WO2024048340A1 - Apparatus for producing organic hydride and method for producing organic hydride - Google Patents

Apparatus for producing organic hydride and method for producing organic hydride Download PDF

Info

Publication number
WO2024048340A1
WO2024048340A1 PCT/JP2023/029965 JP2023029965W WO2024048340A1 WO 2024048340 A1 WO2024048340 A1 WO 2024048340A1 JP 2023029965 W JP2023029965 W JP 2023029965W WO 2024048340 A1 WO2024048340 A1 WO 2024048340A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
anode
organic hydride
electrode
cathode
Prior art date
Application number
PCT/JP2023/029965
Other languages
French (fr)
Japanese (ja)
Inventor
浩平 井手
篤 深澤
義竜 三須
香織 高野
孝司 松岡
Original Assignee
Eneos株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eneos株式会社 filed Critical Eneos株式会社
Publication of WO2024048340A1 publication Critical patent/WO2024048340A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/08Ion-exchange resins
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/03Acyclic or carbocyclic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded

Definitions

  • the present invention relates to an organic hydride manufacturing apparatus and an organic hydride manufacturing method.
  • the organic hydride has an anode electrode that generates protons from water, a cathode electrode that hydrogenates an organic compound (hydride) having an unsaturated bond, and an electrolyte membrane that separates the anode electrode and the cathode electrode.
  • a hydride manufacturing apparatus is known (see, for example, Patent Document 1). In this organic hydride manufacturing apparatus, protons are generated by oxidation of water at the anode electrode, these protons move to the cathode electrode side via the electrolyte membrane, and the hydride is hydrogenated with the protons at the cathode electrode. Organic hydride is produced.
  • protons combine with water in the anode chamber to become oxonium ions and move to the cathode electrode side via the electrolyte membrane.
  • protons are consumed from the oxonium ion, and a hydrogenation reaction of the hydride occurs.
  • water is generated.
  • electrooosmotic water the water that moves through the electrolyte membrane as ions move will be collectively referred to as "electroosmotic water”. If electroosmotic water accumulates on the cathode electrode side, hydrogenation of the hydride may be inhibited or the separation process of water and organic hydride may become labor-intensive. As a result, the production efficiency of organic hydride may decrease.
  • the present invention has been made in view of these circumstances, and one of its objectives is to provide a technology for improving the production efficiency of organic hydride.
  • a certain embodiment of the present invention is an organic hydride production apparatus.
  • This organic hydride production device is composed of a cathode electrode that generates organic hydride and hydroxide ions from a hydride and water, an anode electrode that oxidizes hydroxide ions to generate oxygen, and an anion exchange membrane.
  • An electrolyte membrane is provided between the cathode electrode and the anode electrode to move hydroxide ions from the cathode electrode side to the anode electrode side.
  • Another aspect of the present invention is an organic hydride manufacturing method using the organic hydride manufacturing apparatus of the above aspect.
  • This organic hydride production method generates organic hydride and hydroxide ions from a hydride and water at the cathode electrode, moves the hydroxide ions to the anode electrode via an electrolyte membrane, and generates hydroxide ions at the anode electrode. oxidation to produce oxygen.
  • FIG. 1 is a schematic diagram of an organic hydride production system according to an embodiment. It is a figure which shows the evaluation result of Faraday efficiency in each Example and a comparative example, and the evaluation result of water mixing into a catholyte liquid.
  • FIG. 1 is a schematic diagram of an organic hydride production system 1 according to an embodiment.
  • An example organic hydride production system 1 includes an organic hydride production device 2, a catholyte supply device 4, and an anolyte supply device 6.
  • the organic hydride manufacturing system 1 may include a plurality of organic hydride manufacturing apparatuses 2.
  • each organic hydride manufacturing apparatus 2 is stacked with the cathode electrodes 10 and anode electrodes 12 aligned in the same direction, and electrically connected in series. Note that the organic hydride manufacturing apparatuses 2 may be connected in parallel, or may be connected in series and connected in parallel.
  • the organic hydride production apparatus 2 is an electrolytic cell that hydrogenates a hydrogenated substance, which is a dehydrogenated product of an organic hydride, through an electrochemical reduction reaction to produce an organic hydride.
  • the organic hydride production apparatus 2 includes a membrane electrode assembly 8, a pair of plate members 16a, 16b, and a pair of gaskets 18a, 18b.
  • the membrane electrode assembly 8 includes a cathode electrode 10 (cathode), an anode electrode 12 (anode), and an electrolyte membrane 14.
  • the membrane electrode assembly 8 will be described as an example, but the organic hydride production apparatus 2 includes an electrode coated with an anode catalyst on a hard support substrate that is brought into physical contact with an electrolyte membrane. It may have a so-called zero gap electrode structure.
  • the cathode electrode 10 generates organic hydride and hydroxide ions from the hydride and water.
  • the cathode electrode 10 contains a noble metal such as platinum (Pt), ruthenium (Ru), palladium (Pd), or a base metal such as nickel (Ni) as a cathode catalyst for hydrogenating a substance to be hydrided with water.
  • the cathode electrode 10 includes a porous catalyst carrier supporting a cathode catalyst.
  • the catalyst carrier is made of an electronically conductive material such as porous carbon, porous metal, porous metal oxide, or the like.
  • the cathode catalyst is coated with an anion exchange type ionomer.
  • a catalyst carrier carrying a cathode catalyst is coated with an ionomer.
  • the ionomer include polymers such as Fumion (registered trademark).
  • the ionomer partially covers the cathode catalyst. Thereby, the three elements (hydride, water, and electrons) necessary for the electrochemical reaction in the cathode electrode 10 can be efficiently supplied to the reaction field.
  • the cathode electrode 10 as an example includes a catalyst layer 10a and a diffusion layer 10b.
  • the catalyst layer 10a is arranged closer to the electrolyte membrane 14 than the diffusion layer 10b.
  • the catalyst layer 10a contains the above-described cathode catalyst, catalyst carrier, and ionomer.
  • Diffusion layer 10b is in contact with the main surface of catalyst layer 10a on the side opposite to electrolyte membrane 14.
  • the diffusion layer 10b uniformly diffuses the hydrogenated substance supplied from the outside into the catalyst layer 10a. Further, the organic hydride generated in the catalyst layer 10a is discharged to the outside of the cathode electrode 10 via the diffusion layer 10b.
  • the diffusion layer 10b is made of a conductive material such as carbon or metal.
  • the diffusion layer 10b is a porous body such as a sintered body of fibers or particles, or a foam molded body.
  • the material constituting the diffusion layer 10b include carbon woven cloth (carbon cloth), carbon nonwoven cloth, carbon paper, and the like. Note that the diffusion layer 10b may be omitted in some cases.
  • the anode electrode 12 oxidizes hydroxide ions to generate oxygen.
  • the anode electrode 12 uses metals such as iridium (Ir), ruthenium (Ru), platinum (Pt), iron (Fe), cobalt (Co), and nickel (Ni) as an anode catalyst for oxidizing hydroxide ions.
  • the anode catalyst may be dispersed and supported on or coated on a substrate having electron conductivity.
  • the base material is made of a material whose main component is a metal such as titanium (Ti) or stainless steel (SUS). Examples of the form of the base material include woven or nonwoven fabric sheets, meshes, porous sintered bodies, foams, expanded metals, and the like.
  • the electrolyte membrane 14 is arranged between the cathode electrode 10 and the anode electrode 12.
  • the electrolyte membrane 14 is composed of an anion exchange membrane, and moves hydroxide ions from the cathode electrode 10 side to the anode electrode 12 side.
  • anion exchange membranes that can be used as the electrolyte membrane 14 include known anion exchange membranes such as Fumasep (registered trademark) (manufactured by FuMA-Tech).
  • Fumasep registered trademark
  • the electrolyte membrane 14 is made of a polymer having a main chain that is resistant to hydrogenated substances. Examples of such polymers include polymers having an aromatic ring in the main chain skeleton, such as polyarylene. When the electrolyte membrane 14 has a rigid skeleton such as polyarylene, it can increase its resistance to hydrogenated substances. Thereby, cross leakage of the hydride to the anode electrode side can be further suppressed.
  • the plate member 16a and the plate member 16b are made of metal such as stainless steel or titanium.
  • the plate member 16a is laminated on the membrane electrode assembly 8 from the cathode electrode 10 side.
  • the plate member 16b is stacked on the membrane electrode assembly 8 from the anode electrode 12 side. Therefore, the membrane electrode assembly 8 is sandwiched between the pair of plate members 16a and 16b.
  • the gap between the plate member 16a and the membrane electrode assembly 8 is sealed with a gasket 18a.
  • the gap between the plate member 16b and the membrane electrode assembly 8 is sealed with a gasket 18b.
  • the pair of plate members 16a and 16b may correspond to so-called end plates.
  • the plate member may correspond to a so-called separator.
  • a cathode channel 20 is connected to the cathode electrode 10.
  • the cathode channel 20 supplies and discharges the catholyte LC to and from the cathode electrode 10 .
  • a groove may be provided on the main surface of the plate member 16a facing the cathode electrode 10 side, and this groove may constitute the cathode flow path 20.
  • An anode channel 22 is connected to the anode electrode 12 .
  • the anode channel 22 supplies and discharges the anode solution LA to and from the anode electrode 12 .
  • a groove may be provided on the main surface of the plate member 16b facing the anode electrode 12 side, and this groove may constitute the anode flow path 22.
  • a catholyte LC is supplied to the cathode electrode 10 by a catholyte supply device 4 .
  • the catholyte supply device 4 includes a catholyte tank 24 , a first cathode pipe 26 , a second cathode pipe 28 , and a cathode pump 30 .
  • the catholyte tank 24 stores catholyte LC.
  • the catholyte LC contains an organic hydride raw material, that is, a hydride.
  • the catholyte LC does not contain any organic hydride before the operation of the organic hydride production system 1 starts, and when the organic hydride generated by electrolysis is mixed in after the start of operation, the catholyte LC becomes a mixed liquid of the hydride and the organic hydride. Become.
  • the hydride and organic hydride are preferably liquid at 20°C and 1 atmosphere.
  • the hydrogenated product and the organic hydride are not particularly limited as long as they are organic compounds that can add/desorb hydrogen by reversibly causing a hydrogenation/dehydrogenation reaction.
  • hydride and organic hydride used in this embodiment acetone-isopropanol-based, benzoquinone-hydroquinone-based, aromatic hydrocarbon-based, etc. can be widely used.
  • aromatic hydrocarbons are preferred from the viewpoint of transportability during energy transport.
  • aromatic hydrocarbon-based hydrides and organic hydrides are hydrophobic and undergo phase separation from water at 20° C. and 1 atm.
  • the aromatic hydrocarbon compound used as the hydrogenated product is a compound containing at least one aromatic ring.
  • aromatic hydrocarbon compounds include benzene, alkylbenzene, naphthalene, alkylnaphthalene, anthracene, diphenylethane, and tetralin.
  • Alkylbenzenes include compounds in which 1 to 4 hydrogen atoms in an aromatic ring are substituted with a straight chain alkyl group or a branched alkyl group having 1 to 6 carbon atoms. Examples of such compounds include toluene, xylene, mesitylene, ethylbenzene, diethylbenzene, and the like.
  • Alkylnaphthalenes include compounds in which 1 to 4 hydrogen atoms in an aromatic ring are substituted with a straight chain alkyl group or a branched alkyl group having 1 to 6 carbon atoms. Examples of such compounds include methylnaphthalene. These may be used alone or in combination.
  • the hydrogenated product is preferably at least one of toluene and benzene.
  • nitrogen-containing heterocyclic aromatic compounds such as quinoline, isoquinoline, N-alkylpyrrole, N-alkylindole, and N-alkyldibenzopyrrole can also be used as the hydrogenated product.
  • the organic hydride is obtained by hydrogenating the above-mentioned hydride, and examples thereof include cyclohexane, methylcyclohexane, dimethylcyclohexane, decahydroquinoline, and the like.
  • the catholyte tank 24 is connected to the cathode electrode 10 by a first cathode pipe 26.
  • One end of the first cathode pipe 26 is connected to the catholyte tank 24 , and the other end of the first cathode pipe 26 is connected to the inlet of the cathode channel 20 .
  • a cathode pump 30 is provided in the middle of the first cathode pipe 26 .
  • the cathode pump 30 can be configured with a known pump such as a gear pump or a cylinder pump. Note that the catholyte supply device 4 may circulate the catholyte LC using a liquid sending device other than a pump.
  • the catholyte tank 24 is also connected to the cathode electrode 10 by a second cathode pipe 28 .
  • One end of the second cathode pipe 28 is connected to the outlet of the cathode channel 20, and the other end of the second cathode pipe 28 is connected to the catholyte tank 24.
  • the catholyte LC in the catholyte tank 24 flows into the cathode electrode 10 via the first cathode pipe 26 by driving the cathode pump 30 .
  • the catholyte LC that has flowed into the cathode electrode 10 is subjected to an electrode reaction at the cathode electrode 10 .
  • the catholyte LC in the cathode electrode 10 is returned to the catholyte tank 24 via the second cathode pipe 28 .
  • the catholyte tank 24 also functions as a gas-liquid separation section.
  • hydrogen gas may be generated due to side reactions. Therefore, the catholyte LC discharged from the cathode electrode 10 may contain hydrogen gas.
  • the catholyte tank 24 separates the hydrogen gas in the catholyte LC from the catholyte LC and discharges it out of the system.
  • the electrolyte membrane 14 of this embodiment is composed of an anion exchange membrane.
  • the catholyte supply device 4 may be provided with an oil-water separator for separating water from the catholyte LC, if necessary.
  • catholyte tank 24 may function as an oil-water separator.
  • the catholyte supply device 4 of this embodiment circulates the catholyte LC between the cathode electrode 10 and the catholyte tank 24.
  • the configuration is not limited to this, and a configuration may be adopted in which the catholyte LC is sent out of the system from the cathode electrode 10 without returning to the catholyte tank 24.
  • the anode electrode 12 is supplied with the anolyte LA by the anolyte supply device 6.
  • the anolyte supply device 6 includes an anolyte tank 32, a first anode pipe 34, a second anode pipe 36, and an anode pump 38.
  • the anode solution LA is stored in the anode solution tank 32 .
  • the anolyte LA contains water. Examples of the anode solution LA include alkaline solutions such as an aqueous potassium hydroxide solution; ion-exchanged water; and aqueous solutions containing inorganic electrolytes such as potassium sulfate.
  • the anolyte tank 32 is connected to the anode electrode 12 by a first anode pipe 34.
  • One end of the first anode pipe 34 is connected to the anode liquid tank 32 , and the other end of the first anode pipe 34 is connected to the inlet of the anode channel 22 .
  • An anode pump 38 is provided in the middle of the first anode pipe 34 .
  • the anode pump 38 can be configured with a known pump such as a gear pump or a cylinder pump.
  • the anolyte supply device 6 may circulate the anolyte LA using a liquid feeding device other than a pump.
  • the anolyte tank 32 is also connected to the anode electrode 12 by a second anode pipe 36 .
  • One end of the second anode pipe 36 is connected to the outlet of the anode flow path 22 , and the other end of the second anode pipe 36 is connected to the anode liquid tank 32 .
  • the anode solution LA in the anode solution tank 32 flows into the anode electrode 12 via the first anode pipe 34 by driving the anode pump 38.
  • a portion of the water in the anolyte LA that has flowed into the anode electrode 12 diffuses to the cathode electrode 10 side via the electrolyte membrane 14 and is subjected to an electrode reaction at the cathode electrode 10.
  • the anolyte LA in the anode electrode 12 is returned to the anolyte tank 32 via the second anode pipe 36.
  • the anode liquid tank 32 also functions as a gas-liquid separation section.
  • oxygen gas is generated by an electrode reaction. Therefore, the anolyte LA discharged from the anode electrode 12 contains oxygen gas.
  • the anolyte tank 32 separates the oxygen gas in the anode solution LA from the anode solution LA and discharges it to the outside of the system.
  • the anolyte supply device 6 of this embodiment circulates the anolyte LA between the anode electrode 12 and the anolyte tank 32.
  • the configuration is not limited to this, and a configuration may be adopted in which the anolyte LA is sent out of the system from the anode electrode 12 without returning to the anolyte tank 32.
  • Power is supplied to the organic hydride production apparatus 2 from an external power source (not shown).
  • an external power source (not shown).
  • the power supply device can be configured with a power generation device that generates electricity using renewable energy, such as a wind power generation device or a solar power generation device.
  • the power supply device is not limited to such a renewable energy power generation device, and may be a grid power source, or a renewable energy power generation device or a power storage device that stores power from a grid power source. good. Moreover, a combination of two or more of these may be used.
  • the configuration of the organic hydride production system 1 is not limited to that described above, and the configuration of each part can be changed as appropriate.
  • the reaction that occurs when toluene (TL) is used as an example of the hydrogenated substance in the organic hydride production apparatus 2 is as follows.
  • the resulting organic hydride is methylcyclohexane (MCH).
  • MCH methylcyclohexane
  • the electrode reaction at the cathode electrode 10 and the electrode reaction at the anode electrode 12 proceed in parallel.
  • toluene is hydrogenated with water to generate methylcyclohexane and hydroxide ions.
  • Hydroxide ions generated at the cathode electrode 10 pass through the electrolyte membrane 14 and move to the anode electrode 12 .
  • the hydroxide ions supplied to the anode electrode 12 are oxidized at the anode electrode 12 to generate oxygen, water, and electrons. Electrons generated by the oxidation of hydroxide ions are supplied to the cathode electrode 10 via an external circuit and used for an electrode reaction at the cathode electrode 10.
  • the oxidation reaction of hydroxide ions and the hydrogenation reaction of the hydride can be performed in one step.
  • the production efficiency of organic hydride is more efficient than the conventional technology, which produces organic hydride through a two-step process of producing hydrogen through water electrolysis, etc., and chemically hydrogenating the substance to be hydrogenated in a reactor such as a plant. can be increased.
  • a reactor for chemical hydrogenation a high-pressure container for storing hydrogen produced by water electrolysis, etc. are not required, equipment costs can be significantly reduced.
  • the organic hydride production apparatus 2 of this embodiment is of the AEM (Anion Exchange Membrane) type, and moves hydroxide ions from the cathode electrode 10 to the anode electrode 12. Therefore, the direction of ion movement is opposite to that of conventional PEM (Proton Exchange Membrane) type devices.
  • the movement of water from the anode electrode 12 side to the cathode electrode 10 side is theoretically limited to diffusion due to the concentration gradient of water.
  • water that moves from one electrode side to the other electrode side due to a water concentration gradient will be appropriately referred to as "physically diffused water.”
  • the water concentration at the anode is higher than that at the cathode.
  • the physically diffused water moves from the anode electrode 12 side to the cathode electrode 10 side.
  • the flow of electroosmotic water is from the cathode electrode 10 side to the anode electrode 12 side. Therefore, the water that moves from the anode electrode 12 side to the cathode electrode 10 side does not contain electroosmotic water, but only physical diffusion water. Therefore, it is possible to prevent an excessive amount of water from entering the cathode electrode 10, and it is possible to prevent the water in the cathode electrode 10 from inhibiting the diffusion of the hydride.
  • the water originally held by the electrolyte membrane 14 can also enter the cathode electrode 10 as part of physically diffused water, but the amount of this water is also very small compared to the amount of electroosmotic water in a PEM type device.
  • osmotic pressure transition water water that moves from one electrode side to the other electrode side due to an electrolyte concentration gradient will be appropriately referred to as "osmotic pressure transition water.”
  • osmotic pressure transition water moves from the cathode electrode 10 side to the anode electrode 12 side.
  • back-diffusion water water that moves from the cathode side to the anode side in the PEM type
  • back-diffusion water water that moves from the cathode side to the anode side in the PEM type
  • reverse in “reversely diffused water” means opposite to the direction of ion movement.
  • back-diffusion of water the phenomenon in which back-diffused water returns to the anode electrode side, which occurs in the PEM type
  • the reaction progresses as protons move in the form of oxonium ions from the anode solution to the cathode electrode side. Therefore, it is necessary to ensure a proton (oxonium ion) conduction path in the anode solution. Therefore, from the viewpoint of reaction promotion, proton activity, etc., the anode solution is preferably neutral to acidic. Further, from the viewpoint of efficient proton conduction, the anode catalyst and the cathode catalyst are preferably coated with a strongly acidic proton exchange type ionomer. Therefore, the anode catalyst and cathode catalyst are placed under an acidic atmosphere. For this reason, each catalyst is limited to those that can be used in an acidic atmosphere. In particular, the anode catalyst is limited to materials that are resistant to acidic and oxidizing atmospheres.
  • the anolyte is preferably neutral to alkaline.
  • the anode catalyst and the cathode catalyst are preferably coated with an alkaline anion exchange type ionomer. Therefore, the anode catalyst and cathode catalyst are placed in a neutral to alkaline atmosphere. Therefore, each catalyst may be one that can be used in a neutral to alkaline atmosphere.
  • anode catalysts that can be used in a neutral to alkaline atmosphere than in an acidic atmosphere. Therefore, according to the present embodiment, it is possible to increase the degree of freedom in designing the organic hydride manufacturing apparatus 2, and it is possible to easily reduce component costs and the like.
  • the solubility of at least one of the hydride and the organic hydride in water at 25°C is preferably 3 g/100 mL or less, more preferably 2 g/100 mL or less, water movement inhibition is more effective. do.
  • the solubility of at least one of the hydride and the organic hydride in water is 3 g/100 mL or less, it becomes significantly difficult to remove water by the hydride and the organic hydride. Therefore, the suppression of water movement is more effective.
  • Hydrogenates and organic hydrides that are particularly expected to have this effect include benzene (0.18g/100mL H2O ), cyclohexane (0.36g/100mL H2O ), and toluene (0.05g/100mL H2O ). ), methylcyclohexane (1.6 g/100 mL H 2 O), naphthalene (0.003 g/100 mL H 2 O), and decahydronaphthalene (0.001 g/100 mL H 2 O).
  • the water used for the electrode reaction at the cathode electrode 10 is preferably provided by physically diffused water entering from the electrolyte membrane 14.
  • This physical diffusion water includes at least one of water derived from the anode solution LA and water originally held by the electrolyte membrane 14. That is, water in the anolyte LA diffuses from the anode electrode 12 side to the cathode electrode 10 side via the electrolyte membrane 14 due to the water concentration gradient. Further, the electrolyte membrane 14 may absorb and retain moisture in the atmosphere. Alternatively, when assembling the organic hydride production apparatus 2, the electrolyte membrane 14 may be subjected to a hydrous treatment. This water can also enter the cathode electrode 10 side due to the water concentration gradient.
  • the amount of water that enters the cathode electrode 10 side from the electrolyte membrane 14 is adjusted to an amount that is necessary and sufficient for hydrogenation of the hydride at the cathode electrode 10 and does not inhibit the hydride from reaching the reaction field. It is preferable. If the amount of water entering the cathode electrode 10 side is insufficient, not only will there be a shortage of water as a substrate, but the ionomer in the cathode catalyst layer will not be wetted, making it difficult to form ion conduction paths between ion exchange groups. Therefore, hydrogenation of the hydrogenated substance may be inhibited. Conversely, if the amount of water entering the cathode electrode 10 side becomes excessive, the hydride may be inhibited from reaching the reaction field.
  • the amount of water is determined by physical diffusion water and osmotic pressure transfer water via the electrolyte membrane 14. Therefore, the amount of water can be controlled by the material and thickness of the electrolyte membrane 14, the operating temperature of the organic hydride production apparatus 2, the supporting electrolyte concentration of the anode solution, and the like.
  • the amount of water can be defined, for example, as the amount of water per unit time during non-electrolysis and per area of the electrolyte membrane 14 (mg/min/m 2 ).
  • the appropriate range of the amount of water is, for example, the number of ion exchange groups per area of the ionomer in the cathode catalyst layer (mmol/m 2 ), the amount of water per unit time during non-electrolysis and the area of the electrolyte membrane 14 ( When expressed as a ratio (/min) of mmol/min/m 2 ), it is preferably 1.05 to 1.70/min.
  • the amount of water is set to 1.05/min or more, it is possible to more reliably suppress hydrogenation from being inhibited due to lack of water and the performance of the organic hydride production apparatus 2 from deteriorating.
  • the water amount to 1.70/min or less, it is possible to more reliably suppress the accumulation of excessive water in the cathode catalyst layer and inhibition of the reaction.
  • the cathode electrode 10 uses at least one of the water derived from the anolyte LA that has entered the cathode electrode 10 from the electrolyte membrane 14 and the water derived from the electrolyte membrane 14 for reaction with the hydrided substance.
  • the diffusion of the hydride is inhibited by water, the recovery process of the organic hydride becomes complicated, and the back diffusion of water occurs. etc. can be easily suppressed.
  • the water used in the cathode electrode 10 is only the water that enters from the electrolyte membrane 14, but direct water absorption into the cathode electrode 10 from the outside may be combined as appropriate.
  • Embodiments may be specified by the items described below.
  • a cathode electrode (10) that generates organic hydride and hydroxide ions from a hydride and water; an anode electrode (12) that oxidizes hydroxide ions to generate oxygen;
  • An electrolyte membrane (14) composed of an anion exchange membrane, which is arranged between the cathode electrode (10) and the anode electrode (12) and moves hydroxide ions from the cathode electrode (10) side to the anode electrode (12) side. and, Organic hydride production equipment (2).
  • the anode electrode (12) is supplied with an anolyte (LA) containing water,
  • the electrolyte membrane (14) contains water,
  • the cathode electrode (10) uses water entering from the electrolyte membrane (14) to react with the hydride.
  • the organic hydride production apparatus (2) according to the first item.
  • Example 1 A quaternary ammonium AEM type electrolyte membrane (Fumasep (registered trademark) FAA-3-PK-130, manufactured by FuMA-Tech) having a polyarylene skeleton was prepared. The thickness of this electrolyte membrane was 130 ⁇ m. The permeability of water in this electrolyte membrane during non-electrolysis was measured according to the following procedure.
  • the electrolyte membrane was cut into a circular shape with a diameter of 40 mm.
  • An electrolyte membrane sandwiched between two flange glass cells of an H-type cell (VB9B, manufactured by EC Frontier) with a circular Viton (registered trademark) gasket was fixed.
  • the exposed portion of the electrolyte membrane had a diameter of 28 mm.
  • One flange glass cell was filled with 25 mL of 1 mol/L KOH aqueous solution.
  • the weight of the entire H-type cell was measured, and the measured weight was taken as the starting weight (Amg).
  • the openings of the flange glass cell on both sides were sealed with parafilm and left to stand.
  • IrO 2 catalyst manufactured by Furuya Metal Co., Ltd.
  • quaternary ammonium-based anion exchange ionomer (Fumion (registered trademark) FAA-3-SOLUT-10, manufactured by FuMA-Tech), pure water, and 1-propanol (Fujifilm Wa (manufactured by Hikari Pure Chemical Industries, Ltd.) to prepare an anode catalyst ink.
  • the catalyst loading density of the anode catalyst ink was 1.5 mg/cm 2 , and the ionomer/catalyst ratio (I/Cat) was 0.1.
  • the prepared anode catalyst ink was applied to one main surface of the AEM type electrolyte membrane described above to form an anode catalyst layer.
  • PtRu/C catalyst (TEC61E54, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.), quaternary ammonium-based anion exchange ionomer (Fumion (registered trademark) FAA-3-SOLUT-10, manufactured by FuMA-Tech), pure water, and 1-propanol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) to prepare a cathode catalyst ink.
  • the catalyst loading density of the cathode catalyst ink was 1 mg/cm 2 and the ionomer/carbon ratio (I/C) was 0.8.
  • the prepared cathode catalyst ink was applied to the opposite main surface of an AEM type electrolyte membrane in which an anode catalyst layer was formed on one main surface to form a cathode catalyst layer. Based on the composition of the cathode catalyst ink, the ratio of the permeated water amount to the ion exchange group amount of the ionomer was calculated using the following formula (2).
  • the ion exchange capacity (IEC) of the quaternary ammonium anion exchange ionomer used in this example was 1.86 mmol/g.
  • a cathode end plate, a cathode gasket, a diffusion layer, an AEM electrolyte membrane in which a cathode catalyst layer and an anode catalyst layer are laminated, an anode gasket, and an anode end plate are laminated in this order to produce the organic hydride of Example 1.
  • a titanium plate provided with a flow path for each liquid was used as each end plate.
  • Each gasket was made from Viton (registered trademark).
  • the effective electrode area of the organic hydride manufacturing apparatus was 25 cm 2 .
  • Toluene was passed through the cathode of the organic hydride production apparatus as a catholyte at a flow rate of 20 mL/min. Further, a 1 mol/L KOH aqueous solution was passed through the anode as an anode solution at a flow rate of 20 mL/min. Then, an electrolytic reaction was carried out at a temperature of 60° C. and a predetermined cell voltage. Faraday efficiency was calculated from the amount of electricity consumed in the electrolytic reaction and the amount of organic hydride produced. The case where the Faraday efficiency was 80% or more was evaluated as ⁇ , and the case where it was less than 80% was evaluated as ⁇ .
  • Example 2 Measurement of water permeability, fabrication of an organic hydride production apparatus, electrolytic treatment, calculation of permeated water amount ratio, and Each evaluation was conducted. The results are shown in Figure 2.
  • Example 1 A polyfluorosulfonic acid-based PEM type electrolyte membrane (Nafion (registered trademark) 117, manufactured by The Chemours Company) was prepared. The thickness of this electrolyte membrane was 180 ⁇ m. The water permeability in this electrolyte membrane was measured in the same manner as in Example 2.
  • IrO 2 catalyst manufactured by Furuya Metal Co., Ltd.
  • polyfluorosulfonic acid cation exchange ionomer Nafion (registered trademark) DE2020CS, manufactured by The Chemours Company
  • ion exchange water 1-propanol
  • I/Cat ionomer/catalyst ratio
  • PtRu/C catalyst (TEC61E54, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.), polyfluorosulfonic acid-based cation exchange ionomer (Nafion (registered trademark) DE2020CS, manufactured by The Chemours Company), ion exchange water, 1-propanol (Fujifilm Wako Pure (manufactured by Yakusha) to prepare a cathode catalyst ink.
  • the catalyst loading density of the cathode catalyst ink was 1 mg/cm 2 and the ionomer/carbon ratio (I/C) was 0.5.
  • the prepared cathode catalyst ink was applied to the opposite main surface of a PEM type electrolyte membrane in which an anode catalyst layer was formed on one main surface to form a cathode catalyst layer. Based on the composition of the cathode catalyst ink, the ratio of the amount of permeated water to the amount of ion exchange groups of the ionomer was calculated in the same manner as in Examples 1 and 2.
  • the ion exchange capacity of the polyfluorosulfonic acid cation exchange ionomer used in this comparative example was 1.00 mmol/g.
  • the organic hydride of Comparative Example 1 was prepared by laminating the cathode end plate, cathode gasket, diffusion layer, cathode catalyst layer, and anode catalyst layer in this order. Obtained manufacturing equipment. The same end plates and spacers as in Example 1 were used. The effective electrode area of the organic hydride manufacturing apparatus was 25 cm 2 . Using the obtained organic hydride manufacturing apparatus, electrolytic treatment and various evaluations were carried out in the same manner as in Example 2. The results are shown in Figure 2.
  • FIG. 2 is a diagram showing the evaluation results of Faraday efficiency and the evaluation results of water mixing into the catholyte in each example and comparative example. From a comparison between Examples 1 and 2 and Comparative Example 1, when the organic hydride production apparatus is equipped with an AEM type electrolyte membrane, the proportion of water mixed in the catholyte after electrolysis is extremely small, less than 1%, and at least some It was confirmed that a Faraday efficiency of 80% or more could be obtained at this cell voltage. Therefore, it was confirmed that the production efficiency of organic hydride can be improved by using an AEM type electrolyte membrane.
  • Example 2 Furthermore, from a comparison between Example 1 and Example 2, a faradaic efficiency of 80% or more can be obtained over a wider range of cell voltages when the anolyte does not contain a supporting electrolyte than when the anolyte contains a supporting electrolyte. This was confirmed. Furthermore, it was confirmed that Example 2 had a higher water permeability in non-electrolyzed state and a higher ratio of permeated water amount to the amount of ionomer ion exchange groups than Example 1.
  • the present invention can be utilized in an organic hydride manufacturing apparatus and an organic hydride manufacturing method.
  • Organic hydride production equipment 10. Cathode electrode, 12. Anode electrode, 14. Electrolyte membrane, LA anolyte, LC catholyte.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

This apparatus 2 for producing an organic hydride is provided with: a cathode electrode 10 which generates an organic hydride and hydroxide ions from an object to be hydrogenated and water; an anode electrode 12 which generates oxygen by oxidizing the hydroxide ions; and an electrolyte membrane 14 which is composed of an anion exchange membrane and is arranged between the cathode electrode 10 and the anode electrode 12 so as to transfer the hydroxide ions from the cathode electrode 10 side to the anode electrode 12 side.

Description

有機ハイドライド製造装置および有機ハイドライド製造方法Organic hydride production equipment and organic hydride production method
 本発明は、有機ハイドライド製造装置および有機ハイドライド製造方法に関する。 The present invention relates to an organic hydride manufacturing apparatus and an organic hydride manufacturing method.
 近年、エネルギーの生成過程での二酸化炭素排出量を抑制するために、太陽光、風力、水力、地熱発電等で得られる再生可能エネルギーの利用が期待されている。一例としては、再生可能エネルギー由来の電力で水電解を行って、水素を生成するシステムが考案されている。また、再生可能エネルギー由来の水素を大規模輸送、貯蔵するためのエネルギーキャリアとして、有機ハイドライドシステムが注目されている。 In recent years, in order to suppress carbon dioxide emissions during the energy generation process, there are expectations for the use of renewable energy obtained from solar power, wind power, hydropower, geothermal power generation, etc. As an example, a system has been devised that generates hydrogen by electrolyzing water using electricity derived from renewable energy. In addition, organic hydride systems are attracting attention as energy carriers for large-scale transportation and storage of hydrogen derived from renewable energy.
 有機ハイドライドの製造技術に関して、水からプロトンを生成するアノード電極と、不飽和結合を有する有機化合物(被水素化物)を水素化するカソード電極と、アノード電極およびカソード電極を隔てる電解質膜とを有する有機ハイドライド製造装置が知られている(例えば、特許文献1参照)。この有機ハイドライド製造装置では、アノード電極において水の酸化によりプロトンが生成され、このプロトンが電解質膜を介してカソード電極側に移動し、カソード電極においてプロトンで被水素化物が水素化されることで、有機ハイドライドが製造される。 Regarding the production technology of organic hydride, the organic hydride has an anode electrode that generates protons from water, a cathode electrode that hydrogenates an organic compound (hydride) having an unsaturated bond, and an electrolyte membrane that separates the anode electrode and the cathode electrode. A hydride manufacturing apparatus is known (see, for example, Patent Document 1). In this organic hydride manufacturing apparatus, protons are generated by oxidation of water at the anode electrode, these protons move to the cathode electrode side via the electrolyte membrane, and the hydride is hydrogenated with the protons at the cathode electrode. Organic hydride is produced.
国際公開第2012/091128号International Publication No. 2012/091128
 上述の有機ハイドライド製造装置において、プロトンは、アノード室中の水と結合してオキソニウムイオンとなって電解質膜を介してカソード電極側に移動する。カソード電極の反応場において、オキソニウムイオンと被水素化物と電子の3要素が揃うと、オキソニウムイオンからプロトンが消費され、被水素化物の水素化反応が起こる。これにともない、水が生成される。また、イオンの移動にともなって、プロトンと溶媒和している水も同時に移動する。以下では適宜、イオンの移動にともない電解質膜を介して移動する水をまとめて「電気浸透水」という。電気浸透水がカソード電極側に蓄積すると、被水素化物の水素化が阻害されたり、水と有機ハイドライドの分離処理に手間がかかったりし得る。この結果、有機ハイドライドの製造効率が低下し得る。 In the above-described organic hydride production apparatus, protons combine with water in the anode chamber to become oxonium ions and move to the cathode electrode side via the electrolyte membrane. In the reaction field of the cathode electrode, when the three elements, oxonium ion, hydride, and electrons, are present, protons are consumed from the oxonium ion, and a hydrogenation reaction of the hydride occurs. Along with this, water is generated. Furthermore, as the ions move, the water solvated with the protons also moves at the same time. Hereinafter, the water that moves through the electrolyte membrane as ions move will be collectively referred to as "electroosmotic water". If electroosmotic water accumulates on the cathode electrode side, hydrogenation of the hydride may be inhibited or the separation process of water and organic hydride may become labor-intensive. As a result, the production efficiency of organic hydride may decrease.
 本発明はこうした状況に鑑みてなされたものであり、その目的の1つは、有機ハイドライドの製造効率の向上を図る技術を提供することにある。 The present invention has been made in view of these circumstances, and one of its objectives is to provide a technology for improving the production efficiency of organic hydride.
 本発明のある態様は、有機ハイドライド製造装置である。この有機ハイドライド製造装置は、被水素化物および水から有機ハイドライドおよび水酸化物イオンを生成するカソード電極と、水酸化物イオンを酸化して酸素を生成するアノード電極と、アニオン交換膜で構成され、カソード電極およびアノード電極の間に配置されてカソード電極側からアノード電極側に水酸化物イオンを移動させる電解質膜と、を備える。 A certain embodiment of the present invention is an organic hydride production apparatus. This organic hydride production device is composed of a cathode electrode that generates organic hydride and hydroxide ions from a hydride and water, an anode electrode that oxidizes hydroxide ions to generate oxygen, and an anion exchange membrane. An electrolyte membrane is provided between the cathode electrode and the anode electrode to move hydroxide ions from the cathode electrode side to the anode electrode side.
 本発明の別の態様は、上記態様の有機ハイドライド製造装置を用いた有機ハイドライド製造方法である。この有機ハイドライド製造方法は、カソード電極において被水素化物および水から有機ハイドライドおよび水酸化物イオンを生成し、水酸化物イオンを電解質膜を介してアノード電極に移動させ、アノード電極において水酸化物イオンを酸化して酸素を生成することを含む。 Another aspect of the present invention is an organic hydride manufacturing method using the organic hydride manufacturing apparatus of the above aspect. This organic hydride production method generates organic hydride and hydroxide ions from a hydride and water at the cathode electrode, moves the hydroxide ions to the anode electrode via an electrolyte membrane, and generates hydroxide ions at the anode electrode. oxidation to produce oxygen.
 以上の構成要素の任意の組合せ、本開示の表現を方法、装置、システムなどの間で変換したものもまた、本開示の態様として有効である。 Arbitrary combinations of the above components and expressions of the present disclosure converted between methods, devices, systems, etc. are also effective as aspects of the present disclosure.
 本発明によれば、有機ハイドライドの製造効率の向上を図ることができる。 According to the present invention, it is possible to improve the production efficiency of organic hydride.
実施の形態に係る有機ハイドライド製造システムの模式図である。1 is a schematic diagram of an organic hydride production system according to an embodiment. 各実施例および比較例におけるファラデー効率の評価結果、およびカソード液への水混入の評価結果を示す図である。It is a figure which shows the evaluation result of Faraday efficiency in each Example and a comparative example, and the evaluation result of water mixing into a catholyte liquid.
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。実施の形態は、本発明の技術的範囲を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。したがって、実施の形態の内容は、請求の範囲に規定された発明の思想を逸脱しない範囲において、構成要素の変更、追加、削除等の多くの設計変更が可能である。設計変更が加えられた新たな実施の形態は、組み合わされる実施の形態および変形それぞれの効果をあわせもつ。実施の形態では、このような設計変更が可能な内容に関して、「本実施の形態の」、「本実施の形態では」等の表記を付して強調しているが、そのような表記のない内容でも設計変更が許容される。実施の形態に記述される構成要素の任意の組み合わせも、本発明の態様として有効である。各図面に示される同一又は同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図に示す各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。また、本明細書または請求項中に「第1」、「第2」等の用語が用いられる場合には、この用語はいかなる順序や重要度を表すものでもなく、ある構成と他の構成とを区別するためのものである。また、各図面において実施の形態を説明する上で重要ではない部材の一部は省略して表示する。 Hereinafter, the present invention will be explained based on preferred embodiments with reference to the drawings. The embodiments are illustrative rather than limiting the technical scope of the present invention, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention. . Therefore, the content of the embodiments may be subject to many design changes, such as changes, additions, and deletions of constituent elements, without departing from the spirit of the invention defined in the claims. A new embodiment with a design change has the effects of each of the combined embodiments and modifications. In the embodiments, contents that allow such design changes are emphasized by adding expressions such as "in this embodiment" or "in this embodiment," but Design changes are also allowed in the content. Any combination of the components described in the embodiments is also effective as an aspect of the present invention. Identical or equivalent components, members, and processes shown in each drawing are designated by the same reference numerals, and redundant explanations will be omitted as appropriate. Further, the scale and shape of each part shown in each figure are set for convenience to facilitate explanation, and should not be interpreted in a limited manner unless otherwise mentioned. Furthermore, when terms such as "first" and "second" are used in this specification or the claims, these terms do not indicate any order or importance, and the terms do not indicate any order or degree of importance; This is to distinguish between the two. Further, in each drawing, some members that are not important for explaining the embodiments are omitted.
 図1は、実施の形態に係る有機ハイドライド製造システム1の模式図である。一例としての有機ハイドライド製造システム1は、有機ハイドライド製造装置2と、カソード液供給装置4と、アノード液供給装置6とを備える。なお、図1には1つの有機ハイドライド製造装置2のみを図示しているが、有機ハイドライド製造システム1は、複数の有機ハイドライド製造装置2を備えてもよい。この場合、各有機ハイドライド製造装置2は、例えばカソード電極10およびアノード電極12の並びが同じになるように向きが揃えられて積層され、電気的に直列接続される。なお、各有機ハイドライド製造装置2は、並列接続されてもよいし、直列接続と並列接続とが組み合わされてもよい。 FIG. 1 is a schematic diagram of an organic hydride production system 1 according to an embodiment. An example organic hydride production system 1 includes an organic hydride production device 2, a catholyte supply device 4, and an anolyte supply device 6. Although only one organic hydride manufacturing apparatus 2 is illustrated in FIG. 1, the organic hydride manufacturing system 1 may include a plurality of organic hydride manufacturing apparatuses 2. In this case, each organic hydride manufacturing apparatus 2 is stacked with the cathode electrodes 10 and anode electrodes 12 aligned in the same direction, and electrically connected in series. Note that the organic hydride manufacturing apparatuses 2 may be connected in parallel, or may be connected in series and connected in parallel.
 有機ハイドライド製造装置2は、有機ハイドライドの脱水素化体である被水素化物を電気化学還元反応により水素化して、有機ハイドライドを生成する電解セルである。有機ハイドライド製造装置2は、膜電極接合体8と、一対のプレート部材16a,16bと、一対のガスケット18a,18bとを備える。膜電極接合体8は、カソード電極10(陰極)と、アノード電極12(陽極)と、電解質膜14とを備える。なお、本実施の形態では膜電極接合体8を例に挙げて説明するが、有機ハイドライド製造装置2は、固い支持基板に陽極触媒が塗布された電極を電解質膜に物理的に接触させた、いわゆるゼロギャップ電極の構造を有してもよい。 The organic hydride production apparatus 2 is an electrolytic cell that hydrogenates a hydrogenated substance, which is a dehydrogenated product of an organic hydride, through an electrochemical reduction reaction to produce an organic hydride. The organic hydride production apparatus 2 includes a membrane electrode assembly 8, a pair of plate members 16a, 16b, and a pair of gaskets 18a, 18b. The membrane electrode assembly 8 includes a cathode electrode 10 (cathode), an anode electrode 12 (anode), and an electrolyte membrane 14. In this embodiment, the membrane electrode assembly 8 will be described as an example, but the organic hydride production apparatus 2 includes an electrode coated with an anode catalyst on a hard support substrate that is brought into physical contact with an electrolyte membrane. It may have a so-called zero gap electrode structure.
 カソード電極10は、被水素化物および水から有機ハイドライドおよび水酸化物イオンを生成する。カソード電極10は、被水素化物を水で水素化するカソード触媒として、例えば白金(Pt)、ルテニウム(Ru)、パラジウム(Pd)等の貴金属や、ニッケル(Ni)等の卑金属を含有する。また好ましくは、カソード電極10は、カソード触媒を担持する多孔質の触媒担体を含有する。触媒担体は、例えば多孔性カーボン、多孔性金属、多孔性金属酸化物等の電子伝導性材料で構成される。 The cathode electrode 10 generates organic hydride and hydroxide ions from the hydride and water. The cathode electrode 10 contains a noble metal such as platinum (Pt), ruthenium (Ru), palladium (Pd), or a base metal such as nickel (Ni) as a cathode catalyst for hydrogenating a substance to be hydrided with water. Preferably, the cathode electrode 10 includes a porous catalyst carrier supporting a cathode catalyst. The catalyst carrier is made of an electronically conductive material such as porous carbon, porous metal, porous metal oxide, or the like.
 また、カソード触媒は、アニオン交換型のアイオノマーで被覆される。例えば、カソード触媒を担持した状態にある触媒担体がアイオノマーで被覆される。アイオノマーとしては、例えばFumion(登録商標)等のポリマーが例示される。アイオノマーは、カソード触媒を部分的に被覆していることが好ましい。これにより、カソード電極10における電気化学反応に必要な3要素(被水素化物、水、電子)を効率的に反応場に供給することができる。 Additionally, the cathode catalyst is coated with an anion exchange type ionomer. For example, a catalyst carrier carrying a cathode catalyst is coated with an ionomer. Examples of the ionomer include polymers such as Fumion (registered trademark). Preferably, the ionomer partially covers the cathode catalyst. Thereby, the three elements (hydride, water, and electrons) necessary for the electrochemical reaction in the cathode electrode 10 can be efficiently supplied to the reaction field.
 一例としてのカソード電極10は、触媒層10aと、拡散層10bとを有する。触媒層10aは、拡散層10bよりも電解質膜14側に配置される。触媒層10aは、上述したカソード触媒、触媒担体およびアイオノマーを含有する。拡散層10bは、触媒層10aの電解質膜14とは反対側の主表面に接している。拡散層10bは、外部から供給される被水素化物を触媒層10aに均一に拡散させる。また、触媒層10aで生成される有機ハイドライドは、拡散層10bを介してカソード電極10の外部へ排出される。拡散層10bは、カーボンや金属等の導電性材料で構成される。また、拡散層10bは、繊維あるいは粒子の焼結体、発泡成形体といった多孔体である。拡散層10bを構成する材料としては、カーボンの織布(カーボンクロス)、カーボンの不織布、カーボンペーパー等が例示される。なお、拡散層10bは省略される場合もある。 The cathode electrode 10 as an example includes a catalyst layer 10a and a diffusion layer 10b. The catalyst layer 10a is arranged closer to the electrolyte membrane 14 than the diffusion layer 10b. The catalyst layer 10a contains the above-described cathode catalyst, catalyst carrier, and ionomer. Diffusion layer 10b is in contact with the main surface of catalyst layer 10a on the side opposite to electrolyte membrane 14. The diffusion layer 10b uniformly diffuses the hydrogenated substance supplied from the outside into the catalyst layer 10a. Further, the organic hydride generated in the catalyst layer 10a is discharged to the outside of the cathode electrode 10 via the diffusion layer 10b. The diffusion layer 10b is made of a conductive material such as carbon or metal. Further, the diffusion layer 10b is a porous body such as a sintered body of fibers or particles, or a foam molded body. Examples of the material constituting the diffusion layer 10b include carbon woven cloth (carbon cloth), carbon nonwoven cloth, carbon paper, and the like. Note that the diffusion layer 10b may be omitted in some cases.
 アノード電極12は、水酸化物イオンを酸化して酸素を生成する。アノード電極12は、水酸化物イオンを酸化するアノード触媒として例えばイリジウム(Ir)、ルテニウム(Ru)、白金(Pt)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)等の金属やその酸化物、グラフェン等の炭素材料やその部分酸化物を有する。アノード触媒は、電子伝導性を有する基材に分散担持またはコーティングされていてもよい。基材は、例えばチタン(Ti)やステンレス鋼(SUS)等の金属を主成分とする材料で構成される。基材の形態としては、織布や不織布のシート、メッシュ、多孔性の焼結体、発泡成型体(フォーム)、エキスパンドメタル等が例示される。 The anode electrode 12 oxidizes hydroxide ions to generate oxygen. The anode electrode 12 uses metals such as iridium (Ir), ruthenium (Ru), platinum (Pt), iron (Fe), cobalt (Co), and nickel (Ni) as an anode catalyst for oxidizing hydroxide ions. Contains carbon materials such as oxides and graphene, and partial oxides thereof. The anode catalyst may be dispersed and supported on or coated on a substrate having electron conductivity. The base material is made of a material whose main component is a metal such as titanium (Ti) or stainless steel (SUS). Examples of the form of the base material include woven or nonwoven fabric sheets, meshes, porous sintered bodies, foams, expanded metals, and the like.
 電解質膜14は、カソード電極10およびアノード電極12の間に配置される。電解質膜14は、アニオン交換膜で構成され、カソード電極10側からアノード電極12側に水酸化物イオンを移動させる。電解質膜14に使用可能なアニオン交換膜としては、例えばFumasep(登録商標)(FuMA-Tech社製)等の公知のアニオン交換膜を挙げることができる。また、電解質膜14は、被水素化物に対して耐性のある主鎖を有する高分子で構成されることがより好ましい。このような高分子としては、ポリアリーレン等の、芳香環を主鎖骨格に有する高分子が例示される。電解質膜14がポリアリーレンのような剛直な骨格を有することで、被水素化物に対する耐性を高めることができる。これにより、アノード電極側への被水素化物のクロスリークをより一層抑制することができる。 The electrolyte membrane 14 is arranged between the cathode electrode 10 and the anode electrode 12. The electrolyte membrane 14 is composed of an anion exchange membrane, and moves hydroxide ions from the cathode electrode 10 side to the anode electrode 12 side. Examples of anion exchange membranes that can be used as the electrolyte membrane 14 include known anion exchange membranes such as Fumasep (registered trademark) (manufactured by FuMA-Tech). Further, it is more preferable that the electrolyte membrane 14 is made of a polymer having a main chain that is resistant to hydrogenated substances. Examples of such polymers include polymers having an aromatic ring in the main chain skeleton, such as polyarylene. When the electrolyte membrane 14 has a rigid skeleton such as polyarylene, it can increase its resistance to hydrogenated substances. Thereby, cross leakage of the hydride to the anode electrode side can be further suppressed.
 プレート部材16aおよびプレート部材16bは、例えばステンレス鋼、チタン等の金属で構成される。プレート部材16aは、カソード電極10側から膜電極接合体8に積層される。プレート部材16bは、アノード電極12側から膜電極接合体8に積層される。したがって、膜電極接合体8は、一対のプレート部材16a,16bで挟まれる。プレート部材16aと膜電極接合体8との隙間はガスケット18aで封止される。プレート部材16bと膜電極接合体8との隙間はガスケット18bで封止される。有機ハイドライド製造システム1が有機ハイドライド製造装置2を1つのみ備える場合、一対のプレート部材16a,16bはいわゆるエンドプレートに相当し得る。有機ハイドライド製造システム1が複数の有機ハイドライド製造装置2を備え、プレート部材16aあるいはプレート部材16bの隣に他の有機ハイドライド製造装置2が並ぶ場合、当該プレート部材はいわゆるセパレータに相当し得る。 The plate member 16a and the plate member 16b are made of metal such as stainless steel or titanium. The plate member 16a is laminated on the membrane electrode assembly 8 from the cathode electrode 10 side. The plate member 16b is stacked on the membrane electrode assembly 8 from the anode electrode 12 side. Therefore, the membrane electrode assembly 8 is sandwiched between the pair of plate members 16a and 16b. The gap between the plate member 16a and the membrane electrode assembly 8 is sealed with a gasket 18a. The gap between the plate member 16b and the membrane electrode assembly 8 is sealed with a gasket 18b. When the organic hydride production system 1 includes only one organic hydride production device 2, the pair of plate members 16a and 16b may correspond to so-called end plates. When the organic hydride production system 1 includes a plurality of organic hydride production apparatuses 2 and another organic hydride production apparatus 2 is arranged next to the plate member 16a or plate member 16b, the plate member may correspond to a so-called separator.
 カソード電極10には、カソード流路20が接続される。カソード流路20は、カソード液LCをカソード電極10に給排する。なお、プレート部材16aにおけるカソード電極10側を向く主表面に溝が設けられ、この溝がカソード流路20を構成してもよい。 A cathode channel 20 is connected to the cathode electrode 10. The cathode channel 20 supplies and discharges the catholyte LC to and from the cathode electrode 10 . Note that a groove may be provided on the main surface of the plate member 16a facing the cathode electrode 10 side, and this groove may constitute the cathode flow path 20.
 アノード電極12には、アノード流路22が接続される。アノード流路22は、アノード液LAをアノード電極12に給排する。なお、プレート部材16bにおけるアノード電極12側を向く主表面に溝が設けられ、この溝がアノード流路22を構成してもよい。 An anode channel 22 is connected to the anode electrode 12 . The anode channel 22 supplies and discharges the anode solution LA to and from the anode electrode 12 . Note that a groove may be provided on the main surface of the plate member 16b facing the anode electrode 12 side, and this groove may constitute the anode flow path 22.
 カソード電極10には、カソード液供給装置4によってカソード液LCが供給される。カソード液供給装置4は、カソード液タンク24、第1カソード配管26、第2カソード配管28およびカソードポンプ30を有する。カソード液タンク24には、カソード液LCが貯留される。カソード液LCは、有機ハイドライド原料、つまり被水素化物を含む。一例としてカソード液LCは、有機ハイドライド製造システム1の運転開始前は有機ハイドライドを含まず、運転開始後に電解によって生成された有機ハイドライドが混入することで、被水素化物と有機ハイドライドとの混合液となる。被水素化物および有機ハイドライドは、好ましくは20℃、1気圧で液体である。 A catholyte LC is supplied to the cathode electrode 10 by a catholyte supply device 4 . The catholyte supply device 4 includes a catholyte tank 24 , a first cathode pipe 26 , a second cathode pipe 28 , and a cathode pump 30 . The catholyte tank 24 stores catholyte LC. The catholyte LC contains an organic hydride raw material, that is, a hydride. As an example, the catholyte LC does not contain any organic hydride before the operation of the organic hydride production system 1 starts, and when the organic hydride generated by electrolysis is mixed in after the start of operation, the catholyte LC becomes a mixed liquid of the hydride and the organic hydride. Become. The hydride and organic hydride are preferably liquid at 20°C and 1 atmosphere.
 被水素化物および有機ハイドライドは、水素化反応/脱水素反応を可逆的に起こすことにより、水素を添加/脱離できる有機化合物であれば特に限定されない。本実施の形態で用いられる被水素化物および有機ハイドライドとしては、アセトン-イソプロパノール系、ベンゾキノン-ヒドロキノン系、芳香族炭化水素系等を広く用いることができる。これらの中で、エネルギー輸送時の運搬性等の観点から、芳香族炭化水素系が好ましい。一般に芳香族炭化水素系の被水素化物および有機ハイドライドは、疎水性であり、20℃、1気圧で水と相分離する。 The hydrogenated product and the organic hydride are not particularly limited as long as they are organic compounds that can add/desorb hydrogen by reversibly causing a hydrogenation/dehydrogenation reaction. As the hydride and organic hydride used in this embodiment, acetone-isopropanol-based, benzoquinone-hydroquinone-based, aromatic hydrocarbon-based, etc. can be widely used. Among these, aromatic hydrocarbons are preferred from the viewpoint of transportability during energy transport. Generally, aromatic hydrocarbon-based hydrides and organic hydrides are hydrophobic and undergo phase separation from water at 20° C. and 1 atm.
 被水素化物として用いられる芳香族炭化水素化合物は、少なくとも1つの芳香環を含む化合物である。芳香族炭化水素化合物の例としては、例えば、ベンゼン、アルキルベンゼン、ナフタレン、アルキルナフタレン、アントラセン、ジフェニルエタン、テトラリン等が挙げられる。アルキルベンゼンには、芳香環の1~4の水素原子が炭素数1~6の直鎖アルキル基または分岐アルキル基で置換された化合物が含まれる。このような化合物としては、例えばトルエン、キシレン、メシチレン、エチルベンゼン、ジエチルベンゼン等が挙げられる。アルキルナフタレンには、芳香環の1~4の水素原子が炭素数1~6の直鎖アルキル基または分岐アルキル基で置換された化合物が含まれる。このような化合物としては、例えばメチルナフタレン等が挙げられる。これらは単独で用いられても、組み合わせて用いられてもよい。 The aromatic hydrocarbon compound used as the hydrogenated product is a compound containing at least one aromatic ring. Examples of aromatic hydrocarbon compounds include benzene, alkylbenzene, naphthalene, alkylnaphthalene, anthracene, diphenylethane, and tetralin. Alkylbenzenes include compounds in which 1 to 4 hydrogen atoms in an aromatic ring are substituted with a straight chain alkyl group or a branched alkyl group having 1 to 6 carbon atoms. Examples of such compounds include toluene, xylene, mesitylene, ethylbenzene, diethylbenzene, and the like. Alkylnaphthalenes include compounds in which 1 to 4 hydrogen atoms in an aromatic ring are substituted with a straight chain alkyl group or a branched alkyl group having 1 to 6 carbon atoms. Examples of such compounds include methylnaphthalene. These may be used alone or in combination.
 被水素化物は、好ましくはトルエンおよびベンゼンの少なくとも一方である。なお、キノリン、イソキノリン、N-アルキルピロール、N-アルキルインドール、N-アルキルジベンゾピロール等の含窒素複素環式芳香族化合物も、被水素化物として用いることができる。有機ハイドライドは、上述の被水素化物が水素化されたものであり、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、デカヒドロキノリン等が例示される。 The hydrogenated product is preferably at least one of toluene and benzene. Note that nitrogen-containing heterocyclic aromatic compounds such as quinoline, isoquinoline, N-alkylpyrrole, N-alkylindole, and N-alkyldibenzopyrrole can also be used as the hydrogenated product. The organic hydride is obtained by hydrogenating the above-mentioned hydride, and examples thereof include cyclohexane, methylcyclohexane, dimethylcyclohexane, decahydroquinoline, and the like.
 カソード液タンク24は、第1カソード配管26によってカソード電極10に接続される。第1カソード配管26の一端はカソード液タンク24に接続され、第1カソード配管26の他端はカソード流路20の入口に接続される。第1カソード配管26の途中には、カソードポンプ30が設けられる。カソードポンプ30は、例えばギアポンプやシリンダーポンプ等の公知のポンプで構成することができる。なお、カソード液供給装置4は、ポンプ以外の送液装置を用いてカソード液LCを流通させてもよい。カソード液タンク24は、第2カソード配管28によってもカソード電極10に接続される。第2カソード配管28の一端はカソード流路20の出口に接続され、第2カソード配管28の他端はカソード液タンク24に接続される。 The catholyte tank 24 is connected to the cathode electrode 10 by a first cathode pipe 26. One end of the first cathode pipe 26 is connected to the catholyte tank 24 , and the other end of the first cathode pipe 26 is connected to the inlet of the cathode channel 20 . A cathode pump 30 is provided in the middle of the first cathode pipe 26 . The cathode pump 30 can be configured with a known pump such as a gear pump or a cylinder pump. Note that the catholyte supply device 4 may circulate the catholyte LC using a liquid sending device other than a pump. The catholyte tank 24 is also connected to the cathode electrode 10 by a second cathode pipe 28 . One end of the second cathode pipe 28 is connected to the outlet of the cathode channel 20, and the other end of the second cathode pipe 28 is connected to the catholyte tank 24.
 カソード液タンク24中のカソード液LCは、カソードポンプ30の駆動により、第1カソード配管26を経由してカソード電極10に流入する。カソード電極10に流入したカソード液LCは、カソード電極10での電極反応に供される。カソード電極10内のカソード液LCは、第2カソード配管28を経由してカソード液タンク24に戻される。一例としてカソード液タンク24は、気液分離部としても機能する。カソード電極10では、副反応によって水素ガスが発生する場合がある。したがって、カソード電極10から排出されるカソード液LCには、水素ガスが混入している場合がある。カソード液タンク24は、カソード液LC中の水素ガスをカソード液LCから分離して系外に排出する。 The catholyte LC in the catholyte tank 24 flows into the cathode electrode 10 via the first cathode pipe 26 by driving the cathode pump 30 . The catholyte LC that has flowed into the cathode electrode 10 is subjected to an electrode reaction at the cathode electrode 10 . The catholyte LC in the cathode electrode 10 is returned to the catholyte tank 24 via the second cathode pipe 28 . As an example, the catholyte tank 24 also functions as a gas-liquid separation section. At the cathode electrode 10, hydrogen gas may be generated due to side reactions. Therefore, the catholyte LC discharged from the cathode electrode 10 may contain hydrogen gas. The catholyte tank 24 separates the hydrogen gas in the catholyte LC from the catholyte LC and discharges it out of the system.
 なお、本実施の形態の電解質膜14は、アニオン交換膜で構成される。これにより、詳細は後述するが、アノード電極12からカソード電極10へ過剰量の水が移動することが抑制される。したがって、理論上はカソード液LC中への水の混入を無視できる程度に抑制可能である。しかしながら、カソード液供給装置4には、必要に応じてカソード液LCから水を分離するための油水分離器が設けられてもよい。あるいは、カソード液タンク24が油水分離器として機能してもよい。 Note that the electrolyte membrane 14 of this embodiment is composed of an anion exchange membrane. As a result, although details will be described later, excessive amount of water is prevented from moving from the anode electrode 12 to the cathode electrode 10. Therefore, in theory, it is possible to suppress the mixing of water into the catholyte LC to a negligible extent. However, the catholyte supply device 4 may be provided with an oil-water separator for separating water from the catholyte LC, if necessary. Alternatively, catholyte tank 24 may function as an oil-water separator.
 本実施の形態のカソード液供給装置4は、カソード電極10とカソード液タンク24との間でカソード液LCを循環させている。しかしながら、この構成に限定されず、カソード液LCをカソード液タンク24に戻さずにカソード電極10から系外に送る構成であってもよい。 The catholyte supply device 4 of this embodiment circulates the catholyte LC between the cathode electrode 10 and the catholyte tank 24. However, the configuration is not limited to this, and a configuration may be adopted in which the catholyte LC is sent out of the system from the cathode electrode 10 without returning to the catholyte tank 24.
 アノード電極12には、アノード液供給装置6によってアノード液LAが供給される。アノード液供給装置6は、アノード液タンク32、第1アノード配管34、第2アノード配管36およびアノードポンプ38を有する。アノード液タンク32には、アノード液LAが貯留される。アノード液LAは、水を含む。アノード液LAとしては、水酸化カリウム水溶液等のアルカリ溶液;イオン交換水;硫酸カリウム等の無機電解質を含む水溶液等が例示される。 The anode electrode 12 is supplied with the anolyte LA by the anolyte supply device 6. The anolyte supply device 6 includes an anolyte tank 32, a first anode pipe 34, a second anode pipe 36, and an anode pump 38. The anode solution LA is stored in the anode solution tank 32 . The anolyte LA contains water. Examples of the anode solution LA include alkaline solutions such as an aqueous potassium hydroxide solution; ion-exchanged water; and aqueous solutions containing inorganic electrolytes such as potassium sulfate.
 アノード液タンク32は、第1アノード配管34によってアノード電極12に接続される。第1アノード配管34の一端はアノード液タンク32に接続され、第1アノード配管34の他端はアノード流路22の入口に接続される。第1アノード配管34の途中には、アノードポンプ38が設けられる。アノードポンプ38は、例えばギアポンプやシリンダーポンプ等の公知のポンプで構成することができる。なお、アノード液供給装置6は、ポンプ以外の送液装置を用いてアノード液LAを流通させてもよい。アノード液タンク32は、第2アノード配管36によってもアノード電極12に接続される。第2アノード配管36の一端はアノード流路22の出口に接続され、第2アノード配管36の他端はアノード液タンク32に接続される。 The anolyte tank 32 is connected to the anode electrode 12 by a first anode pipe 34. One end of the first anode pipe 34 is connected to the anode liquid tank 32 , and the other end of the first anode pipe 34 is connected to the inlet of the anode channel 22 . An anode pump 38 is provided in the middle of the first anode pipe 34 . The anode pump 38 can be configured with a known pump such as a gear pump or a cylinder pump. Note that the anolyte supply device 6 may circulate the anolyte LA using a liquid feeding device other than a pump. The anolyte tank 32 is also connected to the anode electrode 12 by a second anode pipe 36 . One end of the second anode pipe 36 is connected to the outlet of the anode flow path 22 , and the other end of the second anode pipe 36 is connected to the anode liquid tank 32 .
 アノード液タンク32中のアノード液LAは、アノードポンプ38の駆動により、第1アノード配管34を経由してアノード電極12に流入する。アノード電極12に流入したアノード液LA中の水の一部は、電解質膜14を介してカソード電極10側に拡散し、カソード電極10での電極反応に供される。アノード電極12内のアノード液LAは、第2アノード配管36を経由してアノード液タンク32に戻される。一例としてアノード液タンク32は、気液分離部としても機能する。アノード電極12では電極反応によって酸素ガスが発生する。このため、アノード電極12から排出されるアノード液LAには、酸素ガスが混入している。アノード液タンク32は、アノード液LA中の酸素ガスをアノード液LAから分離して系外に排出する。 The anode solution LA in the anode solution tank 32 flows into the anode electrode 12 via the first anode pipe 34 by driving the anode pump 38. A portion of the water in the anolyte LA that has flowed into the anode electrode 12 diffuses to the cathode electrode 10 side via the electrolyte membrane 14 and is subjected to an electrode reaction at the cathode electrode 10. The anolyte LA in the anode electrode 12 is returned to the anolyte tank 32 via the second anode pipe 36. As an example, the anode liquid tank 32 also functions as a gas-liquid separation section. At the anode electrode 12, oxygen gas is generated by an electrode reaction. Therefore, the anolyte LA discharged from the anode electrode 12 contains oxygen gas. The anolyte tank 32 separates the oxygen gas in the anode solution LA from the anode solution LA and discharges it to the outside of the system.
 本実施の形態のアノード液供給装置6は、アノード電極12とアノード液タンク32との間でアノード液LAを循環させている。しかしながら、この構成に限定されず、アノード液LAをアノード液タンク32に戻さずにアノード電極12から系外に送る構成であってもよい。 The anolyte supply device 6 of this embodiment circulates the anolyte LA between the anode electrode 12 and the anolyte tank 32. However, the configuration is not limited to this, and a configuration may be adopted in which the anolyte LA is sent out of the system from the anode electrode 12 without returning to the anolyte tank 32.
 有機ハイドライド製造装置2には、外部の電源(図示せず)から電力が供給される。電源から有機ハイドライド製造装置2に電力が供給されると、有機ハイドライド製造装置2のカソード電極10とアノード電極12との間に所定のセル電圧が印加され、電解電流が流れる。電源は、電力供給装置から供給される電力を有機ハイドライド製造装置2に送る。電力供給装置は、再生可能エネルギーを利用して発電する発電装置、例えば風力発電装置や太陽光発電装置等で構成することができる。なお、電力供給装置は、このような再生可能エネルギー発電装置に限定されず、系統電源であってもよいし、再生可能エネルギー発電装置や系統電源からの電力を蓄電した蓄電装置等であってもよい。また、これらの2つ以上の組み合わせであってもよい。また、有機ハイドライド製造システム1の構成は上述したものに限定されず、各部の構成を適宜変更可能である。 Power is supplied to the organic hydride production apparatus 2 from an external power source (not shown). When power is supplied from the power supply to the organic hydride manufacturing apparatus 2, a predetermined cell voltage is applied between the cathode electrode 10 and the anode electrode 12 of the organic hydride manufacturing apparatus 2, and an electrolytic current flows. The power source sends power supplied from the power supply device to the organic hydride manufacturing device 2 . The power supply device can be configured with a power generation device that generates electricity using renewable energy, such as a wind power generation device or a solar power generation device. Note that the power supply device is not limited to such a renewable energy power generation device, and may be a grid power source, or a renewable energy power generation device or a power storage device that stores power from a grid power source. good. Moreover, a combination of two or more of these may be used. Further, the configuration of the organic hydride production system 1 is not limited to that described above, and the configuration of each part can be changed as appropriate.
 有機ハイドライド製造装置2において、被水素化物の一例としてトルエン(TL)を用いた場合に起こる反応は、以下の通りである。被水素化物としてトルエンを用いた場合、得られる有機ハイドライドはメチルシクロヘキサン(MCH)である。
<カソード電極での電極反応>
 TL+6HO+6e→MCH+6OH
<アノード電極での電極反応>
 6OH→3/2O+3HO+6e
The reaction that occurs when toluene (TL) is used as an example of the hydrogenated substance in the organic hydride production apparatus 2 is as follows. When toluene is used as the hydride, the resulting organic hydride is methylcyclohexane (MCH).
<Electrode reaction at the cathode electrode>
TL+6H 2 O+6e - →MCH+6OH -
<Electrode reaction at the anode electrode>
6OH - →3/2O 2 +3H 2 O+6e -
 すなわち、カソード電極10での電極反応と、アノード電極12での電極反応とが並行して進行する。カソード電極10では、トルエンが水で水素化され、メチルシクロヘキサンと水酸化物イオンとが生成される。カソード電極10で生じた水酸化物イオンは、電解質膜14を通過してアノード電極12に移動する。アノード電極12に供給された水酸化物イオンは、アノード電極12において酸化され、酸素と、水と、電子とが生成される。水酸化物イオンの酸化により生じた電子は、外部回路を介してカソード電極10に供給され、カソード電極10での電極反応に用いられる。 That is, the electrode reaction at the cathode electrode 10 and the electrode reaction at the anode electrode 12 proceed in parallel. At the cathode electrode 10, toluene is hydrogenated with water to generate methylcyclohexane and hydroxide ions. Hydroxide ions generated at the cathode electrode 10 pass through the electrolyte membrane 14 and move to the anode electrode 12 . The hydroxide ions supplied to the anode electrode 12 are oxidized at the anode electrode 12 to generate oxygen, water, and electrons. Electrons generated by the oxidation of hydroxide ions are supplied to the cathode electrode 10 via an external circuit and used for an electrode reaction at the cathode electrode 10.
 したがって、本実施の形態に係る有機ハイドライド製造装置2によれば、水酸化物イオンの酸化反応と被水素化物の水素化反応とを1ステップで行うことができる。このため、水電解等で水素を製造するプロセスと、被水素化物をプラント等のリアクタで化学水素化するプロセスとの2段階プロセスで有機ハイドライドを製造する従来技術に比べて、有機ハイドライドの製造効率を高めることができる。また、化学水素化を行うリアクタや、水電解等で製造された水素を貯留するための高圧容器等が不要であるため、大幅な設備コストの低減を図ることができる。 Therefore, according to the organic hydride production apparatus 2 according to the present embodiment, the oxidation reaction of hydroxide ions and the hydrogenation reaction of the hydride can be performed in one step. For this reason, the production efficiency of organic hydride is more efficient than the conventional technology, which produces organic hydride through a two-step process of producing hydrogen through water electrolysis, etc., and chemically hydrogenating the substance to be hydrogenated in a reactor such as a plant. can be increased. Furthermore, since a reactor for chemical hydrogenation, a high-pressure container for storing hydrogen produced by water electrolysis, etc. are not required, equipment costs can be significantly reduced.
 また、本実施の形態の有機ハイドライド製造装置2は、AEM(Anion Exchange Membrane、陰イオン交換膜)型であり、カソード電極10からアノード電極12に水酸化物イオンを移動させる。したがって、従来のPEM(Proton Exchange Membrane、陽イオン交換膜)型装置とはイオンの移動方向が逆である。この場合、アノード電極12側からカソード電極10側への水の移動は、理論上は水の濃度勾配による拡散のみとなる。以下では適宜、水の濃度勾配により一方の電極側から他方の電極側に移動する水を「物理拡散水」という。AEM型の場合、アノードの水分濃度がカソードの水分濃度よりも高い。よって、物理拡散水は、アノード電極12側からカソード電極10側に移動する。AEM型において電気浸透水の流れは、カソード電極10側からアノード電極12側に向かう方向となる。よって、アノード電極12側からカソード電極10側に移動する水は、電気浸透水を含まず、物理拡散水だけとなる。このため、カソード電極10への過剰量の水の進入を抑制でき、カソード電極10中の水により被水素化物の拡散が阻害されることを抑制することができる。なお、電解質膜14がもともと保持していた水も物理拡散水の一部としてカソード電極10に進入し得るが、この水の量もPEM型装置における電気浸透水の量に比べれば微量である。 Furthermore, the organic hydride production apparatus 2 of this embodiment is of the AEM (Anion Exchange Membrane) type, and moves hydroxide ions from the cathode electrode 10 to the anode electrode 12. Therefore, the direction of ion movement is opposite to that of conventional PEM (Proton Exchange Membrane) type devices. In this case, the movement of water from the anode electrode 12 side to the cathode electrode 10 side is theoretically limited to diffusion due to the concentration gradient of water. Hereinafter, water that moves from one electrode side to the other electrode side due to a water concentration gradient will be appropriately referred to as "physically diffused water." In the case of the AEM type, the water concentration at the anode is higher than that at the cathode. Therefore, the physically diffused water moves from the anode electrode 12 side to the cathode electrode 10 side. In the AEM type, the flow of electroosmotic water is from the cathode electrode 10 side to the anode electrode 12 side. Therefore, the water that moves from the anode electrode 12 side to the cathode electrode 10 side does not contain electroosmotic water, but only physical diffusion water. Therefore, it is possible to prevent an excessive amount of water from entering the cathode electrode 10, and it is possible to prevent the water in the cathode electrode 10 from inhibiting the diffusion of the hydride. Note that the water originally held by the electrolyte membrane 14 can also enter the cathode electrode 10 as part of physically diffused water, but the amount of this water is also very small compared to the amount of electroosmotic water in a PEM type device.
 これにより、被水素化物を反応場に到達させやすくすることができる。したがって、被水素化物の不足を回避して、副反応の発生を抑制することができる。よって、カソード電極10での電極反応の効率、つまりファラデー効率の低下を抑制することができる。特に、カソード電極10に被水素化物濃度の低いカソード液を供給した際に反応効率が低下することを抑制することができる。この結果、有機ハイドライドの製造効率が向上する。また、カソード電極10における水の蓄積を抑制できるため、有機ハイドライドと水とを互いに分離する処理が容易になるか、あるいは省略することができる。この点でも、有機ハイドライドの製造効率が向上する。 Thereby, it is possible to make it easier for the hydrogenated substance to reach the reaction field. Therefore, the shortage of the hydride can be avoided and the occurrence of side reactions can be suppressed. Therefore, it is possible to suppress a decrease in the efficiency of the electrode reaction at the cathode electrode 10, that is, the Faraday efficiency. In particular, it is possible to suppress a decrease in reaction efficiency when a catholyte having a low concentration of hydride is supplied to the cathode electrode 10. As a result, the production efficiency of organic hydride is improved. Furthermore, since accumulation of water in the cathode electrode 10 can be suppressed, the process of separating organic hydride and water from each other becomes easier or can be omitted. In this respect as well, the production efficiency of organic hydride is improved.
 また、PEM型の場合、アノード電極での電極反応によりアノード触媒層と電解質膜の界面近傍で水が局所的に消失する。一方、カソード触媒層と電解質膜の界面近傍には多量の電気浸透水が存在する。したがって、水の濃度勾配によりカソード電極側の水がアノード電極側に戻り得る。このため、物理拡散水の移動方向がAEM型とは逆になる。また、アノード液LAが例えば支持電解質を含む溶液であった場合、電解質の濃度勾配に起因する浸透圧によって、カソード電極側からアノード電極側に水が戻り得る。以下では適宜、電解質の濃度勾配により一方の電極側から他方の電極側に移動する水を「浸透圧移行水」という。PEM型の場合、浸透圧移行水は、カソード電極10側からアノード電極12側に移動する。 In addition, in the case of the PEM type, water locally disappears near the interface between the anode catalyst layer and the electrolyte membrane due to an electrode reaction at the anode electrode. On the other hand, a large amount of electroosmotic water exists near the interface between the cathode catalyst layer and the electrolyte membrane. Therefore, water on the cathode side can return to the anode side due to the water concentration gradient. Therefore, the moving direction of physically diffused water is opposite to that of the AEM type. Further, when the anolyte LA is, for example, a solution containing a supporting electrolyte, water may return from the cathode electrode side to the anode electrode side due to osmotic pressure caused by the concentration gradient of the electrolyte. Hereinafter, water that moves from one electrode side to the other electrode side due to an electrolyte concentration gradient will be appropriately referred to as "osmotic pressure transition water." In the case of the PEM type, osmotic pressure transition water moves from the cathode electrode 10 side to the anode electrode 12 side.
 したがって、PEM型では、物理拡散水および浸透圧移行水がカソード電極側からアノード電極側に移動する。以下では適宜、PEM型においてカソード電極側からアノード電極側に移動する水(物理拡散水+浸透圧移行水)を「逆拡散水」という。「逆拡散水」における「逆」は、イオン移動の方向と逆向きであることを意味する。また、PEM型で起こる、逆拡散水がアノード電極側に戻る現象を「水の逆拡散」という。 Therefore, in the PEM type, physical diffusion water and osmotic pressure transition water move from the cathode electrode side to the anode electrode side. Hereinafter, water that moves from the cathode side to the anode side in the PEM type (physical diffusion water + osmotic pressure transfer water) will be appropriately referred to as "back-diffusion water." "Reverse" in "reversely diffused water" means opposite to the direction of ion movement. Furthermore, the phenomenon in which back-diffused water returns to the anode electrode side, which occurs in the PEM type, is called "back-diffusion of water."
 水の逆拡散が起こると、水とともに、水に溶解した微量の被水素化物もアノード電極側に移動し得る。この結果、被水素化物によってアノード触媒が被毒し得る。これに対し、本実施の形態ではカソード電極10への水の蓄積が抑制されるため、カソード電極10側からアノード電極12側への水の移動も抑制される。したがって、被水素化物によるアノード触媒の被毒を抑制することができる。また、カソード電極10からの被水素化物のロスも抑制できる。これらにより、有機ハイドライドの製造効率が向上する。 When back-diffusion of water occurs, a trace amount of hydride dissolved in water may also move to the anode electrode side together with the water. As a result, the anode catalyst may be poisoned by the hydrogenated product. On the other hand, in this embodiment, the accumulation of water on the cathode electrode 10 is suppressed, and therefore the movement of water from the cathode electrode 10 side to the anode electrode 12 side is also suppressed. Therefore, poisoning of the anode catalyst by the hydride can be suppressed. Furthermore, loss of hydride from the cathode electrode 10 can also be suppressed. These improve the production efficiency of organic hydride.
 また、PEM型の場合、アノード液からカソード電極側にプロトンがオキソニウムイオンの状態で移動することで反応が進行する。このため、アノード液中にプロトン(オキソニウムイオン)伝導パスを確保する必要がある。したがって、反応促進、プロトン活量等の観点から、アノード液は中性から酸性であることが好ましい。また、効率的なプロトン伝導の観点から、アノード触媒およびカソード触媒は強酸性のプロトン交換型アイオノマーで被覆されることが好ましい。よって、アノード触媒およびカソード触媒は、酸性雰囲気下に置かれる。このため、各触媒は、酸性雰囲気下で使用可能なものに制限される。特にアノード触媒は、酸性雰囲気且つ酸化雰囲気に対して耐性を示す材料に制限される。 Furthermore, in the case of the PEM type, the reaction progresses as protons move in the form of oxonium ions from the anode solution to the cathode electrode side. Therefore, it is necessary to ensure a proton (oxonium ion) conduction path in the anode solution. Therefore, from the viewpoint of reaction promotion, proton activity, etc., the anode solution is preferably neutral to acidic. Further, from the viewpoint of efficient proton conduction, the anode catalyst and the cathode catalyst are preferably coated with a strongly acidic proton exchange type ionomer. Therefore, the anode catalyst and cathode catalyst are placed under an acidic atmosphere. For this reason, each catalyst is limited to those that can be used in an acidic atmosphere. In particular, the anode catalyst is limited to materials that are resistant to acidic and oxidizing atmospheres.
 一方、本実施の形態では、カソード電極10側からアノード電極12側に水酸化物イオンが移動する。このため、アノード液は中性からアルカリ性であることが好ましい。また、効率的な水酸化物イオン伝導の観点から、アノード触媒およびカソード触媒はアルカリ性のアニオン交換型アイオノマーで被覆されることが好ましい。よって、アノード触媒およびカソード触媒は、中性からアルカリ性の雰囲気下に置かれる。このため、各触媒は、中性からアルカリ性の雰囲気下で使用可能なものでよい。使用可能なアノード触媒の選択肢は、中性からアルカリ性雰囲気下の方が、酸性雰囲気下に比べて多い。よって、本実施の形態によれば、有機ハイドライド製造装置2の設計自由度を高めることができ、部材コスト削減等を図りやすくすることができる。 On the other hand, in this embodiment, hydroxide ions move from the cathode electrode 10 side to the anode electrode 12 side. For this reason, the anolyte is preferably neutral to alkaline. Further, from the viewpoint of efficient hydroxide ion conduction, the anode catalyst and the cathode catalyst are preferably coated with an alkaline anion exchange type ionomer. Therefore, the anode catalyst and cathode catalyst are placed in a neutral to alkaline atmosphere. Therefore, each catalyst may be one that can be used in a neutral to alkaline atmosphere. There are more options for anode catalysts that can be used in a neutral to alkaline atmosphere than in an acidic atmosphere. Therefore, according to the present embodiment, it is possible to increase the degree of freedom in designing the organic hydride manufacturing apparatus 2, and it is possible to easily reduce component costs and the like.
 被水素化物および有機ハイドライドの水への溶解度が低い程、アノード電極12側からカソード電極10側への水の移動抑制が有効である。例えば、被水素化物および有機ハイドライドの少なくとも一方の、25℃における水への溶解度が、好ましくは3g/100mL以下、より好ましくは2g/100mL以下である場合に、水の移動抑制がより効果を発揮する。被水素化物および有機ハイドライドの少なくとも一方の水への溶解度が3g/100mL以下である場合、被水素化物および有機ハイドライドによる水の除去が顕著に困難になる。このため、水の移動抑制がより効果を発揮する。当該効果が特に期待される被水素化物および有機ハイドライドとしては、ベンゼン(0.18g/100mL HO)およびシクロヘキサン(0.36g/100mL HO)、トルエン(0.05g/100mL HO)およびメチルシクロヘキサン(1.6g/100mL HO)、ナフタレン(0.003g/100mL HO)およびデカヒドロナフタレン(0.001g/100mL HO)等が例示される。 The lower the solubility of the hydride and the organic hydride in water, the more effective is the suppression of water movement from the anode electrode 12 side to the cathode electrode 10 side. For example, when the solubility of at least one of the hydride and the organic hydride in water at 25°C is preferably 3 g/100 mL or less, more preferably 2 g/100 mL or less, water movement inhibition is more effective. do. When the solubility of at least one of the hydride and the organic hydride in water is 3 g/100 mL or less, it becomes significantly difficult to remove water by the hydride and the organic hydride. Therefore, the suppression of water movement is more effective. Hydrogenates and organic hydrides that are particularly expected to have this effect include benzene (0.18g/100mL H2O ), cyclohexane (0.36g/100mL H2O ), and toluene (0.05g/100mL H2O ). ), methylcyclohexane (1.6 g/100 mL H 2 O), naphthalene (0.003 g/100 mL H 2 O), and decahydronaphthalene (0.001 g/100 mL H 2 O).
 カソード電極10での電極反応に用いられる水は、好ましくは電解質膜14から進入する物理拡散水で賄われる。この物理拡散水には、アノード液LA由来の水と、電解質膜14がもともと保持していた水との少なくとも一方が含まれる。すなわち、アノード液LA中の水は、水の濃度勾配によりアノード電極12側から電解質膜14を介してカソード電極10側に拡散する。また、電解質膜14は、大気中の水分を吸収して保持している場合がある。あるいは、有機ハイドライド製造装置2の組み立て時に、電解質膜14に含水処理が施され得る。この水も、水の濃度勾配によりカソード電極10側に進入し得る。 The water used for the electrode reaction at the cathode electrode 10 is preferably provided by physically diffused water entering from the electrolyte membrane 14. This physical diffusion water includes at least one of water derived from the anode solution LA and water originally held by the electrolyte membrane 14. That is, water in the anolyte LA diffuses from the anode electrode 12 side to the cathode electrode 10 side via the electrolyte membrane 14 due to the water concentration gradient. Further, the electrolyte membrane 14 may absorb and retain moisture in the atmosphere. Alternatively, when assembling the organic hydride production apparatus 2, the electrolyte membrane 14 may be subjected to a hydrous treatment. This water can also enter the cathode electrode 10 side due to the water concentration gradient.
 電解質膜14からカソード電極10側に進入する水の量は、カソード電極10における被水素化物の水素化に必要十分であり、且つ反応場への被水素化物の到達を阻害しない量に調節されることが好ましい。カソード電極10側に進入する水の量が不足すると、基質としての水が不足することに加え、カソード触媒層内のアイオノマーが湿潤せず、イオン交換基間のイオン伝導パスが形成され難い。このため、被水素化物の水素化が阻害され得る。逆に、カソード電極10側に進入する水の量が過剰になると、反応場への被水素化物の到達が阻害され得る。この結果、カソード電極10において副反応による水素発生が支配的となり得る。当該水量は、電解質膜14を介した物理拡散水および浸透圧移行水によって決まる。したがって、電解質膜14の材質や膜厚、有機ハイドライド製造装置2の作動温度、アノード液の支持電解質濃度等により、当該水量を制御することができる。当該水量は、例えば非電解時の単位時間、電解質膜14の面積当たりの水量(mg/min/m)で定義することができる。また、当該水量の適正範囲は、例えばカソード触媒層内のアイオノマーの面積当たりのイオン交換基数(mmol/m)に対する、非電解時の単位時間および電解質膜14の面積当たりの水の物質量(mmol/min/m)の比(/min)として表した場合、好ましくは1.05~1.70/minである。当該水量を1.05/min以上とすることで、水の不足により水素化が阻害されて有機ハイドライド製造装置2の性能が低下することをより確実に抑制できる。また、当該水量を1.70/min以下とすることで、カソード触媒層内に過剰な水が蓄積されて反応が阻害されることをより確実に抑制できる。 The amount of water that enters the cathode electrode 10 side from the electrolyte membrane 14 is adjusted to an amount that is necessary and sufficient for hydrogenation of the hydride at the cathode electrode 10 and does not inhibit the hydride from reaching the reaction field. It is preferable. If the amount of water entering the cathode electrode 10 side is insufficient, not only will there be a shortage of water as a substrate, but the ionomer in the cathode catalyst layer will not be wetted, making it difficult to form ion conduction paths between ion exchange groups. Therefore, hydrogenation of the hydrogenated substance may be inhibited. Conversely, if the amount of water entering the cathode electrode 10 side becomes excessive, the hydride may be inhibited from reaching the reaction field. As a result, hydrogen generation due to side reactions may become dominant in the cathode electrode 10. The amount of water is determined by physical diffusion water and osmotic pressure transfer water via the electrolyte membrane 14. Therefore, the amount of water can be controlled by the material and thickness of the electrolyte membrane 14, the operating temperature of the organic hydride production apparatus 2, the supporting electrolyte concentration of the anode solution, and the like. The amount of water can be defined, for example, as the amount of water per unit time during non-electrolysis and per area of the electrolyte membrane 14 (mg/min/m 2 ). In addition, the appropriate range of the amount of water is, for example, the number of ion exchange groups per area of the ionomer in the cathode catalyst layer (mmol/m 2 ), the amount of water per unit time during non-electrolysis and the area of the electrolyte membrane 14 ( When expressed as a ratio (/min) of mmol/min/m 2 ), it is preferably 1.05 to 1.70/min. By setting the amount of water to 1.05/min or more, it is possible to more reliably suppress hydrogenation from being inhibited due to lack of water and the performance of the organic hydride production apparatus 2 from deteriorating. Further, by setting the water amount to 1.70/min or less, it is possible to more reliably suppress the accumulation of excessive water in the cathode catalyst layer and inhibition of the reaction.
 カソード電極10は、電解質膜14からカソード電極10に進入したアノード液LA由来の水および電解質膜14由来の水の少なくとも一方を被水素化物との反応に用いる。これにより、有機ハイドライド製造装置2の外部からカソード電極10に直に水を供給する場合に比べて、水による被水素化物の拡散阻害、有機ハイドライドの回収処理の複雑化、水の逆拡散の発生等を抑制しやすくすることができる。カソード電極10で使用する水は、電解質膜14から進入する水のみであることが好ましいが、外部からカソード電極10への直接吸水が適宜組み合わされてもよい。 The cathode electrode 10 uses at least one of the water derived from the anolyte LA that has entered the cathode electrode 10 from the electrolyte membrane 14 and the water derived from the electrolyte membrane 14 for reaction with the hydrided substance. As a result, compared to the case where water is directly supplied to the cathode electrode 10 from the outside of the organic hydride production apparatus 2, the diffusion of the hydride is inhibited by water, the recovery process of the organic hydride becomes complicated, and the back diffusion of water occurs. etc. can be easily suppressed. It is preferable that the water used in the cathode electrode 10 is only the water that enters from the electrolyte membrane 14, but direct water absorption into the cathode electrode 10 from the outside may be combined as appropriate.
 実施の形態は、以下に記載する項目によって特定されてもよい。
[第1項目]
 被水素化物および水から有機ハイドライドおよび水酸化物イオンを生成するカソード電極(10)と、
 水酸化物イオンを酸化して酸素を生成するアノード電極(12)と、
 アニオン交換膜で構成され、カソード電極(10)およびアノード電極(12)の間に配置されてカソード電極(10)側からアノード電極(12)側に水酸化物イオンを移動させる電解質膜(14)と、を備える、
有機ハイドライド製造装置(2)。
[第2項目]
 アノード電極(12)は、水を含むアノード液(LA)の供給を受け、
 電解質膜(14)は、水を含み、
 カソード電極(10)は、電解質膜(14)から進入する水を被水素化物との反応に用いる、
第1項目に記載の有機ハイドライド製造装置(2)。
[第3項目]
 第1項目または第2項目に記載の有機ハイドライド製造装置(2)を用いた有機ハイドライド製造方法であって、
 カソード電極(10)において被水素化物および水から有機ハイドライドおよび水酸化物イオンを生成し、
 水酸化物イオンを電解質膜(14)を介してアノード電極(12)に移動させ、
 アノード電極(12)において水酸化物イオンを酸化して酸素を生成することを含む、有機ハイドライド製造方法。
Embodiments may be specified by the items described below.
[First item]
a cathode electrode (10) that generates organic hydride and hydroxide ions from a hydride and water;
an anode electrode (12) that oxidizes hydroxide ions to generate oxygen;
An electrolyte membrane (14) composed of an anion exchange membrane, which is arranged between the cathode electrode (10) and the anode electrode (12) and moves hydroxide ions from the cathode electrode (10) side to the anode electrode (12) side. and,
Organic hydride production equipment (2).
[Second item]
The anode electrode (12) is supplied with an anolyte (LA) containing water,
The electrolyte membrane (14) contains water,
The cathode electrode (10) uses water entering from the electrolyte membrane (14) to react with the hydride.
The organic hydride production apparatus (2) according to the first item.
[Third item]
An organic hydride production method using the organic hydride production apparatus (2) according to the first item or the second item,
generating organic hydride and hydroxide ions from the hydride and water at the cathode electrode (10);
Transferring hydroxide ions to the anode electrode (12) via the electrolyte membrane (14),
A method for producing an organic hydride comprising oxidizing hydroxide ions to produce oxygen at an anode electrode (12).
 以下、本発明の実施例を説明するが、これら実施例は、本発明を好適に説明するための例示に過ぎず、なんら本発明を限定するものではない。 Examples of the present invention will be described below, but these examples are merely illustrative to suitably explain the present invention, and are not intended to limit the present invention in any way.
(実施例1)
 ポリアリーレン系骨格を有する4級アンモニウム系AEM型電解質膜(Fumasep(登録商標) FAA-3-PK-130、FuMA-Tech社製)を用意した。この電解質膜の厚みは130μmであった。この電解質膜における非電解時の水の透過度を以下の手順にしたがって計測した。
(Example 1)
A quaternary ammonium AEM type electrolyte membrane (Fumasep (registered trademark) FAA-3-PK-130, manufactured by FuMA-Tech) having a polyarylene skeleton was prepared. The thickness of this electrolyte membrane was 130 μm. The permeability of water in this electrolyte membrane during non-electrolysis was measured according to the following procedure.
 すなわち、電解質膜をφ40mmの円形に切り出した。H型セル(VB9B、イーシーフロンティア社製)の2つのフランジガラスセルの間に、円形のバイトン(登録商標)製ガスケットで挟んだ電解質膜を固定した。電解質膜の露出部分は、φ28mmとした。片側のフランジガラスセルに1mol/L KOH水溶液を25mL充填した。H型セル全体の重量を測定し、測定された重量を開始時重量(Amg)とした。両側のフランジガラスセルの開口部をパラフィルムで封止し、静置した。所定時間の経過後、開口部を封止していたパラフィルムを取り除き、KOH液を充填していない側のフランジガラスセル中に拡散した水を拭き取った。再びH型セル全体の重量を測定し、測定された重量を終了後重量(Bmg)とした。そして、以下の式(1)に基づいて、非電解時の水の透過度を算出した。
 式(1):(A-B)[mg]/静置時間[min]/電解質膜の露出部分の面積[m
That is, the electrolyte membrane was cut into a circular shape with a diameter of 40 mm. An electrolyte membrane sandwiched between two flange glass cells of an H-type cell (VB9B, manufactured by EC Frontier) with a circular Viton (registered trademark) gasket was fixed. The exposed portion of the electrolyte membrane had a diameter of 28 mm. One flange glass cell was filled with 25 mL of 1 mol/L KOH aqueous solution. The weight of the entire H-type cell was measured, and the measured weight was taken as the starting weight (Amg). The openings of the flange glass cell on both sides were sealed with parafilm and left to stand. After a predetermined period of time had elapsed, the parafilm that had sealed the opening was removed, and the water that had spread into the flange glass cell on the side that was not filled with the KOH liquid was wiped off. The weight of the entire H-type cell was measured again, and the measured weight was taken as the weight after completion (Bmg). Then, the water permeability during non-electrolysis was calculated based on the following equation (1).
Formula (1): (AB) [mg]/standing time [min]/area of exposed part of electrolyte membrane [m 2 ]
 IrO触媒(フルヤ金属社製)、4級アンモニウム系アニオン交換型アイオノマー(Fumion(登録商標) FAA-3-SOLUT-10、FuMA-Tech社製)、純水、および1-プロパノール(富士フイルム和光純薬社製)を混合し、アノード触媒インクを調製した。アノード触媒インクの触媒担持密度は1.5mg/cm、アイオノマー/触媒比(I/Cat)は0.1とした。上述したAEM型電解質膜の一方の主表面に、調製したアノード触媒インクを塗布してアノード触媒層を形成した。 IrO 2 catalyst (manufactured by Furuya Metal Co., Ltd.), quaternary ammonium-based anion exchange ionomer (Fumion (registered trademark) FAA-3-SOLUT-10, manufactured by FuMA-Tech), pure water, and 1-propanol (Fujifilm Wa (manufactured by Hikari Pure Chemical Industries, Ltd.) to prepare an anode catalyst ink. The catalyst loading density of the anode catalyst ink was 1.5 mg/cm 2 , and the ionomer/catalyst ratio (I/Cat) was 0.1. The prepared anode catalyst ink was applied to one main surface of the AEM type electrolyte membrane described above to form an anode catalyst layer.
 PtRu/C触媒(TEC61E54、田中貴金属工業社製)、4級アンモニウム系アニオン交換型アイオノマー(Fumion(登録商標) FAA-3-SOLUT-10、FuMA-Tech社製)、純水、および1-プロパノール(富士フイルム和光純薬社製)を混合し、カソード触媒インクを調製した。カソード触媒インクの触媒担持密度は1mg/cm、アイオノマー/カーボン比(I/C)は0.8とした。一方の主表面にアノード触媒層を形成したAEM型電解質膜における反対側の主表面に、調製したカソード触媒インクを塗布してカソード触媒層を形成した。カソード触媒インクの組成に基づき、アイオノマーのイオン交換基量に対する透過水量比を以下の式(2)を用いて算出した。なお、本実施例で用いた4級アンモニウム系アニオン交換型アイオノマーのイオン交換容量(IEC)は1.86mmol/gであった。
 式(2):(非電解時の水の透過度[mg/min/m]/水の分子量[g/mol])/(触媒層内アイオノマー含量[mg/m]×アイオノマーイオン交換容量[mmol/g])
PtRu/C catalyst (TEC61E54, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.), quaternary ammonium-based anion exchange ionomer (Fumion (registered trademark) FAA-3-SOLUT-10, manufactured by FuMA-Tech), pure water, and 1-propanol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) to prepare a cathode catalyst ink. The catalyst loading density of the cathode catalyst ink was 1 mg/cm 2 and the ionomer/carbon ratio (I/C) was 0.8. The prepared cathode catalyst ink was applied to the opposite main surface of an AEM type electrolyte membrane in which an anode catalyst layer was formed on one main surface to form a cathode catalyst layer. Based on the composition of the cathode catalyst ink, the ratio of the permeated water amount to the ion exchange group amount of the ionomer was calculated using the following formula (2). The ion exchange capacity (IEC) of the quaternary ammonium anion exchange ionomer used in this example was 1.86 mmol/g.
Formula (2): (Non-electrolyzed water permeability [mg/min/m 2 ]/molecular weight of water [g/mol])/(ionomer content in catalyst layer [mg/m 2 ] x ionomer ion exchange capacity [mmol/g])
 カソード用エンドプレート、カソード側ガスケット、拡散層、カソード触媒層およびアノード触媒層が積層されたAEM型電解質膜、アノード側ガスケット、ならびにアノード用エンドプレートをこの順に積層して、実施例1の有機ハイドライド製造装置を得た。各エンドプレートには、各液の流路を備えたチタン製プレートを用いた。各ガスケットはバイトン(登録商標)製とした。有機ハイドライド製造装置の電極有効面積は、25cmとした。 A cathode end plate, a cathode gasket, a diffusion layer, an AEM electrolyte membrane in which a cathode catalyst layer and an anode catalyst layer are laminated, an anode gasket, and an anode end plate are laminated in this order to produce the organic hydride of Example 1. Obtained manufacturing equipment. A titanium plate provided with a flow path for each liquid was used as each end plate. Each gasket was made from Viton (registered trademark). The effective electrode area of the organic hydride manufacturing apparatus was 25 cm 2 .
 有機ハイドライド製造装置のカソードに、カソード液としてトルエンを流速20mL/分で流通させた。また、アノードにアノード液として1mol/L KOH水溶液を流速20mL/分で流通させた。そして、温度60℃、所定のセル電圧で電解反応を実施した。電解反応で消費した電気量と有機ハイドライドの生成量とから、ファラデー効率を算出した。そして、ファラデー効率が80%以上の場合を〇、80%未満の場合を×と評価した。また、電解反応後に、カソード液容器中の水層を分取し、秤量することによって、カソード液中の水量を測定した。そして、電解後のカソード液全体に対する水の混入割合が1%未満の場合を○、1%以上の場合を×と評価した。結果を図2に示す。 Toluene was passed through the cathode of the organic hydride production apparatus as a catholyte at a flow rate of 20 mL/min. Further, a 1 mol/L KOH aqueous solution was passed through the anode as an anode solution at a flow rate of 20 mL/min. Then, an electrolytic reaction was carried out at a temperature of 60° C. and a predetermined cell voltage. Faraday efficiency was calculated from the amount of electricity consumed in the electrolytic reaction and the amount of organic hydride produced. The case where the Faraday efficiency was 80% or more was evaluated as ○, and the case where it was less than 80% was evaluated as ×. Further, after the electrolytic reaction, the water layer in the catholyte container was separated and weighed to measure the amount of water in the catholyte. A case where the proportion of water mixed into the entire catholyte after electrolysis was less than 1% was evaluated as ○, and a case where it was 1% or more was evaluated as ×. The results are shown in Figure 2.
(実施例2)
 水の透過度測定とアノード液とにイオン交換水を用いた点を除いて、実施例1と同様にして水の透過度測定、有機ハイドライド製造装置の作製、電解処理、透過水量比の算出および各評価を実施した。結果を図2に示す。
(Example 2)
Measurement of water permeability, fabrication of an organic hydride production apparatus, electrolytic treatment, calculation of permeated water amount ratio, and Each evaluation was conducted. The results are shown in Figure 2.
(比較例1)
 ポリフルオロスルホン酸系PEM型電解質膜(Nafion(登録商標)117、The Chemours Company社製)を用意した。この電解質膜の厚みは180μmであった。この電解質膜における水の透過度を実施例2と同様にして計測した。
(Comparative example 1)
A polyfluorosulfonic acid-based PEM type electrolyte membrane (Nafion (registered trademark) 117, manufactured by The Chemours Company) was prepared. The thickness of this electrolyte membrane was 180 μm. The water permeability in this electrolyte membrane was measured in the same manner as in Example 2.
 IrO触媒(フルヤ金属社製)、ポリフルオロスルホン酸系カチオン交換型アイオノマー(Nafion(登録商標)DE2020CS、The Chemours Company社製)、イオン交換水、1-プロパノール(富士フイルム和光純薬社製)を混合し、アノード触媒インクを調製した。アノード触媒インクの触媒担持密度は1.5mg/cm、アイオノマー/触媒比(I/Cat)は0.1とした。上述したPEM型電解質膜の一方の主表面に、調製したアノード触媒インクを塗布してアノード触媒層を形成した。 IrO 2 catalyst (manufactured by Furuya Metal Co., Ltd.), polyfluorosulfonic acid cation exchange ionomer (Nafion (registered trademark) DE2020CS, manufactured by The Chemours Company), ion exchange water, 1-propanol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) were mixed to prepare an anode catalyst ink. The catalyst loading density of the anode catalyst ink was 1.5 mg/cm 2 , and the ionomer/catalyst ratio (I/Cat) was 0.1. The prepared anode catalyst ink was applied to one main surface of the PEM type electrolyte membrane described above to form an anode catalyst layer.
 PtRu/C触媒(TEC61E54、田中貴金属工業社製)、ポリフルオロスルホン酸系カチオン交換型アイオノマー(Nafion(登録商標)DE2020CS、The Chemours Company社製)、イオン交換水、1-プロパノール(富士フイルム和光純薬社製)を混合し、カソード触媒インクを調製した。カソード触媒インクの触媒担持密度は1mg/cm、アイオノマー/カーボン比(I/C)は0.5とした。一方の主表面にアノード触媒層を形成したPEM型電解質膜における反対側の主表面に、調製したカソード触媒インクを塗布してカソード触媒層を形成した。カソード触媒インクの組成に基づき、アイオノマーのイオン交換基量に対する透過水量比を実施例1,2と同様に算出した。なお、本比較例で用いたポリフルオロスルホン酸系カチオン交換型アイオノマーのイオン交換容量は、1.00mmol/gであった。 PtRu/C catalyst (TEC61E54, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.), polyfluorosulfonic acid-based cation exchange ionomer (Nafion (registered trademark) DE2020CS, manufactured by The Chemours Company), ion exchange water, 1-propanol (Fujifilm Wako Pure (manufactured by Yakusha) to prepare a cathode catalyst ink. The catalyst loading density of the cathode catalyst ink was 1 mg/cm 2 and the ionomer/carbon ratio (I/C) was 0.5. The prepared cathode catalyst ink was applied to the opposite main surface of a PEM type electrolyte membrane in which an anode catalyst layer was formed on one main surface to form a cathode catalyst layer. Based on the composition of the cathode catalyst ink, the ratio of the amount of permeated water to the amount of ion exchange groups of the ionomer was calculated in the same manner as in Examples 1 and 2. The ion exchange capacity of the polyfluorosulfonic acid cation exchange ionomer used in this comparative example was 1.00 mmol/g.
 カソード用エンドプレート、カソード側ガスケット、拡散層、カソード触媒層およびアノード触媒層が積層されたPEM型電解質膜、アノード側ガスケット、ならびにアノード用エンドプレートをこの順に積層して、比較例1の有機ハイドライド製造装置を得た。各エンドプレートおよび各スペーサは、実施例1と同じものを用いた。有機ハイドライド製造装置の電極有効面積は、25cmとした。得られた有機ハイドライド製造装置を用いて、実施例2と同様にして電解処理および各評価を実施した。結果を図2に示す。 The organic hydride of Comparative Example 1 was prepared by laminating the cathode end plate, cathode gasket, diffusion layer, cathode catalyst layer, and anode catalyst layer in this order. Obtained manufacturing equipment. The same end plates and spacers as in Example 1 were used. The effective electrode area of the organic hydride manufacturing apparatus was 25 cm 2 . Using the obtained organic hydride manufacturing apparatus, electrolytic treatment and various evaluations were carried out in the same manner as in Example 2. The results are shown in Figure 2.
 図2は、各実施例および比較例におけるファラデー効率の評価結果、およびカソード液への水混入の評価結果を示す図である。実施例1,2と比較例1との比較から、有機ハイドライド製造装置がAEM型の電解質膜を備える場合、電解後のカソード液における水の混入割合が1%未満と極微量であり、少なくともいずれかのセル電圧において80%以上のファラデー効率が得られることが確認された。よって、AEM型の電解質膜を用いることで、有機ハイドライドの製造効率の向上を図り得ることが確認された。 FIG. 2 is a diagram showing the evaluation results of Faraday efficiency and the evaluation results of water mixing into the catholyte in each example and comparative example. From a comparison between Examples 1 and 2 and Comparative Example 1, when the organic hydride production apparatus is equipped with an AEM type electrolyte membrane, the proportion of water mixed in the catholyte after electrolysis is extremely small, less than 1%, and at least some It was confirmed that a Faraday efficiency of 80% or more could be obtained at this cell voltage. Therefore, it was confirmed that the production efficiency of organic hydride can be improved by using an AEM type electrolyte membrane.
 また、実施例1と実施例2との比較から、アノード液が支持電解質を含まない場合に、アノード液が支持電解質を含む場合よりも、より幅広いセル電圧で80%以上のファラデー効率が得られることが確認された。また、実施例2は、実施例1に比べて非電解時の水の透過度と、アイオノマーイオン交換基量に対する透過水量比とが高いことが確認された。このことから、アノード液の支持電解質濃度を低減することで、アノード電極12側からカソード電極10側へ移動した物理拡散水が、支持電解質の濃度勾配によって浸透圧移行水としてアノード電極12側へ戻ることを抑制できることが示された。これにより、カソード電極10側により多くの水を供給することができる。したがって、カソード電極10への水の供給がカソード反応の律速となることを回避することができる。よって、セル電圧を高めて電解反応の電流密度、換言すれば反応速度を高めることができる。なお、実施例1,2および比較例1のいずれにおいても、トルエンのアノード電極側へのクロスリークは観察されなかった。 Furthermore, from a comparison between Example 1 and Example 2, a faradaic efficiency of 80% or more can be obtained over a wider range of cell voltages when the anolyte does not contain a supporting electrolyte than when the anolyte contains a supporting electrolyte. This was confirmed. Furthermore, it was confirmed that Example 2 had a higher water permeability in non-electrolyzed state and a higher ratio of permeated water amount to the amount of ionomer ion exchange groups than Example 1. From this, by reducing the supporting electrolyte concentration of the anolyte, the physically diffused water that moved from the anode electrode 12 side to the cathode electrode 10 side returns to the anode electrode 12 side as osmotic pressure transition water due to the concentration gradient of the supporting electrolyte. It has been shown that this can be suppressed. Thereby, more water can be supplied to the cathode electrode 10 side. Therefore, it is possible to prevent the supply of water to the cathode electrode 10 from becoming rate-determining of the cathode reaction. Therefore, by increasing the cell voltage, the current density of the electrolytic reaction, in other words, the reaction rate can be increased. Note that in both Examples 1 and 2 and Comparative Example 1, no cross leak of toluene toward the anode electrode side was observed.
 本発明は、有機ハイドライド製造装置および有機ハイドライド製造方法に利用することができる。 The present invention can be utilized in an organic hydride manufacturing apparatus and an organic hydride manufacturing method.
 2 有機ハイドライド製造装置、 10 カソード電極、 12 アノード電極、 14 電解質膜、 LA アノード液、 LC カソード液。 2. Organic hydride production equipment, 10. Cathode electrode, 12. Anode electrode, 14. Electrolyte membrane, LA anolyte, LC catholyte.

Claims (3)

  1.  被水素化物および水から有機ハイドライドおよび水酸化物イオンを生成するカソード電極と、
     水酸化物イオンを酸化して酸素を生成するアノード電極と、
     アニオン交換膜で構成され、前記カソード電極および前記アノード電極の間に配置されて前記カソード電極側から前記アノード電極側に前記水酸化物イオンを移動させる電解質膜と、を備える、
    有機ハイドライド製造装置。
    a cathode electrode that generates organic hydride and hydroxide ions from a hydride and water;
    an anode electrode that oxidizes hydroxide ions to generate oxygen;
    an electrolyte membrane configured with an anion exchange membrane and disposed between the cathode electrode and the anode electrode to move the hydroxide ions from the cathode electrode side to the anode electrode side;
    Organic hydride production equipment.
  2.  前記アノード電極は、水を含むアノード液の供給を受け、
     前記電解質膜は、水を含み、
     前記カソード電極は、前記電解質膜から進入する水を前記被水素化物との反応に用いる、
    請求項1に記載の有機ハイドライド製造装置。
    The anode electrode is supplied with an anolyte containing water,
    The electrolyte membrane contains water,
    The cathode electrode uses water entering from the electrolyte membrane to react with the hydride.
    The organic hydride production apparatus according to claim 1.
  3.  請求項1または2に記載の有機ハイドライド製造装置を用いた有機ハイドライド製造方法であって、
     前記カソード電極において前記被水素化物および水から有機ハイドライドおよび水酸化物イオンを生成し、
     前記水酸化物イオンを前記電解質膜を介して前記アノード電極に移動させ、
     前記アノード電極において前記水酸化物イオンを酸化して酸素を生成することを含む、有機ハイドライド製造方法。
    An organic hydride production method using the organic hydride production apparatus according to claim 1 or 2,
    generating organic hydride and hydroxide ions from the hydride and water at the cathode electrode;
    moving the hydroxide ions to the anode electrode via the electrolyte membrane;
    A method for producing an organic hydride, comprising oxidizing the hydroxide ions at the anode electrode to generate oxygen.
PCT/JP2023/029965 2022-08-29 2023-08-21 Apparatus for producing organic hydride and method for producing organic hydride WO2024048340A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-136092 2022-08-29
JP2022136092 2022-08-29

Publications (1)

Publication Number Publication Date
WO2024048340A1 true WO2024048340A1 (en) 2024-03-07

Family

ID=90099453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029965 WO2024048340A1 (en) 2022-08-29 2023-08-21 Apparatus for producing organic hydride and method for producing organic hydride

Country Status (1)

Country Link
WO (1) WO2024048340A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200056292A1 (en) * 2018-08-20 2020-02-20 Battelle Energy Alliance, Llc Methods for electrochemical hydrogenation and methods of forming membrane electrode assemblies

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200056292A1 (en) * 2018-08-20 2020-02-20 Battelle Energy Alliance, Llc Methods for electrochemical hydrogenation and methods of forming membrane electrode assemblies

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAGESHIMA YOSUKE, MINEGISHI TSUTOMU, SUGISAKI SHO, GOTO YOSUKE, KANEKO HIROYUKI, NAKABAYASHI MAMIKO, SHIBATA NAOYA, DOMEN KAZUNARI: "Surface Protective and Catalytic Layer Consisting of RuO 2 and Pt for Stable Production of Methylcyclohexane Using Solar Energy", APPLIED MATERIALS & INTERFACES, AMERICAN CHEMICAL SOCIETY, US, vol. 10, no. 51, 26 December 2018 (2018-12-26), US , pages 44396 - 44402, XP093142983, ISSN: 1944-8244, DOI: 10.1021/acsami.8b14814 *

Similar Documents

Publication Publication Date Title
Ju et al. The role of nanosized SnO2 in Pt-based electrocatalysts for hydrogen production in methanol assisted water electrolysis
KR102471656B1 (en) Apparatus for producing organic hydride and method for producing organic hydride using same
JP6096129B2 (en) Electrochemical reduction apparatus and method for producing hydrogenated aromatic hydrocarbon compound
WO2012043086A1 (en) Device for manufacturing organic hydride
CA2497105A1 (en) Fuel cell electrode
JP7410724B2 (en) Organic hydride production equipment and organic hydride production method
KR20190077531A (en) Organic hydride producing apparatus and method for producing organic hydride
WO2018037774A1 (en) Cathode, electrolysis cell for producing organic hydride, and organic hydride production method
JP6454642B2 (en) Electrochemical reduction device
JP6086873B2 (en) Electrochemical reduction apparatus and method for producing hydrogenated aromatic hydrocarbon compound
Rana et al. Cell performance and polarization analysis on different operating conditions in anion exchange membrane-unitized regenerative fuel cells (AEM-URFCs)
WO2024048340A1 (en) Apparatus for producing organic hydride and method for producing organic hydride
RU2523004C2 (en) Electrode chamber for chemical current source, regeneration system for it, and emulsion applied
JP6373851B2 (en) Electrochemical reduction device
JP6998797B2 (en) Organic hydride manufacturing equipment, organic hydride manufacturing method and energy transportation method
KR20190083546A (en) Electrochemical hydrogenation reactor and method of hydrogenation using the same
US20150114842A1 (en) Electrochemical reduction device and method of manufacturing hydride of aromatic hydrocarbon compound or nitrogen-containing heterocyclic aromatic compound
Uhm et al. Effective Electrode Structure for the Stability of Alkaline Hydrazine Fuel Cells
WO2024034444A1 (en) Apparatus for producing organic hydride
WO2022091360A1 (en) Device for manufacturing organic hydride
WO2023176197A1 (en) Organic hydride manufacturing device
WO2022091361A1 (en) Organic hydride production apparatus, and method for forming cathode catalyst layer
WO2023176198A1 (en) Organic hydride production device
WO2024106161A1 (en) Electrolysis system and electrolysis device
KR20190125885A (en) Electrochemical dehydrogen reactor and method of dehydrogenation using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860103

Country of ref document: EP

Kind code of ref document: A1