JP2010279120A - Device for monitoring battery of electric vehicle - Google Patents

Device for monitoring battery of electric vehicle Download PDF

Info

Publication number
JP2010279120A
JP2010279120A JP2009127672A JP2009127672A JP2010279120A JP 2010279120 A JP2010279120 A JP 2010279120A JP 2009127672 A JP2009127672 A JP 2009127672A JP 2009127672 A JP2009127672 A JP 2009127672A JP 2010279120 A JP2010279120 A JP 2010279120A
Authority
JP
Japan
Prior art keywords
battery
unit
voltage
communication
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009127672A
Other languages
Japanese (ja)
Inventor
Naoyuki Akaboshi
尚幸 赤星
Nobuyuki Kawai
信幸 川合
Toshihide Tanaka
寿英 田中
Toshiya Maho
俊也 真保
Seiji Narita
省二 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Mitsubishi Automotive Engineering Co Ltd
Original Assignee
Mitsubishi Motors Corp
Mitsubishi Automotive Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp, Mitsubishi Automotive Engineering Co Ltd filed Critical Mitsubishi Motors Corp
Priority to JP2009127672A priority Critical patent/JP2010279120A/en
Publication of JP2010279120A publication Critical patent/JP2010279120A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery monitor device of an electric vehicle which is achieved in the sharing of a communication line by a simple constitution with a reference potential of a communication line between a battery monitor unit and a battery control unit as a reference potential of a secondary battery. <P>SOLUTION: The battery monitor device eliminates the electrical connection of a communication part 25 with a CPU 23 by arranging a voltage agreement part 24 between a CPU 23 of the battery monitor unit 21 and the communication part 25, and operates the communication part 25 at a prescribed low voltage having the same potential as that of a communication part 11 of the battery control unit 10. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電気自動車の電池監視装置に関し、詳しくは電池の電圧を監視する電池監視ユニットの回路構成に関する。   The present invention relates to a battery monitoring device for an electric vehicle, and more particularly to a circuit configuration of a battery monitoring unit that monitors battery voltage.

電気自動車の電源装置は、駆動用モータの動力源として大きな出力を得るために、二次電池(例えば、リチウムイオン電池等)からなる複数の電池セルを直列に接続して高電圧の電流を出力している。複数の電池セルを直列に接続する電源装置は、全ての電池セルを同じ電流で充電し、また放電する。しかしながら、全ての電池セルの電気特性を同一とすることはできず、各々の電池セルは、充放電を繰り返すにしたがい経時劣化を起こすが、この際、電池セル毎に経時劣化の度合いが異なることとなる。また、製造直後においては、同一な電気特性を有していないことから、電圧と容量のアンバランスが大きくなり、特定の電池セルを加速して劣化させる原因となる。   In order to obtain a large output as a power source for a drive motor, an electric vehicle power supply device outputs a high voltage current by connecting a plurality of battery cells made of secondary batteries (for example, lithium ion batteries) in series. is doing. A power supply device that connects a plurality of battery cells in series charges and discharges all battery cells with the same current. However, the electrical characteristics of all the battery cells cannot be the same, and each battery cell deteriorates with time as charging and discharging are repeated. At this time, the degree of deterioration with time differs for each battery cell. It becomes. In addition, immediately after manufacture, since they do not have the same electrical characteristics, an imbalance between voltage and capacity increases, which causes a specific battery cell to accelerate and deteriorate.

この様なことから、各々の電池セルの電圧等を正確に測定し監視するための電池監視ユニット(セルコントローラ)と、それらの監視結果より電源装置を制御する電池制御ユニット(メインコントローラ)を備えた車両用の電源装置が開発されている(特許文献1参照)。   For this reason, a battery monitoring unit (cell controller) for accurately measuring and monitoring the voltage of each battery cell and a battery control unit (main controller) for controlling the power supply device based on the monitoring results are provided. A power supply device for a vehicle has been developed (see Patent Document 1).

特開2009−17657号公報JP 2009-17657 A

上記特許文献1では、駆動用モータの動力源として大きな出力が必要であることから複数の電池セルを直列で接続し、高電圧の電流を発生させている。これら電池セル全ての電圧を一つの電池監視ユニットで測定するには、耐電圧の高い部品を必要としコストが高くなるため、ここでは複数の電池セルをまとめたモジュール単位で電池監視ユニットを搭載している。   In Patent Document 1, since a large output is required as a power source for the drive motor, a plurality of battery cells are connected in series to generate a high-voltage current. In order to measure the voltage of all these battery cells with a single battery monitoring unit, high voltage components are required and the cost is high. Therefore, here, the battery monitoring unit is installed in units of modules in which a plurality of battery cells are combined. ing.

ところで、上記特許文献1によれば、各モジュールに搭載されている電池監視ユニット内の回路は、モジュール内の複数の電池セルより電力を供給され作動し、電池制御ユニットは、補機バッテリより電力を供給され作動している。即ち、それぞれの電池監視ユニットと電池制御ユニットでは、基準電位が異なっている。よって、それぞれの電池監視ユニットと電池制御ユニットとを通信線等で接続する場合には、各通信線間に高い電位差が発生することとなる。   By the way, according to the above-mentioned patent document 1, the circuit in the battery monitoring unit mounted on each module operates by being supplied with power from a plurality of battery cells in the module, and the battery control unit receives power from the auxiliary battery. Is supplied and operating. That is, the reference potential is different between the battery monitoring unit and the battery control unit. Therefore, when each battery monitoring unit and the battery control unit are connected by a communication line or the like, a high potential difference is generated between the communication lines.

この様に電池監視ユニットと電池制御ユニット間の基準電位が異なると、上記特許文献1に示すように電池監視ユニットと電池制御ユニット間に高い耐電圧を持つ電圧整合回路が必要となる。また、通信線には、高電圧が加わるため特別な絶縁処理を施したハーネスが必要となり、コストが上昇し好ましいことではない。
本発明は、この様な問題を解決するためになされたもので、その目的とするところは、簡易な構成にして、電池監視ユニットと電池制御ユニット間の通信線の基準電位を補機バッテリの基準電位とし、通信線の共通化を図った電気自動車の電池監視装置を提供することにある。
Thus, if the reference potentials between the battery monitoring unit and the battery control unit are different, a voltage matching circuit having a high withstand voltage is required between the battery monitoring unit and the battery control unit as described in Patent Document 1. In addition, since a high voltage is applied to the communication line, a harness subjected to a special insulation treatment is required, which is not preferable because the cost increases.
The present invention has been made in order to solve such problems. The object of the present invention is to simplify the configuration and to set the reference potential of the communication line between the battery monitoring unit and the battery control unit to the auxiliary battery. An object of the present invention is to provide a battery monitoring device for an electric vehicle that uses a reference potential and uses a common communication line.

上記の目的を達成するために、請求項1の電気自動車の電池監視装置は、直列に配列された充電のできる複数の電池セルと、各々の前記電池セルの電圧を測定する電圧測定回路と、前記電圧測定回路にて測定された前記電池セルの電圧を監視する電池監視部と、該電池監視部より出力される高電圧の監視信号を低電圧の監視信号に変換し出力する電圧整合部と、該低電圧の監視信号の通信を行う第1の通信部とを備えた電池監視ユニットとからなる電池モジュールを複数有し、該複数の電池モジュールの前記複数の電池セル同士を電力線で内部接続すると共に前記第1の通信部同士を通信線で内部接続した電池パックと、前記複数の第1の通信部と通信線を介して前記低電圧の監視信号の通信を行う第2の通信部と、前記第2の通信部より入力される前記低電圧の監視信号を基に前記電池パックの前記複数の電池セルの充放電を制御する電池制御部とを有した電池制御ユニットと、前記複数の電池セルとは別に低電圧の電流を供給する電源供給手段とを備え、前記電池監視部は、前記電池セルより高電圧の電流を供給されて作動する一方、前記第1の通信部、前記第2の通信部及び前記電池制御部は、前記電源供給手段より前記所定の低電圧の電流を供給されて作動することを特徴とする。   In order to achieve the above object, a battery monitoring device for an electric vehicle according to claim 1 includes a plurality of chargeable battery cells arranged in series, a voltage measuring circuit for measuring the voltage of each of the battery cells, and A battery monitoring unit that monitors the voltage of the battery cell measured by the voltage measuring circuit; and a voltage matching unit that converts a high voltage monitoring signal output from the battery monitoring unit into a low voltage monitoring signal and outputs the low voltage monitoring signal. A plurality of battery modules including a battery monitoring unit including a first communication unit that communicates the low-voltage monitoring signal, and internally connecting the plurality of battery cells of the plurality of battery modules with a power line And a battery pack in which the first communication units are internally connected via a communication line, and a second communication unit that communicates the low-voltage monitoring signal with the plurality of first communication units via the communication line. Enter from the second communication section A battery control unit having a battery control unit for controlling charging / discharging of the plurality of battery cells of the battery pack based on the low voltage monitoring signal, and a low voltage current separately from the plurality of battery cells And the battery monitoring unit operates while being supplied with a higher voltage current than the battery cell, while the first communication unit, the second communication unit, and the battery control unit. Is operated by being supplied with the predetermined low voltage current from the power supply means.

また、請求項2の電気自動車の電池監視装置では、請求項1の発明において、前記電源供給手段から前記第1の通信部への電力の供給・非供給を切り換える第1の電源切換手段をさらに有し、該第1の電源切換手段は、前記電池制御ユニットにより切換制御されることを特徴とする。
また、請求項3の電気自動車の電池監視装置では、請求項1または2の発明において、前記電池モジュールは、前記電池セルから前記電池監視部への電力の供給・非供給を切り換える第2の電源切換手段をさらに有し、該第2の電源切換手段は、前記電池制御手段により切換制御されることを特徴とする。
The battery monitoring device for an electric vehicle according to claim 2 further includes a first power supply switching means for switching power supply / non-supply from the power supply means to the first communication unit according to the invention of claim 1. And the first power supply switching means is controlled to be switched by the battery control unit.
According to a third aspect of the present invention, there is provided the battery monitoring apparatus for an electric vehicle according to the first or second aspect, wherein the battery module is a second power source that switches between supply and non-supply of power from the battery cell to the battery monitoring section. It further has a switching means, and the second power source switching means is controlled to be switched by the battery control means.

また、請求項4の電気自動車の電池監視装置では、請求項3の発明において、前記第2の電源切換手段は、前記電池制御ユニットにより前記第1の電源切換手段が切換制御されたことによる前記電源供給手段から前記第1の通信部への電力の供給・非供給に応じて切換制御されることを特徴とする。
また、請求項5の電気自動車の電池監視装置では、請求項1乃至4のいずれかの発明において、前記通信線は、CANに接続されてなることを特徴とする。
According to a fourth aspect of the present invention, there is provided the battery monitoring apparatus for an electric vehicle according to the third aspect, wherein the second power switching means is the switching control of the first power switching means by the battery control unit. Switching control is performed in accordance with supply / non-supply of power from the power supply means to the first communication unit.
According to a fifth aspect of the present invention, there is provided the battery monitoring apparatus for an electric vehicle according to any one of the first to fourth aspects, wherein the communication line is connected to a CAN.

請求項1の発明によれば、電池監視ユニットの電池監視部と第1の通信部との間に電圧整合部が配設されているので、電池監視部については直列に配列された複数の電池セルから高電圧の電流を供給して作動させ、第1の通信部については、別途車両に配設される電源供給手段から低電圧の電流を供給して作動させることができる。
これにより、第1の通信部は、第2の通信部と同電位の低電圧となり、高電圧対応の通信線を不要として通信線の共通化を図ることができる。
According to the first aspect of the present invention, since the voltage matching unit is disposed between the battery monitoring unit and the first communication unit of the battery monitoring unit, the battery monitoring unit includes a plurality of batteries arranged in series. The cell can be operated by supplying a high voltage current from the cell, and the first communication unit can be operated by supplying a low voltage current from a power supply means separately provided in the vehicle.
Accordingly, the first communication unit has a low voltage with the same potential as that of the second communication unit, and a high-voltage compatible communication line is not necessary and the communication line can be shared.

また、電池パックと電池制御ユニットとは1本の通信線で接続するため、電池モジュールの数量を変更した場合においても電池制御ユニットの設計変更は不要でありコストを低減することができる。
また、電池モジュール内ひいては電池パック内で高電圧配線が完結するため、作業者の感電等を防止して安全性を向上させることができる。
In addition, since the battery pack and the battery control unit are connected by a single communication line, even when the number of battery modules is changed, it is not necessary to change the design of the battery control unit, and the cost can be reduced.
Further, since the high voltage wiring is completed in the battery module and thus in the battery pack, it is possible to prevent the operator's electric shock and improve safety.

請求項2の発明によれば、電源供給手段から第1の通信部への電力の供給・非供給を切り換える第1の電源切換手段をさらに有し、該第1の電源切換手段は電池制御ユニットにより切換制御されるので、必要に応じて適宜第1の通信部を作動させることができる。
これにより、第1の通信部と第2の通信部が非通信時には、第1通信部での暗電流を防止することが可能となる。よって、暗電流による電力の消費を防止することができる。
According to the invention of claim 2, the power supply means further includes a first power supply switching means for switching power supply / non-supply to the first communication unit, and the first power supply switch means is a battery control unit. Therefore, the first communication unit can be appropriately operated as necessary.
This makes it possible to prevent dark current in the first communication unit when the first communication unit and the second communication unit are not communicating. Therefore, power consumption due to dark current can be prevented.

請求項3の発明によれば、電池モジュールは電池セルから電池監視部への電力の供給・非供給を切り換える第2の電源切換手段をさらに有し、該第2の電源切換手段は電池制御手段により切換制御されるので、必要に応じて適宜電池監視部を作動させることができる。
これにより、電池監視部での暗電流を防止することが可能となる。よって、暗電流による電力の消費を防止することができるので、電気自動車の走行距離を増やすことができる。
According to the invention of claim 3, the battery module further includes second power switching means for switching power supply / non-supply from the battery cell to the battery monitoring section, and the second power switching means is battery control means. Therefore, the battery monitoring unit can be appropriately operated as necessary.
Thereby, it becomes possible to prevent dark current in the battery monitoring unit. Therefore, since power consumption due to dark current can be prevented, the travel distance of the electric vehicle can be increased.

請求項4の発明によれば、第2の電源切換手段は電池制御ユニットにより第1の電源切換手段が切換制御されることで切換制御されるので、必要に応じて適宜第1の通信部と電池監視部とを連動させることができる。
請求項5の発明によれば、各々の電池監視ユニットの第1通信部と電池制御ユニットの第2の通信部の通信線をCANに接続しているので、CAN通信を行う既存のシステムを使用することができ、通信の信頼性の向上を図りコストを低減することができる。
According to the fourth aspect of the present invention, the second power source switching means is controlled by the battery control unit so that the first power source switching means is switched. The battery monitoring unit can be linked.
According to the invention of claim 5, since the communication lines of the first communication unit of each battery monitoring unit and the second communication unit of the battery control unit are connected to the CAN, an existing system for performing CAN communication is used. Therefore, the communication reliability can be improved and the cost can be reduced.

本発明の第1実施例に係る電気自動車の電池監視装置の概略構成図である。1 is a schematic configuration diagram of a battery monitoring device for an electric vehicle according to a first embodiment of the present invention. 本発明の第2実施例に係る電気自動車の電池監視装置の概略構成図である。It is a schematic block diagram of the battery monitoring apparatus of the electric vehicle which concerns on 2nd Example of this invention.

以下、本発明の実施の形態を図面に基づき説明する。
先ず、第1実施例について説明する。なお、図中二点鎖線の右側は低電圧、左側は高電圧の領域を示す。図1は、本発明の第1実施例に係る電気自動車の電池監視装置の概略構成図であり、以下、当該電気自動車の電池監視装置の構成を説明する。
図1に示すように、電気自動車の電池監視装置1は、電池パック2、バッテリ・マネジメント・ユニット(以下、BMUという)(電池制御ユニット)10、補機バッテリ(電源供給手段)90、リレー(第1の電源切換手段)91及びCAN(Controller Area Network)に接続されたCAN通信線92から構成される。なお、それぞれの構成要素は、電気的に接続される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, the first embodiment will be described. In the drawing, the right side of the two-dot chain line indicates a low voltage region, and the left side indicates a high voltage region. FIG. 1 is a schematic configuration diagram of a battery monitoring device for an electric vehicle according to a first embodiment of the present invention. Hereinafter, the configuration of the battery monitoring device for the electric vehicle will be described.
As shown in FIG. 1, a battery monitoring device 1 for an electric vehicle includes a battery pack 2, a battery management unit (hereinafter referred to as BMU) (battery control unit) 10, an auxiliary battery (power supply means) 90, a relay ( First power switching means) 91 and a CAN communication line 92 connected to a CAN (Controller Area Network). Each component is electrically connected.

BMU10は、通信部(第2の通信部)11と中央演算処理装置(以下、CPUという)(電池制御部)12により構成され、電気的に接続される。また、BMU10は、電池パック2の後述する複数の電池モジュール20の通信部(第1の通信部)25と通信部11により通信し、CPU12にて電池パック2の電圧状態を監視し充放電を制御するものである。   The BMU 10 includes a communication unit (second communication unit) 11 and a central processing unit (hereinafter referred to as CPU) (battery control unit) 12 and is electrically connected. The BMU 10 communicates with a communication unit (first communication unit) 25 of a plurality of battery modules 20 (to be described later) of the battery pack 2 through the communication unit 11, and the CPU 12 monitors the voltage state of the battery pack 2 to charge and discharge. It is something to control.

通信部11とCPU12は、電気的に並列に配列され、補機バッテリ90から所定の低電圧(例えば、12V)の電流を供給され作動するものである。
電池パック2は、複数の電池モジュール20、各々の電池モジュール20内の通信部25へ電力を供給する配線及び該通信部25とBMU10の通信部11の通信を行うCAN通信線92から構成される。
The communication unit 11 and the CPU 12 are electrically arranged in parallel, and operate by being supplied with a predetermined low voltage (for example, 12 V) current from the auxiliary battery 90.
The battery pack 2 includes a plurality of battery modules 20, wiring for supplying power to the communication unit 25 in each battery module 20, and a CAN communication line 92 for performing communication between the communication unit 25 and the communication unit 11 of the BMU 10. .

電池モジュール20は、セル・モニタリング・ユニット(以下、CMUという)(電池監視ユニット)21及び直列に配列される複数(例えば4個)の電池セル28により構成される。また、電池セル28は、複数の電池モジュール20の電池セル28と直列に配列される。ここに、電池セル28は、リチウムイオン電池である。
なお、ここでの低電圧とは補機バッテリ90の基準電位であり、高電圧とは電池セル28の基準電位のことである。
The battery module 20 includes a cell monitoring unit (hereinafter referred to as CMU) (battery monitoring unit) 21 and a plurality of (for example, four) battery cells 28 arranged in series. The battery cell 28 is arranged in series with the battery cells 28 of the plurality of battery modules 20. Here, the battery cell 28 is a lithium ion battery.
Here, the low voltage is the reference potential of the auxiliary battery 90, and the high voltage is the reference potential of the battery cell 28.

CMU21は、電圧測定回路22、中央演算処理装置(以下、CPUという)(電池監視部)23、電圧整合部(電圧整合部)24及び通信部25により構成される。
電圧測定回路22は、各々の電池セル28における電圧を測定するものである。
CPU23は、電圧測定回路22での各々の電池セル28の電圧測定値の監視及びその電圧測定値から電池セル28の異常を検出するものである。また、CPU23は、電池パック2内の直列に配列された複数の電池セル28と電気的に接続され、所定の高電圧の電流を供給されて作動する。
The CMU 21 includes a voltage measurement circuit 22, a central processing unit (hereinafter referred to as CPU) (battery monitoring unit) 23, a voltage matching unit (voltage matching unit) 24, and a communication unit 25.
The voltage measurement circuit 22 measures the voltage in each battery cell 28.
The CPU 23 monitors the voltage measurement value of each battery cell 28 in the voltage measurement circuit 22 and detects an abnormality of the battery cell 28 from the voltage measurement value. Further, the CPU 23 is electrically connected to the plurality of battery cells 28 arranged in series in the battery pack 2, and operates by being supplied with a predetermined high voltage current.

電圧整合部24は、例えばフォトカプラからなり、CPU23から入力される所定の高電圧の信号を所定の低電圧の信号へと変換するものである。
具体的には、電圧整合部24は、高電圧側の入力端子からの高電圧電気信号を光信号に変換し発光部から光信号を発する。次いで、低電圧側の受光部でその光信号を受けて光信号を低電圧電気信号に変換し出力端子から出力することで、信号の変換を行う。従って、光信号で空間を伝播させることとなるので、高電圧側と低電圧側はグランド(基準電位)も含めて電気的に完全に絶縁された構成とすることができる。
The voltage matching unit 24 includes, for example, a photocoupler, and converts a predetermined high voltage signal input from the CPU 23 into a predetermined low voltage signal.
Specifically, the voltage matching unit 24 converts a high voltage electrical signal from an input terminal on the high voltage side into an optical signal and emits an optical signal from the light emitting unit. Next, the light signal is received by the light receiving unit on the low voltage side, the light signal is converted into a low voltage electrical signal, and output from the output terminal, thereby converting the signal. Accordingly, since the optical signal propagates through the space, the high voltage side and the low voltage side can be configured to be electrically completely insulated including the ground (reference potential).

通信部25は、BMU10の通信部11と他の電池モジュール20の通信部25とCAN通信線92により接続され、CAN通信を行うものである。また、各々の電池モジュール20の通信部25は、補機バッテリ90と電気的に接続され、リレー91を介して所定の低電圧の電流を供給されて作動する。
リレー91は、BMU10のCPU12により制御され、各々の電池モジュール20の通信部25への電力供給のON・OFFを切り換えるものである。
The communication unit 25 is connected to the communication unit 11 of the BMU 10 and the communication unit 25 of the other battery module 20 via the CAN communication line 92, and performs CAN communication. In addition, the communication unit 25 of each battery module 20 is electrically connected to the auxiliary battery 90 and is supplied with a predetermined low voltage current via the relay 91 to operate.
The relay 91 is controlled by the CPU 12 of the BMU 10 and switches ON / OFF of power supply to the communication unit 25 of each battery module 20.

以下、このように構成された本発明の第1実施例に係る電気自動車の電池監視装置の作用及び効果について説明する。
上述したように、CPU23と通信部25の間には、電圧整合部24が配設されている。
従って、CPU23と通信部25は電気的な接続が無くなり、CPU23には複数の電池セル28から所定の高電圧の電流を供給する一方、通信部25にはBMU10によるリレー91の切換制御により補機バッテリ90から所定の低電圧の電流を供給することが可能となる。
Hereinafter, the operation and effect of the battery monitoring apparatus for an electric vehicle according to the first embodiment of the present invention configured as described above will be described.
As described above, the voltage matching unit 24 is disposed between the CPU 23 and the communication unit 25.
Therefore, the CPU 23 and the communication unit 25 are not electrically connected, and a predetermined high voltage current is supplied from the plurality of battery cells 28 to the CPU 23, while the communication unit 25 is controlled by switching of the relay 91 by the BMU 10. A predetermined low voltage current can be supplied from the battery 90.

これにより、CMU21の通信部25は、BMU10の通信部11と同電位である所定の低電圧での作動となり、通信部25と通信部11間の通信には、既存のCAN通信を行うことができ、通信の信頼性を上げ、コストを低減することができる。また、CAN通信を用いることによりバス接続形態がとれ、新たに電池モジュール20の追加時には、配線の増加を防止することができる。   Accordingly, the communication unit 25 of the CMU 21 operates at a predetermined low voltage that is the same potential as the communication unit 11 of the BMU 10, and the existing CAN communication can be performed for communication between the communication unit 25 and the communication unit 11. The communication reliability can be increased and the cost can be reduced. Further, by using CAN communication, a bus connection form can be taken, and when a battery module 20 is newly added, an increase in wiring can be prevented.

なお、通信部25に所定の低電圧の電流を供給することにより、BMU10と電池パック2間の通信線には、所定の高電圧の電流を流す必要が無く、高電圧回路を電池パック2内に封じ込めることができ、作業者の感電等を防止して安全性を向上させることができる。
また、BMU10によるリレー91の切換制御を行うことにより、CMU21の通信部25とBMU10の通信部11が非通信時には、CMU21の通信部25での暗電流を防止することが可能となる。よって、暗電流による電力の消費を防止することができる。
By supplying a predetermined low voltage current to the communication unit 25, it is not necessary to flow a predetermined high voltage current through the communication line between the BMU 10 and the battery pack 2, and a high voltage circuit is provided in the battery pack 2. Therefore, it is possible to improve the safety by preventing an electric shock of an operator.
Further, by performing switching control of the relay 91 by the BMU 10, it is possible to prevent dark current in the communication unit 25 of the CMU 21 when the communication unit 25 of the CMU 21 and the communication unit 11 of the BMU 10 are not communicating. Therefore, power consumption due to dark current can be prevented.

次に、第2実施例について説明する。
図2は、本発明の第2実施例に係る電気自動車の電池監視装置の概略構成図である。
図2に示すように第2実施例では、上記第1実施例に対して、CMU21内にリレー26及び電圧整合部27を追加しており、以下に上記第1実施例と異なる点に付いて説明する。
Next, a second embodiment will be described.
FIG. 2 is a schematic configuration diagram of a battery monitoring device for an electric vehicle according to a second embodiment of the present invention.
As shown in FIG. 2, in the second embodiment, a relay 26 and a voltage matching unit 27 are added in the CMU 21 with respect to the first embodiment, and the following points differ from the first embodiment. explain.

図2に示すように、CMU21内にリレー26(第2の電源切換手段)及び電圧整合部27が配設されている。
リレー26は、CPU23と電池セル28間に配設されている。また、リレー26は、BMU10のCPU12により制御され、CPU23への電力供給のON・OFFを切り換えるものである。
As shown in FIG. 2, a relay 26 (second power supply switching unit) and a voltage matching unit 27 are disposed in the CMU 21.
The relay 26 is disposed between the CPU 23 and the battery cell 28. The relay 26 is controlled by the CPU 12 of the BMU 10 and switches ON / OFF of the power supply to the CPU 23.

詳しくは、リレー26は、通信部25と同様にリレー91を介して補機バッテリ90と電気的に接続されており、BMU10によるリレー91の切換制御に応じてCPU23への電力供給のON・OFFを切り換えることが可能である。
電圧整合部27は、電圧整合部24と同様に例えばフォトカプラからなり、リレー26とリレー91間に配設される。電圧整合部27は、リレー91から入力される低電圧の信号を高電圧の信号へと変換するものである。
Specifically, the relay 26 is electrically connected to the auxiliary battery 90 via the relay 91 in the same manner as the communication unit 25, and the power supply to the CPU 23 is turned ON / OFF according to the switching control of the relay 91 by the BMU 10. Can be switched.
The voltage matching unit 27 is made of, for example, a photocoupler like the voltage matching unit 24, and is disposed between the relay 26 and the relay 91. The voltage matching unit 27 converts a low voltage signal input from the relay 91 into a high voltage signal.

以下、このように構成された本発明の第2実施例に係る電気自動車の電池監視装置の作用及び効果について説明する。
図2に示すように、リレー26は、CMU21内のCPU23と電池セル28間に配設されており、電圧整合部27を介して、リレー91から出力される信号が入力される。
従って、リレー26は、BMU10のCPU12の指令により、リレー91がONとなると、電圧整合部27で所定の低電圧から所定の高電圧の信号に変換され、リレー26はONとなる。よって、CPU23に所定の高電圧の電流が供給される。
Hereinafter, the operation and effect of the battery monitoring apparatus for an electric vehicle according to the second embodiment of the present invention configured as described above will be described.
As shown in FIG. 2, the relay 26 is disposed between the CPU 23 and the battery cell 28 in the CMU 21, and a signal output from the relay 91 is input via the voltage matching unit 27.
Therefore, when the relay 91 is turned on by the command of the CPU 12 of the BMU 10, the relay 26 is converted from a predetermined low voltage to a predetermined high voltage signal by the voltage matching unit 27, and the relay 26 is turned ON. Therefore, a predetermined high voltage current is supplied to the CPU 23.

これにより、通信部25と同様にCPU12でCPU23の電源を管理することが可能となり、暗電流による電力の消費を防止することができ、電気自動車の走行距離を増やすことができる。
以上で発明の実施形態の説明を終えるが、本発明の形態は上記実施形態に限定されるものではない。
Thereby, similarly to the communication unit 25, the CPU 12 can manage the power source of the CPU 23, power consumption due to dark current can be prevented, and the travel distance of the electric vehicle can be increased.
Although the description of the embodiment of the invention is finished as above, the embodiment of the present invention is not limited to the above embodiment.

例えば、電池セル28は、上記実施例におけるリチウムイオン電池に限定されるものではなく、ニッケル水素電池及びニッケルカドミウム電池等の充電が可能な電池としてもよい。
また、電池モジュール20内の電池セル28は、4個に限定されるものではない。
また、電圧整合部24、27は、上記実施例におけるフォトカプラに限定されるものではなく、高電圧信号を低電圧信号へ又は低電圧信号を高電圧信号へ変換できるものであればよい。
For example, the battery cell 28 is not limited to the lithium ion battery in the above embodiment, and may be a rechargeable battery such as a nickel metal hydride battery or a nickel cadmium battery.
Further, the number of battery cells 28 in the battery module 20 is not limited to four.
In addition, the voltage matching units 24 and 27 are not limited to the photocouplers in the above-described embodiments, and may be anything that can convert a high voltage signal into a low voltage signal or a low voltage signal into a high voltage signal.

また、上記第1および第2実施例において、CMU12の通信部25とBMU10の通信部11の通信はCANに限定されるものではなく、バス接続形態をとれるものであればよい。
また、上記第2実施例では、電圧整合部27を配設しているが、リレー26が所定の低電圧で作動が可能であれば、電圧整合部27を配設する必要はない。
Further, in the first and second embodiments, the communication between the communication unit 25 of the CMU 12 and the communication unit 11 of the BMU 10 is not limited to CAN, and may be any bus connection form.
In the second embodiment, the voltage matching unit 27 is provided. However, if the relay 26 can operate at a predetermined low voltage, the voltage matching unit 27 need not be provided.

1 電池監視装置
2 電池パック
10 バッテリ・マネジメント・ユニット(BMU)(電池制御ユニット)
11 通信部(第2の通信部)
12 中央演算処理装置(CPU)(電池制御部)
20 電池モジュール
21 セル・モニタリング・ユニット(CMU)(電池監視ユニット)
22 電圧測定回路
23 中央演算処理装置(CPU)(電池監視部)
24 電圧整合部(電圧整合部)
25 通信部(第1の通信部)
26 リレー(第2の電源切換手段)
27 電圧整合部
28 電池セル
90 補機バッテリ(電源供給手段)
91 リレー(第1の電源切換手段)
92 CAN通信線
DESCRIPTION OF SYMBOLS 1 Battery monitoring apparatus 2 Battery pack 10 Battery management unit (BMU) (battery control unit)
11 Communication unit (second communication unit)
12 Central processing unit (CPU) (Battery controller)
20 Battery module 21 Cell monitoring unit (CMU) (Battery monitoring unit)
22 Voltage Measurement Circuit 23 Central Processing Unit (CPU) (Battery Monitoring Unit)
24 Voltage matching part (voltage matching part)
25 Communication unit (first communication unit)
26 Relay (second power source switching means)
27 Voltage matching unit 28 Battery cell 90 Auxiliary battery (power supply means)
91 Relay (first power supply switching means)
92 CAN communication line

Claims (5)

直列に配列された充電のできる複数の電池セルと、各々の前記電池セルの電圧を測定する電圧測定回路と、前記電圧測定回路にて測定された前記電池セルの電圧を監視する電池監視部と、該電池監視部より出力される高電圧の監視信号を低電圧の監視信号に変換し出力する電圧整合部と、該低電圧の監視信号の通信を行う第1の通信部とを備えた電池監視ユニットとからなる電池モジュールを複数有し、該複数の電池モジュールの前記複数の電池セル同士を電力線で内部接続すると共に前記第1の通信部同士を通信線で内部接続した電池パックと、
前記複数の第1の通信部と通信線を介して前記低電圧の監視信号の通信を行う第2の通信部と、前記第2の通信部より入力される前記低電圧の監視信号を基に前記電池パックの前記複数の電池セルの充放電を制御する電池制御部とを有した電池制御ユニットと、
前記複数の電池セルとは別に低電圧の電流を供給する電源供給手段とを備え、
前記電池監視部は、前記電池セルより高電圧の電流を供給されて作動する一方、前記第1の通信部、前記第2の通信部及び前記電池制御部は、前記電源供給手段より前記所定の低電圧の電流を供給されて作動することを特徴とする電気自動車の電池監視装置。
A plurality of rechargeable battery cells arranged in series, a voltage measuring circuit that measures the voltage of each of the battery cells, and a battery monitoring unit that monitors the voltage of the battery cells measured by the voltage measuring circuit; A battery including a voltage matching unit that converts a high-voltage monitoring signal output from the battery monitoring unit into a low-voltage monitoring signal and outputs the low-voltage monitoring signal; and a first communication unit that communicates the low-voltage monitoring signal A battery pack having a plurality of battery modules each composed of a monitoring unit, and internally connecting the plurality of battery cells of the plurality of battery modules with a power line, and internally connecting the first communication units with a communication line;
Based on the second communication unit that communicates the low-voltage monitoring signal with the plurality of first communication units via a communication line, and the low-voltage monitoring signal input from the second communication unit A battery control unit having a battery control unit that controls charging and discharging of the plurality of battery cells of the battery pack;
Power supply means for supplying a low-voltage current separately from the plurality of battery cells,
The battery monitoring unit operates by being supplied with a higher voltage current than the battery cell, while the first communication unit, the second communication unit, and the battery control unit are configured to receive the predetermined power from the power supply unit. A battery monitoring device for an electric vehicle, which operates by being supplied with a low-voltage current.
前記電源供給手段から前記第1の通信部への電力の供給・非供給を切り換える第1の電源切換手段をさらに有し、
該第1の電源切換手段は、前記電池制御ユニットにより切換制御されることを特徴とする、請求項1に記載の電気自動車の電池監視装置。
A first power supply switching means for switching power supply / non-supply from the power supply means to the first communication unit;
The battery monitoring device for an electric vehicle according to claim 1, wherein the first power source switching means is controlled to be switched by the battery control unit.
前記電池モジュールは、前記電池セルから前記電池監視部への電力の供給・非供給を切り換える第2の電源切換手段をさらに有し、
該第2の電源切換手段は、前記電池制御手段により切換制御されることを特徴とする、請求項1または2に記載の電気自動車の電池監視装置。
The battery module further includes a second power supply switching unit that switches supply / non-supply of power from the battery cell to the battery monitoring unit,
The battery monitoring apparatus for an electric vehicle according to claim 1 or 2, wherein the second power source switching means is controlled to be switched by the battery control means.
前記第2の電源切換手段は、前記電池制御ユニットにより前記第1の電源切換手段が切換制御されたことによる前記電源供給手段から前記第1の通信部への電力の供給・非供給に応じて切換制御されることを特徴とする、請求項3に記載の電気自動車の電池監視装置。   The second power supply switching unit is configured to respond to supply / non-supply of power from the power supply unit to the first communication unit by switching control of the first power supply switching unit by the battery control unit. 4. The battery monitoring device for an electric vehicle according to claim 3, wherein switching control is performed. 前記通信線は、CANに接続されてなることを特徴とする、請求項1乃至4のいずれかに記載の電気自動車の電池監視装置。   The battery monitoring device for an electric vehicle according to claim 1, wherein the communication line is connected to a CAN.
JP2009127672A 2009-05-27 2009-05-27 Device for monitoring battery of electric vehicle Pending JP2010279120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009127672A JP2010279120A (en) 2009-05-27 2009-05-27 Device for monitoring battery of electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009127672A JP2010279120A (en) 2009-05-27 2009-05-27 Device for monitoring battery of electric vehicle

Publications (1)

Publication Number Publication Date
JP2010279120A true JP2010279120A (en) 2010-12-09

Family

ID=43425563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009127672A Pending JP2010279120A (en) 2009-05-27 2009-05-27 Device for monitoring battery of electric vehicle

Country Status (1)

Country Link
JP (1) JP2010279120A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132582A1 (en) * 2011-03-31 2012-10-04 本田技研工業株式会社 Electric vehicle control device
DE102013226581A1 (en) 2012-12-19 2014-07-03 Omron Automotive Electronics Co., Ltd. BATTERY MANAGEMENT SYSTEM AND INTEGRATED BATTERY MANAGEMENT DEVICE
JP2020504421A (en) * 2017-07-25 2020-02-06 エルジー・ケム・リミテッド Battery management unit and battery pack including the same
JP7306203B2 (en) 2019-10-02 2023-07-11 スズキ株式会社 battery device
WO2023176129A1 (en) * 2022-03-16 2023-09-21 株式会社村田製作所 Storage battery module and storage battery system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11339858A (en) * 1998-05-28 1999-12-10 Honda Motor Co Ltd Battery condition detecting device and battery condition detecting unit
JP2008220074A (en) * 2007-03-06 2008-09-18 Hitachi Vehicle Energy Ltd Accumulator, storage battery controller, and motor driver
JP2009017663A (en) * 2007-07-04 2009-01-22 Yazaki Corp Failure detection device
JP2009017657A (en) * 2007-07-03 2009-01-22 Sanyo Electric Co Ltd Power supply system for vehicle
JP2009058363A (en) * 2007-08-31 2009-03-19 Yazaki Corp Voltage detecting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11339858A (en) * 1998-05-28 1999-12-10 Honda Motor Co Ltd Battery condition detecting device and battery condition detecting unit
JP2008220074A (en) * 2007-03-06 2008-09-18 Hitachi Vehicle Energy Ltd Accumulator, storage battery controller, and motor driver
JP2009017657A (en) * 2007-07-03 2009-01-22 Sanyo Electric Co Ltd Power supply system for vehicle
JP2009017663A (en) * 2007-07-04 2009-01-22 Yazaki Corp Failure detection device
JP2009058363A (en) * 2007-08-31 2009-03-19 Yazaki Corp Voltage detecting device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132582A1 (en) * 2011-03-31 2012-10-04 本田技研工業株式会社 Electric vehicle control device
CN103442935A (en) * 2011-03-31 2013-12-11 本田技研工业株式会社 Electric vehicle control device
JP5553935B2 (en) * 2011-03-31 2014-07-23 本田技研工業株式会社 Electric vehicle control device
JPWO2012132582A1 (en) * 2011-03-31 2014-07-24 本田技研工業株式会社 Electric vehicle control device
TWI457251B (en) * 2011-03-31 2014-10-21 本田技研工業股份有限公司 Controller for electric vehicle
US9211803B2 (en) 2011-03-31 2015-12-15 Honda Motor Co., Ltd. Electric vehicle control device
DE102013226581A1 (en) 2012-12-19 2014-07-03 Omron Automotive Electronics Co., Ltd. BATTERY MANAGEMENT SYSTEM AND INTEGRATED BATTERY MANAGEMENT DEVICE
JP2020504421A (en) * 2017-07-25 2020-02-06 エルジー・ケム・リミテッド Battery management unit and battery pack including the same
US11070067B2 (en) 2017-07-25 2021-07-20 Lg Chem, Ltd. Battery management unit and battery pack including same
JP6996065B2 (en) 2017-07-25 2022-01-17 エルジー・ケム・リミテッド Battery management unit and battery pack containing it
JP7306203B2 (en) 2019-10-02 2023-07-11 スズキ株式会社 battery device
WO2023176129A1 (en) * 2022-03-16 2023-09-21 株式会社村田製作所 Storage battery module and storage battery system

Similar Documents

Publication Publication Date Title
JP6593363B2 (en) Power system
US9276422B2 (en) Battery pack and electric power consuming apparatus
US20130154569A1 (en) Electric energy storage system and method of maintaining the same
US9160191B2 (en) Battery pack and method for minimizing cell voltage deviations
US10230249B2 (en) Battery pack, method for charging/discharging same, and power consumption device
US9873393B2 (en) On-vehicle electrical storage apparatus
KR101456552B1 (en) Battery with cell balancing
JP5569418B2 (en) Battery monitoring device
US20120326654A1 (en) Storage battery
JP2011078249A (en) Battery management device, secondary battery device, and vehicle
CN101051760A (en) Battery pack and electric device using the same
KR20150013302A (en) Charge balancing in a battery
KR102161639B1 (en) Battery system and method for the operation thereof
JP2012113856A (en) Method of replacing power supply stack, control device, and control program
CN107612054B (en) Battery system for supplying electric energy to an electric network
JP6087675B2 (en) Battery module
GB2467231A (en) High voltage battery controller with isolation
JP2013031237A (en) Battery device and power supply system
US20140333132A1 (en) Battery System
JP4930452B2 (en) Battery pack adjustment device
JP2010279120A (en) Device for monitoring battery of electric vehicle
US9634500B2 (en) Storage battery system
JP5423955B2 (en) Electric vehicle battery module
US20130260213A1 (en) Battery System
US20100327808A1 (en) Control unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130508