WO2023176197A1 - Organic hydride manufacturing device - Google Patents

Organic hydride manufacturing device Download PDF

Info

Publication number
WO2023176197A1
WO2023176197A1 PCT/JP2023/004019 JP2023004019W WO2023176197A1 WO 2023176197 A1 WO2023176197 A1 WO 2023176197A1 JP 2023004019 W JP2023004019 W JP 2023004019W WO 2023176197 A1 WO2023176197 A1 WO 2023176197A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
organic hydride
channel
catholyte
anode
Prior art date
Application number
PCT/JP2023/004019
Other languages
French (fr)
Japanese (ja)
Inventor
和弘 山田
Original Assignee
Eneos株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eneos株式会社 filed Critical Eneos株式会社
Publication of WO2023176197A1 publication Critical patent/WO2023176197A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/03Acyclic or carbocyclic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/63Holders for electrodes; Positioning of the electrodes

Definitions

  • the present invention relates to an organic hydride manufacturing apparatus.
  • organic hydride manufacturing equipment has an anode that generates protons from water, a cathode that hydrogenates an organic compound (hydride) having an unsaturated bond, and a diaphragm that separates the anode and cathode.
  • anode that generates protons from water
  • a cathode that hydrogenates an organic compound (hydride) having an unsaturated bond
  • a diaphragm that separates the anode and cathode.
  • the present invention has been made in view of these circumstances, and one of its objectives is to provide a technique for improving the stability of electrolytic performance of an organic hydride production apparatus.
  • a certain embodiment of the present invention is an organic hydride production apparatus.
  • an anode electrode that oxidizes water in the anolyte to generate protons and a cathode electrode that hydrogenates the hydride in the catholyte with protons to generate an organic hydride are connected from the anode side.
  • the stability of electrolytic performance of an organic hydride production apparatus can be improved.
  • FIG. 1 is a schematic diagram of an organic hydride production system according to an embodiment.
  • FIG. 1 is a cross-sectional view of an organic hydride manufacturing apparatus.
  • 3 is a sectional view taken along line AA in FIG. 2.
  • FIG. 2 is a schematic diagram of a membrane electrode assembly and a cathode flow path viewed from the stacking direction of electrodes and diaphragms.
  • FIG. 2 is a diagram showing the relationship between current density and toluene concentration at 95% Faraday efficiency in each organic hydride production apparatus of Example 1 and Comparative Example 1.
  • FIG. 1 is a schematic diagram of an organic hydride production system 1 according to an embodiment.
  • An example organic hydride production system 1 includes an organic hydride production device 2, an anolyte supply device 4, and a catholyte supply device 6.
  • the organic hydride production apparatus 2 is an electrolytic cell that hydrogenates a hydrogenated substance, which is a dehydrogenated product of an organic hydride, by an electrochemical reduction reaction to produce an organic hydride.
  • the organic hydride production apparatus 2 includes a membrane electrode assembly 8.
  • the membrane electrode assembly 8 has a structure in which an anode electrode 10 and a cathode electrode 12 are stacked with a diaphragm 14 in between. Although only one organic hydride manufacturing apparatus 2 is illustrated in FIG. 1, the organic hydride manufacturing system 1 may include a plurality of organic hydride manufacturing apparatuses 2.
  • each organic hydride production device 2 is stacked with the directions aligned so that, for example, the anode electrode 10 and the cathode electrode 12 are arranged in the same manner. Thereby, each organic hydride manufacturing apparatus 2 is electrically connected in series. Note that the organic hydride manufacturing apparatuses 2 may be connected in parallel, or may be connected in series and connected in parallel.
  • the anode electrode 10 (anode) oxidizes water in the anolyte LA to generate protons.
  • the anode electrode 10 includes a metal such as iridium (Ir), ruthenium (Ru), platinum (Pt), or an oxide of these metals as an anode catalyst.
  • the anode catalyst may be dispersed and supported on or coated on a substrate having electron conductivity.
  • the base material is made of a material whose main component is a metal such as titanium (Ti) or stainless steel (SUS). Examples of the form of the base material include woven or nonwoven fabric sheets, meshes, porous sintered bodies, foams, expanded metals, and the like.
  • the cathode electrode 12 hydrogenates the hydride in the catholyte LC with protons to generate an organic hydride.
  • the cathode electrode 12 contains, for example, platinum or ruthenium as a cathode catalyst for hydrogenating a substance to be hydrogenated.
  • the cathode electrode 12 includes a porous catalyst carrier supporting a cathode catalyst.
  • the catalyst carrier is made of an electronically conductive material such as porous carbon, porous metal, porous metal oxide, or the like.
  • the cathode catalyst is coated with an ionomer (cation exchange type ionomer).
  • a catalyst carrier carrying a cathode catalyst is coated with an ionomer.
  • the ionomer examples include perfluorosulfonic acid polymers such as Nafion (registered trademark) and Flemion (registered trademark).
  • the ionomer partially covers the cathode catalyst. Thereby, the three elements (hydride, protons, and electrons) required for the electrochemical reaction at the cathode electrode 12 can be efficiently supplied to the reaction field.
  • the diaphragm 14 is sandwiched between the anode electrode 10 and the cathode electrode 12.
  • the diaphragm 14 of this embodiment is composed of a solid polymer electrolyte membrane having proton conductivity, and moves protons from the anode electrode 10 side to the cathode electrode 12 side.
  • the solid polymer electrolyte membrane is not particularly limited as long as it is a material that conducts protons, and examples thereof include fluorine-based ion exchange membranes having sulfonic acid groups.
  • the anode electrode 10 is supplied with the anolyte LA by the anolyte supply device 4.
  • the anolyte LA contains water to be supplied to the anode electrode 10.
  • Examples of the anode solution LA include sulfuric acid aqueous solution, nitric acid aqueous solution, hydrochloric acid aqueous solution, pure water, ion exchange water, and the like.
  • a catholyte LC is supplied to the cathode electrode 12 by a catholyte supply device 6 .
  • the catholyte LC contains an organic hydride raw material (hydrogenated product) to be supplied to the cathode electrode 12 .
  • the catholyte LC does not contain any organic hydride before the operation of the organic hydride production system 1 starts, and when the organic hydride generated by electrolysis is mixed in after the start of operation, the catholyte LC becomes a mixed liquid of the hydride and the organic hydride.
  • the hydride and organic hydride are preferably liquid at 20°C and 1 atmosphere.
  • the hydrogenated product and the organic hydride are not particularly limited as long as they are organic compounds that can add/desorb hydrogen by reversibly causing a hydrogenation/dehydrogenation reaction.
  • hydride and organic hydride used in this embodiment acetone-isopropanol-based, benzoquinone-hydroquinone-based, aromatic hydrocarbon-based, etc. can be widely used. Among these, aromatic hydrocarbons are preferred from the viewpoint of transportability during energy transport.
  • the aromatic hydrocarbon compound used as the hydrogenated product is a compound containing at least one aromatic ring.
  • aromatic hydrocarbon compounds include benzene, alkylbenzene, naphthalene, alkylnaphthalene, anthracene, diphenylethane, and the like.
  • Alkylbenzenes include compounds in which 1 to 4 hydrogen atoms in an aromatic ring are substituted with a straight chain alkyl group or a branched alkyl group having 1 to 6 carbon atoms. Examples of such compounds include toluene, xylene, mesitylene, ethylbenzene, diethylbenzene, and the like.
  • Alkylnaphthalenes include compounds in which 1 to 4 hydrogen atoms in an aromatic ring are substituted with a straight chain alkyl group or a branched alkyl group having 1 to 6 carbon atoms. Examples of such compounds include methylnaphthalene. These may be used alone or in combination.
  • the hydrogenated product is preferably at least one of toluene and benzene.
  • nitrogen-containing heteroaromatic compounds such as pyridine, pyrimidine, pyrazine, quinoline, isoquinoline, N-alkylpyrrole, N-alkylindole, and N-alkyldibenzopyrrole can also be used as the hydrogenated product.
  • the organic hydride is obtained by hydrogenating the above-mentioned hydride, and examples thereof include cyclohexane, methylcyclohexane, dimethylcyclohexane, piperidine, and the like.
  • the electrode reaction at the anode electrode 10 and the electrode reaction at the cathode electrode 12 proceed in parallel.
  • Protons generated by electrolysis of water at the anode electrode 10 are supplied to the cathode electrode 12 via the diaphragm 14 .
  • electrons generated by water electrolysis are supplied to the cathode electrode 12 via an external circuit.
  • the protons and electrons supplied to the cathode electrode 12 are used for hydrogenation of toluene at the cathode electrode 12. This produces methylcyclohexane.
  • the electrolysis of water and the hydrogenation reaction of the hydride can be performed in one step.
  • the production efficiency of organic hydride is more efficient than the conventional technology, which produces organic hydride through a two-step process of producing hydrogen through water electrolysis, etc., and chemically hydrogenating the substance to be hydrogenated in a reactor such as a plant. can be increased.
  • a reactor for chemical hydrogenation a high-pressure container for storing hydrogen produced by water electrolysis, etc. are not required, equipment costs can be significantly reduced.
  • the following hydrogen gas generation reaction may occur as a side reaction.
  • the amount of hydride supplied to the cathode electrode 12 becomes insufficient, this side reaction becomes more likely to occur.
  • Power is supplied to the organic hydride production apparatus 2 from an external power source (not shown).
  • an external power source (not shown).
  • a predetermined electrolytic current is applied between the anode electrode 10 and the cathode electrode 12 of the organic hydride manufacturing apparatus 2, and the electrolytic current flows.
  • the power source sends power supplied from the power supply device to the organic hydride manufacturing device 2 .
  • the power supply device can be configured with a power generation device that generates power using renewable energy, such as a wind power generation device or a solar power generation device.
  • the power supply device is not limited to a power generation device that uses renewable energy, and may be a grid power source, a renewable energy power generation device, a power storage device that stores power from a grid power source, etc. good. Moreover, a combination of two or more of these may be used.
  • the anolyte supply device 4 includes an anolyte tank 16, a first anode pipe 18, a second anode pipe 20, and an anode pump 22.
  • the anode solution LA is stored in the anode solution tank 16 .
  • the anolyte tank 16 is connected to the anode electrode 10 by a first anode pipe 18 .
  • An anode pump 22 is provided in the middle of the first anode pipe 18 .
  • the anode pump 22 can be configured with a known pump such as a gear pump or a cylinder pump. Note that the anolyte supply device 4 may circulate the anolyte LA using a liquid feeding device other than a pump.
  • the anolyte tank 16 is also connected to the anode electrode 10 by a second anode pipe 20 .
  • the anode solution LA in the anode solution tank 16 flows into the anode electrode 10 via the first anode pipe 18 by driving the anode pump 22 .
  • the anolyte LA that has flowed into the anode electrode 10 is subjected to an electrode reaction at the anode electrode 10 .
  • the anolyte LA in the anode electrode 10 is returned to the anolyte tank 16 via the second anode pipe 20.
  • the anode liquid tank 16 also functions as a gas-liquid separation section. Oxygen gas is generated at the anode electrode 10 by an electrode reaction. Therefore, the anolyte LA discharged from the anode electrode 10 contains oxygen gas.
  • the anolyte tank 16 separates the oxygen gas in the anode solution LA from the anode solution LA and discharges it to the outside of the system.
  • the anolyte supply device 4 of this embodiment circulates the anolyte LA between the anode electrode 10 and the anolyte tank 16.
  • the configuration is not limited to this, and a configuration may be adopted in which the anolyte LA is sent out of the system from the anode electrode 10 without returning to the anolyte tank 16.
  • the catholyte supply device 6 includes a catholyte tank 24, a first cathode pipe 26, a second cathode pipe 28, a third cathode pipe 30, a cathode pump 32, and a separation section 34.
  • the catholyte tank 24 stores catholyte LC.
  • the catholyte tank 24 is connected to the cathode electrode 12 by a first cathode pipe 26 .
  • a cathode pump 32 is provided in the middle of the first cathode pipe 26 .
  • the cathode pump 32 can be configured with a known pump such as a gear pump or a cylinder pump. Note that the catholyte supply device 6 may circulate the catholyte LC using a liquid sending device other than a pump.
  • the separation section 34 is connected to the cathode electrode 12 by a second cathode pipe 28.
  • the separation section 34 includes a known gas-liquid separator and a known oil-water separator. Further, the separation section 34 is connected to the catholyte tank 24 by a third cathode pipe 30.
  • the catholyte LC in the catholyte tank 24 flows into the cathode electrode 12 via the first cathode pipe 26 by driving the cathode pump 32 .
  • the catholyte LC that has flowed into the cathode electrode 12 is subjected to an electrode reaction at the cathode electrode 12 .
  • the catholyte LC in the cathode electrode 12 flows into the separation section 34 via the second cathode pipe 28 .
  • hydrogen gas may be generated due to side reactions. Therefore, the catholyte LC discharged from the cathode electrode 12 may contain hydrogen gas.
  • the separation unit 34 separates the hydrogen gas in the catholyte LC from the catholyte LC and discharges it out of the system. Furthermore, water moves from the anode electrode 10 to the cathode electrode 12 together with protons. Therefore, the catholyte LC discharged from the cathode electrode 12 may contain water.
  • the separation unit 34 separates water in the catholyte LC from the catholyte LC and discharges the water to the outside of the system.
  • the catholyte LC from which hydrogen gas and water have been separated is returned to the catholyte tank 24 via the third cathode pipe 30 .
  • the catholyte supply device 6 of this embodiment circulates the catholyte LC between the cathode electrode 12 and the catholyte tank 24.
  • the configuration is not limited to this, and a configuration may be adopted in which the catholyte LC is sent out of the system from the cathode electrode 12 without returning to the catholyte tank 24.
  • FIG. 2 is a sectional view of the organic hydride manufacturing apparatus 2.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG.
  • FIG. 4 is a schematic diagram of the membrane electrode assembly 8 and the cathode channel 38 as seen from the stacking direction of the electrodes and the diaphragm.
  • the organic hydride manufacturing apparatus 2 of this embodiment includes, in addition to the membrane electrode assembly 8, an anode channel 36 (anode channel forming structure), a cathode channel 38 (cathode channel forming structure), and a support member 40. , a pair of plate members 42a and 42b, and a gasket 44.
  • the plate member 42a and the plate member 42b are made of metal such as stainless steel or titanium.
  • the plate member 42a is stacked on the membrane electrode assembly 8 from the anode electrode 10 side.
  • the plate member 42b is laminated on the membrane electrode assembly 8 from the cathode electrode 12 side. Therefore, the membrane electrode assembly 8 is sandwiched between the pair of plate members 42a and 42b. A gap between the pair of plate members 42a and 42b is sealed with a gasket 44.
  • the pair of plate members 42a and 42b may correspond to so-called end plates.
  • the plate member may correspond to a so-called separator.
  • the cathode electrode 12 has a catalyst layer 12a and a diffusion layer 12b.
  • the catalyst layer 12a is arranged closer to the diaphragm 14 than the diffusion layer 12b.
  • the catalyst layer 12a is in contact with the main surface of the diaphragm 14.
  • the catalyst layer 12a contains the above-mentioned cathode catalyst, catalyst carrier, and ionomer.
  • the diffusion layer 12b is in contact with the main surface of the catalyst layer 12a on the side opposite to the diaphragm 14.
  • the diffusion layer 12b uniformly diffuses the catholyte LC supplied from the outside into the catalyst layer 12a. Further, the organic hydride generated in the catalyst layer 12a is discharged to the outside of the cathode electrode 12 via the diffusion layer 12b.
  • the diffusion layer 12b is made of a conductive material such as carbon or metal. Further, the diffusion layer 12b is a porous body such as a sintered body of fibers or particles, or a foam molded body. Examples of the material constituting the diffusion layer 12b include carbon woven cloth (carbon cloth), carbon nonwoven cloth, carbon paper, and the like. Note that the diffusion layer 12b may be omitted in some cases.
  • An anode channel 36 is connected to the anode electrode 10.
  • the anode flow path 36 supplies and discharges the anode liquid LA to and from the anode electrode 10 .
  • the plate member 42a of this embodiment is provided with a groove on its main surface facing the anode electrode 10 side. This groove constitutes an anode flow path 36.
  • the anode channel 36 covers the entire surface of the anode electrode 10, for example.
  • the first anode pipe 18 and the second anode pipe 20 are connected to the anode flow path 36 .
  • the first anode pipe 18 is connected to the lower end of the anode flow path 36
  • the second anode pipe 20 is connected to the upper end of the anode flow path 36.
  • connection positions of the first anode pipe 18 and the second anode pipe 20 with respect to the anode flow path 36 can be changed as appropriate.
  • the groove provided in the plate member 42a as the anode flow path 36 it is possible to suppress an increase in the number of parts and complication of the assembly process due to the provision of the anode flow path 36.
  • a cathode channel 38 is connected to the cathode electrode 12.
  • the cathode channel 38 supplies and discharges the catholyte LC to and from the cathode electrode 12 .
  • the plate member 42b of this embodiment is provided with a groove on its main surface facing the cathode electrode 12 side. This groove constitutes a cathode flow path 38.
  • the first cathode pipe 26 and the second cathode pipe 28 are connected to the cathode flow path 38 .
  • the cathode channel 38 of this embodiment includes a supply channel 38a (supply channel forming structure) that supplies catholyte LC to the cathode electrode 12, and a recovery channel 38b (recovery channel 38b) that recovers catholyte LC from the cathode electrode 12. flow path forming structure).
  • the supply channel 38a and the recovery channel 38b each extend in the vertical direction. Note that "extending in the vertical direction" means that one end of the substantially linear channel is located above the other end. Therefore, each channel may extend obliquely to the horizontal plane.
  • the supply channel 38a is arranged near one end of the plate member 42b in the horizontal direction
  • the recovery channel 38b is arranged near the other end of the plate member 42b in the horizontal direction.
  • the first cathode pipe 26 is connected to the lower end of the supply channel 38a
  • the second cathode pipe 28 is connected to the upper end of the recovery channel 38b.
  • the catholyte LC that has flowed into the supply channel 38 a from the first cathode pipe 26 flows from the bottom to the top in the supply channel 38 a and is sent to the cathode electrode 12 .
  • the catholyte LC that has flowed into the cathode electrode 12 moves within the cathode electrode 12 toward the recovery channel 38b.
  • the catholyte LC that has reached the recovery channel 38b flows from the cathode electrode 12 into the recovery channel 38b. Then, the catholyte LC flows from the bottom to the top in the recovery channel 38b and is discharged into the second cathode pipe 28.
  • connection positions of the first cathode pipe 26 and the second cathode pipe 28 with respect to the cathode flow path 38 can be changed as appropriate.
  • each pipe may be connected to the side surface of the cathode channel 38 instead of the bottom and top surface.
  • the number and arrangement of the supply channel 38a and the recovery channel 38b can also be changed as appropriate.
  • the supply channel 38a and the recovery channel 38b are arranged so as to overlap the membrane electrode assembly 8 when viewed from the stacking direction of the cathode electrode 12, the diaphragm 14, and the anode electrode 10.
  • high pressure is applied to the membrane electrode assembly to bring the layers into close contact with each other. Thereby, the production efficiency of organic hydride can be improved.
  • the pressure applied to the membrane electrode assembly is greater than the pressure applied to a typical fuel cell. Therefore, if the membrane electrode assembly 8 and the cathode channel 38 overlap, the membrane electrode assembly 8 can fit into the cathode channel 38 .
  • the membrane electrode assembly 8 fits into the cathode channel 38, the pressure loss occurring in the catholyte LC flowing through the cathode channel 38 may increase. Furthermore, the cathode flow path 38 is blocked and the supply of the hydride to the cathode electrode 12 is delayed, and the reaction for producing organic hydride in at least a portion of the cathode electrode 12 may be stopped. Furthermore, hydrogen is generated due to side reactions, which may reduce faradaic efficiency during the production of organic hydride.
  • the organic hydride production apparatus 2 of the present embodiment includes a support member 40 that supports the membrane electrode assembly 8 so as to suppress the membrane electrode assembly 8 from fitting into the cathode channel 38.
  • a support member 40 that supports the membrane electrode assembly 8 so as to suppress the membrane electrode assembly 8 from fitting into the cathode channel 38.
  • the recovery channel 38b is located on the downstream side of the flow of the catholyte LC than the supply channel 38a, and tends to have a lower internal pressure than the supply channel 38a. Therefore, the membrane electrode assembly 8 can fit into the recovery channel 38b more easily than the supply channel 38a. Therefore, it is preferable that the support member 40 is disposed at least in the recovery channel 38b. In this embodiment, support members 40 are arranged in both the supply channel 38a and the recovery channel 38b. When the driving of the cathode pump 32 is stopped and the supply of the catholyte liquid LC to the cathode electrode 12 is stopped, the internal pressure of the supply channel 38a may also decrease. Therefore, by arranging the support member 40 in both the supply channel 38a and the recovery channel 38b, the stability of the electrolytic performance of the organic hydride production apparatus 2 can be further improved.
  • the support member 40 as an example is an elongated body that extends within the cathode flow path 38 and along the cathode flow path 38 . That is, the support member 40 provided in the supply flow path 38a extends along the supply flow path 38a, and the support member 40 provided in the recovery flow path 38b extends along the recovery flow path 38b. Further, the support member 40 has a convex curved portion on the membrane electrode assembly 8 side. With these, it is possible to easily prevent the membrane electrode assembly 8 from fitting into the cathode channel 38.
  • the support member 40 of this embodiment is composed of a coil.
  • the coil is made of metal such as titanium or stainless steel.
  • the coil extends spirally from one end to the other end inside each of the supply channel 38a and the recovery channel 38b, that is, inside the grooves forming each channel.
  • support member 40 of the embodiment is composed of a coil, it is not particularly limited to this configuration.
  • support member 40 may be comprised of a stent.
  • a stent is a mesh tube. Therefore, the stent has a convex curved portion on the membrane electrode assembly 8 side.
  • the stent also extends along cathode channel 38.
  • the material of the stent is the same as that of the coil.
  • the support member 40 may be made of a porous member having liquid permeability, such as porous ceramics.
  • the porous member may have a convex curved portion on the membrane electrode assembly 8 side, or may be a long body extending along the cathode channel 38.
  • a stent or a porous member in the cathode channel 38, as in the case of a coil, it is possible to suppress the insertion of the membrane electrode assembly 8 while maintaining the flow of the catholyte LC in the cathode channel 38. I can do it.
  • the support member 40 may be provided intermittently in the extending direction of the supply channel 38a and the recovery channel 38b.
  • the support member 40 may be interposed between the cathode channel 38 and the membrane electrode assembly 8 and may be composed of a plate material having a plurality of through holes. Examples of such a plate material include a punched plate and a mesh plate. As an example, the plate material is laminated between the plate member 42b and the diffusion layer 12b. Also in this embodiment, it is possible to prevent the membrane electrode assembly 8 from getting stuck while maintaining the flow of the catholyte LC between the cathode channel 38 and the cathode electrode 12.
  • Embodiments may be specified by the items described below.
  • LA anolyte
  • LC catholyte
  • a cathode channel (seeing from the lamination direction of the cathode electrode (12), diaphragm (14), and anode electrode (10) that overlaps the membrane electrode assembly (8) and supplies and discharges catholyte liquid (LC) to and from the cathode electrode (12) 38) and a support member (40) that supports the membrane electrode assembly (8) so as to suppress the membrane electrode assembly (8) from fitting into the cathode channel (38);
  • Organic hydride production equipment (2) Organic hydride production equipment
  • the cathode channel (38) is composed of a groove provided on the surface of the plate member (42b).
  • the organic hydride production apparatus (2) according to the first item.
  • the cathode channel (38) includes a supply channel (38a) that supplies catholyte (LC) to the cathode electrode (12), and a recovery channel (38b) that collects catholyte (LC) from the cathode electrode (12). and,
  • the support member (40) is arranged at least in the recovery channel (38b).
  • the organic hydride production apparatus (2) according to the first item or the second item.
  • the support member (40) is arranged in both the supply channel (38a) and the recovery channel (38b), The organic hydride production apparatus (2) according to the third item.
  • the support member (40) is an elongated body that extends within the cathode flow path (38) and along the cathode flow path (38).
  • the organic hydride production apparatus (2) according to any one of the first to fourth items.
  • the support member (40) has a convex curved portion on the membrane electrode assembly (8) side.
  • the support member (40) is comprised of a coil or a stent.
  • the support member (40) is composed of a porous member disposed within the cathode channel (38).
  • the organic hydride manufacturing apparatus (2) according to any one of the first to sixth items.
  • the support member (40) is interposed between the cathode channel (38) and the membrane electrode assembly (8) and is composed of a plate material having a plurality of through holes.
  • the organic hydride production apparatus (2) according to any one of the first to fourth items.
  • Example 1 An organic hydride production apparatus was prepared in which a support member composed of a coil was placed in a cathode channel (both a supply channel and a recovery channel). A catholyte solution having a 100% toluene concentration was circulated through the cathode electrode of this organic hydride production apparatus. Further, an aqueous sulfuric acid solution was circulated as an anode solution through the anode electrode. Then, an electrolytic reaction was carried out at a current density of 0.6 A/cm 2 . The electrolytic reaction was carried out until the faradaic efficiency calculated from the amount of by-product hydrogen produced reached 95%. When hydrogen was produced in an amount corresponding to 95% Faraday efficiency, the catholyte was collected at the inlet of the cathode flow path, and the toluene concentration of the catholyte was measured using a gas chromatograph.
  • Electrolytic reactions were carried out in the same manner when the current density was 0.4 A/cm 2 and 0.2 A/cm 2 , and the toluene concentration of the catholyte when the Faraday efficiency was 95% was measured. The results are shown in Figure 5. These toluene concentrations correspond to the electrolytic performance at the initial stage of use of the organic hydride production apparatus. The lower the toluene concentration, the higher the electrolytic performance.
  • a catholyte having a toluene concentration of 18% was supplied to the organic hydride production apparatus of Example 1, and DSS (Daily Start and Stop) operation was performed for 4 weeks at a current density of 0.6 A/cm 2 .
  • DSS Dynamic Start and Stop
  • 6 hours of operation and 18 hours of stopping were repeated alternately.
  • the toluene concentration was maintained at 18% by replenishing the catholyte with toluene and discharging the catholyte.
  • Example 1 An organic hydride production apparatus having the same configuration as in Example 1 was prepared, except that it did not include a support member. Then, an electrolytic reaction was carried out under the same conditions as in Example 1, and the toluene concentration of the catholyte was measured when the Faraday efficiency was 95% at the beginning of use of the organic hydride production apparatus. The results are shown in Figure 5. Further, DSS operation was carried out under the same conditions as in Example 1, except that the period was 3 weeks. After completion of the DSS operation, an electrolytic reaction was carried out at a current density of 0.6 A/cm 2 , and the toluene concentration of the catholyte at a Faraday efficiency of 95% was measured. The results are shown in Figure 5.
  • FIG. 5 is a diagram showing the relationship between current density and toluene concentration when Faraday efficiency (F efficiency) is 95% in each of the organic hydride production apparatuses of Example 1 and Comparative Example 1.
  • F efficiency Faraday efficiency
  • FIG. 5 there was almost no difference in initial electrolytic performance between Example 1 and Comparative Example 1.
  • the toluene concentration at a current density of 0.6 A/cm 2 was 12.2% in Example 1 and 13.6% in Comparative Example 1.
  • the toluene concentration in Comparative Example 1 was 49.5%, and the toluene concentration in Example 1 was 12.5%.
  • Example 1 although the DSS operation was one week longer than in Comparative Example 1, the initial electrolysis performance was substantially maintained. From the above results, it was confirmed that the stability of the electrolytic performance of the organic hydride production apparatus can be improved by suppressing the insertion of the membrane electrode assembly into the cathode channel using the support member.
  • the present invention can be utilized in an organic hydride manufacturing device.

Abstract

This organic hydride manufacturing device 2 comprises: a membrane electrode assembly 8 in which an anode electrode 10 and a cathode electrode 12 are stacked so as to sandwich a membrane 14; a cathode channel 38 that overlaps the membrane electrode assembly 8 when viewed from the direction in which the cathode electrode 12, the membrane 14, and the anode electrode 10 are stacked, the cathode channel 38 feeding/discharging a cathode liquid to/from the cathode electrode 12; and a support member 40 for supporting the membrane electrode assembly 8 so as to inhibit the membrane electrode assembly 8 from fitting into the cathode channel 38.

Description

有機ハイドライド製造装置Organic hydride production equipment
 本発明は、有機ハイドライド製造装置に関する。 The present invention relates to an organic hydride manufacturing apparatus.
 近年、エネルギーの生成過程での二酸化炭素排出量を抑制するために、太陽光、風力、水力、地熱発電等で得られる再生可能エネルギーの利用が期待されている。一例としては、再生可能エネルギー由来の電力で水電解を行って、水素を生成するシステムが考案されている。また、再生可能エネルギー由来の水素を大規模輸送、貯蔵するためのエネルギーキャリアとして、有機ハイドライドシステムが注目されている。 In recent years, in order to suppress carbon dioxide emissions during the energy generation process, there are expectations for the use of renewable energy obtained from solar power, wind power, hydropower, geothermal power generation, etc. As an example, a system has been devised that generates hydrogen by electrolyzing water using electricity derived from renewable energy. In addition, organic hydride systems are attracting attention as energy carriers for large-scale transportation and storage of hydrogen derived from renewable energy.
 有機ハイドライドの製造技術に関して、従来、水からプロトンを生成するアノードと、不飽和結合を有する有機化合物(被水素化物)を水素化するカソードと、アノードおよびカソードを隔てる隔膜とを有する有機ハイドライド製造装置が知られている(例えば、特許文献1参照)。この有機ハイドライド製造装置では、アノードに水を供給し、カソードに被水素化物を供給しながらアノードとカソードとの間に電流を流すことで、被水素化物に水素が付加されて有機ハイドライドが得られる。 Regarding organic hydride manufacturing technology, conventional organic hydride manufacturing equipment has an anode that generates protons from water, a cathode that hydrogenates an organic compound (hydride) having an unsaturated bond, and a diaphragm that separates the anode and cathode. is known (for example, see Patent Document 1). In this organic hydride production device, by supplying water to the anode and supplying a hydride to the cathode while passing an electric current between the anode and the cathode, hydrogen is added to the hydride and an organic hydride is obtained. .
国際公開第2012/091128号International Publication No. 2012/091128
 本発明者らは、有機ハイドライドの製造技術について鋭意検討を重ねた結果、従来の技術には、有機ハイドライド製造装置の電解性能の安定性を向上させる余地があることを認識するに至った。 As a result of intensive studies on organic hydride manufacturing technology, the present inventors have come to recognize that there is room for improving the stability of electrolytic performance of organic hydride manufacturing equipment in the conventional technology.
 本発明はこうした状況に鑑みてなされたものであり、その目的の1つは、有機ハイドライド製造装置の電解性能の安定性を向上させる技術を提供することにある。 The present invention has been made in view of these circumstances, and one of its objectives is to provide a technique for improving the stability of electrolytic performance of an organic hydride production apparatus.
 本発明のある態様は、有機ハイドライド製造装置である。この有機ハイドライド製造装置は、アノード液中の水を酸化してプロトンを生成するアノード電極、およびカソード液中の被水素化物をプロトンで水素化して有機ハイドライドを生成するカソード電極が、アノード電極側からカソード電極側にプロトンを移動させる隔膜を挟んで積層された膜電極接合体と、カソード電極、隔膜およびアノード電極の積層方向から見て膜電極接合体と重なりカソード液をカソード電極に給排するカソード流路と、カソード流路内への膜電極接合体の嵌入を抑制するように膜電極接合体を支持する支持部材と、を備える。 A certain embodiment of the present invention is an organic hydride production apparatus. In this organic hydride production device, an anode electrode that oxidizes water in the anolyte to generate protons, and a cathode electrode that hydrogenates the hydride in the catholyte with protons to generate an organic hydride are connected from the anode side. A membrane electrode assembly stacked with a diaphragm in between that transfers protons to the cathode electrode side, and a cathode that overlaps the membrane electrode assembly when viewed from the stacking direction of the cathode electrode, diaphragm, and anode electrode and supplies and discharges catholyte to the cathode electrode. It includes a flow path and a support member that supports the membrane electrode assembly so as to suppress the membrane electrode assembly from fitting into the cathode flow path.
 以上の構成要素の任意の組合せ、本開示の表現を方法、装置、システムなどの間で変換したものもまた、本開示の態様として有効である。 Arbitrary combinations of the above components and expressions of the present disclosure converted between methods, devices, systems, etc. are also effective as aspects of the present disclosure.
 本発明によれば、有機ハイドライド製造装置の電解性能の安定性を向上させることができる。 According to the present invention, the stability of electrolytic performance of an organic hydride production apparatus can be improved.
実施の形態に係る有機ハイドライド製造システムの模式図である。1 is a schematic diagram of an organic hydride production system according to an embodiment. 有機ハイドライド製造装置の断面図である。FIG. 1 is a cross-sectional view of an organic hydride manufacturing apparatus. 図2のA-A線に沿った断面図である。3 is a sectional view taken along line AA in FIG. 2. FIG. 電極および隔膜の積層方向から見た膜電極接合体およびカソード流路の模式図である。FIG. 2 is a schematic diagram of a membrane electrode assembly and a cathode flow path viewed from the stacking direction of electrodes and diaphragms. 実施例1および比較例1の各有機ハイドライド製造装置における、電流密度とファラデー効率95%時のトルエン濃度との関係を示す図である。FIG. 2 is a diagram showing the relationship between current density and toluene concentration at 95% Faraday efficiency in each organic hydride production apparatus of Example 1 and Comparative Example 1.
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。実施の形態は、本発明の技術的範囲を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。したがって、実施の形態の内容は、請求の範囲に規定された発明の思想を逸脱しない範囲において、構成要素の変更、追加、削除等の多くの設計変更が可能である。設計変更が加えられた新たな実施の形態は、組み合わされる実施の形態および変形それぞれの効果をあわせもつ。実施の形態では、このような設計変更が可能な内容に関して、「本実施の形態の」、「本実施の形態では」等の表記を付して強調しているが、そのような表記のない内容でも設計変更が許容される。実施の形態に記述される構成要素の任意の組み合わせも、本発明の態様として有効である。各図面に示される同一又は同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図に示す各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。また、本明細書または請求項中に「第1」、「第2」等の用語が用いられる場合には、この用語はいかなる順序や重要度を表すものでもなく、ある構成と他の構成とを区別するためのものである。また、各図面において実施の形態を説明する上で重要ではない部材の一部は省略して表示する。 Hereinafter, the present invention will be explained based on preferred embodiments with reference to the drawings. The embodiments are illustrative rather than limiting the technical scope of the present invention, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention. . Therefore, the content of the embodiments may be subject to many design changes, such as changes, additions, and deletions of constituent elements, without departing from the spirit of the invention defined in the claims. A new embodiment with a design change has the effects of each of the combined embodiments and modifications. In the embodiments, contents that allow such design changes are emphasized by adding expressions such as "in this embodiment" or "in this embodiment," but Design changes are also allowed in the content. Any combination of the components described in the embodiments is also effective as an aspect of the present invention. Identical or equivalent components, members, and processes shown in each drawing are designated by the same reference numerals, and redundant explanations will be omitted as appropriate. Further, the scale and shape of each part shown in each figure are set for convenience to facilitate explanation, and should not be interpreted in a limited manner unless otherwise mentioned. Furthermore, when terms such as "first" and "second" are used in this specification or the claims, these terms do not indicate any order or importance, and the terms do not indicate any order or degree of importance; This is to distinguish between the two. Further, in each drawing, some members that are not important for explaining the embodiments are omitted.
 図1は、実施の形態に係る有機ハイドライド製造システム1の模式図である。一例としての有機ハイドライド製造システム1は、有機ハイドライド製造装置2と、アノード液供給装置4と、カソード液供給装置6とを備える。 FIG. 1 is a schematic diagram of an organic hydride production system 1 according to an embodiment. An example organic hydride production system 1 includes an organic hydride production device 2, an anolyte supply device 4, and a catholyte supply device 6.
 有機ハイドライド製造装置2は、有機ハイドライドの脱水素化体である被水素化物を電気化学還元反応により水素化して、有機ハイドライドを生成する電解槽である。有機ハイドライド製造装置2は、膜電極接合体8を備える。膜電極接合体8は、アノード電極10およびカソード電極12が隔膜14を挟んで積層された構造を有する。図1には1つの有機ハイドライド製造装置2のみが図示されているが、有機ハイドライド製造システム1は、複数の有機ハイドライド製造装置2を備えてもよい。この場合、各有機ハイドライド製造装置2は、例えばアノード電極10およびカソード電極12の並びが同じになるように向きが揃えられて積層される。これにより、各有機ハイドライド製造装置2は電気的に直列接続される。なお、各有機ハイドライド製造装置2は、並列接続されてもよいし、直列接続と並列接続とが組み合わされてもよい。 The organic hydride production apparatus 2 is an electrolytic cell that hydrogenates a hydrogenated substance, which is a dehydrogenated product of an organic hydride, by an electrochemical reduction reaction to produce an organic hydride. The organic hydride production apparatus 2 includes a membrane electrode assembly 8. The membrane electrode assembly 8 has a structure in which an anode electrode 10 and a cathode electrode 12 are stacked with a diaphragm 14 in between. Although only one organic hydride manufacturing apparatus 2 is illustrated in FIG. 1, the organic hydride manufacturing system 1 may include a plurality of organic hydride manufacturing apparatuses 2. In this case, each organic hydride production device 2 is stacked with the directions aligned so that, for example, the anode electrode 10 and the cathode electrode 12 are arranged in the same manner. Thereby, each organic hydride manufacturing apparatus 2 is electrically connected in series. Note that the organic hydride manufacturing apparatuses 2 may be connected in parallel, or may be connected in series and connected in parallel.
 アノード電極10(陽極)は、アノード液LA中の水を酸化してプロトンを生成する。アノード電極10は、アノード触媒として例えばイリジウム(Ir)やルテニウム(Ru)、白金(Pt)等の金属、またはこれらの金属酸化物を有する。アノード触媒は、電子伝導性を有する基材に分散担持またはコーティングされていてもよい。基材は、例えばチタン(Ti)やステンレス鋼(SUS)などの金属を主成分とする材料で構成される。基材の形態としては、織布や不織布のシート、メッシュ、多孔性の焼結体、発泡成型体(フォーム)、エキスパンドメタル等が例示される。 The anode electrode 10 (anode) oxidizes water in the anolyte LA to generate protons. The anode electrode 10 includes a metal such as iridium (Ir), ruthenium (Ru), platinum (Pt), or an oxide of these metals as an anode catalyst. The anode catalyst may be dispersed and supported on or coated on a substrate having electron conductivity. The base material is made of a material whose main component is a metal such as titanium (Ti) or stainless steel (SUS). Examples of the form of the base material include woven or nonwoven fabric sheets, meshes, porous sintered bodies, foams, expanded metals, and the like.
 カソード電極12(陰極)は、カソード液LC中の被水素化物をプロトンで水素化して有機ハイドライドを生成する。カソード電極12は、被水素化物を水素化するカソード触媒として例えば白金やルテニウム等を含有する。また好ましくは、カソード電極12は、カソード触媒を担持する多孔質の触媒担体を含有する。触媒担体は、例えば多孔性カーボン、多孔性金属、多孔性金属酸化物等の電子伝導性材料で構成される。また、カソード触媒は、アイオノマー(カチオン交換型のアイオノマー)で被覆される。例えば、カソード触媒を担持した状態にある触媒担体がアイオノマーで被覆される。アイオノマーとしては、例えばナフィオン(登録商標)、フレミオン(登録商標)などのパーフルオロスルホン酸ポリマー等が例示される。アイオノマーは、カソード触媒を部分的に被覆していることが好ましい。これにより、カソード電極12における電気化学反応に必要な3要素(被水素化物、プロトン、電子)を効率的に反応場に供給することができる。 The cathode electrode 12 (cathode) hydrogenates the hydride in the catholyte LC with protons to generate an organic hydride. The cathode electrode 12 contains, for example, platinum or ruthenium as a cathode catalyst for hydrogenating a substance to be hydrogenated. Preferably, the cathode electrode 12 includes a porous catalyst carrier supporting a cathode catalyst. The catalyst carrier is made of an electronically conductive material such as porous carbon, porous metal, porous metal oxide, or the like. Further, the cathode catalyst is coated with an ionomer (cation exchange type ionomer). For example, a catalyst carrier carrying a cathode catalyst is coated with an ionomer. Examples of the ionomer include perfluorosulfonic acid polymers such as Nafion (registered trademark) and Flemion (registered trademark). Preferably, the ionomer partially covers the cathode catalyst. Thereby, the three elements (hydride, protons, and electrons) required for the electrochemical reaction at the cathode electrode 12 can be efficiently supplied to the reaction field.
 隔膜14は、アノード電極10およびカソード電極12で挟まれる。本実施の形態の隔膜14は、プロトン伝導性を有する固体高分子形電解質膜で構成され、アノード電極10側からカソード電極12側にプロトンを移動させる。固体高分子形電解質膜は、プロトンが伝導する材料であれば特に限定されないが、例えば、スルホン酸基を有するフッ素系イオン交換膜が挙げられる。 The diaphragm 14 is sandwiched between the anode electrode 10 and the cathode electrode 12. The diaphragm 14 of this embodiment is composed of a solid polymer electrolyte membrane having proton conductivity, and moves protons from the anode electrode 10 side to the cathode electrode 12 side. The solid polymer electrolyte membrane is not particularly limited as long as it is a material that conducts protons, and examples thereof include fluorine-based ion exchange membranes having sulfonic acid groups.
 アノード電極10には、アノード液供給装置4によってアノード液LAが供給される。アノード液LAは、アノード電極10に供給する水を含む。アノード液LAとしては、硫酸水溶液、硝酸水溶液、塩酸水溶液、純水、イオン交換水等が例示される。 The anode electrode 10 is supplied with the anolyte LA by the anolyte supply device 4. The anolyte LA contains water to be supplied to the anode electrode 10. Examples of the anode solution LA include sulfuric acid aqueous solution, nitric acid aqueous solution, hydrochloric acid aqueous solution, pure water, ion exchange water, and the like.
 カソード電極12には、カソード液供給装置6によってカソード液LCが供給される。カソード液LCは、カソード電極12に供給する有機ハイドライド原料(被水素化物)を含む。一例としてカソード液LCは、有機ハイドライド製造システム1の運転開始前は有機ハイドライドを含まず、運転開始後に電解によって生成された有機ハイドライドが混入することで、被水素化物と有機ハイドライドとの混合液となる。被水素化物および有機ハイドライドは、好ましくは20℃、1気圧で液体である。 A catholyte LC is supplied to the cathode electrode 12 by a catholyte supply device 6 . The catholyte LC contains an organic hydride raw material (hydrogenated product) to be supplied to the cathode electrode 12 . As an example, the catholyte LC does not contain any organic hydride before the operation of the organic hydride production system 1 starts, and when the organic hydride generated by electrolysis is mixed in after the start of operation, the catholyte LC becomes a mixed liquid of the hydride and the organic hydride. Become. The hydride and organic hydride are preferably liquid at 20°C and 1 atmosphere.
 被水素化物および有機ハイドライドは、水素化反応/脱水素反応を可逆的に起こすことにより、水素を添加/脱離できる有機化合物であれば特に限定されない。本実施の形態で用いられる被水素化物および有機ハイドライドとしては、アセトン-イソプロパノール系、ベンゾキノン-ヒドロキノン系、芳香族炭化水素系等を広く用いることができる。これらの中で、エネルギー輸送時の運搬性等の観点から、芳香族炭化水素系が好ましい。 The hydrogenated product and the organic hydride are not particularly limited as long as they are organic compounds that can add/desorb hydrogen by reversibly causing a hydrogenation/dehydrogenation reaction. As the hydride and organic hydride used in this embodiment, acetone-isopropanol-based, benzoquinone-hydroquinone-based, aromatic hydrocarbon-based, etc. can be widely used. Among these, aromatic hydrocarbons are preferred from the viewpoint of transportability during energy transport.
 被水素化物として用いられる芳香族炭化水素化合物は、少なくとも1つの芳香環を含む化合物である。芳香族炭化水素化合物の例としては、例えば、ベンゼン、アルキルベンゼン、ナフタレン、アルキルナフタレン、アントラセン、ジフェニルエタン等が挙げられる。アルキルベンゼンには、芳香環の1~4の水素原子が炭素数1~6の直鎖アルキル基または分岐アルキル基で置換された化合物が含まれる。このような化合物としては、例えばトルエン、キシレン、メシチレン、エチルベンゼン、ジエチルベンゼン等が挙げられる。アルキルナフタレンには、芳香環の1~4の水素原子が炭素数1~6の直鎖アルキル基または分岐アルキル基で置換された化合物が含まれる。このような化合物としては、例えばメチルナフタレン等が挙げられる。これらは単独で用いられても、組み合わせて用いられてもよい。 The aromatic hydrocarbon compound used as the hydrogenated product is a compound containing at least one aromatic ring. Examples of aromatic hydrocarbon compounds include benzene, alkylbenzene, naphthalene, alkylnaphthalene, anthracene, diphenylethane, and the like. Alkylbenzenes include compounds in which 1 to 4 hydrogen atoms in an aromatic ring are substituted with a straight chain alkyl group or a branched alkyl group having 1 to 6 carbon atoms. Examples of such compounds include toluene, xylene, mesitylene, ethylbenzene, diethylbenzene, and the like. Alkylnaphthalenes include compounds in which 1 to 4 hydrogen atoms in an aromatic ring are substituted with a straight chain alkyl group or a branched alkyl group having 1 to 6 carbon atoms. Examples of such compounds include methylnaphthalene. These may be used alone or in combination.
 被水素化物は、好ましくはトルエンおよびベンゼンの少なくとも一方である。なお、ピリジン、ピリミジン、ピラジン、キノリン、イソキノリン、N-アルキルピロール、N-アルキルインドール、N-アルキルジベンゾピロール等の含窒素複素環式芳香族化合物も、被水素化物として用いることができる。有機ハイドライドは、上述の被水素化物が水素化されたものであり、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、ピペリジン等が例示される。 The hydrogenated product is preferably at least one of toluene and benzene. Note that nitrogen-containing heteroaromatic compounds such as pyridine, pyrimidine, pyrazine, quinoline, isoquinoline, N-alkylpyrrole, N-alkylindole, and N-alkyldibenzopyrrole can also be used as the hydrogenated product. The organic hydride is obtained by hydrogenating the above-mentioned hydride, and examples thereof include cyclohexane, methylcyclohexane, dimethylcyclohexane, piperidine, and the like.
 有機ハイドライド製造装置2において、被水素化物の一例としてトルエン(TL)を用いた場合に起こる反応は、以下の通りである。被水素化物としてトルエンを用いた場合、得られる有機ハイドライドはメチルシクロヘキサン(MCH)である。
<アノード電極での電極反応>
 3HO→3/2O+6H+6e
<カソード電極での電極反応>
 TL+6H+6e→MCH
The reaction that occurs when toluene (TL) is used as an example of the hydrogenated substance in the organic hydride production apparatus 2 is as follows. When toluene is used as the hydride, the resulting organic hydride is methylcyclohexane (MCH).
<Electrode reaction at the anode electrode>
3H 2 O→3/2O 2 +6H + +6e -
<Electrode reaction at the cathode electrode>
TL+6H + +6e - →MCH
 すなわち、アノード電極10での電極反応と、カソード電極12での電極反応とが並行して進行する。アノード電極10における水の電気分解により生じたプロトンは、隔膜14を介してカソード電極12に供給される。また、水の電気分解により生じた電子は、外部回路を介してカソード電極12に供給される。カソード電極12に供給されたプロトンおよび電子は、カソード電極12においてトルエンの水素化に用いられる。これにより、メチルシクロヘキサンが生成される。 That is, the electrode reaction at the anode electrode 10 and the electrode reaction at the cathode electrode 12 proceed in parallel. Protons generated by electrolysis of water at the anode electrode 10 are supplied to the cathode electrode 12 via the diaphragm 14 . Further, electrons generated by water electrolysis are supplied to the cathode electrode 12 via an external circuit. The protons and electrons supplied to the cathode electrode 12 are used for hydrogenation of toluene at the cathode electrode 12. This produces methylcyclohexane.
 したがって、本実施の形態に係る有機ハイドライド製造システム1によれば、水の電気分解と被水素化物の水素化反応とを1ステップで行うことができる。このため、水電解等で水素を製造するプロセスと、被水素化物をプラント等のリアクタで化学水素化するプロセスとの2段階プロセスで有機ハイドライドを製造する従来技術に比べて、有機ハイドライドの製造効率を高めることができる。また、化学水素化を行うリアクタや、水電解等で製造された水素を貯留するための高圧容器等が不要であるため、大幅な設備コストの低減を図ることができる。 Therefore, according to the organic hydride production system 1 according to the present embodiment, the electrolysis of water and the hydrogenation reaction of the hydride can be performed in one step. For this reason, the production efficiency of organic hydride is more efficient than the conventional technology, which produces organic hydride through a two-step process of producing hydrogen through water electrolysis, etc., and chemically hydrogenating the substance to be hydrogenated in a reactor such as a plant. can be increased. Furthermore, since a reactor for chemical hydrogenation, a high-pressure container for storing hydrogen produced by water electrolysis, etc. are not required, equipment costs can be significantly reduced.
 カソード電極12では、主反応である被水素化物の水素化反応とともに、副反応として以下に示す水素ガスの発生反応が起こる場合がある。カソード電極12への被水素化物の供給量が不足するにつれて、この副反応は生じやすくなる。
<カソード電極で生じ得る副反応>
 2H+2e→H
In the cathode electrode 12, in addition to the main reaction, which is a hydrogenation reaction of the hydride, the following hydrogen gas generation reaction may occur as a side reaction. As the amount of hydride supplied to the cathode electrode 12 becomes insufficient, this side reaction becomes more likely to occur.
<Side reactions that may occur at the cathode electrode>
2H + +2e - →H 2
 また、プロトンは、隔膜14を介してアノード電極10側からカソード電極12側に移動する際、水分子をともなって移動する。したがって、電解還元反応が進むにつれて、カソード電極12側に水が溜まっていく。 Furthermore, when protons move from the anode electrode 10 side to the cathode electrode 12 side via the diaphragm 14, they move with water molecules. Therefore, as the electrolytic reduction reaction progresses, water accumulates on the cathode electrode 12 side.
 有機ハイドライド製造装置2には、外部の電源(図示せず)から電力が供給される。電源から有機ハイドライド製造装置2に電力が供給されると、有機ハイドライド製造装置2のアノード電極10とカソード電極12との間に所定の電解電流が印加され、電解電流が流れる。電源は、電力供給装置から供給される電力を有機ハイドライド製造装置2に送る。電力供給装置は、再生可能エネルギーを利用して発電を行う発電装置、例えば風力発電装置や太陽光発電装置等で構成することができる。なお、電力供給装置は、再生可能エネルギーを利用する発電装置に限定されず、系統電源であってもよいし、再生可能エネルギー発電装置や系統電源からの電力を蓄電した蓄電装置等であってもよい。また、これらの2つ以上の組み合わせであってもよい。 Power is supplied to the organic hydride production apparatus 2 from an external power source (not shown). When power is supplied from the power source to the organic hydride manufacturing apparatus 2, a predetermined electrolytic current is applied between the anode electrode 10 and the cathode electrode 12 of the organic hydride manufacturing apparatus 2, and the electrolytic current flows. The power source sends power supplied from the power supply device to the organic hydride manufacturing device 2 . The power supply device can be configured with a power generation device that generates power using renewable energy, such as a wind power generation device or a solar power generation device. Note that the power supply device is not limited to a power generation device that uses renewable energy, and may be a grid power source, a renewable energy power generation device, a power storage device that stores power from a grid power source, etc. good. Moreover, a combination of two or more of these may be used.
 アノード液供給装置4は、アノード液タンク16、第1アノード配管18、第2アノード配管20およびアノードポンプ22を有する。アノード液タンク16には、アノード液LAが貯留される。アノード液タンク16は、第1アノード配管18によってアノード電極10に接続される。第1アノード配管18の途中には、アノードポンプ22が設けられる。アノードポンプ22は、例えばギアポンプやシリンダーポンプ等の公知のポンプで構成することができる。なお、アノード液供給装置4は、ポンプ以外の送液装置を用いてアノード液LAを流通させてもよい。アノード液タンク16は、第2アノード配管20によってもアノード電極10に接続される。 The anolyte supply device 4 includes an anolyte tank 16, a first anode pipe 18, a second anode pipe 20, and an anode pump 22. The anode solution LA is stored in the anode solution tank 16 . The anolyte tank 16 is connected to the anode electrode 10 by a first anode pipe 18 . An anode pump 22 is provided in the middle of the first anode pipe 18 . The anode pump 22 can be configured with a known pump such as a gear pump or a cylinder pump. Note that the anolyte supply device 4 may circulate the anolyte LA using a liquid feeding device other than a pump. The anolyte tank 16 is also connected to the anode electrode 10 by a second anode pipe 20 .
 アノード液タンク16中のアノード液LAは、アノードポンプ22の駆動により、第1アノード配管18を経由してアノード電極10に流入する。アノード電極10に流入したアノード液LAは、アノード電極10での電極反応に供される。アノード電極10内のアノード液LAは、第2アノード配管20を経由してアノード液タンク16に戻される。一例としてアノード液タンク16は、気液分離部としても機能する。アノード電極10では電極反応によって酸素ガスが発生する。このため、アノード電極10から排出されるアノード液LAには、酸素ガスが混入している。アノード液タンク16は、アノード液LA中の酸素ガスをアノード液LAから分離して系外に排出する。 The anode solution LA in the anode solution tank 16 flows into the anode electrode 10 via the first anode pipe 18 by driving the anode pump 22 . The anolyte LA that has flowed into the anode electrode 10 is subjected to an electrode reaction at the anode electrode 10 . The anolyte LA in the anode electrode 10 is returned to the anolyte tank 16 via the second anode pipe 20. As an example, the anode liquid tank 16 also functions as a gas-liquid separation section. Oxygen gas is generated at the anode electrode 10 by an electrode reaction. Therefore, the anolyte LA discharged from the anode electrode 10 contains oxygen gas. The anolyte tank 16 separates the oxygen gas in the anode solution LA from the anode solution LA and discharges it to the outside of the system.
 本実施の形態のアノード液供給装置4は、アノード電極10とアノード液タンク16との間でアノード液LAを循環させている。しかしながら、この構成に限定されず、アノード液LAをアノード液タンク16に戻さずにアノード電極10から系外に送る構成であってもよい。 The anolyte supply device 4 of this embodiment circulates the anolyte LA between the anode electrode 10 and the anolyte tank 16. However, the configuration is not limited to this, and a configuration may be adopted in which the anolyte LA is sent out of the system from the anode electrode 10 without returning to the anolyte tank 16.
 カソード液供給装置6は、カソード液タンク24、第1カソード配管26、第2カソード配管28、第3カソード配管30、カソードポンプ32および分離部34を有する。カソード液タンク24には、カソード液LCが貯留される。カソード液タンク24は、第1カソード配管26によってカソード電極12に接続される。第1カソード配管26の途中には、カソードポンプ32が設けられる。カソードポンプ32は、例えばギアポンプやシリンダーポンプ等の公知のポンプで構成することができる。なお、カソード液供給装置6は、ポンプ以外の送液装置を用いてカソード液LCを流通させてもよい。 The catholyte supply device 6 includes a catholyte tank 24, a first cathode pipe 26, a second cathode pipe 28, a third cathode pipe 30, a cathode pump 32, and a separation section 34. The catholyte tank 24 stores catholyte LC. The catholyte tank 24 is connected to the cathode electrode 12 by a first cathode pipe 26 . A cathode pump 32 is provided in the middle of the first cathode pipe 26 . The cathode pump 32 can be configured with a known pump such as a gear pump or a cylinder pump. Note that the catholyte supply device 6 may circulate the catholyte LC using a liquid sending device other than a pump.
 分離部34は、第2カソード配管28によってカソード電極12に接続される。分離部34は、公知の気液分離器および公知の油水分離器を有する。また、分離部34は、第3カソード配管30によってカソード液タンク24に接続される。 The separation section 34 is connected to the cathode electrode 12 by a second cathode pipe 28. The separation section 34 includes a known gas-liquid separator and a known oil-water separator. Further, the separation section 34 is connected to the catholyte tank 24 by a third cathode pipe 30.
 カソード液タンク24中のカソード液LCは、カソードポンプ32の駆動により、第1カソード配管26を経由してカソード電極12に流入する。カソード電極12に流入したカソード液LCは、カソード電極12での電極反応に供される。カソード電極12内のカソード液LCは、第2カソード配管28を経由して分離部34に流入する。カソード電極12では、副反応によって水素ガスが発生する場合がある。したがって、カソード電極12から排出されるカソード液LCには、水素ガスが混入している場合がある。分離部34は、カソード液LC中の水素ガスをカソード液LCから分離して系外に排出する。また、カソード電極12には、アノード電極10からプロトンとともに水が移動してくる。したがって、カソード電極12から排出されるカソード液LCには、水が混入している場合がある。分離部34は、カソード液LC中の水をカソード液LCから分離して系外に排出する。水素ガスおよび水が分離されたカソード液LCは、第3カソード配管30を経由してカソード液タンク24に戻される。 The catholyte LC in the catholyte tank 24 flows into the cathode electrode 12 via the first cathode pipe 26 by driving the cathode pump 32 . The catholyte LC that has flowed into the cathode electrode 12 is subjected to an electrode reaction at the cathode electrode 12 . The catholyte LC in the cathode electrode 12 flows into the separation section 34 via the second cathode pipe 28 . At the cathode electrode 12, hydrogen gas may be generated due to side reactions. Therefore, the catholyte LC discharged from the cathode electrode 12 may contain hydrogen gas. The separation unit 34 separates the hydrogen gas in the catholyte LC from the catholyte LC and discharges it out of the system. Furthermore, water moves from the anode electrode 10 to the cathode electrode 12 together with protons. Therefore, the catholyte LC discharged from the cathode electrode 12 may contain water. The separation unit 34 separates water in the catholyte LC from the catholyte LC and discharges the water to the outside of the system. The catholyte LC from which hydrogen gas and water have been separated is returned to the catholyte tank 24 via the third cathode pipe 30 .
 本実施の形態のカソード液供給装置6は、カソード電極12とカソード液タンク24との間でカソード液LCを循環させている。しかしながら、この構成に限定されず、カソード液LCをカソード液タンク24に戻さずにカソード電極12から系外に送る構成であってもよい。 The catholyte supply device 6 of this embodiment circulates the catholyte LC between the cathode electrode 12 and the catholyte tank 24. However, the configuration is not limited to this, and a configuration may be adopted in which the catholyte LC is sent out of the system from the cathode electrode 12 without returning to the catholyte tank 24.
 続いて、有機ハイドライド製造装置2の構造について詳細に説明する。図2は、有機ハイドライド製造装置2の断面図である。図3は、図2のA-A線に沿った断面図である。図4は、電極および隔膜の積層方向から見た膜電極接合体8およびカソード流路38の模式図である。本実施の形態の有機ハイドライド製造装置2は、膜電極接合体8に加えて、アノード流路36(アノード流路形成構造)と、カソード流路38(カソード流路形成構造)と、支持部材40と、一対のプレート部材42a,42bと、ガスケット44とを備える。 Next, the structure of the organic hydride manufacturing apparatus 2 will be explained in detail. FIG. 2 is a sectional view of the organic hydride manufacturing apparatus 2. As shown in FIG. FIG. 3 is a cross-sectional view taken along line AA in FIG. FIG. 4 is a schematic diagram of the membrane electrode assembly 8 and the cathode channel 38 as seen from the stacking direction of the electrodes and the diaphragm. The organic hydride manufacturing apparatus 2 of this embodiment includes, in addition to the membrane electrode assembly 8, an anode channel 36 (anode channel forming structure), a cathode channel 38 (cathode channel forming structure), and a support member 40. , a pair of plate members 42a and 42b, and a gasket 44.
 プレート部材42aおよびプレート部材42bは、例えばステンレス鋼、チタン等の金属で構成される。プレート部材42aは、アノード電極10側から膜電極接合体8に積層される。プレート部材42bは、カソード電極12側から膜電極接合体8に積層される。したがって、膜電極接合体8は、一対のプレート部材42a,42bで挟まれる。一対のプレート部材42a,42bの隙間は、ガスケット44で封止される。有機ハイドライド製造システム1が有機ハイドライド製造装置2を1つのみ備える場合、一対のプレート部材42a,42bはいわゆるエンドプレートに相当し得る。有機ハイドライド製造システム1が複数の有機ハイドライド製造装置2を備え、プレート部材42aあるいはプレート部材42bの隣に他の有機ハイドライド製造装置2が並ぶ場合、当該プレート部材はいわゆるセパレータに相当し得る。 The plate member 42a and the plate member 42b are made of metal such as stainless steel or titanium. The plate member 42a is stacked on the membrane electrode assembly 8 from the anode electrode 10 side. The plate member 42b is laminated on the membrane electrode assembly 8 from the cathode electrode 12 side. Therefore, the membrane electrode assembly 8 is sandwiched between the pair of plate members 42a and 42b. A gap between the pair of plate members 42a and 42b is sealed with a gasket 44. When the organic hydride production system 1 includes only one organic hydride production apparatus 2, the pair of plate members 42a and 42b may correspond to so-called end plates. When the organic hydride production system 1 includes a plurality of organic hydride production apparatuses 2 and another organic hydride production apparatus 2 is arranged next to the plate member 42a or the plate member 42b, the plate member may correspond to a so-called separator.
 カソード電極12は、触媒層12aと、拡散層12bとを有する。触媒層12aは、拡散層12bよりも隔膜14側に配置される。触媒層12aは、隔膜14の主表面に接している。触媒層12aは、上述したカソード触媒、触媒担体およびアイオノマーを含有する。拡散層12bは、触媒層12aの隔膜14とは反対側の主表面に接している。拡散層12bは、外部から供給されるカソード液LCを触媒層12aに均一に拡散させる。また、触媒層12aで生成される有機ハイドライドは、拡散層12bを介してカソード電極12の外部へ排出される。拡散層12bは、カーボンや金属等の導電性材料で構成される。また、拡散層12bは、繊維あるいは粒子の焼結体、発泡成形体といった多孔体である。拡散層12bを構成する材料としては、カーボンの織布(カーボンクロス)、カーボンの不織布、カーボンペーパー等が例示される。なお、拡散層12bは省略される場合もある。 The cathode electrode 12 has a catalyst layer 12a and a diffusion layer 12b. The catalyst layer 12a is arranged closer to the diaphragm 14 than the diffusion layer 12b. The catalyst layer 12a is in contact with the main surface of the diaphragm 14. The catalyst layer 12a contains the above-mentioned cathode catalyst, catalyst carrier, and ionomer. The diffusion layer 12b is in contact with the main surface of the catalyst layer 12a on the side opposite to the diaphragm 14. The diffusion layer 12b uniformly diffuses the catholyte LC supplied from the outside into the catalyst layer 12a. Further, the organic hydride generated in the catalyst layer 12a is discharged to the outside of the cathode electrode 12 via the diffusion layer 12b. The diffusion layer 12b is made of a conductive material such as carbon or metal. Further, the diffusion layer 12b is a porous body such as a sintered body of fibers or particles, or a foam molded body. Examples of the material constituting the diffusion layer 12b include carbon woven cloth (carbon cloth), carbon nonwoven cloth, carbon paper, and the like. Note that the diffusion layer 12b may be omitted in some cases.
 アノード電極10には、アノード流路36が接続される。アノード流路36は、アノード液LAをアノード電極10に給排する。本実施の形態のプレート部材42aは、アノード電極10側を向く主表面に溝が設けられている。そして、この溝がアノード流路36を構成している。アノード流路36は、例えばアノード電極10の全面を覆う。アノード流路36には、第1アノード配管18および第2アノード配管20が接続される。一例としてアノード流路36の下端に第1アノード配管18が接続され、アノード流路36の上端に第2アノード配管20が接続される。アノード流路36に対する第1アノード配管18および第2アノード配管20の接続位置は、適宜変更可能である。プレート部材42aに設けた溝をアノード流路36とすることで、アノード流路36を設けることによる部品点数の増加や組み立て工程の複雑化等を抑制することができる。 An anode channel 36 is connected to the anode electrode 10. The anode flow path 36 supplies and discharges the anode liquid LA to and from the anode electrode 10 . The plate member 42a of this embodiment is provided with a groove on its main surface facing the anode electrode 10 side. This groove constitutes an anode flow path 36. The anode channel 36 covers the entire surface of the anode electrode 10, for example. The first anode pipe 18 and the second anode pipe 20 are connected to the anode flow path 36 . As an example, the first anode pipe 18 is connected to the lower end of the anode flow path 36, and the second anode pipe 20 is connected to the upper end of the anode flow path 36. The connection positions of the first anode pipe 18 and the second anode pipe 20 with respect to the anode flow path 36 can be changed as appropriate. By using the groove provided in the plate member 42a as the anode flow path 36, it is possible to suppress an increase in the number of parts and complication of the assembly process due to the provision of the anode flow path 36.
 カソード電極12には、カソード流路38が接続される。カソード流路38は、カソード液LCをカソード電極12に給排する。本実施の形態のプレート部材42bは、カソード電極12側を向く主表面に溝が設けられている。そして、この溝がカソード流路38を構成している。カソード流路38には、第1カソード配管26および第2カソード配管28が接続される。プレート部材42bに設けた溝をカソード流路38とすることで、カソード流路38を設けることによる部品点数の増加や組み立て工程の複雑化等を抑制することができる。 A cathode channel 38 is connected to the cathode electrode 12. The cathode channel 38 supplies and discharges the catholyte LC to and from the cathode electrode 12 . The plate member 42b of this embodiment is provided with a groove on its main surface facing the cathode electrode 12 side. This groove constitutes a cathode flow path 38. The first cathode pipe 26 and the second cathode pipe 28 are connected to the cathode flow path 38 . By using the groove provided in the plate member 42b as the cathode flow path 38, it is possible to suppress an increase in the number of parts and a complicated assembly process due to the provision of the cathode flow path 38.
 本実施の形態のカソード流路38は、カソード電極12にカソード液LCを供給する供給流路38a(供給流路形成構造)と、カソード電極12からカソード液LCを回収する回収流路38b(回収流路形成構造)とを含む。一例として供給流路38aおよび回収流路38bは、それぞれ鉛直方向に延びる。なお、「鉛直方向に延びる」とは、実質的に直線状の流路の一端が他端よりも上方に位置することを意味する。したがって、各流路は水平面に対して斜めに延びていてもよい。また、供給流路38aは、プレート部材42bにおける水平方向の一端寄りに配置され、回収流路38bは、プレート部材42bにおける水平方向の他端寄りに配置される。そして、供給流路38aの下端に第1カソード配管26が接続され、回収流路38bの上端に第2カソード配管28が接続される。 The cathode channel 38 of this embodiment includes a supply channel 38a (supply channel forming structure) that supplies catholyte LC to the cathode electrode 12, and a recovery channel 38b (recovery channel 38b) that recovers catholyte LC from the cathode electrode 12. flow path forming structure). As an example, the supply channel 38a and the recovery channel 38b each extend in the vertical direction. Note that "extending in the vertical direction" means that one end of the substantially linear channel is located above the other end. Therefore, each channel may extend obliquely to the horizontal plane. Further, the supply channel 38a is arranged near one end of the plate member 42b in the horizontal direction, and the recovery channel 38b is arranged near the other end of the plate member 42b in the horizontal direction. The first cathode pipe 26 is connected to the lower end of the supply channel 38a, and the second cathode pipe 28 is connected to the upper end of the recovery channel 38b.
 第1カソード配管26から供給流路38aに流入したカソード液LCは、供給流路38a内を下方から上方に向かって流れるとともに、カソード電極12に送出される。カソード電極12に流入したカソード液LCは、カソード電極12内を回収流路38bに向かって移動していく。回収流路38bに到達したカソード液LCは、カソード電極12から回収流路38bに流入する。そして、カソード液LCは、回収流路38b内を下方から上方に流れて、第2カソード配管28に排出される。なお、カソード流路38に対する第1カソード配管26および第2カソード配管28の接続位置は、適宜変更可能である。例えば、各配管は、カソード流路38の底面および天面ではなく側面に接続されてもよい。また、供給流路38aおよび回収流路38bの数および配置も適宜変更可能である。 The catholyte LC that has flowed into the supply channel 38 a from the first cathode pipe 26 flows from the bottom to the top in the supply channel 38 a and is sent to the cathode electrode 12 . The catholyte LC that has flowed into the cathode electrode 12 moves within the cathode electrode 12 toward the recovery channel 38b. The catholyte LC that has reached the recovery channel 38b flows from the cathode electrode 12 into the recovery channel 38b. Then, the catholyte LC flows from the bottom to the top in the recovery channel 38b and is discharged into the second cathode pipe 28. Note that the connection positions of the first cathode pipe 26 and the second cathode pipe 28 with respect to the cathode flow path 38 can be changed as appropriate. For example, each pipe may be connected to the side surface of the cathode channel 38 instead of the bottom and top surface. Further, the number and arrangement of the supply channel 38a and the recovery channel 38b can also be changed as appropriate.
 図4に示すように、供給流路38aおよび回収流路38bは、カソード電極12、隔膜14およびアノード電極10の積層方向から見て膜電極接合体8と重なるように配置される。一般に有機ハイドライド製造装置では、膜電極接合体に高い圧力をかけて各層を互いに密着させている。これにより、有機ハイドライドの製造効率を高めることができる。膜電極接合体にかけられる圧力は、一般的な燃料電池にかけられる圧力よりも大きい。このため、膜電極接合体8とカソード流路38とが重なっていると、膜電極接合体8がカソード流路38内に嵌入し得る。膜電極接合体8がカソード流路38内に嵌入すると、カソード流路38を流れるカソード液LCに生じる圧力損失が増大し得る。また、カソード流路38が閉塞してカソード電極12への被水素化物の供給が滞り、カソード電極12の少なくとも一部における有機ハイドライドの生成反応が停止し得る。また、副反応による水素の発生が起こり、有機ハイドライド製造時のファラデー効率が低下し得る。 As shown in FIG. 4, the supply channel 38a and the recovery channel 38b are arranged so as to overlap the membrane electrode assembly 8 when viewed from the stacking direction of the cathode electrode 12, the diaphragm 14, and the anode electrode 10. Generally, in an organic hydride manufacturing apparatus, high pressure is applied to the membrane electrode assembly to bring the layers into close contact with each other. Thereby, the production efficiency of organic hydride can be improved. The pressure applied to the membrane electrode assembly is greater than the pressure applied to a typical fuel cell. Therefore, if the membrane electrode assembly 8 and the cathode channel 38 overlap, the membrane electrode assembly 8 can fit into the cathode channel 38 . When the membrane electrode assembly 8 fits into the cathode channel 38, the pressure loss occurring in the catholyte LC flowing through the cathode channel 38 may increase. Furthermore, the cathode flow path 38 is blocked and the supply of the hydride to the cathode electrode 12 is delayed, and the reaction for producing organic hydride in at least a portion of the cathode electrode 12 may be stopped. Furthermore, hydrogen is generated due to side reactions, which may reduce faradaic efficiency during the production of organic hydride.
 これに対し、本実施の形態の有機ハイドライド製造装置2は、カソード流路38内への膜電極接合体8の嵌入を抑制するように膜電極接合体8を支持する支持部材40を備える。これにより、カソード流路38におけるカソード液LCの流通を維持することができる。よって、有機ハイドライド製造装置2の電解性能の安定性を向上させることができる。 In contrast, the organic hydride production apparatus 2 of the present embodiment includes a support member 40 that supports the membrane electrode assembly 8 so as to suppress the membrane electrode assembly 8 from fitting into the cathode channel 38. Thereby, the circulation of the catholyte LC in the cathode channel 38 can be maintained. Therefore, the stability of the electrolytic performance of the organic hydride production apparatus 2 can be improved.
 回収流路38bは、供給流路38aよりもカソード液LCの流れの下流側にあり、供給流路38aよりも内圧が低い傾向にある。このため、回収流路38bは、供給流路38aに比べて膜電極接合体8が嵌入しやすい。よって、支持部材40は、少なくとも回収流路38bに配置されることが好ましい。本実施の形態では、供給流路38aおよび回収流路38bの両方に支持部材40が配置されている。カソードポンプ32の駆動が停止してカソード電極12へのカソード液LCの供給が停止すると、供給流路38aの内圧も低下し得る。このため、供給流路38aおよび回収流路38bの両方に支持部材40を配置することで、有機ハイドライド製造装置2の電解性能の安定性をより向上させることができる。 The recovery channel 38b is located on the downstream side of the flow of the catholyte LC than the supply channel 38a, and tends to have a lower internal pressure than the supply channel 38a. Therefore, the membrane electrode assembly 8 can fit into the recovery channel 38b more easily than the supply channel 38a. Therefore, it is preferable that the support member 40 is disposed at least in the recovery channel 38b. In this embodiment, support members 40 are arranged in both the supply channel 38a and the recovery channel 38b. When the driving of the cathode pump 32 is stopped and the supply of the catholyte liquid LC to the cathode electrode 12 is stopped, the internal pressure of the supply channel 38a may also decrease. Therefore, by arranging the support member 40 in both the supply channel 38a and the recovery channel 38b, the stability of the electrolytic performance of the organic hydride production apparatus 2 can be further improved.
 一例としての支持部材40は、カソード流路38内でカソード流路38に沿って延びる長尺体である。つまり、供給流路38aに設けられる支持部材40は供給流路38aに沿って延在し、回収流路38bに設けられる支持部材40は回収流路38bに沿って延在する。また、支持部材40は、膜電極接合体8側に凸の湾曲部を有する。これらにより、カソード流路38内への膜電極接合体8の嵌入を抑制しやすくすることができる。本実施の形態の支持部材40は、コイルで構成されている。コイルは、例えばチタンやステンレス鋼などの金属で構成される。コイルは、供給流路38aおよび回収流路38bのそれぞれの内部で、つまり各流路を構成する溝の内部で、一端側から他端側にかけて螺旋状に延びている。これにより、支持部材40によってカソード液LCの流通が阻害されることを抑制しながら、カソード流路38内への膜電極接合体8の嵌入を抑制することができる。 The support member 40 as an example is an elongated body that extends within the cathode flow path 38 and along the cathode flow path 38 . That is, the support member 40 provided in the supply flow path 38a extends along the supply flow path 38a, and the support member 40 provided in the recovery flow path 38b extends along the recovery flow path 38b. Further, the support member 40 has a convex curved portion on the membrane electrode assembly 8 side. With these, it is possible to easily prevent the membrane electrode assembly 8 from fitting into the cathode channel 38. The support member 40 of this embodiment is composed of a coil. The coil is made of metal such as titanium or stainless steel. The coil extends spirally from one end to the other end inside each of the supply channel 38a and the recovery channel 38b, that is, inside the grooves forming each channel. Thereby, it is possible to prevent the membrane electrode assembly 8 from fitting into the cathode channel 38 while preventing the support member 40 from inhibiting the flow of the catholyte LC.
(変形例)
 上述した実施の形態に係る有機ハイドライド製造装置2には、以下の変形例を挙げることができる。すなわち、実施の形態の支持部材40はコイルで構成されるが、特にこの構成に限定されない。例えば、支持部材40はステントで構成されてもよい。ステントは、網目状の筒である。したがって、ステントは膜電極接合体8側に凸の湾曲部を有する。また、ステントはカソード流路38に沿って延在する。ステントの材質は、コイルの場合と同様である。また、支持部材40は、多孔質セラミックス等の透液性を有する多孔質部材で構成されてもよい。多孔質部材は、膜電極接合体8側に凸の湾曲部を有してもよく、またカソード流路38に沿って延びる長尺体であってもよい。ステントや多孔質部材をカソード流路38内に配置することで、コイルの場合と同様に、カソード流路38におけるカソード液LCの流通を維持しながら、膜電極接合体8の嵌入を抑制することができる。なお、支持部材40は、供給流路38aおよび回収流路38bの延在方向で間欠的に設けられてもよい。
(Modified example)
The following modification examples can be given to the organic hydride manufacturing apparatus 2 according to the embodiment described above. That is, although the support member 40 of the embodiment is composed of a coil, it is not particularly limited to this configuration. For example, support member 40 may be comprised of a stent. A stent is a mesh tube. Therefore, the stent has a convex curved portion on the membrane electrode assembly 8 side. The stent also extends along cathode channel 38. The material of the stent is the same as that of the coil. Further, the support member 40 may be made of a porous member having liquid permeability, such as porous ceramics. The porous member may have a convex curved portion on the membrane electrode assembly 8 side, or may be a long body extending along the cathode channel 38. By arranging a stent or a porous member in the cathode channel 38, as in the case of a coil, it is possible to suppress the insertion of the membrane electrode assembly 8 while maintaining the flow of the catholyte LC in the cathode channel 38. I can do it. Note that the support member 40 may be provided intermittently in the extending direction of the supply channel 38a and the recovery channel 38b.
 また、支持部材40は、カソード流路38と膜電極接合体8との間に介在し、複数の貫通孔を有する板材で構成されてもよい。このような板材としては、パンチング板やメッシュ板が例示される。一例として、当該板材はプレート部材42bと拡散層12bとの間に積層される。このような態様によっても、カソード流路38とカソード電極12との間でのカソード液LCの流通を維持しながら、膜電極接合体8の嵌入を抑制することができる。 Further, the support member 40 may be interposed between the cathode channel 38 and the membrane electrode assembly 8 and may be composed of a plate material having a plurality of through holes. Examples of such a plate material include a punched plate and a mesh plate. As an example, the plate material is laminated between the plate member 42b and the diffusion layer 12b. Also in this embodiment, it is possible to prevent the membrane electrode assembly 8 from getting stuck while maintaining the flow of the catholyte LC between the cathode channel 38 and the cathode electrode 12.
 実施の形態は、以下に記載する項目によって特定されてもよい。
[第1項目]
 アノード液(LA)中の水を酸化してプロトンを生成するアノード電極(10)、およびカソード液(LC)中の被水素化物をプロトンで水素化して有機ハイドライドを生成するカソード電極(12)が、アノード電極(10)側からカソード電極(12)側にプロトンを移動させる隔膜(14)を挟んで積層された膜電極接合体(8)と、
 カソード電極(12)、隔膜(14)およびアノード電極(10)の積層方向から見て膜電極接合体(8)と重なりカソード液(LC)をカソード電極(12)に給排するカソード流路(38)と、
 カソード流路(38)内への膜電極接合体(8)の嵌入を抑制するように膜電極接合体(8)を支持する支持部材(40)と、を備える、
有機ハイドライド製造装置(2)。
[第2項目]
 膜電極接合体(8)に積層されるプレート部材(42b)を備え、
 カソード流路(38)は、プレート部材(42b)の表面に設けられる溝で構成される、
第1項目に記載の有機ハイドライド製造装置(2)。
[第3項目]
 カソード流路(38)は、カソード電極(12)にカソード液(LC)を供給する供給流路(38a)と、カソード電極(12)からカソード液(LC)を回収する回収流路(38b)と、を含み、
 支持部材(40)は、少なくとも回収流路(38b)に配置される、
第1項目または第2項目に記載の有機ハイドライド製造装置(2)。
[第4項目]
 支持部材(40)は、供給流路(38a)および回収流路(38b)の両方に配置される、
第3項目に記載の有機ハイドライド製造装置(2)。
[第5項目]
 支持部材(40)は、カソード流路(38)内でカソード流路(38)に沿って延びる長尺体である、
第1項目乃至第4項目のいずれかに記載の有機ハイドライド製造装置(2)。
[第6項目]
 支持部材(40)は、膜電極接合体(8)側に凸の湾曲部を有する、
第5項目に記載の有機ハイドライド製造装置(2)。
[第7項目]
 支持部材(40)は、コイルまたはステントで構成される、
第6項目に記載の有機ハイドライド製造装置(2)。
[第8項目]
 支持部材(40)は、カソード流路(38)内に配置される多孔質部材で構成される、
第1項目乃至第6項目のいずれかに記載の有機ハイドライド製造装置(2)。
[第9項目]
 支持部材(40)は、カソード流路(38)と膜電極接合体(8)との間に介在し複数の貫通孔を有する板材で構成される、
第1項目乃至第4項目のいずれかに記載の有機ハイドライド製造装置(2)。
Embodiments may be specified by the items described below.
[First item]
An anode electrode (10) that oxidizes water in an anolyte (LA) to generate protons, and a cathode electrode (12) that hydrogenates a hydride in a catholyte (LC) with protons to generate an organic hydride. , a membrane electrode assembly (8) laminated with a diaphragm (14) that moves protons from the anode electrode (10) side to the cathode electrode (12) side;
A cathode channel (seeing from the lamination direction of the cathode electrode (12), diaphragm (14), and anode electrode (10) that overlaps the membrane electrode assembly (8) and supplies and discharges catholyte liquid (LC) to and from the cathode electrode (12) 38) and
a support member (40) that supports the membrane electrode assembly (8) so as to suppress the membrane electrode assembly (8) from fitting into the cathode channel (38);
Organic hydride production equipment (2).
[Second item]
comprising a plate member (42b) laminated on the membrane electrode assembly (8),
The cathode channel (38) is composed of a groove provided on the surface of the plate member (42b).
The organic hydride production apparatus (2) according to the first item.
[Third item]
The cathode channel (38) includes a supply channel (38a) that supplies catholyte (LC) to the cathode electrode (12), and a recovery channel (38b) that collects catholyte (LC) from the cathode electrode (12). and,
The support member (40) is arranged at least in the recovery channel (38b).
The organic hydride production apparatus (2) according to the first item or the second item.
[4th item]
The support member (40) is arranged in both the supply channel (38a) and the recovery channel (38b),
The organic hydride production apparatus (2) according to the third item.
[Item 5]
The support member (40) is an elongated body that extends within the cathode flow path (38) and along the cathode flow path (38).
The organic hydride production apparatus (2) according to any one of the first to fourth items.
[Item 6]
The support member (40) has a convex curved portion on the membrane electrode assembly (8) side.
The organic hydride production apparatus (2) according to item 5.
[Item 7]
The support member (40) is comprised of a coil or a stent.
The organic hydride production apparatus (2) according to item 6.
[Item 8]
The support member (40) is composed of a porous member disposed within the cathode channel (38).
The organic hydride manufacturing apparatus (2) according to any one of the first to sixth items.
[Item 9]
The support member (40) is interposed between the cathode channel (38) and the membrane electrode assembly (8) and is composed of a plate material having a plurality of through holes.
The organic hydride production apparatus (2) according to any one of the first to fourth items.
 以下、本発明の実施例を説明するが、実施例は本発明を好適に説明するための例示に過ぎず、なんら本発明を限定するものではない。 Examples of the present invention will be described below, but the examples are merely illustrative to suitably explain the present invention, and are not intended to limit the present invention in any way.
(実施例1)
 コイルで構成される支持部材をカソード流路(供給流路および回収流路の両方)内に配置した有機ハイドライド製造装置を用意した。この有機ハイドライド製造装置のカソード電極に100%トルエン濃度のカソード液を循環させた。またアノード電極にアノード液として硫酸水溶液を循環させた。そして、電流密度0.6A/cmで電解反応を実施した。電解反応は、副生水素の生成量から換算されるファラデー効率が95%になるまで実施した。ファラデー効率95%に相当する量の水素が生成される状態となったとき、カソード流路の入口においてカソード液を採取し、ガスクロマトグラフを用いてカソード液のトルエン濃度を測定した。
(Example 1)
An organic hydride production apparatus was prepared in which a support member composed of a coil was placed in a cathode channel (both a supply channel and a recovery channel). A catholyte solution having a 100% toluene concentration was circulated through the cathode electrode of this organic hydride production apparatus. Further, an aqueous sulfuric acid solution was circulated as an anode solution through the anode electrode. Then, an electrolytic reaction was carried out at a current density of 0.6 A/cm 2 . The electrolytic reaction was carried out until the faradaic efficiency calculated from the amount of by-product hydrogen produced reached 95%. When hydrogen was produced in an amount corresponding to 95% Faraday efficiency, the catholyte was collected at the inlet of the cathode flow path, and the toluene concentration of the catholyte was measured using a gas chromatograph.
 電流密度を0.4A/cmとした場合と、0.2A/cmとした場合についても、同様に電解反応を実施して、ファラデー効率95%時のカソード液のトルエン濃度を測定した。結果を図5に示す。これらのトルエン濃度は、有機ハイドライド製造装置の使用初期における電解性能に相当する。トルエン濃度が低いほど、電解性能が高いことを意味する。 Electrolytic reactions were carried out in the same manner when the current density was 0.4 A/cm 2 and 0.2 A/cm 2 , and the toluene concentration of the catholyte when the Faraday efficiency was 95% was measured. The results are shown in Figure 5. These toluene concentrations correspond to the electrolytic performance at the initial stage of use of the organic hydride production apparatus. The lower the toluene concentration, the higher the electrolytic performance.
 続いて、実施例1の有機ハイドライド製造装置に、18%トルエン濃度のカソード液を供給し、電流密度0.6A/cmで4週間のDSS(Daily Start and Stop)運転を実施した。DSS運転では、6時間の運転と18時間の停止とを交互に繰り返した。また、DSS運転中は、カソード液へのトルエンの補充およびカソード液の排出によってトルエン濃度を18%に維持した。DSS運転が終了した後、電流密度0.6A/cmで電解反応を実施し、ファラデー効率95%時のカソード液のトルエン濃度を測定した。結果を図5に示す。 Subsequently, a catholyte having a toluene concentration of 18% was supplied to the organic hydride production apparatus of Example 1, and DSS (Daily Start and Stop) operation was performed for 4 weeks at a current density of 0.6 A/cm 2 . In the DSS operation, 6 hours of operation and 18 hours of stopping were repeated alternately. During the DSS operation, the toluene concentration was maintained at 18% by replenishing the catholyte with toluene and discharging the catholyte. After the DSS operation was completed, an electrolytic reaction was carried out at a current density of 0.6 A/cm 2 , and the toluene concentration of the catholyte at a Faraday efficiency of 95% was measured. The results are shown in Figure 5.
(比較例1)
 支持部材を備えない点を除いて、実施例1と同一構成の有機ハイドライド製造装置を用意した。そして、実施例1と同じ条件で電解反応を実施し、有機ハイドライド製造装置の使用初期における、ファラデー効率95%時のカソード液のトルエン濃度を測定した。結果を図5に示す。また、期間を3週間とした点を除いて、実施例1と同じ条件でDSS運転を実施した。そして、DSS運転の終了後に電流密度0.6A/cmで電解反応を実施し、ファラデー効率95%時のカソード液のトルエン濃度を測定した。結果を図5に示す。
(Comparative example 1)
An organic hydride production apparatus having the same configuration as in Example 1 was prepared, except that it did not include a support member. Then, an electrolytic reaction was carried out under the same conditions as in Example 1, and the toluene concentration of the catholyte was measured when the Faraday efficiency was 95% at the beginning of use of the organic hydride production apparatus. The results are shown in Figure 5. Further, DSS operation was carried out under the same conditions as in Example 1, except that the period was 3 weeks. After completion of the DSS operation, an electrolytic reaction was carried out at a current density of 0.6 A/cm 2 , and the toluene concentration of the catholyte at a Faraday efficiency of 95% was measured. The results are shown in Figure 5.
 図5は、実施例1および比較例1の各有機ハイドライド製造装置における、電流密度とファラデー効率(F効率)95%時のトルエン濃度との関係を示す図である。図5に示すように、実施例1と比較例1とは、初期の電解性能にほとんど差はなかった。例えば電流密度0.6A/cmでのトルエン濃度は、実施例1では12.2%、比較例1では13.6%であった。一方、DSS運転の実施後では、比較例1のトルエン濃度は49.5%であり、実施例1のトルエン濃度は12.5%であった。実施例1では、比較例1よりもDSS運転が1週間長いにもかかわらず、初期の電解性能が実質的に維持された。以上の結果から、支持部材によってカソード流路内への膜電極接合体の嵌入を抑制することで、有機ハイドライド製造装置の電解性能の安定性を向上させられることが確認された。 FIG. 5 is a diagram showing the relationship between current density and toluene concentration when Faraday efficiency (F efficiency) is 95% in each of the organic hydride production apparatuses of Example 1 and Comparative Example 1. As shown in FIG. 5, there was almost no difference in initial electrolytic performance between Example 1 and Comparative Example 1. For example, the toluene concentration at a current density of 0.6 A/cm 2 was 12.2% in Example 1 and 13.6% in Comparative Example 1. On the other hand, after implementation of the DSS operation, the toluene concentration in Comparative Example 1 was 49.5%, and the toluene concentration in Example 1 was 12.5%. In Example 1, although the DSS operation was one week longer than in Comparative Example 1, the initial electrolysis performance was substantially maintained. From the above results, it was confirmed that the stability of the electrolytic performance of the organic hydride production apparatus can be improved by suppressing the insertion of the membrane electrode assembly into the cathode channel using the support member.
 本発明は、有機ハイドライド製造装置に利用することができる。 The present invention can be utilized in an organic hydride manufacturing device.
 2 有機ハイドライド製造装置、 8 膜電極接合体、 10 アノード電極、 12 カソード電極、 14 隔膜、 38 カソード流路、 38a 供給流路、 38b 回収流路、 40 支持部材、 42b プレート部材。 2 Organic hydride manufacturing device, 8 Membrane electrode assembly, 10 Anode electrode, 12 Cathode electrode, 14 Diaphragm, 38 Cathode channel, 38a Supply channel, 38b Recovery channel, 40 Support member, 42b Plate member.

Claims (9)

  1.  アノード液中の水を酸化してプロトンを生成するアノード電極、およびカソード液中の被水素化物を前記プロトンで水素化して有機ハイドライドを生成するカソード電極が、前記アノード電極側から前記カソード電極側に前記プロトンを移動させる隔膜を挟んで積層された膜電極接合体と、
     前記カソード電極、前記隔膜および前記アノード電極の積層方向から見て前記膜電極接合体と重なりカソード液を前記カソード電極に給排するカソード流路と、
     前記カソード流路内への前記膜電極接合体の嵌入を抑制するように前記膜電極接合体を支持する支持部材と、を備える、
    有機ハイドライド製造装置。
    An anode electrode that oxidizes water in the anolyte to generate protons, and a cathode electrode that hydrogenates a hydride in the catholyte with the protons to generate an organic hydride, from the anode side to the cathode side. A membrane electrode assembly stacked with a diaphragm for transferring the protons sandwiched therebetween;
    a cathode channel that overlaps the membrane electrode assembly when viewed from the stacking direction of the cathode electrode, the diaphragm, and the anode electrode, and supplies and discharges catholyte to and from the cathode electrode;
    a support member that supports the membrane electrode assembly so as to suppress the membrane electrode assembly from fitting into the cathode flow path;
    Organic hydride production equipment.
  2.  前記膜電極接合体に積層されるプレート部材を備え、
     前記カソード流路は、前記プレート部材の表面に設けられる溝で構成される、
    請求項1に記載の有機ハイドライド製造装置。
    comprising a plate member laminated on the membrane electrode assembly,
    The cathode flow path is constituted by a groove provided on the surface of the plate member.
    The organic hydride production apparatus according to claim 1.
  3.  前記カソード流路は、前記カソード電極にカソード液を供給する供給流路と、前記カソード電極からカソード液を回収する回収流路と、を含み、
     前記支持部材は、少なくとも前記回収流路に配置される、
    請求項1または2に記載の有機ハイドライド製造装置。
    The cathode channel includes a supply channel that supplies catholyte to the cathode electrode, and a recovery channel that collects catholyte from the cathode electrode,
    the support member is disposed at least in the recovery channel;
    The organic hydride production apparatus according to claim 1 or 2.
  4.  前記支持部材は、前記供給流路および前記回収流路の両方に配置される、
    請求項3に記載の有機ハイドライド製造装置。
    The support member is arranged in both the supply channel and the recovery channel,
    The organic hydride production apparatus according to claim 3.
  5.  前記支持部材は、前記カソード流路内で前記カソード流路に沿って延びる長尺体である、
    請求項1乃至4のいずれか1項に記載の有機ハイドライド製造装置。
    The support member is an elongated body that extends within the cathode flow path along the cathode flow path.
    The organic hydride production apparatus according to any one of claims 1 to 4.
  6.  前記支持部材は、前記膜電極接合体側に凸の湾曲部を有する、
    請求項5に記載の有機ハイドライド製造装置。
    The support member has a curved portion that is convex toward the membrane electrode assembly.
    The organic hydride production apparatus according to claim 5.
  7.  前記支持部材は、コイルまたはステントで構成される、
    請求項6に記載の有機ハイドライド製造装置。
    The support member is composed of a coil or a stent.
    The organic hydride production apparatus according to claim 6.
  8.  前記支持部材は、前記カソード流路内に配置される多孔質部材で構成される、
    請求項1乃至6のいずれか1項に記載の有機ハイドライド製造装置。
    The support member is composed of a porous member disposed within the cathode flow path.
    The organic hydride production apparatus according to any one of claims 1 to 6.
  9.  前記支持部材は、前記カソード流路と前記膜電極接合体との間に介在し複数の貫通孔を有する板材で構成される、
    請求項1乃至4のいずれか1項に記載の有機ハイドライド製造装置。
    The support member is comprised of a plate material interposed between the cathode channel and the membrane electrode assembly and having a plurality of through holes.
    The organic hydride production apparatus according to any one of claims 1 to 4.
PCT/JP2023/004019 2022-03-17 2023-02-07 Organic hydride manufacturing device WO2023176197A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022042760 2022-03-17
JP2022-042760 2022-03-17

Publications (1)

Publication Number Publication Date
WO2023176197A1 true WO2023176197A1 (en) 2023-09-21

Family

ID=88022778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004019 WO2023176197A1 (en) 2022-03-17 2023-02-07 Organic hydride manufacturing device

Country Status (1)

Country Link
WO (1) WO2023176197A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016098410A (en) * 2014-11-21 2016-05-30 国立大学法人横浜国立大学 Organic hydride production apparatus and organic hydride production method using the same
JP2021109986A (en) * 2020-01-07 2021-08-02 Eneos株式会社 Organic hydride production apparatus and organic hydride production method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016098410A (en) * 2014-11-21 2016-05-30 国立大学法人横浜国立大学 Organic hydride production apparatus and organic hydride production method using the same
JP2021109986A (en) * 2020-01-07 2021-08-02 Eneos株式会社 Organic hydride production apparatus and organic hydride production method

Similar Documents

Publication Publication Date Title
JP6501141B2 (en) Organic hydride manufacturing apparatus and method of manufacturing organic hydride using the same
US11519082B2 (en) Organic hydride production apparatus and method for producing organic hydride
JP2015525297A (en) Gas permeable electrode and electrochemical cell
US20140346054A1 (en) Electrochemical reduction device and method of manufacturing hydride of aromatic hydrocarbon compound or nitrogen-containing heterocyclic aromatic compound
WO2018037774A1 (en) Cathode, electrolysis cell for producing organic hydride, and organic hydride production method
Hnát et al. Hydrogen production by electrolysis
US20200080212A1 (en) Organic hydride production device
WO2023176197A1 (en) Organic hydride manufacturing device
WO2023176198A1 (en) Organic hydride production device
CN114402095B (en) Cross-flow water electrolysis
US20240076786A1 (en) Organic hydride production device and organic hydride production method
WO2024048340A1 (en) Apparatus for producing organic hydride and method for producing organic hydride
WO2022091361A1 (en) Organic hydride production apparatus, and method for forming cathode catalyst layer
WO2024034444A1 (en) Apparatus for producing organic hydride
WO2022091360A1 (en) Device for manufacturing organic hydride
Kasahara Water electrolysis
JP2021188085A (en) Organic hydride production apparatus and production method of membrane electrode assembly
JP2024055578A (en) Electrodes, membrane electrode assemblies, electrochemical cells, stacks, electrolyzers
Symes et al. Production methods of stacks and hydrogen with associated costs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770158

Country of ref document: EP

Kind code of ref document: A1