WO2023176129A1 - Storage battery module and storage battery system - Google Patents

Storage battery module and storage battery system Download PDF

Info

Publication number
WO2023176129A1
WO2023176129A1 PCT/JP2023/001196 JP2023001196W WO2023176129A1 WO 2023176129 A1 WO2023176129 A1 WO 2023176129A1 JP 2023001196 W JP2023001196 W JP 2023001196W WO 2023176129 A1 WO2023176129 A1 WO 2023176129A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
power supply
circuit
node
supply circuit
Prior art date
Application number
PCT/JP2023/001196
Other languages
French (fr)
Japanese (ja)
Inventor
チンマイ バガト
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023176129A1 publication Critical patent/WO2023176129A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters

Definitions

  • the present disclosure relates to a storage battery module and a storage battery system including a storage battery.
  • Patent Document 1 discloses a technique for transmitting signals via a photocoupler in two circuits that are electrically insulated from each other. This photocoupler transmits a signal for a period of time corresponding to a time constant determined by a resistive element and a capacitive element from the timing when the power is turned on. The current flowing through the photocoupler is set by this resistance element.
  • a storage battery module includes, for example, a primary side circuit that includes a storage battery, and a secondary side circuit that exchanges signals with the outside. These circuits are, for example, galvanically isolated from each other. Control signals are exchanged between these two circuits. It is desired that such a circuit has a high degree of freedom in design, and an improvement in the degree of freedom in design is expected.
  • a storage battery module in an embodiment of the present disclosure includes a first power supply circuit, a first switch, a photocoupler, a first control circuit, a storage battery, a second power supply circuit, and a second switch. , a processing circuit, and a second control circuit.
  • the first power supply circuit is operable based on power supplied from an external device.
  • the first switch is provided in a current path connecting the output terminal of the first power supply circuit and the ground node.
  • a photocoupler has a light emitting element and a light receiving element provided in a current path.
  • the first control circuit is capable of turning on the first switch during a period corresponding to the rise of the power supply voltage generated by the first power supply circuit.
  • a storage battery is something that can store electric power.
  • the second power supply circuit is operable based on power supplied from the storage battery.
  • the second switch is provided in a power supply path connecting the storage battery and the input terminal of the second power supply circuit.
  • the processing circuit can operate based on the power supplied from the second power supply circuit, and can monitor the operating state of the storage battery.
  • the second control circuit is capable of turning on the second switch based on the light reception result of the light receiving element and an instruction from the processing circuit.
  • a storage battery system includes a plurality of storage battery modules and a storage battery control device that can control operations of the plurality of storage battery modules.
  • Each of the plurality of storage battery modules includes a first power supply circuit, a first switch, a photocoupler, a first control circuit, a storage battery, a second power supply circuit, a second switch, and a processing circuit. and a second control circuit.
  • the first power supply circuit is operable based on power supplied from the storage battery control device.
  • the first switch is provided in a current path connecting the output terminal of the first power supply circuit and the ground node.
  • a photocoupler has a light emitting element and a light receiving element provided in a current path.
  • the first control circuit is capable of turning on the first switch during a period corresponding to the rise of the power supply voltage generated by the first power supply circuit.
  • a storage battery is something that can store electric power.
  • the second power supply circuit is operable based on power supplied from the storage battery.
  • the second switch is provided in a power supply path connecting the storage battery and the input terminal of the second power supply circuit.
  • the processing circuit can operate based on the power supplied from the second power supply circuit, and can monitor the operating state of the storage battery.
  • the second control circuit is capable of turning on the second switch based on the light reception result of the light receiving element and an instruction from the processing circuit.
  • the degree of freedom in design can be increased.
  • FIG. 1 is a block diagram illustrating a configuration example of a power storage system including a storage battery system according to an embodiment of the present disclosure.
  • FIG. 2 is a circuit diagram showing a configuration example of the storage battery module according to the first embodiment.
  • FIG. 3 is a timing waveform diagram showing an example of the operation of the control circuit in the secondary side circuit shown in FIG.
  • FIG. 4 is a circuit diagram showing a configuration example of a storage battery module according to a modification of the first embodiment.
  • FIG. 5 is a circuit diagram showing a configuration example of a storage battery module according to the second embodiment.
  • FIG. 6 is a timing waveform diagram showing an example of the operation of the control circuit in the secondary side circuit shown in FIG.
  • FIG. 7 is a block diagram illustrating a configuration example of a power storage system according to a modification.
  • FIG. 1 shows a configuration example of a power storage system 1 including a storage battery module according to an embodiment.
  • the power storage system 1 is configured to store power supplied from a system power source 9 such as a commercial power source, or to supply the stored power to a load device 8 or a system power source 9.
  • the power storage system 1 includes a power conditioner 11 , a breaker 12 , an energy control device 13 , and a storage battery system 2 .
  • the power supply route is shown by a thick line.
  • the power conditioner 11 is configured to convert AC power supplied from the grid power supply 9 into DC power through AC/DC conversion, and supply the converted DC power to the storage battery system 2 via the breaker 12. Ru. In addition, the power conditioner 11 converts the DC power supplied from the storage battery system 2 via the breaker 12 into AC power by DC/AC conversion, and supplies the converted AC power to the load device 8 and the grid power source 9. supply.
  • the power conditioner 11 is connected to the storage battery system 2 via a positive power line PP and a negative power line PN.
  • the breaker 12 is provided in the power supply path between the power conditioner 11 and the storage battery system 2, and is configured to cut off the power supply when an overcurrent or short circuit occurs, for example.
  • the energy control device 13 is a so-called EMU (Energy Management Unit), and is configured to control the operation of the power storage system 1 by communicating with the control device 7, which is a host device.
  • the energy control device 13 controls the operation of the power conditioner 11 by communicating with the power conditioner 11, and also controls the storage battery by communicating with the storage battery control device 20 (described later) of the storage battery system 2. The operation of the system 2 is controlled.
  • the storage battery system 2 charges a storage battery based on DC power supplied from the power conditioner 11 via the breaker 12, or supplies the power charged in the storage battery to the power conditioner 11 via the breaker 12. It is composed of
  • the storage battery system 2 includes a storage battery control device 20 and a plurality of storage battery modules 23.
  • the storage battery control device 20 is a so-called BMU (Battery Management Unit), and controls the operation of the storage battery system 2 by controlling charging and discharging of a plurality of storage battery modules 23 based on instructions from the energy control device 13. It is composed of The storage battery control device 20 includes a contactor 21 and a controller 22.
  • BMU Battery Management Unit
  • the contactor 21 is provided on the power line PP and is configured to control power supply via the power line PP by turning on or off based on instructions from the controller 22.
  • the controller 22 communicates with the plurality of storage battery modules 23 to grasp the operating state of each of the plurality of storage battery modules 23, and controls the operation of the storage battery system 2 based on instructions from the energy control device 13. It is composed of Further, the controller 22 supplies the power supply voltage V1 to the plurality of storage battery modules 23.
  • the power supply voltage V1 is, for example, 24V.
  • the communication connection between the controller 22 and the plurality of storage battery modules 23 may be, for example, a daisy chain connection.
  • the controller 22 supplies the power supply voltage V1 to the plurality of storage battery modules 23, but the invention is not limited to this.
  • the energy control device 13 supplies the power supply voltage V1 to the plurality of storage battery modules 23.
  • the power supply voltage V1 may be supplied to the storage battery module 23.
  • Each of the plurality of storage battery modules 23 has a storage battery 31, a positive terminal TP, and a negative terminal TN, and is configured to store power.
  • the storage battery system 2 includes eight storage battery modules 23 (storage battery modules 23A to 23H).
  • storage battery modules 23A and 23B are connected in parallel to each other, storage battery modules 23C and 23D are connected to each other in parallel, storage battery modules 23E and 23F are connected to each other in parallel, and storage battery modules 23G and 23H are connected to each other in parallel. be done.
  • Storage battery modules 23A, 23B, storage battery modules 23C, 23D, storage battery modules 23E, 23F, and storage battery modules 23G, 23H are connected in series in this order.
  • the positive terminals TP of the storage battery modules 23A, 23B are connected to the power line PP, and the negative terminals TN of the storage battery modules 23G, 23H are connected to the power line PN.
  • FIG. 2 shows an example of the configuration of the storage battery module 23.
  • the storage battery module 23 includes a storage battery 31, a transistor 32, a DC/DC conversion circuit 33, a processing circuit 34, a control circuit 35, a photocoupler 24, an isolator 27, a DC/DC conversion circuit 41, and a transistor 42. , a control circuit 43 , a resistance element 48 , and a communication circuit 49 .
  • the storage battery 31, the transistor 32, the DC/DC conversion circuit 33, the processing circuit 34, the control circuit 35, the phototransistor 26 (described later) of the photocoupler 24, and a part of the isolator 27 constitute the primary side circuit 30 of the storage battery module 23. do.
  • a portion of the DC/DC conversion circuit 41, the transistor 42, the control circuit 43, the resistive element 48, the light emitting diode 25 (described later) of the photocoupler 24, the communication circuit 49, and the isolator 27 are connected to the secondary circuit 40 of the storage battery module 23. Configure.
  • the storage battery 31 is configured to store electric power.
  • the storage battery 31 includes, for example, a plurality of storage battery cells (not shown) connected in series and in parallel.
  • the positive electrode of the storage battery 31 is connected to a node NP led to a positive terminal TP, and the negative electrode of the storage battery 31 is connected to a node NN led to a negative terminal TN.
  • the transistor 32 is a P-type field effect transistor, and has a source connected to the node NP, a gate connected to the control circuit 35, and a drain connected to the input terminal of the DC/DC conversion circuit 33. When the transistor 32 is turned on, it supplies the DC power supplied from the storage battery 31 to the DC/DC conversion circuit 33.
  • the DC/DC conversion circuit 33 is configured to generate the power supply voltage VPRI by performing DC/DC conversion based on the DC power supplied from the storage battery 31. Then, the DC/DC conversion circuit 33 supplies the generated power supply voltage VPRI to the processing circuit 34 and the isolator 27.
  • the processing circuit 34 is configured using, for example, a microcontroller, and is configured to monitor the operating state of the storage battery 31 by monitoring the voltage, current, temperature, etc. of the storage battery 31.
  • the processing circuit 34 communicates with the controller 22 (FIG. 1) of the storage battery control device 20 via the isolator 27 and the communication circuit 49 to supply information about the operating state of the storage battery 31 to the controller 22. It has become.
  • This processing circuit 34 operates based on the power supply voltage VPRI supplied from the DC/DC conversion circuit 33. Further, the processing circuit 34 controls the operation of the transistor 38 by supplying a control signal CTL to the transistor 38 (described later) of the control circuit 35. Specifically, the processing circuit 34 turns on the transistor 38 by setting the control signal CTL to a high level (active level) after being started by being supplied with the power supply voltage VPRI, for example. Furthermore, when the supply of the power supply voltage V1 to the DC/DC conversion circuit 41 is stopped, the processing circuit 34 sets the control signal CTL to a low level (inactive level) based on the signal from the isolator 27. This turns off the transistor 38.
  • the control circuit 35 is configured to control the operation of the transistor 32 based on the control signal CTL from the processing circuit 34 and the signal from the photocoupler 24.
  • Control circuit 35 includes resistance elements 36 and 37 and a transistor 38.
  • One end of resistance element 36 is connected to node NP, and the other end is connected to the gate of transistor 32 and one end of resistance element 37.
  • One end of the resistance element 37 is connected to the other end of the resistance element 36 and the gate of the transistor 32, and the other end is connected to the drain of the transistor 38 and the collector of the phototransistor 26 (described later) of the photocoupler 24.
  • the transistor 38 is an N-type field effect transistor, has a gate supplied with a control signal CTL from the processing circuit 34, and has a drain connected to the other end of the resistor 37 and the collector of the phototransistor 26 (described later) of the photocoupler 24. and the source is connected to node NN.
  • control circuit 35 turns on the transistor 32 when the control signal CTL becomes high level (active level), and turns on the transistor 32 when the phototransistor 26 of the photocoupler 24 receives light from the light emitting diode 25. The transistor 32 is turned on.
  • the DC/DC conversion circuit 41 is configured to generate the power supply voltage VSEC by performing DC/DC conversion based on the DC power of the power supply voltage V1 supplied from the controller 22 of the storage battery control device 20.
  • the power supply voltage VSEC is, for example, 5V. Then, the DC/DC conversion circuit 41 supplies the generated power supply voltage VSEC to the communication circuit 49 and the isolator 27.
  • the transistor 42 is a P-type field effect transistor, and has a source connected to a node N1 connected to the output terminal of the DC/DC conversion circuit 41, a gate connected to a node N2, and a drain connected to the resistive element 48. Ru. When the transistor 42 is turned on, current flows from the output terminal of the DC/DC conversion circuit 41 through the transistor 42, the resistive element 48, and the light emitting diode 25 of the photocoupler 24 to the ground node. It looks like this.
  • the control circuit 43 is configured to control the operation of the transistor 42 based on the power supply voltage VSEC.
  • the control circuit 43 includes resistive elements 44 and 45, a capacitive element 46, and a diode 47.
  • One end of resistance element 44 is connected to node N1, and the other end is connected to node N2.
  • One end of resistance element 45 is connected to node N2, and the other end is connected to node N3.
  • One end of capacitive element 46 is connected to node N3, and the other end is grounded.
  • the anode of diode 47 is connected to node N3, and the cathode is connected to node N1.
  • control circuit 43 turns on the transistor 42 for a predetermined period corresponding to the rise of the power supply voltage VSEC when the DC/DC conversion circuit 41 is activated based on the power supply voltage V1. It is supposed to be in a state.
  • One end of the resistive element 48 is connected to the drain of the transistor 42, and the other end is connected to the anode of a light emitting diode 25 (described later) of the photocoupler 24.
  • the photocoupler 24 has a light emitting diode 25 and a phototransistor 26.
  • the anode of the light emitting diode 25 is connected to the other end of the resistance element 48, and the cathode is grounded.
  • the collector of phototransistor 26 is connected to the other end of resistance element 37 and the drain of transistor 38, and the emitter is connected to node NN.
  • the communication circuit 49 is configured to communicate with the controller 22 (FIG. 1) of the storage battery control device 20. Further, the communication circuit 49 communicates with the processing circuit 34 via the isolator 27. The communication circuit 49 operates based on the power of the power supply voltage VSEC supplied from the DC/DC conversion circuit 41.
  • the isolator 27 is configured to transmit a signal from the communication circuit 49 to the processing circuit 34 and to transmit a signal from the processing circuit 34 to the communication circuit 49.
  • the isolator 27 operates based on the power supply voltage VPRI supplied from the DC/DC conversion circuit 33 and the power supply voltage VSEC supplied from the DC/DC conversion circuit 41. That is, the isolator 27 has a circuit part that operates based on the power supply voltage VPRI and belongs to the primary side circuit 30, and a circuit part that operates based on the power supply voltage VSEC and belongs to the secondary side circuit. has.
  • a circuit portion belonging to the primary circuit 30 and a circuit portion belonging to the secondary circuit 40 are electrically insulated from each other.
  • the DC/DC conversion circuit 41 corresponds to a specific example of a "first power supply circuit” in an embodiment of the present disclosure.
  • the transistor 42 corresponds to a specific example of a “first switch” in an embodiment of the present disclosure.
  • the photocoupler 24 corresponds to a specific example of a "photocoupler” in an embodiment of the present disclosure.
  • the control circuit 43 corresponds to a specific example of a "first control circuit” in an embodiment of the present disclosure.
  • the storage battery 31 corresponds to a specific example of a “storage battery” in an embodiment of the present disclosure.
  • the DC/DC conversion circuit 33 corresponds to a specific example of a "second power supply circuit” in an embodiment of the present disclosure.
  • the transistor 32 corresponds to a specific example of a "second switch” in an embodiment of the present disclosure.
  • the processing circuit 34 corresponds to a specific example of a "processing circuit” in an embodiment of the present disclosure.
  • the control signal CTL corresponds to a specific example of a "control signal” in an embodiment of the present disclosure.
  • the control circuit 35 corresponds to a specific example of a "processing circuit” in an embodiment of the present disclosure.
  • Resistance element 48 corresponds to a specific example of a "first resistance element” in an embodiment of the present disclosure.
  • Node N1 corresponds to a specific example of a "first node” in an embodiment of the present disclosure.
  • Node N2 corresponds to a specific example of a "second node” in an embodiment of the present disclosure.
  • Node N3 corresponds to a specific example of a "third node” in an embodiment of the present disclosure.
  • the resistance element 44 corresponds to a specific example of a "second resistance element” in an embodiment of the present disclosure.
  • Resistance element 45 corresponds to a specific example of a "third resistance element” in an embodiment of the present disclosure.
  • the capacitive element 46 corresponds to a specific example of a “capacitive element” in an embodiment of the present disclosure.
  • the diode 47 corresponds to a specific example of a "diode” in an embodiment of the present disclosure.
  • the communication circuit 49 corresponds to a specific example of a "communication circuit” in an embodiment of the present disclosure.
  • the isolator 27 corresponds to a specific example of an "isolator” in an embodiment of the present disclosure.
  • the storage battery module 23 corresponds to a specific example of a “storage battery module” in an embodiment of the present disclosure.
  • the storage battery control device 20 corresponds to a specific example of an “external device” and a “storage battery control device” in an embodiment of the present disclosure.
  • the power conditioner 11 converts AC power supplied from the system power supply 9 into DC power through AC/DC conversion, and supplies the converted DC power to the storage battery system 2 via the breaker 12 .
  • the power conditioner 11 converts the DC power supplied from the storage battery system 2 via the breaker 12 into AC power by DC/AC conversion, and supplies the converted AC power to the load device 8 and the grid power source 9.
  • supply The load device 8 operates based on the AC power supplied from the system power supply 9 and the AC power supplied from the power conditioner 11 .
  • the breaker 12 is provided in the power supply path between the power conditioner 11 and the storage battery system 2, and cuts off the power supply when an overcurrent or short circuit occurs, for example.
  • Energy control device 13 controls the operation of power storage system 1 by communicating with control device 7, which is a host device.
  • the energy control device 13 controls the operation of the power conditioner 11 by communicating with the power conditioner 11, and controls the operation of the storage battery system 2 by communicating with the storage battery control device 20 of the storage battery system 2. Control behavior.
  • the storage battery control device 20 controls the operation of the storage battery system 2 by controlling charging and discharging of the plurality of storage battery modules 23 based on instructions from the energy control device 13.
  • the contactor 21 controls power supply via the power line PP by turning on or off based on instructions from the controller 22.
  • the controller 22 communicates with the plurality of storage battery modules 23 to grasp the operating state of each of the plurality of storage battery modules 23 and controls the operation of the storage battery system 2 based on instructions from the energy control device 13. Further, the controller 22 supplies the power supply voltage V1 to the plurality of storage battery modules 23.
  • the storage batteries 31 of the plurality of storage battery modules 23 store electric power.
  • the controller 22 of the storage battery control device 20 supplies the power supply voltage V1 to the plurality of storage battery modules 23.
  • the DC/DC conversion circuit 41 generates the power supply voltage VSEC by performing DC/DC conversion based on the DC power of the power supply voltage V1.
  • the power supply voltage VSEC is generated, for example, by being ramped up by DC/DC conversion.
  • DC/DC conversion circuit 41 supplies this power supply voltage VSEC to communication circuit 49 and isolator 27 .
  • the control circuit 43 turns on the transistor 42 for a predetermined period corresponding to the rise.
  • FIG. 3 shows an example of the operation of the control circuit 43.
  • the waveform of the power supply voltage VSEC is depicted as a rectangular waveform.
  • the gate voltage VG of transistor 42 is a voltage obtained by dividing the power supply voltage VSEC by the resistance elements 44 and 45.
  • the gate-source voltage Vgs of the transistor 42 at this time is a voltage that can turn the transistor 42 on. This turns the transistor 42 on. Since the capacitive element 46 is gradually charged over time, the gate voltage VG of the transistor 42 gradually increases as shown in FIG. 3. In other words, the absolute value of the gate-source voltage Vgs of the transistor 42 gradually decreases. This voltage change is set by the time constants of the resistive elements 44 and 45 and the capacitive element 46.
  • a current I25 flows in a current path from the output terminal of the DC/DC conversion circuit 41 to the ground node via the transistor 42, the resistive element 48, and the light emitting diode 25 of the photocoupler 24. flows.
  • This current I25 is an activation current for the photocoupler 24.
  • the current value of this current I25 is set by the resistance value of the resistance element 48.
  • the current flows from the positive electrode of the storage battery 31 to the resistance element 36, the resistance element 37, and the phototransistor 26 in this order.
  • the gate-source voltage Vgs of the transistor 32 at this time is a voltage that can turn the transistor 32 on.
  • the transistor 32 is turned on, and the DC power supplied from the storage battery 31 is supplied to the DC/DC conversion circuit 33.
  • the DC/DC conversion circuit 33 generates a power supply voltage VPRI by performing DC/DC conversion based on the DC power supplied from the storage battery 31.
  • the power supply voltage VPRI ramps up by, for example, a DC/DC conversion operation and reaches the final voltage.
  • DC/DC conversion circuit 33 supplies this power supply voltage VPRI to processing circuit 34 and isolator 27.
  • the processing circuit 34 is activated based on this power supply voltage VPRI. After operating in a predetermined startup sequence, the processing circuit 34 changes the control signal CTL from a low level (inactive level) to a high level (active level). This control signal CTL turns on the transistor 38. As a result, in the primary side circuit 30, a current flows from the positive electrode of the storage battery 31 to the resistance element 36, the resistance element 37, and the transistor 38 in this order. That is, at this stage, current flows from the positive electrode of the storage battery 31 to both the phototransistor 26 and the transistor 38 of the photocoupler 24 via the resistance element 36 and the resistance element 37. The gate-source voltage Vgs of the transistor 32 remains at a voltage that allows the transistor 32 to be turned on. Therefore, the DC/DC conversion circuit 33 continues DC/DC conversion and continues to generate the power supply voltage VPRI.
  • the gate voltage VG of the transistor 42 reaches the voltage VTH corresponding to the threshold voltage of the transistor 42. Thereby, the transistor 42 changes from an on state to an off state.
  • the transistor 42 is turned off, the current I25 no longer flows through the light emitting diode 25 of the photocoupler 24, so no current flows through the phototransistor 26.
  • the primary side circuit 30 current no longer flows to the phototransistor 26 in this way, but since the control signal CTL remains at a high level, current continues to flow to the transistor 38. That is, current flows from the positive electrode of the storage battery 31 to the resistive element 36, the resistive element 37, and the transistor 38 in this order.
  • the gate-source voltage Vgs of the transistor 32 remains at a voltage that allows the transistor 32 to be turned on. Therefore, the DC/DC conversion circuit 33 continues DC/DC conversion and continues to generate the power supply voltage VPRI.
  • the transistor 42 is turned on during the period from timing t1 to t2, and a one-shot pulse activation current flows.
  • the length of the period from timing t1 to t2 is, for example, about several seconds, and is set by the time constants of the resistive elements 44, 45 and the capacitive element 46.
  • Timing t2 is earlier than the timing at which, in the primary side circuit 30, the transistor 32 is turned on, the DC/DC conversion circuit 33 generates the power supply voltage VPRI, the processing circuit 34 is activated, and the transistor 38 is turned on. It is set to be later.
  • the gate voltage VG of the transistor 42 continues to rise thereafter and approaches the power supply voltage VSEC.
  • the processing circuit 34 monitors the operating state of the storage battery 31 by monitoring the voltage, current, temperature, etc. of the storage battery 31.
  • the processing circuit 34 communicates with the controller 22 of the storage battery control device 20 via the isolator 27 and the communication circuit 49, thereby supplying information regarding the operating state of the storage battery 31 to the controller 22.
  • the controller 22 of the storage battery control device 20 stops supplying the power supply voltage V1 to the plurality of storage battery modules 23.
  • the DC/DC conversion circuit 41 stops DC/DC conversion and stops generating the power supply voltage VSEC based on the stoppage of the supply of the power supply voltage V1.
  • the power supply voltage VSEC falls to 0V at timing t3.
  • the DC/DC conversion circuit 41 stops supplying the power supply voltage VSEC to the communication circuit 49 and the isolator 27.
  • the capacitive element 46 since the capacitive element 46 is charged, the voltage at the node N3 is higher than the voltage at the node N1. Therefore, the diode 47 is turned on, and current flows from the capacitive element 46 to the communication circuit 49 and the isolator 27 via the diode 47, for example. In this way, the capacitive element 46 is quickly discharged. As a result, as shown in FIG. 3, the gate voltage VG of the transistor 42 quickly decreases.
  • the isolator 27 When the power supply voltage VSEC falls, the isolator 27 is no longer supplied with the power supply voltage VSEC, so the isolator 27 fixes the signal to the processing circuit 34 at a low level. Based on the signal supplied from the isolator 27, the processing circuit 34 grasps that the supply of the power supply voltage V1 from the controller 22 of the storage battery control device 20 has been stopped, and changes the control signal CTL from a high level (active level). Change to low level (inactive level). As a result, the transistor 38 is turned off, so that no current flows from the positive electrode of the storage battery 31 to the resistance elements 36 and 37. Therefore, the gate-source voltage Vgs of the transistor 32 becomes approximately 0V, and the transistor 32 is turned off.
  • the transistor 32 Since the transistor 32 is turned off, power supply from the storage battery 31 to the DC/DC conversion circuit 33 is stopped, and the DC/DC conversion circuit 33 stops DC/DC conversion and stops generating the power supply voltage VPRI. . As a result, the power supply voltage VPRI falls. As a result, the DC/DC conversion circuit 33 stops supplying the power supply voltage VPRI to the processing circuit 34 and the isolator 27.
  • the storage battery module 23 stops operating.
  • the capacitive element 46 is discharged by a diode 47. Therefore, for example, in FIG. 3, when the supply of the power supply voltage V1 from the controller 22 of the storage battery control device 20 is resumed immediately after timing t3, the storage battery module 23 can be activated. In other words, the controller 22 of the storage battery control device 20 can quickly restart (fast reset) the storage battery module 23 by stopping the supply of the power supply voltage V1 for a short time.
  • the storage battery module 23 includes a first power supply circuit (DC/DC conversion circuit 41) that can operate based on the electric power supplied from the controller 22 of the storage battery control device 20, and an output terminal of the first power supply circuit.
  • a photocoupler 24 having a first switch (transistor 42) provided in a current path connecting the current path and a ground node, a light emitting diode 25 provided in the current path, and a phototransistor 26, and a first power supply circuit ( a first control circuit (control circuit 43) capable of turning on the first switch (transistor 42) during a predetermined period according to the rise of the power supply voltage VSEC generated by the DC/DC conversion circuit 41); , a storage battery 31, a second power supply circuit (DC/DC conversion circuit 33) operable based on the power supplied from the storage battery 31, and a storage battery 31 and a second power supply circuit (DC/DC conversion circuit 33).
  • control circuit 43 can turn on the transistor 42 for only a predetermined period, and can cause a current that is a one-shot pulse to flow through the photocoupler 24.
  • This control circuit 43 can set the pulse width of this one-shot pulse. Since this control circuit 43 is provided in a part different from the current path, it can be prevented from affecting the current value of the activation current of the photocoupler 24. As a result, in the storage battery module 23, the degree of freedom in design can be increased.
  • a light emitting diode, a resistive element, and a capacitive element are provided in the current path of the activation current. Therefore, the pulse width of the one-shot pulse is set by the time constants of the resistive element and the capacitive element, and the current value of the activation current is set by the resistance value of the resistive element.
  • the current value of this activation current also changes depending on the amount of charge in the capacitive element. Therefore, it is difficult to freely set the pulse width of the one-shot pulse and the current value of the activation current. Specifically, for example, when trying to increase the time constant, it is necessary to increase the resistance value and capacitance value, but when the resistance value is increased, the current value of the activation current becomes small. Therefore, it is difficult to increase the time constant.
  • a control circuit 43 is provided, and a resistance element 48 is provided in the current path of the activation current, so the pulse width of the one-shot pulse and the current value of the activation current can be set individually. can do. As a result, in the storage battery module 23, the degree of freedom in design can be increased.
  • the photocoupler 24 is turned on only for a period corresponding to the timing when the first power supply circuit (DC/DC conversion circuit 41) is activated. Since the operating time of the circuit can be shortened, the circuit life can be extended and current consumption can be reduced.
  • the storage battery module 23 is provided with a photocoupler 24.
  • the power consumption of the storage battery module 23 can be reduced, for example, when the storage battery module 23 is removed from the storage battery system 2 and stored. That is, for example, when all signals are exchanged via the isolator 27 without providing the photocoupler 24, the DC/DC conversion circuit 33 needs to continue operating. If the transistor 32 is turned off and the DC/DC conversion circuit 33 stops operating, the supply of the power supply voltage VPRI to the isolator 27 is stopped, so the secondary circuit 40 turns the transistor 32 on. This is because it becomes impossible to do so. In this way, if the DC/DC conversion circuit 33 continues to operate, power consumption will increase.
  • the storage battery module 23 is provided with the photocoupler 24, by turning off the transistor 32, the operation of the DC/DC conversion circuit 33 can be stopped. Through this, the transistor 32 can be turned on, and the DC/DC conversion circuit 33 can be activated. Thereby, the power consumption of the storage battery module 23 can be reduced, for example, when the storage battery module 23 is removed from the storage battery system 2 and stored.
  • the processing circuit 34 can operate based on the power supplied from the second power supply circuit (DC/DC conversion circuit 33), and can activate the control signal CTL after startup. I made it possible.
  • the second control circuit (control circuit 35) is configured to turn on the transistor 32 during a period when the phototransistor 26 detects light, and turn on the transistor 32 during a period when the control signal CTL is active. did. Thereby, for example, the control circuit 35 can turn on the transistor 32 during a period in which an activation current flows through the photocoupler 24 and the phototransistor 26 detects light.
  • the processing circuit 34 is activated, the processing circuit 34 activates the control signal CTL, and the control circuit 35 can maintain the transistor 32 in the on state. Thereby, the activation current of the photocoupler 24 can be stopped after that, so the operating time of the photocoupler 24 can be shortened. As a result, the circuit life can be extended and current consumption can be reduced.
  • the storage battery module 23 further includes a first resistance element (resistance element 48) having one end and the other end connected to the anode of the light emitting diode 25.
  • the output terminal of the first power supply circuit (DC/DC conversion circuit 41) was connected to the first node (node N1).
  • the first switch (transistor 42) has a first terminal connected to the first node (node N1), a second terminal connected to one end of the first resistance element (resistance element 48), and a control terminal connected to the second node (node N2).
  • the first control circuit (control circuit 43) includes a second resistance element (having one end connected to the first node (node N1) and the other end connected to the second node (node N2).
  • the capacitive element 46 has one end led to the second node (node N2) and the other end connected to the ground node. Thereby, the control circuit 43 can set the pulse width of the one-shot pulse, and the resistance element 48 can set the current value of the activation current, so that the degree of freedom in design can be increased.
  • the first control circuit (control circuit 43) includes a diode 47 having an anode connected to one end of the capacitive element 46 and a cathode connected to the first node (node N1). It was made to have. Thereby, for example, when the operation of the DC/DC conversion circuit 41 stops, the capacitive element 46 can be quickly discharged. Therefore, the storage battery module 23 can be quickly restarted (fast reset), for example.
  • the current path connects the first power supply circuit that can operate based on the power supplied from the controller of the storage battery control device and the output terminal of the first power supply circuit and the ground node.
  • a first switch provided, a photocoupler having a light emitting diode and a phototransistor provided in a current path, and a power supply voltage generated by the first power supply circuit.
  • a first control circuit capable of turning on a first switch during a period, a storage battery, a second power supply circuit operable based on power supplied from the storage battery, a storage battery and a second power supply.
  • a second switch provided in a power supply path connecting an input terminal of the circuit; and a processing circuit that is operable based on the power supplied from the second power supply circuit and that is capable of monitoring the operating state of the storage battery;
  • a second control circuit is provided that can turn on the second switch based on the light reception result of the light receiving element and an instruction from the processing circuit. This increases the degree of freedom in design.
  • the photocoupler is turned on only for a period corresponding to the timing at which the first power supply circuit starts up, so the operating time of the photocoupler can be shortened.
  • the circuit life can be extended and current consumption can be reduced.
  • a photocoupler is provided. Thereby, power consumption can be reduced, for example, when the storage battery module is removed from the storage battery system and stored.
  • the processing circuit is operable based on the power supplied from the second power supply circuit, and the control signal can be activated after startup.
  • the second control circuit is configured to turn on the transistor during a period when the phototransistor detects light, and turn on the transistor during a period when the control signal is active. This makes it possible to extend the circuit life and reduce current consumption.
  • the present embodiment further includes a first resistance element having one end and the other end connected to the anode of the light emitting diode.
  • the output terminal of the first power supply circuit was connected to the first node.
  • the first switch has a first terminal connected to the first node, a second terminal connected to one end of the first resistance element, and a control terminal connected to the second node. I did it like that.
  • the first control circuit includes a second resistive element having one end connected to the first node and the other end connected to the second node, one end led to the second node, and a grounding and a capacitive element having the other end connected to the node. This increases the degree of freedom in design.
  • the first control circuit includes a diode having an anode connected to one end of a capacitive element and a cathode connected to the first node.
  • the capacitive element can be discharged quickly, so that, for example, a restart (fast reset) can be performed quickly.
  • the resistance element 45 is provided in the control circuit 43 as shown in FIG. 2, but the present invention is not limited to this. Alternatively, the resistor element 45 may not be provided, as in the storage battery module 29A shown in FIG. 4, for example.
  • This storage battery module 29A has a control circuit 43A.
  • the control circuit 43A includes a resistive element 44, a capacitive element 46, and a diode 47. One end of the capacitive element 46 is connected to the node N2, and the other end is connected to the ground node. The anode of diode 47 is connected to node N2, and the cathode is connected to node N1.
  • the control circuit 43A can set the pulse width of the one-shot pulse using the time constants of the resistive element 44 and the capacitive element 46.
  • Second embodiment> a power storage system according to a second embodiment will be described. This embodiment differs from the first embodiment in the configuration of the control circuit of the secondary circuit in the storage battery module. Components that are substantially the same as those of the power storage system 1 according to the first embodiment are given the same reference numerals, and description thereof will be omitted as appropriate.
  • the power storage system according to the second embodiment includes a storage battery system, similar to the power storage system 1 (FIG. 1) according to the first embodiment.
  • This storage battery system includes a plurality of storage battery modules 53, as in the first embodiment.
  • FIG. 5 shows an example of the configuration of the storage battery module 53.
  • the storage battery module 53 has a control circuit 63.
  • the DC/DC conversion circuit 41, the transistor 42, the control circuit 63, the resistive element 48, the light emitting diode 25 of the photocoupler 24, the communication circuit 49, and a part of the isolator 27 constitute the secondary circuit 40 of the storage battery module 23. .
  • the control circuit 63 includes a delay circuit 64 in this example.
  • the delay circuit 64 is configured to delay the signal of the power supply voltage VSEC generated by the DC/DC conversion circuit 41 by a predetermined time Td.
  • the length of this predetermined time Td is, for example, about several seconds.
  • the control circuit 63 operates based on the DC power of the power supply voltage VSEC supplied from the DC/DC conversion circuit 41.
  • control circuit 63 corresponds to a specific example of a "first control circuit” in an embodiment of the present disclosure.
  • the delay circuit 64 corresponds to a specific example of a “delay circuit” in an embodiment of the present disclosure.
  • the predetermined time Td corresponds to a specific example of a "predetermined time” in an embodiment of the present disclosure.
  • the controller 22 of the storage battery control device 20 first supplies the power supply voltage V1 to the plurality of storage battery modules 53.
  • the DC/DC conversion circuit 41 generates the power supply voltage VSEC by performing DC/DC conversion based on the DC power of the power supply voltage V1.
  • DC/DC conversion circuit 41 supplies this power supply voltage VSEC to delay circuit 64, communication circuit 49, and isolator 27.
  • the control circuit 63 turns on the transistor 42 for a predetermined period corresponding to the rise.
  • FIG. 6 shows an example of the operation of the control circuit 63.
  • the control circuit 63 supplies power to the delay circuit 64, so the delay circuit 64 starts operating.
  • Td time difference
  • a signal of gate voltage VG of transistor 42 is generated.
  • the gate voltage VG rises at timing t12, which is delayed by a predetermined time Td from timing t11.
  • the gate voltage VG of the transistor 42 becomes lower than the source voltage of the transistor 42.
  • the gate-source voltage Vgs of the transistor 42 at this time is a voltage that can turn the transistor 42 on. This turns the transistor 42 on.
  • a current I25 flows in a current path from the output terminal of the DC/DC conversion circuit 41 to the ground node via the transistor 42, the resistive element 48, and the light emitting diode 25 of the photocoupler 24. flows.
  • the current value of this current I25 is set by the resistance value of the resistance element 48.
  • the current flows from the positive electrode of the storage battery 31 to the resistance element 36, the resistance element 37, and the phototransistor 26 in this order.
  • the gate-source voltage Vgs of the transistor 32 at this time is a voltage that can turn the transistor 32 on.
  • the transistor 32 is turned on, and the DC power supplied from the storage battery 31 is supplied to the DC/DC conversion circuit 33.
  • the DC/DC conversion circuit 33 generates a power supply voltage VPRI by performing DC/DC conversion based on the DC power supplied from the storage battery 31.
  • the power supply voltage VPRI ramps up by, for example, a DC/DC conversion operation and reaches the final voltage.
  • DC/DC conversion circuit 33 supplies this power supply voltage VPRI to processing circuit 34 and isolator 27.
  • the processing circuit 34 is activated based on this power supply voltage VPRI. After operating in a predetermined startup sequence, the processing circuit 34 changes the control signal CTL from a low level (inactive level) to a high level (active level). This control signal CTL turns on the transistor 38. As a result, in the primary side circuit 30, a current flows from the positive electrode of the storage battery 31 to the resistance element 36, the resistance element 37, and the transistor 38 in this order. That is, at this stage, current flows from the positive electrode of the storage battery 31 to both the phototransistor 26 and the transistor 38 of the photocoupler 24 via the resistance element 36 and the resistance element 37. The gate-source voltage Vgs of the transistor 32 remains at a voltage that allows the transistor 32 to be turned on. Therefore, the DC/DC conversion circuit 33 continues DC/DC conversion and continues to generate the power supply voltage VPRI.
  • the gate voltage VG of the transistor 42 rises. Thereby, the transistor 42 changes from an on state to an off state.
  • the current I25 no longer flows through the light emitting diode 25 of the photocoupler 24, so no current flows through the phototransistor 26.
  • the primary side circuit 30 current no longer flows to the phototransistor 26 in this way, but since the control signal CTL remains at a high level, current continues to flow to the transistor 38.
  • the gate-source voltage Vgs of the transistor 32 remains at a voltage that allows the transistor 32 to be turned on. Therefore, the DC/DC conversion circuit 33 continues DC/DC conversion and continues to generate the power supply voltage VPRI.
  • the transistor 42 is turned on during the period from timing t11 to timing t12, and a one-shot pulse activation current flows.
  • the length of the period between timings t11 and t12 is, for example, about several seconds, and is set by the time Td delayed by the delay circuit 64.
  • Timing t12 is earlier than the timing at which, in the primary side circuit 30, the transistor 32 is turned on, the DC/DC conversion circuit 33 generates the power supply voltage VPRI, the processing circuit 34 is activated, and the transistor 38 is turned on. It is set to be later.
  • the storage battery module 53 is activated.
  • the controller 22 of the storage battery control device 20 stops supplying the power supply voltage V1 to the plurality of storage battery modules 53.
  • the DC/DC conversion circuit 41 stops DC/DC conversion and stops generating the power supply voltage VSEC based on the stoppage of the supply of the power supply voltage V1.
  • the power supply voltage VSEC falls to 0V at timing t13.
  • the DC/DC conversion circuit 41 stops supplying the power supply voltage VSEC to the delay circuit 64, communication circuit 49, and isolator 27.
  • control circuit 63 the power supply to the delay circuit 64 is stopped, so the delay circuit 64 lowers the gate voltage VG of the transistor 42.
  • the isolator 27 When the power supply voltage VSEC falls, the isolator 27 is no longer supplied with the power supply voltage VSEC, so the isolator 27 fixes the signal to the processing circuit 34 at a low level. Based on the signal supplied from the isolator 27, the processing circuit 34 grasps that the supply of the power supply voltage V1 from the controller 22 of the storage battery control device 20 has been stopped, and changes the control signal CTL from a high level (active level). Change to low level (inactive level). As a result, the transistor 38 is turned off, so that no current flows from the positive electrode of the storage battery 31 to the resistance elements 36 and 37. Therefore, the gate-source voltage Vgs of the transistor 32 becomes approximately 0V, and the transistor 32 is turned off.
  • the transistor 32 Since the transistor 32 is turned off, power supply from the storage battery 31 to the DC/DC conversion circuit 33 is stopped, and the DC/DC conversion circuit 33 stops DC/DC conversion and stops generating the power supply voltage VPRI. . As a result, the power supply voltage VPRI falls. As a result, the DC/DC conversion circuit 33 stops supplying the power supply voltage VPRI to the processing circuit 34 and the isolator 27.
  • the storage battery module 53 stops operating.
  • the storage battery module 53 can be activated.
  • the controller 22 of the storage battery control device 20 can quickly restart (fast reset) the storage battery module 53 by stopping the supply of the power supply voltage V1 for a short time.
  • the storage battery module 53 further includes a first resistance element (resistance element 48) having one end and the other end connected to the anode of the light emitting diode 25.
  • the output terminal of the first power supply circuit (DC/DC conversion circuit 41) was connected to the first node (node N1).
  • the first switch (transistor 42) has a first terminal connected to the first node (node N1), a second terminal connected to one end of the first resistance element (resistance element 48), and a control terminal connected to the second node (node N2).
  • the first control circuit includes a delay circuit 64 capable of generating a second signal by delaying the first signal indicated by the power supply voltage VSEC by a predetermined time Td, and The first switch (transistor 42) can be turned on when the logic level of the second signal is high and the logic level of the second signal is low. Thereby, the control circuit 63 can set the pulse width of the one-shot pulse, and the resistance element 48 can set the current value of the activation current, so the degree of freedom in design can be increased.
  • this embodiment further includes a first resistance element having one end and the other end connected to the anode of the light emitting diode.
  • the output terminal of the first power supply circuit was connected to the first node.
  • the first switch has a first terminal connected to the first node, a second terminal connected to one end of the first resistance element, and a control terminal connected to the second node. I did it like that.
  • the first control circuit includes a delay circuit capable of generating a second signal by delaying the first signal indicated by the power supply voltage by a predetermined time, and the logic level of the first signal is a high level. , the first switch can be turned on when the logic level of the second signal is low. This increases the degree of freedom in design. Other effects are similar to those of the first embodiment.
  • the P-type transistor 42 is used in the control circuit 63 as shown in FIG. There may be.
  • a P-type transistor 42 is provided and turned on by supplying a low-level control voltage to the gate, but instead of this, a reverse polarity switch is provided to provide a high-level control voltage.
  • the on state may be achieved by supplying a voltage to the control terminal of the switch.
  • an inverter can be provided at the output of the delay circuit 64, and the output signal of the inverter can be supplied to the control terminal of the switch.
  • the power storage system 1 is provided with one storage battery system 2, as shown in FIG. 1, but the present invention is not limited to this. Instead, a plurality of storage battery systems may be provided, for example, like the power storage system 1B shown in FIG. 7.
  • This power storage system 1B is obtained by applying this modification to the power storage system 1 according to the first embodiment.
  • the power storage system 1B includes a hub device 14B and a plurality of (two in this example) storage battery systems 2. Hub device 14B is provided between breaker 12 and energy control device 13, and two storage battery systems 2.
  • the energy control device 13 controls the operation of the storage battery systems 2 by communicating with the storage battery control devices 20 of the two storage battery systems 2 via the hub device 14B.
  • the controller 22 supplies the power supply voltage V1 to the plurality of storage battery modules 23, but the invention is not limited to this. Instead, for example, the energy control device 13 , the power supply voltage V1 may be supplied to the plurality of storage battery modules 23, or the hub device 14B may supply the power supply voltage V1 to the plurality of storage battery modules 23.

Abstract

A storage battery module according to an embodiment of the present disclosure comprises: a photocoupler having a first power supply circuit capable of operating on the basis of power supplied from an external device, a first switch provided to a current path connecting an output terminal of the first power supply circuit and a ground node, a light-emitting element provided to the current path, and a light-receiving element; a first control circuit capable of turning on the first switch in a period corresponding to a rise in the power supply voltage generated by the first power supply circuit; a storage battery; a second power supply circuit capable of operating on the basis of power supplied from the storage battery; a second switch provided to a power supply path connecting the storage battery and an input terminal of the second power supply circuit; a processing circuit capable of operating on the basis of power supplied from the second power supply circuit; and a second control circuit capable of turning on the second switch on the basis of a light reception result from the light-receiving element and an instruction from the processing circuit.

Description

蓄電池モジュールおよび蓄電池システムStorage battery modules and storage battery systems
 本開示は、蓄電池を備えた蓄電池モジュールおよび蓄電池システムに関する。 The present disclosure relates to a storage battery module and a storage battery system including a storage battery.
 電子回路では、しばしば、電気的に互いに絶縁された2つの回路において、信号のやりとりが行われる。特許文献1には、電気的に互いに絶縁された2つの回路においてフォトカプラを介して信号を伝える技術が開示されている。このフォトカプラは、電源が投入されたタイミングから、抵抗素子および容量素子により定まる時定数に応じた時間長の期間において信号を伝える。フォトカプラに流す電流は、この抵抗素子により設定される。 In electronic circuits, signals are often exchanged between two circuits that are electrically isolated from each other. Patent Document 1 discloses a technique for transmitting signals via a photocoupler in two circuits that are electrically insulated from each other. This photocoupler transmits a signal for a period of time corresponding to a time constant determined by a resistive element and a capacitive element from the timing when the power is turned on. The current flowing through the photocoupler is set by this resistance element.
特開平9―153779号公報Japanese Patent Application Publication No. 9-153779
 蓄電池モジュールは、例えば、蓄電池を含む1次側回路と、外部との信号のやり取りを行う2次側回路とを含む。これらの回路は、例えば、直流的に互いに絶縁される。これらの2つの回路では、制御信号のやりとりが行われる。このような回路では、設計の自由度が高いことが望まれており、設計の自由度の向上が期待される。 A storage battery module includes, for example, a primary side circuit that includes a storage battery, and a secondary side circuit that exchanges signals with the outside. These circuits are, for example, galvanically isolated from each other. Control signals are exchanged between these two circuits. It is desired that such a circuit has a high degree of freedom in design, and an improvement in the degree of freedom in design is expected.
 設計の自由度を高めることができる蓄電池モジュールおよび蓄電池システムを提供することが望ましい。 It is desirable to provide a storage battery module and a storage battery system that can increase the degree of freedom in design.
 本開示の一実施の形態における蓄電池モジュールは、第1の電源回路と、第1のスイッチと、フォトカプラと、第1の制御回路と、蓄電池と、第2の電源回路と、第2のスイッチと、処理回路と、第2の制御回路とを備えている。第1の電源回路は、外部装置から供給された電力に基づいて動作可能なものである。第1のスイッチは、第1の電源回路の出力端子と接地ノードとを結ぶ電流経路に設けられたものである。フォトカプラは、電流経路に設けられた発光素子と、受光素子とを有するものである。第1の制御回路は、第1の電源回路が生成する電源電圧の立ち上がりに応じた期間において第1のスイッチをオン状態にすることが可能なものである。蓄電池は、電力を蓄えることが可能なものである。第2の電源回路は、蓄電池から供給された電力に基づいて動作可能なものである。第2のスイッチは、蓄電池と第2の電源回路の入力端子とを結ぶ電力供給経路に設けられたものである。処理回路は、第2の電源回路から供給された電力に基づいて動作可能であり、蓄電池の動作状態を監視可能なものである。第2の制御回路は、受光素子の受光結果および処理回路からの指示に基づいて第2のスイッチをオン状態にすることが可能なものである。 A storage battery module in an embodiment of the present disclosure includes a first power supply circuit, a first switch, a photocoupler, a first control circuit, a storage battery, a second power supply circuit, and a second switch. , a processing circuit, and a second control circuit. The first power supply circuit is operable based on power supplied from an external device. The first switch is provided in a current path connecting the output terminal of the first power supply circuit and the ground node. A photocoupler has a light emitting element and a light receiving element provided in a current path. The first control circuit is capable of turning on the first switch during a period corresponding to the rise of the power supply voltage generated by the first power supply circuit. A storage battery is something that can store electric power. The second power supply circuit is operable based on power supplied from the storage battery. The second switch is provided in a power supply path connecting the storage battery and the input terminal of the second power supply circuit. The processing circuit can operate based on the power supplied from the second power supply circuit, and can monitor the operating state of the storage battery. The second control circuit is capable of turning on the second switch based on the light reception result of the light receiving element and an instruction from the processing circuit.
 本開示の一実施の形態における蓄電池システムは、複数の蓄電池モジュールと、複数の蓄電池モジュールの動作を制御可能な蓄電池制御装置とを備えている。複数の蓄電池モジュールのそれぞれは、第1の電源回路と、第1のスイッチと、フォトカプラと、第1の制御回路と、蓄電池と、第2の電源回路と、第2のスイッチと、処理回路と、第2の制御回路とを備えている。第1の電源回路は、蓄電池制御装置から供給された電力に基づいて動作可能なものである。第1のスイッチは、第1の電源回路の出力端子と接地ノードとを結ぶ電流経路に設けられたものである。フォトカプラは、電流経路に設けられた発光素子と、受光素子とを有するものである。第1の制御回路は、第1の電源回路が生成する電源電圧の立ち上がりに応じた期間において第1のスイッチをオン状態にすることが可能なものである。蓄電池は、電力を蓄えることが可能なものである。第2の電源回路は、蓄電池から供給された電力に基づいて動作可能なものである。第2のスイッチは、蓄電池と第2の電源回路の入力端子とを結ぶ電力供給経路に設けられたものである。処理回路は、第2の電源回路から供給された電力に基づいて動作可能であり、蓄電池の動作状態を監視可能なものである。第2の制御回路は、受光素子の受光結果および処理回路からの指示に基づいて第2のスイッチをオン状態にすることが可能なものである。 A storage battery system according to an embodiment of the present disclosure includes a plurality of storage battery modules and a storage battery control device that can control operations of the plurality of storage battery modules. Each of the plurality of storage battery modules includes a first power supply circuit, a first switch, a photocoupler, a first control circuit, a storage battery, a second power supply circuit, a second switch, and a processing circuit. and a second control circuit. The first power supply circuit is operable based on power supplied from the storage battery control device. The first switch is provided in a current path connecting the output terminal of the first power supply circuit and the ground node. A photocoupler has a light emitting element and a light receiving element provided in a current path. The first control circuit is capable of turning on the first switch during a period corresponding to the rise of the power supply voltage generated by the first power supply circuit. A storage battery is something that can store electric power. The second power supply circuit is operable based on power supplied from the storage battery. The second switch is provided in a power supply path connecting the storage battery and the input terminal of the second power supply circuit. The processing circuit can operate based on the power supplied from the second power supply circuit, and can monitor the operating state of the storage battery. The second control circuit is capable of turning on the second switch based on the light reception result of the light receiving element and an instruction from the processing circuit.
 本開示の一実施の形態における蓄電池モジュールおよび蓄電池システムによれば、設計の自由度を高めることができる。 According to the storage battery module and storage battery system in one embodiment of the present disclosure, the degree of freedom in design can be increased.
図1は、本開示の一実施の形態に係る蓄電池システムを備えた電力貯蔵システムの一構成例を表すブロック図である。FIG. 1 is a block diagram illustrating a configuration example of a power storage system including a storage battery system according to an embodiment of the present disclosure. 図2は、第1の実施の形態に係る蓄電池モジュールの一構成例を表す回路図である。FIG. 2 is a circuit diagram showing a configuration example of the storage battery module according to the first embodiment. 図3は、図2に示した2次側回路における制御回路の一動作例を表すタイミング波形図である。FIG. 3 is a timing waveform diagram showing an example of the operation of the control circuit in the secondary side circuit shown in FIG. 図4は、第1の実施の形態の変形例に係る蓄電池モジュールの一構成例を表す回路図である。FIG. 4 is a circuit diagram showing a configuration example of a storage battery module according to a modification of the first embodiment. 図5は、第2の実施の形態に係る蓄電池モジュールの一構成例を表す回路図である。FIG. 5 is a circuit diagram showing a configuration example of a storage battery module according to the second embodiment. 図6は、図5に示した2次側回路における制御回路の一動作例を表すタイミング波形図である。FIG. 6 is a timing waveform diagram showing an example of the operation of the control circuit in the secondary side circuit shown in FIG. 図7は、変形例に係る電力貯蔵システムの一構成例を表すブロック図である。FIG. 7 is a block diagram illustrating a configuration example of a power storage system according to a modification.
 以下、本開示の実施の形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
1.第1の実施の形態
2.第2の実施の形態
Embodiments of the present disclosure will be described in detail below with reference to the drawings. Note that the explanation will be given in the following order.
1. First embodiment 2. Second embodiment
<1.第1の実施の形態>
[構成例]
 図1は、一実施の形態に係る蓄電池モジュールを備えた電力貯蔵システム1の一構成例を表すものである。電力貯蔵システム1は、商用電源などの系統電源9から供給された電力を貯蔵し、あるいは、貯蔵された電力を負荷装置8や系統電源9に供給するように構成される。電力貯蔵システム1は、パワーコンディショナ11と、ブレーカ12と、エネルギー制御装置13と、蓄電池システム2とを備えている。この図1では、電力の供給経路を太線で示している。
<1. First embodiment>
[Configuration example]
FIG. 1 shows a configuration example of a power storage system 1 including a storage battery module according to an embodiment. The power storage system 1 is configured to store power supplied from a system power source 9 such as a commercial power source, or to supply the stored power to a load device 8 or a system power source 9. The power storage system 1 includes a power conditioner 11 , a breaker 12 , an energy control device 13 , and a storage battery system 2 . In FIG. 1, the power supply route is shown by a thick line.
 パワーコンディショナ11は、系統電源9から供給された交流電力を、AC/DC変換により直流電力に変換し、変換された直流電力を、ブレーカ12を介して蓄電池システム2に供給するように構成される。また、パワーコンディショナ11は、蓄電池システム2からブレーカ12を介して供給された直流電力を、DC/AC変換により交流電力に変換し、変換された交流電力を、負荷装置8および系統電源9に供給するようになっている。パワーコンディショナ11は、正極側の電源線PP、および負極側の電源線PNを介して、蓄電池システム2に接続される。 The power conditioner 11 is configured to convert AC power supplied from the grid power supply 9 into DC power through AC/DC conversion, and supply the converted DC power to the storage battery system 2 via the breaker 12. Ru. In addition, the power conditioner 11 converts the DC power supplied from the storage battery system 2 via the breaker 12 into AC power by DC/AC conversion, and supplies the converted AC power to the load device 8 and the grid power source 9. supply. The power conditioner 11 is connected to the storage battery system 2 via a positive power line PP and a negative power line PN.
 ブレーカ12は、パワーコンディショナ11と蓄電池システム2との間の電力供給経路に設けられ、例えば過電流や短絡が生じた場合に、電力供給を遮断するように構成される。 The breaker 12 is provided in the power supply path between the power conditioner 11 and the storage battery system 2, and is configured to cut off the power supply when an overcurrent or short circuit occurs, for example.
 エネルギー制御装置13は、いわゆるEMU(Energy Management Unit)であり、上位装置である制御装置7と通信を行うことにより、電力貯蔵システム1の動作を制御するように構成される。エネルギー制御装置13は、パワーコンディショナ11との間で通信を行うことにより、パワーコンディショナ11の動作を制御するとともに、蓄電池システム2の蓄電池制御装置20(後述)と通信を行うことにより、蓄電池システム2の動作を制御するようになっている。 The energy control device 13 is a so-called EMU (Energy Management Unit), and is configured to control the operation of the power storage system 1 by communicating with the control device 7, which is a host device. The energy control device 13 controls the operation of the power conditioner 11 by communicating with the power conditioner 11, and also controls the storage battery by communicating with the storage battery control device 20 (described later) of the storage battery system 2. The operation of the system 2 is controlled.
 蓄電池システム2は、パワーコンディショナ11からブレーカ12を介して供給された直流電力に基づいて蓄電池を充電し、あるいは蓄電池に充電された電力を、ブレーカ12を介してパワーコンディショナ11に供給するように構成される。蓄電池システム2は、蓄電池制御装置20と、複数の蓄電池モジュール23とを有している。 The storage battery system 2 charges a storage battery based on DC power supplied from the power conditioner 11 via the breaker 12, or supplies the power charged in the storage battery to the power conditioner 11 via the breaker 12. It is composed of The storage battery system 2 includes a storage battery control device 20 and a plurality of storage battery modules 23.
 蓄電池制御装置20は、いわゆるBMU(Battery Management Unit)であり、エネルギー制御装置13からの指示に基づいて、複数の蓄電池モジュール23の充放電制御を行うことにより、蓄電池システム2の動作を制御するように構成される。蓄電池制御装置20は、コンタクタ21と、コントローラ22とを有する。 The storage battery control device 20 is a so-called BMU (Battery Management Unit), and controls the operation of the storage battery system 2 by controlling charging and discharging of a plurality of storage battery modules 23 based on instructions from the energy control device 13. It is composed of The storage battery control device 20 includes a contactor 21 and a controller 22.
 コンタクタ21は、電源線PPに設けられ、コントローラ22からの指示に基づいてオン状態またはオフ状態になることにより、電源線PPを介した電力供給を制御するように構成される。 The contactor 21 is provided on the power line PP and is configured to control power supply via the power line PP by turning on or off based on instructions from the controller 22.
 コントローラ22は、複数の蓄電池モジュール23と通信を行うことにより、複数の蓄電池モジュール23のそれぞれの動作状態を把握し、エネルギー制御装置13からの指示に基づいて、蓄電池システム2の動作を制御するように構成される。また、コントローラ22は、複数の蓄電池モジュール23に対して、電源電圧V1を供給する。電源電圧V1は、例えば24Vである。コントローラ22と、複数の蓄電池モジュール23との間の通信の接続は、例えば、デイジーチェーン接続であってもよい。なお、この例では、コントローラ22が、複数の蓄電池モジュール23に対して電源電圧V1を供給したが、これに限定されるものではなく、これに代えて、例えば、エネルギー制御装置13が、複数の蓄電池モジュール23に対して電源電圧V1を供給してもよい。 The controller 22 communicates with the plurality of storage battery modules 23 to grasp the operating state of each of the plurality of storage battery modules 23, and controls the operation of the storage battery system 2 based on instructions from the energy control device 13. It is composed of Further, the controller 22 supplies the power supply voltage V1 to the plurality of storage battery modules 23. The power supply voltage V1 is, for example, 24V. The communication connection between the controller 22 and the plurality of storage battery modules 23 may be, for example, a daisy chain connection. In this example, the controller 22 supplies the power supply voltage V1 to the plurality of storage battery modules 23, but the invention is not limited to this. Instead, for example, the energy control device 13 supplies the power supply voltage V1 to the plurality of storage battery modules 23. The power supply voltage V1 may be supplied to the storage battery module 23.
 複数の蓄電池モジュール23のそれぞれは、蓄電池31と、正極端子TPと、負極端子TNとを有し、電力を蓄えるように構成される。この例では、蓄電池システム2は、8つの蓄電池モジュール23(蓄電池モジュール23A~23H)を有している。この例では、蓄電池モジュール23A,23Bは互いに並列に接続され、蓄電池モジュール23C,23Dは互いに並列に接続され、蓄電池モジュール23E,23Fは互いに並列に接続され、蓄電池モジュール23G,23Hは互いに並列に接続される。蓄電池モジュール23A,23B、蓄電池モジュール23C,23D、蓄電池モジュール23E,23F、および蓄電池モジュール23G,23Hは、この順に直列に接続される。蓄電池モジュール23A,23Bのそれぞれの正極端子TPは電源線PPに接続され、蓄電池モジュール23G,23Hのそれぞれの負極端子TNは電源線PNに接続される。 Each of the plurality of storage battery modules 23 has a storage battery 31, a positive terminal TP, and a negative terminal TN, and is configured to store power. In this example, the storage battery system 2 includes eight storage battery modules 23 (storage battery modules 23A to 23H). In this example, storage battery modules 23A and 23B are connected in parallel to each other, storage battery modules 23C and 23D are connected to each other in parallel, storage battery modules 23E and 23F are connected to each other in parallel, and storage battery modules 23G and 23H are connected to each other in parallel. be done. Storage battery modules 23A, 23B, storage battery modules 23C, 23D, storage battery modules 23E, 23F, and storage battery modules 23G, 23H are connected in series in this order. The positive terminals TP of the storage battery modules 23A, 23B are connected to the power line PP, and the negative terminals TN of the storage battery modules 23G, 23H are connected to the power line PN.
 図2は、蓄電池モジュール23の一構成例を表すものである。蓄電池モジュール23は、蓄電池31と、トランジスタ32と、DC/DC変換回路33と、処理回路34と、制御回路35と、フォトカプラ24と、アイソレータ27と、DC/DC変換回路41と、トランジスタ42と、制御回路43と、抵抗素子48と、通信回路49とを有している。蓄電池31、トランジスタ32、DC/DC変換回路33、処理回路34、制御回路35、フォトカプラ24のフォトトランジスタ26(後述)、アイソレータ27の一部は、蓄電池モジュール23の1次側回路30を構成する。DC/DC変換回路41、トランジスタ42、制御回路43、抵抗素子48、フォトカプラ24の発光ダイオード25(後述)、通信回路49、およびアイソレータ27の一部は、蓄電池モジュール23の2次側回路40を構成する。 FIG. 2 shows an example of the configuration of the storage battery module 23. The storage battery module 23 includes a storage battery 31, a transistor 32, a DC/DC conversion circuit 33, a processing circuit 34, a control circuit 35, a photocoupler 24, an isolator 27, a DC/DC conversion circuit 41, and a transistor 42. , a control circuit 43 , a resistance element 48 , and a communication circuit 49 . The storage battery 31, the transistor 32, the DC/DC conversion circuit 33, the processing circuit 34, the control circuit 35, the phototransistor 26 (described later) of the photocoupler 24, and a part of the isolator 27 constitute the primary side circuit 30 of the storage battery module 23. do. A portion of the DC/DC conversion circuit 41, the transistor 42, the control circuit 43, the resistive element 48, the light emitting diode 25 (described later) of the photocoupler 24, the communication circuit 49, and the isolator 27 are connected to the secondary circuit 40 of the storage battery module 23. Configure.
 蓄電池31は、電力を蓄えるように構成される。蓄電池31は、例えば直列および並列に接続された複数の蓄電池セル(図示せず)を有する。蓄電池31の正極は、正極端子TPに導かれたノードNPに接続され、蓄電池31の負極は、負極端子TNに導かれたノードNNに接続される。 The storage battery 31 is configured to store electric power. The storage battery 31 includes, for example, a plurality of storage battery cells (not shown) connected in series and in parallel. The positive electrode of the storage battery 31 is connected to a node NP led to a positive terminal TP, and the negative electrode of the storage battery 31 is connected to a node NN led to a negative terminal TN.
 トランジスタ32は、P型の電界効果トランジスタであり、ソースはノードNPに接続され、ゲートは制御回路35に接続され、ドレインはDC/DC変換回路33の入力端子に接続される。トランジスタ32は、オン状態になることにより、蓄電池31から供給された直流電力をDC/DC変換回路33に供給するようになっている。 The transistor 32 is a P-type field effect transistor, and has a source connected to the node NP, a gate connected to the control circuit 35, and a drain connected to the input terminal of the DC/DC conversion circuit 33. When the transistor 32 is turned on, it supplies the DC power supplied from the storage battery 31 to the DC/DC conversion circuit 33.
 DC/DC変換回路33は、蓄電池31から供給された直流電力に基づいて、DC/DC変換を行うことにより、電源電圧VPRIを生成するように構成される。そして、DC/DC変換回路33は、生成した電源電圧VPRIを処理回路34およびアイソレータ27に供給するようになっている。 The DC/DC conversion circuit 33 is configured to generate the power supply voltage VPRI by performing DC/DC conversion based on the DC power supplied from the storage battery 31. Then, the DC/DC conversion circuit 33 supplies the generated power supply voltage VPRI to the processing circuit 34 and the isolator 27.
 処理回路34は、例えばマイクロコントローラを用いて構成され、蓄電池31の電圧、電流、温度などを監視することにより、蓄電池31の動作状態を監視するように構成される。そして、処理回路34は、アイソレータ27および通信回路49を介して、蓄電池制御装置20のコントローラ22(図1)と通信を行うことにより、蓄電池31の動作状態についての情報をコントローラ22に供給するようになっている。 The processing circuit 34 is configured using, for example, a microcontroller, and is configured to monitor the operating state of the storage battery 31 by monitoring the voltage, current, temperature, etc. of the storage battery 31. The processing circuit 34 communicates with the controller 22 (FIG. 1) of the storage battery control device 20 via the isolator 27 and the communication circuit 49 to supply information about the operating state of the storage battery 31 to the controller 22. It has become.
 この処理回路34は、DC/DC変換回路33から供給された電源電圧VPRIの電源電力に基づいて動作を行う。また、処理回路34は、制御回路35のトランジスタ38(後述)に制御信号CTLを供給することにより、トランジスタ38の動作を制御する。具体的には、処理回路34は、例えば、電源電圧VPRIが供給されて起動した後に、制御信号CTLを高レベル(アクティブレベル)にすることにより、トランジスタ38をオン状態にする。また、処理回路34は、DC/DC変換回路41への電源電圧V1の供給が停止された場合には、アイソレータ27からの信号に基づいて制御信号CTLを低レベル(非アクティブレベル)にすることにより、トランジスタ38をオフ状態にするようになっている。 This processing circuit 34 operates based on the power supply voltage VPRI supplied from the DC/DC conversion circuit 33. Further, the processing circuit 34 controls the operation of the transistor 38 by supplying a control signal CTL to the transistor 38 (described later) of the control circuit 35. Specifically, the processing circuit 34 turns on the transistor 38 by setting the control signal CTL to a high level (active level) after being started by being supplied with the power supply voltage VPRI, for example. Furthermore, when the supply of the power supply voltage V1 to the DC/DC conversion circuit 41 is stopped, the processing circuit 34 sets the control signal CTL to a low level (inactive level) based on the signal from the isolator 27. This turns off the transistor 38.
 制御回路35は、処理回路34からの制御信号CTL、およびフォトカプラ24からの信号に基づいて、トランジスタ32の動作を制御するように構成される。制御回路35は、抵抗素子36,37と、トランジスタ38とを有する。抵抗素子36の一端は、ノードNPに接続され、他端はトランジスタ32のゲートおよび抵抗素子37の一端に接続される。抵抗素子37の一端は抵抗素子36の他端およびトランジスタ32のゲートに接続され、他端はトランジスタ38のドレインおよびフォトカプラ24のフォトトランジスタ26(後述)のコレクタに接続される。トランジスタ38は、N型の電界効果トランジスタであり、ゲートには処理回路34から制御信号CTLが供給され、ドレインは抵抗素子37の他端およびフォトカプラ24のフォトトランジスタ26(後述)のコレクタに接続され、ソースはノードNNに接続される。 The control circuit 35 is configured to control the operation of the transistor 32 based on the control signal CTL from the processing circuit 34 and the signal from the photocoupler 24. Control circuit 35 includes resistance elements 36 and 37 and a transistor 38. One end of resistance element 36 is connected to node NP, and the other end is connected to the gate of transistor 32 and one end of resistance element 37. One end of the resistance element 37 is connected to the other end of the resistance element 36 and the gate of the transistor 32, and the other end is connected to the drain of the transistor 38 and the collector of the phototransistor 26 (described later) of the photocoupler 24. The transistor 38 is an N-type field effect transistor, has a gate supplied with a control signal CTL from the processing circuit 34, and has a drain connected to the other end of the resistor 37 and the collector of the phototransistor 26 (described later) of the photocoupler 24. and the source is connected to node NN.
 この構成により、制御回路35は、制御信号CTLが高レベル(アクティブレベル)になったときにトランジスタ32をオン状態にし、フォトカプラ24のフォトトランジスタ26が発光ダイオード25からの光を受光したときにトランジスタ32をオン状態にするようになっている。 With this configuration, the control circuit 35 turns on the transistor 32 when the control signal CTL becomes high level (active level), and turns on the transistor 32 when the phototransistor 26 of the photocoupler 24 receives light from the light emitting diode 25. The transistor 32 is turned on.
 DC/DC変換回路41は、蓄電池制御装置20のコントローラ22から供給された電源電圧V1の直流電力に基づいて、DC/DC変換を行うことにより、電源電圧VSECを生成するように構成される。電源電圧VSECは、例えば5Vである。そして、DC/DC変換回路41は、生成した電源電圧VSECを通信回路49およびアイソレータ27に供給するようになっている。 The DC/DC conversion circuit 41 is configured to generate the power supply voltage VSEC by performing DC/DC conversion based on the DC power of the power supply voltage V1 supplied from the controller 22 of the storage battery control device 20. The power supply voltage VSEC is, for example, 5V. Then, the DC/DC conversion circuit 41 supplies the generated power supply voltage VSEC to the communication circuit 49 and the isolator 27.
 トランジスタ42は、P型の電界効果トランジスタであり、ソースはDC/DC変換回路41の出力端子に接続されたノードN1に接続され、ゲートはノードN2に接続され、ドレインは抵抗素子48に接続される。トランジスタ42は、オン状態になることにより、DC/DC変換回路41の出力端子から、トランジスタ42、抵抗素子48、フォトカプラ24の発光ダイオード25を介して接地ノードへ至る電流経路に、電流を流すようになっている。 The transistor 42 is a P-type field effect transistor, and has a source connected to a node N1 connected to the output terminal of the DC/DC conversion circuit 41, a gate connected to a node N2, and a drain connected to the resistive element 48. Ru. When the transistor 42 is turned on, current flows from the output terminal of the DC/DC conversion circuit 41 through the transistor 42, the resistive element 48, and the light emitting diode 25 of the photocoupler 24 to the ground node. It looks like this.
 制御回路43は、電源電圧VSECに基づいて、トランジスタ42の動作を制御するように構成される。制御回路43は、抵抗素子44,45と、容量素子46と、ダイオード47とを有している。抵抗素子44の一端はノードN1に接続され、他端はノードN2に接続される。抵抗素子45の一端はノードN2に接続され、他端はノードN3に接続される。容量素子46の一端はノードN3に接続され、他端は接地される。ダイオード47のアノードはノードN3に接続され、カソードはノードN1に接続される。 The control circuit 43 is configured to control the operation of the transistor 42 based on the power supply voltage VSEC. The control circuit 43 includes resistive elements 44 and 45, a capacitive element 46, and a diode 47. One end of resistance element 44 is connected to node N1, and the other end is connected to node N2. One end of resistance element 45 is connected to node N2, and the other end is connected to node N3. One end of capacitive element 46 is connected to node N3, and the other end is grounded. The anode of diode 47 is connected to node N3, and the cathode is connected to node N1.
 この構成により、制御回路43は、DC/DC変換回路41が電源電圧V1に基づいて起動することにより、電源電圧VSECが立ち上がったときに、その立ち上がりに応じた所定の期間において、トランジスタ42をオン状態にするようになっている。 With this configuration, the control circuit 43 turns on the transistor 42 for a predetermined period corresponding to the rise of the power supply voltage VSEC when the DC/DC conversion circuit 41 is activated based on the power supply voltage V1. It is supposed to be in a state.
 抵抗素子48の一端はトランジスタ42のドレインに接続され、他端はフォトカプラ24の発光ダイオード25(後述)のアノードに接続される。 One end of the resistive element 48 is connected to the drain of the transistor 42, and the other end is connected to the anode of a light emitting diode 25 (described later) of the photocoupler 24.
 フォトカプラ24は、発光ダイオード25と、フォトトランジスタ26とを有している。発光ダイオード25のアノードは抵抗素子48の他端に接続され、カソードは接地される。フォトトランジスタ26のコレクタは抵抗素子37の他端およびトランジスタ38のドレインに接続され、エミッタはノードNNに接続される。 The photocoupler 24 has a light emitting diode 25 and a phototransistor 26. The anode of the light emitting diode 25 is connected to the other end of the resistance element 48, and the cathode is grounded. The collector of phototransistor 26 is connected to the other end of resistance element 37 and the drain of transistor 38, and the emitter is connected to node NN.
 通信回路49は、蓄電池制御装置20のコントローラ22(図1)との間で通信を行うように構成される。また、通信回路49は、アイソレータ27を介して、処理回路34との間で通信を行うようになっている。通信回路49は、DC/DC変換回路41から供給された電源電圧VSECの電源電力に基づいて動作する。 The communication circuit 49 is configured to communicate with the controller 22 (FIG. 1) of the storage battery control device 20. Further, the communication circuit 49 communicates with the processing circuit 34 via the isolator 27. The communication circuit 49 operates based on the power of the power supply voltage VSEC supplied from the DC/DC conversion circuit 41.
 アイソレータ27は、通信回路49からの信号を処理回路34に送信するとともに、処理回路34からの信号を通信回路49に送信するように構成される。アイソレータ27は、DC/DC変換回路33から供給された電源電圧VPRIの電源電力、およびDC/DC変換回路41から供給された電源電圧VSECの電源電力に基づいて動作する。すなわち、アイソレータ27は、電源電圧VPRIの電源電力に基づいて動作する、1次側回路30に属する回路部分と、電源電圧VSECの電源電力に基づいて動作する、2次側回路に属する回路部分とを有する。アイソレータ27において、1次側回路30に属する回路部分と、2次側回路40に属する回路部分とは、直流的に互いに絶縁される。 The isolator 27 is configured to transmit a signal from the communication circuit 49 to the processing circuit 34 and to transmit a signal from the processing circuit 34 to the communication circuit 49. The isolator 27 operates based on the power supply voltage VPRI supplied from the DC/DC conversion circuit 33 and the power supply voltage VSEC supplied from the DC/DC conversion circuit 41. That is, the isolator 27 has a circuit part that operates based on the power supply voltage VPRI and belongs to the primary side circuit 30, and a circuit part that operates based on the power supply voltage VSEC and belongs to the secondary side circuit. has. In the isolator 27, a circuit portion belonging to the primary circuit 30 and a circuit portion belonging to the secondary circuit 40 are electrically insulated from each other.
 ここで、DC/DC変換回路41は、本開示の一実施の形態における「第1の電源回路」の一具体例に対応する。トランジスタ42は、本開示の一実施の形態における「第1のスイッチ」の一具体例に対応する。フォトカプラ24は、本開示の一実施の形態における「フォトカプラ」の一具体例に対応する。制御回路43は、本開示の一実施の形態における「第1の制御回路」の一具体例に対応する。蓄電池31は、本開示の一実施の形態における「蓄電池」の一具体例に対応する。DC/DC変換回路33は、本開示の一実施の形態における「第2の電源回路」の一具体例に対応する。トランジスタ32は、本開示の一実施の形態における「第2のスイッチ」の一具体例に対応する。処理回路34は、本開示の一実施の形態における「処理回路」の一具体例に対応する。制御信号CTLは、本開示の一実施の形態における「制御信号」の一具体例に対応する。制御回路35は、本開示の一実施の形態における「処理回路」の一具体例に対応する。抵抗素子48は、本開示の一実施の形態における「第1の抵抗素子」の一具体例に対応する。ノードN1は、本開示の一実施の形態における「第1のノード」の一具体例に対応する。ノードN2は、本開示の一実施の形態における「第2のノード」の一具体例に対応する。ノードN3は、本開示の一実施の形態における「第3のノード」の一具体例に対応する。抵抗素子44は、本開示の一実施の形態における「第2の抵抗素子」の一具体例に対応する。抵抗素子45は、本開示の一実施の形態における「第3の抵抗素子」の一具体例に対応する。容量素子46は、本開示の一実施の形態における「容量素子」の一具体例に対応する。ダイオード47は、本開示の一実施の形態における「ダイオード」の一具体例に対応する。通信回路49は、本開示の一実施の形態における「通信回路」の一具体例に対応する。アイソレータ27は、本開示の一実施の形態における「アイソレータ」の一具体例に対応する。蓄電池モジュール23は、本開示の一実施の形態における「蓄電池モジュール」の一具体例に対応する。蓄電池制御装置20は、本開示の一実施の形態における「外部装置」および「蓄電池制御装置」の一具体例に対応する。 Here, the DC/DC conversion circuit 41 corresponds to a specific example of a "first power supply circuit" in an embodiment of the present disclosure. The transistor 42 corresponds to a specific example of a "first switch" in an embodiment of the present disclosure. The photocoupler 24 corresponds to a specific example of a "photocoupler" in an embodiment of the present disclosure. The control circuit 43 corresponds to a specific example of a "first control circuit" in an embodiment of the present disclosure. The storage battery 31 corresponds to a specific example of a "storage battery" in an embodiment of the present disclosure. The DC/DC conversion circuit 33 corresponds to a specific example of a "second power supply circuit" in an embodiment of the present disclosure. The transistor 32 corresponds to a specific example of a "second switch" in an embodiment of the present disclosure. The processing circuit 34 corresponds to a specific example of a "processing circuit" in an embodiment of the present disclosure. The control signal CTL corresponds to a specific example of a "control signal" in an embodiment of the present disclosure. The control circuit 35 corresponds to a specific example of a "processing circuit" in an embodiment of the present disclosure. Resistance element 48 corresponds to a specific example of a "first resistance element" in an embodiment of the present disclosure. Node N1 corresponds to a specific example of a "first node" in an embodiment of the present disclosure. Node N2 corresponds to a specific example of a "second node" in an embodiment of the present disclosure. Node N3 corresponds to a specific example of a "third node" in an embodiment of the present disclosure. The resistance element 44 corresponds to a specific example of a "second resistance element" in an embodiment of the present disclosure. Resistance element 45 corresponds to a specific example of a "third resistance element" in an embodiment of the present disclosure. The capacitive element 46 corresponds to a specific example of a "capacitive element" in an embodiment of the present disclosure. The diode 47 corresponds to a specific example of a "diode" in an embodiment of the present disclosure. The communication circuit 49 corresponds to a specific example of a "communication circuit" in an embodiment of the present disclosure. The isolator 27 corresponds to a specific example of an "isolator" in an embodiment of the present disclosure. The storage battery module 23 corresponds to a specific example of a "storage battery module" in an embodiment of the present disclosure. The storage battery control device 20 corresponds to a specific example of an “external device” and a “storage battery control device” in an embodiment of the present disclosure.
[動作および作用]
 続いて、本実施の形態の電力貯蔵システム1の動作および作用について説明する。
[Operation and effect]
Next, the operation and effects of the power storage system 1 of this embodiment will be explained.
(全体動作概要)
 まず、図1を参照して、電力貯蔵システム1の全体動作概要を説明する。パワーコンディショナ11は、系統電源9から供給された交流電力を、AC/DC変換により直流電力に変換し、変換された直流電力を、ブレーカ12を介して蓄電池システム2に供給する。また、パワーコンディショナ11は、蓄電池システム2からブレーカ12を介して供給された直流電力を、DC/AC変換により交流電力に変換し、変換された交流電力を、負荷装置8および系統電源9に供給する。負荷装置8は、系統電源9から供給された交流電力や、パワーコンディショナ11から供給された交流電力に基づいて動作する。ブレーカ12は、パワーコンディショナ11と蓄電池システム2との間の電力供給経路に設けられ、例えば過電流や短絡が生じた場合に、電力供給を遮断する。エネルギー制御装置13は、上位装置である制御装置7と通信を行うことにより、電力貯蔵システム1の動作を制御する。エネルギー制御装置13は、パワーコンディショナ11との間で通信を行うことにより、パワーコンディショナ11の動作を制御するとともに、蓄電池システム2の蓄電池制御装置20と通信を行うことにより、蓄電池システム2の動作を制御する。
(Overview of overall operation)
First, an overview of the overall operation of the power storage system 1 will be explained with reference to FIG. The power conditioner 11 converts AC power supplied from the system power supply 9 into DC power through AC/DC conversion, and supplies the converted DC power to the storage battery system 2 via the breaker 12 . In addition, the power conditioner 11 converts the DC power supplied from the storage battery system 2 via the breaker 12 into AC power by DC/AC conversion, and supplies the converted AC power to the load device 8 and the grid power source 9. supply The load device 8 operates based on the AC power supplied from the system power supply 9 and the AC power supplied from the power conditioner 11 . The breaker 12 is provided in the power supply path between the power conditioner 11 and the storage battery system 2, and cuts off the power supply when an overcurrent or short circuit occurs, for example. Energy control device 13 controls the operation of power storage system 1 by communicating with control device 7, which is a host device. The energy control device 13 controls the operation of the power conditioner 11 by communicating with the power conditioner 11, and controls the operation of the storage battery system 2 by communicating with the storage battery control device 20 of the storage battery system 2. Control behavior.
 蓄電池システム2において、蓄電池制御装置20は、エネルギー制御装置13からの指示に基づいて、複数の蓄電池モジュール23の充放電制御を行うことにより、蓄電池システム2の動作を制御する。コンタクタ21は、コントローラ22からの指示に基づいてオン状態またはオフ状態になることにより、電源線PPを介した電力供給を制御する。コントローラ22は、複数の蓄電池モジュール23と通信を行うことにより、複数の蓄電池モジュール23のそれぞれの動作状態を把握し、エネルギー制御装置13からの指示に基づいて、蓄電池システム2の動作を制御する。また、コントローラ22は、複数の蓄電池モジュール23に対して、電源電圧V1を供給する。複数の蓄電池モジュール23の蓄電池31は、電力を蓄える。 In the storage battery system 2, the storage battery control device 20 controls the operation of the storage battery system 2 by controlling charging and discharging of the plurality of storage battery modules 23 based on instructions from the energy control device 13. The contactor 21 controls power supply via the power line PP by turning on or off based on instructions from the controller 22. The controller 22 communicates with the plurality of storage battery modules 23 to grasp the operating state of each of the plurality of storage battery modules 23 and controls the operation of the storage battery system 2 based on instructions from the energy control device 13. Further, the controller 22 supplies the power supply voltage V1 to the plurality of storage battery modules 23. The storage batteries 31 of the plurality of storage battery modules 23 store electric power.
(詳細動作)
 次に、蓄電池モジュール23の動作について詳細に説明する。最初に、蓄電池モジュール23の起動動作について説明し、その後に、蓄電池モジュール23を停止させる動作について説明する。
(Detailed operation)
Next, the operation of the storage battery module 23 will be explained in detail. First, the starting operation of the storage battery module 23 will be explained, and then the operation of stopping the storage battery module 23 will be explained.
 起動時では、まず、蓄電池制御装置20のコントローラ22が、複数の蓄電池モジュール23に対して、電源電圧V1を供給する。蓄電池モジュール23では、DC/DC変換回路41は、この電源電圧V1の直流電力に基づいて、DC/DC変換を行うことにより、電源電圧VSECを生成する。電源電圧VSECは、例えばDC/DC変換によりランプアップされることにより生成される。DC/DC変換回路41は、この電源電圧VSECを、通信回路49およびアイソレータ27に供給する。 At startup, first, the controller 22 of the storage battery control device 20 supplies the power supply voltage V1 to the plurality of storage battery modules 23. In the storage battery module 23, the DC/DC conversion circuit 41 generates the power supply voltage VSEC by performing DC/DC conversion based on the DC power of the power supply voltage V1. The power supply voltage VSEC is generated, for example, by being ramped up by DC/DC conversion. DC/DC conversion circuit 41 supplies this power supply voltage VSEC to communication circuit 49 and isolator 27 .
 電源電圧VSECが立ち上がると、制御回路43は、その立ち上がりに応じた所定の期間において、トランジスタ42をオン状態にする。 When the power supply voltage VSEC rises, the control circuit 43 turns on the transistor 42 for a predetermined period corresponding to the rise.
 図3は、制御回路43の一動作例を表すものである。この図3では、説明の便宜上、電源電圧VSECの波形を矩形状の波形として描いている。 FIG. 3 shows an example of the operation of the control circuit 43. In FIG. 3, for convenience of explanation, the waveform of the power supply voltage VSEC is depicted as a rectangular waveform.
 タイミングt1において、電源電圧VSECが立ち上がると、制御回路43では、DC/DC変換回路41の出力端子から、抵抗素子44および抵抗素子45を介して電流が流れ、容量素子46をチャージし始める。この電流により、トランジスタ42のゲート電圧VGは、トランジスタ42のソース電圧よりも低くなる。電源電圧VSECが立ち上がった直後では、トランジスタ42のゲート電圧VGは、電源電圧VSECが抵抗素子44,45により分圧された電圧である。このときのトランジスタ42のゲート・ソース間電圧Vgsは、トランジスタ42をオン状態にさせることが可能な電圧である。これにより、トランジスタ42はオン状態になる。時間の経過に応じて、容量素子46は徐々にチャージされるので、トランジスタ42のゲート電圧VGは、図3に示したように徐々に高くなる。言い換えれば、トランジスタ42のゲート・ソース間電圧Vgsの絶対値は、徐々に小さくなっていく。この電圧変化は、抵抗素子44,45および容量素子46の時定数により設定される。 At timing t1, when the power supply voltage VSEC rises, in the control circuit 43, a current flows from the output terminal of the DC/DC conversion circuit 41 through the resistance element 44 and the resistance element 45, and starts charging the capacitance element 46. This current causes the gate voltage VG of transistor 42 to be lower than the source voltage of transistor 42. Immediately after the power supply voltage VSEC rises, the gate voltage VG of the transistor 42 is a voltage obtained by dividing the power supply voltage VSEC by the resistance elements 44 and 45. The gate-source voltage Vgs of the transistor 42 at this time is a voltage that can turn the transistor 42 on. This turns the transistor 42 on. Since the capacitive element 46 is gradually charged over time, the gate voltage VG of the transistor 42 gradually increases as shown in FIG. 3. In other words, the absolute value of the gate-source voltage Vgs of the transistor 42 gradually decreases. This voltage change is set by the time constants of the resistive elements 44 and 45 and the capacitive element 46.
 タイミングt1においてトランジスタ42がオン状態になると、DC/DC変換回路41の出力端子から、トランジスタ42、抵抗素子48、フォトカプラ24の発光ダイオード25を介して接地ノードへ至る電流経路に、電流I25が流れる。この電流I25は、フォトカプラ24の活性化電流である。この電流I25の電流値は、抵抗素子48の抵抗値により設定される。フォトカプラ24の発光ダイオード25に電流I25が流れることにより、発光ダイオード25が発光し、フォトトランジスタ26は、この光を受光し、コレクタからエミッタに向かって電流を流す。 When the transistor 42 turns on at timing t1, a current I25 flows in a current path from the output terminal of the DC/DC conversion circuit 41 to the ground node via the transistor 42, the resistive element 48, and the light emitting diode 25 of the photocoupler 24. flows. This current I25 is an activation current for the photocoupler 24. The current value of this current I25 is set by the resistance value of the resistance element 48. When the current I25 flows through the light emitting diode 25 of the photocoupler 24, the light emitting diode 25 emits light, and the phototransistor 26 receives this light and causes a current to flow from the collector to the emitter.
 このようにフォトトランジスタ26が電流を流すことにより、1次側回路30では、蓄電池31の正極から、抵抗素子36、抵抗素子37、フォトトランジスタ26の順に電流が流れる。これにより、トランジスタ32のゲート電圧は、トランジスタ32のソース電圧よりも低くなる。このときのトランジスタ32のゲート・ソース間電圧Vgsは、トランジスタ32をオン状態にさせることが可能な電圧である。これにより、トランジスタ32はオン状態になり、蓄電池31から供給された直流電力をDC/DC変換回路33に供給する。DC/DC変換回路33は、蓄電池31から供給された直流電力に基づいて、DC/DC変換を行うことにより、電源電圧VPRIを生成する。電源電圧VPRIは、例えばDC/DC変換動作によりランプアップし、最終電圧に到達する。DC/DC変換回路33は、この電源電圧VPRIを、処理回路34およびアイソレータ27に供給する。 As the phototransistor 26 causes current to flow in this manner, in the primary side circuit 30, the current flows from the positive electrode of the storage battery 31 to the resistance element 36, the resistance element 37, and the phototransistor 26 in this order. As a result, the gate voltage of transistor 32 becomes lower than the source voltage of transistor 32. The gate-source voltage Vgs of the transistor 32 at this time is a voltage that can turn the transistor 32 on. As a result, the transistor 32 is turned on, and the DC power supplied from the storage battery 31 is supplied to the DC/DC conversion circuit 33. The DC/DC conversion circuit 33 generates a power supply voltage VPRI by performing DC/DC conversion based on the DC power supplied from the storage battery 31. The power supply voltage VPRI ramps up by, for example, a DC/DC conversion operation and reaches the final voltage. DC/DC conversion circuit 33 supplies this power supply voltage VPRI to processing circuit 34 and isolator 27.
 処理回路34は、この電源電圧VPRIに基づいて起動する。そして、処理回路34は、所定の起動シーケンスで動作した後に、制御信号CTLを低レベル(非アクティブレベル)から高レベル(アクティブレベル)に変化させる。この制御信号CTLにより、トランジスタ38はオン状態になる。これにより、1次側回路30では、蓄電池31の正極から、抵抗素子36、抵抗素子37、トランジスタ38の順に電流が流れる。すなわち、この段階では、蓄電池31の正極から、抵抗素子36および抵抗素子37を介して、フォトカプラ24のフォトトランジスタ26およびトランジスタ38の両方に電流が流れる。トランジスタ32のゲート・ソース間電圧Vgsは、トランジスタ32をオン状態にさせることが可能な電圧のままである。よって、DC/DC変換回路33は、DC/DC変換を継続し、電源電圧VPRIを生成し続ける。 The processing circuit 34 is activated based on this power supply voltage VPRI. After operating in a predetermined startup sequence, the processing circuit 34 changes the control signal CTL from a low level (inactive level) to a high level (active level). This control signal CTL turns on the transistor 38. As a result, in the primary side circuit 30, a current flows from the positive electrode of the storage battery 31 to the resistance element 36, the resistance element 37, and the transistor 38 in this order. That is, at this stage, current flows from the positive electrode of the storage battery 31 to both the phototransistor 26 and the transistor 38 of the photocoupler 24 via the resistance element 36 and the resistance element 37. The gate-source voltage Vgs of the transistor 32 remains at a voltage that allows the transistor 32 to be turned on. Therefore, the DC/DC conversion circuit 33 continues DC/DC conversion and continues to generate the power supply voltage VPRI.
 この後、図3に示したように、タイミングt2において、トランジスタ42のゲート電圧VGは、トランジスタ42のしきい値電圧に対応する電圧VTHに到達する。これにより、トランジスタ42は、オン状態からオフ状態に変化する。トランジスタ42がオフ状態になると、フォトカプラ24の発光ダイオード25に電流I25が流れなくなるので、フォトトランジスタ26に電流が流れなくなる。 After this, as shown in FIG. 3, at timing t2, the gate voltage VG of the transistor 42 reaches the voltage VTH corresponding to the threshold voltage of the transistor 42. Thereby, the transistor 42 changes from an on state to an off state. When the transistor 42 is turned off, the current I25 no longer flows through the light emitting diode 25 of the photocoupler 24, so no current flows through the phototransistor 26.
 1次側回路30では、このようにフォトトランジスタ26に電流が流れなくなるが、制御信号CTLは高レベルを維持するので、トランジスタ38には電流が流れ続ける。つまり、蓄電池31の正極から、抵抗素子36、抵抗素子37、トランジスタ38の順に電流が流れる。トランジスタ32のゲート・ソース間電圧Vgsは、トランジスタ32をオン状態にさせることが可能な電圧のままである。よって、DC/DC変換回路33は、DC/DC変換を継続し、電源電圧VPRIを生成し続ける。 In the primary side circuit 30, current no longer flows to the phototransistor 26 in this way, but since the control signal CTL remains at a high level, current continues to flow to the transistor 38. That is, current flows from the positive electrode of the storage battery 31 to the resistive element 36, the resistive element 37, and the transistor 38 in this order. The gate-source voltage Vgs of the transistor 32 remains at a voltage that allows the transistor 32 to be turned on. Therefore, the DC/DC conversion circuit 33 continues DC/DC conversion and continues to generate the power supply voltage VPRI.
 このように、蓄電池モジュール23では、タイミングt1~t2の期間において、トランジスタ42がオン状態になり、ワンショットパルスの活性化電流が流れる。タイミングt1~t2の期間の長さは、例えば数秒程度であり、抵抗素子44,45および容量素子46の時定数により設定される。タイミングt2は、1次側回路30において、トランジスタ32がオン状態になり、DC/DC変換回路33が電源電圧VPRIを生成し、処理回路34が起動し、トランジスタ38がオン状態になるタイミングよりも後になるように設定される。 In this way, in the storage battery module 23, the transistor 42 is turned on during the period from timing t1 to t2, and a one-shot pulse activation current flows. The length of the period from timing t1 to t2 is, for example, about several seconds, and is set by the time constants of the resistive elements 44, 45 and the capacitive element 46. Timing t2 is earlier than the timing at which, in the primary side circuit 30, the transistor 32 is turned on, the DC/DC conversion circuit 33 generates the power supply voltage VPRI, the processing circuit 34 is activated, and the transistor 38 is turned on. It is set to be later.
 2次側回路40では、図3に示したように、その後もトランジスタ42のゲート電圧VGは上昇し続け、電源電圧VSECに近づいていく。 In the secondary side circuit 40, as shown in FIG. 3, the gate voltage VG of the transistor 42 continues to rise thereafter and approaches the power supply voltage VSEC.
 このようにして、蓄電池モジュール23は起動する。処理回路34は、蓄電池31の電圧、電流、温度などを監視することにより、蓄電池31の動作状態を監視する。そして、処理回路34は、アイソレータ27および通信回路49を介して、蓄電池制御装置20のコントローラ22と通信を行うことにより、蓄電池31の動作状態についての情報をコントローラ22に供給する。 In this way, the storage battery module 23 is activated. The processing circuit 34 monitors the operating state of the storage battery 31 by monitoring the voltage, current, temperature, etc. of the storage battery 31. The processing circuit 34 communicates with the controller 22 of the storage battery control device 20 via the isolator 27 and the communication circuit 49, thereby supplying information regarding the operating state of the storage battery 31 to the controller 22.
 次に、蓄電池モジュール23の動作を停止させる場合について説明する。まず、蓄電池制御装置20のコントローラ22が、複数の蓄電池モジュール23への電源電圧V1の供給を停止する。蓄電池モジュール23では、DC/DC変換回路41は、この電源電圧V1の供給停止に基づいて、DC/DC変換を停止し、電源電圧VSECの生成を停止する。これにより、図3に示したように、電源電圧VSECは、タイミングt3において立ち下がり、0Vになる。その結果、DC/DC変換回路41は、通信回路49およびアイソレータ27への電源電圧VSECの供給を停止する。 Next, a case will be described in which the operation of the storage battery module 23 is stopped. First, the controller 22 of the storage battery control device 20 stops supplying the power supply voltage V1 to the plurality of storage battery modules 23. In the storage battery module 23, the DC/DC conversion circuit 41 stops DC/DC conversion and stops generating the power supply voltage VSEC based on the stoppage of the supply of the power supply voltage V1. As a result, as shown in FIG. 3, the power supply voltage VSEC falls to 0V at timing t3. As a result, the DC/DC conversion circuit 41 stops supplying the power supply voltage VSEC to the communication circuit 49 and the isolator 27.
 制御回路43では、例えば、容量素子46はチャージされているので、ノードN3の電圧はノードN1の電圧よりも高い。よって、ダイオード47がオン状態になり、容量素子46から、ダイオード47を介して、例えば通信回路49やアイソレータ27に電流が流れる。このようにして、容量素子46は速やかに放電する。これにより、図3に示したように、トランジスタ42のゲート電圧VGは速やかに低下する。 In the control circuit 43, for example, since the capacitive element 46 is charged, the voltage at the node N3 is higher than the voltage at the node N1. Therefore, the diode 47 is turned on, and current flows from the capacitive element 46 to the communication circuit 49 and the isolator 27 via the diode 47, for example. In this way, the capacitive element 46 is quickly discharged. As a result, as shown in FIG. 3, the gate voltage VG of the transistor 42 quickly decreases.
 電源電圧VSECが立ち下がると、アイソレータ27に電源電圧VSECが供給されなくなるので、アイソレータ27は、処理回路34への信号を低レベルに固定する。処理回路34は、アイソレータ27から供給された信号に基づいて、蓄電池制御装置20のコントローラ22からの電源電圧V1の供給が停止されたことを把握し、制御信号CTLを高レベル(アクティブレベル)から低レベル(非アクティブレベル)に変化させる。これにより、トランジスタ38がオフ状態になるので、蓄電池31の正極から、抵抗素子36,37に電流が流れなくなる。よって、トランジスタ32のゲート・ソース間電圧Vgsは、ほぼ0Vになり、トランジスタ32はオフ状態になる。トランジスタ32がオフ状態になるので、蓄電池31からDC/DC変換回路33への電力供給が停止し、DC/DC変換回路33は、DC/DC変換を停止し、電源電圧VPRIの生成を停止する。これにより、電源電圧VPRIは立ち下がる。その結果、DC/DC変換回路33は、処理回路34およびアイソレータ27への電源電圧VPRIの供給を停止する。 When the power supply voltage VSEC falls, the isolator 27 is no longer supplied with the power supply voltage VSEC, so the isolator 27 fixes the signal to the processing circuit 34 at a low level. Based on the signal supplied from the isolator 27, the processing circuit 34 grasps that the supply of the power supply voltage V1 from the controller 22 of the storage battery control device 20 has been stopped, and changes the control signal CTL from a high level (active level). Change to low level (inactive level). As a result, the transistor 38 is turned off, so that no current flows from the positive electrode of the storage battery 31 to the resistance elements 36 and 37. Therefore, the gate-source voltage Vgs of the transistor 32 becomes approximately 0V, and the transistor 32 is turned off. Since the transistor 32 is turned off, power supply from the storage battery 31 to the DC/DC conversion circuit 33 is stopped, and the DC/DC conversion circuit 33 stops DC/DC conversion and stops generating the power supply voltage VPRI. . As a result, the power supply voltage VPRI falls. As a result, the DC/DC conversion circuit 33 stops supplying the power supply voltage VPRI to the processing circuit 34 and the isolator 27.
 このようにして、蓄電池モジュール23は動作を停止する。2次側回路40の制御回路43では、容量素子46はダイオード47により放電されている。よって、例えば、図3において、タイミングt3の直後に、蓄電池制御装置20のコントローラ22からの電源電圧V1の供給が再開された場合には、蓄電池モジュール23は、起動することができる。言い換えれば、蓄電池制御装置20のコントローラ22は、電源電圧V1の供給を短時間だけ停止することにより、蓄電池モジュール23を、速やかに再起動(ファストリセット)させることができる。 In this way, the storage battery module 23 stops operating. In the control circuit 43 of the secondary circuit 40, the capacitive element 46 is discharged by a diode 47. Therefore, for example, in FIG. 3, when the supply of the power supply voltage V1 from the controller 22 of the storage battery control device 20 is resumed immediately after timing t3, the storage battery module 23 can be activated. In other words, the controller 22 of the storage battery control device 20 can quickly restart (fast reset) the storage battery module 23 by stopping the supply of the power supply voltage V1 for a short time.
 このように、蓄電池モジュール23では、蓄電池制御装置20のコントローラ22から供給された電力に基づいて動作可能な第1の電源回路(DC/DC変換回路41)と、第1の電源回路の出力端子と接地ノードとを結ぶ電流経路に設けられた第1のスイッチ(トランジスタ42)と、電流経路に設けられた発光ダイオード25と、フォトトランジスタ26とを有するフォトカプラ24と、第1の電源回路(DC/DC変換回路41)が生成する電源電圧VSECの立ち上がりに応じた所定の期間において第1のスイッチ(トランジスタ42)をオン状態にすることが可能な第1の制御回路(制御回路43)と、蓄電池31と、蓄電池31から供給された電力に基づいて動作可能な第2の電源回路(DC/DC変換回路33)と、蓄電池31と第2の電源回路(DC/DC変換回路33)の入力端子とを結ぶ電力供給経路に設けられた第2のスイッチ(トランジスタ32)と、第2の電源回路(DC/DC変換回路33)から供給された電力に基づいて動作可能であり、蓄電池31の動作状態を監視可能な処理回路34と、フォトトランジスタ26の受光結果および処理回路34からの指示に基づいて第2のスイッチ(トランジスタ32)をオン状態にすることが可能な第2の制御回路(制御回路35)とを備えるようにした。これにより、制御回路43は、トランジスタ42を所定の期間だけオン状態にすることができ、ワンショットパルスである電流をフォトカプラ24に流すことができる。この制御回路43は、このワンショットパルスのパルス幅を設定することができる。この制御回路43は、電流経路とは別の部分に設けられるので、フォトカプラ24の活性化電流の電流値に影響を与えないようにすることができる。その結果、蓄電池モジュール23では、設計の自由度を高めることができる。 In this way, the storage battery module 23 includes a first power supply circuit (DC/DC conversion circuit 41) that can operate based on the electric power supplied from the controller 22 of the storage battery control device 20, and an output terminal of the first power supply circuit. A photocoupler 24 having a first switch (transistor 42) provided in a current path connecting the current path and a ground node, a light emitting diode 25 provided in the current path, and a phototransistor 26, and a first power supply circuit ( a first control circuit (control circuit 43) capable of turning on the first switch (transistor 42) during a predetermined period according to the rise of the power supply voltage VSEC generated by the DC/DC conversion circuit 41); , a storage battery 31, a second power supply circuit (DC/DC conversion circuit 33) operable based on the power supplied from the storage battery 31, and a storage battery 31 and a second power supply circuit (DC/DC conversion circuit 33). It is operable based on the power supplied from the second switch (transistor 32) provided in the power supply path connecting the input terminal and the second power supply circuit (DC/DC conversion circuit 33), and the storage battery 31 a second control circuit that can turn on a second switch (transistor 32) based on the light reception result of the phototransistor 26 and an instruction from the processing circuit 34; (control circuit 35). Thereby, the control circuit 43 can turn on the transistor 42 for only a predetermined period, and can cause a current that is a one-shot pulse to flow through the photocoupler 24. This control circuit 43 can set the pulse width of this one-shot pulse. Since this control circuit 43 is provided in a part different from the current path, it can be prevented from affecting the current value of the activation current of the photocoupler 24. As a result, in the storage battery module 23, the degree of freedom in design can be increased.
 すなわち、例えば、特許文献1に記載の技術では、活性化電流の電流経路に、発光ダイオード、抵抗素子、および容量素子が設けられている。よって、抵抗素子および容量素子の時定数により、ワンショットパルスのパルス幅を設定するとともに、抵抗素子の抵抗値により活性化電流の電流値を設定する。この活性化電流の電流値は、容量素子におけるチャージ量によっても変化する。よって、ワンショットパルスのパルス幅と、活性化電流の電流値とを自由に設定するのが難しい。具体的には、例えば、時定数を大きくしようとすると、抵抗値および容量値を大きくする必要があるが、抵抗値を大きくすると、活性化電流の電流値が小さくなってしまう。よって、時定数を大きくすることが難しい。 That is, for example, in the technology described in Patent Document 1, a light emitting diode, a resistive element, and a capacitive element are provided in the current path of the activation current. Therefore, the pulse width of the one-shot pulse is set by the time constants of the resistive element and the capacitive element, and the current value of the activation current is set by the resistance value of the resistive element. The current value of this activation current also changes depending on the amount of charge in the capacitive element. Therefore, it is difficult to freely set the pulse width of the one-shot pulse and the current value of the activation current. Specifically, for example, when trying to increase the time constant, it is necessary to increase the resistance value and capacitance value, but when the resistance value is increased, the current value of the activation current becomes small. Therefore, it is difficult to increase the time constant.
 一方、蓄電池モジュール23では、制御回路43を設けるとともに、活性化電流の電流経路に抵抗素子48を設けるようにしたので、ワンショットパルスのパルス幅と、活性化電流の電流値とを個別に設定することができる。その結果、蓄電池モジュール23では、設計の自由度を高めることができる。 On the other hand, in the storage battery module 23, a control circuit 43 is provided, and a resistance element 48 is provided in the current path of the activation current, so the pulse width of the one-shot pulse and the current value of the activation current can be set individually. can do. As a result, in the storage battery module 23, the degree of freedom in design can be increased.
 また、蓄電池モジュール23では、このように、第1の電源回路(DC/DC変換回路41)が起動したタイミングに応じた期間だけ、フォトカプラ24をオン状態にするようにしたので、フォトカプラ24の動作時間を短くすることができるため、回路寿命を伸ばすことができるとともに、消費電流を低減することができる。 In addition, in the storage battery module 23, the photocoupler 24 is turned on only for a period corresponding to the timing when the first power supply circuit (DC/DC conversion circuit 41) is activated. Since the operating time of the circuit can be shortened, the circuit life can be extended and current consumption can be reduced.
 また、蓄電池モジュール23では、フォトカプラ24を設けるようにした。これにより、蓄電池モジュール23では、例えば蓄電池モジュール23を蓄電池システム2から外して保管する場合などにおいて、消費電力を低減することができる。すなわち、例えばフォトカプラ24を設けずに、全ての信号を、アイソレータ27を介してやり取りする場合には、DC/DC変換回路33は動作をし続ける必要がある。仮に、トランジスタ32をオフ状態にし、DC/DC変換回路33が動作を停止すると、アイソレータ27への電源電圧VPRIの供給が停止するので、2次側回路40は、トランジスタ32をオン状態にすることができなくなるからである。このように、DC/DC変換回路33が動作をし続ける場合には、消費電力が多くなってしまう。蓄電池モジュール23では、フォトカプラ24を設けるようにしたので、トランジスタ32をオフ状態にすることにより、DC/DC変換回路33の動作を停止させることができ、2次側回路40は、フォトカプラ24を介して、トランジスタ32をオン状態にすることができ、DC/DC変換回路33を起動させることができる。これにより、蓄電池モジュール23では、例えば蓄電池モジュール23を蓄電池システム2から外して保管する場合などにおいて、消費電力を低減することができる。 Furthermore, the storage battery module 23 is provided with a photocoupler 24. Thereby, the power consumption of the storage battery module 23 can be reduced, for example, when the storage battery module 23 is removed from the storage battery system 2 and stored. That is, for example, when all signals are exchanged via the isolator 27 without providing the photocoupler 24, the DC/DC conversion circuit 33 needs to continue operating. If the transistor 32 is turned off and the DC/DC conversion circuit 33 stops operating, the supply of the power supply voltage VPRI to the isolator 27 is stopped, so the secondary circuit 40 turns the transistor 32 on. This is because it becomes impossible to do so. In this way, if the DC/DC conversion circuit 33 continues to operate, power consumption will increase. Since the storage battery module 23 is provided with the photocoupler 24, by turning off the transistor 32, the operation of the DC/DC conversion circuit 33 can be stopped. Through this, the transistor 32 can be turned on, and the DC/DC conversion circuit 33 can be activated. Thereby, the power consumption of the storage battery module 23 can be reduced, for example, when the storage battery module 23 is removed from the storage battery system 2 and stored.
 また、蓄電池モジュール23では、処理回路34は、第2の電源回路(DC/DC変換回路33)から供給された電力に基づいて動作可能であり、起動後に、制御信号CTLをアクティブにすることができるようにした。第2の制御回路(制御回路35)は、フォトトランジスタ26が光を検出する期間においてトランジスタ32をオン状態にし、制御信号CTLがアクティブである期間においてトランジスタ32をオン状態にすることができるようにした。これにより、例えば、フォトカプラ24に活性化電流が流れ、フォトトランジスタ26が光を検出する期間において、制御回路35は、トランジスタ32をオン状態にすることができる。そしてその後に、処理回路34が起動し、処理回路34が制御信号CTLをアクティブにし、制御回路35は、トランジスタ32をオン状態に維持することができる。これにより、その後に、フォトカプラ24の活性化電流を停止することができるので、フォトカプラ24の動作時間を短くすることができる。その結果、回路寿命を伸ばすことができるとともに、消費電流を低減することができる。 Furthermore, in the storage battery module 23, the processing circuit 34 can operate based on the power supplied from the second power supply circuit (DC/DC conversion circuit 33), and can activate the control signal CTL after startup. I made it possible. The second control circuit (control circuit 35) is configured to turn on the transistor 32 during a period when the phototransistor 26 detects light, and turn on the transistor 32 during a period when the control signal CTL is active. did. Thereby, for example, the control circuit 35 can turn on the transistor 32 during a period in which an activation current flows through the photocoupler 24 and the phototransistor 26 detects light. Thereafter, the processing circuit 34 is activated, the processing circuit 34 activates the control signal CTL, and the control circuit 35 can maintain the transistor 32 in the on state. Thereby, the activation current of the photocoupler 24 can be stopped after that, so the operating time of the photocoupler 24 can be shortened. As a result, the circuit life can be extended and current consumption can be reduced.
 また、蓄電池モジュール23では、一端と、発光ダイオード25のアノードに接続された他端とを有する第1の抵抗素子(抵抗素子48)をさらに備えるようにした。第1の電源回路(DC/DC変換回路41)の出力端子は、第1のノード(ノードN1)に接続されるようにした。第1のスイッチ(トランジスタ42)は、第1のノード(ノードN1)に接続された第1の端子と、第1の抵抗素子(抵抗素子48)の一端に接続された第2の端子と、第2のノード(ノードN2)に接続された制御端子とを有するようにした。第1の制御回路(制御回路43)は、第1のノード(ノードN1)に接続された一端と、第2のノード(ノードN2)に接続された他端とを有する第2の抵抗素子(抵抗素子44)と、第2のノード(ノードN2)に導かれた一端と、接地ノードに接続された他端とを有する容量素子46とを有するようにした。これにより、制御回路43は、ワンショットパルスのパルス幅を設定することができ、抵抗素子48は、活性化電流の電流値を設定することができるので、設計の自由度を高めることができる。 Furthermore, the storage battery module 23 further includes a first resistance element (resistance element 48) having one end and the other end connected to the anode of the light emitting diode 25. The output terminal of the first power supply circuit (DC/DC conversion circuit 41) was connected to the first node (node N1). The first switch (transistor 42) has a first terminal connected to the first node (node N1), a second terminal connected to one end of the first resistance element (resistance element 48), and a control terminal connected to the second node (node N2). The first control circuit (control circuit 43) includes a second resistance element (having one end connected to the first node (node N1) and the other end connected to the second node (node N2). The capacitive element 46 has one end led to the second node (node N2) and the other end connected to the ground node. Thereby, the control circuit 43 can set the pulse width of the one-shot pulse, and the resistance element 48 can set the current value of the activation current, so that the degree of freedom in design can be increased.
 また、蓄電池モジュール23では、第1の制御回路(制御回路43)は、容量素子46の一端に接続されたアノードと、第1のノード(ノードN1)に接続されたカソードとを有するダイオード47を有するようにした。これにより、例えば、DC/DC変換回路41の動作が停止した場合に、容量素子46を速やかに放電することができる。よって、蓄電池モジュール23は、例えば、速やかに再起動(ファストリセット)を行うことができる。 In addition, in the storage battery module 23, the first control circuit (control circuit 43) includes a diode 47 having an anode connected to one end of the capacitive element 46 and a cathode connected to the first node (node N1). It was made to have. Thereby, for example, when the operation of the DC/DC conversion circuit 41 stops, the capacitive element 46 can be quickly discharged. Therefore, the storage battery module 23 can be quickly restarted (fast reset), for example.
[効果]
 以上のように本実施の形態では、蓄電池制御装置のコントローラから供給された電力に基づいて動作可能な第1の電源回路と、第1の電源回路の出力端子と接地ノードとを結ぶ電流経路に設けられた第1のスイッチと、電流経路に設けられた発光ダイオードとフォトトランジスタとを有するフォトカプラと、第1の電源回路が生成する電源電圧に基づいて、電源電圧の立ち上がりに応じた所定の期間において第1のスイッチをオン状態にすることが可能な第1の制御回路と、蓄電池と、蓄電池から供給された電力に基づいて動作可能な第2の電源回路と、蓄電池と第2の電源回路の入力端子とを結ぶ電力供給経路に設けられた第2のスイッチと、第2の電源回路から供給された電力に基づいて動作可能であり、蓄電池の動作状態を監視可能な処理回路と、受光素子の受光結果および処理回路からの指示に基づいて第2のスイッチをオン状態にすることが可能な第2の制御回路とを備えるようにした。これにより、設計の自由度を高めることができる。
[effect]
As described above, in this embodiment, the current path connects the first power supply circuit that can operate based on the power supplied from the controller of the storage battery control device and the output terminal of the first power supply circuit and the ground node. A first switch provided, a photocoupler having a light emitting diode and a phototransistor provided in a current path, and a power supply voltage generated by the first power supply circuit. A first control circuit capable of turning on a first switch during a period, a storage battery, a second power supply circuit operable based on power supplied from the storage battery, a storage battery and a second power supply. a second switch provided in a power supply path connecting an input terminal of the circuit; and a processing circuit that is operable based on the power supplied from the second power supply circuit and that is capable of monitoring the operating state of the storage battery; A second control circuit is provided that can turn on the second switch based on the light reception result of the light receiving element and an instruction from the processing circuit. This increases the degree of freedom in design.
 本実施の形態では、このように、第1の電源回路が起動したタイミングに応じた期間だけ、フォトカプラをオン状態にするようにしたので、フォトカプラの動作時間を短くすることができるため、回路寿命を伸ばすことができるとともに、消費電流を低減することができる。 In this embodiment, the photocoupler is turned on only for a period corresponding to the timing at which the first power supply circuit starts up, so the operating time of the photocoupler can be shortened. The circuit life can be extended and current consumption can be reduced.
 本実施の形態では、フォトカプラを設けるようにした。これにより、例えば蓄電池モジュールを蓄電池システムから外して保管する場合などにおいて、消費電力を低減することができる。 In this embodiment, a photocoupler is provided. Thereby, power consumption can be reduced, for example, when the storage battery module is removed from the storage battery system and stored.
 本実施の形態では、処理回路は、第2の電源回路から供給された電力に基づいて動作可能であり、起動後に、制御信号をアクティブにすることができるようにした。第2の制御回路は、フォトトランジスタが光を検出する期間においてトランジスタをオン状態にし、制御信号がアクティブである期間においてトランジスタをオン状態にすることができるようにした。これにより、回路寿命を伸ばすことができるとともに、消費電流を低減することができる。 In this embodiment, the processing circuit is operable based on the power supplied from the second power supply circuit, and the control signal can be activated after startup. The second control circuit is configured to turn on the transistor during a period when the phototransistor detects light, and turn on the transistor during a period when the control signal is active. This makes it possible to extend the circuit life and reduce current consumption.
 本実施の形態では、一端と、発光ダイオードのアノードに接続された他端とを有する第1の抵抗素子をさらに備えるようにした。第1の電源回路の出力端子は、第1のノードに接続されるようにした。第1のスイッチは、第1のノードに接続された第1の端子と、第1の抵抗素子の一端に接続された第2の端子と、第2のノードに接続された制御端子とを有するようにした。第1の制御回路は、第1のノードに接続された一端と、第2のノードに接続された他端とを有する第2の抵抗素子と、第2のノードに導かれた一端と、接地ノードに接続された他端とを有する容量素子とを有するようにした。これにより、設計の自由度を高めることができる。 The present embodiment further includes a first resistance element having one end and the other end connected to the anode of the light emitting diode. The output terminal of the first power supply circuit was connected to the first node. The first switch has a first terminal connected to the first node, a second terminal connected to one end of the first resistance element, and a control terminal connected to the second node. I did it like that. The first control circuit includes a second resistive element having one end connected to the first node and the other end connected to the second node, one end led to the second node, and a grounding and a capacitive element having the other end connected to the node. This increases the degree of freedom in design.
 本実施の形態では、第1の制御回路は、容量素子の一端に接続されたアノードと、第1のノードに接続されたカソードとを有するダイオードを有するようにした。これにより、容量素子を速やかに放電することができるので、例えば、速やかに再起動(ファストリセット)を行うことができる。 In this embodiment, the first control circuit includes a diode having an anode connected to one end of a capacitive element and a cathode connected to the first node. Thereby, the capacitive element can be discharged quickly, so that, for example, a restart (fast reset) can be performed quickly.
[変形例1]
 上記実施の形態等では、図2に示したように、制御回路43において抵抗素子45を設けたがこれに限定されるものではない。これに代えて、例えば図4に示す蓄電池モジュール29Aのように、この抵抗素子45を設けなくてもよい。この蓄電池モジュール29Aは、制御回路43Aを有する。制御回路43Aは、抵抗素子44と、容量素子46と、ダイオード47とを有している。容量素子46の一端はノードN2に接続され、他端は接地ノードに接続される。ダイオード47のアノードはノードN2に接続され、カソードはノードN1に接続される。この場合には、制御回路43Aは、抵抗素子44および容量素子46の時定数により、ワンショットパルスのパルス幅を設定することができる。
[Modification 1]
In the embodiments described above, the resistance element 45 is provided in the control circuit 43 as shown in FIG. 2, but the present invention is not limited to this. Alternatively, the resistor element 45 may not be provided, as in the storage battery module 29A shown in FIG. 4, for example. This storage battery module 29A has a control circuit 43A. The control circuit 43A includes a resistive element 44, a capacitive element 46, and a diode 47. One end of the capacitive element 46 is connected to the node N2, and the other end is connected to the ground node. The anode of diode 47 is connected to node N2, and the cathode is connected to node N1. In this case, the control circuit 43A can set the pulse width of the one-shot pulse using the time constants of the resistive element 44 and the capacitive element 46.
<2.第2の実施の形態>
 次に、第2の実施の形態に係る電力貯蔵システムについて説明する。本実施の形態は、蓄電池モジュールにおける2次側回路の制御回路の構成が、上記第1の実施の形態と異なるものである。なお、上記第1の実施の形態に係る電力貯蔵システム1と実質的に同一の構成部分には同一の符号を付し、適宜説明を省略する。
<2. Second embodiment>
Next, a power storage system according to a second embodiment will be described. This embodiment differs from the first embodiment in the configuration of the control circuit of the secondary circuit in the storage battery module. Components that are substantially the same as those of the power storage system 1 according to the first embodiment are given the same reference numerals, and description thereof will be omitted as appropriate.
 第2の実施の形態に係る電力貯蔵システムは、上記第1の実施の形態に係る電力貯蔵システム1(図1)と同様に、蓄電池システムを備えている。この蓄電池システムは、上記第1の実施の形態の場合と同様に、複数の蓄電池モジュール53を有している。 The power storage system according to the second embodiment includes a storage battery system, similar to the power storage system 1 (FIG. 1) according to the first embodiment. This storage battery system includes a plurality of storage battery modules 53, as in the first embodiment.
 図5は、蓄電池モジュール53の一構成例を表すものである。蓄電池モジュール53は、制御回路63を有している。DC/DC変換回路41、トランジスタ42、制御回路63、抵抗素子48、フォトカプラ24の発光ダイオード25、通信回路49、およびアイソレータ27の一部は、蓄電池モジュール23の2次側回路40を構成する。 FIG. 5 shows an example of the configuration of the storage battery module 53. The storage battery module 53 has a control circuit 63. The DC/DC conversion circuit 41, the transistor 42, the control circuit 63, the resistive element 48, the light emitting diode 25 of the photocoupler 24, the communication circuit 49, and a part of the isolator 27 constitute the secondary circuit 40 of the storage battery module 23. .
 制御回路63は、この例では、遅延回路64を有する。遅延回路64は、DC/DC変換回路41が生成した電源電圧VSECの信号を所定の時間Tdだけ遅延させるように構成される。この所定の時間Tdの長さは、例えば数秒程度である。制御回路63は、DC/DC変換回路41から供給された電源電圧VSECの直流電力に基づいて動作を行うようになっている。 The control circuit 63 includes a delay circuit 64 in this example. The delay circuit 64 is configured to delay the signal of the power supply voltage VSEC generated by the DC/DC conversion circuit 41 by a predetermined time Td. The length of this predetermined time Td is, for example, about several seconds. The control circuit 63 operates based on the DC power of the power supply voltage VSEC supplied from the DC/DC conversion circuit 41.
 ここで、制御回路63は、本開示の一実施の形態における「第1の制御回路」の一具体例に対応する。遅延回路64は、本開示の一実施の形態における「遅延回路」の一具体例に対応する。所定の時間Tdは、本開示の一実施の形態における「所定時間」の一具体例に対応する。 Here, the control circuit 63 corresponds to a specific example of a "first control circuit" in an embodiment of the present disclosure. The delay circuit 64 corresponds to a specific example of a "delay circuit" in an embodiment of the present disclosure. The predetermined time Td corresponds to a specific example of a "predetermined time" in an embodiment of the present disclosure.
 起動時では、まず、蓄電池制御装置20のコントローラ22が、複数の蓄電池モジュール53に対して、電源電圧V1を供給する。蓄電池モジュール53では、DC/DC変換回路41は、この電源電圧V1の直流電力に基づいて、DC/DC変換を行うことにより、電源電圧VSECを生成する。DC/DC変換回路41は、この電源電圧VSECを、遅延回路64、通信回路49、およびアイソレータ27に供給する。 At startup, the controller 22 of the storage battery control device 20 first supplies the power supply voltage V1 to the plurality of storage battery modules 53. In the storage battery module 53, the DC/DC conversion circuit 41 generates the power supply voltage VSEC by performing DC/DC conversion based on the DC power of the power supply voltage V1. DC/DC conversion circuit 41 supplies this power supply voltage VSEC to delay circuit 64, communication circuit 49, and isolator 27.
 電源電圧VSECが立ち上がると、制御回路63は、その立ち上がりに応じた所定の期間において、トランジスタ42をオン状態にする。 When the power supply voltage VSEC rises, the control circuit 63 turns on the transistor 42 for a predetermined period corresponding to the rise.
 図6は、制御回路63の一動作例を表すものである。 FIG. 6 shows an example of the operation of the control circuit 63.
 タイミングt11において、電源電圧VSECが立ち上がると、制御回路63では、遅延回路64に電源供給が行われるので、遅延回路64は動作を開始する。電源電圧VSECの信号を所定の時間Tdだけ遅延させることにより、トランジスタ42のゲート電圧VGの信号を生成する。これにより、ゲート電圧VGは、タイミングt11から所定の時間Tdだけ遅れたタイミングt12において立ち上がる。タイミングt11~t12の期間では、トランジスタ42のゲート電圧VGは、トランジスタ42のソース電圧よりも低くなる。このときのトランジスタ42のゲート・ソース間電圧Vgsは、トランジスタ42をオン状態にさせることが可能な電圧である。これにより、トランジスタ42はオン状態になる。 At timing t11, when the power supply voltage VSEC rises, the control circuit 63 supplies power to the delay circuit 64, so the delay circuit 64 starts operating. By delaying the signal of power supply voltage VSEC by a predetermined time Td, a signal of gate voltage VG of transistor 42 is generated. As a result, the gate voltage VG rises at timing t12, which is delayed by a predetermined time Td from timing t11. During the period from timing t11 to timing t12, the gate voltage VG of the transistor 42 becomes lower than the source voltage of the transistor 42. The gate-source voltage Vgs of the transistor 42 at this time is a voltage that can turn the transistor 42 on. This turns the transistor 42 on.
 タイミングt11においてトランジスタ42がオン状態になると、DC/DC変換回路41の出力端子から、トランジスタ42、抵抗素子48、フォトカプラ24の発光ダイオード25を介して接地ノードへ至る電流経路に、電流I25が流れる。この電流I25の電流値は、抵抗素子48の抵抗値により設定される。フォトカプラ24の発光ダイオード25に電流I25が流れることにより、発光ダイオード25が発光し、フォトトランジスタ26は、この光を受光し、コレクタからエミッタに向かって電流を流す。 When the transistor 42 turns on at timing t11, a current I25 flows in a current path from the output terminal of the DC/DC conversion circuit 41 to the ground node via the transistor 42, the resistive element 48, and the light emitting diode 25 of the photocoupler 24. flows. The current value of this current I25 is set by the resistance value of the resistance element 48. When the current I25 flows through the light emitting diode 25 of the photocoupler 24, the light emitting diode 25 emits light, and the phototransistor 26 receives this light and causes a current to flow from the collector to the emitter.
 このようにフォトトランジスタ26が電流を流すことにより、1次側回路30では、蓄電池31の正極から、抵抗素子36、抵抗素子37、フォトトランジスタ26の順に電流が流れる。これにより、トランジスタ32のゲート電圧は、トランジスタ32のソース電圧よりも低くなる。このときのトランジスタ32のゲート・ソース間電圧Vgsは、トランジスタ32をオン状態にさせることが可能な電圧である。これにより、トランジスタ32はオン状態になり、蓄電池31から供給された直流電力をDC/DC変換回路33に供給する。DC/DC変換回路33は、蓄電池31から供給された直流電力に基づいて、DC/DC変換を行うことにより、電源電圧VPRIを生成する。電源電圧VPRIは、例えばDC/DC変換動作によりランプアップし、最終電圧に到達する。DC/DC変換回路33は、この電源電圧VPRIを、処理回路34およびアイソレータ27に供給する。 As the phototransistor 26 causes current to flow in this manner, in the primary side circuit 30, the current flows from the positive electrode of the storage battery 31 to the resistance element 36, the resistance element 37, and the phototransistor 26 in this order. As a result, the gate voltage of transistor 32 becomes lower than the source voltage of transistor 32. The gate-source voltage Vgs of the transistor 32 at this time is a voltage that can turn the transistor 32 on. As a result, the transistor 32 is turned on, and the DC power supplied from the storage battery 31 is supplied to the DC/DC conversion circuit 33. The DC/DC conversion circuit 33 generates a power supply voltage VPRI by performing DC/DC conversion based on the DC power supplied from the storage battery 31. The power supply voltage VPRI ramps up by, for example, a DC/DC conversion operation and reaches the final voltage. DC/DC conversion circuit 33 supplies this power supply voltage VPRI to processing circuit 34 and isolator 27.
 処理回路34は、この電源電圧VPRIに基づいて起動する。そして、処理回路34は、所定の起動シーケンスで動作した後に、制御信号CTLを低レベル(非アクティブレベル)から高レベル(アクティブレベル)に変化させる。この制御信号CTLにより、トランジスタ38はオン状態になる。これにより、1次側回路30では、蓄電池31の正極から、抵抗素子36、抵抗素子37、トランジスタ38の順に電流が流れる。すなわち、この段階では、蓄電池31の正極から、抵抗素子36および抵抗素子37を介して、フォトカプラ24のフォトトランジスタ26およびトランジスタ38の両方に電流が流れる。トランジスタ32のゲート・ソース間電圧Vgsは、トランジスタ32をオン状態にさせることが可能な電圧のままである。よって、DC/DC変換回路33は、DC/DC変換を継続し、電源電圧VPRIを生成し続ける。 The processing circuit 34 is activated based on this power supply voltage VPRI. After operating in a predetermined startup sequence, the processing circuit 34 changes the control signal CTL from a low level (inactive level) to a high level (active level). This control signal CTL turns on the transistor 38. As a result, in the primary side circuit 30, a current flows from the positive electrode of the storage battery 31 to the resistance element 36, the resistance element 37, and the transistor 38 in this order. That is, at this stage, current flows from the positive electrode of the storage battery 31 to both the phototransistor 26 and the transistor 38 of the photocoupler 24 via the resistance element 36 and the resistance element 37. The gate-source voltage Vgs of the transistor 32 remains at a voltage that allows the transistor 32 to be turned on. Therefore, the DC/DC conversion circuit 33 continues DC/DC conversion and continues to generate the power supply voltage VPRI.
 この後、図6に示したように、タイミングt12において、トランジスタ42のゲート電圧VGは立ち上がる。これにより、トランジスタ42は、オン状態からオフ状態に変化する。トランジスタ42がオフ状態になると、フォトカプラ24の発光ダイオード25に電流I25が流れなくなるので、フォトトランジスタ26に電流が流れなくなる。 After this, as shown in FIG. 6, at timing t12, the gate voltage VG of the transistor 42 rises. Thereby, the transistor 42 changes from an on state to an off state. When the transistor 42 is turned off, the current I25 no longer flows through the light emitting diode 25 of the photocoupler 24, so no current flows through the phototransistor 26.
 1次側回路30では、このようにフォトトランジスタ26に電流が流れなくなるが、制御信号CTLは高レベルを維持するので、トランジスタ38には電流が流れ続ける。トランジスタ32のゲート・ソース間電圧Vgsは、トランジスタ32をオン状態にさせることが可能な電圧のままである。よって、DC/DC変換回路33は、DC/DC変換を継続し、電源電圧VPRIを生成し続ける。 In the primary side circuit 30, current no longer flows to the phototransistor 26 in this way, but since the control signal CTL remains at a high level, current continues to flow to the transistor 38. The gate-source voltage Vgs of the transistor 32 remains at a voltage that allows the transistor 32 to be turned on. Therefore, the DC/DC conversion circuit 33 continues DC/DC conversion and continues to generate the power supply voltage VPRI.
 このように、蓄電池モジュール53では、タイミングt11~t12の期間において、トランジスタ42がオン状態になり、ワンショットパルスの活性化電流が流れる。タイミングt11~t12の期間の長さは、例えば数秒程度であり、遅延回路64において遅延される時間Tdにより設定される。タイミングt12は、1次側回路30において、トランジスタ32がオン状態になり、DC/DC変換回路33が電源電圧VPRIを生成し、処理回路34が起動し、トランジスタ38がオン状態になるタイミングよりも後になるように設定される。 In this manner, in the storage battery module 53, the transistor 42 is turned on during the period from timing t11 to timing t12, and a one-shot pulse activation current flows. The length of the period between timings t11 and t12 is, for example, about several seconds, and is set by the time Td delayed by the delay circuit 64. Timing t12 is earlier than the timing at which, in the primary side circuit 30, the transistor 32 is turned on, the DC/DC conversion circuit 33 generates the power supply voltage VPRI, the processing circuit 34 is activated, and the transistor 38 is turned on. It is set to be later.
 このようにして、蓄電池モジュール53は起動する。 In this way, the storage battery module 53 is activated.
 次に、蓄電池モジュール53の動作を停止させる場合について説明する。まず、蓄電池制御装置20のコントローラ22が、複数の蓄電池モジュール53への電源電圧V1の供給を停止する。蓄電池モジュール53では、DC/DC変換回路41は、この電源電圧V1の供給停止に基づいて、DC/DC変換を停止し、電源電圧VSECの生成を停止する。これにより、図6に示したように、電源電圧VSECは、タイミングt13において立ち下がり、0Vになる。その結果、DC/DC変換回路41は、遅延回路64、通信回路49、アイソレータ27への電源電圧VSECの供給を停止する。 Next, a case will be described in which the operation of the storage battery module 53 is stopped. First, the controller 22 of the storage battery control device 20 stops supplying the power supply voltage V1 to the plurality of storage battery modules 53. In the storage battery module 53, the DC/DC conversion circuit 41 stops DC/DC conversion and stops generating the power supply voltage VSEC based on the stoppage of the supply of the power supply voltage V1. As a result, as shown in FIG. 6, the power supply voltage VSEC falls to 0V at timing t13. As a result, the DC/DC conversion circuit 41 stops supplying the power supply voltage VSEC to the delay circuit 64, communication circuit 49, and isolator 27.
 制御回路63では、遅延回路64への電源供給が停止されるので、遅延回路64は、トランジスタ42のゲート電圧VGを立ち下げる。 In the control circuit 63, the power supply to the delay circuit 64 is stopped, so the delay circuit 64 lowers the gate voltage VG of the transistor 42.
 電源電圧VSECが立ち下がると、アイソレータ27に電源電圧VSECが供給されなくなるので、アイソレータ27は、処理回路34への信号を低レベルに固定する。処理回路34は、アイソレータ27から供給された信号に基づいて、蓄電池制御装置20のコントローラ22からの電源電圧V1の供給が停止されたことを把握し、制御信号CTLを高レベル(アクティブレベル)から低レベル(非アクティブレベル)に変化させる。これにより、トランジスタ38がオフ状態になるので、蓄電池31の正極から、抵抗素子36,37に電流が流れなくなる。よって、トランジスタ32のゲート・ソース間電圧Vgsは、ほぼ0Vになり、トランジスタ32はオフ状態になる。トランジスタ32がオフ状態になるので、蓄電池31からDC/DC変換回路33への電力供給が停止し、DC/DC変換回路33は、DC/DC変換を停止し、電源電圧VPRIの生成を停止する。これにより、電源電圧VPRIは立ち下がる。その結果、DC/DC変換回路33は、処理回路34およびアイソレータ27への電源電圧VPRIの供給を停止する。 When the power supply voltage VSEC falls, the isolator 27 is no longer supplied with the power supply voltage VSEC, so the isolator 27 fixes the signal to the processing circuit 34 at a low level. Based on the signal supplied from the isolator 27, the processing circuit 34 grasps that the supply of the power supply voltage V1 from the controller 22 of the storage battery control device 20 has been stopped, and changes the control signal CTL from a high level (active level). Change to low level (inactive level). As a result, the transistor 38 is turned off, so that no current flows from the positive electrode of the storage battery 31 to the resistance elements 36 and 37. Therefore, the gate-source voltage Vgs of the transistor 32 becomes approximately 0V, and the transistor 32 is turned off. Since the transistor 32 is turned off, power supply from the storage battery 31 to the DC/DC conversion circuit 33 is stopped, and the DC/DC conversion circuit 33 stops DC/DC conversion and stops generating the power supply voltage VPRI. . As a result, the power supply voltage VPRI falls. As a result, the DC/DC conversion circuit 33 stops supplying the power supply voltage VPRI to the processing circuit 34 and the isolator 27.
 このようにして、蓄電池モジュール53は動作を停止する。例えば、図6において、タイミングt13の直後に、蓄電池制御装置20のコントローラ22からの電源電圧V1の供給が再開された場合には、蓄電池モジュール53は、起動することができる。言い換えれば、蓄電池制御装置20のコントローラ22は、電源電圧V1の供給を短時間だけ停止することにより、蓄電池モジュール53を、速やかに再起動(ファストリセット)させることができる。 In this way, the storage battery module 53 stops operating. For example, in FIG. 6, when the supply of the power supply voltage V1 from the controller 22 of the storage battery control device 20 is resumed immediately after timing t13, the storage battery module 53 can be activated. In other words, the controller 22 of the storage battery control device 20 can quickly restart (fast reset) the storage battery module 53 by stopping the supply of the power supply voltage V1 for a short time.
 蓄電池モジュール53では、一端と、発光ダイオード25のアノードに接続された他端とを有する第1の抵抗素子(抵抗素子48)をさらに備えるようにした。第1の電源回路(DC/DC変換回路41)の出力端子は、第1のノード(ノードN1)に接続されるようにした。第1のスイッチ(トランジスタ42)は、第1のノード(ノードN1)に接続された第1の端子と、第1の抵抗素子(抵抗素子48)の一端に接続された第2の端子と、第2のノード(ノードN2)に接続された制御端子とを有するようにした。第1の制御回路(制御回路63)は、電源電圧VSECが示す第1の信号を所定の時間Tdだけ遅延させることにより第2の信号を生成可能な遅延回路64を有し、第1の信号の論理レベルが高レベルであり、第2の信号の論理レベルが低レベルである場合に、第1のスイッチ(トランジスタ42)をオン状態にすることができるようにした。これにより、制御回路63は、ワンショットパルスのパルス幅を設定することができ、抵抗素子48は、活性化電流の電流値を設定することができるので、設計の自由度を高めることができる。 The storage battery module 53 further includes a first resistance element (resistance element 48) having one end and the other end connected to the anode of the light emitting diode 25. The output terminal of the first power supply circuit (DC/DC conversion circuit 41) was connected to the first node (node N1). The first switch (transistor 42) has a first terminal connected to the first node (node N1), a second terminal connected to one end of the first resistance element (resistance element 48), and a control terminal connected to the second node (node N2). The first control circuit (control circuit 63) includes a delay circuit 64 capable of generating a second signal by delaying the first signal indicated by the power supply voltage VSEC by a predetermined time Td, and The first switch (transistor 42) can be turned on when the logic level of the second signal is high and the logic level of the second signal is low. Thereby, the control circuit 63 can set the pulse width of the one-shot pulse, and the resistance element 48 can set the current value of the activation current, so the degree of freedom in design can be increased.
 以上のように本実施の形態では、一端と、発光ダイオードのアノードに接続された他端とを有する第1の抵抗素子をさらに備えるようにした。第1の電源回路の出力端子は、第1のノードに接続されるようにした。第1のスイッチは、第1のノードに接続された第1の端子と、第1の抵抗素子の一端に接続された第2の端子と、第2のノードに接続された制御端子とを有するようにした。第1の制御回路は、電源電圧が示す第1の信号を所定の時間だけ遅延させることにより第2の信号を生成可能な遅延回路を有し、第1の信号の論理レベルが高レベルであり、第2の信号の論理レベルが低レベルである場合に、第1のスイッチをオン状態にすることができるようにした。これにより、設計の自由度を高めることができる。その他の効果は、上記第1の実施の形態の場合と同様である。 As described above, this embodiment further includes a first resistance element having one end and the other end connected to the anode of the light emitting diode. The output terminal of the first power supply circuit was connected to the first node. The first switch has a first terminal connected to the first node, a second terminal connected to one end of the first resistance element, and a control terminal connected to the second node. I did it like that. The first control circuit includes a delay circuit capable of generating a second signal by delaying the first signal indicated by the power supply voltage by a predetermined time, and the logic level of the first signal is a high level. , the first switch can be turned on when the logic level of the second signal is low. This increases the degree of freedom in design. Other effects are similar to those of the first embodiment.
[変形例2]
 上記実施の形態等では、図5に示したように、制御回路63においてP型のトランジスタ42を用いたが、これに限定されるものではなく、オンオフ可能なものであればどのような物であってもよい。例えば、この例ではP型のトランジスタ42を設け、低レベルの制御電圧をゲートに供給することによりオン状態になるようにしたが、これに代えて、逆極性のスイッチを設け、高レベルの制御電圧をスイッチの制御端子に供給することによりオン状態にしてもよい。この場合には、遅延回路64の出力にインバータを設け、インバータの出力信号をスイッチの制御端子に供給することができる。
[Modification 2]
In the above embodiments, the P-type transistor 42 is used in the control circuit 63 as shown in FIG. There may be. For example, in this example, a P-type transistor 42 is provided and turned on by supplying a low-level control voltage to the gate, but instead of this, a reverse polarity switch is provided to provide a high-level control voltage. The on state may be achieved by supplying a voltage to the control terminal of the switch. In this case, an inverter can be provided at the output of the delay circuit 64, and the output signal of the inverter can be supplied to the control terminal of the switch.
 以上、実施の形態を挙げて本技術を説明したが、本技術はこれらの実施の形態等には限定されず、種々の変形が可能である。 Although the present technology has been described above with reference to the embodiments, the present technology is not limited to these embodiments, and various modifications are possible.
 例えば、上記実施の形態等では、例えば、図1に示したように、電力貯蔵システム1に、1つの蓄電池システム2を設けたが、これに限定されるものではない。これに代えて、例えば、図7に示す電力貯蔵システム1Bのように、複数の蓄電池システムを設けてもよい。この電力貯蔵システム1Bは、上記第1の実施の形態に係る電力貯蔵システム1に本変形例を適用したものである。電力貯蔵システム1Bは、ハブ装置14Bと、複数(この例では2つ)の蓄電池システム2とを備えている。ハブ装置14Bは、ブレーカ12およびエネルギー制御装置13と、2つの蓄電池システム2との間に設けられる。エネルギー制御装置13は、ハブ装置14Bを介して、2つの蓄電池システム2の蓄電池制御装置20とそれぞれ通信を行うことにより、蓄電池システム2の動作を制御する。 For example, in the above embodiments, the power storage system 1 is provided with one storage battery system 2, as shown in FIG. 1, but the present invention is not limited to this. Instead, a plurality of storage battery systems may be provided, for example, like the power storage system 1B shown in FIG. 7. This power storage system 1B is obtained by applying this modification to the power storage system 1 according to the first embodiment. The power storage system 1B includes a hub device 14B and a plurality of (two in this example) storage battery systems 2. Hub device 14B is provided between breaker 12 and energy control device 13, and two storage battery systems 2. The energy control device 13 controls the operation of the storage battery systems 2 by communicating with the storage battery control devices 20 of the two storage battery systems 2 via the hub device 14B.
 なお、この図7の例では、コントローラ22が、複数の蓄電池モジュール23に対して電源電圧V1を供給したが、これに限定されるものではなく、これに代えて、例えば、エネルギー制御装置13が、複数の蓄電池モジュール23に対して電源電圧V1を供給してもよいし、ハブ装置14Bが、複数の蓄電池モジュール23に対して電源電圧V1を供給してもよい。 In the example of FIG. 7, the controller 22 supplies the power supply voltage V1 to the plurality of storage battery modules 23, but the invention is not limited to this. Instead, for example, the energy control device 13 , the power supply voltage V1 may be supplied to the plurality of storage battery modules 23, or the hub device 14B may supply the power supply voltage V1 to the plurality of storage battery modules 23.
 なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。 Note that the effects described in this specification are merely examples and are not limiting, and other effects may also exist.

Claims (10)

  1.  外部装置から供給された電力に基づいて動作可能な第1の電源回路と、
     前記第1の電源回路の出力端子と接地ノードとを結ぶ電流経路に設けられた第1のスイッチと、
     前記電流経路に設けられた発光素子と、受光素子とを有するフォトカプラと、
     前記第1の電源回路が生成する電源電圧の立ち上がりに応じた期間において前記第1のスイッチをオン状態にすることが可能な第1の制御回路と、
     電力を蓄えることが可能な蓄電池と、
     前記蓄電池から供給された電力に基づいて動作可能な第2の電源回路と、
     前記蓄電池と前記第2の電源回路の入力端子とを結ぶ電力供給経路に設けられた第2のスイッチと、
     前記第2の電源回路から供給された電力に基づいて動作可能であり、前記蓄電池の動作状態を監視可能な処理回路と、
     前記受光素子の受光結果および前記処理回路からの指示に基づいて前記第2のスイッチをオン状態にすることが可能な第2の制御回路と
     を備えた蓄電池モジュール。
    a first power supply circuit operable based on power supplied from an external device;
    a first switch provided in a current path connecting an output terminal of the first power supply circuit and a ground node;
    a photocoupler having a light emitting element and a light receiving element provided in the current path;
    a first control circuit capable of turning on the first switch during a period corresponding to the rise of a power supply voltage generated by the first power supply circuit;
    A storage battery that can store electricity,
    a second power supply circuit operable based on power supplied from the storage battery;
    a second switch provided in a power supply path connecting the storage battery and an input terminal of the second power supply circuit;
    a processing circuit operable based on the power supplied from the second power supply circuit and capable of monitoring the operating state of the storage battery;
    and a second control circuit capable of turning on the second switch based on a light reception result of the light receiving element and an instruction from the processing circuit.
  2.  前記処理回路は、前記第2の電源回路から供給された電力に基づいて動作可能であり、起動後に、制御信号をアクティブにすることが可能であり、
     前記第2の制御回路は、前記受光素子が光を検出する期間において前記第2のスイッチをオン状態にすることが可能であり、前記制御信号がアクティブである期間において前記第2のスイッチをオン状態にすることが可能である
     請求項1に記載の蓄電池モジュール。
    The processing circuit is operable based on power supplied from the second power supply circuit, and is capable of activating a control signal after activation,
    The second control circuit is capable of turning on the second switch during a period when the light receiving element detects light, and turning on the second switch during a period when the control signal is active. The storage battery module according to claim 1, wherein the storage battery module is capable of being put into the state.
  3.  一端と、前記発光素子のアノードに接続された他端とを有する第1の抵抗素子をさらに備え、
     前記第1の電源回路の出力端子は、第1のノードに接続され、
     前記第1のスイッチは、前記第1のノードに接続された第1の端子と、前記第1の抵抗素子の前記一端に接続された第2の端子と、第2のノードに接続された制御端子とを有し、
     前記第1の制御回路は、
     前記第1のノードに接続された一端と、前記第2のノードに接続された他端とを有する第2の抵抗素子と、
     前記第2のノードに導かれた一端と、前記接地ノードに接続された他端とを有する容量素子と
     を有する
     請求項1または請求項2に記載の蓄電池モジュール。
    further comprising a first resistive element having one end and the other end connected to the anode of the light emitting element,
    an output terminal of the first power supply circuit is connected to a first node,
    The first switch has a first terminal connected to the first node, a second terminal connected to the one end of the first resistance element, and a control terminal connected to the second node. has a terminal,
    The first control circuit includes:
    a second resistance element having one end connected to the first node and the other end connected to the second node;
    The storage battery module according to claim 1 , further comprising: a capacitive element having one end led to the second node and the other end connected to the ground node.
  4.  前記第1の制御回路は、前記第2のノードに接続された一端と、第3のノードに接続された他端とを有する第3の抵抗素子をさらに有し、
     前記容量素子の前記一端は、前記第3のノードに接続された
     請求項3に記載の蓄電池モジュール。
    The first control circuit further includes a third resistance element having one end connected to the second node and the other end connected to a third node,
    The storage battery module according to claim 3, wherein the one end of the capacitive element is connected to the third node.
  5.  前記第1の制御回路は、前記容量素子の前記一端に接続されたアノードと、前記第1のノードに接続されたカソードとを有するダイオードをさらに有する
     請求項3または請求項4に記載の蓄電池モジュール。
    The storage battery module according to claim 3 or 4, wherein the first control circuit further includes a diode having an anode connected to the one end of the capacitive element and a cathode connected to the first node. .
  6.  一端と、前記発光素子のアノードに接続された他端とを有する第1の抵抗素子をさらに備え、
     前記第1の電源回路の出力端子は、第1のノードに接続され、
     前記第1のスイッチは、前記第1のノードに接続された第1の端子と、前記第1の抵抗素子の前記一端に接続された第2の端子と、第2のノードに接続された制御端子とを有し、
     前記第1の制御回路は、前記電源電圧が示す第1の信号を所定時間だけ遅延させることにより第2の信号を生成可能な遅延回路を有し、前記第1の信号の論理レベルが高レベルであり前記第2の信号の論理レベルが低レベルである場合に、前記第1のスイッチをオン状態にすることが可能である
     請求項1または請求項2に記載の蓄電池モジュール。
    further comprising a first resistive element having one end and the other end connected to the anode of the light emitting element,
    an output terminal of the first power supply circuit is connected to a first node,
    The first switch has a first terminal connected to the first node, a second terminal connected to the one end of the first resistance element, and a control terminal connected to the second node. has a terminal,
    The first control circuit includes a delay circuit capable of generating a second signal by delaying the first signal indicated by the power supply voltage by a predetermined time, and the logic level of the first signal is a high level. The storage battery module according to claim 1 or 2, wherein the first switch can be turned on when the logic level of the second signal is a low level.
  7.  前記第1の電源回路から供給された電力に基づいて動作可能であり、前記外部装置と通信可能な通信回路をさらに備え、
     前記処理回路は、前記通信回路との間で信号のやりとりを行うことが可能である
     請求項1から請求項6のいずれか一項に記載の蓄電池モジュール。
    Further comprising a communication circuit operable based on the power supplied from the first power supply circuit and capable of communicating with the external device,
    The storage battery module according to any one of claims 1 to 6, wherein the processing circuit is capable of exchanging signals with the communication circuit.
  8.  前記第1の電源回路から供給された電力、および前記第2の電源回路から供給された電力に基づいて動作可能なアイソレータをさらに備え、
     前記処理回路は、前記アイソレータを介して、前記通信回路との間で信号のやりとりを行うことが可能である
     請求項7に記載の蓄電池モジュール。
    further comprising an isolator operable based on the power supplied from the first power supply circuit and the power supplied from the second power supply circuit,
    The storage battery module according to claim 7, wherein the processing circuit is capable of exchanging signals with the communication circuit via the isolator.
  9.  前記処理回路は、前記外部装置から前記第1の電源回路への電力の供給が停止した場合における前記アイソレータからの信号に基づいて、制御信号を非アクティブにすることが可能であり、
     前記第2の制御回路は、前記制御信号に基づいて前記第2のスイッチをオフ状態にすることが可能である
     請求項8に記載の蓄電池モジュール。
    The processing circuit is capable of inactivating a control signal based on a signal from the isolator when power supply from the external device to the first power supply circuit is stopped,
    The storage battery module according to claim 8, wherein the second control circuit is capable of turning off the second switch based on the control signal.
  10.  複数の蓄電池モジュールと
     前記複数の蓄電池モジュールの動作を制御可能な蓄電池制御装置と
     を備え、
     前記複数の蓄電池モジュールのそれぞれは、
     前記蓄電池制御装置から供給された電力に基づいて動作可能な第1の電源回路と、
     前記第1の電源回路の出力端子と接地ノードとを結ぶ電流経路に設けられた第1のスイッチと、
     前記電流経路に設けられた発光素子と、受光素子とを有するフォトカプラと、
     前記第1の電源回路が生成する電源電圧の立ち上がりに応じた期間において前記第1のスイッチをオン状態にすることが可能な第1の制御回路と、
     電力を蓄えることが可能な蓄電池と、
     前記蓄電池から供給された電力に基づいて動作可能な第2の電源回路と、
     前記蓄電池と前記第2の電源回路の入力端子とを結ぶ電力供給経路に設けられた第2のスイッチと、
     前記第2の電源回路から供給された電力に基づいて動作可能であり、前記蓄電池の状態を監視可能な処理回路と、
     前記受光素子の受光結果および前記処理回路からの指示に基づいて前記第2のスイッチをオン状態にすることが可能な第2の制御回路と
     を有する
     蓄電池システム。
    comprising: a plurality of storage battery modules; and a storage battery control device capable of controlling operations of the plurality of storage battery modules;
    Each of the plurality of storage battery modules includes:
    a first power supply circuit operable based on power supplied from the storage battery control device;
    a first switch provided in a current path connecting an output terminal of the first power supply circuit and a ground node;
    a photocoupler having a light emitting element and a light receiving element provided in the current path;
    a first control circuit capable of turning on the first switch during a period corresponding to the rise of a power supply voltage generated by the first power supply circuit;
    A storage battery that can store electricity,
    a second power supply circuit operable based on power supplied from the storage battery;
    a second switch provided in a power supply path connecting the storage battery and an input terminal of the second power supply circuit;
    a processing circuit operable based on the power supplied from the second power supply circuit and capable of monitoring the state of the storage battery;
    a second control circuit capable of turning on the second switch based on a light reception result of the light receiving element and an instruction from the processing circuit.
PCT/JP2023/001196 2022-03-16 2023-01-17 Storage battery module and storage battery system WO2023176129A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022041362 2022-03-16
JP2022-041362 2022-03-16

Publications (1)

Publication Number Publication Date
WO2023176129A1 true WO2023176129A1 (en) 2023-09-21

Family

ID=88023270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001196 WO2023176129A1 (en) 2022-03-16 2023-01-17 Storage battery module and storage battery system

Country Status (1)

Country Link
WO (1) WO2023176129A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008281464A (en) * 2007-05-11 2008-11-20 Panasonic Ev Energy Co Ltd State detection device of energy storage device
JP2010279120A (en) * 2009-05-27 2010-12-09 Mitsubishi Motors Corp Device for monitoring battery of electric vehicle
WO2013098923A1 (en) * 2011-12-26 2013-07-04 株式会社日立製作所 Cell system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008281464A (en) * 2007-05-11 2008-11-20 Panasonic Ev Energy Co Ltd State detection device of energy storage device
JP2010279120A (en) * 2009-05-27 2010-12-09 Mitsubishi Motors Corp Device for monitoring battery of electric vehicle
WO2013098923A1 (en) * 2011-12-26 2013-07-04 株式会社日立製作所 Cell system

Similar Documents

Publication Publication Date Title
JP6191020B2 (en) Switching power supply
US9343981B2 (en) Charging device for charging a battery pack
JP2006280138A (en) Dc-dc converter
KR101152849B1 (en) Power driving circuit in battery management system
RU2013119646A (en) ELECTRONIC CONTROL DEVICE AND METHOD FOR REDUCING ENERGY CONSUMPTION BY A HOUSEHOLD ELECTRICAL APPLIANCE IN STANDBY MODE
CN105811747A (en) High-voltage power supply system with enable control
JP2018019589A (en) Isolation synchronous rectification type dc/dc converter, synchronous rectification controller, shunt regulator circuit, power supply adapter, and electronic device
WO2022027264A1 (en) Drive circuit for channel switch, charging control method and charger
US10488881B1 (en) Power supply circuit
KR20210007719A (en) Power supply control method and apparatus of battery management system
WO2023176129A1 (en) Storage battery module and storage battery system
US9705323B2 (en) Power supply system and power control circuit thereof
US20160172960A1 (en) Switching device
CN108696113B (en) Switching power supply shutdown delay line
WO2012133186A1 (en) Switch circuit control unit, and charging and discharging system
US11445581B2 (en) TRIAC module
CN109639118B (en) Self-powered circuit of switching power supply, control chip, switching power supply and electric device
CN110838837A (en) Optically isolated latching solid state relay with low on-resistance and linear operation
WO2023119973A1 (en) Storage battery system and power storage system
CN110932240B (en) Open circuit detection protection system for synchronous rectification switching power supply
CN220732743U (en) Power supply reset circuit, circuit board and electronic equipment
KR101044190B1 (en) On-off protection circuit of switched-mode power supply in waiting state of photovoltaic inverter generation
KR101177554B1 (en) Start-up circuit for power supply
CN108521151B (en) Starting device of battery management circuit and battery management system with same
CN211046750U (en) Switching power supply device and power supply driver suitable for same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770092

Country of ref document: EP

Kind code of ref document: A1