えている。第2反射板8は、入口2に対向状に配設され、反応炉本体6の内壁面と間隙G1を保持して反応炉本体6内に固定されるとともに、反応炉本体6の内壁面と対向する周縁部にテーパー部12を有する。第2反射板8は、入口2から流入した原料ガスを反応炉本体6内に効率よく拡散させる機能を有している。 Furthermore, the moisture generation reactor 1A is equipped with a second reflection plate 8. The second reflecting plate 8 is disposed to face the inlet 2 and is fixed within the reactor main body 6 while maintaining a gap G1 with the inner wall surface of the reactor main body 6. A tapered portion 12 is provided at the opposing peripheral edge portions. The second reflecting plate 8 has a function of efficiently diffusing the raw material gas flowing in from the inlet 2 into the reactor main body 6.
 反応炉本体6は、入口側炉本体部材3と出口側炉本体部材5とが接合され、短い円柱状外形を有している。入口側炉本体部材3の凹部3aと出口側炉本体部材5の凹部5aとにより内部空間Pが形成されている。凹部3a及び凹部5aの其々の周縁フランジ部3b、5bが突合されて溶接されることにより接合されている。ガスの入口2は、入口側炉本体部材3に設けられている。水分ガスの出口4は、出口側炉本体部材5に設けられている。 The reactor main body 6 has an inlet side furnace main body member 3 and an outlet side furnace main body member 5 joined together, and has a short cylindrical outer shape. An internal space P is formed by the recess 3a of the inlet furnace main body member 3 and the recess 5a of the outlet furnace main body member 5. The respective peripheral flange portions 3b and 5b of the recessed portion 3a and the recessed portion 5a are butted and welded to be joined. The gas inlet 2 is provided in the inlet-side furnace main body member 3. The moisture gas outlet 4 is provided in the outlet side furnace main body member 5.
 第1白金触媒層9は、出口側炉本体部材5に主としてコーティングされる。入口側炉本体部材3は、周縁フランジ部3bの内面に第1白金触媒層9をコーティングすることもできる。 The first platinum catalyst layer 9 is mainly coated on the outlet side furnace main body member 5. The inlet-side furnace main body member 3 may also have a first platinum catalyst layer 9 coated on the inner surface of the peripheral flange portion 3b.
 第2反射板8に白金触媒層をコーティングすると、ガスが炉内に入ってすぐ間隙G1内で触媒反応を起こす。第2反射板8は炉本体に比べて熱容量が小さいため高温になりやすく、反応炉本体6のように外部に放熱することもできないため、第2反射板8に白金触媒層をコーティングすると、発火する可能性がある。従って、第2反射板8には白金触媒層をコーティングしないことが望ましい。 When the second reflecting plate 8 is coated with a platinum catalyst layer, a catalytic reaction occurs within the gap G1 immediately after the gas enters the furnace. The second reflecting plate 8 has a smaller heat capacity than the reactor main body, so it easily becomes high temperature, and it cannot radiate heat to the outside like the reactor main body 6. Therefore, if the second reflecting plate 8 is coated with a platinum catalyst layer, it will cause ignition. there's a possibility that. Therefore, it is desirable that the second reflective plate 8 is not coated with a platinum catalyst layer.
 第2反射板8及び第1反射板7は、何れも円板形状を有している。第2反射板8及び第1反射板7は、反応炉本体6の内壁面に間隙G1,G2を介して略平行に取り付けられており、テーパー部10、12は、外周側へ向かうにつれて反応炉本体6の内壁面との距離が拡がるように形成されている。 The second reflecting plate 8 and the first reflecting plate 7 both have a disk shape. The second reflecting plate 8 and the first reflecting plate 7 are attached to the inner wall surface of the reactor main body 6 substantially parallel to each other with gaps G1 and G2 interposed therebetween, and the tapered parts 10 and 12 gradually increase toward the outer periphery of the reactor. The distance from the inner wall surface of the main body 6 is increased.
 反応炉本体6、第1反射板7、及び第2反射板8は、ステンレス鋼によって形成することができるが、他の材料、例えば、ニッケル合金、アルミ合金、鉄-クロム-アルミ合金等によって形成することもできる。 The reactor body 6, the first reflecting plate 7, and the second reflecting plate 8 can be formed of stainless steel, but may also be formed of other materials such as nickel alloy, aluminum alloy, iron-chromium-aluminum alloy, etc. You can also.
 反応炉本体6の内側面、第1反射板7の表面、及び第2反射板8の表面には、酸素及び水素に対して不活性なバリア被膜13が全面にコーティングされる。第1白金触媒層9及び第2白金触媒層11は、バリア被膜13の上にコーティングされている。バリア被膜は、反応炉本体6等を構成するステンレス等の母材中の不純物が外部に放出されることを阻止するとともに、白金触媒層内に拡散することを阻止し、白金触媒層の劣化を防止する。 The inner surface of the reactor main body 6, the surface of the first reflecting plate 7, and the surface of the second reflecting plate 8 are entirely coated with a barrier coating 13 that is inert to oxygen and hydrogen. A first platinum catalyst layer 9 and a second platinum catalyst layer 11 are coated on the barrier coating 13 . The barrier coating prevents impurities in the base material such as stainless steel that constitutes the reactor main body 6 etc. from being released to the outside, and also prevents them from diffusing into the platinum catalyst layer, thereby preventing deterioration of the platinum catalyst layer. To prevent.
 バリア被膜13は、公知の材料を用いることができる。バリア被膜として、例えば、TiN、Al、TiCN、TiAlN、Cr、SiO、CrN、Y、或いは、Yと他の金属酸化物(Ta、SiO、TiO、ZrO、Al、HfO、La、CeO、Ce、MgO、ThO)との混合材料が知られている。バリア被膜13は、イオンプレーティング法、イオンスパッタリング法、真空蒸着法等のPVD法、化学蒸着法(CVD法)、ホットプレス法、或いは溶射法等により形成することができる。バリア被膜13の厚さは、0.1μm~5μm程度とすることができる。 For the barrier coating 13, a known material can be used. As a barrier coating , for example, TiN, Al2O3 , TiCN , TiAlN , Cr2O3 , SiO2 , CrN, Y2O3 , or Y2O3 and other metal oxides ( Ta2O5 , Mixed materials with ( SiO2 , TiO2 , ZrO2 , Al2O3 , HfO2 , La2O3 , CeO2 , Ce2O3 , MgO, ThO2 ) are known. The barrier film 13 can be formed by an ion plating method, an ion sputtering method, a PVD method such as a vacuum evaporation method, a chemical vapor deposition method (CVD method), a hot press method, a thermal spray method, or the like. The thickness of the barrier coating 13 can be approximately 0.1 μm to 5 μm.
 第1白金触媒層9及び第2白金触媒層11は、真空蒸着法、イオンプレーティング法、スパッタリング法、化学蒸着法、ホットプレス法等によって成膜することができる。第1白金触媒層9及び第2白金触媒層11の厚さは、0.1μm~3μmとすることが好ましい。なお、理解容易のために、図1において白金触媒層を破線で誇張して示している。 The first platinum catalyst layer 9 and the second platinum catalyst layer 11 can be formed by a vacuum deposition method, an ion plating method, a sputtering method, a chemical vapor deposition method, a hot press method, or the like. The thickness of the first platinum catalyst layer 9 and the second platinum catalyst layer 11 is preferably 0.1 μm to 3 μm. Note that, for ease of understanding, the platinum catalyst layer is shown in an exaggerated manner with a broken line in FIG.
 第1反射板7は、リング状スペーサ14を介して固定ネジ15によって反応炉本体6に固定されている。固定ネジ15が通るリング状スペーサ14によって、第1反射板7と反応炉本体6の内壁面との間に間隙G2が保持されている。第2反射板8も同様に、リング状スペーサ16を介して固定ネジ17によって反応炉本体6に固定されている。間隙G1,G2は、0.5~1.0mmとすることが好ましく、図示例では0.5mmに設定されている。リング状スペーサ14,16及び固定ネジ15,17の其々の表面にも前記バリア被膜が設けられる。 The first reflecting plate 7 is fixed to the reactor main body 6 with a fixing screw 15 via a ring-shaped spacer 14. A gap G2 is maintained between the first reflecting plate 7 and the inner wall surface of the reactor main body 6 by the ring-shaped spacer 14 through which the fixing screw 15 passes. Similarly, the second reflection plate 8 is fixed to the reactor main body 6 with a fixing screw 17 via a ring-shaped spacer 16. The gaps G1 and G2 are preferably 0.5 to 1.0 mm, and are set to 0.5 mm in the illustrated example. The barrier coating is also provided on each surface of the ring-shaped spacers 14 and 16 and the fixing screws 15 and 17.
 固定ネジ15は、第1反射板7のテーパー部10の半径方向内側に、テーパー部10に沿って、所定角度間隔(例えば90°間隔で4カ所)で配設されている。 The fixing screws 15 are arranged radially inside the tapered portion 10 of the first reflecting plate 7 along the tapered portion 10 at predetermined angular intervals (for example, four locations at 90° intervals).
 上記構成を有する水分発生用反応炉1Aは、第1反射板7に第2白金触媒層11をコーティングすることにより、触媒反応が増加し、より高い水分発生率が得られる。 In the moisture generation reactor 1A having the above configuration, by coating the first reflection plate 7 with the second platinum catalyst layer 11, the catalytic reaction increases and a higher moisture generation rate can be obtained.
 テーパー部10は上記したように間隙G2に原料ガスが急激に入らないようにして温度の激しい上昇を防いでいるが、第2白金触媒層11をテーパー部10にもコーティングすると、第1白金触媒層9との反応と合わさって、触媒反応が強くなり、温度が急上昇して発火する恐れがある。そのため、テーパー部10を除く、テーパー部10より内側の面に第2白金触媒層11がコーティングされる。 As described above, the tapered portion 10 prevents the raw material gas from rapidly entering the gap G2, thereby preventing a drastic rise in temperature. However, if the second platinum catalyst layer 11 is also coated on the tapered portion 10, the first platinum catalyst Combined with the reaction with layer 9, the catalytic reaction becomes stronger, the temperature rises rapidly, and there is a risk of ignition. Therefore, the second platinum catalyst layer 11 is coated on the surface inside the tapered part 10, excluding the tapered part 10.
 更に、図示例においては、リング状スペーサ14の材質や、固定ネジ15の締め付けトルクのバラツキ等によっては、固定ネジ15の締め付け時に、リング状スペーサ14が第2白金触媒層11と接触する部分で、第2白金触媒層11が損傷し、それが原因で発火する可能性も考えられる。そのため、第2白金触媒層11は、リング状スペーサ14と接触する部分にコーティングしないことが好ましく、リング状スペーサ14より半径方向の内側に円形状にコーティングすることが好ましい。また、リング状スペーサ―14との接触を確実に回避するためには、第2白金触媒層11は、リング状スペーサ14から所定距離L(図2、図3)を離間させておくことが好ましい。距離Lは、4~7mmとすることができる。 Furthermore, in the illustrated example, depending on the material of the ring-shaped spacer 14 and variations in the tightening torque of the fixing screw 15, the ring-shaped spacer 14 may contact the second platinum catalyst layer 11 when tightening the fixing screw 15. There is also a possibility that the second platinum catalyst layer 11 is damaged and ignites due to this. Therefore, it is preferable that the second platinum catalyst layer 11 not be coated on the portion that contacts the ring-shaped spacer 14, and it is preferable that the second platinum catalyst layer 11 be coated in a circular shape radially inside the ring-shaped spacer 14. Further, in order to reliably avoid contact with the ring-shaped spacer 14, it is preferable that the second platinum catalyst layer 11 be spaced a predetermined distance L (FIGS. 2 and 3) from the ring-shaped spacer 14. . The distance L can be 4 to 7 mm.
 変更例として、図4に示すように、テーパー部10より内側の面を、リング状スペーサ14との接触領域のみを除いて、第2白金触媒層11でコーティングすることもできる。なお、第1白金触媒層9もリング状スペーサ14との接触領域のみを除いてコーティングすることができる。 As a modification, as shown in FIG. 4, the inner surface of the tapered portion 10 may be coated with the second platinum catalyst layer 11, except for only the contact area with the ring-shaped spacer 14. Note that the first platinum catalyst layer 9 can also be coated except for only the contact area with the ring-shaped spacer 14.
 一方、間隙G2に流入したガスは、出口4に近づくにつれて未反応ガスが減少し、間隙G2の中程まで流れてくる未反応ガスは少なくなるので、第1反射板7と反応炉本体6の双方に白金触媒層があっても、発火に至るほどの反応(温度上昇)は生じない。それによって、発火の危険性を防ぎつつも、より高い水分発生率を得るとこができる。 On the other hand, the amount of unreacted gas flowing into the gap G2 decreases as it approaches the outlet 4, and the amount of unreacted gas flowing into the middle of the gap G2 decreases. Even if there is a platinum catalyst layer on both sides, a reaction (temperature rise) that would lead to ignition does not occur. Thereby, a higher rate of moisture generation can be achieved while avoiding the risk of ignition.
 図5は、本発明に係る水分発生用反応炉の第2実施形態を示している。第2実施形態の水分発生用反応炉1Bは、やや厚めの第1反射板7を備えるが、第1実施形態の第2反射板8を備えておらず、その分、コンパクト化されている。第2実施形態のその他の構成は、第1実施形態と同様であるので、詳細な説明を省略する。 FIG. 5 shows a second embodiment of the moisture generation reactor according to the present invention. The moisture generation reactor 1B of the second embodiment includes a slightly thicker first reflecting plate 7, but does not include the second reflecting plate 8 of the first embodiment, and is accordingly more compact. The rest of the configuration of the second embodiment is the same as that of the first embodiment, so detailed explanation will be omitted.
 本発明は、上記実施形態に限定解釈されず、本発明の趣旨を逸脱しない範囲において、種々の変更が可能である。 The present invention is not limited to the embodiments described above, and various modifications can be made without departing from the spirit of the present invention.
1A,1B,1C 水分発生用反応炉
2 入口
3 入口側炉本体部材
4 出口
5 出口側炉本体部材
6 反応炉本体
7 第1反射板
8 第2反射板
9 第1白金触媒層
10 テーパー部
11 第2白金触媒層
14,16 リング状スペーサ
15,17 固定ネジ
1A, 1B, 1C Moisture generation reactor 2 Inlet 3 Inlet side furnace body member 4 Outlet 5 Outlet side furnace body member 6 Reactor body 7 First reflecting plate 8 Second reflecting plate 9 First platinum catalyst layer 10 Tapered part 11 Second platinum catalyst layer 14, 16 Ring-shaped spacer 15, 17 Fixing screw

Claims (5)

  1.  ガスの入口及び出口を有する反応炉本体と、
     前記出口に対向状に配設され、前記反応炉本体の内壁面と間隙を保持して前記反応炉本体内に固定されるとともに、前記反応炉本体の内壁面と対向する周縁部にテーパー部を有する第1反射板と、
     前記反応炉本体の内壁面にコーティングされた第1白金触媒層と、
     前記第1反射板の前記反応炉本体と対向する側であって前記テーパー部より内側の外表面にコーティングされた第2白金触媒層と、
    を備える、水分発生用反応炉。
    a reactor body having a gas inlet and outlet;
    A tapered portion is disposed opposite to the outlet, is fixed within the reactor main body while maintaining a gap with the inner wall surface of the reactor main body, and has a tapered portion on a peripheral edge facing the inner wall surface of the reactor main body. a first reflecting plate having;
    a first platinum catalyst layer coated on the inner wall surface of the reactor main body;
    a second platinum catalyst layer coated on the outer surface of the first reflecting plate on the side facing the reactor body and inside the tapered part;
    A reactor for water generation, comprising:
  2.  前記第1反射板と前記反応炉本体の内壁面との間に介在されて、前記間隙を保持するためのリング状スペーサと、
     前記リング状スペーサを通して前記第1反射板を前記反応炉本体に固定する固定ネジと、
    を更に備え、
     前記第2白金触媒層は、前記リング状スペーサが前記第1反射板と当接する部分を除く前記外表面にコーティングされている、請求項1に記載の水分発生用反応炉。
    a ring-shaped spacer interposed between the first reflecting plate and the inner wall surface of the reactor main body to maintain the gap;
    a fixing screw that fixes the first reflector to the reactor body through the ring-shaped spacer;
    further comprising;
    2. The reactor for water generation according to claim 1, wherein the second platinum catalyst layer is coated on the outer surface of the ring-shaped spacer except for a portion where the ring-shaped spacer contacts the first reflecting plate.
  3.  前記第2白金触媒層は、前記リング状スペーサより内側にコーティングされている、請求項2に記載の水分発生用反応炉。 The reactor for water generation according to claim 2, wherein the second platinum catalyst layer is coated on an inner side than the ring-shaped spacer.
  4.  前記反応炉本体の内壁面全面及び前記第1反射板全面にバリア皮膜をコーティングした上に前記第1白金触媒層および前記第2白金触媒層がコーティングされている、請求項1に記載の水分発生用反応炉。 The moisture generating device according to claim 1, wherein the entire inner wall surface of the reactor body and the entire surface of the first reflector are coated with a barrier film, and then the first platinum catalyst layer and the second platinum catalyst layer are coated. Reactor for use.
  5.  前記入口に対向状に配設され、前記反応炉本体の内壁面と間隙を保持して前記反応炉本体内に固定されるとともに、前記反応炉本体の内壁面と対向する周縁部にテーパー部を有する第2反射板を更に備え、
     前記第2反射板は、全面にバリア被膜がコーティングされ、白金触媒層がコーティングされていない、請求項1に記載の水分発生用反応炉。
    A tapered portion is disposed facing the inlet, is fixed within the reactor main body while maintaining a gap with the inner wall surface of the reactor main body, and has a tapered portion on a peripheral edge facing the inner wall surface of the reactor main body. further comprising a second reflective plate having
    2. The reactor for water generation according to claim 1, wherein the second reflection plate is coated with a barrier film over its entire surface and is not coated with a platinum catalyst layer.
PCT/JP2023/004136 2022-03-14 2023-02-08 Reaction furnace for moisture generation WO2023176208A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2024507575A JPWO2023176208A1 (en) 2022-03-14 2023-02-08
KR1020247010039A KR20240052957A (en) 2022-03-14 2023-02-08 Reactor for moisture generation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022039549 2022-03-14
JP2022-039549 2022-03-14

Publications (1)

Publication Number Publication Date
WO2023176208A1 true WO2023176208A1 (en) 2023-09-21

Family

ID=88022772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004136 WO2023176208A1 (en) 2022-03-14 2023-02-08 Reaction furnace for moisture generation

Country Status (4)

Country Link
JP (1) JPWO2023176208A1 (en)
KR (1) KR20240052957A (en)
TW (1) TW202342364A (en)
WO (1) WO2023176208A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10297907A (en) * 1997-04-28 1998-11-10 Tadahiro Omi Reactional furnace for generating moisture
WO2001094254A1 (en) * 2000-06-05 2001-12-13 Fujikin Incorporated Reactor for moisture generation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3686762B2 (en) 1998-12-04 2005-08-24 株式会社フジキン Water generation reactor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10297907A (en) * 1997-04-28 1998-11-10 Tadahiro Omi Reactional furnace for generating moisture
WO2001094254A1 (en) * 2000-06-05 2001-12-13 Fujikin Incorporated Reactor for moisture generation

Also Published As

Publication number Publication date
TW202342364A (en) 2023-11-01
JPWO2023176208A1 (en) 2023-09-21
KR20240052957A (en) 2024-04-23

Similar Documents

Publication Publication Date Title
Hausmann et al. Atomic layer deposition of hafnium and zirconium oxides using metal amide precursors
JP3110465B2 (en) Moisture generation reactor, temperature control method of moisture generation reactor, and method of forming platinum-coated catalyst layer
WO2023176208A1 (en) Reaction furnace for moisture generation
TWI463027B (en) Sputtering device, target and shield
KR100402665B1 (en) Reactor for generating moisture
JP3686762B2 (en) Water generation reactor
JP3644790B2 (en) Water generation reactor
TW202111156A (en) Heat shield assembly for an epitaxy chamber
JP5021236B2 (en) Fuel cell system
US6432492B2 (en) HF-Plasma coating chamber or PECVD coating chamber, its use and method of plating CDs using the chamber
US20160060757A1 (en) Reactor of substrate processing apparatus
JPH11335114A (en) Furnace body of heating furnace for purifying silicon
JP3679636B2 (en) Water generation reactor
JP2003342752A (en) Heat resistant and corrosion resistant member for vacuum use, vacuum apparatus having parts obtained by using the same member and coating method therefor
JPH05232299A (en) Manufacture of x-ray multilayer film reflector
JP2000169108A (en) Reaction furnace for generating water
JP2007005190A (en) Fuel cell and fuel cell stack
TW466213B (en) Reaction furnace for generating water
JP2560422B2 (en) Structure of adiabatic piston
CN216083160U (en) Reflective sheet having a plurality of refractive layers
JPS6298785A (en) Gas laser tube
JP5345667B2 (en) Scroll type fluid machine
JP5392596B2 (en) Fuel cell
JP2004193509A (en) Shower nozzle and film-forming apparatus
CN115725959A (en) Gas distribution assembly comprising positioning means

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770169

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024507575

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20247010039

Country of ref document: KR

Kind code of ref document: A