WO2012133186A1 - Switch circuit control unit, and charging and discharging system - Google Patents

Switch circuit control unit, and charging and discharging system Download PDF

Info

Publication number
WO2012133186A1
WO2012133186A1 PCT/JP2012/057516 JP2012057516W WO2012133186A1 WO 2012133186 A1 WO2012133186 A1 WO 2012133186A1 JP 2012057516 W JP2012057516 W JP 2012057516W WO 2012133186 A1 WO2012133186 A1 WO 2012133186A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
switch circuit
unit
light
switch
Prior art date
Application number
PCT/JP2012/057516
Other languages
French (fr)
Japanese (ja)
Inventor
中島 武
健仁 井家
久志 中林
博志 佐伯
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2012133186A1 publication Critical patent/WO2012133186A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/78Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled
    • H03K17/785Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled controlling field-effect transistor switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/78Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled
    • H03K17/795Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled controlling bipolar transistors
    • H03K17/7955Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled controlling bipolar transistors using phototransistors

Definitions

  • the present invention relates to a switch circuit control unit and a charge / discharge system, and more particularly to a switch circuit control unit that controls a switch circuit that switches connection between a power input / output line and a power storage unit, and a charging circuit that includes the switch circuit control unit. It relates to a discharge system.
  • a power generation device using renewable energy such as sunlight or wind power is not suitable for use as a stable power source because of large fluctuations in generated power, and leveling of generated power is desired.
  • load leveling of electric power demand is expected.
  • the power supply system charges the storage battery with power from a power source such as a power generator or power system that uses renewable energy, charges and discharges the storage battery as necessary, and supplies power to the load or power system.
  • a power source such as a power generator or power system that uses renewable energy
  • a switch circuit for controlling charging / discharging of the storage battery is provided between the storage battery and a power input / output line connected to a power source, a load, a power system, or the like.
  • Patent Document 1 discloses a system in which a charge / discharge switch is provided in a power storage device connected between a main power supply and a load.
  • an FET is used as a charge / discharge switch, one end of which is connected to the positive electrode side of the power storage device, and the other end is connected to a connection point where the main power source and the load are connected.
  • the degree of freedom in selecting the storage battery capacity and the load capacity that can be connected is high. Therefore, the switch circuit is required to be able to perform a switch operation even under a high current and a high voltage.
  • Patent Document 1 when an FET is used as a switch circuit, damage may occur due to heat generation during switch operation under a large current and high voltage. In order to suppress such breakage, use of a high function FET, addition of a cooling function, etc. can be considered. However, it is not practical because the types of FETs that can be selected are limited, and when the cooling function is added, the entire system becomes large.
  • An object of the present invention is to provide a switch circuit control unit that suppresses heat generation during switch operation, and a charge / discharge system including the switch circuit control unit.
  • a switch circuit control unit is a switch circuit control unit that controls, based on a control signal, a switch circuit that switches connection between a power input / output line and a power storage unit including a storage battery.
  • a light emitting unit that emits light, a light receiving unit that outputs an on signal or an off signal according to light of the light emitting unit, and an on switch switching circuit that turns on a switch circuit when the on signal is input from the light receiving unit; And an off switch switching circuit that turns off the switch circuit when an off signal is input from the light receiving unit.
  • the switch circuit control unit has an insulating configuration including a light emitting unit that receives a control signal and a light receiving unit that outputs an on signal or an off signal according to the light of the light emitting unit. Furthermore, since the switch circuit control unit includes an off switch switching circuit and an on switch switching circuit, the switch circuit control unit can instantaneously switch on and off of the switch circuit, thereby suppressing heat generation due to the switch operation of the switch circuit, Breakage can be prevented.
  • FIG. 2 it is a figure explaining the structure of the charging / discharging system containing a switch circuit control part. It is a detailed block diagram of the switch circuit control part in embodiment which concerns on this invention.
  • FIG. 2 it is a figure explaining the effect
  • FIG. 2 it is a figure explaining the effect
  • a lithium ion battery is demonstrated as a storage battery which comprises an electrical storage part
  • secondary batteries other than this may be sufficient.
  • a nickel hydrogen battery, a nickel cadmium battery, or the like may be used.
  • the reason for collecting a plurality of unit storage batteries as an aggregate is to obtain a voltage and a current to correspond to the required power of the load, so the content of the combination of unit storage batteries for configuring the storage battery and its The number and the like can be appropriately determined according to the specifications of the charge / discharge system of the power storage unit.
  • solar power generated by a photoelectric conversion module and external commercial power will be described as a charging power source connected to the power storage unit, but other power sources such as wind power may be used.
  • factory equipment, an electronic device, and an illuminating device are described as discharge load connected with a storage battery, this is an illustration of various loads, and power consumption loads other than these may be sufficient.
  • FIG. 1 is a diagram for explaining a configuration of a charge / discharge system 10 including a switch circuit control unit 60.
  • the charge / discharge system 10 is a system that performs optimal charge / discharge control of the power storage unit 40 through power management between the power storage unit 40 including a storage battery, the charging power sources 12 and 14, and the discharge loads 16, 17, and 18. .
  • the charging power sources 12 and 14 include a photoelectric conversion module 12 and an external commercial power source 14.
  • the photoelectric conversion module 12 is a photoelectric conversion module in which a plurality of photoelectric conversion elements are combined. The characteristics when the photoelectric conversion module 12 is used as a charging power source are that the generated power value fluctuates depending on natural conditions, so that it is difficult to make the supplied power value constant and a large power fluctuation occurs in a short time. is there.
  • the external commercial power source 14 is a single-phase or three-phase AC power source, and is combined with power generated by various power generation methods such as hydroelectric power generation, nuclear power generation, and thermal power generation in accordance with fluctuations in power supply and demand. Supplied by a power company.
  • the charging power sources 12 and 14 can supply power to both the power storage unit 40 and the discharge loads 16, 17, and 18. However, the charging power sources 12 and 14 preferentially supply power to the power storage unit 40. When the voltage drops, power is supplied to the discharge loads 16, 17, and 18.
  • the discharge loads 16, 17, and 18 show a factory facility 16, an electronic device 17 such as a personal computer, and a lighting device 18.
  • Factory equipment 16 includes, in addition to mechanical equipment, factory air conditioning, kitchen appliances, factory lighting equipment, office equipment, and the like.
  • the discharge loads 16, 17, and 18 include various power consuming devices that can be connected to an outlet or the like. The characteristics of these discharge loads are that the power value fluctuates depending on the operating conditions, so that it is difficult to set the power consumption value to a constant value, and there is a possibility that sudden power fluctuations may occur depending on demand. .
  • the discharge loads 16, 17, 18 can receive power supply from any of the charging power sources 12, 14 and the power storage unit 40, but receive power supply from the power storage unit 40 preferentially, When the voltage drops, power is supplied from the charging power sources 12 and 14. Further, the discharge loads 16, 17, and 18 are again supplied with power from the power storage unit 40 when the amount of power stored in the power storage unit 40 is restored. Thus, even when the power supply from the charging power sources 12 and 14 and the power supply from the power storage unit 40 are switched, a large power fluctuation occurs in the charge / discharge power from the power storage unit 40.
  • the charging power supply side power converters 20A and 20B are converters such as an AC / DC converter and a DC / DC converter, and the type of converter to be used is selected according to the content of the conversion actually performed.
  • the charging power supply side power converter 20A provided between the photoelectric conversion module 12 and the power storage unit 40 can be omitted.
  • Discharge load side power converters 22a, 22b, and 22c provided between the discharge loads 16, 17, and 18 and the discharge load side switch 26 respectively convert power between the power storage unit 40 and the discharge loads 16, 17, and 18. I do.
  • the discharge load side power converters 22a, 22b, and 22c are DC / DC converters and DC / AC inverters, and appropriate ones are installed according to the load.
  • the load is a DC power source and the voltage can be directly driven by the storage battery voltage, the DC / DC converter can be omitted.
  • the power storage unit 40 is configured by combining a plurality of storage battery packs in which a predetermined number of storage battery cells are connected in series and parallel.
  • a lithium ion battery is preferably used as the storage battery cell.
  • the power storage unit 40 for example, a storage battery pack in which a plurality of storage battery cells are connected in series to obtain a desired voltage value, and a plurality of storage battery cells connected in series are connected in parallel so as to have a desired power value. Depending on the situation, multiple series-parallel connections are made.
  • the power input / output line 30 is a power line in which charging power is input to the power storage unit 40 from the charging power sources 12 and 14 side and discharging power is output to the discharging loads 16, 17 and 18 side.
  • the charging power supply side switch 24 provided between the power input / output line 30 and the charging power supplies 12 and 14 is a switch for turning on and off the supply of charging current from the charging power supplies 12 and 14 to the power storage unit 40.
  • a discharge load side switch 26 provided between the power input / output line 30 and the discharge loads 16, 17, 18 side is a switch for turning on / off the supply of discharge current from the power storage unit 40 to the discharge loads 16, 17, 18. .
  • the switch circuit 28 provided between the power input / output line 30 and the power storage unit 40 is a circuit including a switch that controls charging / discharging of the power storage unit 40.
  • the switch circuit 28 is provided on the positive electrode side of the power storage unit 40.
  • a p-channel FET is often used, and by using the p-channel FET, it is possible to use the negative side voltage of the power storage unit 40 at the control element end of the FET.
  • a simple circuit configuration is possible.
  • the p-channel FET has a slower switching speed than the n-channel FET and has a relatively large on-resistance. In the system as shown in FIG.
  • n-channel FET is used on the positive electrode side of the power storage unit 40.
  • a p-channel FET can also be used as the switch circuit 28 by appropriately changing the voltage relationship.
  • the switch circuit 28 is not limited to an FET, and a voltage control type switch circuit such as an IGBT may be used. In FIG. 1, only one switch circuit 28 is provided, but a plurality of switch circuits 28 may be connected in parallel.
  • the parallel-connected storage battery packs included in the power storage unit 40 may be connected to one switch circuit 28 in a state of being connected in parallel, or the switch circuit 28 may be connected to each parallel.
  • the electric current detection part which detects the charging / discharging electric current to a storage battery is provided.
  • the system control unit 50 acquires storage battery data related to the storage battery constituting the power storage unit 40.
  • the storage battery data is data indicating voltage, current, temperature, etc. for each storage battery. Further, the system control unit 50 is not shown, but the power detection unit provided between the charging power sources 12 and 14 and the discharge loads 16, 17, and 18, for example, changes the amount of fluctuation of the power value.
  • the detected power data shown is acquired.
  • the detected power data includes the power fluctuation caused by the photoelectric conversion module 12, the power fluctuation according to the demand of the discharge loads 16, 17, 18 and the power sources for the discharge loads 16, 17, 18 are the charging power sources 12, 14 and the power storage unit.
  • 40 includes data such as power fluctuations when switching to 40.
  • the system control unit 50 controls charging / discharging of the power storage unit 40 based on the acquired storage battery data and detected power data. Specifically, the system control unit 50 generates a control signal 91 to be transmitted to the charging power supply side switch 24 and the discharge load side switch 26 and a control signal 92 to be transmitted to the switch circuit 28 based on the storage battery data and the detected power data. To do. Then, the system control unit 50 controls the on / off of each switch by transmitting control signals 91 and 92 to the charging power supply side switch 24, the discharge load side switch 26, and the switch circuit 28, and performs charge / discharge control of the power storage unit 40. Do.
  • the control signal including an instruction to turn on each switch to the charging power supply side switch 24 and the switch circuit 28. 91 and 92 are transmitted, respectively.
  • the charging power supply side switch 24 and the switch circuit 28 are turned on, and the charging current supplied from the charging power supplies 12 and 14 is charged in the power storage unit 40.
  • the control signal including an instruction to turn on each switch to the discharge load side switch 26 and the switch circuit 28. 91 and 92 are transmitted, respectively.
  • the discharge load side switch 26 and the switch circuit 28 are turned on, and the discharge current from the power storage unit 40 is supplied to the discharge loads 16, 17 and 18.
  • the abnormality determination circuit 52 is a circuit that turns off the switch circuit 28 independently of the system control unit 50 when the power storage unit 40 has an abnormality.
  • the abnormality determination circuit 52 is provided between the power storage unit 40 and the system control unit 50, acquires storage battery data from the power storage unit 40, and when the power storage unit 40 is charged, the current of the power storage unit 40 is charged. Alternatively, whether or not the power storage unit 40 is in an abnormal state is determined based on whether or not at least one of the voltages exceeds a predetermined threshold value. Further, when the power storage unit 40 is discharged, whether or not the power storage unit 40 is in an abnormal state is determined based on whether or not at least one of the current or voltage of the power storage unit 40 is below a predetermined threshold value.
  • an overcharge threshold at which the power storage unit 40 is overcharged As the predetermined threshold, an overcharge threshold at which the power storage unit 40 is overcharged, an overdischarge threshold at which the power storage unit 40 is overdischarged, or the like can be used.
  • an abnormality signal 94 is output.
  • the abnormal signal 94 is directly transmitted to the switch circuit 28 without passing through the system control unit 50.
  • the abnormality determination circuit 52 can quickly turn off the switch circuit 28 without going through the system control unit 50 when the power storage unit 40 is in an abnormal state.
  • the switch circuit control unit 60 is a circuit that receives the control signal 92 from the system control unit 50 and controls on / off of the switch circuit 28.
  • the switch circuit control unit 60 includes a light emitting unit 66, a light receiving unit 68, an off switch switching circuit 70, and an on switch switching circuit 72.
  • the light emitting unit 66 emits light or does not emit light in response to the control signal 92.
  • the light receiving unit 68 outputs an on signal or an off signal according to the light of the light emitting unit 66.
  • the off switch switching circuit 70 outputs a first signal for turning off the switch circuit 28 to the switch circuit 28 when an off signal is input from the light receiving unit 68.
  • the on switch switching circuit 72 outputs a second signal for turning on the switch circuit 28 to the switch circuit 28 when an on signal is input from the light receiving unit 68.
  • the instruction included in the control signal 92 is transmitted to the switch circuit 28 in an insulated state.
  • the switch circuit control unit 60 includes a reference voltage terminal 62 and a plus voltage terminal 64.
  • the reference voltage terminal 62 supplies a reference voltage, which is a voltage that can turn off the switch circuit 28, to the off switch switching circuit 70 when an off signal is input from the light receiving unit 68 to the off switch switching circuit 70.
  • the positive voltage terminal 64 is a voltage that turns on the switch circuit 28 when an on signal is input from the light receiving unit 68 to the on switch switching circuit 72, and switches the switch circuit on voltage higher than the reference voltage to the plus voltage side. This is supplied to the switching circuit 72. With this configuration, the off switch switching circuit 70 can supply the reference voltage that can turn off the switch circuit 28 to the switch circuit 28 as the first signal.
  • the on-switch switching circuit 72 can supply the switch circuit on-voltage that can turn on the switch circuit 28 to the switch circuit 28 as the second signal.
  • the reference voltage is not limited to the ground voltage and may be a drain side voltage of the switch circuit 28 as long as the voltage can turn off the switch circuit 28.
  • FIG. 2 is a diagram illustrating an example of a specific internal configuration of the switch circuit control unit 60.
  • the switch circuit control unit 60 includes a photovoltaic circuit 80 including a light emitting diode as a light emitting unit 66 and a photoelectric conversion element as a light receiving unit 68, a diode 82, an n-channel transistor 84, and a p-channel transistor 86. .
  • the light emitting diode which is the light emitting unit 66 is supplied with a control signal 92 from the system control unit 50 between its two terminals.
  • the control signal 92 is a signal including an instruction to turn on the switch circuit 28
  • the light emitting diode that is the light emitting unit 66 enters a light emitting state and outputs light.
  • the control signal 92 is a signal including an instruction to turn off the switch circuit 28
  • the light emitting diode which is the light emitting unit 66 is in a non-light emitting state and does not output light.
  • a signal including an instruction to turn on the switch circuit 28 is referred to as an on instruction signal
  • a signal including an instruction to turn off the switch circuit 28 is referred to as an off instruction signal.
  • the control signal 92 When the control signal 92 is applied so as to forward bias the light emitting diode that is the light emitting unit 66, the light emitting unit 66 enters a light emitting state. That is, the ON instruction signal in the control signal 92 is a signal for forward-biasing the light emitting diode.
  • the ON instruction signal in the control signal 92 is a signal for forward-biasing the light emitting diode.
  • the cathode terminal of the light emitting diode is connected to the reference voltage terminal 67, applying a positive voltage to the anode terminal corresponds to the ON instruction signal.
  • a reference voltage may be applied to the anode terminal of the light emitting diode.
  • the photoelectric conversion element which is the light receiving unit 68 has the first terminal 68 a connected to the reference voltage terminal 62.
  • the second terminal 68 b is connected to the anode terminal of the diode 82, the base terminal of the n-channel transistor 84, and the base terminal of the p-channel transistor 86.
  • the photoelectric conversion element that is the light receiving unit 68 is disposed so that the light receiving surface thereof faces the light emitting surface of the light emitting diode that is the light emitting unit 66.
  • the photoelectric conversion element that is the light receiving unit 68 When the light emitting diode that is the light emitting unit 66 outputs light, the photoelectric conversion element that is the light receiving unit 68 generates power and outputs a predetermined voltage corresponding to the magnitude of the light from the second terminal 68b.
  • the photoelectric conversion element that is the light receiving unit 68 does not generate power, and the voltage of the second terminal 68b becomes the reference voltage.
  • the light receiving unit 68 outputs the reference voltage when the light emitting unit 66 is in the non-light emitting state, and outputs a predetermined voltage that is higher than the reference voltage when the light emitting unit 66 is in the light emitting state.
  • the output signal of the reference voltage corresponds to the off signal output from the light receiving unit 68 described in FIG. 1
  • the output signal of the predetermined voltage higher than the reference voltage corresponds to the on signal output from the light receiving unit 68.
  • the reference voltage that can be turned on increases.
  • the photoelectric conversion element included in the light receiving unit 68 of the photovol circuit 80 is slow in response. Therefore, if the boosting speed is slow, it takes time to turn on the switch circuit 28, and the n-channel FET may generate heat. Therefore, in order to compensate for the slow response of the photovoltaic circuit 80, an n-channel transistor 84 and a p-channel transistor 86 are provided, which will be specifically described below.
  • the diode 82 is connected to the second terminal 68b of the photoelectric conversion element whose anode terminal is the light receiving unit 68 as described above.
  • the cathode terminal is connected to the emitter terminal of the n-channel transistor 84, the emitter terminal of the p-channel transistor 86, and the control terminal of the n-channel FET that is the switch circuit 28.
  • the n-channel transistor 84 has a base terminal connected to the second terminal 68b of the photoelectric conversion element which is the light receiving unit 68 as described above, and an emitter terminal connected to the control terminal of the n-channel FET which is the switch circuit 28 as described above. Is done.
  • the collector terminal is connected to the positive voltage terminal 64.
  • the voltage supplied to the positive voltage terminal 64 is set to a voltage higher than the reference voltage. Since the base terminal is connected to the second terminal 68b of the light receiving unit 68, an ON signal or an OFF signal of the light receiving unit 68 is supplied.
  • the p-channel transistor 86 has a base terminal connected to the second terminal 68b of the photoelectric conversion element that is the light receiving unit 68 as described above, and an emitter terminal connected to the control terminal of the n-channel FET that is the switch circuit 28 as described above. Is done.
  • the collector terminal is connected to the reference voltage terminal 62. Since the base terminal is connected to the second terminal 68b of the light receiving unit 68, an ON signal or an OFF signal of the light receiving unit 68 is supplied.
  • the anode terminal of the light emitting diode which is the light emitting unit 66 in the switch circuit control unit 60 is connected to the output terminal of the photocoupler 90.
  • the photocoupler 90 is an element in which the light emitting surface of the light emitting diode and the light receiving surface of the phototransistor face each other.
  • the photocoupler 90 when the abnormality signal 94 output from the abnormality determination circuit 52 is input, the light emitting diode emits light, and the phototransistor is turned on by the light.
  • the output terminal of the photocoupler 90 becomes the reference voltage.
  • the output signal of the photocoupler 90 is transmitted to the anode terminal of the light emitting diode that is the light emitting unit 66 in the switch circuit control unit 60 as described above.
  • the switch circuit control unit 60 turns off the switch circuit 28 when the anode terminal of the light emitting diode reaches the reference voltage. That is, the photocoupler 90 is configured to control the switch circuit control unit 60 by receiving the abnormality signal 94 from the abnormality determination circuit 52 and controlling the light emitting unit 66.
  • FIG. 3 is a diagram for explaining the operation of the part of the off switch switching circuit 70 of the switch circuit control unit 60.
  • the off switch switching circuit 70 includes a diode 82 and a p-channel transistor 86.
  • the part of the off switch switching circuit 70 is extracted and shown on the right side of FIG.
  • the voltage of the second terminal 68b of the light receiving unit 68 is V S
  • the voltage of the control terminal of the switch circuit 28 is V G.
  • the diagram on the left side of FIG. 3 shows time variation of V S and V G , with time t on the horizontal axis and voltage V on the vertical axis.
  • the time when the control signal 92 changes from the on instruction signal to the off instruction signal is taken as the origin of time t.
  • the control signal 92 changes from the on instruction signal to the off instruction signal the light emitting unit 66 changes from the light emitting state to the non-light emitting state. Since the photoelectric conversion element of the light receiving unit 68 changes from the power generation state to the non-power generation state, the output voltage V S drops from a predetermined voltage higher than the reference voltage in the power generation state toward the reference voltage. However, the response of the photoelectric conversion element is rather slow, as shown in FIG. 3, V S does not change until time t 1, start falling from time t 1.
  • V G is the switch circuit on-voltage at the origin of the time axis because the n-channel FET which is the switch circuit 28 is on. Since the switch circuit ON voltage is discharged through the parasitic capacitance, the switch circuit ON voltage gradually becomes lower according to the discharge characteristics. As shown in FIG. 3, the voltage difference between V G and V S gradually decreases, and at time t 2 , the p-channel transistor 86 is turned on. As a result, V G instantaneously becomes the reference voltage. Thus, the voltage at the control terminal of the switch circuit 28 is switched from the switch circuit ON voltage to the reference voltage. Note that V G at time t 2 needs to be designed to maintain a voltage sufficient to turn on the switch circuit 28.
  • FIG. 4 is a diagram for explaining the operation of the on-switch switching circuit 72 of the switch circuit control unit 60.
  • the on switch switching circuit 72 includes a diode 82 and an n-channel transistor 84.
  • the part of the on-switch switching circuit 72 is extracted and shown on the right side of FIG.
  • the voltage at the output terminal of the light receiving unit 68 is V S
  • the voltage at the control terminal of the switch circuit 28 is V G.
  • the diagram on the left side of FIG. 4 shows time variations of V S and V G , with time t on the horizontal axis and voltage V on the vertical axis.
  • the time when the control signal 92 changes from the off instruction signal to the on instruction signal is taken as the origin of the time t.
  • the control signal 92 changes from the off instruction signal to the on instruction signal
  • the light emitting unit 66 changes from the non-light emitting state to the light emitting state.
  • the output voltage V S rises from the reference voltage in the non-power generation state toward a predetermined voltage higher than the reference voltage.
  • the response of the photoelectric conversion element is rather slow, as shown in FIG. 4, V S does not change until time t 3, it starts to increase from the time t 3.
  • V G is a reference voltage at the origin of the time axis because the n-channel FET which is the switch circuit 28 is off.
  • V S rises from t 3
  • a voltage is applied via the diode 82, so that V G also rises according to V S.
  • V G is lower than V S by the voltage drop of the diode 82
  • V S reaches a voltage capable of turning on the n-channel transistor 84
  • the n-channel transistor 84 is turned on and V G is instantaneous.
  • the switch circuit is turned on.
  • the voltage at the control terminal of the switch circuit 28 is switched from the reference voltage to the switch circuit ON voltage.
  • V G at time t 4 needs to be designed so as not to be a voltage for turning on the switch circuit 28.
  • the off switch switching circuit 70 when the control signal 92 changes from the on instruction signal to the off instruction signal, the voltage of the control terminal of the switch circuit 28 is instantaneously changed from the switch circuit on voltage to the reference voltage. Can be switched automatically. Further, by using the on switch switching circuit 72, when the control signal 92 changes from the off instruction signal to the on instruction signal, the voltage of the control terminal of the switch circuit 28 is instantaneously switched from the reference voltage to the switch circuit on voltage. be able to.
  • FIG. 5 is a diagram illustrating a configuration example of the switch circuit control unit 61 having another configuration.
  • This switch circuit control unit 61 uses a configuration in which a photodiode is used as the light emitting unit 66 and an n channel phototransistor 85 and a p channel phototransistor 87 are connected in series as the light receiving unit 68.
  • the collector of the n-channel phototransistor 85 is connected to the plus voltage terminal 64
  • the collector of the p-channel phototransistor 87 is connected to the reference voltage terminal 62.
  • the emitter of the n-channel phototransistor 85 and the emitter of the p-channel phototransistor 87 are connected to each other and connected to the control terminal of the switch circuit 28 as an output terminal. Therefore, the n-channel phototransistor 85 corresponds to the on-switch switching circuit 72, and the p-channel phototransistor 87 corresponds to the off-switch switching circuit 70.
  • the n-channel phototransistor 85 and the p-channel phototransistor 87 are turned on and off in a complementary manner.
  • the switch circuit control unit 61 receives the on instruction signal, the n-channel phototransistor 85 is turned on and the p-channel phototransistor 87 is turned off.
  • a positive voltage is instantaneously applied to the switch circuit 28, and the switch circuit 28 is turned on.
  • the switch circuit control unit 61 receives the off instruction signal, the p-channel phototransistor 87 is turned on and the n-channel phototransistor 85 is turned off.
  • the reference voltage is instantaneously applied to the switch circuit 28, and the switch circuit 28 is turned off.
  • the charge / discharge system 10 includes an off switch switching circuit 70 and an on switch switching circuit 72 in the switch circuit control unit 60.
  • the control signal 92 input to the switch circuit control unit 60 changes from the on instruction signal to the off instruction signal, or from the off instruction signal to the on instruction signal
  • the voltage of the control terminal of the switch circuit 28 is changed to the switch It is possible to instantaneously switch from the circuit on voltage to the reference voltage, or from the reference voltage to the switch circuit on voltage.
  • the switch circuit control unit 60 when the off switch switching circuit 70 and the on switch switching circuit 72 are not provided, the voltage at the control terminal of the switch circuit 28 changes relatively slowly, so that the switch circuit 28 is completely turned on.
  • the off switch switching circuit 70 and the on switch switching circuit 72 the voltage of the control terminal of the switch circuit 28 can be instantaneously switched, and thus heat generation due to the switch operation of the switch circuit 28 is suppressed. And can prevent damage.
  • the charge / discharge system 10 also includes an abnormality determination circuit 52 and a photocoupler 90 that cause the switch circuit control unit 60 to turn off the switch circuit 28 directly without going through the system control unit 50 when an abnormality occurs in the power storage unit 40. .
  • an abnormality determination circuit 52 and a photocoupler 90 transmit the abnormal state to the switch circuit control unit 60, the switch circuit 28 can be instantaneously turned off, thereby suppressing the influence of heat generation during the switch operation. it can.
  • the configuration in which the off switch switching circuit 70 and the on switch switching circuit 72 are provided has been described. However, only the off switch switching circuit 70 illustrated in FIG. 3 or only the on switch switching circuit 72 illustrated in FIG. The structure provided may be sufficient.
  • the charging / discharging system 10 provided with only the off switch switching circuit 70 is preferably used when the charging current is small.
  • the charge / discharge system 10 provided with only the on-switch switching circuit 72 is preferably used when the discharge current is small.
  • the configuration has been described in which the abnormality signal 94 when abnormality occurs in the power storage unit 40 is transmitted to the light emitting unit 66 side of the switch circuit control unit 60, but the configuration is transmitted to the light receiving unit 68 side. It may be. In this case, it is desirable to prevent an overcurrent from flowing between the reference voltage terminal 62, the plus voltage terminal 64 and the control terminal of the switch circuit 28. In addition, it is desirable to design appropriately so as not to affect the application of the first signal and the second signal to the control terminal of the switch circuit 28.
  • the switch circuit control unit and the charge / discharge system according to the present invention can be used in a charge / discharge system in which a switch circuit is provided between the power input / output line and the power storage unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A switch circuit control unit (60) controls a switch circuit (28), which switches a connection between a power input/output line (30) and a power storage unit (40), on the basis of a control signal (92) from a system control unit (50). The switch circuit control unit (60) is provided with: a light-emitting unit (66) that receives the control signal (92), and emits light or does not emit light; a light-receiving unit (68) that outputs an on signal or an off signal in response to the light of the light-emitting unit (66); a on-switch switching circuit (72) that switches the switch circuit (28) on when an on signal has been inputted from the light-receiving unit (68); and an off-switch switching circuit (70) that switches the switch circuit (28) off when an off signal has been inputted from the light-receiving unit (68).

Description

スイッチ回路制御部及び充放電システムSwitch circuit controller and charge / discharge system
 本発明は、スイッチ回路制御部及び充放電システムに係り、特に電力入出力ラインと蓄電部との接続を切り替えるスイッチ回路を制御するスイッチ回路制御部及びそのスイッチ回路制御部を含んで構成される充放電システムに関する。 The present invention relates to a switch circuit control unit and a charge / discharge system, and more particularly to a switch circuit control unit that controls a switch circuit that switches connection between a power input / output line and a power storage unit, and a charging circuit that includes the switch circuit control unit. It relates to a discharge system.
 環境問題やエネルギ問題への対応として、再生可能エネルギの利用や、電力の有効利用に対する要求が高まっている。太陽光や風力等の再生可能エネルギを利用した発電装置は、発電電力の変動が大きいために安定電源として用いるには不適切であり、発電電力の平準化が望まれている。また、電力の有効利用としては、電力需要の負荷平準化が期待されている。 Demand for the use of renewable energy and the effective use of electric power is increasing as a response to environmental and energy problems. A power generation device using renewable energy such as sunlight or wind power is not suitable for use as a stable power source because of large fluctuations in generated power, and leveling of generated power is desired. In addition, as an effective use of electric power, load leveling of electric power demand is expected.
 これらの要求を満たすために、蓄電池を備えた電力供給システムが提案されている。具体的には、電力供給システムは、再生可能エネルギを利用した発電装置や電力系統等の電源からの電力を蓄電池に充電し、必要に応じて蓄電池の充放電を行い、負荷や電力系統に電力を出力するシステムである。このようなシステムでは、蓄電池と、電源や負荷や電力系統等と接続された電力入出力ラインとの間に、蓄電池の充放電を制御するためのスイッチ回路が設けられている。 In order to satisfy these requirements, a power supply system equipped with a storage battery has been proposed. Specifically, the power supply system charges the storage battery with power from a power source such as a power generator or power system that uses renewable energy, charges and discharges the storage battery as necessary, and supplies power to the load or power system. Is a system that outputs. In such a system, a switch circuit for controlling charging / discharging of the storage battery is provided between the storage battery and a power input / output line connected to a power source, a load, a power system, or the like.
 例えば、特許文献1には、主電源と負荷との間に接続された蓄電装置に充放電スイッチが設けられたシステムが開示されている。このシステムでは、充放電スイッチとしてFETが用いられ、その一端は蓄電装置の正極側が接続され、他端は主電源と負荷とが接続される接続点に接続されている。 For example, Patent Document 1 discloses a system in which a charge / discharge switch is provided in a power storage device connected between a main power supply and a load. In this system, an FET is used as a charge / discharge switch, one end of which is connected to the positive electrode side of the power storage device, and the other end is connected to a connection point where the main power source and the load are connected.
特開2008-232989号公報JP 2008-232929 A
 上述した電力供給システムでは、蓄電池容量や、接続可能な負荷容量等の選択自由度が高いことが好ましい。そのため、スイッチ回路には、大電流で高電圧下でもスイッチ動作が可能であることが求められる。 In the above-described power supply system, it is preferable that the degree of freedom in selecting the storage battery capacity and the load capacity that can be connected is high. Therefore, the switch circuit is required to be able to perform a switch operation even under a high current and a high voltage.
 しかし、特許文献1のように、スイッチ回路としてFETを用いた場合、大電流で高電圧下においては、スイッチ動作時の発熱による破損が生じる可能性がある。このような破損を抑制するためには、高機能FETの利用や、冷却機能の追加等が考えられる。しかしながら、選択可能なFETの種類が限られていることや、冷却機能を追加するとシステム全体が大きくなることから実用的でない。 However, as in Patent Document 1, when an FET is used as a switch circuit, damage may occur due to heat generation during switch operation under a large current and high voltage. In order to suppress such breakage, use of a high function FET, addition of a cooling function, etc. can be considered. However, it is not practical because the types of FETs that can be selected are limited, and when the cooling function is added, the entire system becomes large.
 本発明の目的は、スイッチ動作時の発熱を抑制するスイッチ回路制御部、及びそのスイッチ回路制御部を含む充放電システムを提供することである。 An object of the present invention is to provide a switch circuit control unit that suppresses heat generation during switch operation, and a charge / discharge system including the switch circuit control unit.
 本発明に係るスイッチ回路制御部は、電力入出力ラインと蓄電池を含む蓄電部との接続を切り替えるスイッチ回路を制御信号に基づき制御するスイッチ回路制御部であって、制御信号を受けて発光または非発光する発光部と、発光部の光に応じて、オン信号またはオフ信号を出力する受光部と、受光部から前記オン信号が入力された場合に、スイッチ回路をオンさせるオンスイッチ切替回路と、受光部からオフ信号が入力された場合に、スイッチ回路をオフさせるオフスイッチ切替回路と、を備えることを特徴とする。 A switch circuit control unit according to the present invention is a switch circuit control unit that controls, based on a control signal, a switch circuit that switches connection between a power input / output line and a power storage unit including a storage battery. A light emitting unit that emits light, a light receiving unit that outputs an on signal or an off signal according to light of the light emitting unit, and an on switch switching circuit that turns on a switch circuit when the on signal is input from the light receiving unit; And an off switch switching circuit that turns off the switch circuit when an off signal is input from the light receiving unit.
 上記構成により、スイッチ回路制御部は、制御信号を受ける発光部と、発光部の光に応じてオン信号またはオフ信号を出力する受光部とを備える絶縁型の構成となる。さらに、スイッチ回路制御部は、オフスイッチ切替回路及びオンスイッチ切替回路を備えることにより、スイッチ回路のオンオフを瞬間的に切り替えることができるため、スイッチ回路のスイッチ動作による発熱を抑制することができ、破損を防止することができる。 With the above configuration, the switch circuit control unit has an insulating configuration including a light emitting unit that receives a control signal and a light receiving unit that outputs an on signal or an off signal according to the light of the light emitting unit. Furthermore, since the switch circuit control unit includes an off switch switching circuit and an on switch switching circuit, the switch circuit control unit can instantaneously switch on and off of the switch circuit, thereby suppressing heat generation due to the switch operation of the switch circuit, Breakage can be prevented.
本発明に係る実施の形態において、スイッチ回路制御部を含む充放電システムの構成を説明する図である。In embodiment which concerns on this invention, it is a figure explaining the structure of the charging / discharging system containing a switch circuit control part. 本発明に係る実施の形態におけるスイッチ回路制御部の詳細構成図である。It is a detailed block diagram of the switch circuit control part in embodiment which concerns on this invention. 図2において、オフスイッチ切替回路の作用を説明する図である。In FIG. 2, it is a figure explaining the effect | action of an off switch switching circuit. 図2において、オンスイッチ切替回路の作用を説明する図である。In FIG. 2, it is a figure explaining the effect | action of an ON switch switching circuit. 別のスイッチ回路制御部の構成例を説明する図である。It is a figure explaining the structural example of another switch circuit control part.
 以下に図面を用いて本発明に係る実施の形態につき、詳細に説明する。以下では、蓄電部を構成する蓄電池としてリチウムイオン電池を説明するが、これ以外の2次電池であってもよい。例えばニッケル水素電池、ニッケルカドミウム電池等であってもよい。蓄電池を複数の単位蓄電池を集めて集合体とするのは、負荷の必要電力に対応するための電圧と電流とを得るためであるので、蓄電池を構成するための単位蓄電池の組合せの内容とその数等は、蓄電部の充放電システムの仕様に応じ適宜なものとできる。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Below, although a lithium ion battery is demonstrated as a storage battery which comprises an electrical storage part, secondary batteries other than this may be sufficient. For example, a nickel hydrogen battery, a nickel cadmium battery, or the like may be used. The reason for collecting a plurality of unit storage batteries as an aggregate is to obtain a voltage and a current to correspond to the required power of the load, so the content of the combination of unit storage batteries for configuring the storage battery and its The number and the like can be appropriately determined according to the specifications of the charge / discharge system of the power storage unit.
 また、以下で、蓄電部と接続される充電電源として、光電変換モジュールによる太陽光発電電力と外部商用電力を説明するが、これ以外の電力源、例えば風力発電電力等であってもよい。また、蓄電池と接続される放電負荷として、工場設備、電子機器、照明装置を述べるが、これは多様な負荷の例示であって、これら以外の電力消費負荷であってもよい。 In the following, solar power generated by a photoelectric conversion module and external commercial power will be described as a charging power source connected to the power storage unit, but other power sources such as wind power may be used. Moreover, although factory equipment, an electronic device, and an illuminating device are described as discharge load connected with a storage battery, this is an illustration of various loads, and power consumption loads other than these may be sufficient.
 以下では、全ての図面において同様の要素には同一の符号を付し、重複する説明を省略する。また、本文中の説明においては、必要に応じそれ以前に述べた符号を用いるものとする。 In the following, similar elements are denoted by the same reference symbols in all drawings, and redundant description is omitted. In the description in the text, the symbols described before are used as necessary.
 図1は、スイッチ回路制御部60を含む充放電システム10の構成を説明する図である。充放電システム10は、蓄電池を含む蓄電部40と、充電電源12、14と、放電負荷16、17、18との間の電力管理を通して、蓄電部40の最適な充放電制御を行うシステムである。 FIG. 1 is a diagram for explaining a configuration of a charge / discharge system 10 including a switch circuit control unit 60. The charge / discharge system 10 is a system that performs optimal charge / discharge control of the power storage unit 40 through power management between the power storage unit 40 including a storage battery, the charging power sources 12 and 14, and the discharge loads 16, 17, and 18. .
 充電電源12、14として、光電変換モジュール12と、外部商用電源14とを含む。光電変換モジュール12は、複数の光電変換素子を組み合わせた光電変換モジュールである。充電電源として光電変換モジュール12を用いた場合の特徴は、自然条件によって発電電力値が変動するため、供給電力値を一定値とすることが難しいことと、短時間で大きな電力変動が起こることである。外部商用電源14は、単相または三相の交流電力源であり、電力需給の変動に合わせて、水力発電、原子力発電、火力発電等の様々な発電方式で発電された電力を組み合わせて、外部の電力会社から供給される。 The charging power sources 12 and 14 include a photoelectric conversion module 12 and an external commercial power source 14. The photoelectric conversion module 12 is a photoelectric conversion module in which a plurality of photoelectric conversion elements are combined. The characteristics when the photoelectric conversion module 12 is used as a charging power source are that the generated power value fluctuates depending on natural conditions, so that it is difficult to make the supplied power value constant and a large power fluctuation occurs in a short time. is there. The external commercial power source 14 is a single-phase or three-phase AC power source, and is combined with power generated by various power generation methods such as hydroelectric power generation, nuclear power generation, and thermal power generation in accordance with fluctuations in power supply and demand. Supplied by a power company.
 充電電源12、14は、蓄電部40及び放電負荷16、17、18のいずれにも電力供給することができるが、蓄電部40に優先的に電力供給しており、蓄電部40の蓄電量が低下した場合に放電負荷16、17、18に対して電力供給を行う。 The charging power sources 12 and 14 can supply power to both the power storage unit 40 and the discharge loads 16, 17, and 18. However, the charging power sources 12 and 14 preferentially supply power to the power storage unit 40. When the voltage drops, power is supplied to the discharge loads 16, 17, and 18.
 放電負荷16、17、18は、ここでは工場設備16、パーソナルコンピュータ等の電子機器17、照明装置18が図示されている。工場設備16としては、機械設備の他、工場内空調、厨房器具、工場内照明装置、事務機器等を含む。このように、放電負荷16、17、18は、コンセント等に接続することができる多様な電力消費機器を含む。これらの放電負荷の特徴は、稼動状況によって電力値が変動するため、消費電力値を一定値とすることが難しいことと、また需要に応じて急激な電力変動が生じる可能性があることである。 The discharge loads 16, 17, and 18 show a factory facility 16, an electronic device 17 such as a personal computer, and a lighting device 18. Factory equipment 16 includes, in addition to mechanical equipment, factory air conditioning, kitchen appliances, factory lighting equipment, office equipment, and the like. As described above, the discharge loads 16, 17, and 18 include various power consuming devices that can be connected to an outlet or the like. The characteristics of these discharge loads are that the power value fluctuates depending on the operating conditions, so that it is difficult to set the power consumption value to a constant value, and there is a possibility that sudden power fluctuations may occur depending on demand. .
 放電負荷16、17、18は、充電電源12、14及び蓄電部40のいずれからも電力供給を受けることができるが、蓄電部40から優先的に電力供給を受け、蓄電部40の蓄電量が低下した場合に充電電源12、14から電力供給を受ける。また、放電負荷16、17、18は、蓄電部40の蓄電量が回復した場合には、再度蓄電部40から電力供給を受ける。このように、充電電源12、14からの電力供給と、蓄電部40からの電力供給とが切り替わるときにも、蓄電部40からの充放電電力に大きな電力変動が生じる。 The discharge loads 16, 17, 18 can receive power supply from any of the charging power sources 12, 14 and the power storage unit 40, but receive power supply from the power storage unit 40 preferentially, When the voltage drops, power is supplied from the charging power sources 12 and 14. Further, the discharge loads 16, 17, and 18 are again supplied with power from the power storage unit 40 when the amount of power stored in the power storage unit 40 is restored. Thus, even when the power supply from the charging power sources 12 and 14 and the power supply from the power storage unit 40 are switched, a large power fluctuation occurs in the charge / discharge power from the power storage unit 40.
 充電電源12、14と充電電源側スイッチ24との間に設けられる充電電源側電力変換器20A、20Bは、それぞれ光電変換モジュール12、外部商用電源14と蓄電部40との間の電圧変換を行う。具体的には、充電電源側電力変換器20A、20Bは、AC/DCコンバータ、DC/DCコンバータ等のコンバータであり、実際に行われる変換の内容に応じて、用いられるコンバータの種類が選択される。なお、光電変換モジュール12と蓄電部40との間に設けられた充電電源側電力変換器20Aは省略することも可能である。 Charging power source side power converters 20A and 20B provided between charging power sources 12 and 14 and charging power source side switch 24 perform voltage conversion between photoelectric conversion module 12, external commercial power source 14 and power storage unit 40, respectively. . Specifically, the charging power supply side power converters 20A and 20B are converters such as an AC / DC converter and a DC / DC converter, and the type of converter to be used is selected according to the content of the conversion actually performed. The The charging power supply side power converter 20A provided between the photoelectric conversion module 12 and the power storage unit 40 can be omitted.
 放電負荷16、17、18と放電負荷側スイッチ26との間に設けられる放電負荷側電力変換器22a、22b、22cは、それぞれ蓄電部40と放電負荷16、17、18との間の電力変換を行う。具体的には、放電負荷側電力変換器22a、22b、22cは、DC/DCコンバータやDC/ACインバータであり、負荷に合わせて適切なものを設置する。なお、負荷がDCを電源とする場合であり、かつ、蓄電池電圧で直接駆動可能な電圧の場合は、DC/DCコンバータを省略することも可能である。 Discharge load side power converters 22a, 22b, and 22c provided between the discharge loads 16, 17, and 18 and the discharge load side switch 26 respectively convert power between the power storage unit 40 and the discharge loads 16, 17, and 18. I do. Specifically, the discharge load side power converters 22a, 22b, and 22c are DC / DC converters and DC / AC inverters, and appropriate ones are installed according to the load. When the load is a DC power source and the voltage can be directly driven by the storage battery voltage, the DC / DC converter can be omitted.
 蓄電部40は、複数の蓄電池セルを所定数ずつ直並列接続した蓄電池パックを複数組み合わせて構成されている。蓄電池セルとしては、リチウムイオン電池が好適に用いられる。蓄電部40としては、例えば、所望の電圧値にするために蓄電池セルを複数直列に接続し、直列接続した蓄電池セルを所望の電力値となるように複数並列接続した蓄電池パックを、システムの大きさに応じて複数直並列接続している。 The power storage unit 40 is configured by combining a plurality of storage battery packs in which a predetermined number of storage battery cells are connected in series and parallel. A lithium ion battery is preferably used as the storage battery cell. As the power storage unit 40, for example, a storage battery pack in which a plurality of storage battery cells are connected in series to obtain a desired voltage value, and a plurality of storage battery cells connected in series are connected in parallel so as to have a desired power value. Depending on the situation, multiple series-parallel connections are made.
 電力入出力ライン30は、蓄電部40に対し、充電電源12、14の側から充電電力が入力され、放電負荷16、17、18の側に放電電力が出力される電力ラインである。電力入出力ライン30と充電電源12、14の側との間に設けられる充電電源側スイッチ24は、充電電源12、14から蓄電部40に対する充電電流の供給をオンオフするスイッチである。電力入出力ライン30と放電負荷16、17、18の側との間に設けられる放電負荷側スイッチ26は、蓄電部40から放電負荷16、17、18に対する放電電流の供給をオンオフするスイッチである。 The power input / output line 30 is a power line in which charging power is input to the power storage unit 40 from the charging power sources 12 and 14 side and discharging power is output to the discharging loads 16, 17 and 18 side. The charging power supply side switch 24 provided between the power input / output line 30 and the charging power supplies 12 and 14 is a switch for turning on and off the supply of charging current from the charging power supplies 12 and 14 to the power storage unit 40. A discharge load side switch 26 provided between the power input / output line 30 and the discharge loads 16, 17, 18 side is a switch for turning on / off the supply of discharge current from the power storage unit 40 to the discharge loads 16, 17, 18. .
 電力入出力ライン30と蓄電部40との間に設けられるスイッチ回路28は、蓄電部40の充放電を制御するスイッチを含む回路である。スイッチ回路28は、蓄電部40の正極側に設けられている。この場合、一般的にはpチャネルFETを用いることが多く、pチャネルFETを使うことでFETの制御素子端部には蓄電部40の負極側電圧を用いることなどが可能になるため、比較的簡便な回路構成が可能となる。しかし、pチャネルFETは、nチャネルFETよりもスイッチング速度が遅く、またオン抵抗も比較的大きい。図1に示すようなシステムにおいては高速・低抵抗なFETが望まれることから、以下の説明では蓄電部40の正極側にnチャネルFETを用いるものとして説明する。nチャネルFETを用いた場合には、nチャネルFETをオンさせるために、比較的高い電圧の印加が必要であり、高電圧印加のための設計が必要になる。なお、電圧関係を適宜変更することで、スイッチ回路28としてpチャネルFETも用いることが可能である。また、スイッチ回路28は、FETに限られず、例えばIGBTのような電圧制御型のスイッチ回路を用いてもよい。なお、スイッチ回路28は、図1では1つだけ設けられた構成だが、複数個が並列に接続された構成であってもよい。蓄電部40に含まれる並列接続された蓄電池パックは、並列接続された状態で1つのスイッチ回路28に接続されてもよいし、1並列毎にスイッチ回路28を接続されていてもよい。また、スイッチ回路28の蓄電部40側には、図示されていないが、蓄電池への充放電電流を検出する電流検出部が設けられている。 The switch circuit 28 provided between the power input / output line 30 and the power storage unit 40 is a circuit including a switch that controls charging / discharging of the power storage unit 40. The switch circuit 28 is provided on the positive electrode side of the power storage unit 40. In this case, in general, a p-channel FET is often used, and by using the p-channel FET, it is possible to use the negative side voltage of the power storage unit 40 at the control element end of the FET. A simple circuit configuration is possible. However, the p-channel FET has a slower switching speed than the n-channel FET and has a relatively large on-resistance. In the system as shown in FIG. 1, since a high-speed and low-resistance FET is desired, the following description will be made assuming that an n-channel FET is used on the positive electrode side of the power storage unit 40. When an n-channel FET is used, it is necessary to apply a relatively high voltage in order to turn on the n-channel FET, and a design for applying a high voltage is required. A p-channel FET can also be used as the switch circuit 28 by appropriately changing the voltage relationship. The switch circuit 28 is not limited to an FET, and a voltage control type switch circuit such as an IGBT may be used. In FIG. 1, only one switch circuit 28 is provided, but a plurality of switch circuits 28 may be connected in parallel. The parallel-connected storage battery packs included in the power storage unit 40 may be connected to one switch circuit 28 in a state of being connected in parallel, or the switch circuit 28 may be connected to each parallel. Moreover, although not shown in figure in the electrical storage part 40 side of the switch circuit 28, the electric current detection part which detects the charging / discharging electric current to a storage battery is provided.
 システム制御部50は、蓄電部40を構成する蓄電池に関する蓄電池データを取得する。蓄電池データとは、蓄電池ごとの電圧、電流、温度等を示すデータである。また、システム制御部50は、図示されていないが、例えば、充電電源12、14と放電負荷16、17、18との間のいずれかに設けられた電力検出部により、電力値の変動量を示す検出電力データを取得する。検出電力データは、光電変換モジュール12に起因する電力変動や、放電負荷16、17、18の需要に応じた電力変動や、放電負荷16、17、18に対する電源が充電電源12、14と蓄電部40との間で切り替わった場合の電力変動等のデータを含む。 The system control unit 50 acquires storage battery data related to the storage battery constituting the power storage unit 40. The storage battery data is data indicating voltage, current, temperature, etc. for each storage battery. Further, the system control unit 50 is not shown, but the power detection unit provided between the charging power sources 12 and 14 and the discharge loads 16, 17, and 18, for example, changes the amount of fluctuation of the power value. The detected power data shown is acquired. The detected power data includes the power fluctuation caused by the photoelectric conversion module 12, the power fluctuation according to the demand of the discharge loads 16, 17, 18 and the power sources for the discharge loads 16, 17, 18 are the charging power sources 12, 14 and the power storage unit. 40 includes data such as power fluctuations when switching to 40.
 システム制御部50は、取得した蓄電池データ及び検出電力データに基づいて、蓄電部40の充放電を制御する。具体的には、システム制御部50は、蓄電池データ及び検出電力データに基づき、充電電源側スイッチ24及び放電負荷側スイッチ26に送信する制御信号91と、スイッチ回路28に送信する制御信号92を生成する。そして、システム制御部50は、制御信号91、92を充電電源側スイッチ24、放電負荷側スイッチ26及びスイッチ回路28に送信することにより各スイッチのオンオフを制御し、蓄電部40の充放電制御を行う。すなわち、システム制御部50は、蓄電池データ及び検出電力データによって充電が必要であると判断したときは、充電電源側スイッチ24及びスイッチ回路28に対して、各スイッチをオンさせる指示を含んだ制御信号91、92をそれぞれ送信する。これにより、充電電源側スイッチ24及びスイッチ回路28はオンし、充電電源12、14から供給された充電電流が蓄電部40に充電される。また、システム制御部50は、蓄電池データ及び検出電力データによって放電が必要であると判断したときは、放電負荷側スイッチ26及びスイッチ回路28に対して、各スイッチをオンさせる指示を含んだ制御信号91,92をそれぞれ送信する。これにより、放電負荷側スイッチ26及びスイッチ回路28はオンし、蓄電部40からの放電電流が放電負荷16、17、18に供給される。 The system control unit 50 controls charging / discharging of the power storage unit 40 based on the acquired storage battery data and detected power data. Specifically, the system control unit 50 generates a control signal 91 to be transmitted to the charging power supply side switch 24 and the discharge load side switch 26 and a control signal 92 to be transmitted to the switch circuit 28 based on the storage battery data and the detected power data. To do. Then, the system control unit 50 controls the on / off of each switch by transmitting control signals 91 and 92 to the charging power supply side switch 24, the discharge load side switch 26, and the switch circuit 28, and performs charge / discharge control of the power storage unit 40. Do. That is, when the system control unit 50 determines that charging is necessary based on the storage battery data and the detected power data, the control signal including an instruction to turn on each switch to the charging power supply side switch 24 and the switch circuit 28. 91 and 92 are transmitted, respectively. As a result, the charging power supply side switch 24 and the switch circuit 28 are turned on, and the charging current supplied from the charging power supplies 12 and 14 is charged in the power storage unit 40. In addition, when the system control unit 50 determines that the discharge is necessary based on the storage battery data and the detected power data, the control signal including an instruction to turn on each switch to the discharge load side switch 26 and the switch circuit 28. 91 and 92 are transmitted, respectively. As a result, the discharge load side switch 26 and the switch circuit 28 are turned on, and the discharge current from the power storage unit 40 is supplied to the discharge loads 16, 17 and 18.
 異常判断回路52は、蓄電部40に異常がある場合に、システム制御部50とは独立してスイッチ回路28をオフさせる回路である。異常判断回路52は、蓄電部40とシステム制御部50との間に設けられており、蓄電部40から蓄電池データを取得し、蓄電部40が充電している場合には、蓄電部40の電流または電圧の少なくとも一方が予め定めた所定の閾値を越えるか否かによって蓄電部40の異常状態の有無を判断する。また、蓄電部40が放電している場合には、蓄電部40の電流又は電圧の少なくとも一方が予め定めた所定の閾値を下回るか否かによって蓄電部40の異常状態の有無を判断する。所定の閾値としては、蓄電部40が過充電となる過充電閾値、蓄電部40が過放電となる過放電閾値等を用いることができる。異常判断回路52によって、蓄電部40が異常状態と判断されると、異常信号94が出力される。異常信号94は、システム制御部50を介さずに、スイッチ回路28に直接伝送される。このように、異常判断回路52は、蓄電部40が異常状態となると、システム制御部50を介さずに、迅速にスイッチ回路28をオフすることができる。 The abnormality determination circuit 52 is a circuit that turns off the switch circuit 28 independently of the system control unit 50 when the power storage unit 40 has an abnormality. The abnormality determination circuit 52 is provided between the power storage unit 40 and the system control unit 50, acquires storage battery data from the power storage unit 40, and when the power storage unit 40 is charged, the current of the power storage unit 40 is charged. Alternatively, whether or not the power storage unit 40 is in an abnormal state is determined based on whether or not at least one of the voltages exceeds a predetermined threshold value. Further, when the power storage unit 40 is discharged, whether or not the power storage unit 40 is in an abnormal state is determined based on whether or not at least one of the current or voltage of the power storage unit 40 is below a predetermined threshold value. As the predetermined threshold, an overcharge threshold at which the power storage unit 40 is overcharged, an overdischarge threshold at which the power storage unit 40 is overdischarged, or the like can be used. When the abnormality determination circuit 52 determines that the power storage unit 40 is in an abnormal state, an abnormality signal 94 is output. The abnormal signal 94 is directly transmitted to the switch circuit 28 without passing through the system control unit 50. As described above, the abnormality determination circuit 52 can quickly turn off the switch circuit 28 without going through the system control unit 50 when the power storage unit 40 is in an abnormal state.
 スイッチ回路制御部60は、システム制御部50からの制御信号92を受けて、スイッチ回路28をオンオフ制御する回路である。スイッチ回路制御部60は、発光部66と、受光部68と、オフスイッチ切替回路70と、オンスイッチ切替回路72とを含んで構成される。発光部66は、制御信号92を受けて発光または非発光する。受光部68は、発光部66の光に応じて、オン信号またはオフ信号を出力する。オフスイッチ切替回路70は、受光部68からオフ信号が入力された場合に、スイッチ回路28をオフさせる第1信号をスイッチ回路28に出力する。オンスイッチ切替回路72は、受光部68からオン信号が入力された場合に、スイッチ回路28をオンさせる第2信号をスイッチ回路28に出力する。この構成により、制御信号92に含まれる指示が、絶縁された状態でスイッチ回路28に伝送される。 The switch circuit control unit 60 is a circuit that receives the control signal 92 from the system control unit 50 and controls on / off of the switch circuit 28. The switch circuit control unit 60 includes a light emitting unit 66, a light receiving unit 68, an off switch switching circuit 70, and an on switch switching circuit 72. The light emitting unit 66 emits light or does not emit light in response to the control signal 92. The light receiving unit 68 outputs an on signal or an off signal according to the light of the light emitting unit 66. The off switch switching circuit 70 outputs a first signal for turning off the switch circuit 28 to the switch circuit 28 when an off signal is input from the light receiving unit 68. The on switch switching circuit 72 outputs a second signal for turning on the switch circuit 28 to the switch circuit 28 when an on signal is input from the light receiving unit 68. With this configuration, the instruction included in the control signal 92 is transmitted to the switch circuit 28 in an insulated state.
 また、スイッチ回路制御部60は、基準電圧端子62と、プラス電圧端子64とを備える。基準電圧端子62は、受光部68からオフスイッチ切替回路70にオフ信号が入力された場合に、スイッチ回路28をオフさせることができる電圧である基準電圧をオフスイッチ切替回路70に供給する。プラス電圧端子64は、受光部68からオンスイッチ切替回路72にオン信号が入力された場合に、スイッチ回路28をオンさせる電圧であって基準電圧よりプラス電圧側に高いスイッチ回路オン電圧をオンスイッチ切替回路72に供給する。この構成により、オフスイッチ切替回路70は、スイッチ回路28をオフさせることができる基準電圧を第1信号として、スイッチ回路28に供給することができる。またオンスイッチ切替回路72は、スイッチ回路28をオンさせることができるスイッチ回路オン電圧を第2信号として、スイッチ回路28に供給することができる。なお、基準電圧とは、スイッチ回路28をオフ可能な電圧であればよく、接地電圧に限られず、スイッチ回路28のドレイン側電圧であってもよい。 The switch circuit control unit 60 includes a reference voltage terminal 62 and a plus voltage terminal 64. The reference voltage terminal 62 supplies a reference voltage, which is a voltage that can turn off the switch circuit 28, to the off switch switching circuit 70 when an off signal is input from the light receiving unit 68 to the off switch switching circuit 70. The positive voltage terminal 64 is a voltage that turns on the switch circuit 28 when an on signal is input from the light receiving unit 68 to the on switch switching circuit 72, and switches the switch circuit on voltage higher than the reference voltage to the plus voltage side. This is supplied to the switching circuit 72. With this configuration, the off switch switching circuit 70 can supply the reference voltage that can turn off the switch circuit 28 to the switch circuit 28 as the first signal. The on-switch switching circuit 72 can supply the switch circuit on-voltage that can turn on the switch circuit 28 to the switch circuit 28 as the second signal. The reference voltage is not limited to the ground voltage and may be a drain side voltage of the switch circuit 28 as long as the voltage can turn off the switch circuit 28.
 図2は、スイッチ回路制御部60の具体的内部構成の例を示す図である。スイッチ回路制御部60は、発光部66である発光ダイオードと受光部68である光電変換素子を含むフォトボル回路80と、ダイオード82と、nチャネルトランジスタ84と、pチャネルトランジスタ86を含んで構成される。 FIG. 2 is a diagram illustrating an example of a specific internal configuration of the switch circuit control unit 60. The switch circuit control unit 60 includes a photovoltaic circuit 80 including a light emitting diode as a light emitting unit 66 and a photoelectric conversion element as a light receiving unit 68, a diode 82, an n-channel transistor 84, and a p-channel transistor 86. .
 発光部66である発光ダイオードは、その2端子間に制御信号92がシステム制御部50から供給される。制御信号92がスイッチ回路28をオンさせる指示を含む信号であるときは、発光部66である発光ダイオードは発光状態となって光を出力する。制御信号92がスイッチ回路28をオフさせる指示を含む信号であるときは、発光部66である発光ダイオードは非発光状態となって光を出力しない。ここで、スイッチ回路28をオンさせる指示を含む信号を、オン指示信号と呼び、スイッチ回路28をオフさせる指示を含む信号を、オフ指示信号と呼ぶことにする。 The light emitting diode which is the light emitting unit 66 is supplied with a control signal 92 from the system control unit 50 between its two terminals. When the control signal 92 is a signal including an instruction to turn on the switch circuit 28, the light emitting diode that is the light emitting unit 66 enters a light emitting state and outputs light. When the control signal 92 is a signal including an instruction to turn off the switch circuit 28, the light emitting diode which is the light emitting unit 66 is in a non-light emitting state and does not output light. Here, a signal including an instruction to turn on the switch circuit 28 is referred to as an on instruction signal, and a signal including an instruction to turn off the switch circuit 28 is referred to as an off instruction signal.
 発光部66である発光ダイオードを順方向バイアスするように制御信号92が印加されると、発光部66が発光状態となる。すなわち、制御信号92におけるオン指示信号とは、発光ダイオードを順方向バイアスする信号である。図2の構成では、発光ダイオードのカソード端子を基準電圧端子67に接続した場合、アノード端子にプラス電圧を印加することがオン指示信号に当る。制御信号92におけるオフ指示信号としては、発光ダイオードのアノード端子に基準電圧を与えればよい。 When the control signal 92 is applied so as to forward bias the light emitting diode that is the light emitting unit 66, the light emitting unit 66 enters a light emitting state. That is, the ON instruction signal in the control signal 92 is a signal for forward-biasing the light emitting diode. In the configuration of FIG. 2, when the cathode terminal of the light emitting diode is connected to the reference voltage terminal 67, applying a positive voltage to the anode terminal corresponds to the ON instruction signal. As the off instruction signal in the control signal 92, a reference voltage may be applied to the anode terminal of the light emitting diode.
 受光部68である光電変換素子は、第1端子68aが基準電圧端子62に接続される。第2端子68bは、ダイオード82のアノード端子と、nチャネルトランジスタ84のベース端子と、pチャネルトランジスタ86のベース端子とに接続される。受光部68である光電変換素子はその受光面が、発光部66である発光ダイオードの発光面に向かい合って配置される。発光部66である発光ダイオードが光を出力すると、受光部68である光電変換素子が発電し、第2端子68bから光の大きさに応じた所定の電圧を出力する。一方、発光部66である発光ダイオードが非発光状態であるときは、受光部68である光電変換素子は発電せず、第2端子68bの電圧は基準電圧となる。 The photoelectric conversion element which is the light receiving unit 68 has the first terminal 68 a connected to the reference voltage terminal 62. The second terminal 68 b is connected to the anode terminal of the diode 82, the base terminal of the n-channel transistor 84, and the base terminal of the p-channel transistor 86. The photoelectric conversion element that is the light receiving unit 68 is disposed so that the light receiving surface thereof faces the light emitting surface of the light emitting diode that is the light emitting unit 66. When the light emitting diode that is the light emitting unit 66 outputs light, the photoelectric conversion element that is the light receiving unit 68 generates power and outputs a predetermined voltage corresponding to the magnitude of the light from the second terminal 68b. On the other hand, when the light emitting diode that is the light emitting unit 66 is in the non-light emitting state, the photoelectric conversion element that is the light receiving unit 68 does not generate power, and the voltage of the second terminal 68b becomes the reference voltage.
 このように、受光部68は、発光部66が非発光状態であるときに基準電圧を出力し、発光部66が発光状態のときに、基準電圧よりも高い電圧である所定の電圧を出力する。ここで、基準電圧の出力信号は、図1で説明した受光部68が出力するオフ信号に相当し、基準電圧よりも高い所定の電圧の出力信号は、受光部68が出力するオン信号に相当する。ここで、上述したように、スイッチ回路28にnチャネルFETを用いた場合には、オンさせることのできる基準電圧が高くなる。このため、ここでは昇圧可能なフォトボル回路80を用いているが、フォトボル回路80の受光部68に含まれる光電変換素子は応答性が遅い。したがって、昇圧の速度が遅いとスイッチ回路28のオンに時間を要してしまうため、nチャネルFETが発熱してしまう可能性がある。そこで、フォトボル回路80の応答性の遅さを補うために、nチャネルトランジスタ84とpチャネルトランジスタ86とを設けており、以下において具体的に説明する。 As described above, the light receiving unit 68 outputs the reference voltage when the light emitting unit 66 is in the non-light emitting state, and outputs a predetermined voltage that is higher than the reference voltage when the light emitting unit 66 is in the light emitting state. . Here, the output signal of the reference voltage corresponds to the off signal output from the light receiving unit 68 described in FIG. 1, and the output signal of the predetermined voltage higher than the reference voltage corresponds to the on signal output from the light receiving unit 68. To do. Here, as described above, when an n-channel FET is used for the switch circuit 28, the reference voltage that can be turned on increases. For this reason, although the photovoltaic circuit 80 that can be boosted is used here, the photoelectric conversion element included in the light receiving unit 68 of the photovol circuit 80 is slow in response. Therefore, if the boosting speed is slow, it takes time to turn on the switch circuit 28, and the n-channel FET may generate heat. Therefore, in order to compensate for the slow response of the photovoltaic circuit 80, an n-channel transistor 84 and a p-channel transistor 86 are provided, which will be specifically described below.
 ダイオード82は、アノード端子が上記のように受光部68である光電変換素子の第2端子68bと接続される。カソード端子は、nチャネルトランジスタ84のエミッタ端子と、pチャネルトランジスタ86のエミッタ端子と、スイッチ回路28であるnチャネルFETの制御端子に接続される。 The diode 82 is connected to the second terminal 68b of the photoelectric conversion element whose anode terminal is the light receiving unit 68 as described above. The cathode terminal is connected to the emitter terminal of the n-channel transistor 84, the emitter terminal of the p-channel transistor 86, and the control terminal of the n-channel FET that is the switch circuit 28.
 nチャネルトランジスタ84は、ベース端子が上記のように受光部68である光電変換素子の第2端子68bと接続され、エミッタ端子が上記のようにスイッチ回路28であるnチャネルFETの制御端子に接続される。そして、コレクタ端子がプラス電圧端子64に接続される。プラス電圧端子64に供給される電圧は、基準電圧より高い電圧に設定される。ベース端子は受光部68の第2端子68bに接続されるので、受光部68のオン信号またはオフ信号が供給されることになる。 The n-channel transistor 84 has a base terminal connected to the second terminal 68b of the photoelectric conversion element which is the light receiving unit 68 as described above, and an emitter terminal connected to the control terminal of the n-channel FET which is the switch circuit 28 as described above. Is done. The collector terminal is connected to the positive voltage terminal 64. The voltage supplied to the positive voltage terminal 64 is set to a voltage higher than the reference voltage. Since the base terminal is connected to the second terminal 68b of the light receiving unit 68, an ON signal or an OFF signal of the light receiving unit 68 is supplied.
 pチャネルトランジスタ86は、ベース端子が上記のように受光部68である光電変換素子の第2端子68bと接続され、エミッタ端子が上記のようにスイッチ回路28であるnチャネルFETの制御端子に接続される。そして、コレクタ端子が基準電圧端子62に接続される。ベース端子は受光部68の第2端子68bに接続されるので、受光部68のオン信号またはオフ信号が供給されることになる。 The p-channel transistor 86 has a base terminal connected to the second terminal 68b of the photoelectric conversion element that is the light receiving unit 68 as described above, and an emitter terminal connected to the control terminal of the n-channel FET that is the switch circuit 28 as described above. Is done. The collector terminal is connected to the reference voltage terminal 62. Since the base terminal is connected to the second terminal 68b of the light receiving unit 68, an ON signal or an OFF signal of the light receiving unit 68 is supplied.
 図2において、スイッチ回路制御部60における発光部66である発光ダイオードのアノード端子は、フォトカプラ90の出力端子と接続される。フォトカプラ90は、発光ダイオードの発光面とフォトトランジスタの受光面を向かい合わせて組み合わせた素子である。このフォトカプラ90は、異常判断回路52が出力する異常信号94が入力されると、発光ダイオードが発光し、その光でフォトトランジスタがオンする。フォトトランジスタがオンすると、フォトトランジスタのコレクタ端子が接地しているため、フォトカプラ90の出力端子が基準電圧となる。フォトカプラ90の出力信号は、上記のように、スイッチ回路制御部60における発光部66である発光ダイオードのアノード端子に伝達される。 In FIG. 2, the anode terminal of the light emitting diode which is the light emitting unit 66 in the switch circuit control unit 60 is connected to the output terminal of the photocoupler 90. The photocoupler 90 is an element in which the light emitting surface of the light emitting diode and the light receiving surface of the phototransistor face each other. In the photocoupler 90, when the abnormality signal 94 output from the abnormality determination circuit 52 is input, the light emitting diode emits light, and the phototransistor is turned on by the light. When the phototransistor is turned on, since the collector terminal of the phototransistor is grounded, the output terminal of the photocoupler 90 becomes the reference voltage. The output signal of the photocoupler 90 is transmitted to the anode terminal of the light emitting diode that is the light emitting unit 66 in the switch circuit control unit 60 as described above.
 したがって、異常判断回路52が異常信号94を出力すると、スイッチ回路制御部60における発光部66である発光ダイオードのアノード端子が基準電圧となる。スイッチ回路制御部60は、発光ダイオードのアノード端子が基準電圧になると、スイッチ回路28をオフさせる。すなわち、フォトカプラ90は、異常判断回路52から異常信号94を受けて発光部66を制御することにより、スイッチ回路制御部60を制御する構成である。 Therefore, when the abnormality determination circuit 52 outputs the abnormality signal 94, the anode terminal of the light emitting diode which is the light emitting unit 66 in the switch circuit control unit 60 becomes the reference voltage. The switch circuit control unit 60 turns off the switch circuit 28 when the anode terminal of the light emitting diode reaches the reference voltage. That is, the photocoupler 90 is configured to control the switch circuit control unit 60 by receiving the abnormality signal 94 from the abnormality determination circuit 52 and controlling the light emitting unit 66.
 図3は、スイッチ回路制御部60のオフスイッチ切替回路70の部分の作用を説明する図である。図2において、オフスイッチ切替回路70は、ダイオード82とpチャネルトランジスタ86で構成される。図3の右側にオフスイッチ切替回路70の部分を抜き出して示した。ここで、受光部68の第2端子68bの電圧をVSとし、スイッチ回路28の制御端子の電圧をVGとする。図3の左側の図は、横軸に時間t、縦軸に電圧Vをとって、VSとVGの時間変化を示したものである。 FIG. 3 is a diagram for explaining the operation of the part of the off switch switching circuit 70 of the switch circuit control unit 60. In FIG. 2, the off switch switching circuit 70 includes a diode 82 and a p-channel transistor 86. The part of the off switch switching circuit 70 is extracted and shown on the right side of FIG. Here, the voltage of the second terminal 68b of the light receiving unit 68 is V S, and the voltage of the control terminal of the switch circuit 28 is V G. The diagram on the left side of FIG. 3 shows time variation of V S and V G , with time t on the horizontal axis and voltage V on the vertical axis.
 ここで、制御信号92がオン指示信号からオフ指示信号に変化したときを時間tの原点にとる。制御信号92がオン指示信号からオフ指示信号に変化すると、発光部66は発光状態から非発光状態に変化する。受光部68は、光電変換素子が発電状態から非発電状態に変わるので、その出力電圧であるVSは、発電状態である基準電圧より高い所定電圧から基準電圧に向かって下降する。しかしながら、光電変換素子の応答性はかなり遅いので、図3に示すように、時間t1までVSは変化せず、時間t1から下降を始める。一方、VGは、スイッチ回路28であるnチャネルFETがオンであったため、時間軸の原点時点では、スイッチ回路オン電圧である。スイッチ回路オン電圧は、寄生容量を通して放電するので、放電特性に従って次第に低い値になる。そして、図3に示すように、VGとVSの間の電圧差が次第に少なくなり、時間t2になると、pチャネルトランジスタ86がオンする。これによって、VGが瞬間的に基準電圧となる。こうして、スイッチ回路28の制御端子の電圧が、スイッチ回路オン電圧から、基準電圧に切り替わる。なお、時間t2におけるVGは、スイッチ回路28をオンするために十分な電圧を維持するように設計する必要がある。 Here, the time when the control signal 92 changes from the on instruction signal to the off instruction signal is taken as the origin of time t. When the control signal 92 changes from the on instruction signal to the off instruction signal, the light emitting unit 66 changes from the light emitting state to the non-light emitting state. Since the photoelectric conversion element of the light receiving unit 68 changes from the power generation state to the non-power generation state, the output voltage V S drops from a predetermined voltage higher than the reference voltage in the power generation state toward the reference voltage. However, the response of the photoelectric conversion element is rather slow, as shown in FIG. 3, V S does not change until time t 1, start falling from time t 1. On the other hand, V G is the switch circuit on-voltage at the origin of the time axis because the n-channel FET which is the switch circuit 28 is on. Since the switch circuit ON voltage is discharged through the parasitic capacitance, the switch circuit ON voltage gradually becomes lower according to the discharge characteristics. As shown in FIG. 3, the voltage difference between V G and V S gradually decreases, and at time t 2 , the p-channel transistor 86 is turned on. As a result, V G instantaneously becomes the reference voltage. Thus, the voltage at the control terminal of the switch circuit 28 is switched from the switch circuit ON voltage to the reference voltage. Note that V G at time t 2 needs to be designed to maintain a voltage sufficient to turn on the switch circuit 28.
 図4は、スイッチ回路制御部60のオンスイッチ切替回路72の部分の作用を説明する図である。図2において、オンスイッチ切替回路72は、ダイオード82とnチャネルトランジスタ84で構成される。図4の右側にオンスイッチ切替回路72の部分を抜き出して示した。ここで、図3と同様に、受光部68の出力端子の電圧をVSとし、スイッチ回路28の制御端子の電圧をVGとする。図4の左側の図は、横軸に時間t、縦軸に電圧Vをとって、VSとVGの時間変化を示したものである。 FIG. 4 is a diagram for explaining the operation of the on-switch switching circuit 72 of the switch circuit control unit 60. In FIG. 2, the on switch switching circuit 72 includes a diode 82 and an n-channel transistor 84. The part of the on-switch switching circuit 72 is extracted and shown on the right side of FIG. Here, as in FIG. 3, the voltage at the output terminal of the light receiving unit 68 is V S, and the voltage at the control terminal of the switch circuit 28 is V G. The diagram on the left side of FIG. 4 shows time variations of V S and V G , with time t on the horizontal axis and voltage V on the vertical axis.
 ここで、制御信号92がオフ指示信号からオン指示信号に変化したときを時間tの原点にとる。制御信号92がオフ指示信号からオン指示信号に変化すると、発光部66は非発光状態から発光状態に変化する。受光部68は、光電変換素子が非発電状態から発電状態に変わるので、その出力電圧であるVSは、非発電状態である基準電圧から、基準電圧より高い所定電圧に向かって上昇する。しかしながら、光電変換素子の応答性はかなり遅いので、図4に示すように、時間t3までVSは変化せず、時間t3から上昇を始める。一方、VGは、スイッチ回路28であるnチャネルFETがオフであったため、時間軸の原点時点では、基準電圧である。VSがt3から立上ってゆくと、ダイオード82を介して電圧が印加されるためにVGもVSに準じて立ち上がる。実際には、VGはVSよりもダイオード82の電圧ドロップ分低いために、VSがnチャネルトランジスタ84をオン可能な電圧になると、nチャネルトランジスタ84がオンになり、VGが瞬間的にスイッチ回路オン電圧となる。こうして、スイッチ回路28の制御端子の電圧が、基準電圧からスイッチ回路オン電圧に切り替わる。なお、時間t4におけるVGは、スイッチ回路28をオンする電圧にはならないように設計する必要がある。 Here, the time when the control signal 92 changes from the off instruction signal to the on instruction signal is taken as the origin of the time t. When the control signal 92 changes from the off instruction signal to the on instruction signal, the light emitting unit 66 changes from the non-light emitting state to the light emitting state. In the light receiving unit 68, since the photoelectric conversion element changes from the non-power generation state to the power generation state, the output voltage V S rises from the reference voltage in the non-power generation state toward a predetermined voltage higher than the reference voltage. However, the response of the photoelectric conversion element is rather slow, as shown in FIG. 4, V S does not change until time t 3, it starts to increase from the time t 3. On the other hand, V G is a reference voltage at the origin of the time axis because the n-channel FET which is the switch circuit 28 is off. When V S rises from t 3, a voltage is applied via the diode 82, so that V G also rises according to V S. Actually, since V G is lower than V S by the voltage drop of the diode 82, when V S reaches a voltage capable of turning on the n-channel transistor 84, the n-channel transistor 84 is turned on and V G is instantaneous. The switch circuit is turned on. Thus, the voltage at the control terminal of the switch circuit 28 is switched from the reference voltage to the switch circuit ON voltage. Note that V G at time t 4 needs to be designed so as not to be a voltage for turning on the switch circuit 28.
 上記のように、オフスイッチ切替回路70を用いることで、制御信号92がオン指示信号からオフ指示信号に変わったときに、スイッチ回路28の制御端子の電圧をスイッチ回路オン電圧から基準電圧に瞬間的に切り替えることができる。また、オンスイッチ切替回路72を用いることで、制御信号92がオフ指示信号からオン指示信号に変わったときに、スイッチ回路28の制御端子の電圧を基準電圧からスイッチ回路オン電圧に瞬間的に切り替えることができる。 As described above, by using the off switch switching circuit 70, when the control signal 92 changes from the on instruction signal to the off instruction signal, the voltage of the control terminal of the switch circuit 28 is instantaneously changed from the switch circuit on voltage to the reference voltage. Can be switched automatically. Further, by using the on switch switching circuit 72, when the control signal 92 changes from the off instruction signal to the on instruction signal, the voltage of the control terminal of the switch circuit 28 is instantaneously switched from the reference voltage to the switch circuit on voltage. be able to.
 図5は、他の構成のスイッチ回路制御部61の構成例を示す図である。このスイッチ回路制御部61は、発光部66としてフォトダイオードを用い、受光部68として、nチャネルフォトトランジスタ85とpチャネルフォトトランジスタ87を直列接続した構成を用いたものである。nチャネルフォトトランジスタ85のコレクタは、プラス電圧端子64に接続され、pチャネルフォトトランジスタ87のコレクタは基準電圧端子62に接続される。そして、nチャネルフォトトランジスタ85のエミッタとpチャネルフォトトランジスタ87のエミッタを相互に接続し、これを出力端子としてスイッチ回路28の制御端子に接続している。したがって、nチャネルフォトトランジスタ85がオンスイッチ切替回路72に相当し、pチャネルフォトトランジスタ87がオフスイッチ切替回路70に相当する。 FIG. 5 is a diagram illustrating a configuration example of the switch circuit control unit 61 having another configuration. This switch circuit control unit 61 uses a configuration in which a photodiode is used as the light emitting unit 66 and an n channel phototransistor 85 and a p channel phototransistor 87 are connected in series as the light receiving unit 68. The collector of the n-channel phototransistor 85 is connected to the plus voltage terminal 64, and the collector of the p-channel phototransistor 87 is connected to the reference voltage terminal 62. The emitter of the n-channel phototransistor 85 and the emitter of the p-channel phototransistor 87 are connected to each other and connected to the control terminal of the switch circuit 28 as an output terminal. Therefore, the n-channel phototransistor 85 corresponds to the on-switch switching circuit 72, and the p-channel phototransistor 87 corresponds to the off-switch switching circuit 70.
 上記のような構成とすることで、nチャネルフォトトランジスタ85とpチャネルフォトトランジスタ87とは相補的にオンオフする。スイッチ回路制御部61において、オン指示信号を受けると、nチャネルフォトトランジスタ85がオンし、pチャネルフォトトランジスタ87がオフする。これにより、スイッチ回路28には瞬間的にプラス電圧が印加されて、スイッチ回路28がオンする。またスイッチ回路制御部61において、オフ指示信号を受けると、pチャネルフォトトランジスタ87がオンし、nチャネルフォトトランジスタ85がオフする。これにより、スイッチ回路28には瞬間的に基準電圧が印加されて、スイッチ回路28がオフする。 With the configuration as described above, the n-channel phototransistor 85 and the p-channel phototransistor 87 are turned on and off in a complementary manner. When the switch circuit control unit 61 receives the on instruction signal, the n-channel phototransistor 85 is turned on and the p-channel phototransistor 87 is turned off. As a result, a positive voltage is instantaneously applied to the switch circuit 28, and the switch circuit 28 is turned on. When the switch circuit control unit 61 receives the off instruction signal, the p-channel phototransistor 87 is turned on and the n-channel phototransistor 85 is turned off. As a result, the reference voltage is instantaneously applied to the switch circuit 28, and the switch circuit 28 is turned off.
 以下、本実施形態の効果について説明する。充放電システム10は、スイッチ回路制御部60において、オフスイッチ切替回路70及びオンスイッチ切替回路72を備える。上記構成により、スイッチ回路制御部60に入力される制御信号92がオン指示信号からオフ指示信号に、またはオフ指示信号からオン指示信号に変化した場合、スイッチ回路28の制御端子の電圧を、スイッチ回路オン電圧から基準電圧に、または、基準電圧からスイッチ回路オン電圧に瞬間的に切り替えることができる。スイッチ回路制御部60において、オフスイッチ切替回路70及びオンスイッチ切替回路72が設けられていない場合、スイッチ回路28の制御端子の電圧は比較的緩やかに変化するために、スイッチ回路28が完全にオンする前、すなわち、スイッチ回路28部分の抵抗成分が大きいときに大電流が流れることで、熱が発生し破損の原因となる。本実施形態では、オフスイッチ切替回路70及びオンスイッチ切替回路72を設けることにより、スイッチ回路28の制御端子の電圧を瞬間的に切り替えることができるため、スイッチ回路28のスイッチ動作による発熱を抑制することができ、破損を防止することができる。 Hereinafter, the effect of this embodiment will be described. The charge / discharge system 10 includes an off switch switching circuit 70 and an on switch switching circuit 72 in the switch circuit control unit 60. With the above configuration, when the control signal 92 input to the switch circuit control unit 60 changes from the on instruction signal to the off instruction signal, or from the off instruction signal to the on instruction signal, the voltage of the control terminal of the switch circuit 28 is changed to the switch It is possible to instantaneously switch from the circuit on voltage to the reference voltage, or from the reference voltage to the switch circuit on voltage. In the switch circuit control unit 60, when the off switch switching circuit 70 and the on switch switching circuit 72 are not provided, the voltage at the control terminal of the switch circuit 28 changes relatively slowly, so that the switch circuit 28 is completely turned on. Before the start, that is, when the resistance component of the switch circuit 28 is large, a large current flows, which generates heat and causes damage. In the present embodiment, by providing the off switch switching circuit 70 and the on switch switching circuit 72, the voltage of the control terminal of the switch circuit 28 can be instantaneously switched, and thus heat generation due to the switch operation of the switch circuit 28 is suppressed. And can prevent damage.
 また、充放電システム10は、蓄電部40に異常が生じた場合に、システム制御部50を介さずに直接スイッチ回路制御部60にスイッチ回路28をオフさせる異常判断回路52及びフォトカプラ90を備える。上記構成により、蓄電部40に異常を生じた場合であっても、システム制御部50による判断を介する必要がないため、迅速に異常状態を回避することが可能である。また、異常判断回路52及びフォトカプラ90は、スイッチ回路制御部60に異常状態を伝達するため、スイッチ回路28を瞬間的にオフすることができ、スイッチ動作時の発熱の影響を抑制することができる。 The charge / discharge system 10 also includes an abnormality determination circuit 52 and a photocoupler 90 that cause the switch circuit control unit 60 to turn off the switch circuit 28 directly without going through the system control unit 50 when an abnormality occurs in the power storage unit 40. . With the above configuration, even when an abnormality occurs in the power storage unit 40, it is not necessary to make a determination by the system control unit 50, so that an abnormal state can be quickly avoided. Further, since the abnormality determination circuit 52 and the photocoupler 90 transmit the abnormal state to the switch circuit control unit 60, the switch circuit 28 can be instantaneously turned off, thereby suppressing the influence of heat generation during the switch operation. it can.
 なお、実施形態では、オフスイッチ切替回路70及びオンスイッチ切替回路72が設けられた構成について説明したが、図3に示すオフスイッチ切替回路70のみ、または図4に示すオンスイッチ切替回路72のみが設けられる構成であってもよい。オフスイッチ切替回路70のみが設けられた充放電システム10は、充電電流が小さい場合に好適に用いられる。また、オンスイッチ切替回路72のみが設けられた充放電システム10は、放電電流が小さい場合に好適に用いられる。 In the embodiment, the configuration in which the off switch switching circuit 70 and the on switch switching circuit 72 are provided has been described. However, only the off switch switching circuit 70 illustrated in FIG. 3 or only the on switch switching circuit 72 illustrated in FIG. The structure provided may be sufficient. The charging / discharging system 10 provided with only the off switch switching circuit 70 is preferably used when the charging current is small. The charge / discharge system 10 provided with only the on-switch switching circuit 72 is preferably used when the discharge current is small.
 また、本実施形態では、蓄電部40に異常が生じた場合の異常信号94をスイッチ回路制御部60の発光部66の側に伝達する構成について説明したが、受光部68の側に伝達する構成であってもよい。この場合、基準電圧端子62、プラス電圧端子64及びスイッチ回路28の制御端子間に過電流が流れないようにすることが望ましい。また、スイッチ回路28の制御端子への第1信号及び第2信号の印加に影響がないように適切に設計することが望ましい。 Further, in the present embodiment, the configuration has been described in which the abnormality signal 94 when abnormality occurs in the power storage unit 40 is transmitted to the light emitting unit 66 side of the switch circuit control unit 60, but the configuration is transmitted to the light receiving unit 68 side. It may be. In this case, it is desirable to prevent an overcurrent from flowing between the reference voltage terminal 62, the plus voltage terminal 64 and the control terminal of the switch circuit 28. In addition, it is desirable to design appropriately so as not to affect the application of the first signal and the second signal to the control terminal of the switch circuit 28.
 本発明に係るスイッチ回路制御部及び充放電システムは、電力入出力ラインと蓄電部との間にスイッチ回路が設けられる充放電システムに利用できる。 The switch circuit control unit and the charge / discharge system according to the present invention can be used in a charge / discharge system in which a switch circuit is provided between the power input / output line and the power storage unit.
 10 充放電システム、12、14 充電電源(12 光電変換モジュール、14 外部商用電源)、16、17、18 放電負荷(16 工場設備、17 電子機器、18 照明装置)、20(20A、20B) 充電電源側電力変換器、22(22a、22b、22c) 放電負荷側電力変換器、24 充電電源側スイッチ、26 放電負荷側スイッチ、28 スイッチ回路、30 電力入出力ライン、40 蓄電部、50 システム制御部、52 異常判断回路、60、61 スイッチ回路制御部、62、67 基準電圧端子、64 プラス電圧端子、66 発光部、68 受光部、68a 第1端子、68b 第2端子、72 オンスイッチ切替回路、70 オフスイッチ切替回路、80 フォトボル回路、82 ダイオード、84 nチャネルトランジスタ、85 nチャネルフォトトランジスタ、86 pチャネルトランジスタ、87 pチャネルフォトトランジスタ、90 フォトカプラ、90 制御信号、91,92 制御信号、94 異常信号。 10 Charging / Discharging System, 12, 14 Charging Power Supply (12 Photoelectric Conversion Module, 14 External Commercial Power Supply), 16, 17, 18 Discharge Load (16 Factory Equipment, 17 Electronic Equipment, 18 Lighting Device), 20 (20A, 20B) Charging Power supply side power converter, 22 (22a, 22b, 22c) discharge load side power converter, 24 charge power supply side switch, 26 discharge load side switch, 28 switch circuit, 30 power input / output line, 40 power storage unit, 50 system control Part, 52 abnormality judgment circuit, 60, 61 switch circuit control part, 62, 67 reference voltage terminal, 64 plus voltage terminal, 66 light emitting part, 68 light receiving part, 68a first terminal, 68b second terminal, 72 on switch switching circuit , 70 Off switch switching circuit, 80 Photovoltaic circuit, 82 Diode, 8 n-channel transistors, 85 n-channel phototransistor 86 p-channel transistors, 87 p-channel phototransistor, 90 photo-coupler, 90 control signals, 91 and 92 control signals, 94 abnormal signal.

Claims (9)

  1.  電力入出力ラインと蓄電池を含む蓄電部との接続を切り替えるスイッチ回路を制御信号に基づき制御するスイッチ回路制御部であって、
     前記制御信号を受けて発光または非発光する発光部と、
     前記発光部の光に応じて、オン信号またはオフ信号を出力する受光部と、
     前記受光部から前記オフ信号が入力された場合に、前記スイッチ回路をオフさせるオフスイッチ切替回路と、
     を備えることを特徴とするスイッチ回路制御部。
    A switch circuit control unit that controls a switch circuit that switches connection between a power input / output line and a power storage unit including a storage battery based on a control signal,
    A light emitting unit that emits light or does not emit light in response to the control signal;
    A light receiving unit that outputs an on signal or an off signal according to the light of the light emitting unit;
    An off switch switching circuit for turning off the switch circuit when the off signal is input from the light receiving unit;
    A switch circuit control unit comprising:
  2.  電力入出力ラインと蓄電部との接続を切り替えるスイッチ回路を制御信号に基づき制御するスイッチ回路制御部であって、
     前記制御信号を受けて発光または非発光する発光部と、
     前記発光部の光に応じて、オン信号またはオフ信号を出力する受光部と、
     前記受光部から前記オン信号が入力された場合に、前記スイッチ回路をオンさせるオンスイッチ切替回路と、
     を備えることを特徴とするスイッチ回路制御部。
    A switch circuit control unit that controls a switch circuit that switches connection between the power input / output line and the power storage unit based on a control signal,
    A light emitting unit that emits light or does not emit light in response to the control signal;
    A light receiving unit that outputs an on signal or an off signal according to the light of the light emitting unit;
    An on-switch switching circuit that turns on the switch circuit when the on-signal is input from the light-receiving unit;
    A switch circuit control unit comprising:
  3.  電力入出力ラインと蓄電部との接続を切り替えるスイッチ回路を制御信号に基づき制御するスイッチ回路制御部であって、
     前記制御信号を受けて発光または非発光する発光部と、
     前記発光部の光に応じて、オン信号またはオフ信号を出力する受光部と、
     前記受光部から前記オン信号が入力された場合に、前記スイッチ回路をオンさせるオンスイッチ切替回路と、
     前記受光部から前記オフ信号が入力された場合に、前記スイッチ回路をオフさせるオフスイッチ切替回路と、
     を備えることを特徴とするスイッチ回路制御部。
    A switch circuit control unit that controls a switch circuit that switches connection between the power input / output line and the power storage unit based on a control signal,
    A light emitting unit that emits light or does not emit light in response to the control signal;
    A light receiving unit that outputs an on signal or an off signal according to the light of the light emitting unit;
    An on-switch switching circuit that turns on the switch circuit when the on-signal is input from the light-receiving unit;
    An off switch switching circuit for turning off the switch circuit when the off signal is input from the light receiving unit;
    A switch circuit control unit comprising:
  4.  前記オフスイッチ切替回路は、前記受光部から前記オフ信号が入力された場合に、前記スイッチ回路をオフさせる第1信号を前記スイッチ回路に出力し、
     前記オンスイッチ切替回路は、前記受光部から前記オン信号が入力された場合に、前記スイッチ回路をオンさせるために、第2信号を前記スイッチ回路に出力することを特徴とする請求項3に記載のスイッチ回路制御部。
    The off switch switching circuit outputs a first signal to turn off the switch circuit to the switch circuit when the off signal is input from the light receiving unit.
    The on switch switching circuit outputs a second signal to the switch circuit to turn on the switch circuit when the on signal is input from the light receiving unit. Switch circuit controller.
  5.  前記第1信号は、基準電圧を有する信号であり、前記第2信号は、前記基準電圧よりも高い電圧を有する信号であることを特徴とする請求項4に記載のスイッチ回路制御部。 The switch circuit control unit according to claim 4, wherein the first signal is a signal having a reference voltage, and the second signal is a signal having a voltage higher than the reference voltage.
  6.  前記オフ信号は基準電圧を有する信号であり、前記オン信号は前記基準電圧よりも高いオン電圧を有する信号であることを特徴とする請求項3から5のいずれか1項に記載のスイッチ回路制御部。 6. The switch circuit control according to claim 3, wherein the off signal is a signal having a reference voltage, and the on signal is a signal having an on voltage higher than the reference voltage. Department.
  7.  前記発光部は、前記スイッチ回路をオフさせる指示を含んだ前記制御信号を受けた場合は非発光であり、オンさせる指示を含んだ前記制御信号を受けた場合に発光する構成であり、
     前記受光部は、前記発光部からの光を受けて所定の電圧の発電を行う機能を有しており、前記発光部が非発光の場合に、前記基準電圧を有する前記オフ信号を生成し、前記発光部が発光した場合に、前記受光部の発電により生じた前記所定の電圧を前記基準電圧に印加し、前記オン電圧を有する前記オン信号を生成することを特徴とする請求項6に記載のスイッチ回路制御部。
    The light emitting unit is configured not to emit light when receiving the control signal including an instruction to turn off the switch circuit, and to emit light when receiving the control signal including an instruction to turn on,
    The light receiving unit has a function of receiving a light from the light emitting unit and generating a predetermined voltage, and when the light emitting unit is not emitting light, generates the off signal having the reference voltage, 7. The on signal having the on voltage is generated by applying the predetermined voltage generated by power generation of the light receiving unit to the reference voltage when the light emitting unit emits light. Switch circuit controller.
  8.  前記受光部と、前記オンスイッチ切替回路と、前記オフスイッチ切替回路とが一体に形成されていることを特徴とする請求項3から7のいずれか1項に記載のスイッチ回路制御部。 The switch circuit control unit according to any one of claims 3 to 7, wherein the light receiving unit, the on-switch switching circuit, and the off-switch switching circuit are integrally formed.
  9.  請求項1から8のいずれか1項に記載のスイッチ回路制御部と、
     前記蓄電部から前記蓄電池に関する蓄電池データを取得し、前記蓄電池データに応じて前記スイッチ回路制御部に前記制御信号を送信するシステム制御部と、
     前記蓄電部と前記システム制御部との間に設けられ、前記蓄電部が充電しているときに前記蓄電部の電流及び電圧の少なくとも一方が所定の閾値を超える場合、もしくは、前記蓄電部が放電しているときに前記蓄電部の電流および電圧の少なくとも一方が所定の閾値を下回る場合に、前記スイッチ回路制御部に異常信号を送信する異常判断回路と、
     を備え、
     前記スイッチ回路制御部は、前記発光部が前記異常判断回路から前記異常信号を受信した場合は、前記スイッチ回路をオフさせることを特徴とする充放電システム。
    The switch circuit control unit according to any one of claims 1 to 8,
    A system control unit that acquires storage battery data related to the storage battery from the power storage unit, and transmits the control signal to the switch circuit control unit according to the storage battery data;
    Provided between the power storage unit and the system control unit, and when the power storage unit is charging, if at least one of the current and voltage of the power storage unit exceeds a predetermined threshold, or the power storage unit is discharged An abnormality determination circuit that transmits an abnormality signal to the switch circuit control unit when at least one of the current and voltage of the power storage unit is below a predetermined threshold when
    With
    The switch circuit control unit turns off the switch circuit when the light emitting unit receives the abnormality signal from the abnormality determination circuit.
PCT/JP2012/057516 2011-03-31 2012-03-23 Switch circuit control unit, and charging and discharging system WO2012133186A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-080779 2011-03-31
JP2011080779 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012133186A1 true WO2012133186A1 (en) 2012-10-04

Family

ID=46930909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057516 WO2012133186A1 (en) 2011-03-31 2012-03-23 Switch circuit control unit, and charging and discharging system

Country Status (1)

Country Link
WO (1) WO2012133186A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103618532A (en) * 2013-12-09 2014-03-05 黄倜 Optical control switch
CN109194308A (en) * 2018-11-09 2019-01-11 深圳市金科泰通信设备有限公司 The crystal oscillating circuit that multi-frequency automatically switches
KR102532850B1 (en) * 2023-01-06 2023-05-15 윤혜련 Charging and discharging system for lead acid batteries

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0263317A (en) * 1988-08-30 1990-03-02 Meidensha Corp Gate driving circuit for field effect transistor
JPH03129920A (en) * 1989-10-14 1991-06-03 Fuji Electric Co Ltd Light driven semiconductor device
JP2002100970A (en) * 2000-09-26 2002-04-05 Fujitsu Denso Ltd Switching circuit
WO2008149551A1 (en) * 2007-06-07 2008-12-11 Zephyr Corporation Over discharge preventing device and electric storage device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0263317A (en) * 1988-08-30 1990-03-02 Meidensha Corp Gate driving circuit for field effect transistor
JPH03129920A (en) * 1989-10-14 1991-06-03 Fuji Electric Co Ltd Light driven semiconductor device
JP2002100970A (en) * 2000-09-26 2002-04-05 Fujitsu Denso Ltd Switching circuit
WO2008149551A1 (en) * 2007-06-07 2008-12-11 Zephyr Corporation Over discharge preventing device and electric storage device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103618532A (en) * 2013-12-09 2014-03-05 黄倜 Optical control switch
CN109194308A (en) * 2018-11-09 2019-01-11 深圳市金科泰通信设备有限公司 The crystal oscillating circuit that multi-frequency automatically switches
CN109194308B (en) * 2018-11-09 2024-09-20 深圳市金科泰通信设备有限公司 Crystal oscillator circuit capable of automatically switching multiple frequencies
KR102532850B1 (en) * 2023-01-06 2023-05-15 윤혜련 Charging and discharging system for lead acid batteries

Similar Documents

Publication Publication Date Title
KR101074785B1 (en) A battery management system and control method thereof, and energy storage system including the battery management system
JP5279147B2 (en) Grid-connected power storage system and control method of power storage system
WO2012049910A1 (en) Output circuit for electric power supply system
KR101156533B1 (en) Energy storage system and method for controlling thereof
US20140319914A1 (en) Battery system and its control method
US20120047386A1 (en) Control apparatus and control method
JP2013085459A (en) Power storage system and control method therefor
KR101147205B1 (en) Apparatus and method of controlling high current, and power storage apparatus using the same
KR20120067732A (en) System for energy storage and control method thereof
JP2012095418A (en) Dc power supply system
KR20140115501A (en) Power conversion device having battery heating function
WO2012050195A1 (en) Electric power supply system
KR20160100675A (en) Battery Pack and Driving Method Thereof
US20240030724A1 (en) Energy storage system, method for controlling energy storage system, and photovoltaic power generation system
KR20140109539A (en) Power conversion device having battery heating function
JP2014030108A (en) Power control device, storage battery and power control system
WO2012133186A1 (en) Switch circuit control unit, and charging and discharging system
JP2015122841A (en) Power storage system and power generation system
JP2017127173A (en) Power storage device
KR101456475B1 (en) Photovoltaic power generating system with dual inverters and method for controlling thereof
JP2013013277A (en) Power-adjusting device
WO2018155442A1 (en) Dc power supply system
KR101215396B1 (en) Hybrid smart grid uninterruptible power supply using discharge current control
KR101785662B1 (en) Apparatus for protecting a battery
US8817508B2 (en) Bidirectional inverter for new renewable energy storage system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764734

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12764734

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP