WO2024034444A1 - Apparatus for producing organic hydride - Google Patents

Apparatus for producing organic hydride Download PDF

Info

Publication number
WO2024034444A1
WO2024034444A1 PCT/JP2023/027916 JP2023027916W WO2024034444A1 WO 2024034444 A1 WO2024034444 A1 WO 2024034444A1 JP 2023027916 W JP2023027916 W JP 2023027916W WO 2024034444 A1 WO2024034444 A1 WO 2024034444A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte membrane
water content
organic hydride
electrode
cathode
Prior art date
Application number
PCT/JP2023/027916
Other languages
French (fr)
Japanese (ja)
Inventor
篤 深澤
康太 三好
香織 高野
孝司 松岡
Original Assignee
Eneos株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eneos株式会社 filed Critical Eneos株式会社
Publication of WO2024034444A1 publication Critical patent/WO2024034444A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/03Acyclic or carbocyclic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/05Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/07Oxygen containing compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/09Nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded

Definitions

  • the present invention relates to an organic hydride manufacturing apparatus.
  • an anode electrode that generates protons from water a cathode electrode that hydrogenates an organic compound (hydrogenated product) having an unsaturated bond, and an electrolyte membrane that separates the anode electrode and the cathode electrode are used.
  • An organic hydride production apparatus having the following is known (see, for example, Patent Document 1). In this organic hydride production equipment, water is supplied to the anode electrode, a hydride is supplied to the cathode, and a current is passed between the anode and the cathode to add hydrogen to the hydride and form an organic Hydride is obtained.
  • the organic hydride production apparatus can increase the reaction rate by increasing the current density. This makes it possible to improve the production efficiency of organic hydride and downsize the device.
  • increasing current density can increase cell voltage in organic hydride production. Therefore, if a low-resistance electrolyte membrane with high water content is used to suppress the increase in cell voltage, the Faraday efficiency may decrease.
  • the present invention has been made in view of these circumstances, and one of its purposes is to provide a technology that achieves both suppression of increases in cell voltage and suppression of decreases in Faraday efficiency in the production of organic hydrides.
  • a certain embodiment of the present invention is an organic hydride production apparatus.
  • This organic hydride manufacturing device has an anode electrode that oxidizes water to generate protons, a cathode electrode that hydrogenates the hydride with protons to generate organic hydride, and an EW (Equivalent Weight) of less than 980.
  • An electrolyte membrane that is placed between the electrode and the cathode electrode and moves protons from the anode side to the cathode side, and a low water content layer that has a lower water content than the electrolyte membrane that is placed between the electrolyte membrane and the cathode electrode. Be prepared.
  • FIG. 1 is a schematic diagram of an organic hydride production system according to an embodiment.
  • FIG. 1 is a cross-sectional view of an organic hydride manufacturing apparatus.
  • FIG. 3 is a diagram showing the characteristics of electrolytic cells according to each example and each comparative example, the improvement rate of Faraday efficiency, and the amount of change in voltage.
  • FIG. 1 is a schematic diagram of an organic hydride production system 1 according to an embodiment.
  • An example organic hydride production system 1 includes an organic hydride production device 2, an anolyte supply device 4, and a catholyte supply device 6. Note that in FIG. 1, a part of the structure of the organic hydride manufacturing apparatus 2 is omitted from illustration. Moreover, although only one organic hydride manufacturing apparatus 2 is illustrated in FIG. 1, the organic hydride manufacturing system 1 may include a plurality of organic hydride manufacturing apparatuses 2. In this case, each organic hydride manufacturing apparatus 2 is stacked with the anode electrode 10 and cathode electrode 12 aligned in the same direction, and electrically connected in series. Note that the organic hydride manufacturing apparatuses 2 may be connected in parallel, or may be connected in series and connected in parallel.
  • the organic hydride production apparatus 2 is an electrolytic cell that hydrogenates a hydrogenated substance, which is a dehydrogenated product of an organic hydride, through an electrochemical reduction reaction to produce an organic hydride.
  • the organic hydride production apparatus 2 includes a membrane electrode assembly 8, a pair of plate members 16a, 16b, and a pair of gaskets 18a, 18b.
  • the membrane electrode assembly 8 includes an anode electrode 10 (anode), a cathode electrode 12 (cathode), and an electrolyte membrane 14.
  • the anode electrode 10 oxidizes water to generate protons.
  • the anode electrode 10 includes metals such as iridium (Ir), ruthenium (Ru), and platinum (Pt), or oxides of these metals, as an anode catalyst for oxidizing water.
  • the anode catalyst may be dispersed and supported on or coated on a substrate having electron conductivity.
  • the base material is made of a material whose main component is a metal such as titanium (Ti) or stainless steel (SUS). Examples of the form of the base material include a sheet of woven fabric or nonwoven fabric, a mesh, a porous sintered body, a foam, an expanded metal, and the like.
  • the cathode electrode 12 hydrogenates the hydrided substance with protons to generate an organic hydride.
  • the cathode electrode 12 contains, for example, platinum or ruthenium as a cathode catalyst for hydrogenating a substance to be hydrogenated.
  • the cathode electrode 12 includes a porous catalyst carrier supporting a cathode catalyst.
  • the catalyst carrier is made of an electronically conductive material such as porous carbon, porous metal, porous metal oxide, or the like.
  • the cathode catalyst is coated with an ionomer (cation exchange type ionomer).
  • a catalyst carrier carrying a cathode catalyst is coated with an ionomer.
  • the ionomer include perfluorosulfonic acid polymers such as Nafion (registered trademark), Flemion (registered trademark), Fumion (registered trademark), and Aciplex (registered trademark).
  • the ionomer partially covers the cathode catalyst. Thereby, the three elements (hydride, protons, and electrons) required for the electrochemical reaction at the cathode electrode 12 can be efficiently supplied to the reaction field.
  • the cathode electrode 12 of this embodiment includes a catalyst layer 12a and a diffusion layer 12b.
  • the catalyst layer 12a is arranged closer to the electrolyte membrane 14 than the diffusion layer 12b.
  • the catalyst layer 12a contains the above-mentioned cathode catalyst, catalyst carrier, and ionomer.
  • the diffusion layer 12b is in contact with the main surface of the catalyst layer 12a on the side opposite to the electrolyte membrane 14.
  • the diffusion layer 12b uniformly diffuses the hydrogenated substance supplied from the outside into the catalyst layer 12a. Further, the organic hydride generated in the catalyst layer 12a is discharged to the outside of the cathode electrode 12 via the diffusion layer 12b.
  • the diffusion layer 12b is made of a conductive material such as carbon or metal.
  • the diffusion layer 12b is a porous body such as a sintered body of fibers or particles, or a foam molded body.
  • the material constituting the diffusion layer 12b include carbon woven cloth (carbon cloth), carbon nonwoven cloth, carbon paper, and the like. Note that the diffusion layer 12b may be omitted in some cases.
  • the electrolyte membrane 14 is arranged between the anode electrode 10 and the cathode electrode 12.
  • the electrolyte membrane 14 moves protons from the anode electrode 10 side to the cathode electrode 12 side.
  • the electrolyte membrane 14, as an example, is composed of a solid polymer electrolyte membrane having proton conductivity.
  • the plate member 16a and the plate member 16b are made of metal such as stainless steel or titanium.
  • the plate member 16a is stacked on the membrane electrode assembly 8 from the anode electrode 10 side.
  • the plate member 16b is laminated on the membrane electrode assembly 8 from the cathode electrode 12 side. Therefore, the membrane electrode assembly 8 is sandwiched between the pair of plate members 16a and 16b.
  • the gap between the plate member 16a and the membrane electrode assembly 8 is sealed with a gasket 18a.
  • the gap between the plate member 16b and the membrane electrode assembly 8 is sealed with a gasket 18b.
  • the pair of plate members 16a and 16b may correspond to so-called end plates.
  • the plate member may correspond to a so-called separator.
  • An anode channel 20 is connected to the anode electrode 10.
  • the anode channel 20 supplies and discharges the anode liquid LA to and from the anode electrode 10 .
  • a groove may be provided on the main surface of the plate member 16a facing the anode electrode 10 side, and this groove may constitute the anode flow path 20.
  • a cathode channel 22 is connected to the cathode electrode 12 .
  • the cathode channel 22 supplies and discharges the catholyte LC to and from the cathode electrode 12 .
  • a groove may be provided on the main surface of the plate member 16b facing the cathode electrode 12 side, and this groove may constitute the cathode flow path 22.
  • the anode electrode 10 is supplied with the anolyte LA by the anolyte supply device 4.
  • the anolyte supply device 4 includes an anolyte tank 24, a first anode pipe 26, a second anode pipe 28, and an anode pump 30.
  • the anode solution LA is stored in the anode solution tank 24 .
  • the anolyte LA contains water to be supplied to the anode electrode 10. Examples of the anode solution LA include sulfuric acid aqueous solution, nitric acid aqueous solution, hydrochloric acid aqueous solution, pure water, ion exchange water, and the like.
  • the anolyte tank 24 is connected to the anode electrode 10 by a first anode pipe 26. One end of the first anode pipe 26 is connected to the anode liquid tank 24 , and the other end of the first anode pipe 26 is connected to the anode channel 20 .
  • An anode pump 30 is provided in the middle of the first anode pipe 26 .
  • the anode pump 30 can be configured with a known pump such as a gear pump or a cylinder pump. Note that the anolyte supply device 4 may circulate the anolyte LA using a liquid feeding device other than a pump.
  • the anolyte tank 24 is also connected to the anode electrode 10 by a second anode pipe 28 . One end of the second anode pipe 28 is connected to the anode channel 20, and the other end of the second anode pipe 28 is connected to the anode liquid tank 24.
  • the anode solution LA in the anode solution tank 24 flows into the anode electrode 10 via the first anode pipe 26 by driving the anode pump 30.
  • the anolyte LA that has flowed into the anode electrode 10 is subjected to an electrode reaction at the anode electrode 10 .
  • the anolyte LA in the anode electrode 10 is returned to the anolyte tank 24 via the second anode pipe 28 .
  • the anode liquid tank 24 also functions as a gas-liquid separation section. Oxygen gas is generated at the anode electrode 10 by an electrode reaction. Therefore, the anolyte LA discharged from the anode electrode 10 contains oxygen gas.
  • the anolyte tank 24 separates the oxygen gas in the anode solution LA from the anode solution LA and discharges it to the outside of the system.
  • the anolyte supply device 4 of this embodiment circulates the anolyte LA between the anode electrode 10 and the anolyte tank 24.
  • the configuration is not limited to this, and a configuration may be adopted in which the anolyte LA is sent out of the system from the anode electrode 10 without returning to the anolyte tank 24.
  • a catholyte LC is supplied to the cathode electrode 12 by a catholyte supply device 6 .
  • the catholyte supply device 6 includes a catholyte tank 32 , a first cathode pipe 34 , a second cathode pipe 36 , a third cathode pipe 38 , a cathode pump 40 , and a separation section 42 .
  • the catholyte tank 32 stores catholyte LC.
  • the catholyte LC contains an organic hydride raw material (hydrogenated product) to be supplied to the cathode electrode 12 .
  • the catholyte LC does not contain any organic hydride before the operation of the organic hydride production system 1 starts, and when the organic hydride generated by electrolysis is mixed in after the start of operation, the catholyte LC becomes a mixed liquid of the hydride and the organic hydride. Become.
  • the hydride and organic hydride are preferably liquid at 20°C and 1 atmosphere.
  • the hydrogenated product and the organic hydride are not particularly limited as long as they are organic compounds that can add/desorb hydrogen by reversibly causing a hydrogenation/dehydrogenation reaction.
  • hydride and organic hydride used in this embodiment acetone-isopropanol-based, benzoquinone-hydroquinone-based, aromatic hydrocarbon-based, etc. can be widely used.
  • aromatic hydrocarbons are preferred from the viewpoint of transportability during energy transport.
  • aromatic hydrocarbon-based hydrides and organic hydrides are hydrophobic.
  • the aromatic hydrocarbon compound used as the hydrogenated product is a compound containing at least one aromatic ring.
  • aromatic hydrocarbon compounds include benzene, alkylbenzene, naphthalene, alkylnaphthalene, anthracene, diphenylethane, and the like.
  • Alkylbenzenes include compounds in which 1 to 4 hydrogen atoms in an aromatic ring are substituted with a straight chain alkyl group or a branched alkyl group having 1 to 6 carbon atoms. Examples of such compounds include toluene, xylene, mesitylene, ethylbenzene, diethylbenzene, and the like.
  • Alkylnaphthalenes include compounds in which 1 to 4 hydrogen atoms in an aromatic ring are substituted with a straight chain alkyl group or a branched alkyl group having 1 to 6 carbon atoms. Examples of such compounds include methylnaphthalene. These may be used alone or in combination.
  • the hydrogenated product is preferably at least one of toluene and benzene.
  • nitrogen-containing heterocyclic aromatic compounds such as quinoline, isoquinoline, N-alkylpyrrole, N-alkylindole, and N-alkyldibenzopyrrole can also be used as the hydrogenated product.
  • the organic hydride is obtained by hydrogenating the above-mentioned hydride, and examples thereof include cyclohexane, methylcyclohexane, dimethylcyclohexane, decahydroquinoline, and the like.
  • the catholyte tank 32 is connected to the cathode electrode 12 by a first cathode pipe 34.
  • One end of the first cathode pipe 34 is connected to the catholyte tank 32, and the other end of the first cathode pipe 34 is connected to the cathode channel 22.
  • a cathode pump 40 is provided in the middle of the first cathode pipe 34 .
  • the cathode pump 40 can be configured with a known pump such as a gear pump or a cylinder pump. Note that the catholyte supply device 6 may circulate the catholyte LC using a liquid sending device other than a pump.
  • the separation section 42 is connected to the cathode electrode 12 by a second cathode pipe 36.
  • One end of the second cathode pipe 36 is connected to the cathode channel 22, and the other end of the second cathode pipe 36 is connected to the separation section 42.
  • the separation section 42 includes a known gas-liquid separator and a known oil-water separator. Further, the separation section 42 is connected to the catholyte tank 32 by a third cathode pipe 38.
  • One end of the third cathode pipe 38 is connected to the separation section 42 , and the other end of the third cathode pipe 38 is connected to the catholyte tank 32 .
  • the catholyte LC in the catholyte tank 32 flows into the cathode electrode 12 via the first cathode pipe 34 by driving the cathode pump 40 .
  • the catholyte LC that has flowed into the cathode electrode 12 is subjected to an electrode reaction at the cathode electrode 12 .
  • the catholyte LC in the cathode electrode 12 flows into the separation section 42 via the second cathode pipe 36 .
  • hydrogen gas may be generated due to side reactions. Therefore, the catholyte LC discharged from the cathode electrode 12 may contain hydrogen gas.
  • the separation unit 42 separates the hydrogen gas in the catholyte LC from the catholyte LC and discharges it out of the system. Furthermore, water moves from the anode electrode 10 to the cathode electrode 12 together with protons. Therefore, the catholyte LC discharged from the cathode electrode 12 may contain water.
  • the separation unit 42 separates water in the catholyte LC from the catholyte LC and discharges the water to the outside of the system.
  • the catholyte LC from which hydrogen gas and water have been separated is returned to the catholyte tank 32 via the third cathode pipe 38 .
  • the catholyte supply device 6 of this embodiment circulates the catholyte LC between the cathode electrode 12 and the catholyte tank 32.
  • the configuration is not limited to this, and a configuration may be adopted in which the catholyte LC is sent out of the system from the cathode electrode 12 without returning to the catholyte tank 32.
  • the electrode reaction at the anode electrode 10 and the electrode reaction at the cathode electrode 12 proceed in parallel.
  • Protons generated by electrolysis of water at the anode electrode 10 pass through the electrolyte membrane 14 together with water molecules and move to the cathode electrode 12 .
  • electrons generated by water electrolysis are supplied to the cathode electrode 12 via an external circuit.
  • the protons and electrons supplied to the cathode electrode 12 are used for hydrogenation of toluene at the cathode electrode 12. This produces methylcyclohexane.
  • the electrolysis of water and the hydrogenation reaction of the hydride can be performed in one step.
  • the production efficiency of organic hydride is more efficient than the conventional technology, which produces organic hydride through a two-step process of producing hydrogen through water electrolysis, etc., and chemically hydrogenating the substance to be hydrogenated in a reactor such as a plant. can be increased.
  • a reactor for chemical hydrogenation a high-pressure container for storing hydrogen produced by water electrolysis, etc. are not required, equipment costs can be significantly reduced.
  • the following hydrogen gas generation reaction may occur as a side reaction.
  • the amount of hydride supplied to the cathode electrode 12 becomes insufficient, this side reaction becomes more likely to occur.
  • Power is supplied to the organic hydride production apparatus 2 from an external power source (not shown).
  • an external power source (not shown).
  • the power source sends power supplied from the power supply device to the organic hydride manufacturing device 2 .
  • the power supply device can be configured with a power generation device that generates electricity using renewable energy, such as a wind power generation device or a solar power generation device.
  • the power supply device is not limited to a power generation device that uses renewable energy, and may be a grid power source, a renewable energy power generation device, a power storage device that stores power from a grid power source, etc. good. Moreover, a combination of two or more of these may be used.
  • the configuration of the organic hydride production system 1 is not limited to that described above, and the configuration of each part can be changed as appropriate.
  • FIG. 2 is a sectional view of the organic hydride manufacturing apparatus 2. As shown in FIG.
  • the organic hydride manufacturing apparatus 2 of this embodiment includes a low water content layer 44 and a high water content layer 46 in addition to the above-described configuration.
  • the electrolyte membrane 14 has an EW (Equivalent Weight) of less than 980.
  • EW is the dry mass of electrolyte per 1 mol of sulfonic acid groups in the electrolyte membrane 14. The lower the EW, the higher the water content because the electrolyte membrane 14 has more hydrophilic sulfonic acid groups.
  • the EW of the electrolyte membrane 14 is preferably 950 or less, more preferably 900 or less, and even more preferably 870 or less.
  • the electrolyte membrane 14 is made of a polymer having an EW of less than 980. Examples of polymers that can be used for the electrolyte membrane 14 include perfluorosulfonic acid polymers.
  • the water content of the electrolyte membrane 14 can be increased compared to when the EW is 980 or more. Thereby, the ion movement resistance of the electrolyte membrane 14 can be lowered. Therefore, the cell voltage in organic hydride production can be lowered.
  • the resistance of the electrolyte membrane 14 is reduced, and the current density can be increased while suppressing an increase in cell voltage.
  • the water content of the electrolyte membrane 14 is increased, the affinity of the electrolyte membrane 14 for the hydrogenated substance decreases. For this reason, it becomes difficult for the hydrophobic hydride to be supplied to the reaction field. As a result, there is a shortage of the hydride in the reaction field, making side reactions more likely to occur. Therefore, the efficiency of the electrode reaction at the cathode electrode 12, that is, the faradaic efficiency may decrease.
  • a low water content layer 44 is disposed between the electrolyte membrane 14 and the cathode electrode 12.
  • One main surface of the low water content layer 44 is in contact with the electrolyte membrane 14, and the other main surface of the low water content layer 44 is in contact with the catalyst layer 12a.
  • the low water content layer 44 has ion exchange ability, it has a lower water content (higher EW) than the electrolyte membrane 14 and therefore has higher hydrophobicity than the electrolyte membrane 14 .
  • the low water content layer 44 is made of a polymer (for example, an ionomer) having a lower water content than the polymer constituting the electrolyte membrane 14 .
  • the water content (%) in this embodiment is defined by the following formula (1).
  • the "polymer in a water-containing state" in formula (1) means, for example, a polymer after being immersed in pure water for one hour.
  • Water content (weight of water contained in polymer/weight of polymer in water-containing state) x 100
  • the method for forming the low water content layer 44 is not particularly limited, and any known method can be employed. For example, a method such as applying a polymer constituting the low water content layer 44 to the surface of the electrolyte membrane 14 or the surface of the cathode electrode 12, or pressing a thin film of the polymer to the surface of the electrolyte membrane 14 or the surface of the cathode electrode 12. It is possible to adopt
  • Examples of polymers that can be used for the low water content layer 44 include Nafion (registered trademark), Fumion (registered trademark), and the like. Note that the low water content layer 44 may or may not function as an ion exchange membrane. By lowering the water content of the low water content layer 44 than the water content of the electrolyte membrane 14, it is possible to make it easier for the hydrogenated substance to reach the reaction field. Thereby, a shortage of the hydride can be avoided and the occurrence of side reactions can be suppressed.
  • the combination of setting the EW of the electrolyte membrane 14 to less than 980 and installing the low water content layer 44 between the electrolyte membrane 14 and the cathode electrode 12 suppresses the increase in cell voltage in organic hydride production and It is possible to achieve both suppression of efficiency decline. Furthermore, since it becomes easier to increase the current density, it is possible to improve the production efficiency per hour of organic hydride. Furthermore, the organic hydride manufacturing apparatus 2 can be made smaller, and the cost of the components of the organic hydride manufacturing apparatus 2 can therefore be reduced. Furthermore, by suppressing the increase in cell voltage, it is possible to suppress the cost of measures against heat generation necessary for the organic hydride manufacturing apparatus 2.
  • a high water content layer 46 is arranged between the electrolyte membrane 14 and the anode electrode 10.
  • One main surface of the high water content layer 46 is in contact with the electrolyte membrane 14
  • the other main surface of the high water content layer 46 is in contact with the anode electrode 10 .
  • the high water content layer 46 has a higher water content (lower EW) than the electrolyte membrane 14, and therefore has higher hydrophilicity than the electrolyte membrane 14.
  • the high water content layer 46 is made of a polymer having a higher water content than the polymer constituting the electrolyte membrane 14 .
  • the method for forming the high water content layer 46 is not particularly limited, and any known method can be employed.
  • a method such as applying a polymer constituting the high water content layer 46 to the surface of the electrolyte membrane 14 or the surface of the anode electrode 10, or pressing a thin film of the polymer to the surface of the electrolyte membrane 14 or the surface of the anode electrode 10. It is possible to adopt
  • Examples of polymers that can be used for the high water content layer 46 include Aquivion (registered trademark), Fumion (registered trademark), etc., which have a higher water content than the electrolyte membrane 14.
  • Aquivion registered trademark
  • Fumion registered trademark
  • the access of water to the anode catalyst is improved, and an increase in cell voltage and a decrease in Faraday efficiency can be further suppressed.
  • the high water content layer 46 may be omitted. In this case, the electrolyte membrane 14 and the anode electrode 10 are in contact with each other.
  • the cathode electrode 12 may contain an ionomer having a lower water content than the electrolyte membrane 14.
  • low water content ionomers include Nafion (registered trademark) and the like.
  • the addition of the low water content ionomer to the cathode electrode 12 may be performed in place of the installation of the low water content layer 44, or may be performed together with the installation of the low water content layer 44. That is, the organic hydride production apparatus 2 only needs to include at least one of the low water content layer 44 and the low water content ionomer contained in the cathode electrode 12. When the organic hydride production apparatus 2 does not include the low water content layer 44, the electrolyte membrane 14 and the cathode electrode 12 are in contact with each other.
  • a water repellent layer may be provided between the low water content layer 44 and the cathode catalyst layer 12a.
  • a water-repellent layer is a layer made of a material obtained by adding a water-repellent fluororesin such as FEP (a joint combination of tetrafluoroethylene and hexafluoropropylene) to Ketjenblack.
  • the water-repellent layer can be formed by a known method such as applying a dispersion of the material to the surface of the catalyst layer 12a. Thereby, it is possible to make it easier for the hydride to reach the reaction field, and it is possible to improve Faraday efficiency.
  • Embodiments may be specified by the items described below.
  • Organic hydride production equipment (2) [Second item] A high water content layer (46) having a higher water content than the electrolyte membrane (14) is arranged between the electrolyte membrane (14) and the anode electrode (10).
  • the organic hydride production apparatus (2) according to the first item.
  • Example 1 A polyfluorosulfonic acid-based cation exchange membrane (Aquivion (registered trademark) E87-05S, manufactured by Solvay) was prepared as an electrolyte membrane.
  • the EW of this electrolyte membrane is 870, and the membrane thickness is 50 ⁇ m.
  • the water content of the electrolyte membrane was measured according to the following procedure. That is, an electrolyte membrane cut into 2 cm square pieces was dried in a dryer for 24 hours. After drying, the weight of the electrolyte membrane was measured. Subsequently, the dried electrolyte membrane was immersed in pure water for 1 hour. Thereafter, the water adhering to the surface of the electrolyte membrane was wiped off, and the weight of the water-impregnated electrolyte membrane was measured. The weight of water contained in the electrolyte membrane was obtained from the difference between the weight of the electrolyte membrane after drying and the weight of the electrolyte membrane containing water. Then, the water content (%) of the electrolyte membrane was calculated based on the following equation (2).
  • Water content (weight of water contained in electrolyte membrane/weight of electrolyte membrane in water-containing state) x 100
  • a polyfluorosulfonic acid-based cation exchange ionomer (Nafion (registered trademark) D2020CS, EW: 1100, manufactured by DuPont) was applied to one surface of the electrolyte membrane to form a low water content layer.
  • the thickness of the low water content layer was 10 ⁇ m.
  • the water content of the low water content layer was measured using the following procedure. That is, the weight of a 12 cm square aluminum foil was measured, and the weight per 2 cm square of aluminum foil was calculated. This aluminum foil was spray coated with an ionomer, and a 10 ⁇ m thick low water content layer was laminated thereon. Aluminum foil with a low water content layer (hereinafter referred to as laminated aluminum foil) cut into 2 cm square pieces was dried in a dryer for 24 hours. After drying, the weight of the laminated aluminum foil was measured. Subsequently, the dried laminated aluminum foil was immersed in pure water for 1 hour.
  • laminated aluminum foil Aluminum foil with a low water content layer cut into 2 cm square pieces was dried in a dryer for 24 hours. After drying, the weight of the laminated aluminum foil was measured. Subsequently, the dried laminated aluminum foil was immersed in pure water for 1 hour.
  • PtRu/C catalyst (TEC61E54, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.), polyfluorosulfonic acid-based cation exchange ionomer (Nafion (registered trademark) D2020CS, EW: 1100, manufactured by DuPont), pure water, 1-propanol (manufactured by Wako) ) to prepare a cathode catalyst ink.
  • the catalyst loading density of the catalyst ink was 1 mg/cm 2 and the ionomer/carbon ratio (I/C) was 0.5.
  • the prepared cathode catalyst ink was applied to the surface of the low water content layer to form a cathode catalyst layer.
  • a DSE (Dimensional Stable Electrode) electrode manufactured by De Nora Permelec having a Ti substrate coated with IrO 2 was prepared. This DSE electrode was then laminated on the other surface of the electrolyte membrane. As a result, an electrolytic cell (organic hydride production apparatus) according to Example 1 was obtained.
  • Toluene as a catholyte was passed through the cathode of the obtained organic hydride manufacturing apparatus at a flow rate of 20 mL/min. Further, a 1 mol/L sulfuric acid aqueous solution as an anode solution was passed through the anode side at a flow rate of 60 mL/min. Then, constant current electrolysis was performed at a temperature of 60° C. and a current density of 1 A/cm 2 . In addition, the voltage during constant current electrolysis was measured. Then, the amount of change in voltage with respect to the voltage in Comparative Example 2, which will be described later, was calculated.
  • Example 2 In the same manner as in Example 1, except that instead of applying the ionomer, a thin film of the ionomer was pressed onto the electrolyte membrane to form a low water content layer, electrolytic cell production, constant current electrolysis, and voltage change and improvement rate were carried out. The calculation was carried out.
  • Example 3 Example 1 except that Fumion (registered trademark) FSLA-1020 (EW: 960-1000, manufactured by Fumatec) was used instead of Nafion (registered trademark) D2020CS as the polyfluorosulfonic acid-based cation exchange ionomer. Similarly, an electrolytic cell was fabricated, constant current electrolysis was performed, and the amount of voltage change and improvement rate were calculated.
  • Fumion registered trademark
  • FSLA-1020 EW: 960-1000, manufactured by Fumatec
  • Nafion registered trademark
  • D2020CS polyfluorosulfonic acid-based cation exchange ionomer
  • Example 4 Fabrication of an electrolytic cell, constant current electrolysis, and calculation of voltage change and improvement rate were carried out in the same manner as in Example 1 except that a high water content layer was provided between the electrolyte membrane and the anode electrode.
  • the high water content layer was formed by applying a polyfluorosulfonic acid-based cation exchange ionomer (Fumion (registered trademark) FSLA-710, EW: 710-740, manufactured by Fumatec) to the other surface of the electrolyte membrane.
  • the thickness of the high water content layer was 10 ⁇ m.
  • the water content of the high water content layer was measured using the same procedure as for the low water content layer.
  • Example 5 In the same manner as in Example 1 except that a water-repellent layer was provided between the low water content layer and the cathode catalyst layer, an electrolytic cell was prepared, constant current electrolysis was performed, and the voltage change amount and improvement rate were calculated.
  • the water-repellent layer is Nafion (made by Lion Corporation) containing FEP (120-JRB, made by Mitsui Chemours Fluoro Products Co., Ltd.) and Ketjen black (EC600JD, made by Lion Corporation) on the surface of the low water content layer facing away from the electrolyte membrane. (registered trademark) by applying a dispersion liquid.
  • the thickness of the water-repellent layer was 10 ⁇ m, and I/C was 0.5.
  • Example 1 An electrolytic cell was prepared in the same manner as in Example 1, except that Aquivion (registered trademark) E98-05S was used instead of Aquivion (registered trademark) E87-05S as the electrolyte membrane, and the low water content layer was not provided. The fabrication, constant current electrolysis, and calculation of the improvement rate were carried out. The EW of this electrolyte membrane is 980.
  • FIG. 3 is a diagram showing the characteristics of the electrolytic cells according to each example and each comparative example, the improvement rate of Faraday efficiency, and the amount of change in voltage.
  • the electrolyte membrane has an EW of less than 980 but does not have a low water content layer
  • the electrolyte membrane has an EW of less than 980 and has a low water content layer.
  • the Faraday efficiency was improved by more than 20%.
  • the improvement rate was higher than that of Comparative Example 1 in which the EW of the electrolyte membrane was 980.
  • Example 5 having a water-repellent layer
  • the Faraday efficiency was improved more than in Examples 1-4 not having a water-repellent layer.
  • the increase in voltage compared to Comparative Example 2 could be suppressed to 25 mV or less.
  • Example 4 having a high water content layer the voltage could be further reduced.
  • the present invention can be utilized in an organic hydride manufacturing device.
  • Organic hydride production equipment 10. Anode electrode, 12. Cathode electrode, 14. Electrolyte membrane, 44. Low water content layer, 46. High water content layer.

Abstract

An apparatus 2 for producing an organic hydride according to the present invention is provided with: an anode electrode 10 which generates protons by oxidizing water; a cathode electrode 12 which generates an organic hydride by hydrogenating an object to be hydrogenated with protons; an electrolyte membrane 14 which has an EW of less than 980 and is arranged between the anode electrode 10 and the cathode electrode 12 so as to transfer protons from the anode electrode 10 side to the cathode electrode 12 side; and a low moisture content layer 44 which is arranged between the electrolyte membrane 14 and the cathode electrode 12, while having a lower moisture content than the electrolyte membrane 14.

Description

有機ハイドライド製造装置Organic hydride production equipment
 本発明は、有機ハイドライド製造装置に関する。 The present invention relates to an organic hydride manufacturing apparatus.
 近年、エネルギーの生成過程での二酸化炭素排出量を抑制するために、太陽光、風力、水力、地熱発電等で得られる再生可能エネルギーの利用が期待されている。一例としては、再生可能エネルギー由来の電力で水電解を行って、水素を生成するシステムが考案されている。また、再生可能エネルギー由来の水素を大規模輸送、貯蔵するためのエネルギーキャリアとして、有機ハイドライドシステムが注目されている。 In recent years, in order to suppress carbon dioxide emissions during the energy generation process, there are expectations for the use of renewable energy obtained from solar power, wind power, hydropower, geothermal power generation, etc. As an example, a system has been devised that generates hydrogen by electrolyzing water using electricity derived from renewable energy. In addition, organic hydride systems are attracting attention as energy carriers for large-scale transportation and storage of hydrogen derived from renewable energy.
 有機ハイドライドの製造技術に関して、従来、水からプロトンを生成するアノード電極と、不飽和結合を有する有機化合物(被水素化物)を水素化するカソード電極と、アノード電極およびカソード電極を隔てる電解質膜とを有する有機ハイドライド製造装置が知られている(例えば、特許文献1参照)。この有機ハイドライド製造装置では、アノード電極に水を供給し、カソード電極に被水素化物を供給し、アノード電極とカソード電極との間に電流を流すことで、被水素化物に水素が付加されて有機ハイドライドが得られる。 Regarding organic hydride manufacturing technology, conventionally, an anode electrode that generates protons from water, a cathode electrode that hydrogenates an organic compound (hydrogenated product) having an unsaturated bond, and an electrolyte membrane that separates the anode electrode and the cathode electrode are used. An organic hydride production apparatus having the following is known (see, for example, Patent Document 1). In this organic hydride production equipment, water is supplied to the anode electrode, a hydride is supplied to the cathode, and a current is passed between the anode and the cathode to add hydrogen to the hydride and form an organic Hydride is obtained.
国際公開第2012/091128号International Publication No. 2012/091128
 本発明者らは、有機ハイドライド製造装置について鋭意検討を重ねた結果、以下の課題を認識するに至った。すなわち、有機ハイドライド製造装置は、電流密度を上げることで反応速度を上げることができる。これにより、有機ハイドライドの製造効率の向上や装置の小型化が可能となる。しかしながら、電流密度を上げると有機ハイドライド製造におけるセル電圧が上昇し得る。そこで、セル電圧の上昇を抑制するために含水率の高い低抵抗な電解質膜を使用すると、今度はファラデー効率が低下し得る。 As a result of intensive studies on organic hydride production equipment, the present inventors have come to recognize the following problems. That is, the organic hydride production apparatus can increase the reaction rate by increasing the current density. This makes it possible to improve the production efficiency of organic hydride and downsize the device. However, increasing current density can increase cell voltage in organic hydride production. Therefore, if a low-resistance electrolyte membrane with high water content is used to suppress the increase in cell voltage, the Faraday efficiency may decrease.
 本発明はこうした状況に鑑みてなされたものであり、その目的の1つは、有機ハイドライド製造におけるセル電圧の上昇抑制とファラデー効率の低下抑制との両立を図る技術を提供することにある。 The present invention has been made in view of these circumstances, and one of its purposes is to provide a technology that achieves both suppression of increases in cell voltage and suppression of decreases in Faraday efficiency in the production of organic hydrides.
 本発明のある態様は、有機ハイドライド製造装置である。この有機ハイドライド製造装置は、水を酸化してプロトンを生成するアノード電極と、被水素化物をプロトンで水素化して有機ハイドライドを生成するカソード電極と、EW(Equivalent Weight)が980未満であり、アノード電極およびカソード電極の間に配置され、アノード電極側からカソード電極側にプロトンを移動させる電解質膜と、電解質膜およびカソード電極の間に配置される電解質膜より含水率の低い低含水層と、を備える。 A certain embodiment of the present invention is an organic hydride production apparatus. This organic hydride manufacturing device has an anode electrode that oxidizes water to generate protons, a cathode electrode that hydrogenates the hydride with protons to generate organic hydride, and an EW (Equivalent Weight) of less than 980. An electrolyte membrane that is placed between the electrode and the cathode electrode and moves protons from the anode side to the cathode side, and a low water content layer that has a lower water content than the electrolyte membrane that is placed between the electrolyte membrane and the cathode electrode. Be prepared.
 以上の構成要素の任意の組合せ、本開示の表現を方法、装置、システムなどの間で変換したものもまた、本開示の態様として有効である。 Arbitrary combinations of the above components and expressions of the present disclosure converted between methods, devices, systems, etc. are also effective as aspects of the present disclosure.
 本発明によれば、有機ハイドライド製造におけるセル電圧の上昇抑制とファラデー効率の低下抑制との両立を図ることができる。 According to the present invention, it is possible to simultaneously suppress an increase in cell voltage and suppress a decrease in Faraday efficiency in organic hydride production.
実施の形態に係る有機ハイドライド製造システムの模式図である。1 is a schematic diagram of an organic hydride production system according to an embodiment. 有機ハイドライド製造装置の断面図である。FIG. 1 is a cross-sectional view of an organic hydride manufacturing apparatus. 各実施例および各比較例に係る電解セルの特徴と、ファラデー効率の改善率および電圧の変化量とを示す図である。FIG. 3 is a diagram showing the characteristics of electrolytic cells according to each example and each comparative example, the improvement rate of Faraday efficiency, and the amount of change in voltage.
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。実施の形態は、本発明の技術的範囲を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。したがって、実施の形態の内容は、請求の範囲に規定された発明の思想を逸脱しない範囲において、構成要素の変更、追加、削除等の多くの設計変更が可能である。設計変更が加えられた新たな実施の形態は、組み合わされる実施の形態および変形それぞれの効果をあわせもつ。実施の形態では、このような設計変更が可能な内容に関して、「本実施の形態の」、「本実施の形態では」等の表記を付して強調しているが、そのような表記のない内容でも設計変更が許容される。実施の形態に記述される構成要素の任意の組み合わせも、本発明の態様として有効である。各図面に示される同一又は同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図に示す各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。また、本明細書または請求項中に「第1」、「第2」等の用語が用いられる場合には、この用語はいかなる順序や重要度を表すものでもなく、ある構成と他の構成とを区別するためのものである。また、各図面において実施の形態を説明する上で重要ではない部材の一部は省略して表示する。 Hereinafter, the present invention will be explained based on preferred embodiments with reference to the drawings. The embodiments are illustrative rather than limiting the technical scope of the present invention, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention. . Therefore, the content of the embodiments may be subject to many design changes, such as changes, additions, and deletions of constituent elements, without departing from the spirit of the invention defined in the claims. A new embodiment with a design change has the effects of each of the combined embodiments and modifications. In the embodiments, contents that allow such design changes are emphasized by adding expressions such as "in this embodiment" or "in this embodiment," but Design changes are also allowed in the content. Any combination of the components described in the embodiments is also effective as an aspect of the present invention. Identical or equivalent components, members, and processes shown in each drawing are designated by the same reference numerals, and redundant explanations will be omitted as appropriate. Further, the scale and shape of each part shown in each figure are set for convenience to facilitate explanation, and should not be interpreted in a limited manner unless otherwise mentioned. Furthermore, when terms such as "first" and "second" are used in this specification or the claims, these terms do not indicate any order or importance, and the terms do not indicate any order or degree of importance; This is to distinguish between the two. Further, in each drawing, some members that are not important for explaining the embodiments are omitted.
 図1は、実施の形態に係る有機ハイドライド製造システム1の模式図である。一例としての有機ハイドライド製造システム1は、有機ハイドライド製造装置2と、アノード液供給装置4と、カソード液供給装置6とを備える。なお、図1では、有機ハイドライド製造装置2の構造の一部を省略して図示している。また、図1には1つの有機ハイドライド製造装置2のみを図示しているが、有機ハイドライド製造システム1は、複数の有機ハイドライド製造装置2を備えてもよい。この場合、各有機ハイドライド製造装置2は、例えばアノード電極10およびカソード電極12の並びが同じになるように向きが揃えられて積層され、電気的に直列接続される。なお、各有機ハイドライド製造装置2は、並列接続されてもよいし、直列接続と並列接続とが組み合わされてもよい。 FIG. 1 is a schematic diagram of an organic hydride production system 1 according to an embodiment. An example organic hydride production system 1 includes an organic hydride production device 2, an anolyte supply device 4, and a catholyte supply device 6. Note that in FIG. 1, a part of the structure of the organic hydride manufacturing apparatus 2 is omitted from illustration. Moreover, although only one organic hydride manufacturing apparatus 2 is illustrated in FIG. 1, the organic hydride manufacturing system 1 may include a plurality of organic hydride manufacturing apparatuses 2. In this case, each organic hydride manufacturing apparatus 2 is stacked with the anode electrode 10 and cathode electrode 12 aligned in the same direction, and electrically connected in series. Note that the organic hydride manufacturing apparatuses 2 may be connected in parallel, or may be connected in series and connected in parallel.
 有機ハイドライド製造装置2は、有機ハイドライドの脱水素化体である被水素化物を電気化学還元反応により水素化して、有機ハイドライドを生成する電解セルである。有機ハイドライド製造装置2は、膜電極接合体8と、一対のプレート部材16a,16bと、一対のガスケット18a,18bとを備える。膜電極接合体8は、アノード電極10(陽極)と、カソード電極12(陰極)と、電解質膜14とを備える。 The organic hydride production apparatus 2 is an electrolytic cell that hydrogenates a hydrogenated substance, which is a dehydrogenated product of an organic hydride, through an electrochemical reduction reaction to produce an organic hydride. The organic hydride production apparatus 2 includes a membrane electrode assembly 8, a pair of plate members 16a, 16b, and a pair of gaskets 18a, 18b. The membrane electrode assembly 8 includes an anode electrode 10 (anode), a cathode electrode 12 (cathode), and an electrolyte membrane 14.
 アノード電極10は、水を酸化してプロトンを生成する。アノード電極10は、水を酸化するアノード触媒として例えばイリジウム(Ir)やルテニウム(Ru)、白金(Pt)等の金属、またはこれらの金属酸化物を有する。アノード触媒は、電子伝導性を有する基材に分散担持またはコーティングされていてもよい。基材は、例えばチタン(Ti)やステンレス鋼(SUS)等の金属を主成分とする材料で構成される。基材の形態としては、織布や不織布のシート、メッシュ、多孔性の焼結体、発泡成型体(フォーム)、エキスパンドメタル等が例示される。 The anode electrode 10 oxidizes water to generate protons. The anode electrode 10 includes metals such as iridium (Ir), ruthenium (Ru), and platinum (Pt), or oxides of these metals, as an anode catalyst for oxidizing water. The anode catalyst may be dispersed and supported on or coated on a substrate having electron conductivity. The base material is made of a material whose main component is a metal such as titanium (Ti) or stainless steel (SUS). Examples of the form of the base material include a sheet of woven fabric or nonwoven fabric, a mesh, a porous sintered body, a foam, an expanded metal, and the like.
 カソード電極12は、被水素化物をプロトンで水素化して有機ハイドライドを生成する。カソード電極12は、被水素化物を水素化するカソード触媒として例えば白金やルテニウム等を含有する。また好ましくは、カソード電極12は、カソード触媒を担持する多孔質の触媒担体を含有する。触媒担体は、例えば多孔性カーボン、多孔性金属、多孔性金属酸化物等の電子伝導性材料で構成される。 The cathode electrode 12 hydrogenates the hydrided substance with protons to generate an organic hydride. The cathode electrode 12 contains, for example, platinum or ruthenium as a cathode catalyst for hydrogenating a substance to be hydrogenated. Preferably, the cathode electrode 12 includes a porous catalyst carrier supporting a cathode catalyst. The catalyst carrier is made of an electronically conductive material such as porous carbon, porous metal, porous metal oxide, or the like.
 また、カソード触媒は、アイオノマー(カチオン交換型のアイオノマー)で被覆される。例えば、カソード触媒を担持した状態にある触媒担体がアイオノマーで被覆される。アイオノマーとしては、例えばNafion(登録商標)、Flemion(登録商標)、Fumion(登録商標)、Aciplex(登録商標)などのパーフルオロスルホン酸ポリマー等が例示される。アイオノマーは、カソード触媒を部分的に被覆していることが好ましい。これにより、カソード電極12における電気化学反応に必要な3要素(被水素化物、プロトン、電子)を効率的に反応場に供給することができる。 Additionally, the cathode catalyst is coated with an ionomer (cation exchange type ionomer). For example, a catalyst carrier carrying a cathode catalyst is coated with an ionomer. Examples of the ionomer include perfluorosulfonic acid polymers such as Nafion (registered trademark), Flemion (registered trademark), Fumion (registered trademark), and Aciplex (registered trademark). Preferably, the ionomer partially covers the cathode catalyst. Thereby, the three elements (hydride, protons, and electrons) required for the electrochemical reaction at the cathode electrode 12 can be efficiently supplied to the reaction field.
 本実施の形態のカソード電極12は、触媒層12aと、拡散層12bとを有する。触媒層12aは、拡散層12bよりも電解質膜14側に配置される。触媒層12aは、上述したカソード触媒、触媒担体およびアイオノマーを含有する。拡散層12bは、触媒層12aの電解質膜14とは反対側の主表面に接している。拡散層12bは、外部から供給される被水素化物を触媒層12aに均一に拡散させる。また、触媒層12aで生成される有機ハイドライドは、拡散層12bを介してカソード電極12の外部へ排出される。拡散層12bは、カーボンや金属等の導電性材料で構成される。また、拡散層12bは、繊維あるいは粒子の焼結体、発泡成形体といった多孔体である。拡散層12bを構成する材料としては、カーボンの織布(カーボンクロス)、カーボンの不織布、カーボンペーパー等が例示される。なお、拡散層12bは省略される場合もある。 The cathode electrode 12 of this embodiment includes a catalyst layer 12a and a diffusion layer 12b. The catalyst layer 12a is arranged closer to the electrolyte membrane 14 than the diffusion layer 12b. The catalyst layer 12a contains the above-mentioned cathode catalyst, catalyst carrier, and ionomer. The diffusion layer 12b is in contact with the main surface of the catalyst layer 12a on the side opposite to the electrolyte membrane 14. The diffusion layer 12b uniformly diffuses the hydrogenated substance supplied from the outside into the catalyst layer 12a. Further, the organic hydride generated in the catalyst layer 12a is discharged to the outside of the cathode electrode 12 via the diffusion layer 12b. The diffusion layer 12b is made of a conductive material such as carbon or metal. Further, the diffusion layer 12b is a porous body such as a sintered body of fibers or particles, or a foam molded body. Examples of the material constituting the diffusion layer 12b include carbon woven cloth (carbon cloth), carbon nonwoven cloth, carbon paper, and the like. Note that the diffusion layer 12b may be omitted in some cases.
 電解質膜14は、アノード電極10およびカソード電極12の間に配置される。電解質膜14は、アノード電極10側からカソード電極12側にプロトンを移動させる。一例としての電解質膜14は、プロトン伝導性を有する固体高分子形電解質膜で構成される。 The electrolyte membrane 14 is arranged between the anode electrode 10 and the cathode electrode 12. The electrolyte membrane 14 moves protons from the anode electrode 10 side to the cathode electrode 12 side. The electrolyte membrane 14, as an example, is composed of a solid polymer electrolyte membrane having proton conductivity.
 プレート部材16aおよびプレート部材16bは、例えばステンレス鋼、チタン等の金属で構成される。プレート部材16aは、アノード電極10側から膜電極接合体8に積層される。プレート部材16bは、カソード電極12側から膜電極接合体8に積層される。したがって、膜電極接合体8は、一対のプレート部材16a,16bで挟まれる。プレート部材16aと膜電極接合体8との隙間はガスケット18aで封止される。プレート部材16bと膜電極接合体8との隙間はガスケット18bで封止される。有機ハイドライド製造システム1が有機ハイドライド製造装置2を1つのみ備える場合、一対のプレート部材16a,16bはいわゆるエンドプレートに相当し得る。有機ハイドライド製造システム1が複数の有機ハイドライド製造装置2を備え、プレート部材16aあるいはプレート部材16bの隣に他の有機ハイドライド製造装置2が並ぶ場合、当該プレート部材はいわゆるセパレータに相当し得る。 The plate member 16a and the plate member 16b are made of metal such as stainless steel or titanium. The plate member 16a is stacked on the membrane electrode assembly 8 from the anode electrode 10 side. The plate member 16b is laminated on the membrane electrode assembly 8 from the cathode electrode 12 side. Therefore, the membrane electrode assembly 8 is sandwiched between the pair of plate members 16a and 16b. The gap between the plate member 16a and the membrane electrode assembly 8 is sealed with a gasket 18a. The gap between the plate member 16b and the membrane electrode assembly 8 is sealed with a gasket 18b. When the organic hydride production system 1 includes only one organic hydride production device 2, the pair of plate members 16a and 16b may correspond to so-called end plates. When the organic hydride production system 1 includes a plurality of organic hydride production apparatuses 2 and another organic hydride production apparatus 2 is arranged next to the plate member 16a or plate member 16b, the plate member may correspond to a so-called separator.
 アノード電極10には、アノード流路20が接続される。アノード流路20は、アノード液LAをアノード電極10に給排する。なお、プレート部材16aにおけるアノード電極10側を向く主表面に溝が設けられ、この溝がアノード流路20を構成してもよい。 An anode channel 20 is connected to the anode electrode 10. The anode channel 20 supplies and discharges the anode liquid LA to and from the anode electrode 10 . Note that a groove may be provided on the main surface of the plate member 16a facing the anode electrode 10 side, and this groove may constitute the anode flow path 20.
 カソード電極12には、カソード流路22が接続される。カソード流路22は、カソード液LCをカソード電極12に給排する。なお、プレート部材16bにおけるカソード電極12側を向く主表面に溝が設けられ、この溝がカソード流路22を構成してもよい。 A cathode channel 22 is connected to the cathode electrode 12 . The cathode channel 22 supplies and discharges the catholyte LC to and from the cathode electrode 12 . Note that a groove may be provided on the main surface of the plate member 16b facing the cathode electrode 12 side, and this groove may constitute the cathode flow path 22.
 アノード電極10には、アノード液供給装置4によってアノード液LAが供給される。アノード液供給装置4は、アノード液タンク24、第1アノード配管26、第2アノード配管28およびアノードポンプ30を有する。アノード液タンク24には、アノード液LAが貯留される。アノード液LAは、アノード電極10に供給する水を含む。アノード液LAとしては、硫酸水溶液、硝酸水溶液、塩酸水溶液、純水、イオン交換水等が例示される。 The anode electrode 10 is supplied with the anolyte LA by the anolyte supply device 4. The anolyte supply device 4 includes an anolyte tank 24, a first anode pipe 26, a second anode pipe 28, and an anode pump 30. The anode solution LA is stored in the anode solution tank 24 . The anolyte LA contains water to be supplied to the anode electrode 10. Examples of the anode solution LA include sulfuric acid aqueous solution, nitric acid aqueous solution, hydrochloric acid aqueous solution, pure water, ion exchange water, and the like.
 アノード液タンク24は、第1アノード配管26によってアノード電極10に接続される。第1アノード配管26の一端はアノード液タンク24に接続され、第1アノード配管26の他端はアノード流路20に接続される。第1アノード配管26の途中には、アノードポンプ30が設けられる。アノードポンプ30は、例えばギアポンプやシリンダーポンプ等の公知のポンプで構成することができる。なお、アノード液供給装置4は、ポンプ以外の送液装置を用いてアノード液LAを流通させてもよい。アノード液タンク24は、第2アノード配管28によってもアノード電極10に接続される。第2アノード配管28の一端はアノード流路20に接続され、第2アノード配管28の他端はアノード液タンク24に接続される。 The anolyte tank 24 is connected to the anode electrode 10 by a first anode pipe 26. One end of the first anode pipe 26 is connected to the anode liquid tank 24 , and the other end of the first anode pipe 26 is connected to the anode channel 20 . An anode pump 30 is provided in the middle of the first anode pipe 26 . The anode pump 30 can be configured with a known pump such as a gear pump or a cylinder pump. Note that the anolyte supply device 4 may circulate the anolyte LA using a liquid feeding device other than a pump. The anolyte tank 24 is also connected to the anode electrode 10 by a second anode pipe 28 . One end of the second anode pipe 28 is connected to the anode channel 20, and the other end of the second anode pipe 28 is connected to the anode liquid tank 24.
 アノード液タンク24中のアノード液LAは、アノードポンプ30の駆動により、第1アノード配管26を経由してアノード電極10に流入する。アノード電極10に流入したアノード液LAは、アノード電極10での電極反応に供される。アノード電極10内のアノード液LAは、第2アノード配管28を経由してアノード液タンク24に戻される。一例としてアノード液タンク24は、気液分離部としても機能する。アノード電極10では電極反応によって酸素ガスが発生する。このため、アノード電極10から排出されるアノード液LAには、酸素ガスが混入している。アノード液タンク24は、アノード液LA中の酸素ガスをアノード液LAから分離して系外に排出する。 The anode solution LA in the anode solution tank 24 flows into the anode electrode 10 via the first anode pipe 26 by driving the anode pump 30. The anolyte LA that has flowed into the anode electrode 10 is subjected to an electrode reaction at the anode electrode 10 . The anolyte LA in the anode electrode 10 is returned to the anolyte tank 24 via the second anode pipe 28 . As an example, the anode liquid tank 24 also functions as a gas-liquid separation section. Oxygen gas is generated at the anode electrode 10 by an electrode reaction. Therefore, the anolyte LA discharged from the anode electrode 10 contains oxygen gas. The anolyte tank 24 separates the oxygen gas in the anode solution LA from the anode solution LA and discharges it to the outside of the system.
 本実施の形態のアノード液供給装置4は、アノード電極10とアノード液タンク24との間でアノード液LAを循環させている。しかしながら、この構成に限定されず、アノード液LAをアノード液タンク24に戻さずにアノード電極10から系外に送る構成であってもよい。 The anolyte supply device 4 of this embodiment circulates the anolyte LA between the anode electrode 10 and the anolyte tank 24. However, the configuration is not limited to this, and a configuration may be adopted in which the anolyte LA is sent out of the system from the anode electrode 10 without returning to the anolyte tank 24.
 カソード電極12には、カソード液供給装置6によってカソード液LCが供給される。カソード液供給装置6は、カソード液タンク32、第1カソード配管34、第2カソード配管36、第3カソード配管38、カソードポンプ40および分離部42を有する。カソード液タンク32には、カソード液LCが貯留される。カソード液LCは、カソード電極12に供給する有機ハイドライド原料(被水素化物)を含む。一例としてカソード液LCは、有機ハイドライド製造システム1の運転開始前は有機ハイドライドを含まず、運転開始後に電解によって生成された有機ハイドライドが混入することで、被水素化物と有機ハイドライドとの混合液となる。被水素化物および有機ハイドライドは、好ましくは20℃、1気圧で液体である。 A catholyte LC is supplied to the cathode electrode 12 by a catholyte supply device 6 . The catholyte supply device 6 includes a catholyte tank 32 , a first cathode pipe 34 , a second cathode pipe 36 , a third cathode pipe 38 , a cathode pump 40 , and a separation section 42 . The catholyte tank 32 stores catholyte LC. The catholyte LC contains an organic hydride raw material (hydrogenated product) to be supplied to the cathode electrode 12 . As an example, the catholyte LC does not contain any organic hydride before the operation of the organic hydride production system 1 starts, and when the organic hydride generated by electrolysis is mixed in after the start of operation, the catholyte LC becomes a mixed liquid of the hydride and the organic hydride. Become. The hydride and organic hydride are preferably liquid at 20°C and 1 atmosphere.
 被水素化物および有機ハイドライドは、水素化反応/脱水素反応を可逆的に起こすことにより、水素を添加/脱離できる有機化合物であれば特に限定されない。本実施の形態で用いられる被水素化物および有機ハイドライドとしては、アセトン-イソプロパノール系、ベンゾキノン-ヒドロキノン系、芳香族炭化水素系等を広く用いることができる。これらの中で、エネルギー輸送時の運搬性等の観点から、芳香族炭化水素系が好ましい。一般に芳香族炭化水素系の被水素化物および有機ハイドライドは、疎水性である。 The hydrogenated product and the organic hydride are not particularly limited as long as they are organic compounds that can add/desorb hydrogen by reversibly causing a hydrogenation/dehydrogenation reaction. As the hydride and organic hydride used in this embodiment, acetone-isopropanol-based, benzoquinone-hydroquinone-based, aromatic hydrocarbon-based, etc. can be widely used. Among these, aromatic hydrocarbons are preferred from the viewpoint of transportability during energy transport. Generally, aromatic hydrocarbon-based hydrides and organic hydrides are hydrophobic.
 被水素化物として用いられる芳香族炭化水素化合物は、少なくとも1つの芳香環を含む化合物である。芳香族炭化水素化合物の例としては、例えば、ベンゼン、アルキルベンゼン、ナフタレン、アルキルナフタレン、アントラセン、ジフェニルエタン等が挙げられる。アルキルベンゼンには、芳香環の1~4の水素原子が炭素数1~6の直鎖アルキル基または分岐アルキル基で置換された化合物が含まれる。このような化合物としては、例えばトルエン、キシレン、メシチレン、エチルベンゼン、ジエチルベンゼン等が挙げられる。アルキルナフタレンには、芳香環の1~4の水素原子が炭素数1~6の直鎖アルキル基または分岐アルキル基で置換された化合物が含まれる。このような化合物としては、例えばメチルナフタレン等が挙げられる。これらは単独で用いられても、組み合わせて用いられてもよい。 The aromatic hydrocarbon compound used as the hydrogenated product is a compound containing at least one aromatic ring. Examples of aromatic hydrocarbon compounds include benzene, alkylbenzene, naphthalene, alkylnaphthalene, anthracene, diphenylethane, and the like. Alkylbenzenes include compounds in which 1 to 4 hydrogen atoms in an aromatic ring are substituted with a straight chain alkyl group or a branched alkyl group having 1 to 6 carbon atoms. Examples of such compounds include toluene, xylene, mesitylene, ethylbenzene, diethylbenzene, and the like. Alkylnaphthalenes include compounds in which 1 to 4 hydrogen atoms in an aromatic ring are substituted with a straight chain alkyl group or a branched alkyl group having 1 to 6 carbon atoms. Examples of such compounds include methylnaphthalene. These may be used alone or in combination.
 被水素化物は、好ましくはトルエンおよびベンゼンの少なくとも一方である。なお、キノリン、イソキノリン、N-アルキルピロール、N-アルキルインドール、N-アルキルジベンゾピロール等の含窒素複素環式芳香族化合物も、被水素化物として用いることができる。有機ハイドライドは、上述の被水素化物が水素化されたものであり、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、デカヒドロキノリン等が例示される。 The hydrogenated product is preferably at least one of toluene and benzene. Note that nitrogen-containing heterocyclic aromatic compounds such as quinoline, isoquinoline, N-alkylpyrrole, N-alkylindole, and N-alkyldibenzopyrrole can also be used as the hydrogenated product. The organic hydride is obtained by hydrogenating the above-mentioned hydride, and examples thereof include cyclohexane, methylcyclohexane, dimethylcyclohexane, decahydroquinoline, and the like.
 カソード液タンク32は、第1カソード配管34によってカソード電極12に接続される。第1カソード配管34の一端はカソード液タンク32に接続され、第1カソード配管34の他端はカソード流路22に接続される。第1カソード配管34の途中には、カソードポンプ40が設けられる。カソードポンプ40は、例えばギアポンプやシリンダーポンプ等の公知のポンプで構成することができる。なお、カソード液供給装置6は、ポンプ以外の送液装置を用いてカソード液LCを流通させてもよい。 The catholyte tank 32 is connected to the cathode electrode 12 by a first cathode pipe 34. One end of the first cathode pipe 34 is connected to the catholyte tank 32, and the other end of the first cathode pipe 34 is connected to the cathode channel 22. A cathode pump 40 is provided in the middle of the first cathode pipe 34 . The cathode pump 40 can be configured with a known pump such as a gear pump or a cylinder pump. Note that the catholyte supply device 6 may circulate the catholyte LC using a liquid sending device other than a pump.
 分離部42は、第2カソード配管36によってカソード電極12に接続される。第2カソード配管36の一端はカソード流路22に接続され、第2カソード配管36の他端は分離部42に接続される。分離部42は、公知の気液分離器および公知の油水分離器を有する。また、分離部42は、第3カソード配管38によってカソード液タンク32に接続される。第3カソード配管38の一端は分離部42に接続され、第3カソード配管38の他端はカソード液タンク32に接続される。 The separation section 42 is connected to the cathode electrode 12 by a second cathode pipe 36. One end of the second cathode pipe 36 is connected to the cathode channel 22, and the other end of the second cathode pipe 36 is connected to the separation section 42. The separation section 42 includes a known gas-liquid separator and a known oil-water separator. Further, the separation section 42 is connected to the catholyte tank 32 by a third cathode pipe 38. One end of the third cathode pipe 38 is connected to the separation section 42 , and the other end of the third cathode pipe 38 is connected to the catholyte tank 32 .
 カソード液タンク32中のカソード液LCは、カソードポンプ40の駆動により、第1カソード配管34を経由してカソード電極12に流入する。カソード電極12に流入したカソード液LCは、カソード電極12での電極反応に供される。カソード電極12内のカソード液LCは、第2カソード配管36を経由して分離部42に流入する。カソード電極12では、副反応によって水素ガスが発生する場合がある。したがって、カソード電極12から排出されるカソード液LCには、水素ガスが混入している場合がある。分離部42は、カソード液LC中の水素ガスをカソード液LCから分離して系外に排出する。また、カソード電極12には、アノード電極10からプロトンとともに水が移動してくる。したがって、カソード電極12から排出されるカソード液LCには、水が混入している場合がある。分離部42は、カソード液LC中の水をカソード液LCから分離して系外に排出する。水素ガスおよび水が分離されたカソード液LCは、第3カソード配管38を経由してカソード液タンク32に戻される。 The catholyte LC in the catholyte tank 32 flows into the cathode electrode 12 via the first cathode pipe 34 by driving the cathode pump 40 . The catholyte LC that has flowed into the cathode electrode 12 is subjected to an electrode reaction at the cathode electrode 12 . The catholyte LC in the cathode electrode 12 flows into the separation section 42 via the second cathode pipe 36 . At the cathode electrode 12, hydrogen gas may be generated due to side reactions. Therefore, the catholyte LC discharged from the cathode electrode 12 may contain hydrogen gas. The separation unit 42 separates the hydrogen gas in the catholyte LC from the catholyte LC and discharges it out of the system. Furthermore, water moves from the anode electrode 10 to the cathode electrode 12 together with protons. Therefore, the catholyte LC discharged from the cathode electrode 12 may contain water. The separation unit 42 separates water in the catholyte LC from the catholyte LC and discharges the water to the outside of the system. The catholyte LC from which hydrogen gas and water have been separated is returned to the catholyte tank 32 via the third cathode pipe 38 .
 本実施の形態のカソード液供給装置6は、カソード電極12とカソード液タンク32との間でカソード液LCを循環させている。しかしながら、この構成に限定されず、カソード液LCをカソード液タンク32に戻さずにカソード電極12から系外に送る構成であってもよい。 The catholyte supply device 6 of this embodiment circulates the catholyte LC between the cathode electrode 12 and the catholyte tank 32. However, the configuration is not limited to this, and a configuration may be adopted in which the catholyte LC is sent out of the system from the cathode electrode 12 without returning to the catholyte tank 32.
 有機ハイドライド製造装置2において、被水素化物の一例としてトルエン(TL)を用いた場合に起こる反応は、以下の通りである。被水素化物としてトルエンを用いた場合、得られる有機ハイドライドはメチルシクロヘキサン(MCH)である。
<アノード電極での電極反応>
 3HO→3/2O+6H+6e
<カソード電極での電極反応>
 TL+6H+6e→MCH
The reaction that occurs when toluene (TL) is used as an example of the hydrogenated substance in the organic hydride production apparatus 2 is as follows. When toluene is used as the hydride, the resulting organic hydride is methylcyclohexane (MCH).
<Electrode reaction at the anode electrode>
3H 2 O→3/2O 2 +6H + +6e -
<Electrode reaction at the cathode electrode>
TL+6H + +6e - →MCH
 すなわち、アノード電極10での電極反応と、カソード電極12での電極反応とが並行して進行する。アノード電極10における水の電気分解により生じたプロトンは、水分子とともに電解質膜14を通過してカソード電極12に移動する。また、水の電気分解により生じた電子は、外部回路を介してカソード電極12に供給される。カソード電極12に供給されたプロトンおよび電子は、カソード電極12においてトルエンの水素化に用いられる。これにより、メチルシクロヘキサンが生成される。 That is, the electrode reaction at the anode electrode 10 and the electrode reaction at the cathode electrode 12 proceed in parallel. Protons generated by electrolysis of water at the anode electrode 10 pass through the electrolyte membrane 14 together with water molecules and move to the cathode electrode 12 . Further, electrons generated by water electrolysis are supplied to the cathode electrode 12 via an external circuit. The protons and electrons supplied to the cathode electrode 12 are used for hydrogenation of toluene at the cathode electrode 12. This produces methylcyclohexane.
 したがって、本実施の形態に係る有機ハイドライド製造システム1によれば、水の電気分解と被水素化物の水素化反応とを1ステップで行うことができる。このため、水電解等で水素を製造するプロセスと、被水素化物をプラント等のリアクタで化学水素化するプロセスとの2段階プロセスで有機ハイドライドを製造する従来技術に比べて、有機ハイドライドの製造効率を高めることができる。また、化学水素化を行うリアクタや、水電解等で製造された水素を貯留するための高圧容器等が不要であるため、大幅な設備コストの低減を図ることができる。 Therefore, according to the organic hydride production system 1 according to the present embodiment, the electrolysis of water and the hydrogenation reaction of the hydride can be performed in one step. For this reason, the production efficiency of organic hydride is more efficient than the conventional technology, which produces organic hydride through a two-step process of producing hydrogen through water electrolysis, etc., and chemically hydrogenating the substance to be hydrogenated in a reactor such as a plant. can be increased. Furthermore, since a reactor for chemical hydrogenation, a high-pressure container for storing hydrogen produced by water electrolysis, etc. are not required, equipment costs can be significantly reduced.
 カソード電極12では、主反応である被水素化物の水素化反応とともに、副反応として以下に示す水素ガスの発生反応が起こる場合がある。カソード電極12への被水素化物の供給量が不足するにつれて、この副反応は生じやすくなる。
<カソード電極で生じ得る副反応>
 2H+2e→H
In the cathode electrode 12, in addition to the main reaction, which is a hydrogenation reaction of the hydride, the following hydrogen gas generation reaction may occur as a side reaction. As the amount of hydride supplied to the cathode electrode 12 becomes insufficient, this side reaction becomes more likely to occur.
<Side reactions that may occur at the cathode electrode>
2H + +2e - →H 2
 有機ハイドライド製造装置2には、外部の電源(図示せず)から電力が供給される。電源から有機ハイドライド製造装置2に電力が供給されると、有機ハイドライド製造装置2のアノード電極10とカソード電極12との間に所定のセル電圧が印加され、電解電流が流れる。電源は、電力供給装置から供給される電力を有機ハイドライド製造装置2に送る。電力供給装置は、再生可能エネルギーを利用して発電する発電装置、例えば風力発電装置や太陽光発電装置等で構成することができる。なお、電力供給装置は、再生可能エネルギーを利用する発電装置に限定されず、系統電源であってもよいし、再生可能エネルギー発電装置や系統電源からの電力を蓄電した蓄電装置等であってもよい。また、これらの2つ以上の組み合わせであってもよい。また、有機ハイドライド製造システム1の構成は上述したものに限定されず、各部の構成を適宜変更可能である。 Power is supplied to the organic hydride production apparatus 2 from an external power source (not shown). When power is supplied from the power source to the organic hydride manufacturing apparatus 2, a predetermined cell voltage is applied between the anode electrode 10 and the cathode electrode 12 of the organic hydride manufacturing apparatus 2, and an electrolytic current flows. The power source sends power supplied from the power supply device to the organic hydride manufacturing device 2 . The power supply device can be configured with a power generation device that generates electricity using renewable energy, such as a wind power generation device or a solar power generation device. Note that the power supply device is not limited to a power generation device that uses renewable energy, and may be a grid power source, a renewable energy power generation device, a power storage device that stores power from a grid power source, etc. good. Moreover, a combination of two or more of these may be used. Further, the configuration of the organic hydride production system 1 is not limited to that described above, and the configuration of each part can be changed as appropriate.
 続いて、有機ハイドライド製造装置2の構造について詳細に説明する。図2は、有機ハイドライド製造装置2の断面図である。本実施の形態の有機ハイドライド製造装置2は、上述した構成に加えて低含水層44と、高含水層46とを備える。 Next, the structure of the organic hydride manufacturing apparatus 2 will be explained in detail. FIG. 2 is a sectional view of the organic hydride manufacturing apparatus 2. As shown in FIG. The organic hydride manufacturing apparatus 2 of this embodiment includes a low water content layer 44 and a high water content layer 46 in addition to the above-described configuration.
 電解質膜14は、EW(Equivalent Weight)が980未満である。EWとは、電解質膜14中のスルホン酸基1molあたりの電解質の乾燥質量である。EWが低い程、電解質膜14は親水的なスルホン酸基を多く有するため、含水率が向上する。電解質膜14のEWは、好ましくは950以下であり、より好ましくは900以下であり、さらに好ましくは870以下である。例えば電解質膜14は、EWが980未満であるポリマーで構成される。電解質膜14に使用可能なポリマーとしては、パーフルオロスルホン酸ポリマー等が例示される。電解質膜14のEWを980未満に下げることで、EWが980以上である場合に比べて、電解質膜14の含水率を上げることができる。これにより、電解質膜14のイオン移動抵抗を下げることができる。よって、有機ハイドライド製造におけるセル電圧を下げることができる。 The electrolyte membrane 14 has an EW (Equivalent Weight) of less than 980. EW is the dry mass of electrolyte per 1 mol of sulfonic acid groups in the electrolyte membrane 14. The lower the EW, the higher the water content because the electrolyte membrane 14 has more hydrophilic sulfonic acid groups. The EW of the electrolyte membrane 14 is preferably 950 or less, more preferably 900 or less, and even more preferably 870 or less. For example, the electrolyte membrane 14 is made of a polymer having an EW of less than 980. Examples of polymers that can be used for the electrolyte membrane 14 include perfluorosulfonic acid polymers. By lowering the EW of the electrolyte membrane 14 to less than 980, the water content of the electrolyte membrane 14 can be increased compared to when the EW is 980 or more. Thereby, the ion movement resistance of the electrolyte membrane 14 can be lowered. Therefore, the cell voltage in organic hydride production can be lowered.
 したがって、電解質膜14の含水率を上げることで、電解質膜14の抵抗が低減し、セル電圧の上昇を抑制しながら電流密度を上げることができる。一方で、電解質膜14の含水率を上げると、電解質膜14の被水素化物に対する親和性が低下する。このため、疎水性の被水素化物が反応場に供給され難くなる。この結果、反応場において被水素化物が不足して副反応が生じやすくなる。よって、カソード電極12での電極反応の効率、つまりファラデー効率が低下し得る。 Therefore, by increasing the water content of the electrolyte membrane 14, the resistance of the electrolyte membrane 14 is reduced, and the current density can be increased while suppressing an increase in cell voltage. On the other hand, when the water content of the electrolyte membrane 14 is increased, the affinity of the electrolyte membrane 14 for the hydrogenated substance decreases. For this reason, it becomes difficult for the hydrophobic hydride to be supplied to the reaction field. As a result, there is a shortage of the hydride in the reaction field, making side reactions more likely to occur. Therefore, the efficiency of the electrode reaction at the cathode electrode 12, that is, the faradaic efficiency may decrease.
 これに対し本実施の形態では、電解質膜14およびカソード電極12の間に低含水層44が配置される。低含水層44の一方の主表面は電解質膜14に接し、低含水層44の他方の主表面は触媒層12aに接する。低含水層44は、イオン交換能を持つ場合は、電解質膜14より含水率が低く(EWが高い)、したがって電解質膜14より疎水性が高い。例えば低含水層44は、電解質膜14を構成するポリマーより含水率が低いポリマー(例えばアイオノマー)で構成される。本実施の形態における含水率(%)は、以下の式(1)で定義される。式(1)における「含水状態のポリマー」とは、例えば純水中に1時間浸漬した後のポリマーを意味する。
 (1)含水率=(ポリマーに含まれる水の重量/含水状態のポリマーの重量)×100
In contrast, in this embodiment, a low water content layer 44 is disposed between the electrolyte membrane 14 and the cathode electrode 12. One main surface of the low water content layer 44 is in contact with the electrolyte membrane 14, and the other main surface of the low water content layer 44 is in contact with the catalyst layer 12a. When the low water content layer 44 has ion exchange ability, it has a lower water content (higher EW) than the electrolyte membrane 14 and therefore has higher hydrophobicity than the electrolyte membrane 14 . For example, the low water content layer 44 is made of a polymer (for example, an ionomer) having a lower water content than the polymer constituting the electrolyte membrane 14 . The water content (%) in this embodiment is defined by the following formula (1). The "polymer in a water-containing state" in formula (1) means, for example, a polymer after being immersed in pure water for one hour.
(1) Water content = (weight of water contained in polymer/weight of polymer in water-containing state) x 100
 低含水層44の形成方法は特に限定されず、公知の方法を採用することができる。例えば、低含水層44を構成するポリマーを電解質膜14の表面あるいはカソード電極12の表面に塗布したり、当該ポリマーの薄膜を電解質膜14の表面あるいはカソード電極12の表面に圧着したりするといった方法を採用可能である。 The method for forming the low water content layer 44 is not particularly limited, and any known method can be employed. For example, a method such as applying a polymer constituting the low water content layer 44 to the surface of the electrolyte membrane 14 or the surface of the cathode electrode 12, or pressing a thin film of the polymer to the surface of the electrolyte membrane 14 or the surface of the cathode electrode 12. It is possible to adopt
 低含水層44に使用可能なポリマーとしては、Nafion(登録商標)、Fumion(登録商標)等が例示される。なお、低含水層44は、イオン交換膜として機能してもよいし、機能しなくてもよい。低含水層44の含水率を電解質膜14の含水率より下げることで、被水素化物を反応場に到達させやすくすることができる。これにより、被水素化物の不足を回避して、副反応の発生を抑制することができる。 Examples of polymers that can be used for the low water content layer 44 include Nafion (registered trademark), Fumion (registered trademark), and the like. Note that the low water content layer 44 may or may not function as an ion exchange membrane. By lowering the water content of the low water content layer 44 than the water content of the electrolyte membrane 14, it is possible to make it easier for the hydrogenated substance to reach the reaction field. Thereby, a shortage of the hydride can be avoided and the occurrence of side reactions can be suppressed.
 つまり、電解質膜14のEWを980未満にすることと、電解質膜14およびカソード電極12の間に低含水層44を設置することとの組み合わせにより、有機ハイドライド製造におけるセル電圧の上昇抑制と、ファラデー効率の低下抑制との両立を図ることができる。また、電流密度を上昇させやすくなるため、有機ハイドライドの時間当たりの製造効率の向上を図ることができる。また、有機ハイドライド製造装置2の小型化等を図ることができ、よって有機ハイドライド製造装置2の部材コストの削減を図ることができる。また、セル電圧の上昇を抑えることで、有機ハイドライド製造装置2に必要な発熱対策にかかるコストを抑えることができる。 In other words, the combination of setting the EW of the electrolyte membrane 14 to less than 980 and installing the low water content layer 44 between the electrolyte membrane 14 and the cathode electrode 12 suppresses the increase in cell voltage in organic hydride production and It is possible to achieve both suppression of efficiency decline. Furthermore, since it becomes easier to increase the current density, it is possible to improve the production efficiency per hour of organic hydride. Furthermore, the organic hydride manufacturing apparatus 2 can be made smaller, and the cost of the components of the organic hydride manufacturing apparatus 2 can therefore be reduced. Furthermore, by suppressing the increase in cell voltage, it is possible to suppress the cost of measures against heat generation necessary for the organic hydride manufacturing apparatus 2.
 また、本実施の形態では、電解質膜14およびアノード電極10の間に高含水層46が配置される。高含水層46の一方の主表面は電解質膜14に接し、高含水層46の他方の主表面はアノード電極10に接する。高含水層46は、電解質膜14より含水率が高く(EWが低い)、したがって電解質膜14より親水性が高い。例えば高含水層46は、電解質膜14を構成するポリマーより含水率が高いポリマーで構成される。高含水層46の形成方法は特に限定されず、公知の方法を採用することができる。例えば、高含水層46を構成するポリマーを電解質膜14の表面あるいはアノード電極10の表面に塗布したり、当該ポリマーの薄膜を電解質膜14の表面あるいはアノード電極10の表面に圧着したりするといった方法を採用可能である。 Furthermore, in this embodiment, a high water content layer 46 is arranged between the electrolyte membrane 14 and the anode electrode 10. One main surface of the high water content layer 46 is in contact with the electrolyte membrane 14 , and the other main surface of the high water content layer 46 is in contact with the anode electrode 10 . The high water content layer 46 has a higher water content (lower EW) than the electrolyte membrane 14, and therefore has higher hydrophilicity than the electrolyte membrane 14. For example, the high water content layer 46 is made of a polymer having a higher water content than the polymer constituting the electrolyte membrane 14 . The method for forming the high water content layer 46 is not particularly limited, and any known method can be employed. For example, a method such as applying a polymer constituting the high water content layer 46 to the surface of the electrolyte membrane 14 or the surface of the anode electrode 10, or pressing a thin film of the polymer to the surface of the electrolyte membrane 14 or the surface of the anode electrode 10. It is possible to adopt
 高含水層46に使用可能なポリマーとしては、電解質膜14よりも含水率の高いAquivion(登録商標)、Fumion(登録商標)等が例示される。電解質膜14とアノード電極10との間に高含水層46を介在させることで、アノード触媒の水のアクセスが良化し、セル電圧の上昇とファラデー効率の低下とをより抑制することができる。なお、高含水層46は省略されてもよい。この場合、電解質膜14とアノード電極10とが互いに接する。 Examples of polymers that can be used for the high water content layer 46 include Aquivion (registered trademark), Fumion (registered trademark), etc., which have a higher water content than the electrolyte membrane 14. By interposing the high water content layer 46 between the electrolyte membrane 14 and the anode electrode 10, the access of water to the anode catalyst is improved, and an increase in cell voltage and a decrease in Faraday efficiency can be further suppressed. Note that the high water content layer 46 may be omitted. In this case, the electrolyte membrane 14 and the anode electrode 10 are in contact with each other.
(変形例)
 上述した実施の形態に係る有機ハイドライド製造装置2には、以下の変形例を挙げることができる。すなわち、カソード電極12には、電解質膜14より含水率の低いアイオノマーが含有されてもよい。このような低含水アイオノマーとしては、Nafion(登録商標)等が例示される。カソード電極12に低含水アイオノマーを添加することで、低含水層44を設置する場合と同様に被水素化物を反応場に到達させやすくでき、副反応の発生を抑制することができる。よって、低含水層44と同様の効果を奏することができる。
(Modified example)
The following modification examples can be given to the organic hydride manufacturing apparatus 2 according to the embodiment described above. That is, the cathode electrode 12 may contain an ionomer having a lower water content than the electrolyte membrane 14. Examples of such low water content ionomers include Nafion (registered trademark) and the like. By adding a low water content ionomer to the cathode electrode 12, as in the case of installing the low water content layer 44, it is possible to make it easier for the hydride to reach the reaction field, and it is possible to suppress the occurrence of side reactions. Therefore, the same effect as the low water content layer 44 can be achieved.
 なお、カソード電極12への低含水アイオノマーの添加は、低含水層44の設置に代えて行われてもよいし、低含水層44の設置とともに行われてもよい。つまり、有機ハイドライド製造装置2は、低含水層44と、カソード電極12に含有される低含水アイオノマーとの少なくとも一方を備えていればよい。有機ハイドライド製造装置2が低含水層44を備えない場合、電解質膜14とカソード電極12とが互いに接する。 Note that the addition of the low water content ionomer to the cathode electrode 12 may be performed in place of the installation of the low water content layer 44, or may be performed together with the installation of the low water content layer 44. That is, the organic hydride production apparatus 2 only needs to include at least one of the low water content layer 44 and the low water content ionomer contained in the cathode electrode 12. When the organic hydride production apparatus 2 does not include the low water content layer 44, the electrolyte membrane 14 and the cathode electrode 12 are in contact with each other.
 また、低含水層44とカソードの触媒層12aとの間に、撥水層(疎水層)が設けられてもよい。このような撥水層としては、FEP(テトラフルオロエチレンとヘキサフルオロプロピレンの共同合体)等の撥水性を有するフッ素樹脂をケッチェンブラックに添加した材料で構成される層が例示される。撥水層は、例えば当該材料の分散液を触媒層12aの表面に塗布するといった公知の方法で形成することができる。これにより、被水素化物を反応場により到達させやすくすることができ、ファラデー効率の向上を図ることができる。 Furthermore, a water repellent layer (hydrophobic layer) may be provided between the low water content layer 44 and the cathode catalyst layer 12a. An example of such a water-repellent layer is a layer made of a material obtained by adding a water-repellent fluororesin such as FEP (a joint combination of tetrafluoroethylene and hexafluoropropylene) to Ketjenblack. The water-repellent layer can be formed by a known method such as applying a dispersion of the material to the surface of the catalyst layer 12a. Thereby, it is possible to make it easier for the hydride to reach the reaction field, and it is possible to improve Faraday efficiency.
 実施の形態は、以下に記載する項目によって特定されてもよい。
[第1項目]
 水を酸化してプロトンを生成するアノード電極(10)と、
 被水素化物をプロトンで水素化して有機ハイドライドを生成するカソード電極(12)と、
 EW(Equivalent Weight)が980未満であり、アノード電極(10)およびカソード電極(12)の間に配置され、アノード電極(10)側からカソード電極(12)側にプロトンを移動させる電解質膜(14)と、
 電解質膜(14)およびカソード電極(12)の間に配置される電解質膜(14)より含水率の低い低含水層(44)と、を備える、
有機ハイドライド製造装置(2)。
[第2項目]
 電解質膜(14)およびアノード電極(10)の間に配置される電解質膜(14)より含水率の高い高含水層(46)を備える、
第1項目に記載の有機ハイドライド製造装置(2)。
Embodiments may be specified by the items described below.
[First item]
an anode electrode (10) that oxidizes water to generate protons;
a cathode electrode (12) that hydrogenates a hydride with protons to generate an organic hydride;
An electrolyte membrane (14) having an EW (Equivalent Weight) of less than 980, disposed between the anode electrode (10) and the cathode electrode (12), and transferring protons from the anode electrode (10) side to the cathode electrode (12) side. )and,
A low water content layer (44) having a lower water content than the electrolyte membrane (14) disposed between the electrolyte membrane (14) and the cathode electrode (12),
Organic hydride production equipment (2).
[Second item]
A high water content layer (46) having a higher water content than the electrolyte membrane (14) is arranged between the electrolyte membrane (14) and the anode electrode (10).
The organic hydride production apparatus (2) according to the first item.
 以下、本発明の実施例を説明するが、これら実施例は、本発明を好適に説明するための例示に過ぎず、なんら本発明を限定するものではない。 Examples of the present invention will be described below, but these examples are merely illustrative to suitably explain the present invention, and are not intended to limit the present invention in any way.
(実施例1)
 電解質膜として、ポリフルオロスルホン酸系カチオン交換膜(Aquivion(登録商標)E87-05S、ソルベイ社製)を用意した。この電解質膜のEWは870であり、膜厚は50μmである。
(Example 1)
A polyfluorosulfonic acid-based cation exchange membrane (Aquivion (registered trademark) E87-05S, manufactured by Solvay) was prepared as an electrolyte membrane. The EW of this electrolyte membrane is 870, and the membrane thickness is 50 μm.
 電解質膜の含水率を以下の手順で測定した。すなわち、2cm角に切り出した電解質膜を乾燥機で24時間乾燥させた。乾燥後に電解質膜の重量を測定した。続いて、乾燥させた電解質膜を純水中に1時間浸漬させた。その後、電解質膜の表面に付着した水分を拭き取り、水を含ませた電解質膜の重量を測定した。乾燥後の電解質膜の重量と、水を含ませた電解質膜の重量との差から、電解質膜に含まれる水の重量を得た。そして、以下の式(2)に基づいて電解質膜の含水率(%)を算出した。
 (2)含水率=(電解質膜に含まれる水の重量/含水状態の電解質膜の重量)×100
The water content of the electrolyte membrane was measured according to the following procedure. That is, an electrolyte membrane cut into 2 cm square pieces was dried in a dryer for 24 hours. After drying, the weight of the electrolyte membrane was measured. Subsequently, the dried electrolyte membrane was immersed in pure water for 1 hour. Thereafter, the water adhering to the surface of the electrolyte membrane was wiped off, and the weight of the water-impregnated electrolyte membrane was measured. The weight of water contained in the electrolyte membrane was obtained from the difference between the weight of the electrolyte membrane after drying and the weight of the electrolyte membrane containing water. Then, the water content (%) of the electrolyte membrane was calculated based on the following equation (2).
(2) Water content = (weight of water contained in electrolyte membrane/weight of electrolyte membrane in water-containing state) x 100
 ポリフルオロスルホン酸系カチオン交換型アイオノマー(Nafion(登録商標)D2020CS、EW:1100、デュポン社製)を電解質膜の一方の表面に塗布して、低含水層を形成した。低含水層の厚みは10μmとした。 A polyfluorosulfonic acid-based cation exchange ionomer (Nafion (registered trademark) D2020CS, EW: 1100, manufactured by DuPont) was applied to one surface of the electrolyte membrane to form a low water content layer. The thickness of the low water content layer was 10 μm.
 低含水層の含水率を以下の手順で測定した。すなわち、12cm角のアルミ箔の重量を測定して、アルミ箔2cm角当たりの重量を算出した。このアルミ箔にアイオノマーをスプレー塗布し、厚さ10μmの低含水層を積層した。2cm角に切り出した低含水層付きアルミ箔(以下では、積層アルミ箔という)を乾燥機で24時間乾燥させた。乾燥後に積層アルミ箔の重量を測定した。続いて、乾燥させた積層アルミ箔を純水中に1時間浸漬させた。その後、積層アルミ箔の表面に付着した水分を拭き取り、低含水層に水を含ませた積層アルミ箔の重量を測定した。乾燥後の積層アルミ箔の重量と、水を含ませた積層アルミ箔の重量との差から、低含水層に含まれる水の重量を得た。また、水を含ませた積層アルミ箔の重量と、アルミ箔2cm角当たりの重量との差から、含水状態の低含水層の重量を得た。そして、以下の式(3)に基づいて低含水層の含水率(%)を算出した。
 (3)含水率=(低含水層に含まれる水の重量/含水状態の低含水層の重量)×100
The water content of the low water content layer was measured using the following procedure. That is, the weight of a 12 cm square aluminum foil was measured, and the weight per 2 cm square of aluminum foil was calculated. This aluminum foil was spray coated with an ionomer, and a 10 μm thick low water content layer was laminated thereon. Aluminum foil with a low water content layer (hereinafter referred to as laminated aluminum foil) cut into 2 cm square pieces was dried in a dryer for 24 hours. After drying, the weight of the laminated aluminum foil was measured. Subsequently, the dried laminated aluminum foil was immersed in pure water for 1 hour. Thereafter, the moisture adhering to the surface of the laminated aluminum foil was wiped off, and the weight of the laminated aluminum foil with the low water content layer soaked with water was measured. The weight of water contained in the low water content layer was obtained from the difference between the weight of the laminated aluminum foil after drying and the weight of the laminated aluminum foil soaked with water. Furthermore, the weight of the low water content layer in a water-containing state was obtained from the difference between the weight of the laminated aluminum foil impregnated with water and the weight per 2 cm square of aluminum foil. Then, the water content (%) of the low water content layer was calculated based on the following equation (3).
(3) Moisture content = (weight of water contained in low water content layer/weight of low water content layer in water content state) x 100
 PtRu/C触媒(TEC61E54、田中貴金属工業社製)、ポリフルオロスルホン酸系カチオン交換型アイオノマー(Nafion(登録商標)D2020CS、EW:1100、デュポン社製)、純水、1-プロパノール(Wako社製)を混合し、カソード触媒インクを調製した。触媒インクの触媒担持密度は1mg/cm、アイオノマー/カーボン比(I/C)は0.5とした。調製したカソード触媒インクを低含水層の表面に塗布して、カソード触媒層を形成した。 PtRu/C catalyst (TEC61E54, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.), polyfluorosulfonic acid-based cation exchange ionomer (Nafion (registered trademark) D2020CS, EW: 1100, manufactured by DuPont), pure water, 1-propanol (manufactured by Wako) ) to prepare a cathode catalyst ink. The catalyst loading density of the catalyst ink was 1 mg/cm 2 and the ionomer/carbon ratio (I/C) was 0.5. The prepared cathode catalyst ink was applied to the surface of the low water content layer to form a cathode catalyst layer.
 アノード電極として、Ti基板上にIrOを被覆したDSE(Dimensionally Stable Electrode)電極(デノラ・ペルメレック社製)を用意した。そして、このDSE電極を電解質膜の他方の表面に積層した。これにより、実施例1に係る電解セル(有機ハイドライド製造装置)を得た。 As an anode electrode, a DSE (Dimensional Stable Electrode) electrode (manufactured by De Nora Permelec) having a Ti substrate coated with IrO 2 was prepared. This DSE electrode was then laminated on the other surface of the electrolyte membrane. As a result, an electrolytic cell (organic hydride production apparatus) according to Example 1 was obtained.
 得られた有機ハイドライド製造装置のカソードに、カソード液としてのトルエンを流速20mL/分で流通させた。また、アノード側にアノード液としての1mol/L硫酸水溶液を流速60mL/分で流通させた。そして、温度60℃、電流密度1A/cmで定電流電解を実施した。また、定電流電解時の電圧を計測した。そして、後述する比較例2における電圧に対する電圧の変化量を算出した。また、定電流電解で消費した電気量と有機ハイドライドの生成量とから、ファラデー効率(F効率)を算出した。そして、後述する比較例2におけるファラデー効率に対するファラデー効率の改善率(%)を以下の式(4)に基づいて算出した。
 (4)改善率=[1-(100-実施例のF効率)/(100-比較例2のF効率)]×100
Toluene as a catholyte was passed through the cathode of the obtained organic hydride manufacturing apparatus at a flow rate of 20 mL/min. Further, a 1 mol/L sulfuric acid aqueous solution as an anode solution was passed through the anode side at a flow rate of 60 mL/min. Then, constant current electrolysis was performed at a temperature of 60° C. and a current density of 1 A/cm 2 . In addition, the voltage during constant current electrolysis was measured. Then, the amount of change in voltage with respect to the voltage in Comparative Example 2, which will be described later, was calculated. Furthermore, Faraday efficiency (F efficiency) was calculated from the amount of electricity consumed in constant current electrolysis and the amount of organic hydride produced. Then, the improvement rate (%) of Faraday efficiency with respect to the Faraday efficiency in Comparative Example 2, which will be described later, was calculated based on the following equation (4).
(4) Improvement rate = [1-(100-F efficiency of Example)/(100-F efficiency of Comparative Example 2)]×100
(実施例2)
 アイオノマーの塗布に代えてアイオノマーの薄膜を電解質膜に圧着して低含水層を形成した点を除いて実施例1と同様に、電解セルの作製、定電流電解、ならびに電圧変化量および改善率の算出を実施した。
(Example 2)
In the same manner as in Example 1, except that instead of applying the ionomer, a thin film of the ionomer was pressed onto the electrolyte membrane to form a low water content layer, electrolytic cell production, constant current electrolysis, and voltage change and improvement rate were carried out. The calculation was carried out.
(実施例3)
 ポリフルオロスルホン酸系カチオン交換型アイオノマーとして、Nafion(登録商標)D2020CSに代えてFumion(登録商標)FSLA-1020(EW:960-1000、フマテック社製)を用いた点を除いて実施例1と同様に、電解セルの作製、定電流電解、ならびに電圧変化量および改善率の算出を実施した。
(Example 3)
Example 1 except that Fumion (registered trademark) FSLA-1020 (EW: 960-1000, manufactured by Fumatec) was used instead of Nafion (registered trademark) D2020CS as the polyfluorosulfonic acid-based cation exchange ionomer. Similarly, an electrolytic cell was fabricated, constant current electrolysis was performed, and the amount of voltage change and improvement rate were calculated.
(実施例4)
 電解質膜とアノード電極との間に高含水層を設けた点を除いて実施例1と同様に、電解セルの作製、定電流電解、ならびに電圧変化量および改善率の算出を実施した。高含水層は、電解質膜の他方の表面に、ポリフルオロスルホン酸系カチオン交換型アイオノマー(Fumion(登録商標)FSLA-710、EW:710-740、フマテック社製)を塗布することで形成した。高含水層の厚みは10μmとした。また、高含水層の含水率を低含水層の場合と同じ手順で測定した。
(Example 4)
Fabrication of an electrolytic cell, constant current electrolysis, and calculation of voltage change and improvement rate were carried out in the same manner as in Example 1 except that a high water content layer was provided between the electrolyte membrane and the anode electrode. The high water content layer was formed by applying a polyfluorosulfonic acid-based cation exchange ionomer (Fumion (registered trademark) FSLA-710, EW: 710-740, manufactured by Fumatec) to the other surface of the electrolyte membrane. The thickness of the high water content layer was 10 μm. In addition, the water content of the high water content layer was measured using the same procedure as for the low water content layer.
(実施例5)
 低含水層とカソード触媒層との間に撥水層を設けた点を除いて実施例1と同様に、電解セルの作製、定電流電解、ならびに電圧変化量および改善率の算出を実施した。撥水層は、電解質膜とは反対側を向く低含水層の表面に、FEP(120-JRB、三井ケマーズフロロプロダクツ社製)入りケッチェンブラック(EC600JD、ライオン社製)を添加したNafion(登録商標)分散液を塗布することで形成した。撥水層の厚みは10μm、I/Cは0.5とした。
(Example 5)
In the same manner as in Example 1 except that a water-repellent layer was provided between the low water content layer and the cathode catalyst layer, an electrolytic cell was prepared, constant current electrolysis was performed, and the voltage change amount and improvement rate were calculated. The water-repellent layer is Nafion (made by Lion Corporation) containing FEP (120-JRB, made by Mitsui Chemours Fluoro Products Co., Ltd.) and Ketjen black (EC600JD, made by Lion Corporation) on the surface of the low water content layer facing away from the electrolyte membrane. (registered trademark) by applying a dispersion liquid. The thickness of the water-repellent layer was 10 μm, and I/C was 0.5.
(比較例1)
 電解質膜として、Aquivion(登録商標)E87-05Sに代えてAquivion(登録商標)E98-05Sを用いた点と、低含水層を設けなかった点とを除いて実施例1と同様に、電解セルの作製、定電流電解、および改善率の算出を実施した。この電解質膜のEWは980である。
(Comparative example 1)
An electrolytic cell was prepared in the same manner as in Example 1, except that Aquivion (registered trademark) E98-05S was used instead of Aquivion (registered trademark) E87-05S as the electrolyte membrane, and the low water content layer was not provided. The fabrication, constant current electrolysis, and calculation of the improvement rate were carried out. The EW of this electrolyte membrane is 980.
(比較例2)
 低含水層を設けなかった点を除いて実施例1と同様に、電解セルの作製、定電流電解、ならびに電圧およびファラデー効率の算出を実施した。
(Comparative example 2)
Production of an electrolytic cell, constant current electrolysis, and calculation of voltage and Faraday efficiency were carried out in the same manner as in Example 1 except that the low water content layer was not provided.
 図3は、各実施例および各比較例に係る電解セルの特徴と、ファラデー効率の改善率および電圧の変化量とを示す図である。図3に示すように、電解質膜のEWは980未満であるが低含水層を有しない比較例2に比べて、電解質膜のEWが980未満で且つ低含水層を有する実施例1-5では、ファラデー効率が20%以上改善された。また、電解質膜のEWが980である比較例1に比べて高い改善率であった。また、撥水層を有する実施例5では、撥水層を有しない実施例1-4に比べて、ファラデー効率がより改善された。また、実施例1-5では、比較例2に対する電圧の上昇を25mV以下に抑えることができた。高含水層を有する実施例4では、電圧をより低下させることができた。 FIG. 3 is a diagram showing the characteristics of the electrolytic cells according to each example and each comparative example, the improvement rate of Faraday efficiency, and the amount of change in voltage. As shown in FIG. 3, compared to Comparative Example 2 in which the electrolyte membrane has an EW of less than 980 but does not have a low water content layer, in Example 1-5, the electrolyte membrane has an EW of less than 980 and has a low water content layer. , the Faraday efficiency was improved by more than 20%. Furthermore, the improvement rate was higher than that of Comparative Example 1 in which the EW of the electrolyte membrane was 980. Further, in Example 5 having a water-repellent layer, the Faraday efficiency was improved more than in Examples 1-4 not having a water-repellent layer. Furthermore, in Example 1-5, the increase in voltage compared to Comparative Example 2 could be suppressed to 25 mV or less. In Example 4 having a high water content layer, the voltage could be further reduced.
 以上より、EWが980未満の電解質膜を用いるとともに、電解質膜とカソード電極との間に低含水層を設けることで、有機ハイドライド製造におけるセル電圧の上昇抑制とファラデー効率の低下抑制との両立を図ることができることが確認された。また、電解質膜とアノード電極との間に高含水層を設けることで、セル電圧をより低下させられることが確認された。また、低含水層とカソード電極との間に撥水層を設けることで、ファラデー効率をより向上させられることが確認された。 From the above, by using an electrolyte membrane with an EW of less than 980 and providing a low water content layer between the electrolyte membrane and the cathode electrode, it is possible to both suppress the increase in cell voltage and suppress the decrease in Faraday efficiency in organic hydride production. It was confirmed that it is possible to It was also confirmed that the cell voltage could be further reduced by providing a high water content layer between the electrolyte membrane and the anode electrode. Furthermore, it was confirmed that Faraday efficiency could be further improved by providing a water repellent layer between the low water content layer and the cathode electrode.
 本発明は、有機ハイドライド製造装置に利用することができる。 The present invention can be utilized in an organic hydride manufacturing device.
 2 有機ハイドライド製造装置、 10 アノード電極、 12 カソード電極、 14 電解質膜、 44 低含水層、 46 高含水層。 2. Organic hydride production equipment, 10. Anode electrode, 12. Cathode electrode, 14. Electrolyte membrane, 44. Low water content layer, 46. High water content layer.

Claims (2)

  1.  水を酸化してプロトンを生成するアノード電極と、
     被水素化物を前記プロトンで水素化して有機ハイドライドを生成するカソード電極と、
     EW(Equivalent Weight)が980未満であり、前記アノード電極および前記カソード電極の間に配置され、前記アノード電極側から前記カソード電極側に前記プロトンを移動させる電解質膜と、
     前記電解質膜および前記カソード電極の間に配置される前記電解質膜より含水率の低い低含水層と、を備える、
    有機ハイドライド製造装置。
    an anode electrode that oxidizes water to generate protons;
    a cathode electrode that generates an organic hydride by hydrogenating a hydride with the proton;
    an electrolyte membrane having an EW (Equivalent Weight) of less than 980, disposed between the anode electrode and the cathode electrode, and transferring the protons from the anode electrode side to the cathode electrode side;
    a low water content layer having a lower water content than the electrolyte membrane and disposed between the electrolyte membrane and the cathode electrode;
    Organic hydride production equipment.
  2.  前記電解質膜および前記アノード電極の間に配置される前記電解質膜より含水率の高い高含水層を備える、
    請求項1に記載の有機ハイドライド製造装置。
    comprising a high water content layer having a higher water content than the electrolyte membrane and disposed between the electrolyte membrane and the anode electrode;
    The organic hydride production apparatus according to claim 1.
PCT/JP2023/027916 2022-08-10 2023-07-31 Apparatus for producing organic hydride WO2024034444A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-127973 2022-08-10
JP2022127973 2022-08-10

Publications (1)

Publication Number Publication Date
WO2024034444A1 true WO2024034444A1 (en) 2024-02-15

Family

ID=89851578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027916 WO2024034444A1 (en) 2022-08-10 2023-07-31 Apparatus for producing organic hydride

Country Status (1)

Country Link
WO (1) WO2024034444A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102321891A (en) * 2011-09-19 2012-01-18 北京化工大学 High-yield electrochemical method for synthesizing 2,2'-dichlorohydrazobenzene
US20200056292A1 (en) * 2018-08-20 2020-02-20 Battelle Energy Alliance, Llc Methods for electrochemical hydrogenation and methods of forming membrane electrode assemblies
WO2020100684A1 (en) * 2018-11-12 2020-05-22 旭化成株式会社 Positive ion exchange membrane, electrolytic bath, and positive ion exchange membrane production method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102321891A (en) * 2011-09-19 2012-01-18 北京化工大学 High-yield electrochemical method for synthesizing 2,2'-dichlorohydrazobenzene
US20200056292A1 (en) * 2018-08-20 2020-02-20 Battelle Energy Alliance, Llc Methods for electrochemical hydrogenation and methods of forming membrane electrode assemblies
WO2020100684A1 (en) * 2018-11-12 2020-05-22 旭化成株式会社 Positive ion exchange membrane, electrolytic bath, and positive ion exchange membrane production method

Similar Documents

Publication Publication Date Title
KR102471656B1 (en) Apparatus for producing organic hydride and method for producing organic hydride using same
JP5587797B2 (en) Direct fuel cell without selectively permeable membrane and components thereof
US20060099482A1 (en) Fuel cell electrode
JP2013502682A (en) Catalyst layer
CA2966834A1 (en) Oxygen-generating anode
WO2013111585A1 (en) Electrochemical reduction device and method for producing hydride of nitrogen-containing-heterocyclic aromatic compound or aromatic hydrocarbon compound
US20160177459A1 (en) Electrochemical reduction device
US20220333257A1 (en) Organic hydride production device
JP5072652B2 (en) Water electrolysis equipment
US20140346054A1 (en) Electrochemical reduction device and method of manufacturing hydride of aromatic hydrocarbon compound or nitrogen-containing heterocyclic aromatic compound
WO2018037774A1 (en) Cathode, electrolysis cell for producing organic hydride, and organic hydride production method
JP6998797B2 (en) Organic hydride manufacturing equipment, organic hydride manufacturing method and energy transportation method
WO2024034444A1 (en) Apparatus for producing organic hydride
KR20190083546A (en) Electrochemical hydrogenation reactor and method of hydrogenation using the same
CA3221012A1 (en) Oxygen evolution reaction catalyst
KR20190125885A (en) Electrochemical dehydrogen reactor and method of dehydrogenation using the same
WO2022091360A1 (en) Device for manufacturing organic hydride
WO2022091361A1 (en) Organic hydride production apparatus, and method for forming cathode catalyst layer
WO2024048340A1 (en) Apparatus for producing organic hydride and method for producing organic hydride
JP2023128449A (en) Cathode, membrane electrode assembly and organic hydride production device
KR20240051841A (en) Method of manufacturing porous transport electrodes and polymer electrolyte membrane water electrolysis having the porous transport electrode manufactured by the method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852416

Country of ref document: EP

Kind code of ref document: A1