JP3644790B2 - Water generation reactor - Google Patents

Water generation reactor Download PDF

Info

Publication number
JP3644790B2
JP3644790B2 JP10998997A JP10998997A JP3644790B2 JP 3644790 B2 JP3644790 B2 JP 3644790B2 JP 10998997 A JP10998997 A JP 10998997A JP 10998997 A JP10998997 A JP 10998997A JP 3644790 B2 JP3644790 B2 JP 3644790B2
Authority
JP
Japan
Prior art keywords
reactor
body member
furnace
moisture
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10998997A
Other languages
Japanese (ja)
Other versions
JPH10297907A (en
Inventor
忠弘 大見
幸司 川田
義和 田辺
信一 池田
明弘 森本
幸男 皆見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Fujikin Inc
Original Assignee
Renesas Technology Corp
Fujikin Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp, Fujikin Inc filed Critical Renesas Technology Corp
Priority to JP10998997A priority Critical patent/JP3644790B2/en
Priority to EP98307592A priority patent/EP0987217B1/en
Priority to IL12629398A priority patent/IL126293A/en
Priority to SG1998003776A priority patent/SG71843A1/en
Priority to KR1019980039721A priority patent/KR100270501B1/en
Priority to TW087116013A priority patent/TW440542B/en
Priority to CA002249079A priority patent/CA2249079C/en
Priority to US09/160,188 priority patent/US6180067B1/en
Publication of JPH10297907A publication Critical patent/JPH10297907A/en
Application granted granted Critical
Publication of JP3644790B2 publication Critical patent/JP3644790B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/007Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B5/00Water

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Catalysts (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、主として半導体製造設備で用いる水分発生用反応炉の改良に関するものである。
【0002】
【従来の技術】
例えば、半導体製造に於ける水分酸化法によるシリコンの酸化膜付では、標準状態への換算値で1000cc/min(以下1000sccmと呼ぶ)前後の超高純度水蒸気を必要とする。そのため、本件出願人は先きに図7に示す構造の水分発生用反応炉を開発し、特願平8−242246号として公開している。
【0003】
上記図7の反応炉本体21は、ガス供給用継手24及び水分ガス取出用継手25を備えた耐熱性の炉本体部材22、23と、反応炉21の内部に両炉本体部材22、23のガス供給通路24a及び水分ガス出口通路25aと対向状に設けた入口側反射板29a及び出口側反射板29bと、反応炉21の内部中央に設けたフィルタ30と、炉本体部材23の内壁面に設けた白金コーティング皮膜32等とから形成されている。
また、前記白金コーティング皮膜32は、炉本体部材23の内壁面に形成したTiN等の窒化物からなるバリヤー皮膜32aの上に、蒸着工法やイオンプレーティング工法等によって白金皮膜32bを固着することにより形成されている。
【0004】
而して、ガス供給通路24aを通して反応炉本体21の内部へ供給された水素及び酸素は、入口側反射板29a、フィルタ30及び出口側反射板29bから成る拡散用部材によって拡散され、白金コーティング皮膜32と接触する。白金コーティング皮膜32と接触した酸素及び水素は、白金の触媒作用によって反応性が高められ、所謂ラジカル化された状態となる。ラジカル化された水素と酸素は、水素混合ガスの発火温度よりも低い温度下で瞬時に反応をし、高温燃焼をすることなしに水分を生成する。
【0005】
前記図7の反応炉本体21は、水分発生装置の大幅な小型化が図れ、しかもより高い反応性と応答性の下で1000sccmを越える量の高純度水蒸気や高純度水蒸気と酸素との混合ガスを得ることができ、半導体製造技術の分野に於いて画期的な注目を集めているものである。
【0006】
図8は、前記図7の反応炉本体21(外径約134mmφ、厚さ70mm、内容積約490cc、水分発生量1000sccm、炉温度約400℃)に於ける水分発生反応率の経時変化を示すものであり、原料ガスが酸素リッチ又は水素リッチなガスであっても、約98.5〜99.0%の水分発生反応率の下で水を安定して生成することができる。
【0007】
しかし、反応炉本体21の温度が約400℃以下、水分発生量が1000sccm以上の条件下に於いては、前記水分発生反応率を約99.0%以上に上昇させることは困難であり、約1%程度の未反応の酸素や水素が生成した水分中へ混入することになる。その結果、水素や酸素を含まない純水のみ又は水素を含まない純水と酸素のみの混合物を取り出すことができないと云う問題がある。
【0008】
【発明が解決しようとする課題】
本発明は、前記図7の如き反応炉本体21での水素と酸素の反応率を、反応炉本体の温度上昇を招くことなしにより一層高めると共に、反応炉本体21のより小形化を図ることを課題とするものであり、反応炉本体21の温度を約400℃以下、水分発生量を1000sccm以上の条件下に於いて、99.5%以上の水分発生反応率を安定且つ長期に得ることを可能にした水分発生用反応炉を提供せんとするものである。
【0009】
【課題を解決するための手段】
ところで、図7の反応炉本体21に於いて、水分ガス出口通路25aへ未反応の水素や酸素が混入してくる原因としては、▲1▼白金コーティング皮膜32と接触せず、直接に水分ガス出口通路25aへ酸素や水素が到達する場合と、▲2▼一坦はラジカル化されたものの、水素又は酸素と反応することなしに水分ガス出口通路25aへ到達し、ここでラジカル化される前の状態に戻る場合の2通りが考えられるが、前者のケースが圧倒的に多いと想定されている。
【0010】
本願発明者等の実験結果によれば、図7の反応炉本体21で出口側反射板29bを取り除いた場合には、図9に示すように反応炉の温度が400℃、水分発生量が500sccm、ガス過剰度が0の条件下に於ける水分発生反応率は、約91%となる。この反応率は、水分発生量が異なるため全く同じ条件下のデータではないが、前記図8の場合の水分発生反応率(約98%)に比較して、ほぼ7%ほど低い値となっている。
【0011】
このことは、出口側反射板29bが無い場合には、相当量の酸素や水素がラジカル化されずに直接に水分ガス出口通路25aへ到達することを示しており、出口側反射板29bに改良を加えることにより、水分発生反応率の向上が可能なことを示すものである。
【0012】
また、前記図9からも明らかなように、出口側反射板29bが無い場合には、原料ガスが水素リッチになるほど水分発生反応率が低下する。例えば、反応炉温度が400℃、500sccmの水分発生量に於いて水素が100%リッチの場合には、水分発生反応率が約86%であるのに対して、酸素が100%リッチの場合には約97%となり、両者の間に約11%ほどの差が生ずる。
【0013】
即ち、図7のような構造の反応炉本体21の内部に於いては、酸素の方は比較的拡散され易く、直線的走行性が小さいのに対し、水素の方は比較的拡散され難く、直線的走行性が高いため、水素リッチの原料ガスの場合には、水素の直線状の流れに酸素が随伴し、ラジカル化されずに水分ガス出口通路25aへ到達する酸素が増加するものと想定される。
【0014】
そこで、本件発明者は図7の反応炉本体21に於いて、出口側反射板29bのガスの拡散性、特に水素に対する拡散性を高めることにより、酸素リッチの原料ガスのみならず水素リッチの原料ガスの場合でも、水分発生反応率を図8の場合の反応率約98〜99%よりも高くできることを着想した。また、この着想に基づいて図10に示すような出口側反射・拡散体33を開発すると共に、これを用いて数多くの水分発生試験を実施した。
即ち、図10の出口側反射・拡散体33は壁面に透孔33eを有する筒状のケース体33aと、ケース体33aの内側端面を閉鎖する反射板33bと、ケース体33aの内部に設けた拡散フィルタ33cと、拡散フィルタ33cに設けた白金コーティング皮膜33dとから形成されている。
そのため、前記白金皮膜33dと非接触のまま透孔32eを通してケース本体32aの内方へ到達した水素や酸素ガスが、そのまま水分ガス出口通路23c内へ素通りすることは無くなり、拡散フィルタ33cの白金コーティング皮膜32dと接触することによりラジカル化され、非ラジカル化状態の水素や酸素が殆んど零になると共にラジカル化された水素と酸素は瞬時に反応をし、水が生成される。
【0015】
上記図10の出口側反射・拡散体33を設けた水分発生用反応炉は、図11の曲線Aに示すように、H2 リッチの領域に於いてもほぼ99.7%の水分発生反応率を得ることができ、優れた効用を示すものである。
しかし、出口側反射・拡散体33の温度が、拡散フィルタ33cのコーティング皮膜32dによりラジカル化された水素と酸素の反応熱により、図11の曲線Bに示すようにH2 リッチの領域に於いて約600℃温度にまで上昇することになり、所謂水素混合ガスの発火温度に近付くこととなる。
このように、上記図10の構成の出口側反射・拡散体33を利用する水分発生反応炉には、水素の爆発燃焼を引き起す可能性が高いと云う危険性があり、水分発生反応炉の大幅な小形化を図る上で様々な問題を生ずることとなる。
【0016】
そのため、本願発明者等は前記図7の反応炉本体21に於いて、水分ガス出口通路23c内へ非ラジカル化状態の水素や酸素が流出するのを防止する方策として、白金コーティング皮膜32dを備えた拡散フィルタ33cの使用に代えて、平板状の出口側反射体を使用すると共に、当該出口側反射体の表面積及び発生水分の流出通路を形成する出口側反射体と反応炉本体内壁面との間隙Gを調整する方策を新規に創案した。
【0017】
本願発明は、上記新規な創案に基づいて開発されたものであり、請求項1に記載の発明は、炉本体部材2と炉本体部材3とを組合せて形成され、内部に空間部1aを有する反応炉本体1と;炉本体部材2に穿設され、前記空間部1aへ原料ガスを導入するガス供給通路2cと;炉本体部材3に穿設され、前記空間部1aから生成水を導出する水分ガス出口通路3cと;前記水分ガス出口通路2cと対向状に炉本体部材2の空間部側に固着され、ガス供給通路2cからの原料ガスを空間部1a内へ拡散させる入口側反射板9と;前記反応炉本体1の空間部1a内に配設したフィルタ10と;前記水分ガス出口通路3cと対向状に配設され、炉本体部材3の空間部側にその内壁面と間隙Gを保持して固着した板状体から成る出口側反射体12と;反応炉本体1の内壁面に設けた白金コーティング皮膜13とを、発明の構成要件とするものである。
【0018】
請求項2に記載の発明は、請求項1の発明に於ける入口側反射体9を、ガス供給通路2cと同軸状に炉本体部材2の空間部側に固着した壁面に透孔9cを有する筒状のケース体9aと、ケース体9aの内側端面を閉鎖する反射板9bとから形成する構成としたものである。
【0019】
請求項3に記載の発明は、請求項1の発明に於ける入口側反射体9を、ガス供給通路2cと対向状に配設されて炉本体部材2の空間部側にその内壁面と所定の間隙を保持した状態で固定した板状体としたものである。
【0020】
請求項4に記載の発明は、請求項1の発明に於けるフィルタ10を、200μm以下の透孔を有するフィルタ10としたものである。
【0021】
請求項5に記載の発明は、請求項1の発明に於ける出口側反射体12と炉本体部材3の内壁面との間隙Gを、0.5〜2.0mmとしたものである。
【0022】
請求項6に記載の発明は、請求項1の発明に於いて出口側反射体12の炉本体部材3と対向する側の表面積を、白金コーティング皮膜13の表面積の15〜25%としたものである。
また、請求項7に記載の発明は、請求項1の発明に於いて出口側反射体12の炉本体部材3の白金コーティング皮膜13と対向する側の外表面に、白金コーティング皮膜を形成するようにしたものである。
【0023】
請求項8に記載の発明は、請求項1の発明に於ける反応炉本体1を、ほぼ同形態の彎曲面状の窪部2aを有する炉本体部材2と彎曲面状の窪部3aを有する炉本体部材3とを、又はほぼ同形態の平らな底面の窪部2aを有する炉本体部材2と平らな底面の窪部3aを有する炉本体部材3とを対向状に組合せて形成すると共に、両本体部材2、3の中央部にフィルタ10を配設する構成としたものである。
【0024】
【発明の実施の形態】
以下、図面に基づいて本発明の実施態様を説明する。
図1は本発明の第1実施形態に係る水分発生用反応炉本体の縦断面図である。また、図2は異なる出口側反射体を用いた反応炉本体の部分縦断面図である。
図1に於いて、1は反応炉本体、2、3は炉本体部材、4はガス供給用継手、5は水分ガス取出用継手、6はフィルタフランジ、7は反応炉取付け用ボルト、8はガス拡散用部材、9は入口側反射体、10はフィルタ、11はフィルタフランジのフィルタ受け片、12は出口側反射体、13は白金コーティング皮膜であり、反応炉1は二個のほぼ同形態に形成されたステンレス鋼製炉本体部材2、3を気密状に溶接することにより、短円筒形に形成されている。
【0025】
前記一方の炉本体部材2は、その内部に底面が彎曲面状の窪部2aが設けられており、更に中央部には、ガス供給通路2cが穿設されている。また、外側面にはガス供給用継手4が設けられており、この外側面に設けたガス供給用継手4のガス供給通路4aが窪部2a内へ連通されている。
同様に、他方の炉本体部材3は、その内部に底面が彎曲面状の窪部3aが設けられており、更に、中央部には、ガス供給通路3cが穿設されている。また、外側面には水分ガス取出用継手5が設けられており、この外側面に設けた水分ガス取出用継手5の水分ガス出口通路5aが窪部3a内へ連通されている。
【0026】
前記両炉本体部材2、3の内側面には、フランジ体2b、3bが夫々形成されており、フィルタフランジ6を介して両フランジ体2b、3bを気密状に溶接固定することにより、内部に空間部1aを有する反応炉本体1が構成されている。尚、図1では両フランジ体2b、3bを溶接により固着する構成としているが、両フランジ体2b、3bをガスケット(図示省略)を介設してクランプ(図示省略)等により解離自在に組付け固着する構成としてもよい。
また、図1では両本体部材2、3をほぼ同一形状のものに形成しているが、一方を有底の筒状体の形態に、他方を筒状体の開口部を閉鎖するフランジ状の形態に形成してもよいことはもちろんである。
【0027】
前記ガス拡散用部材8は入口側反射板9とフィルタ10と出口側反射体12等から形成されており、図1に示す如く反応炉本体1の内部に配設されている。
即ち、入口側反射板9は短筒状のケース体9aと、ケース体9aの内側端面を閉鎖する反射板9bとから形成されており、ケース体9aの外周壁には透孔9cが形成されている。尚、当該入口側反射板9は炉本体部材2の底面のガス供給通路2cと対向する位置にこれと同軸状に配置され、これに溶接固着されている。
【0028】
また、前記フィルタ10は、約200μm以下の透孔を有するステンレス鋼製フィルタであり、本実施例では平均2μmのメッシュ状の透孔を有するフィルタが使用されている。尚、フィルタ10の外周縁にはステンレス鋼製のフィルタフランジ6が溶接されており、このフィルタフランジ6を介してフィルタ10は炉本体部材2、3へ溶接固定されている。
【0029】
前記出口側体12は、図1に示す如く、厚さ約2mmのステンレス鋼(SUS316L)を用いて円形の部分球穀状(即ち円形の浅皿形)に形成されており、本体部材3の窪部3aの彎曲面と同じ曲率半径の彎曲面に仕上げられている。
また、当該出口側反射体12は、炉本体部材3の底面の水分ガス出口通路3cを中心としてこれに対向状に配置され、約1mmの間隙Gを保持した状態でその外周縁の4ケ所に形成した支持片12aを介して、炉本体部材3の内側面へ溶接固着されている。
【0030】
尚、前記図1においては、出口側反射体12を円形の部分球穀状の形態に形成しているが、図2に示す如く、厚手の平板状ステンレス鋼板の一側外周面部12bを彎曲面状に形成し、炉本体部材3の内側面との間に所定の長さの間隙Gを形成するようにしてもよい。
また、図1に於いては、入口側反射体9の長さ寸法を窪部2aの深さ寸法の約1/6としているが、当該長さ寸法を大きくして、フィルタ10の中心部を透過するガス量を押えるようにすることも可能である。同様に、出口側反射体12の外形寸法や炉本体部材3との間隙Gは、水分発生量や反応炉本体1の外形寸法等に応じて適宜に設定され、これによってH2 リッチな原料ガスの場合に於いても99.5%を越える水分発生率の達成が可能となる。
【0031】
より具体的には、出口側反射体12の外形寸法は、その一側面の表面積が白金コーティング皮膜13の表面積の約15〜25%の範囲に選定される。出口側反射体12の外形寸法がこの範囲より小さい場合には原料ガスの拡散が不十分となり、また逆にこの範囲より大きい場合には、原料ガスと白金コーティング皮膜13との接触性等の点に悪影響が出ることになる。
また、前記間隙Gの大きさは0.5〜2.0mm位いが最適であり、間隙Gが0.5mmより小さくなると、発生水分を円滑に導出し難くなると共に反応炉内部空間の内圧が上昇し過ぎる等の問題が生じ、また、逆に間隙Gが2.0mmを越えると、水分発生反応率の向上が困難となり、常時99.5%以上の水分発生反応率を安定して達成し難くなる。
【0032】
尚、図1及び図2に於いては、出口側反射体12には白金コーティング皮膜を一切設けていないが、当該出口側反射体12の炉本体部材3と対向する側の外表面に、炉本体部材3側の白金コーティング皮膜13と同様の白金コーティング皮膜を形成するようにしても良い。
また、図1に於いては、フィルタ10としてディスク型で且つその全面をガス透過部としたフィルタを使用しているが、これに替えて、ディスク型であって且つその外周面部のみをフィルタ部(ガス透過部)とした構成のフィルタを用いるようにしてもよい。
【0033】
前記白金コーティング皮膜13は、SUS316L製の炉本体部材3の内表面の全域に形成されており、先ず炉本体部材3の内表面にTiN製のバリヤー皮膜13aを形成したあと、その上に白金皮膜13bが形成されている。
また、バリヤー皮膜13aの厚さは0.1μm〜5μm程度が最適であり、図1に於いては、約2μmの厚さのTiN製のバリヤー皮膜13aがイオンプレーティング工法により形成されている。
更に、前記白金皮膜13bの厚さは0.1μm〜3μm位いが適当であり、図1に於いては約1μmの厚さの白金皮膜13bが真空蒸着法により形成されている。
【0034】
尚、バリヤー皮膜13aの形成方法としては、前記イオンプレーティング工法以外に、イオンスパッタリング法や真空蒸着法等のPVD法や化学蒸着法(CVD法)、ホットプレス法、溶射法等を用いることも可能である。
また、白金皮膜13bの形成方法は、前記真空蒸着法以外に、イオンプレーティング工法やイオンスパッタリング法、化学蒸着法、ホットプレス法等が使用可能であり、更に、バリヤー皮膜13aがTiN等の導電性のある物質の時にはメッキ法も使用可能である。
【0035】
図3は、本発明の第2実施態様に係る水分発生用反応炉の縦断面図を示すものであり、両炉本体部材2、3の窪部2a、3aの底面を平面状に形成すると共に、入口側反射体9と出口側反射体12として後述するようなステンレス鋼(SUS316L)製の円形の平板を使用し、反応炉本体1の厚み寸法をより小さくするようにしたものである。
尚、図3の水分発生用反応炉に於けるフィルタ10及び白金コーティング皮膜13等の構成は、前記図1の水分発生用反応炉の場合と同様であるため、ここではその説明を省略する。
【0036】
図4は、第2実施態様に係る水分発生用反応炉で使用する入口側及び出口側反射体9、12の平面図であり、図5はその側面図である。
当該入口側及び出口側反射体9、12は厚さ約3mm、外形約50mmφのステンレス鋼板(SUS316L)を用いて形成されており、その外周縁には高さ約1mmの支持片9d、12aが、90°の角度ピッチで4個夫々形成されている。
また、前記入口側反射体9及び出口側反射体12は、夫々炉本体部材2、3の空間部側中央にその内壁面と対向状に配設され、各支持片9d、12aの先端部を炉本体部材2、3の内壁面へスポット溶接することにより、内壁面との間に約1mmの間隙Gを保持した状態で固定されている。
【0037】
次に、本発明に係る水分発生用反応炉の作動について説明する。図1を参照して、ガス供給用継手4のガス供給通路4aを通して入口側反射体9のケース体9a内へ噴射されたガスは反射板9bへ衝突したあと、外周壁に設けた透孔9cを通して噴射され、窪部2a内で拡散されることによりフィルタ10のほぼ全面を均等に通過し、炉本体部材3の窪部3a内へ入る。
前記窪部3a内へ噴射された水素と酸素の混合ガスは、白金コーティング皮膜13の全面に亘って均等に衝突接触し、これにより所謂触媒活性化されると共に、活性化された水素と酸素は主として窪部3a内で瞬時に反応し、水を生成する。そして、主として窪部3aで形成された水分ガスは、出口側反射体12と炉本体部材3の内壁面との間隙Gを通して水分ガス出口通路3cへ導出されて行く。
【0038】
ところで、フィルタ10を透過して窪部3a内へ入った水素及び酸素ガスの大部分は、白金皮膜13bと衝突・接触することによりラジカル化され、ラジカル化された水素と酸素は、そのほぼ全量が瞬時に反応して水に変換される。
また、窪部3a内へ入った水素及び酸素ガスの一部はそのまま直進するかも知れないが、これ等の直進した水素及び酸素ガスは反射体12へ衝突して再拡散され、これにより、白金皮膜13bと非接触のままで間隙G内へ到達する水素及び酸素は大幅に減少する。
【0039】
更に、前記間隙Gを形成する炉本体部材3の内壁面には白金皮膜13bが形成されているため、白金皮膜13bと非接触の水素又は酸素が間隙G内へ到達したとしても、これ等の水素又は酸素は間隙G内で活性化されることになり、水分ガス出口通路3c内へラジカル化されていない水素又は酸素が放出される確率は、大幅に減少する。
また、前記間隙Gの幅寸法(約0.5〜1.5mm)及び間隙Gの通路長さ(即ち、出口側反射体12の外形寸法)が適宜に選定されているため、ラジカル化された状態の水素と酸素が未反応のままで水分ガス出口通路3c内へ素通りする確率がより小さくなり、ラジカル化された状態の水素と酸素のほぼ全部が水分生成反応に寄与することになる。
【0040】
加えて、入口側反射体9、フィルタ10及び出口側反射体12から成るガス拡散用部材8を反応炉本体内に設けることにより、白金コーティング皮膜13が反応熱によって局部的に加熱されることが皆無となり、白金コーティング皮膜13のほぼ全域を約500°以下の温度に保持した状態で水分発生を行なうことができ、約99.5%を越える高い水分発生反応率と高応答性の下に、安全にしかも継続して1000sccm以上の量の水発生を行えることが実証されている。
【0041】
【実施例】
図1の反応炉本体1に於いて、炉本体部材2、3の外形寸法を直径134mmφ、厚さ33.4mmのSUS316L製とし、且つ窪部2a、3aの最大径を108mm及びその彎曲面を曲率半径R=108mmの彎曲面とした(炉本体部材3の内容積V=196.9cm3 、触媒面の表面積S=139.0cm2 )。また、フィルタ10として、ステンレス製メッシュを複数枚積層した平均2.0μmの透孔を有するフィルタ(厚さ約1.7mm)を使用した。
更に、入口側反射体9として、ケース体9aの外径が22mmφ、高さが5mmのものを、また、出口側反射体12として、外形55mmφのステンレス鋼板(反射板表面積/触媒表面積=17.4%)を用い、間隙Gを1.0mmに設定した。
一方、白金コーティング皮膜13としては、炉本体部材3の内壁面にTiN製のバリヤー皮膜(厚さ約2μm、イオンプレーティング法)13aを形成し、その上に厚さ約1μmの白金皮膜(真空蒸着法)13bを形成したものを使用した。
【0042】
上記水分発生用反応炉を用いて、ガス供給通路4aから▲1▼H2 1000sccm+O2 500sccm、▲2▼H2 1000sccm+O2 750sccm、▲3▼H2 1000sccm+O2 1000sccm、▲4▼H2 1500sccm+O2 500sccm、▲5▼H2 2000sccm+O2 500sccmの原料ガスを供給し、水分ガス出口通路3cから流出する水分を実測することにより、水分発生反応率を求めた。
その結果、前記▲1▼乃至▲5▼の何れのケースにあっても、約10時間に亘る連続水分発生試験に於いて、99.5%以上の水分発生反応率が得られ且つ出口側反射体12の温度は500℃以下に保持されていた。
尚、水分発生反応率の試験結果は、図6の曲線Aで示されている。
【0043】
【実施例2】
図3の反応炉本体1に於いて、炉本体部材2、3の外形寸法を直径114mmφ、厚さ15.5mmのSUS316L製とし、且つ窪部2a、3aの深さ4mmとした(炉本体部材3の内容積V=42.8cm3 、触媒面の表面積S=98.3cm2 )。
また、入口側反射体9及び出口側反射体12として、外径50mmφ、厚さ2mm、支持片高さ1mmのステンレス鋼板(SUS316L)(反射板表面積/触媒表面積=20%)を用い、炉本体部材2、3の内壁面との間隙Gを1.0mmとした。
尚、フィルター10及び白金コーティング皮膜13(表面積S=98.3cm2 )の構成は、実施例1の場合と同一である。
【0044】
上記水分発生用反応炉を用いて、ガス供給通路4aから▲1▼H2 750sccm+O2 375sccm、▲2▼H2 750sccm+O2 562.5sccm、▲3▼H2 750sccm+O2 750sccm、▲4▼H2 1125sccm+O2 375sccm、▲5▼H2 1500sccm+O2 375sccmの原料ガスを供給し、水分ガス出口通路5aから流出する水分を実測することにより水分発生反応率を求めた。
試験結果は、実施例1の場合とほぼ同一であり、99.5%以上の水分発生反応率が得られ、且つ各部材の温度は何れも500℃以下に保持されていた。
尚、水分発生反応率の試験結果は、図6の曲線Bで示されている。
【0045】
【発明の効果】
本発明は上述の通り、反応炉本体の内部に入口側反射体とフィルタと出口側反射体を設けると共に、出口側反射体を、炉本体部材との間に間隙Gを保持した状態で炉本体部材へ固定する構成としている。
その結果、水分ガス出口通路内へ流出する未反応ガスがほとんど零となり、酸素リッチの原料ガスの場合は勿論のこと水素リッチの原料ガスの場合でも、99.5%以上の高い水分発生反応率が得られる。
また、反応炉本体内の白金コーティング皮膜や出口側反射体が反応熱によって局部的に加熱されることも皆無となり、ほぼ500℃程度の温度下で1000sccm以上の水分ガスを安定して発生することができる。
【0046】
また、請求項7の発明に於いては、ほぼ同一形状の炉本体部材を対向状に組み合せて反応炉本体を形成する構成としている。その結果、反応炉本体の構造が簡素化され、製造コストの大幅な引下げが可能となる。
本発明は上述の通り優れた実用的効用を奏するものである。
【図面の簡単な説明】
【図1】本発明の第1実施態様に係る水分発生用反応炉の縦断面図である。
【図2】出口側反射体の他の例を示す部分縦断面図である。
【図3】本発明の第2実施態様に係る水分発生用反応炉の縦断面図である。
【図4】第2実施態様で使用する入口側及び出口側反射体の平面図である。
【図5】図4の反射体の側面図である。
【図6】本発明の水分発生用反応炉の水分発生反応率の測定図である。
【図7】先願に係る水分発生用反応炉の縦断面図である。
【図8】図7の水分発生用反応炉の反応時間と水分発生反応率の関係を示す曲線である。
【図9】図7の水分発生用反応炉に於いて、出口側反射体を取り除いた場合の水分発生反応率を示す曲線である。
【図10】先願に係る水分発生用反応炉の出口側反射・拡散体の縦断面図である。
【図11】先願に係る水分発生用反応炉の水分発生反応率と出口側反射・拡散体の温度を示す曲線である。
【符号の簡単な説明】
1は反応炉本体、1aは空間部、2は炉本体部材、2aは窪部、2bはフランジ体、2cはガス供給通路、3は炉本体部材、3aは窪部、3bはフランジ体、3cは水分ガス出口通路、4はガス供給用継手、4aはガス供給通路、5は水分ガス導出用継手、5aは水分ガス出口通路、6はフィルタフランジ、7は反応炉取付用ボルト、8はガス拡散部材、9は入口側反射体、9aはケース体、9bは反射板、9cは透孔、10はフィルタ、11a・11bはフィルタ押え、12は出口側反射体、13は白金コーティング皮膜、13aはバリヤー皮膜、13bは白金皮膜。
[0001]
[Industrial application fields]
The present invention relates to improvement of a water generation reactor used mainly in semiconductor manufacturing facilities.
[0002]
[Prior art]
For example, with a silicon oxide film formed by a moisture oxidation method in semiconductor manufacturing, ultra-high-purity water vapor of about 1000 cc / min (hereinafter referred to as 1000 sccm) in terms of a standard state is required. Therefore, the applicant of the present application has previously developed a water generation reactor having the structure shown in FIG. 7 and published it as Japanese Patent Application No. 8-242246.
[0003]
The reactor main body 21 shown in FIG. 7 includes a heat-resistant furnace main body member 22, 23 having a gas supply joint 24 and a moisture gas extraction joint 25, and the two reactor main body members 22, 23 inside the reaction furnace 21. An inlet-side reflecting plate 29a and an outlet-side reflecting plate 29b provided opposite to the gas supply passage 24a and the moisture gas outlet passage 25a, a filter 30 provided at the center inside the reaction furnace 21, and an inner wall surface of the furnace body member 23 It is formed from the provided platinum coating film 32 and the like.
The platinum coating film 32 is formed by fixing the platinum film 32b on the barrier film 32a made of a nitride such as TiN formed on the inner wall surface of the furnace body member 23 by a vapor deposition method, an ion plating method or the like. Is formed.
[0004]
Thus, the hydrogen and oxygen supplied to the inside of the reactor main body 21 through the gas supply passage 24a are diffused by the diffusion member composed of the inlet-side reflecting plate 29a, the filter 30 and the outlet-side reflecting plate 29b, and the platinum coating film 32. Oxygen and hydrogen in contact with the platinum coating film 32 are increased in reactivity by the catalytic action of platinum, and become a so-called radicalized state. The radicalized hydrogen and oxygen react instantaneously at a temperature lower than the ignition temperature of the hydrogen mixed gas, and produce moisture without performing high-temperature combustion.
[0005]
The reactor main body 21 in FIG. 7 can greatly reduce the size of the moisture generating device, and further has a high reactivity and responsiveness, and a high purity steam or a mixture of high purity steam and oxygen exceeding 1000 sccm. It has gained groundbreaking attention in the field of semiconductor manufacturing technology.
[0006]
FIG. 8 shows the change over time of the water generation reaction rate in the reactor main body 21 (outer diameter: about 134 mmφ, thickness: 70 mm, internal volume: about 490 cc, water generation amount: 1000 sccm, furnace temperature: about 400 ° C.) in FIG. Even if the source gas is an oxygen-rich or hydrogen-rich gas, water can be stably generated under a moisture generation reaction rate of about 98.5 to 99.0%.
[0007]
However, it is difficult to increase the water generation reaction rate to about 99.0% or more under conditions where the temperature of the reaction furnace main body 21 is about 400 ° C. or less and the amount of water generation is 1000 sccm or more. About 1% of unreacted oxygen or hydrogen is mixed into the generated moisture. As a result, there is a problem that only pure water not containing hydrogen or oxygen or a mixture of pure water containing only hydrogen and oxygen cannot be taken out.
[0008]
[Problems to be solved by the invention]
In the present invention, the reaction rate of hydrogen and oxygen in the reaction furnace main body 21 as shown in FIG. 7 is further increased without causing the temperature increase of the reaction main body, and the reaction furnace main body 21 is further miniaturized. It is an object to obtain a moisture generation reaction rate of 99.5% or more stably and for a long time under the conditions that the temperature of the reactor main body 21 is about 400 ° C. or less and the water generation amount is 1000 sccm or more. We intend to provide a reactor for water generation that has been made possible.
[0009]
[Means for Solving the Problems]
By the way, in the reactor main body 21 of FIG. 7, the reason why unreacted hydrogen and oxygen are mixed into the moisture gas outlet passage 25a is as follows. When oxygen or hydrogen reaches the outlet passage 25a, and {circle around (2)} one carrier is radicalized, but before reaching the moisture gas outlet passage 25a without reacting with hydrogen or oxygen, before being radicalized here. There are two possible cases of returning to this state, but it is assumed that the former case is overwhelmingly numerous.
[0010]
According to the experiment results of the inventors of the present application, when the outlet-side reflector 29b is removed from the reaction furnace main body 21 of FIG. 7, the temperature of the reaction furnace is 400 ° C. and the amount of water generation is 500 sccm as shown in FIG. The water generation reaction rate under the condition of 0 gas excess is about 91%. This reaction rate is not the data under exactly the same conditions because the amount of water generation is different, but it is about 7% lower than the water generation reaction rate in the case of FIG. 8 (about 98%). Yes.
[0011]
This indicates that when there is no outlet-side reflecting plate 29b, a considerable amount of oxygen or hydrogen reaches the moisture gas outlet passage 25a directly without being radicalized, and the outlet-side reflecting plate 29b is improved. This indicates that the moisture generation reaction rate can be improved by adding.
[0012]
In addition, as apparent from FIG. 9, in the case where there is no exit-side reflecting plate 29b, the moisture generation reaction rate decreases as the source gas becomes richer in hydrogen. For example, when the reactor temperature is 400 ° C. and the water generation amount is 500 sccm, when the hydrogen is 100% rich, the water generation reaction rate is about 86%, whereas the oxygen generation is 100% rich. Is about 97%, and a difference of about 11% occurs between the two.
[0013]
That is, in the inside of the reactor main body 21 having a structure as shown in FIG. 7, oxygen is relatively easily diffused and linear travelability is small, whereas hydrogen is relatively difficult to diffuse. In the case of a hydrogen-rich source gas, it is assumed that oxygen accompanies the linear flow of hydrogen and oxygen that reaches the moisture gas outlet passage 25a without being radicalized is increased due to the high linearity. Is done.
[0014]
Therefore, the present inventor has improved the gas diffusibility of the outlet-side reflector 29b, particularly the hydrogen diffusibility, in the reactor main body 21 of FIG. It was conceived that even in the case of gas, the moisture generation reaction rate can be higher than the reaction rate of about 98 to 99% in the case of FIG. In addition, based on this idea, an outlet side reflecting / diffusing body 33 as shown in FIG. 10 was developed, and a number of moisture generation tests were performed using this.
That is, the exit-side reflecting / diffusing body 33 in FIG. 10 is provided inside the case body 33a, a cylindrical case body 33a having a through-hole 33e on the wall surface, a reflecting plate 33b for closing the inner end face of the case body 33a. The diffusion filter 33c and the platinum coating film 33d provided on the diffusion filter 33c are formed.
Therefore, hydrogen or oxygen gas that has reached the inside of the case main body 32a through the through-hole 32e without being in contact with the platinum film 33d does not pass through the moisture gas outlet passage 23c as it is, and the platinum coating of the diffusion filter 33c is not performed. It is radicalized by contact with the film 32d, and hydrogen and oxygen in a non-radical state become almost zero, and the radicalized hydrogen and oxygen react instantaneously to generate water.
[0015]
As shown in the curve A of FIG. 11, the water generating reactor provided with the outlet side reflecting / diffusing body 33 of FIG. 2 Even in a rich region, a moisture generation reaction rate of approximately 99.7% can be obtained, and excellent utility is exhibited.
However, the temperature of the exit-side reflecting / diffusing body 33 becomes H as shown by the curve B in FIG. 11 due to the reaction heat of hydrogen and oxygen radicalized by the coating film 32d of the diffusion filter 33c. 2 In the rich region, the temperature rises to about 600 ° C., and approaches the so-called ignition temperature of the hydrogen mixed gas.
As described above, the moisture generation reactor using the outlet-side reflecting / diffusing body 33 having the configuration shown in FIG. 10 has a high risk of causing hydrogen explosion and combustion. Various problems will be caused in achieving significant miniaturization.
[0016]
Therefore, the inventors of the present application have a platinum coating film 32d as a measure for preventing non-radical hydrogen or oxygen from flowing into the moisture gas outlet passage 23c in the reactor main body 21 of FIG. Instead of using the diffuser filter 33c, a flat outlet-side reflector is used, and the outlet-side reflector that forms the surface area of the outlet-side reflector and the outflow passage of the generated water and the inner wall surface of the reactor main body are used. A new method for adjusting the gap G was created.
[0017]
The present invention has been developed based on the above novel idea, and the invention according to claim 1 is formed by combining the furnace main body member 2 and the furnace main body member 3, and has a space portion 1a therein. A reaction furnace main body 1; a gas supply passage 2c that is formed in the furnace main body member 2 and introduces a raw material gas into the space 1a; and is formed in the furnace main body member 3 to derive generated water from the space 1a. Moisture gas outlet passage 3c; an inlet-side reflector 9 that is fixed to the space portion side of the furnace body member 2 so as to face the moisture gas outlet passage 2c and diffuses the source gas from the gas supply passage 2c into the space portion 1a. A filter 10 disposed in the space portion 1a of the reactor main body 1, and a filter 10 disposed opposite to the moisture gas outlet passage 3c, and having an inner wall surface and a gap G on the space portion side of the furnace main body member 3. Hold and stick Consists of plates The outlet-side reflector 12 and the platinum coating film 13 provided on the inner wall surface of the reactor main body 1 are the constituent features of the invention.
[0018]
The invention according to claim 2 has a through-hole 9c in the wall surface where the inlet side reflector 9 according to the invention of claim 1 is fixed to the space side of the furnace body member 2 coaxially with the gas supply passage 2c. The cylindrical case body 9a and a reflecting plate 9b that closes the inner end face of the case body 9a are used.
[0019]
According to the third aspect of the present invention, the inlet-side reflector 9 according to the first aspect of the present invention is disposed so as to face the gas supply passage 2c, and the inner wall surface of the furnace main body member 2 and the predetermined inner wall surface are disposed on the space portion side. The plate-like body is fixed in a state where the gap is maintained.
[0020]
According to a fourth aspect of the present invention, the filter 10 according to the first aspect of the present invention is a filter 10 having a through hole of 200 μm or less.
[0021]
According to the fifth aspect of the present invention, the gap G between the outlet side reflector 12 and the inner wall surface of the furnace body member 3 in the first aspect of the present invention is set to 0.5 to 2.0 mm.
[0022]
According to the sixth aspect of the present invention, in the first aspect of the present invention, the surface area of the outlet side reflector 12 facing the furnace body member 3 is the surface area of the platinum coating film 13. 1 of 5 to 25%.
According to a seventh aspect of the present invention, in the first aspect of the present invention, the platinum coating film is formed on the outer surface of the outlet side reflector 12 facing the platinum coating film 13 of the furnace body member 3. It is a thing.
[0023]
The invention according to claim 8 has the reactor main body 1 according to the invention of claim 1 having a furnace body member 2 having a substantially curved concave portion 2a and a concave portion 3a having a curved surface. The furnace body member 3 or the furnace body member 2 having a flat bottom recess 2a and the furnace body member 3 having a flat bottom recess 3a of substantially the same shape are combined in an opposing manner, In this configuration, the filter 10 is disposed at the center of both the main body members 2 and 3.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a longitudinal sectional view of a water generating reactor main body according to a first embodiment of the present invention. FIG. 2 is a partial longitudinal sectional view of a reactor main body using different outlet side reflectors.
In FIG. 1, 1 is a reactor body, 2, 3 is a furnace body member, 4 is a gas supply joint, 5 is a moisture gas extraction joint, 6 is a filter flange, 7 is a reactor mounting bolt, Gas diffusion member, 9 is an inlet-side reflector, 10 is a filter, 11 is a filter receiving piece of a filter flange, 12 is an outlet-side reflector, 13 is a platinum coating film, and the reactor 1 has two substantially the same configuration The stainless steel furnace body members 2 and 3 formed in the above are welded in an airtight manner to form a short cylindrical shape.
[0025]
The one furnace body member 2 is provided with a recess 2a having a curved bottom surface at the inside thereof, and a gas supply passage 2c is formed in the center. Further, a gas supply joint 4 is provided on the outer surface, and a gas supply passage 4a of the gas supply joint 4 provided on the outer surface is communicated with the recess 2a.
Similarly, the other furnace main body member 3 is provided with a recess 3a having a curved bottom surface at the inside thereof, and further, a gas supply passage 3c is formed at the center. Further, a moisture gas extraction joint 5 is provided on the outer surface, and a moisture gas outlet passage 5a of the moisture gas extraction joint 5 provided on the outer surface is communicated with the recess 3a.
[0026]
Flange bodies 2b and 3b are respectively formed on the inner side surfaces of the furnace body members 2 and 3, and the flange bodies 2b and 3b are hermetically welded and fixed to each other through the filter flange 6. A reactor main body 1 having a space 1a is configured. In FIG. 1, both flange bodies 2b and 3b are fixed by welding. However, both flange bodies 2b and 3b are detachably assembled with a clamp (not shown) or the like through a gasket (not shown). It is good also as a structure to adhere.
Further, in FIG. 1, both main body members 2 and 3 are formed in substantially the same shape, but one is in the form of a bottomed cylindrical body and the other is a flange-like shape that closes the opening of the cylindrical body. Of course, it may be formed into a form.
[0027]
The gas diffusion member 8 is formed of an inlet-side reflector 9, a filter 10, an outlet-side reflector 12, and the like, and is disposed inside the reactor main body 1 as shown in FIG.
That is, the entrance-side reflecting plate 9 is formed of a short cylindrical case body 9a and a reflecting plate 9b that closes the inner end surface of the case body 9a, and a through hole 9c is formed in the outer peripheral wall of the case body 9a. ing. The inlet-side reflecting plate 9 is coaxially disposed at a position facing the gas supply passage 2c on the bottom surface of the furnace body member 2, and is fixedly welded thereto.
[0028]
The filter 10 is a stainless steel filter having a through hole of about 200 μm or less. In this embodiment, a filter having an average 2 μm mesh-like through hole is used. A filter flange 6 made of stainless steel is welded to the outer peripheral edge of the filter 10, and the filter 10 is welded and fixed to the furnace body members 2 and 3 through the filter flange 6.
[0029]
As shown in FIG. 1, the outlet side body 12 is formed in a circular partial spherical shape (that is, a circular shallow dish shape) using stainless steel (SUS316L) having a thickness of about 2 mm. A curved surface having the same radius of curvature as the curved surface of the recess 3a is finished.
Further, the outlet-side reflector 12 is disposed so as to face the water gas outlet passage 3c on the bottom surface of the furnace body member 3 in the center, and is held at four locations on the outer peripheral edge with a gap G of about 1 mm. It is welded and fixed to the inner surface of the furnace body member 3 through the formed support piece 12a.
[0030]
In FIG. 1, the exit-side reflector 12 is formed in a circular partial spherical grain shape. However, as shown in FIG. 2, the one-side outer peripheral surface portion 12 b of the thick flat plate-like stainless steel plate is a curved surface. A gap G having a predetermined length may be formed between the inner surface of the furnace body member 3 and the inner surface of the furnace body member 3.
In FIG. 1, the length dimension of the entrance-side reflector 9 is set to about 1/6 of the depth dimension of the recess 2a. It is also possible to suppress the amount of gas passing therethrough. Similarly, the outer dimension of the outlet-side reflector 12 and the gap G with the furnace body member 3 are appropriately set according to the amount of moisture generated, the outer dimension of the reactor body 1, and the like. 2 Even in the case of a rich source gas, it is possible to achieve a moisture generation rate exceeding 99.5%.
[0031]
More specifically, the outer dimension of the exit-side reflector 12 is selected such that the surface area of one side surface thereof is in the range of about 15 to 25% of the surface area of the platinum coating film 13. When the outer dimension of the exit-side reflector 12 is smaller than this range, the diffusion of the raw material gas becomes insufficient, and conversely, when larger than this range, points such as the contact property between the raw material gas and the platinum coating film 13 Will be adversely affected.
The size of the gap G is optimally about 0.5 to 2.0 mm. When the gap G is smaller than 0.5 mm, it is difficult to smoothly draw out the generated water and the internal pressure in the reaction furnace internal space is reduced. When the gap G exceeds 2.0 mm, it becomes difficult to improve the water generation reaction rate, and a water generation reaction rate of 99.5% or more can be stably achieved. It becomes difficult.
[0032]
In FIGS. 1 and 2, the exit-side reflector 12 is not provided with any platinum coating film, but the exit-side reflector 12 has a furnace surface on the outer surface facing the furnace body member 3. A platinum coating film similar to the platinum coating film 13 on the main body member 3 side may be formed.
Further, in FIG. 1, a filter having a disk type and a gas permeation portion on the entire surface is used as the filter 10. Instead of this, the filter is a disk type and only the outer peripheral surface portion is a filter portion. You may make it use the filter of the structure used as (gas permeation | transmission part).
[0033]
The platinum coating film 13 is formed on the entire inner surface of the furnace body member 3 made of SUS316L. First, a TiN barrier film 13a is formed on the inner surface of the furnace body member 3, and then a platinum film is formed thereon. 13b is formed.
The optimum thickness of the barrier film 13a is about 0.1 to 5 μm. In FIG. 1, the TiN barrier film 13a having a thickness of about 2 μm is formed by an ion plating method.
Further, the thickness of the platinum film 13b is suitably about 0.1 μm to 3 μm. In FIG. 1, the platinum film 13b having a thickness of about 1 μm is formed by vacuum deposition.
[0034]
As a method for forming the barrier film 13a, in addition to the ion plating method, a PVD method such as an ion sputtering method or a vacuum vapor deposition method, a chemical vapor deposition method (CVD method), a hot press method, a thermal spray method, or the like may be used. Is possible.
In addition to the vacuum deposition method, the platinum coating 13b can be formed by an ion plating method, an ion sputtering method, a chemical vapor deposition method, a hot press method, or the like, and the barrier coating 13a is made of a conductive material such as TiN. In the case of a sexual substance, a plating method can also be used.
[0035]
FIG. 3 is a longitudinal sectional view of a water generating reactor according to the second embodiment of the present invention, and the bottom surfaces of the recesses 2a and 3a of both furnace body members 2 and 3 are formed in a planar shape. A circular flat plate made of stainless steel (SUS316L) as will be described later is used as the inlet-side reflector 9 and the outlet-side reflector 12, and the thickness dimension of the reactor main body 1 is made smaller.
The configuration of the filter 10 and the platinum coating film 13 in the moisture generation reactor shown in FIG. 3 is the same as that of the moisture generation reactor shown in FIG.
[0036]
FIG. 4 is a plan view of the inlet-side and outlet-side reflectors 9 and 12 used in the water generating reactor according to the second embodiment, and FIG. 5 is a side view thereof.
The entrance-side and exit-side reflectors 9 and 12 are formed using a stainless steel plate (SUS316L) having a thickness of about 3 mm and an outer shape of about 50 mmφ, and support pieces 9d and 12a having a height of about 1 mm are formed on the outer peripheral edge thereof. , Each of which is formed at an angle pitch of 90 °.
The inlet-side reflector 9 and the outlet-side reflector 12 are respectively disposed in the center of the space portion side of the furnace body members 2 and 3 so as to face the inner wall surface, and the tip portions of the support pieces 9d and 12a are provided. By spot welding to the inner wall surfaces of the furnace body members 2 and 3, the gap G of about 1 mm is held between the inner wall surfaces and the furnace body members 2 and 3.
[0037]
Next, the operation of the water generating reactor according to the present invention will be described. Referring to FIG. 1, the gas injected into the case body 9 a of the inlet-side reflector 9 through the gas supply passage 4 a of the gas supply joint 4 collides with the reflector 9 b, and then the through hole 9 c provided in the outer peripheral wall. Is injected through and diffused in the recess 2a so that it almost uniformly passes through the entire surface of the filter 10 and enters the recess 3a of the furnace body member 3.
The mixed gas of hydrogen and oxygen injected into the recess 3a collides and contacts evenly over the entire surface of the platinum coating film 13, thereby causing so-called catalyst activation, and the activated hydrogen and oxygen are It reacts instantly mainly in the recess 3a to generate water. The moisture gas mainly formed in the recess 3 a is led out to the moisture gas outlet passage 3 c through the gap G between the outlet-side reflector 12 and the inner wall surface of the furnace body member 3.
[0038]
By the way, most of the hydrogen and oxygen gas that have passed through the filter 10 and entered the recess 3a are radicalized by colliding with and contacting with the platinum film 13b, and almost all of the radicalized hydrogen and oxygen are obtained. Reacts instantly and is converted to water.
In addition, some of the hydrogen and oxygen gas that have entered the recess 3a may go straight, but the straight hydrogen and oxygen gas may collide with the reflector 12 and be re-diffused. Hydrogen and oxygen that reach the gap G without contacting the film 13b are greatly reduced.
[0039]
Furthermore, since the platinum film 13b is formed on the inner wall surface of the furnace body member 3 that forms the gap G, even if hydrogen or oxygen that is not in contact with the platinum film 13b reaches the gap G, Hydrogen or oxygen is activated in the gap G, and the probability that non-radical hydrogen or oxygen is released into the moisture gas outlet passage 3c is greatly reduced.
Further, since the width dimension of the gap G (about 0.5 to 1.5 mm) and the passage length of the gap G (that is, the outer dimension of the outlet-side reflector 12) are appropriately selected, radicalization has occurred. The probability that hydrogen and oxygen in the state remain unreacted and pass through the moisture gas outlet passage 3c is reduced, and almost all of the radicalized hydrogen and oxygen contribute to the moisture generation reaction.
[0040]
In addition, the platinum diffusion coating 13 can be locally heated by reaction heat by providing the gas diffusion member 8 including the inlet-side reflector 9, the filter 10, and the outlet-side reflector 12 in the reaction furnace body. No water is generated and water can be generated in a state where almost the entire area of the platinum coating film 13 is maintained at a temperature of about 500 ° C. or less. Under a high water generation reaction rate and high responsiveness exceeding about 99.5%, It has been demonstrated that water can be generated safely and continuously in an amount of 1000 sccm or more.
[0041]
【Example】
In the reactor main body 1 of FIG. 1, the outer dimensions of the furnace main body members 2 and 3 are made of SUS316L having a diameter of 134 mmφ and a thickness of 33.4 mm, the maximum diameter of the recesses 2a and 3a is 108 mm, and the curved surface thereof is A curved surface having a curvature radius R = 108 mm (inner volume V of the furnace body member 3 = 196.9 cm) Three , Catalyst surface area S = 139.0 cm 2 ). Further, as the filter 10, a filter (thickness of about 1.7 mm) having an average 2.0 μm through-hole in which a plurality of stainless steel meshes were laminated was used.
Further, as the entrance-side reflector 9, a case body 9 a having an outer diameter of 22 mmφ and a height of 5 mm is used, and as the exit-side reflector 12, a stainless steel plate having an outer diameter of 55 mmφ (reflector surface area / catalyst surface area = 17. 4%) and the gap G was set to 1.0 mm.
On the other hand, as the platinum coating film 13, a TiN barrier film (thickness of about 2 μm, ion plating method) 13 a is formed on the inner wall surface of the furnace body member 3, and a platinum film (vacuum of about 1 μm is formed thereon. Vapor deposition method) What formed 13b was used.
[0042]
(1) H from the gas supply passage 4a using the water generating reactor. 2 1000sccm + O 2 500sccm, (2) H 2 1000sccm + O 2 750sccm, (3) H 2 1000sccm + O 2 1000sccm, (4) H 2 1500sccm + O 2 500sccm, (5) H 2 2000sccm + O 2 A moisture generation reaction rate was determined by supplying a raw material gas of 500 sccm and actually measuring the moisture flowing out from the moisture gas outlet passage 3c.
As a result, in any of the cases (1) to (5), a water generation reaction rate of 99.5% or more was obtained in the continuous water generation test for about 10 hours, and the exit side reflection was achieved. The temperature of the body 12 was kept below 500 ° C.
The test result of the moisture generation reaction rate is shown by a curve A in FIG.
[0043]
[Example 2]
In the reactor main body 1 of FIG. 3, the outer dimensions of the furnace main body members 2 and 3 are made of SUS316L having a diameter of 114 mmφ and a thickness of 15.5 mm, and the depths of the recesses 2a and 3a are 4 mm (reactor main body members). 3 internal volume V = 42.8 cm Three , Catalyst surface area S = 98.3 cm 2 ).
Further, a stainless steel plate (SUS316L) (reflector surface area / catalyst surface area = 20%) having an outer diameter of 50 mmφ, a thickness of 2 mm, and a support piece height of 1 mm is used as the inlet-side reflector 9 and the outlet-side reflector 12. The gap G between the inner wall surfaces of the members 2 and 3 was 1.0 mm.
In addition, the filter 10 and the platinum coating film 13 (surface area S = 98.3 cm) 2 ) Is the same as in the first embodiment.
[0044]
(1) H from the gas supply passage 4a using the water generating reactor. 2 750sccm + O 2 375sccm, (2) H 2 750sccm + O 2 562.5sccm, (3) H 2 750sccm + O 2 750sccm, (4) H 2 1125sccm + O 2 375sccm, (5) H 2 1500sccm + O 2 A raw material gas of 375 sccm was supplied, and the moisture generation reaction rate was determined by actually measuring the moisture flowing out from the moisture gas outlet passage 5a.
The test results were almost the same as in Example 1, a moisture generation reaction rate of 99.5% or higher was obtained, and the temperature of each member was maintained at 500 ° C. or lower.
The test result of the moisture generation reaction rate is shown by a curve B in FIG.
[0045]
【The invention's effect】
In the present invention, as described above, the reactor body is provided with the inlet-side reflector, the filter, and the outlet-side reflector in the reactor body, and the outlet-side reflector is held with the gap G between the furnace body members. It is set as the structure fixed to a member.
As a result, the amount of unreacted gas flowing out into the moisture gas outlet passage becomes almost zero, and a high moisture generation reaction rate of 99.5% or more in the case of hydrogen-rich source gas as well as oxygen-rich source gas. Is obtained.
In addition, the platinum coating film in the reactor main body and the outlet-side reflector are not locally heated by reaction heat, and stable generation of moisture gas of 1000 sccm or more at a temperature of about 500 ° C. is possible. Can do.
[0046]
In the invention of claim 7, the reactor main body is formed by combining the furnace main body members having substantially the same shape in an opposing manner. As a result, the structure of the reactor main body is simplified, and the manufacturing cost can be greatly reduced.
The present invention has excellent practical utility as described above.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a water generating reactor according to a first embodiment of the present invention.
FIG. 2 is a partial longitudinal sectional view showing another example of the exit-side reflector.
FIG. 3 is a longitudinal sectional view of a water generation reactor according to a second embodiment of the present invention.
FIG. 4 is a plan view of an inlet-side and outlet-side reflector used in the second embodiment.
FIG. 5 is a side view of the reflector of FIG. 4;
FIG. 6 is a measurement diagram of the moisture generation reaction rate of the water generation reactor of the present invention.
FIG. 7 is a longitudinal sectional view of a water generation reactor according to a previous application.
8 is a curve showing the relationship between the reaction time of the water generation reactor shown in FIG. 7 and the water generation reaction rate.
9 is a curve showing the moisture generation reaction rate when the outlet-side reflector is removed in the moisture generation reactor of FIG. 7. FIG.
FIG. 10 is a longitudinal sectional view of the outlet side reflection / diffusion body of the moisture generating reactor according to the prior application.
FIG. 11 is a curve showing the water generation reaction rate of the water generation reactor according to the previous application and the temperature of the outlet side reflection / diffuser.
[Brief description of symbols]
1 is a reactor body, 1a is a space, 2 is a furnace body member, 2a is a recess, 2b is a flange body, 2c is a gas supply passage, 3 is a furnace body member, 3a is a recess, 3b is a flange body, 3c Is a moisture gas outlet passage, 4 is a gas supply joint, 4a is a gas supply passage, 5 is a moisture gas outlet joint, 5a is a moisture gas outlet passage, 6 is a filter flange, 7 is a reactor mounting bolt, and 8 is a gas. Diffusion member, 9 is an entrance side reflector, 9a is a case body, 9b is a reflector, 9c is a through hole, 10 is a filter, 11a and 11b are filter holders, 12 is an exit side reflector, 13 is a platinum coating film, 13a Is a barrier film, and 13b is a platinum film.

Claims (8)

二つの炉本体部材(2)、(3)を組合せて形成され、内部に空間部(1a)を有する反応炉本体(1)と;一方の炉本体部材(2)に穿設され、前記空間部(1a)へ原料ガスを導入するガス供給通路(2c)と;他方の炉本体部材(3)に穿設され、前記空間部(1a)から生成水を導出する水分ガス出口通路(3c)と;前記ガス供給通路(2c)と対向状に炉本体部材(2)の空間部側に固着され、ガス供給通路(2c)からの原料ガスを空間部(1a)内へ拡散させる入口側反射体(9)と;前記反応炉本体(1)の空間部(1a)内に配設したフィルタ(10)と;前記水分ガス出口通路(3c)と対向状に配設され、炉本体部材(3)の空間部側にその内壁面と間隙(G)を保持して固着した板状体から成る出口側反射体(12)と;反応炉本体(1)の内壁面に設けた白金コーティング皮膜(13)と;から構成した水分発生用反応炉。A reactor main body (1) formed by combining two furnace main body members (2) and (3) and having a space (1a) therein; A gas supply passage (2c) for introducing the raw material gas into the section (1a); a moisture gas outlet passage (3c) which is formed in the other furnace body member (3) and draws generated water from the space (1a) And inlet side reflection that is fixed to the space portion side of the furnace body member (2) so as to face the gas supply passage (2c) and diffuses the source gas from the gas supply passage (2c) into the space portion (1a). A body (9); a filter (10) disposed in the space (1a) of the reactor main body (1); and a moisture body outlet passage (3c) disposed opposite the furnace body member ( outlet reflector made of a plate-shaped body whose inner wall surface in the space portion and the gap (G) is a fixed and held 3) (1 ) And; the reactor body (1) platinum coating film (13) and provided on the inner wall surface of; water generating reactor constructed from. 入口側反射体(9)を、ガス供給通路(2c)と同軸状に炉本体部材(2)の空間部側に固着した壁面に透孔(9c)を有する筒状のケース体(9a)と、ケース体(9a)の内側端面を閉鎖する反射板(9b)とから成る入口側反射体(9)とした請求項1に記載の水分発生用反応炉。  A cylindrical case body (9a) having a through-hole (9c) on the wall surface of the inlet side reflector (9) fixed to the space portion side of the furnace body member (2) coaxially with the gas supply passage (2c); The moisture generating reactor according to claim 1, wherein the inlet-side reflector (9) comprises a reflector (9b) that closes the inner end face of the case body (9a). 入口側反射体(9)を、ガス供給通路(2c)と対向状に配設され、炉本体部材(2)の空間部側にその内壁面と所望の間隙を保持して固着した板状体から成る入口側反射体(9)とした請求項1に記載の水分発生用反応炉。  A plate-like body in which the inlet-side reflector (9) is disposed so as to face the gas supply passage (2c), and is secured to the space side of the furnace body member (2) while maintaining a desired gap with the inner wall surface. The reactor for moisture generation according to claim 1, wherein the reflector is an inlet side reflector (9). フィルタ(10)を、200μm以下の透孔を有するフィルタ(10)とした請求項1に記載の水分発生用反応炉。  The reactor for water generation according to claim 1, wherein the filter (10) is a filter (10) having a through hole of 200 µm or less. 出口側反射体(12)と、炉本体部材(3)との間隙(G)を0.5〜2.0mmとした請求項1に記載の水分発生用反応炉。  The reactor for water generation according to claim 1, wherein a gap (G) between the outlet-side reflector (12) and the furnace body member (3) is 0.5 to 2.0 mm. 出口側反射体(12)の炉本体部材(3)と対向する側の表面積を、白金コーティング皮膜(13)の表面積の5〜25%にした請求項1に記載の水分発生用反応炉。The reactor for water generation according to claim 1, wherein the surface area of the outlet side reflector (12) facing the furnace body member (3) is 15 to 25% of the surface area of the platinum coating film (13). 出口側反射体(12)の炉本体部材(3)の白金コーティング皮膜(13)と対向する側の外表面に、白金コーティング皮膜を設けるようにした請求項1に記載の水分発生用反応炉。  The reactor for moisture generation according to claim 1, wherein a platinum coating film is provided on the outer surface of the outlet side reflector (12) on the side facing the platinum coating film (13) of the furnace body member (3). 反応炉本体(1)を、ほぼ同形態の彎曲面状の窪部(2a)を有する炉本体部材(2)と彎曲面状の窪部(3a)を有する炉本体部材(3)とを、又はほぼ同形態の平らな底面の窪部(2a)を有する炉本体部材(2)と平らな底面の窪部(3a)を有する炉本体部材(3)とを対向状に組合せて形成すると共に、両本体部材(2)、(3)の中央部にフィルタ(10)を配設する構成とした請求項1に記載の水分発生用反応炉。  The reactor main body (1) includes a furnace main body member (2) having a substantially curved concave portion (2a) and a furnace main body member (3) having a concave curved portion (3a). Alternatively, a furnace body member (2) having a flat bottom recess (2a) and a furnace body member (3) having a flat bottom recess (3a) having substantially the same shape are combined in an opposing manner. The water generating reactor according to claim 1, wherein a filter (10) is arranged at the center of both body members (2), (3).
JP10998997A 1997-03-26 1997-04-28 Water generation reactor Expired - Fee Related JP3644790B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP10998997A JP3644790B2 (en) 1997-04-28 1997-04-28 Water generation reactor
EP98307592A EP0987217B1 (en) 1997-04-28 1998-09-18 Reactor for generation of moisture
IL12629398A IL126293A (en) 1997-04-28 1998-09-18 Reactor for generation of moisture
SG1998003776A SG71843A1 (en) 1997-04-28 1998-09-21 Reactor for generation of moisture
KR1019980039721A KR100270501B1 (en) 1997-04-28 1998-09-24 Reactor for generation of moisture
TW087116013A TW440542B (en) 1997-03-26 1998-09-25 Reactor for generation of moisture
CA002249079A CA2249079C (en) 1997-04-28 1998-09-25 Reactor for generation of moisture
US09/160,188 US6180067B1 (en) 1997-04-28 1998-09-25 Reactor for the generation of water

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP10998997A JP3644790B2 (en) 1997-04-28 1997-04-28 Water generation reactor
EP98307592A EP0987217B1 (en) 1997-04-28 1998-09-18 Reactor for generation of moisture
IL12629398A IL126293A (en) 1997-04-28 1998-09-18 Reactor for generation of moisture
SG1998003776A SG71843A1 (en) 1997-04-28 1998-09-21 Reactor for generation of moisture
KR1019980039721A KR100270501B1 (en) 1997-04-28 1998-09-24 Reactor for generation of moisture
CA002249079A CA2249079C (en) 1997-04-28 1998-09-25 Reactor for generation of moisture
US09/160,188 US6180067B1 (en) 1997-04-28 1998-09-25 Reactor for the generation of water

Publications (2)

Publication Number Publication Date
JPH10297907A JPH10297907A (en) 1998-11-10
JP3644790B2 true JP3644790B2 (en) 2005-05-11

Family

ID=33437294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10998997A Expired - Fee Related JP3644790B2 (en) 1997-03-26 1997-04-28 Water generation reactor

Country Status (7)

Country Link
US (1) US6180067B1 (en)
EP (1) EP0987217B1 (en)
JP (1) JP3644790B2 (en)
KR (1) KR100270501B1 (en)
CA (1) CA2249079C (en)
IL (1) IL126293A (en)
SG (1) SG71843A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI227530B (en) * 1997-03-05 2005-02-01 Hitachi Ltd Manufacturing method of semiconductor integrated circuit device
JP3644790B2 (en) * 1997-04-28 2005-05-11 忠弘 大見 Water generation reactor
SG94873A1 (en) * 1999-08-06 2003-03-18 Fujikin Kk Reactor for generating high purity moisture
US6524934B1 (en) 1999-10-28 2003-02-25 Lorimer D'arcy H. Method of manufacture for generation of high purity water vapor
IL144024A0 (en) * 2000-06-05 2002-04-21 Fujikin Kk Reactor for generating moisture
JP2002274812A (en) * 2001-03-23 2002-09-25 Fujikin Inc Moisture generating reaction furnace
JP2005500236A (en) * 2001-08-13 2005-01-06 ウルトラ クリーン テクノロジー システムズ アンド サーヴィシーズ インコーポレイテッド Catalytic reactor and method for producing high purity steam
US20090028781A1 (en) * 2002-08-13 2009-01-29 Sowmya Krishnan Catalytic reactor method for generating high purity water vapor
US20050252449A1 (en) * 2004-05-12 2005-11-17 Nguyen Son T Control of gas flow and delivery to suppress the formation of particles in an MOCVD/ALD system
US9454158B2 (en) 2013-03-15 2016-09-27 Bhushan Somani Real time diagnostics for flow controller systems and methods
US10983538B2 (en) 2017-02-27 2021-04-20 Flow Devices And Systems Inc. Systems and methods for flow sensor back pressure adjustment for mass flow controller
KR20240052957A (en) * 2022-03-14 2024-04-23 가부시키가이샤 후지킨 Reactor for moisture generation

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6025188B2 (en) * 1978-07-03 1985-06-17 広栄化学工業株式会社 Fixed catalyst catalytic reactor
JPS5815007A (en) * 1981-07-13 1983-01-28 Hitachi Ltd Recombinating apparatus for oxygen with hydrogen
JPS60185198A (en) * 1984-03-05 1985-09-20 株式会社日立製作所 Recombination instrument for oxygen abd hydrogen
US5355973A (en) * 1992-06-02 1994-10-18 Donaldson Company, Inc. Muffler with catalytic converter arrangement; and method
JPH0812303A (en) * 1994-07-05 1996-01-16 Ishikawajima Harima Heavy Ind Co Ltd Plate reformer
EP1911722A2 (en) * 1996-01-29 2008-04-16 FUJIKIN Inc. Method for generating moisture, reactor for generating moisture, method for controlling temperature of reactor for generating moisture, and method for forming platinum-coated catalyst layer
JP3644790B2 (en) * 1997-04-28 2005-05-11 忠弘 大見 Water generation reactor

Also Published As

Publication number Publication date
EP0987217B1 (en) 2004-08-04
KR100270501B1 (en) 2000-12-01
US6180067B1 (en) 2001-01-30
CA2249079A1 (en) 2000-03-25
JPH10297907A (en) 1998-11-10
KR20000020907A (en) 2000-04-15
EP0987217A1 (en) 2000-03-22
IL126293A (en) 2001-08-08
CA2249079C (en) 2001-11-27
IL126293A0 (en) 1999-08-17
SG71843A1 (en) 2000-04-18

Similar Documents

Publication Publication Date Title
JP3644790B2 (en) Water generation reactor
CA2244688C (en) Method for generating moisture, reactor for generating moisture, method for controlling temperature of reactor for generating moisture, and method for forming platinum-coated catalyst layer
US20140219884A1 (en) High emissivity and high temperature diffusion barrier coatings for an oxygen transport membrane assembly
JP3808975B2 (en) Moisture generation method for semiconductor manufacturing
US20040191137A1 (en) Catalyst incorporation in a microreactor
KR100402665B1 (en) Reactor for generating moisture
EP3594486A1 (en) Hydrogen reformer using exhaust gas
JP3686762B2 (en) Water generation reactor
US20020122758A1 (en) Apparatus and reactor for generating and feeding high purity moisture
JP3686761B2 (en) Water generation reactor
JPH11171503A (en) Method for supplying water at low flow rate
JP3393031B2 (en) Reactor for moisture generation
JP3679636B2 (en) Water generation reactor
JP4119218B2 (en) Method for forming platinum-coated catalyst layer in water generation reactor
Arana et al. Combustion-assisted hydrogen production in a high-temperature chemical reactor/heat exchanger for portable fuel cell applications
JPH07126002A (en) Fuel-reforming device
TW440542B (en) Reactor for generation of moisture
US20020136676A1 (en) Reactor for generating moisture
JPS62112909A (en) Catalyst combustion device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20040524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees