WO2023175912A1 - 変速装置 - Google Patents

変速装置 Download PDF

Info

Publication number
WO2023175912A1
WO2023175912A1 PCT/JP2022/012641 JP2022012641W WO2023175912A1 WO 2023175912 A1 WO2023175912 A1 WO 2023175912A1 JP 2022012641 W JP2022012641 W JP 2022012641W WO 2023175912 A1 WO2023175912 A1 WO 2023175912A1
Authority
WO
WIPO (PCT)
Prior art keywords
variator
gear
power
torque
transmission
Prior art date
Application number
PCT/JP2022/012641
Other languages
English (en)
French (fr)
Inventor
琢麻 鯉沼
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to KR1020247020630A priority Critical patent/KR20240105485A/ko
Priority to PCT/JP2022/012641 priority patent/WO2023175912A1/ja
Priority to JP2024507415A priority patent/JPWO2023175912A1/ja
Priority to CN202280086561.0A priority patent/CN118489041A/zh
Publication of WO2023175912A1 publication Critical patent/WO2023175912A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/46Automatic regulation in accordance with output requirements
    • F16H61/472Automatic regulation in accordance with output requirements for achieving a target output torque

Definitions

  • the present disclosure relates to a transmission device mounted on a vehicle such as a wheel loader or a wheeled hydraulic excavator.
  • Patent Document 1 power generated by a prime mover (1) serving as a power source is transmitted to a compound planetary gear mechanism (13) via a floating gear (11), and the compound planetary gear mechanism (13) generates power.
  • a power split transmission that distributes (divides) the power in two directions is described.
  • One of the powers divided by the compound planetary gear mechanism (13) is transmitted through the first stepless adjustment unit (18) and the second stepless adjustment unit (21) to the drive section (23) that becomes the output shaft or to the compound
  • the signal is transmitted to the planetary gear mechanism (13).
  • the other power divided by the composite planetary gear mechanism (13) is transmitted to the drive unit (23) through meshing of the gears.
  • An object of the present invention is to provide a transmission that can output sufficient torque even with a small and inexpensive second stepless adjustment unit (second variator) with a small maximum output torque.
  • a continuously variable transmission includes an input member connected to a power source, an output member connected to a load, a planetary mechanism provided between the input member and the output member, and a planetary mechanism connected to the planetary mechanism.
  • the planetary mechanism includes a connected first variator, a second variator provided separately from the first variator, and a controller that changes the rotation speed of the first variator, and the planetary mechanism includes a carrier and a rotation speed of the carrier.
  • the first member of the members constituting the planetary mechanism is configured to include a first sun member that rotates around a central axis and a second sun member that rotates around a rotational center axis of the carrier,
  • a second member which is connected to the input member directly or through another member and is different from the first member of the members constituting the planetary mechanism, is connected to the first variator directly or through another member.
  • a third member which is different from the first member and the second member of the members constituting the planetary mechanism, is connected to the output member directly or through another member, and is connected to the planetary mechanism.
  • a planet member and a balance member are supported on the carrier, and the planet member and the balance member rotate and transmit power to the first sun member and the second sun member while revolving around the rotation center axis of the carrier, and the planetary mechanism is , the second variator is configured to be able to distribute the torque transmitted from the power source to the planetary mechanism between the second member and the third member, and the second variator is configured to distribute the power transmitted from the first variator to the load or the third member. Power that is configured to be transmitted to the power source or to transmit power transmitted from the load or the power source to the first variator, and absorbs power between the second variator and the first variator.
  • An absorption device is provided, and the controller changes the rotational speed of the output member relative to the rotational speed of the input member by changing the rotational speed of the first variator, and changes the absorption torque of the first variator.
  • the power absorption device absorbs the power, thereby increasing the torque of the output member.
  • a continuously variable transmission includes an input member connected to a power source, an output member connected to a load, a planetary mechanism provided between the input member and the output member, and a planetary mechanism provided between the input member and the output member.
  • the planetary mechanism includes a first variator connected to the mechanism, a second variator provided separately from the first variator, and a controller that changes the rotational speed of the first variator.
  • the carrier includes three members: a sun member that rotates around the rotation center axis of the carrier; and a ring member that is located radially outside the sun member and rotates around the rotation center axis of the carrier; A first member of the three members of the planetary mechanism is connected to the input member directly or through another member, and a first member of the three members of the planetary mechanism is connected to the input member, which is different from the first member of the three members of the planetary mechanism.
  • the two members are connected to the first variator directly or through another member, and the third member, which is different from the first member and the second member of the three members of the planetary mechanism, is connected to the first variator.
  • the output member is connected to the output member directly or through another member, and transmits power to the carrier of the planetary mechanism while rotating with the sun member and the ring member while revolving around the rotation center axis of the carrier.
  • a planet member is supported, the planetary mechanism is configured to be able to distribute torque transmitted from the power source to the second member and the third member, and the second variator is configured to receive torque transmitted from the first variator.
  • between the second variator and the first variator; is provided with a power absorption device that absorbs power
  • the controller changes the rotational speed of the output member relative to the rotational speed of the input member by changing the rotational speed of the first variator, and the controller changes the rotational speed of the output member with respect to the rotational speed of the input member.
  • the power absorption device absorbs the power, thereby increasing the torque of the output member.
  • FIG. 2 is a left side view showing a wheel loader equipped with a transmission according to a first embodiment.
  • FIG. 2 is a partially cutaway side view showing the transmission in FIG. 1.
  • FIG. FIG. 1 is a configuration diagram showing a transmission according to a first embodiment.
  • FIG. 4 is a configuration diagram showing the transmission device in FIG. 3 together with the inside of a planetary mechanism.
  • 5 is an enlarged view of part (A) in FIG. 4.
  • FIG. FIG. 5 is an explanatory diagram of the planetary mechanism in FIG. 4 viewed from the power source side.
  • FIG. 5 is a characteristic diagram showing the relationship between the rotational speeds of each member of the planetary mechanism in FIG. 4 ("No1-A" in Table 4, which will be described later).
  • FIG. 1 is a configuration diagram showing a transmission according to a first embodiment.
  • FIG. 4 is a configuration diagram showing the transmission device in FIG. 3 together with the inside of a planetary mechanism.
  • 5 is an enlarged view of part (A)
  • FIG. 4 is a characteristic diagram showing the relationship between the rotational speeds of the respective members of the planetary mechanism "No1-B” in Table 4, which will be described later.
  • FIG. 4 is a characteristic diagram showing the relationship between the rotational speeds of the respective members of the planetary mechanism "No1-C” in Table 4, which will be described later.
  • FIG. 3 is a characteristic diagram showing the relationship between speed ratio and torque.
  • FIG. 2 is a configuration diagram showing an example of a power absorption device when the variator is an electric motor/generator. It is a block diagram which shows an example of a power absorption device when a variator is a hydraulic pump motor.
  • FIG. 3 is a characteristic diagram showing an example of changes in pressure and volume over time when the relief start pressure of the relief valve is fixed.
  • FIG. 3 is a characteristic diagram showing an example of changes in pressure and volume over time when the relief start pressure of the relief valve can be changed. It is a block diagram which shows another example of a power absorption device when a variator is a hydraulic pump motor. 5 is an enlarged view of part (B) in FIG. 4.
  • FIG. 2 is a driving force diagram showing an ideal relationship between vehicle speed and traction force of a wheel loader.
  • FIG. 3 is a driving force diagram showing the relationship between vehicle speed and traction force of the wheel loader according to the first embodiment.
  • FIG. 4 is a configuration diagram similar to FIG. 3 showing a first modification (configuration without external lockup).
  • FIG. 4 is a configuration diagram similar to FIG.
  • FIG. 3 illustrating a second modification (a configuration in which internal lockup is performed using a brake).
  • 4 is a configuration diagram similar to FIG. 3 showing a third modification (a configuration in which internal lockup is performed by a brake and there is no idler member);
  • FIG. 2 is a driving force diagram showing the relationship between vehicle speed and traction force of a wheel loader equipped with a transmission without external lockup.
  • FIG. 2 is a driving force diagram showing the relationship between vehicle speed and traction force of a wheel loader equipped with a transmission without internal lockup.
  • FIG. 5 is a configuration diagram similar to FIG. 4 showing a fourth modification (a configuration in which the input member is connected to the first sun member and the first variator is connected to the carrier).
  • FIG. 5 is a configuration diagram similar to FIG.
  • FIG. 4 showing a fifth modification (a configuration in which the input member is connected to the first sun member and the first variator is connected to the second sun member).
  • FIG. 5 is a configuration diagram similar to FIG. 4 showing a sixth modification (a configuration in which the second variator is connected to the output member).
  • FIG. 5 is a configuration diagram similar to FIG. 4 showing a second embodiment.
  • FIG. 28 is an enlarged view of section (C) in FIG. 27.
  • FIG. 28 is an explanatory diagram of the planetary mechanism in FIG. 27 viewed from the power source side.
  • FIG. 28 is a characteristic diagram showing the relationship between the rotational speeds of three members of the planetary mechanism (“No2-A” in Table 6 described later) in FIG. 27; FIG.
  • FIG. 6 is a characteristic diagram showing the relationship between the rotational speeds of each member of the planetary mechanism "No2-B” in Table 6, which will be described later.
  • FIG. 6 is a characteristic diagram showing the relationship between the rotational speeds of each member of the planetary mechanism "No2-C” in Table 6, which will be described later.
  • FIG. 6 is a characteristic diagram showing the relationship between the rotational speeds of each member of the planetary mechanism "No2-D” in Table 6, which will be described later.
  • FIG. 6 is a characteristic diagram showing the relationship between the rotational speeds of each member of the planetary mechanism “No2-E” in Table 6, which will be described later.
  • FIG. 6 is a characteristic diagram showing the relationship between the rotational speeds of each member of the planetary mechanism "No2-F” in Table 6, which will be described later.
  • FIG. 28 is a configuration diagram similar to FIG. 27 showing a seventh modification (a configuration in which the input member is connected to the ring member and the first variator is connected to the carrier).
  • FIG. 28 is a configuration diagram similar to FIG. 27 showing an eighth modification (a configuration in which the input member is connected to the carrier and the first variator is connected to the ring member).
  • FIG. 28 is a configuration diagram similar to FIG. 27 showing a ninth modification (a configuration in which the input member is connected to the ring member and the first variator is connected to the sun member).
  • FIG. 28 is a configuration diagram similar to FIG. 27 showing a tenth modification (a configuration in which the input member is connected to the sun member and the first variator is connected to the ring member).
  • FIG. 28 is a configuration diagram similar to FIG.
  • FIG. 4 is a configuration diagram similar to FIG. 3 showing a twelfth modification (a configuration in which a second variator is connected to an input member).
  • FIG. 4 is a configuration diagram similar to FIG. 3 illustrating a thirteenth modification (a configuration in which the second variator is connected to a third connecting member connected to an idler element).
  • FIG. 4 is a configuration diagram similar to FIG. 3 showing a fourteenth modification (a configuration in which the second variator is connected to an odd-numbered gear of a multi-stage transmission mechanism).
  • FIG. 4 is a configuration diagram similar to FIG.
  • FIG. 4 is a configuration diagram similar to FIG. 3 showing a fifteenth modification (a configuration in which the second variator is connected to the first forward speed gear of the multi-stage transmission mechanism).
  • FIG. 4 is a configuration diagram similar to FIG. 3 showing a sixteenth modification (a configuration in which the second variator is connected to the third forward speed gear of the multi-stage transmission mechanism).
  • FIG. 4 is a configuration diagram similar to FIG. 3 showing a seventeenth modification (a configuration in which the second variator is connected to the second forward speed gear of the multi-stage transmission mechanism).
  • FIG. 4 is a configuration diagram similar to FIG. 3 showing an eighteenth modification (a configuration in which the second variator is connected to the fourth forward speed gear of the multi-stage transmission mechanism).
  • FIG. 4 is a configuration diagram similar to FIG.
  • FIG. 3 showing a nineteenth modification (a configuration in which the second variator is connected to the first reverse gear of the multi-stage transmission mechanism).
  • FIG. 4 is a configuration diagram similar to FIG. 3 showing a twentieth modification (a configuration in which the second variator is connected to the output member).
  • FIG. 4 is a configuration diagram similar to FIG. 3 illustrating a twenty-first modification (a configuration in which the second variator is connected to the load side rather than the output member of the transmission).
  • a wheel loader 1 is a typical example of a vehicle (work vehicle).
  • the wheel loader 1 is an articulated vehicle in which a front body 3 on which left and right front wheels 2 are provided and a rear body 5 on which left and right rear wheels 4 are provided are connected so as to be bendable in the left and right directions. It is configured as a type work vehicle. That is, the front body 3 and the rear body 5 constitute the body of the wheel loader 1.
  • a center hinge 6 and a steering cylinder (not shown) are provided between the front vehicle body 3 and the rear vehicle body 5.
  • the front vehicle body 3 and the rear vehicle body 5 are bent leftward and rightward about the center hinge 6 by extending and contracting the steering cylinder. Thereby, the wheel loader 1 can perform steering during traveling.
  • the cargo handling machine 7 includes a loader bucket 7A.
  • the rear body 5 of the wheel loader 1 is provided with a cab 8 whose interior serves as a driver's cab, an engine 9, a hydraulic pump 10, a transmission 21 serving as a transmission (power transmission device), and the like.
  • the engine 9 is a power source (prime mover) for the wheel loader 1 .
  • the power source may be configured by a single engine 9 serving as an internal combustion engine, or may be configured by, for example, an engine and an electric motor, or a single electric motor.
  • Hydraulic pump 10 is connected to engine 9.
  • the hydraulic pump 10 is a hydraulic power source for operating the cargo handling machine 7. As shown in FIG. 3, which will be described later, the hydraulic pump 10 is connected to the engine 9 via gears 10A and 10B.
  • a front axle 12 is provided on the lower side of the front vehicle body 3 and extends in the left and right directions. Left and right front wheels 2 are attached to both ends of the front axle 12.
  • a rear axle 13 is provided below the rear vehicle body 5 and extends in the left and right directions. Left and right rear wheels 4 are attached to both ends of the rear axle 13.
  • the front axle 12 is connected to a transmission 21 via a front propeller shaft 14.
  • the rear axle 13 is connected to a transmission 21 via a rear propeller shaft 15.
  • the transmission 21 speeds up and decelerates the rotation of the engine 9 and transmits the same to the front propeller shaft 14 and the rear propeller shaft 15. That is, power from the engine 9 is transmitted to the transmission 21 coupled to the engine 9.
  • the power from the engine 9 is transmitted to the front axle from the front and rear output shafts 23A, 23B of the transmission 21 through the front propeller shaft 14 and the rear propeller shaft 15 after adjusting the rotation speed and rotation direction by the transmission 21. 12 and rear axle 13. That is, as shown in FIG. 2, the transmission 21 includes an input shaft 22 connected to the engine 9, a front output shaft 23A connected to the front propeller shaft 14, and a rear output shaft 23A connected to the rear propeller shaft 15. An output shaft 23B is provided. The transmission 21 performs speed change and forward/reverse rotation switching between the input shaft 22 and the output shafts 23A, 23B by switching the power transmission path within the transmission 21.
  • the wheel loader 1 repeats an operation pattern such as a V cycle mainly for dump loading work and a load and carry for direct loading into a hopper or the like.
  • the V cycle is an operation pattern in which earth and sand etc. are excavated after the vehicle starts and loaded into a dump truck.
  • Load-and-carry is an operation pattern in which, after starting, the vehicle excavates earth and sand, transports it (high-load running), discharges it to a dump truck, and transports it (low-load running).
  • the wheel loader 1 requires frequent switching of the transmission 21 in order to obtain the optimum running speed and driving force for various work conditions such as starting, excavating, transporting, loading, and forwarding.
  • the transmission 21 is required to have high tractive force. Therefore, the transmission 21 needs to increase the reduction ratio and increase the output torque of the output shafts 23A and 23B. Furthermore, even if the vehicle speed of the wheel loader 1 is 0 km/h (the rotational speed of the output shafts 23A, 23B is 0), the rotational speed of the input shaft 22 is set at a predetermined level or higher so that the engine 9, which is the power source, does not stop. Therefore, the speed change ratio of the transmission 21 needs to be structured to be infinite. Note that the vehicle speed of the wheel loader 1 during excavation is, for example, 0 to 4 km/h.
  • the transmission 21 needs to transmit power from the input shaft 22 to the output shafts 23A, 23B with high transmission efficiency in order to save fuel.
  • the vehicle speed during transportation is, for example, 0 to 13 km/h.
  • the wheel loader 1 raises the cargo handling machine 7 while transporting the soil. For this reason, if the rising speed of the cargo handling machine 7 suddenly becomes slow, there is a possibility that the cargo handling machine 7 will collide with the dump truck. Therefore, when approaching a dump truck, it is desirable to be able to suppress rapid changes in the discharge flow rate of the hydraulic pump 10.
  • the vehicle speed for approaching the dump is, for example, 0 to 7 km/h. At this vehicle speed, it is desirable that rapid fluctuations in the rotational speed of the engine 9 can be suppressed.
  • the transmission 21 When traveling on a public road or at a work site without a load, the transmission 21 needs to transmit power from the input shaft 22 to the output shafts 23A, 23B with high transmission efficiency in order to save fuel. .
  • the vehicle speed during forwarding is, for example, 0 to 40 km/h.
  • high operability of the cargo handling machine 7 is not required. Therefore, sudden changes in the rotational speed of the engine 9 can be tolerated.
  • FIG. 17 shows an ideal driving force diagram of the wheel loader 1.
  • FIG. 17 shows an ideal driving force line Lf in the forward direction and an ideal driving force line Lr in the reverse direction (reverse direction).
  • Lf ideal driving force line
  • Lr reverse direction
  • the wheel loader 1 needs to stably climb uphill slopes of various slopes provided in a quarry or the like. For this reason, for example, at speeds of 3 km/h or more, it is desirable that the traction force be the same regardless of the vehicle speed.
  • Range A in FIG. 17 indicates a range where high traction force is required for excavation, that is, range A of the driving force line during excavation.
  • Range B in FIG. 17 indicates a range in which a traction force of equal horsepower is required regardless of the vehicle speed, that is, a range B of driving force lines of equal horsepower in the forward direction.
  • a range C indicates a range in which a traction force of equal horsepower is required regardless of the vehicle speed, that is, a range C of driving force lines of equal horsepower in the reverse direction.
  • the range B of the driving force lines of equal horsepower in the forward direction and the range C of the driving force lines of equal horsepower in the reverse direction satisfy Equation 1 below.
  • the wheel loader 1 does not excavate in the backward direction. Therefore, the maximum tractive force of the ideal driving force line Lr in the backward direction is lower than that in the forward direction.
  • the transmission 21 used in a work vehicle such as the wheel loader 1 is capable of switching between power transmission using a continuously variable transmission mechanism and power transmission using a lockup mechanism.
  • the transmission device 21 can effectively use the speed increase range of the continuously variable transmission mechanism.
  • changes in acceleration and deceleration of the vehicle can be reduced when switching from power transmission by the continuously variable transmission mechanism to power transmission by the lockup mechanism.
  • the arrangement (gear ratio) of the planetary mechanism (planetary gear mechanism) that provides the optimal value It is preferable that the transmission efficiency of the continuously variable transmission mechanism can be improved by providing a gear arrangement (gear arrangement).
  • the transmission of Patent Document 1 engages either the clutch (4) or the clutch (8) and releases the other in the first driving region, and also engages the clutch (26) and disengages the clutch (29). ) is released.
  • the first driving range is the power transmission connection state from when the vehicle starts to accelerating, and corresponds to a range of about 0 to 20 km/h in forward and backward movement.
  • the power generated by the prime mover (1) serving as the power source is transmitted to the first stepless adjustment unit (18) and the ring gear (15) via the compound planetary gear mechanism (13). divided into
  • the power transmitted to the first stepless adjustment unit (18) is transmitted to the drive section (23) serving as the output shaft via the second stepless adjustment unit (21), and then to the ring gear (15).
  • the power is transmitted to the drive unit (23) by the meshing of the gears.
  • the first stepless adjustment unit (18) and the second stepless adjustment unit (21) are hydraulic pump motors, and power can be transmitted between them while changing the speed continuously.
  • the torque generated by the prime mover (1) is transmitted at a constant ratio to the first stepless adjustment unit (18) and the ring gear (15) by the compound planetary gear mechanism (13).
  • the ratio of torque transmission is determined by the tooth number ratio of the first sun gear (16), ring gear (15), and gears of the double planetary gear mechanism (14) of the compound planetary gear mechanism (13).
  • the wheel loader is a vehicle that performs excavation and loading, it is necessary to increase the torque of the drive unit (23), which is the output shaft, when the vehicle speed is low. For this reason, when the transmission of Patent Document 1 is used in a wheel loader, there is a risk that the output torque of the drive section (23) serving as the output shaft may be insufficient during excavation.
  • a second stepless adjustment unit (21) with a large maximum output torque to compensate for the insufficient torque of the drive section (23) serving as the output shaft.
  • the second stepless adjustment unit (21) may also become larger.
  • the transmission 21 includes a planetary continuously variable transmission mechanism 24.
  • the planetary continuously variable transmission mechanism 24 includes a planetary gear mechanism 29, a first variator 33, and a second variator 34.
  • the first variator 33 increases the torque of the terminal connected to the first variator 33 (the first connecting member 30), and increases the torque of the terminal connected to the idler gear 28B (the third By increasing the torque of the connecting member 32), it is possible to increase the torque of the output shaft 23 (23A, 23B).
  • a power absorption device 38 is provided between the first variator 33 and the second variator 34 to absorb power.
  • the power absorption device 38 is a device that disposes power (power disposal device) and/or a device that stores (stores) power (power storage device, power storage device, power storage source).
  • the power absorption device 38 absorbs (disposes or stores) more power than the second variator 34 can absorb out of the power generated by the first variator 33 .
  • control for absorbing (disposing or storing) such power will be referred to as torque boost control.
  • torque boost control control for absorbing (disposing or storing) such power.
  • the transmission 21 has two modes: a mode in which power is transmitted while continuously changing the speed of the planetary continuously variable transmission mechanism 24; 24 is internally locked up to transmit power, and a mode in which power is transmitted by an external lock-up mechanism (direct coupling mechanism 27) that does not go through the planetary gear mechanism 29.
  • Power transmission by internal lockup is achieved by rotation of a rotating member (e.g., first sun gear) connected to the first variator 33 among three rotating members (e.g., carrier, first sun gear, and second sun gear) of the planetary gear mechanism 29. This is done by stopping the . Thereby, the speed increasing range of the planetary continuously variable transmission mechanism 24 can be effectively used.
  • power transmission by external lockup is performed via an external lockup mechanism (directly coupled mechanism 27) attached to the outside of the planetary continuously variable transmission mechanism 24.
  • power transmission by external lockup is performed in a state where power transmission by the planetary continuously variable transmission mechanism 24 is stopped.
  • This stop causes the rotating member (for example, the first sun gear) connected to the first variator 33 to be released (or the torque This is done by reducing
  • power can be transmitted with higher transmission efficiency than the internal lockup, and power can be transmitted by further increasing the speed range of the planetary continuously variable transmission mechanism 24.
  • the planetary gear mechanism 29 includes two sun gears 29B and 29C, and a central axis S of these two sun gears 29B and 29C (FIG. ) and a carrier that rotatably supports the planet gear 29D and the balance gear 29E and rotates around the central axis S of the two sun gears 29B and 29C. 29A.
  • the transmission efficiency of the continuously variable transmission mechanism 24 can be improved.
  • FIG. 3 shows the planetary gear mechanism 29 of the transmission 21 as a box
  • FIG. 4 also shows the inside of the planetary gear mechanism 29, that is, the specific gear arrangement of the planetary gear mechanism 29. It shows.
  • the transmission 21 includes an input shaft 22 as an input member, an output shaft 23 as an output member, a planetary continuously variable transmission mechanism 24 as a continuously variable transmission mechanism (main transmission mechanism), and a controller 25.
  • the transmission 21 includes a multi-stage transmission mechanism 26 as a stepped transmission mechanism (sub-transmission mechanism) and a direct coupling mechanism 27 as an external lock-up mechanism.
  • the direct coupling mechanism 27 includes a first clutch 27C that is connected when power is transmitted through the direct coupling mechanism 27.
  • the transmission 21 also includes an idler element 28 (idler shaft 28A, idler gear 28B) that mechanically couples the planetary continuously variable transmission mechanism 24, the multistage transmission mechanism 26, and the direct coupling mechanism 27.
  • the planetary continuously variable transmission mechanism 24 constitutes a first power transmission path.
  • the direct coupling mechanism 27 constitutes a second power transmission path.
  • the engine 9 is connected to the input shaft 22 of the transmission 21.
  • the input shaft 22 is provided with a gear 10B for transmitting power to the hydraulic pump 10. Further, the input shaft 22 is provided with an input gear 27A of the direct coupling mechanism 27.
  • the input shaft 22 is connected to a planetary continuously variable transmission mechanism 24 (more specifically, a planetary gear mechanism 29) via a second connecting member 31, which will be described later.
  • power is output from the output shaft 23 of the transmission 21.
  • the output shaft 23 of the transmission 21 also serves as an output shaft 53 of a multi-stage transmission mechanism 26, which will be described later. Power input from the input shaft 22 is transmitted to the idler element 28 via the planetary continuously variable transmission mechanism 24 or the direct coupling mechanism 27.
  • the power transmitted to the idler element 28 is output from the output shaft 23 through the multi-stage transmission mechanism 26.
  • the planetary continuously variable transmission mechanism 24 forms an internal lockup state by stopping the first connecting member 30 that connects the planetary gear mechanism 29 (for example, the first sun gear 29B) and the first variator 33. be done.
  • This internal lockup state is formed, for example, by operating the brake on the first variator 33 to stop the first connecting member 30.
  • the planetary continuously variable transmission mechanism 24 is internally locked up, the power input from the input shaft 22 is transferred to the second connecting member that connects the planetary gear mechanism 29 (for example, the carrier 29A) and the input shaft 22. 31'', the ⁇ planetary gear mechanism 29'', and the ⁇ third connecting member 32 that connects the planetary gear mechanism 29 (for example, the second sun gear 29C) and the idler element 28''.
  • Such internal lockup will be described later.
  • the power transmission path for transmitting the power input from the engine 9 to the input shaft 22 to the multi-stage transmission mechanism 26 is the following three paths (A), (B), and (C). You can choose any of them.
  • a stepless transmission path (planetary stepless transmission mechanism 24 (first power transmission path via). At this time, the first clutch 27C is released, and the second clutch 36 and third clutch 37 are connected (fastened).
  • the third clutch 37 is connected (fastened) as necessary.
  • C External lock-up path that transmits the power input from the engine 9 to the input shaft 22 to the multi-stage transmission mechanism 26 via the direct-coupled mechanism 27 (direct-coupled mechanism 27 without passing through the planetary continuously variable transmission mechanism 24 (second power transmission path via).
  • the first clutch 27C is connected (fastened), and the second clutch 36 and third clutch 37 are released as necessary.
  • the vehicle speed is in the range of 0 to 7 km/h while excavating and transporting.
  • the reasons for this are as follows (a) to (c).
  • the vehicle When it is suitable to transmit power via the direct coupling mechanism 27, the vehicle is being transported and the vehicle speed is in the range of 9 to 13 km/h. Also, the vehicle is being forwarded and the vehicle speed is in the range of 9 to 40 km/h.
  • the reason for this is as follows. That is, the external lockup that transmits power via the direct coupling mechanism 27 has the highest power transmission efficiency. That is, since the external lockup transmits power by meshing the pair of gears 27A and 27B, the transmission efficiency is higher than that of the internal lockup, which transmits the power via the planetary gear mechanism 29. Note that if the vehicle speed is 9 km/h or less, there is a possibility that excavation will suddenly start during forwarding or transportation.
  • Table 1 below shows combinations of power transmission paths for the transmission 21 with both internal lockup and external lockup.
  • the multi-stage transmission mechanism 26 includes four forward speeds and one reverse speed. For this reason, when transmitting power via the direct coupling mechanism 27 (external lockup mechanism), the multi-stage transmission mechanism 26 has three forward speeds: 1st forward speed, 2nd forward speed, 3rd forward speed, 4th forward speed, and 1st reverse speed. You can choose.
  • the transmission is performed via the planetary continuously variable transmission mechanism 24 without passing through the direct coupling mechanism 27.
  • Power transmission may also be performed by
  • the operation of the planetary continuously variable transmission mechanism 24 at this time may be a continuously variable speed operation or may be in an internally locked-up state.
  • the transmission efficiency becomes lower than that in internal lockup and external lockup. Since this reduces the transmission efficiency of the transmission 21, it is preferable to select the combination of power transmission paths shown in Table 1 above.
  • FIG. 18 shows a driving force diagram of the transmission 21 in which both internal lockup and external lockup exist.
  • forward movement includes 1st forward speed continuously variable transmission Lf1, 1st forward speed internal lockup Lf2, 1st forward speed external lockup Lf3, 2nd forward speed external lockup Lf4, 3rd forward speed external lockup Lf5, It is possible to change gears in 6 stages: 4 forward speeds and external lock-up Lf6.
  • the traction force decreases when the vehicle speed is between 0 and 4 km/h, and there is a possibility that the traction force necessary for excavation cannot be sufficiently secured.
  • torque boost control which will be described later, it is possible to bring the vehicle as close as possible to the ideal driving force line Lf. can.
  • the reverse gear can be shifted in three stages: 1st reverse speed continuously variable shift Lr1, 1st reverse internal lockup Lr2, and 1st reverse external lockup Lr3.
  • Lr1 1st reverse speed continuously variable shift
  • Lr2 1st reverse internal lockup Lr2
  • 1st reverse external lockup Lr3 1st reverse external lockup Lr3.
  • the traction force decreases when the vehicle speed is between 0 and 5 km/h, and it may not be possible to secure enough traction force to get out of a situation where the wheels 2 and 4 have fallen into a dent in the road surface. There is sex.
  • in order to secure tractive force when the vehicle is traveling at the continuously variable speed Lr1 of 1 reverse speed, it is possible to bring the vehicle as close to the ideal driving force line Lr as possible by performing torque boost control, which will be described later. can.
  • FIG. 19 shows a transmission device 21A according to a first modification that includes only an internal lockup of the planetary continuously variable transmission mechanism 24 as a means for realizing lockup.
  • the transmission 21A according to this first modification is capable of internal lockup operation of the planetary continuously variable transmission mechanism 24, but does not include an external lockup mechanism (directly coupled mechanism 27).
  • Table 2 below shows combinations of power transmission paths for the transmission 21A with only internal lockup.
  • the multi-stage transmission mechanism 26A has five forward speeds and two reverse speeds. It has a gearbox.
  • the first modification includes a blocking mechanism 40 for realizing internal lockup as described later.
  • the block mechanism 40 may be configured to also serve as a power absorption device 38, which will be described later, or may be configured to be provided separately from the power absorption device 38.
  • FIG. 20 shows a transmission 21B according to a second modification.
  • the transmission 21B according to the second modification example also omits the external lockup mechanism like the first modification example.
  • the second modification includes a brake mechanism 41 for realizing internal lockup as described later.
  • FIG. 21 shows a transmission 21C according to a third modification.
  • the transmission 21C according to the third modification omits the external lock-up mechanism, and in addition to being provided with the brake mechanism 41, the idler element 28 is also omitted. That is, in the case of a configuration in which the direct coupling mechanism 27 (external lockup) is omitted, the idler element 28 can also be omitted.
  • FIG. 22 shows transmissions 21A, 21B, and 21C (FIGS. 19, 20, and 21) that are equipped with a planetary continuously variable transmission mechanism 24 (internal lockup) but not equipped with a direct coupling mechanism 27 (external lockup).
  • the diagram shows the driving force diagram.
  • forward movement includes 1st forward speed continuously variable transmission Lf1, 1st forward speed internal lockup Lf2, 2nd forward speed internal lockup Lf3, 3rd forward speed internal lockup Lf4, 4th forward speed internal lockup Lf5, It is possible to change gears in 6 stages: 5 forward speeds and internal lockup Lf6.
  • the reverse gear can be changed in three stages: 1st reverse speed continuously variable speed Lr1, 1st reverse speed internal lockup Lr2, and 2nd reverse speed internal lockup Lr3.
  • a configuration having only an external lockup can be realized, for example, by not performing an internal lockup operation in the transmission 21 (FIGS. 3 and 4) of the first embodiment.
  • Table 3 below shows combinations of power transmission paths of the transmission 21 that is equipped with an external lockup (direct coupling mechanism 27) but does not perform an internal lockup operation.
  • FIG. 23 shows a driving force diagram of the transmission 21 that does not perform an internal lock-up operation.
  • forward movement is performed by continuously variable transmission Lf1 for forward 1st speed, external lockup Lf2 for 1st forward speed, external lockup Lf3 for 2nd forward speed, external lockup Lf4 for 3rd forward speed, and external lockup Lf5 for 4th forward speed. It is possible to change gears in 5 stages.
  • the vehicle can be shifted in two stages: reverse 1st speed continuously variable speed Lr1 and reverse 1st speed external lockup Lr2.
  • the planetary continuously variable transmission mechanism 24 includes a planetary gear mechanism 29 , a first variator 33 , a second variator 34 , a transmission element 35 , a second clutch 36 , and a third clutch 37 .
  • the planetary gear mechanism 29 is connected to the first output side (the first variator 33 side) via the first connecting member 30.
  • the planetary gear mechanism 29 is connected to the input side (engine 9 side) via a second connecting member 31.
  • the planetary gear mechanism 29 is connected to the second output side (idler element 28 side) via a third connecting member 32.
  • the first variator 33 and the second variator 34 are constituted by an electric motor/generator (an electric motor, an electric generator), a hydraulic pump/motor (a hydraulic pump, a hydraulic motor), or the like. Specifically, when the first variator 33 is composed of an electric motor, the second variator 34 is composed of an electric generator, and when the first variator 33 is composed of a hydraulic pump, the second variator 34 is composed of an electric motor. is constituted by a hydraulic motor. When the rotational speed of the first variator 33 and the rotational speed of the second variator 34 are different, the first variator 33 and the second variator 34 can perform power transmission between them while changing the speed steplessly. It is configured.
  • a transmission element 35 is provided between the first variator 33 and the second variator 34 to transmit power therebetween.
  • the transmission element 35 is constituted by, for example, electrical wiring or hydraulic piping.
  • a power absorption device 38 configured as a power storage source (power storage device) is attached in the middle of the transmission element 35.
  • the power absorption device 38 can be configured by, for example, a hydraulic accumulator or a storage battery. The power absorption device 38 will be described later.
  • the functions of the first variator 33, the second variator 34, and the transmission element 35 may be configured by an infinite variable ratio transmission (IVT).
  • IVT infinite variable ratio transmission
  • a second clutch 36 is provided between the planetary gear mechanism 29 and the first variator 33, that is, between the first connecting member 30 and the first variator 33.
  • the second clutch 36 is configured by, for example, a clutch (friction plate) by frictional connection, a dog clutch, or a dog clutch with synchromesh.
  • the second clutch 36 mechanically couples (connects) and releases the first coupling member 30 and the first variator 33. That is, the second clutch 36 switches between transmission and release of power between the planetary gear mechanism 29 and the first variator 33.
  • the controller 25 is configured to include, for example, a microcomputer equipped with an arithmetic circuit (CPU), memory, and the like.
  • the controller 25 controls engagement and release of the first clutch 27C, engagement and release of the second clutch 36, and engagement and release of the third clutch 37.
  • the controller 25 controls the rotation speed of the first variator 33.
  • the controller 25 controls the rotation speed of the second variator 34 as necessary.
  • the controller 25 controls the transmission element 35 and the power absorption device 38 as necessary.
  • the controller 25 controls a block mechanism 40 (FIG. 19) and a brake mechanism 41 (FIGS. 20 and 21), which will be described later, as necessary.
  • the controller 25 controls engagement and release of clutches 58, 59, 60, 66, 67, 68, and 69 of a multi-stage transmission mechanism 26, which will be described later.
  • the controller 25 controls engagement and release of the second clutch 36. For example, when power transmission by the planetary continuously variable transmission mechanism 24 is not required, the controller 25 outputs a signal to release the second clutch 36, thereby releasing the second clutch 36. Thereby, the rotation of the first variator 33 can be stopped (or reduced), and power loss due to the rotation of the first variator 33 can be reduced.
  • the second variator 34 is connected to the idler element 28 via a third clutch 37.
  • the third clutch 37 switches between transmission and release of power between the second variator 34 and the idler element 28 . That is, the third clutch 37 is provided between the second variator 34 and the idler element 28.
  • the idler element 28 includes an idler shaft 28A and an idler gear 28B provided on the idler shaft 28A.
  • the idler shaft 28A is connected to the lockup gear 27B of the direct coupling mechanism 27 (more specifically, the rotating shaft 27B1 of the lockup gear 27B) via the first clutch 27C.
  • the idler shaft 28A is connected to the second variator 34 via a transmission 39 and a third clutch 37.
  • the idler gear 28B meshes with a third connecting member 32 and is connected to the planetary gear mechanism 29 via the third connecting member 32.
  • a transmission 39 that changes speed between the second variator 34 and the idler element 28 is provided between the second variator 34 and the idler element 28 .
  • This transmission 39 may be omitted.
  • a third clutch 37 is provided between the idler shaft 28A of the idler element 28 and the rotation shaft of the second variator 34, and the third clutch 37 connects the idler shaft 28A and the rotation shaft of the second variator 34. (conclusion) and release.
  • the third clutch 37 is constituted by, for example, a clutch (friction plate) using friction bonding, a dog clutch, or a dog clutch with synchromesh.
  • the third clutch 37 mechanically couples (connects) and releases the second variator 34 and the idler element 28 .
  • the controller 25 controls engagement and release of the third clutch 37. For example, when power transmission by the second variator 34 is not required, the controller 25 outputs a signal to release the third clutch 37, thereby releasing the third clutch 37. Thereby, the rotation of the second variator 34 can be stopped (or reduced), and power loss due to the rotation of the second variator 34 can be reduced. However, under these conditions, the third clutch 37 does not necessarily need to be released.
  • the power transmitted from the engine 9 to the second connecting member 31 is distributed by the planetary gear mechanism 29 to the first connecting member 30 connected to the first variator 33 and the third connecting member 32 connected to the idler element 28.
  • the power distributed to the first connecting member 30 is transmitted to the idler element 28 through the second clutch 36 , first variator 33 , transmission element 35 , second variator 34 , third clutch 37 , and transmission 39 .
  • the power distributed to the third coupling member 32 is transmitted to the idler element 28.
  • the torque distribution ratio between the first connecting member 30 and the third connecting member 32 is always constant and depends on the type of the planetary gear mechanism 29 and the meshing radius of the gears.
  • the torque distribution ratio between the first connecting member 30 and the third connecting member 32 is constant. Therefore, power is not always transmitted from the first variator 33 to the second variator 34, and power may be transmitted from the second variator 34 to the first variator 33 in some cases.
  • the power transmitted from the third connecting member 32 to the idler element 28 has a smaller loss than the power transmitted from the first connecting member 30 through the first variator 33 and the second variator 34 . Therefore, the planetary continuously variable transmission mechanism 24 that combines the variators 33, 34 and the planetary gear mechanism 29 has higher power transmission efficiency than a continuously variable transmission that transmits power using only the variators.
  • the planetary gear mechanism 29 is shown as a square (block).
  • the planetary gear mechanism 29 includes a first member connected to the engine 9 as a power source, a second member connected to the first variator 33, and a third member connected to the idler element 28 on the output shaft 23 side. It has two members (rotating members).
  • the planetary gear mechanism 29 includes a carrier and two sun gears (a first sun gear and a second sun gear). Table 4 below shows combinations of the components (carrier, first sun gear, second sun gear) of the planetary gear mechanism 29. “No1-A” in Table 4 is most suitable from the standpoint of making the planetary gear mechanism 29 small and lightweight while improving the transmission efficiency of the planetary continuously variable transmission mechanism 24.
  • the planetary gear mechanism 29 includes a carrier 29A corresponding to the first member and a carrier 29A corresponding to the second member. 1 sun gear 29B, a second sun gear 29C corresponding to the third member, a planet gear 29D, and a balance gear 29E. Note that the first sun gear 29B, the second sun gear 29C, the planet gear 29D, and the balance gear 29E do not need to transmit power through meshing of gears, but may transmit power through friction of rollers (outer peripheral surfaces), for example. It's okay.
  • the engine 9 is coupled to the carrier 29A via the second connecting member 31.
  • the first sun gear 29B is connected to the first variator 33 via the first connecting member 30.
  • the second sun gear 29C is connected to the idler element 28 (idler gear 28B) via the third connecting member 32.
  • First sun gear 29B meshes with planet gear 29D.
  • Second sun gear 29C meshes with balance gear 29E.
  • Balance gear 29E meshes with planet gear 29D.
  • Planet gear 29D includes a gear portion 29D1 that meshes with first sun gear 29B, and a gear portion 29D2 that meshes with balance gear 29E.
  • the constraint conditions for establishing the planetary gear mechanism 29 are the distance between the center axis S of the first sun gear 29B and the rotation axis Sp of the planet gear 29D, and the distance between the center axis S of the second sun gear 29C and the rotation axis Sp of the planet gear 29D.
  • the distance between For this reason, the number of teeth and the gear module of each of the first sun gear 29B, planet gear 29D, gear portion 29D1 that meshes with the first sun gear 29B, second sun gear 29C, balance gear 29E, and gear portion 29D2 that meshes with the balance gear 29E are determined. It is necessary to adjust the shift of the gears and the rotation center position of the balance gear 29E to make the distances match.
  • the distances can be made to match.
  • balance gear 29E is provided between second sun gear 29C and planet gear 29D, but balance gear 29E may also be provided between first sun gear 29B and planet gear 29D. good. However, if the balance gear 29E is provided both "between the second sun gear 29C and the planet gear 29D" and “between the first sun gear 29B and the planet gear 29D," or if the balance gear 29E is not provided in both. It is possible to perform power transmission even in cases where However, preferably a balance gear is provided on either one.
  • FIG. 6 is a sectional view of the planetary gear mechanism 29 viewed from the power source side.
  • Carrier 29A, first sun gear 29B, and second sun gear 29C are arranged concentrically. That is, the center axes S (rotation center axes) of the carrier 29A, the first sun gear 29B, and the second sun gear 29C are aligned.
  • First sun gear 29B meshes with gear portion 29D1 of planet gear 29D.
  • Second sun gear 29C meshes with balance gear 29E.
  • Balance gear 29E meshes with gear portion 29D2 of planet gear 29D.
  • the balance gear 29E and the planet gear 29D rotate freely in the rotation direction by the carrier 29A and are restrained in the revolution direction with respect to the central axis S so that the respective gears mesh with each other. Therefore, the planet gear 29D rotates around the rotation axis Sp, which is the central axis of the planet gear 29D, and revolves around the central axis S of the carrier 29A. Therefore, the locus Cp of the central axis (rotation axis Sp) of the planet gear 29D becomes a circle centered on the central axis S of the carrier 29A.
  • the balance gear 29E rotates around the rotation axis Sb, which is the central axis of the balance gear 29E, and revolves around the central axis S of the carrier 29A. Therefore, the trajectory Cb of the central axis (rotation axis Sb) of the balance gear 29E becomes a circle centered on the central axis S of the carrier 29A.
  • the meshing radius rs1 of the first sun gear 29B is the meshing radius on the first sun gear 29B side when the first sun gear 29B and the planet gear 29D mesh.
  • the meshing radius rp1 of the gear portion 29D1 of the planet gear 29D is the meshing radius on the gear portion 29D1 side when the first sun gear 29B and the planet gear 29D mesh.
  • the meshing radius rs2 of the second sun gear 29C is the meshing radius on the second sun gear 29C side when the second sun gear 29C and balance gear 29E mesh.
  • the meshing radius rp2 of the gear portion 29D2 of the planet gear 29D is the meshing radius on the planet gear 29D side when the balance gear 29E and the planet gear 29D mesh.
  • the carrier 29A is connected to the member (terminal) connected to the engine 9, that is, the second connecting member 31, so the torque Tc of the carrier 29A is This is the torque that the engine 9 can generate.
  • the first sun gear 29B is connected to a member (terminal) connected to the first variator 33, that is, the first connecting member 30, the torque Ts1 of the first sun gear 29B can be generated by the first variator 33. It is torque.
  • the second sun gear 29C is connected to a member (terminal) connected to the idler element 28, that is, the third connecting member 32, the torque Ts2 of the second sun gear 29C is a torque reaction force received from the idler gear 28B.
  • the first sun gear 29B is connected to the member connected to the engine 9, that is, the second connecting member 31.
  • the torque Ts1 of the first sun gear 29B is the torque that the engine 9 can generate.
  • the carrier 29A is connected to a member connected to the first variator 33, that is, the first connecting member 30, the torque Tc of the carrier 29A is a torque that the first variator 33 can generate.
  • the second sun gear 29C is connected to the member connected to the idler element 28, that is, the third connecting member 32, the torque Ts2 of the second sun gear 29C is a torque reaction force received from the idler gear 28B.
  • the first sun gear 29B is connected to the member connected to the engine 9, that is, the second connecting member 31
  • the torque Ts1 of the first sun gear 29B is the torque that the engine 9 can generate.
  • the second sun gear 29C is connected to the member connected to the first variator 33, that is, the first connecting member 30, the torque Ts2 of the second sun gear 29C is the torque that the first variator 33 can generate.
  • the carrier 29A is connected to a member connected to the idler element 28, that is, the third connecting member 32
  • the torque Tc of the carrier 29A is a torque reaction force received from the idler gear 28B.
  • the relationship among the torque Ts1 of the first sun gear 29B, the torque Ts2 of the second sun gear 29C, and the torque Tc of the carrier 29A will be explained.
  • the first sun gear 29B and the second sun gear 29C are engaged with each other via a planet gear 29D and a balance gear 29E.
  • the balance gear 29E and the planet gear 29D rotate freely in the rotation direction by the carrier 29A, and are restrained in the revolution direction with respect to the central axis S of the carrier 29A.
  • the torque Ts1 of the first sun gear 29B, the torque Ts2 of the second sun gear 29C, and the torque Tc of the carrier 29A are determined by the meshing radius rp2 of the gear portion 29D2, the meshing radius rs2 of the second sun gear 29C, and the meshing of the gear portion 29D1. It can be calculated from the radius rp1 and the meshing radius rs1 of the first sun gear 29B.
  • the meshing radius rp2 of the gear portion 29D2 Since the meshing radius rp2 of the gear portion 29D2, the meshing radius rs2 of the second sun gear 29C, the meshing radius rp1 of the gear portion 29D1, and the meshing radius rs1 of the first sun gear 29B are determined by the meshing radius of each gear, the planetary continuously variable transmission It cannot be changed while mechanism 24 is transmitting power. Therefore, the ratio of the torque Ts1 of the first sun gear 29B, the torque Ts2 of the second sun gear 29C, and the torque Tc of the carrier 29A remains unchanged while the planetary continuously variable transmission mechanism 24 is transmitting power.
  • the controller 25 outputs a signal to control the first variator 33, and controls the torque of the first connecting member 30 (for example, the first sun gear 29B) connected to the first variator 33. That is, the controller 25 controls the torque of the first coupling member 30 (for example, the first sun gear 29B) by controlling the first variator 33. Thereby, the controller 25 indirectly transfers the torque of the second connecting member 31 (for example, the carrier 29A) connected to the engine 9 and the torque of the third connecting member 32 (for example, the second sun gear 29C) connected to the idler element 28. Control. As a result, the transmitted torque can be controlled between the second connecting member 31 (e.g. carrier 29A) connected to the engine 9 and the third connecting member 32 (e.g. second sun gear 29C) connected to the idler element 28. .
  • the second connecting member 31 e.g. carrier 29A
  • the third connecting member 32 e.g. second sun gear 29C
  • FIG. 7 shows the relationship between the rotational speeds of the planetary gear mechanism 29.
  • the speed relationship line Y1 in FIG. 7 graphically represents Equation 8. It is assumed that the rotation speed of the carrier 29A is constant. In this case, when the rotation speed of the second sun gear 29C is increased, the rotation speed of the first sun gear 29B is decreased. On the contrary, when the rotation speed of the second sun gear 29C is decreased, the rotation speed of the first sun gear 29B is increased. Based on this law, the controller 25 outputs a signal to control the first variator 33, and controls the rotational speed of the first connecting member 30 (for example, the first sun gear 29B) connected to the first variator 33.
  • the first connecting member 30 for example, the first sun gear 29B
  • the controller 25 controls the rotational speed of the first connecting member 30 (for example, the first sun gear 29B) by controlling the first variator 33.
  • the controller 25 indirectly controls the rotational speed of the second connecting member 31 (for example, the carrier 29A) connected to the engine 9 and the rotational speed of the third connecting member 32 (for example, the second sun gear 29C) connected to the idler element 28. control.
  • the gear ratio can be controlled between the second connecting member 31 (for example, the carrier 29A) connected to the engine 9 and the third connecting member 32 (for example, the second sun gear 29C) connected to the idler element 28. .
  • the planetary gear mechanism 29 has a distance between the center axis S of the first sun gear 29B and the rotation axis Sp of the planet gear 29D, and a distance between the center axis S of the second sun gear 29C and the rotation axis Sp of the planet gear 29D. It is necessary to match the distance between That is, it is only necessary that these distances can be matched.
  • the meshing radius rs1 of the first sun gear 29B, the meshing radius rp1 of the gear portion 29D1, the meshing radius rs2 of the second sun gear 29C, and the meshing radius rp2 of the gear portion 29D2 can be freely set. Can be set to .
  • the planetary gear mechanism 29 has the relational expressions (Equation 5, Equation 6, Equation 7) between the torques Tc, Ts1, and Ts2, and the relational expressions (Equation 8, Equation 9) between the rotational speeds Vs1, Vs2, and Vc.
  • the meshing radius rs1 of the first sun gear 29B, the meshing radius rp1 of the gear portion 29D1, the meshing radius rs2 of the second sun gear 29C, and the gear portion Adjust the engagement radius rp2 of 29D2.
  • Ka in Equation 9 As a result, by setting the value of Ka in Equation 9 to an ideal value and setting the slope of the speed relationship line Y1 shown in FIG.
  • the size and price of the first variator 33 are proportional to the amount of torque that the first variator 33 can absorb. Therefore, it is desirable that the absorption torque of the first variator 33 be small.
  • a specific example will be described using the first embodiment (ie, No. 1-A in Table 4).
  • the power transmission efficiency between the planetary gear mechanism 29 and the idler element 28 will be considered.
  • the transmission efficiency of the power transmission path passing through the first connecting member 30, first variator 33, transmission element 35, second variator 34, transmission 39, and third clutch 37 is about 70 to 80%.
  • the transmission efficiency of the power transmission path via the third connecting member 32 is about 99%. Therefore, the transmission efficiency of the planetary continuously variable transmission mechanism 24 can be improved when the torque distributed to the first variator 33 is smaller. Therefore, it is convenient for the planetary continuously variable transmission mechanism 24 to reduce the value of Ka in Equation 9.
  • the rotational speed of the carrier 29A (the rotational speed of the power source) is constant and Ka is decreased
  • the rotational speed of the first variator 33 will increase when the vehicle is at low speed.
  • second sun gear 29C rotates at 0. Since the second sun gear 29C is connected to the output shaft 23 via the idler element 28 and the multi-stage transmission mechanism 26, when the second sun gear 29C is 0 min -1 , the vehicle speed is 0 km/h. In other words, the gear ratio of the planetary continuously variable transmission mechanism 24 is infinite.
  • the rotation speed limit of the first sun gear 29B is about 6000 min -1 , and if the power source (engine 9) is a diesel engine, the rotation speed limit of the carrier 29A is about 2000 min -1 .
  • Sun gear rotation speed/carrier rotation speed is 3.0.
  • the lower limit value of Ka is around 0.5.
  • the planetary gear mechanism 29 composed of a carrier and two sun gears has a meshing radius rs1 of the first sun gear 29B, a meshing radius rp1 of the gear portion 29D1, a meshing radius rs2 of the second sun gear 29C, and a meshing radius of the gear portion 29D2. Since rp2 can be freely set, the value of Ka can be freely determined. Therefore, the first variator 33 can be operated up to its maximum allowable rotational speed. Thereby, the first variator 33, which is small and inexpensive, can be used, and the transmission efficiency of the planetary continuously variable transmission mechanism 24 can be improved to 80 to 93%.
  • the first variator 33 can be operated up to the maximum allowable rotational speed. Thereby, the first variator 33, which is small and inexpensive, can be used, and the transmission efficiency of the planetary continuously variable transmission mechanism 24 can be improved to 80 to 93%.
  • the first connecting member 30 connected to the first variator 33 can be operated up to the maximum allowable rotational speed. Thereby, the transmission torque of the first variator 33 is reduced, and a small and inexpensive first variator 33 can be used.
  • the terminal (also referred to as the first connecting member 30 or terminal 30) connected to the first variator 33 is connected to the first sun gear 29B.
  • the torque of the first sun gear 29B and carrier 29A is increased, and the idler gear 28B connected to the second sun gear 29C is It is possible to increase the torque of the terminal (also referred to as the third connecting member 32 or terminal 32) connected to the terminal. Since the terminal 32 connected to the idler gear 28B is connected to the output shaft 23 via the idler gear 28B and the multi-stage transmission mechanism 26, the torque of the output shaft 23 can be increased.
  • Equations 8 and 9 the relationship between Equations 8 and 9 is shown in FIG.
  • the rotational speed of the carrier 29A When the rotational speed of the carrier 29A is constant, when the rotational speed of the second sun gear 29C is low (that is, when the vehicle speed is low), the rotational speed (rotational speed) of the first sun gear 29B becomes high.
  • the rotational speed of the second variator 34 When the vehicle speed is low, the rotational speed of the second variator 34 is low, so when the absorption torque of the first variator 33 is increased, the first variator 33 transfers more power to the transmission element 35 than the second variator 34 can absorb. I'll send it. Therefore, when the speed of the vehicle is below a predetermined value, the power absorption device 38 installed on the transmission element 35 absorbs (disposes or stores) excess power. Thereby, the transmission 21 can increase the output torque when the vehicle speed is 0 to 5 km/h, and the tractive force of the wheel loader 1 increases.
  • the terminal 30 connected to the first variator 33 is connected to the carrier 29A. From the formulas 5, 6, and 7, by increasing the absorption torque of the first variator 33, the torque of the first sun gear 29B and the second sun gear 29C is increased, and the torque of the first sun gear 29B and the second sun gear 29C is increased.
  • the torque of the terminal 32 connected to the idler gear 28B can be increased. Since the terminal 32 connected to the idler gear 28B is connected to the output shaft 23 via the idler gear 28B and the multi-stage transmission mechanism 26, the torque of the output shaft 23 can be increased.
  • the following equation 10 is obtained.
  • Equation 9 since Ka>0, the intercept of Equation 10 is negative. This relationship is shown in FIG.
  • the rotational speed of the first sun gear 29B is constant, the rotational speed of the carrier 29A and the rotational speed of the second sun gear 29C are proportional.
  • the carrier 29A is rotating.
  • the rotational speed of the second variator 34 is zero. If the absorption torque of the first variator 33 is increased when the vehicle speed is 0, the first variator 33 will send more power to the transmission element 35 than the second variator 34 can receive.
  • the power absorption device 38 installed on the transmission element 35 absorbs (disposes or stores) excess power.
  • the transmission 21D can increase the output torque when the vehicle speed is 0 to 5 km/h, and the tractive force of the wheel loader 1 increases.
  • the terminal 30 connected to the first variator 33 is connected to the second sun gear 29C.
  • the torque of the second sun gear 29C and carrier 29A is increased, which is connected to the idler gear 28B connected to the carrier 29A.
  • the torque of the terminal 32 can be increased. Since the terminal 32 connected to the idler gear 28B is connected to the output shaft 23 via the idler gear 28B and the multi-stage transmission mechanism 26, the torque of the output shaft 23 can be increased.
  • the following equation 11 is obtained.
  • Equation 9 since Ka>0, the intercept of Equation 11 is positive. This relationship is shown in FIG.
  • the rotational speed of the first sun gear 29B is constant, when the rotational speed of the carrier 29A is low (that is, when the vehicle speed is low), the rotational speed of the carrier 29A and the rotational speed of the second sun gear 29C are proportional.
  • the rotational speed of the second variator 34 is zero. If the absorption torque of the first variator 33 is increased when the vehicle speed is 0, the first variator 33 will send more power to the transmission element 35 than the second variator 34 can receive.
  • the power absorption device 38 installed on the transmission element 35 absorbs (disposes or stores) excess power.
  • the transmission 21E can increase the output torque when the vehicle speed is 0 to 5 km/h, and the tractive force of the wheel loader 1 increases. Therefore, even if the second variator 34 is inexpensive and has a small output torque, it is possible to provide the wheel loader 1 with high traction force and high excavation performance.
  • the horizontal axis in FIG. 10 is the gear ratio of the planetary continuously variable transmission mechanism 24, and the vertical axis is the torque of the rotating element connected to the planetary gear mechanism 29 (torque of the idler gear 28B).
  • the gear ratio Ip of the planetary continuously variable transmission mechanism 24 is determined by the following formula 12, where the rotational speed of the terminal 32 connected to the idler gear 28B is "Va" and the rotational speed of the power source (engine 9) is "Vb". becomes.
  • the torque Ti of the idler gear 28B is determined by setting the torque of the second variator 34 as "Tv", the gear ratio of the transmission 39 as "Ia”, the torque of the terminal 32 connected to the idler gear 28B as "Ta”, and the torque Ti of the first variator 33.
  • the reduction ratio between the connected terminal 30 and the terminal 32 connected to the idler gear 28B is "Ra”
  • the following equation 13 is obtained.
  • the “speed ratio Ia of the transmission 39" and the “reduction ratio Ra between the terminal 30 connected to the first variator 33 and the terminal 32 connected to the idler gear 28B” are reduction ratios in power transmission by gear meshing or the like.
  • the torque Ta of the terminal 32 connected to the idler gear 28B is proportional to the torque of the terminal 30 connected to the first variator 33. Therefore, by increasing the torque of the terminal 30 connected to the first variator 33, the torque Ta of the terminal 32 connected to the idler gear 28B can be increased.
  • the first variator 33 and the second variator 34 transmit power to each other.
  • Characteristic line 101 When the torque of the first variator 33 (characteristic line 101) decreases, the torque of the terminal 32 connected to the idler gear 28B (characteristic line 104) also decreases due to the combination of Equations 5, 6, 7, and Table 4. descend.
  • Characteristic line 104 corresponds to the torque at terminal 32 connected to idler gear 28B when torque boost is not performed.
  • Characteristic line 105 When the torque of the terminal 32 connected to the idler gear 28B (characteristic line 104) decreases, the torque of the idler gear 28B (characteristic line 105) also decreases according to Equation 13 above.
  • Characteristic line 105 corresponds to the torque of idler gear 28B when torque boost is not performed. Due to the above action, when the gear ratio is low (less than 0.5), the torque of the idler gear 28B decreases.
  • the torque of the output shaft 23 is reduced.
  • the output torque of the transmission 21 is reduced when the vehicle speed is 0 to 5 km/h, and the tractive force and excavation capacity of the wheel loader 1 are reduced.
  • Characteristic line 106 corresponds to the torque of terminal 32 connected to idler gear 28B during torque boost. Since a decrease in the torque (characteristic line 106) of the terminal 32 connected to the idler gear 28B can be suppressed, a decrease in the torque (characteristic line 107) of the idler gear 28B can also be suppressed from the equation 13 above. Characteristic line 107 corresponds to the torque of idler gear 28B during torque boost. Due to the above effects, even when the gear ratio is low (less than 0.5), by performing torque boost control, it is possible to suppress the torque of the idler gear 28B from decreasing.
  • the transmission 21 can suppress a decrease in the tractive force of the wheel loader 1 even when the vehicle speed is 0 to 5 km/h, and can improve the excavation capacity.
  • the torque of the first variator 33 is set to a constant value when the gear ratio is 0.5 or higher. This is because the torque is kept at a constant value due to the torque limitation of the first variator 33 or the torque supplied from the power source (engine 9). Since the torque that can be supplied by the power source changes depending on the rotational speed of the power source and the load for moving the cargo handling machine 7, the torque of the first variator 33 does not necessarily have to be constant.
  • the gear ratio in which the torque boost control intervenes is when the second variator 34 cannot receive the power generated by the first variator 33, and the torque capacity of the first variator 33 and the planetary gear mechanism 29 It changes depending on the speed ratio of the gears, the reduction ratio between the terminal 30 connected to the first variator 33 and the terminal 32 connected to the idler gear 28B, and the speed ratio of the transmission 39. That is, the gear ratio is not necessarily 0.5, but is in the range of 0.1 to 2.0.
  • Equation 13 above it is possible to increase the torque of the idler gear 28B at a gear ratio of less than 0.5 (corresponding to a vehicle speed of 2 to 5 km/h). Since the terminal 32 connected to the idler gear 28B is connected to the output shaft 23 via the idler gear 28B and the multi-stage transmission mechanism 26, the torque of the output shaft 23 can be increased. Thereby, the transmission 21 can increase the output torque when the vehicle speed is 0 to 5 km/h, and can increase the tractive force of the wheel loader 1.
  • the gear ratio is less than 0.5, the torque of the first variator 33 or the second variator 34 is at its maximum value, so the torque of the first variator 33 cannot be made higher than this. Therefore, by providing a power absorption device 38 between the first variator 33 and the second variator 34 to increase the torque of the first variator 33, the terminal 38 connected to the second sun gear 29C (idler gear 28B) ) torque can be increased. As a result, from Equation 13 above, it is possible to increase the torque of the idler gear 28B at a gear ratio of less than 0.5 (corresponding to a vehicle speed of 2 to 5 km/h).
  • the transmission 21 can increase the output torque when the vehicle speed is 0 to 5 km/h, and the tractive force of the wheel loader 1 increases.
  • the transmission 21 can increase the output torque when the vehicle speed is 0 to 5 km/h, and the tractive force of the wheel loader 1 increases.
  • the power absorption device 38 which serves as a power storage source (power storage device) and/or a power disposal device, will be explained.
  • “No1-A”, “No1-B”, “No1-C” in Table 4 "No2-A”, “No2-B”, “No2-C”, “No2-D” in Table 6 described later ”, “No2-E”, and “No2-F”. That is, the configuration of the power absorption device 38 is the same in the second embodiment and each modification described below.
  • the power absorption device 38 can be configured by a power storage device and a power control device.
  • FIG. 11 shows the outline.
  • the first variator 33 and the second variator 34 are connected by a transmission element 35 that is an electrical wiring.
  • a power absorption device 38 is provided between the first variator 33 and the second variator 34 .
  • the power absorption device 38 includes a power control device 38A and a power storage device 38B.
  • the power control device 38A bidirectionally transmits power between the first variator 33 and the second variator 34.
  • the power control device 38A supplies part of the power to the power storage device 38B.
  • the power absorption device 38 may be configured to include a resistance device (electrical resistance) in place of the power storage device 38B, or may be configured to include both the power storage device 38B and the resistance device (electrical resistance).
  • the power absorption device 38 can be configured by a relief valve or an accumulator.
  • FIG. 12 shows a case where the power absorption device 38 is configured with relief valves 38C and 38D.
  • the first variator 33 and the second variator 34 are connected by a pair of main pipes 35A and 35B, which serve as a transmission element 35.
  • the pair of relief valves 38C and 38D are provided at positions that connect the pair of main pipes 35A and 35B that connect the first variator 33 and the second variator 34.
  • one main pipeline 35A and the other main pipeline 35B are connected by a connecting pipeline 35C, and relief valves 38C and 38D are provided in the connecting pipeline 35C together with check valves 35D and 35E.
  • Two relief valves 38C, 38D and check valves 35D, 35E are provided facing each other so that relief can be provided in both directions between the main pipes 35A, 35B.
  • the relief pressures of the relief valves 38C and 38D can be fixed or changed by a signal from the controller 25. The effect of the configuration in which the relief start pressures of the relief valves 38C and 38D can be changed will be explained.
  • FIG. 13 shows the pressure in the main pipeline 35A on the high pressure side (characteristic line 111) and the relief start pressure of the relief valve 38C (characteristic line 112) when the relief start pressures of the relief valves 38C and 38D are fixed. , the relationship between the withstand pressure (characteristic line 113) of the first variator 33, the second variator 34, or the main pipes 35A, 35B. Further, in FIG. 13, a characteristic line 114 corresponds to the theoretical discharge volume of the first variator 33 (hydraulic pump/motor), and a characteristic line 115 corresponds to the theoretical discharge volume of the second variator 34 (hydraulic pump/motor). do.
  • the relief start pressure of the relief valves 38C and 38D is configured to be changeable.
  • FIG. 14 shows the pressure in the main pipeline 35A on the high pressure side (characteristic line 116) and the relief start pressure (characteristic line 117) of the relief valves 38C and 38D in a case where the relief start pressure of the relief valves 38C and 38D can be changed.
  • the controller 25 sets the relief start pressure of the relief valves 38C, 38D to approximately 80% to 85% of the withstand pressure before the relief valves 38C, 38D operate. This relief start pressure is defined as a first relief start pressure.
  • the controller 25 sends a signal to the relief valve 38C to increase the relief start pressure so that the set pressure of the relief valve 38C becomes higher.
  • This relief start pressure is defined as a second relief start pressure.
  • the controller 25 determines the start of relief of the relief valve 38C by the values (detected values) of pressure detectors 35F, 35G (hereinafter referred to as pressure sensors 35F, 35G) that detect the hydraulic pressure (pressure) of the main pipes 35A, 35B, or , is detected from the relationship between the theoretical discharge volume and rotational speed of the first variator 33 and the second variator 34. That is, the controller 25 uses a pressure sensor to detect that the relief valve 38C has started a relief operation due to an increase in the load due to excavation etc. (the output torque of the transmission 21 has increased) and the pressure in the main pipe 35A has increased. Detected from the detected value of 35F, etc.
  • the controller 25 uses a pressure sensor 35F to detect that the relief of the relief valve 38C has stopped due to a decrease in the load due to excavation, etc. (the output torque of the transmission 21 has decreased) and the pressure in the main pipe 35A has decreased. Detected from the detected value etc. After detecting the end of the relief operation of the relief valve 38C, the controller 25 immediately lowers the relief set pressure of the relief valve 38C from the second relief start pressure. Thereby, even if the output torque of the transmission 21 fluctuates, the maximum value of the output torque of the transmission 21 can be increased within the withstand pressure range.
  • the above control allows the second variator 34 to be used within the pressure limit, and by increasing the output torque of the second variator 34, the tractive force of the wheel loader 1 can be increased.
  • FIG. 15 shows a case where the power absorption device 38 is configured by accumulators 38E and 38F.
  • the power absorption device 38 includes two accumulators 38E and 38F, that is, a high pressure side accumulator 38E and a low pressure side accumulator 38F. Between each accumulator 38E, 38F and each main pipeline 35A, 35B, there are pressure accumulation switching valves 38G, 38H that switch connection (communication) and cutoff (disconnection) between each main pipeline 35A, 35B. It is provided.
  • the high-pressure side accumulator 38E is an accumulator on the side that absorbs power.
  • the high-pressure side accumulator 38E stores power and releases the stored power.
  • the pressure accumulation start pressure of the high pressure side accumulator 38E is, for example, in the range of 25 MPa to 45 MPa.
  • the low-pressure side accumulator 38F has the role of a reservoir for hydraulic fluid that is taken in and out of the high-pressure side accumulator 38E.
  • the pressure accumulation start pressure of the low pressure side accumulator 38F is, for example, in the range of 2.0 MPa to 3.0 MPa.
  • the planetary continuously variable transmission mechanism 24 has a power transmission efficiency of 80 to 93%, which is high for a continuously variable transmission.
  • the power transmission efficiency of a gear transmission based on meshing between a pair of gears is about 99%. Therefore, the planetary continuously variable transmission mechanism 24 has lower power transmission efficiency than a transmission that uses a pair of gears that mesh with each other. The reason for this will be explained with reference to FIG.
  • the power transmission efficiency between the planetary gear mechanism 29 and the idler element 28 (idler gear 28B) will be considered.
  • the transmission efficiency of the power transmission path via the first connecting member 30, first variator 33, transmission element 35, second variator 34, transmission 39, and third clutch 37 is about 70 to 80%.
  • the transmission efficiency of the power transmission path via the third connecting member 32 is about 99%. Therefore, in order to increase the transmission efficiency, it is necessary to stop the rotation of the first connecting member 30 connected to the first variator 33 and to prevent power transmission between the first variator 33 and the second variator 34. good.
  • the power supplied from the engine 9 to the planetary gear mechanism 29 through the second connection member 31 is not distributed to the first connection member 30 connected to the first variator 33, but to the first connection member 30 connected to the idler element 28 (idler gear 28B). All the signals are transmitted to the three connecting members 32.
  • the power supplied from the engine 9 to the planetary gear mechanism 29 through the second connecting member 31 can be transmitted to the idler gear 28B with high efficiency. .
  • the power transmission efficiency of the planetary continuously variable transmission mechanism 24 can be improved to about 97%, and the transmission efficiency of the transmission 21 can be improved.
  • the wheel loader 1 can save fuel.
  • the planetary continuously variable transmission mechanism 24 When the planetary continuously variable transmission mechanism 24 is in internal lock-up operation, the planetary continuously variable transmission mechanism 24 has a fixed speed ratio.
  • the internal lockup gear ratio is In
  • the internal lockup gear ratio In can be expressed by the following equation 14. Note that the rotation speed of the third connection member 32 is "V32,” the rotation speed of the second connection member 31 is “V31,” and the rotation speed of the first connection member 30 is "V30.”
  • Equation 8 the internal lockup gear ratio In can be calculated.
  • the rotation speed Vs1 of the first sun gear 29B connected to the first connecting member 30 is substituted into Equation 8 by setting it to zero. That is, the internal lockup gear ratio In is expressed by the following equation 15.
  • Equation 8 is modified and the rotational speed Vc of the carrier 29A connected to the first connecting member 30 is set to 0 and substituted. That is, the internal lockup gear ratio In is expressed by the following equation 16.
  • the internal lockup gear ratio In depends on the combination of gears of the planetary gear mechanism 29 and Ka.
  • rotation of the first connecting member 30 connected to the first variator 33 of the three connecting members 30, 31, 32 connected to the planetary gear mechanism 29 is necessary. All you have to do is stop it.
  • the controller 25 maintains the volume of the hydraulic pump motor of the first variator 33 at a predetermined level or more (preferably 10% or more of the maximum volume). , the displacement of the hydraulic pump/motor of the second variator 34 is controlled to zero.
  • a transmission element 35 that transmits power between the first variator 33 and the second variator 34 is used, for example, as in the first modification shown in FIG.
  • a configuration in which a block mechanism 40 is provided may also be adopted.
  • the blocking mechanism 40 is controlled by the controller 25 to block power transmission between the first variator 33 and the second variator 34 .
  • the block mechanism 40 can be configured by a hydraulic valve.
  • the controller 25 sends a signal to the blocking mechanism 40 to block the flow of oil between the first variator 33 and the second variator 34 .
  • the block mechanism 40 can be configured by an inverter converter.
  • the inverter converter provides a pseudo resistance between the power lines and increases the voltage between the power lines.
  • the blocking mechanism 40 a configuration in which a magnetic contactor blocks the flow of power, or a configuration in which a resistor provides resistance between power lines may be adopted. In either case, the controller 25 controls the blocking mechanism 40 by sending signals for transmitting and interrupting power to the blocking mechanism 40 .
  • the internal lock-up state may be realized by fixing the rotating shaft of the first variator 33 to a non-rotating part and stopping the rotation of the first variator 33.
  • the brake mechanism 41 can adopt a configuration in which the first connecting member 30 connected to the first variator 33 is fixed to a non-rotating part by frictional coupling or mechanical meshing coupling.
  • the first variator 33 is a generator, it is necessary to supply current to the first variator 33 (generator) even during internal lockup operation.
  • the first connecting member 30 it is desirable to fix the first connecting member 30 to the non-rotating part using the brake mechanism 41. That is, when the first variator 33 is a generator, it is desirable to fix the first connecting member 30 to a non-rotating part with the brake mechanism 41 from the viewpoint of power loss. Thereby, the power transmission of the planetary continuously variable transmission mechanism 24 during internal lock-up can be improved, and the wheel loader 1 can save fuel.
  • the transmissions 21A, 21B, and 21C of the first to third modified examples shown in FIGS. 19 to 21 can perform an internal lockup operation of the planetary continuously variable transmission mechanism 24, but an external lockup mechanism (direct connection mechanism 27) is not provided.
  • an external lockup mechanism direct connection mechanism 27
  • power is transmitted by continuously changing the speed of the planetary continuously variable transmission mechanism 24 when starting and digging, and when transporting and forwarding, the planetary continuously variable transmission mechanism 24 is used.
  • the mechanism 24 is internally locked up to transmit power.
  • start-up and excavation vehicles from 0 to 7 km/h
  • the power transmission efficiency can be increased by the stepless variation by the planetary continuously variable transmission mechanism 24.
  • the planetary continuously variable transmission mechanism 24 is operated in an internal lock-up operation to further improve transmission efficiency than with continuously variable transmission. Thereby, the wheel loader 1 can save fuel.
  • the direct coupling mechanism 27 which is an external lockup mechanism, will be explained with reference to FIG. 3.
  • the direct coupling mechanism 27 transmits the power supplied from the engine 9 to the idler gear 28B by meshing gears without going through the planetary continuously variable transmission mechanism 24. Since the power transmission efficiency of the direct coupling mechanism 27 is about 99%, the transmission efficiency of the transmission 21 is improved and the wheel loader 1 can save fuel.
  • the direct coupling mechanism 27 includes an input gear 27A provided on the input shaft 22, a lockup gear 27B that meshes with the input gear 27A, and a first clutch 27C.
  • the rotating shaft 27B1 provided with the lock-up gear 27B is connected to the idler shaft 28A of the idler element 28 via the first clutch 27C.
  • the first clutch 27C is configured by, for example, a clutch (friction plate) using frictional connection, a dog clutch, or a dog clutch with synchromesh.
  • the first clutch 27C mechanically connects and releases the lockup gear 27B and the idler gear 28B.
  • the power input from the input shaft 22 is transmitted to the idler gear 28B via the input gear 27A, lockup gear 27B, and first clutch 27C. Ru.
  • the power supplied from the engine 9 can be transmitted to the idler gear 28B via the direct coupling mechanism 27, which is an external lockup mechanism, without passing through the planetary continuously variable transmission mechanism 24.
  • the planetary continuously variable transmission mechanism 24 has a second connecting member 31 connected to the power source (engine 9) and a third connecting member connected to the idler gear 28B due to the characteristics of the planetary gear mechanism 29 shown in the speed relationship line Y1 shown in FIG. 32 can be sped up. In order to effectively use the speed increase range of the planetary continuously variable transmission mechanism 24, it is preferable to increase the speed of power transmission via the direct coupling mechanism 27.
  • the rotational speed of the idler gear 28B at this time is expressed by the following equation 18. Note that the rotational speed of the idler gear 28B is "V28B", the rotational speed of the second connecting member 31 connected to the engine 9 is "V31”, the number of teeth of the third connecting member 32 connected to the idler gear 28B is "N32”, and the idler gear The number of teeth of 28B is "N28B”.
  • the synchronous rotational speed ratio Id is defined as shown in Equation 19 below. Note that the number of teeth of the third connecting member 32 is "N32", and the number of teeth of the idler gear 28B is "N28B”.
  • the external lockup rotational speed ratio Ir is defined as shown in the following equation 20. Note that the number of teeth of the input gear 27A is "N27A”, and the number of teeth of the lockup gear 27B is "N27B”.
  • the speed increase range of the planetary continuously variable transmission mechanism 24 can be effectively used.
  • power is transmitted as follows. That is, during starting and excavation (vehicle speed 0 to 7 km/h), which require continuously variable transmission, power is transmitted via the planetary continuously variable transmission mechanism 24. During transportation and forwarding (vehicle speed of 7 km/h or more) where stepless speed change is not required, power is transmitted via an external lock-up mechanism (direct coupling mechanism 27).
  • the external lockup rotational speed ratio Ir satisfies the following equation 21.
  • the multi-stage transmission mechanism 26 is a transmission mechanism that changes speed by meshing gears, switching clutches, and switching brakes.
  • the multi-stage transmission mechanism 26 corresponds to, for example, a planetary transmission, a countershaft type transmission, a manual transmission, an automated manual transmission, a dual clutch transmission, or the like.
  • the multi-stage transmission mechanism 26 includes a dual clutch transmission with four forward speeds and one reverse speed.
  • the first modification shown in FIG. 19 the second modification shown in FIG. 20, and the third modification shown in FIG. It consists of a dual clutch transmission.
  • the multi-stage transmission mechanisms 26 and 26A are not limited to these configurations, and for example, forward movement can be assumed to be from 1-speed to 16-speed, and reverse movement can be assumed to be from 1-speed to 8-speed.
  • the multi-stage transmission mechanism 26 which is a dual clutch transmission, will be explained with reference to FIG. 16.
  • the multi-stage transmission mechanism 26 includes an odd-numbered shaft 51, an even-numbered shaft 52, an output shaft 53, and a counter gear 54.
  • the output shaft 53 of the multi-stage transmission mechanism 26 also corresponds to the output shaft 23 of the transmission 21.
  • the odd-numbered shaft 51 has an odd-numbered gear 55, a first forward gear 56, a third forward gear 57, a fourth clutch 58 as a first output clutch, a sixth clutch 59, an eighth clutch 60, and an odd-numbered gear 55.
  • the stage shaft 61 is configured to include a step shaft 61.
  • the even-numbered shaft 52 has an even-numbered gear 62, a second forward gear 63, a fourth forward gear 64, a first reverse gear 65, a fifth clutch 66 as a second output clutch, and a seventh clutch 67. It is configured to include a tenth clutch 68, a ninth clutch 69, and an even-numbered shaft 70.
  • the counter gear 54 is a gear for reversing the rotation direction of the output shaft 53.
  • the output shaft 53 includes a first forward speed output gear 71, a second forward speed output gear 72, a third forward speed output gear 73, a fourth forward speed output gear 74, and a reverse first speed output gear 75.
  • the even gear 62 and the odd gear 55 are always in mesh with the idler gear 28B and rotate together with the idler gear 28B.
  • the output gears 74 are always in mesh with each other.
  • the fourth clutch 58 connects (fastens) and disengages the odd-numbered gear 55 and the odd-numbered shaft 61.
  • the fourth clutch 58 connects the odd-numbered gear 55 and the odd-numbered shaft 61, thereby enabling power transmission between the idler gear 28B and the odd-numbered shaft 61.
  • the fifth clutch 66 connects (fastens) and disengages the even-numbered gear 62 and the even-numbered shaft 70.
  • the fifth clutch 66 connects the even-numbered gear 62 and the even-numbered shaft 70, thereby enabling power transmission between the idler gear 28B and the even-numbered shaft 70.
  • the sixth clutch 59 connects (engages) and disengages the first forward gear 56 and the odd-numbered shaft 61.
  • the sixth clutch 59 connects the first forward gear 56 and the odd-numbered shaft 61, thereby enabling power transmission between the output shaft 53 and the odd-numbered shaft 61.
  • the eighth clutch 60 connects the third forward gear 57 and the odd-numbered shaft 61, thereby enabling power transmission between the output shaft 53 and the odd-numbered shaft 61.
  • the seventh clutch 67 connects the second forward speed gear 63 and the even-numbered shaft 70, thereby enabling power transmission between the output shaft 53 and the even-numbered shaft 70.
  • the fourth forward gear 64 and the even-numbered shaft 70 are connected by the tenth clutch 68, so that power can be transmitted between the output shaft 53 and the even-numbered shaft 70.
  • the ninth clutch 69 By coupling the first reverse gear 65 and the even-numbered shaft 70 by the ninth clutch 69, power can be transmitted between the output shaft 53 and the even-numbered shaft 70.
  • the sixth clutch 59, the seventh clutch 67, the eighth clutch 60, the ninth clutch 69, and the tenth clutch 68 are constituted by dog clutches or dog clutches with synchromesh.
  • the fourth clutch 58 is engaged, the fifth clutch 66 is released, the sixth clutch 59 is engaged, and the eighth clutch 60 is engaged. release. In this state, any two or more of the seventh clutch 67, the tenth clutch 68, and the ninth clutch 69 are released.
  • the first forward speed corresponds to No. 1 to No. 4 in Table 5, which will be described later.
  • the fifth clutch 66 and the seventh clutch 67 are engaged, and the fourth clutch 58, the tenth clutch 68, and the ninth clutch 69 are disengaged. In this state, one or both of the sixth clutch 59 and the eighth clutch 60 is released.
  • the second forward speed corresponds to No. 9 to No. 11 in Table 5, which will be described later.
  • the fourth clutch 58 and the eighth clutch 60 are engaged, and the fifth clutch 66 and the sixth clutch 59 are disengaged. In this state, any two or more of the seventh clutch 67, the tenth clutch 68, and the ninth clutch 69 are released.
  • the third forward speed corresponds to No. 5 to No. 8 in Table 5, which will be described later.
  • the fifth clutch 66 and the tenth clutch 68 are engaged, and the fourth clutch 58, the seventh clutch 67, and the ninth clutch 69 are disengaged. In this state, one or both of the sixth clutch 59 and the eighth clutch 60 is released.
  • the four forward speeds correspond to No. 12 to No. 14 in Table 5, which will be described later.
  • the fifth clutch 66 and the ninth clutch 69 are engaged, and the fourth clutch 58, the seventh clutch 67, and the tenth clutch 68 are disengaged. In this state, one or both of the sixth clutch 59 and the eighth clutch 60 is released.
  • the first reverse speed corresponds to No. 15 to No. 17 in Table 5, which will be described later.
  • the seventh clutch 67, the tenth clutch 68, and the ninth clutch 69 can be switched between engagement and disengagement.
  • either the second forward speed gear 63, the fourth forward speed gear 64, or the first reverse speed gear 65 can be coupled to the even-numbered gear shaft 70 in advance.
  • the sixth clutch 59 and the eighth clutch 60 can be switched between engagement and disengagement.
  • either the first forward gear 56 or the third forward gear 57 can be coupled to the odd-numbered shaft 61 in advance.
  • Power is transmitted from the idler gear 28B to the output shaft 53 by disengaging the fourth clutch 58 and disengaging the fifth clutch 66 from the state in which the fourth clutch 58 is engaged and the fifth clutch 66 is disengaged. It is possible to switch from via the stage shaft 61 to via the even-numbered stage shaft 70. Similarly, power is transmitted from the idler gear 28B to the output shaft 53 by disengaging the fourth clutch 58 and engaging the fifth clutch 66, then by engaging the fourth clutch 58 and disengaging the fifth clutch 66. Accordingly, it is possible to switch from via the even-numbered stage shaft 70 to via the odd-numbered stage shaft 61.
  • the planetary continuously variable transmission mechanism 24 is connected to the idler gear 28B by controlling the rotational speed of the first connecting member 30 connected to the first variator 33 based on the speed relationship line Y1 of the planetary gear mechanism 29 shown in FIG.
  • the rotation direction of the third connecting member 32 can be reversed.
  • the first variator 33 connected to the first connecting member 30 must have a higher maximum rotational speed limit. For this reason, rotating the first connecting member 30 connected to the first variator 33 at high speed and reversing the rotation direction of the third connecting member 32 connected to the idler gear 28B from normal rotation is difficult because the first connecting member 30 connected to the first variator 33 is rotated at high speed and the rotation direction of the third connecting member 32 connected to the idler gear 28B is reversed from normal rotation.
  • a variator 33 will be adopted. This may increase the cost of the planetary continuously variable transmission mechanism 24. Therefore, when the wheel loader 1 moves backward, it is desirable to use the multi-stage transmission mechanism 26 to reverse the rotation direction of the output shaft 53 (output shaft 23) from the forward direction to the reverse direction.
  • the first embodiment i.e., No. 1-A in Table 4
  • the fourth modification i.e., No. 1-B in Table 4
  • the fifth modification i.e., No. 1-B in Table 4
  • No. 1-C the fifth modification
  • the transmission 21 includes an input shaft 22 (input member) connected to a power source (engine 9) and an output shaft connected to loads (front axle 12, rear axle 13). 23 (output member), a planetary gear mechanism 29 (planetary mechanism) provided between the input shaft 22 and the output shaft 23, a first variator 33 connected to the planetary gear mechanism 29, and a first variator 33.
  • the controller 25 includes a second variator 34 provided separately and a controller 25 that changes the rotational speed of the first variator 33.
  • the planetary gear mechanism 29 includes a carrier 29A, a first sun gear 29B (first sun member) that rotates around the rotation center axis of the carrier 29A, and a second sun gear 29C that rotates around the rotation center axis of the carrier 29A. (second sun member) and three members (rotating member).
  • the carrier 29A which is the first member of the three members, is connected to the input shaft 22 via the second connecting member 31 (another member).
  • the first sun gear 29B which is a second member different from the carrier 29A, is connected to the first variator 33 via a first connecting member 30 and a second clutch 36 (all of which are other members).
  • the second sun gear 29C which is a third member different from the carrier 29A and the first sun gear 29B, is connected to the output shaft 23 via the third connecting member 32, the idler element 28, and the multi-stage transmission mechanism 26 (all other members). It is connected.
  • the carrier 29A first member
  • the first sun gear 29B second member
  • the second sun gear 29C third member
  • the carrier 29A includes a planet gear 29D (planet member) and a counter gear that rotate and transmit power to the first sun gear 29B and the second sun gear 29C while revolving around the rotation center axis S of the carrier 29A.
  • a balance gear 29E balance member
  • the planetary gear mechanism 29 transfers the torque transmitted from the engine 9 to the carrier 29A (first member) of the planetary gear mechanism 29 to the first sun gear 29B (second member) and the second sun gear 29C (third member). distribute.
  • the planetary gear mechanism 29 rotates with two degrees of freedom between the carrier 29A, the first sun gear 29B, and the second sun gear 29C.
  • the second variator 34 transmits the power transmitted from the first variator 33 to a load (output shaft 23) or a power source (input shaft 22), or transmits the power transmitted from the first variator 33 to a load (output shaft 23) or a power source (input shaft 22).
  • the power transmitted from the first variator 33 is transmitted to the first variator 33.
  • the controller 25 changes the rotational speed of the output shaft 23 relative to the rotational speed of the input shaft 22 by changing the rotational speed of the first variator 33 .
  • the transmission 21 of the first embodiment performs stepless speed change using the planetary gear mechanism 29, and transfers power from the power source (input shaft 22) to the load (output shaft 23) or to the load (output shaft 23). 23) is transmitted to the power source (input shaft 22).
  • the transmission 21 includes a planetary gear mechanism 29 provided between the input shaft 22 and the output shaft 23, a first variator 33 connected to the planetary gear mechanism 29, and a transmission from the first variator 33.
  • the second variator 34 transmits power to a load or a power source.
  • the planetary gear mechanism 29 includes a carrier 29A connected to the input shaft 22 and supporting a planet gear 29D and a balance gear 29E, a first sun gear 29B connected to the first variator 33, an idler element 28, and a multistage A second sun gear 29C is connected to the output shaft 23 via the transmission mechanism 26. Further, the transmission 21 includes at least one of an internal lockup and an external lockup (directly coupled mechanism 27). The transmission 21 can switch between power transmission using the planetary continuously variable transmission mechanism 24 and power transmission using lockup.
  • a power absorption device 38 is provided between the second variator 34 and the first variator 33 to absorb power therebetween.
  • the power absorption device 38 changes the absorption torque of the first variator 33 by the controller 25 and absorbs the power when more power than that which can be absorbed by the second variator 34 is generated. Increase the torque of 23. Therefore, out of the power generated by the first variator 33, the power absorption device 38 absorbs (disposes or stores) more power than can be absorbed by the second variator 34, thereby increasing the torque of the output shaft 23. can be controlled. Thereby, sufficient torque can be output from the output shaft 23 even if the second variator 34, which is small and inexpensive and has a small maximum output torque, is used.
  • the second variator 34 is small and inexpensive with a small maximum output torque, sufficient torque can be output from the output shaft 23 when the vehicle is running at a low speed. As a result, the traction force necessary for the wheel loader 1 to excavate can be sufficiently increased, and the excavation can be performed efficiently.
  • the first variator 33 and the second variator 34 are constituted by a hydraulic pump/motor.
  • the power absorption device 38 includes at least one of relief valves 38C and 38D and accumulators 38E and 38F.
  • the power absorption device 38 is operated by at least one of a power storage device 38B such as a battery and an electric resistance device such as a resistor. may be configured. In either case, the torque of the output shaft 23 is increased by absorbing (disposing or storing) in the power absorption device 38 more power than can be absorbed by the second variator 34 out of the power generated by the first variator 33. be able to.
  • the relief valves 38C and 38D can vary the relief start pressure based on a signal from the controller 25. Then, the controller 25 sends a first relief start pressure signal to the relief valve 38C before sending a command to the first variator 33 to generate more power than the second variator 34 can absorb.
  • the first relief start pressure is kept low to a value that has a margin with respect to the upper limit of withstand pressure (for example, a value of about 80% to 85% of the upper limit of withstand voltage).
  • the relief valve 38C operates and the pressure temporarily rises above the first relief start pressure ( Even in the event of a surge (surge), this pressure can be prevented from exceeding the withstand pressure.
  • the controller 25 sends a command to the first variator 33 to generate more power than the second variator 34 can absorb, and then sets the second relief start pressure higher than the first relief start pressure.
  • the signal is sent to the relief valve 38C.
  • the controller 25 reduces the leaf start pressure signal to below the second relief pressure (or below the first relief pressure). Thereby, even if the output torque of the transmission 21 fluctuates, the maximum value of the output torque of the transmission 21 can be increased within the withstand pressure range.
  • the transmission 21 is provided with a multi-stage transmission mechanism 26 that is a sub-transmission mechanism.
  • the second variator 34 is connected to an idler element (specifically, an idler gear 28B serving as a rotating element) provided between the planetary gear mechanism 29 and the multi-stage transmission mechanism 26.
  • the second variator 34 may be connected to the output shaft 23 (output member). That is, as shown in FIGS. 41 to 50 described later, the second variator 34 is a rotating element provided between the input shaft 22 (input member) and the drive source (engine 9), and constitutes a multi-stage transmission mechanism 26.
  • FIGS. 27 to 30 show a second embodiment.
  • the planetary gear mechanism is composed of a carrier, a sun gear, and a ring gear.
  • the same components as in the first embodiment are given the same reference numerals, and the description thereof will be omitted.
  • the planetary gear mechanism 29 of the planetary continuously variable transmission mechanism 24 is composed of a carrier and two sun gears has been described as an example.
  • the planetary gear mechanism 81 of the planetary continuously variable transmission mechanism 24 includes a carrier 81A, a sun gear 81B, and a ring gear 81C.
  • Table 6 below shows combinations of the components (carrier, sun gear, ring gear) of the planetary gear mechanism 81. In either case, power transmission is possible.
  • "No2-A" in Table 6 can improve the transmission efficiency of the planetary continuously variable transmission mechanism 24, reduce the maximum absorption torque of the first variator 33, and make the entire planetary continuously variable transmission mechanism 24 small. This is the most suitable since it can be constructed lightweight.
  • the planetary gear mechanism 81 includes a carrier 81A corresponding to the first member and a sun gear corresponding to the second member. 81B, a ring gear 81C corresponding to the third member, and a planet gear 81D. Note that the sun gear 81B, ring gear 81C, and planet gear 81D do not need to transmit power through meshing of gears, and may transmit power through friction of rollers (outer peripheral surfaces), for example.
  • the engine 9 is coupled to the carrier 81A via the second connecting member 31.
  • Sun gear 81B is connected to first variator 33 via first connection member 30.
  • the ring gear 81C is connected to the idler element 28 (idler gear 28B) via the third connecting member 32.
  • Sun gear 81B meshes with planet gear 81D.
  • the planet gear 81D meshes with the ring gear 81C.
  • the rotation axis Sp (FIG. 29) of the planet gear 81D is supported by the carrier 81A. Therefore, the planet gear 81D rotates while revolving around the center axis S (FIG. 29) of the planetary gear mechanism 81.
  • FIG. 29 is a sectional view of the planetary gear mechanism 81 viewed from the power source side.
  • Carrier 81A, sun gear 81B, and ring gear 81C are arranged concentrically. That is, the center axes S (rotation center axes) of the carrier 81A, sun gear 81B, and ring gear 81C are aligned.
  • Planet gear 81D is arranged so as to be in contact with the outer circumference of sun gear 81B and the inner circumference of ring gear 81C.
  • Planet gear 81D meshes with sun gear 81B and ring gear 81C.
  • the carrier 81A, the sun gear 81B, and the ring gear 81C are attached to the casing of the planetary continuously variable transmission mechanism 24 so that they can rotate about the central axis S and cannot move in other directions so that the respective gears mesh with each other.
  • Supported by The planet gear 81D is supported by the carrier 81A so as to be able to rotate about the rotation axis Sp, which is the central axis of the planet gear 81D, and to be immovable in other directions.
  • the planet gear 81D rotates around the central axis Sp of the planet gear 81D while revolving around the central axis S of the carrier 81A.
  • a constraint on the planetary gear mechanism 81 is that, as shown in FIG. 29, the sun gear 81B, ring gear 81C, and planet gear 81D must mesh with each other. Furthermore, in order to ensure the strength of the gear, it is necessary to increase the diameter of the planet gear 81D. That is, a constraint on the planetary gear mechanism 81 is that the meshing radius rs of the sun gear 81B is significantly smaller than the meshing radius rr of the ring gear 81C.
  • the carrier 81A is connected to the second connecting member 31 that is connected to the engine 9 (power source). Therefore, the torque Tc of the carrier 81A is the torque that the engine 9 can generate.
  • the sun gear 81B is connected to the first connecting member 30 connected to the first variator 33. Therefore, the torque Ts of the sun gear 81B is the torque that the first variator 33 can generate.
  • the ring gear 81C is connected to a third connecting member 32 that is connected to the idler element 28. Therefore, the torque Tr of the ring gear 81C is a torque reaction force received from the idler gear 28B.
  • the ring gear 81C is connected to the second connecting member 31. Therefore, the torque Tr of the ring gear 81C is the torque that the engine 9 can generate.
  • the carrier 81A is connected to the first connecting member 30. Therefore, the torque Tc of the carrier 81A is the torque that the first variator 33 can generate.
  • Sun gear 81B is connected to third connecting member 32. Therefore, the torque Ts of the sun gear 81B is a torque reaction force received from the idler gear 28B.
  • the carrier 81A is connected to the second connecting member 31, the ring gear 81C is connected to the first connecting member 30, and the sun gear 81B is connected to the third connecting member 32. has been done.
  • the ring gear 81C is connected to the second connecting member 31, the sun gear 81B is connected to the first connecting member 30, and the carrier 81A is connected to the third connecting member 32. has been done.
  • the sun gear 81B is connected to the second connecting member 31, the ring gear 81C is connected to the first connecting member 30, and the carrier 81A is connected to the third connecting member 32. has been done.
  • the sun gear 81B is connected to the second connecting member 31, the carrier 81A is connected to the first connecting member 30, and the ring gear 81C is connected to the third connecting member 32. has been done.
  • the torque Ts of the sun gear 81B, the torque Tr of the ring gear 81C, and the torque Tc of the carrier 81A can be calculated from the meshing radius rr of the ring gear 81C and the meshing radius rs of the sun gear 81B.
  • the meshing radius rr of the ring gear 81C and the meshing radius rs of the sun gear 81B are determined by the meshing radius of each gear, and cannot be changed while the planetary continuously variable transmission mechanism 24 is transmitting power. Therefore, the ratio of the torque Ts of the sun gear 81B, the torque Tr of the ring gear 81C, and the torque Tc of the carrier 81A remains unchanged while the planetary continuously variable transmission mechanism 24 is transmitting power.
  • the controller 25 outputs a signal to control the first variator 33, and controls the torque of the first connecting member 30 (for example, sun gear 81B) connected to the first variator 33. That is, the controller 25 controls the torque of the first coupling member 30 (for example, sun gear 81B) by controlling the first variator 33. Thereby, the controller 25 indirectly controls the torque of the second connecting member 31 (for example, the carrier 81A) connected to the engine 9 and the torque of the third connecting member 32 (for example, the ring gear 81C) connected to the idler element 28. . As a result, the transmitted torque can be controlled between the second connecting member 31 (eg, carrier 81A) connected to the engine 9 and the third connecting member 32 (eg, ring gear 81C) connected to the idler element 28.
  • the second connecting member 31 eg, carrier 81A
  • the third connecting member 32 eg, ring gear 81C
  • FIG. 30 shows the relationship between the rotational speeds of the planetary gear mechanism 81.
  • the speed relationship line Y2 in FIG. 30 graphically represents Equation 25. It is assumed that the rotation speed of the carrier 81A is constant. In this case, when the rotation speed of ring gear 81C is increased, the rotation speed of sun gear 81B is decreased. On the other hand, when the rotation speed of ring gear 81C is decreased, the rotation speed of sun gear 81B is increased. Based on this law, the controller 25 outputs a signal to control the first variator 33, and controls the rotational speed of the first connecting member 30 (for example, sun gear 81B) connected to the first variator 33.
  • the first connecting member 30 for example, sun gear 81B
  • the controller 25 controls the rotational speed of the first connecting member 30 (for example, sun gear 81B) by controlling the first variator 33.
  • the controller 25 indirectly controls the rotation speed of the second connection member 31 (for example, carrier 81A) connected to the engine 9 and the rotation speed of the third connection member 32 (for example, ring gear 81C) connected to the idler element 28. Control.
  • the gear ratio can be controlled between the second connecting member 31 (eg, carrier 81A) connected to the engine 9 and the third connecting member 32 (eg, ring gear 81C) connected to the idler element 28.
  • the sun gear 81B, the ring gear 81C, and the planet gear 81D need to mesh with each other. Furthermore, in order to ensure the strength of the gear, it is necessary to increase the diameter of the planet gear 81D. However, when the diameter of the planet gear 81D is increased, the planetary gear mechanism 81 becomes larger. That is, the structural restriction of the planetary gear mechanism 81 is that if the planetary gear mechanism 81 is designed to be compact, the meshing radius rs of the sun gear 81B will be significantly smaller than the meshing radius rr of the ring gear 81C. Therefore, in the planetary gear mechanism 81, it is difficult to make the value of Kb larger than 0.3, and there is a possibility that the value of Kb becomes too small than the ideal value.
  • the planetary gear mechanism 81 has the relational expressions of torques Tc, Ts, and Tr (Equations 22, 23, and 24) and the relational expressions of rotational speeds Vs, Vr, and Vc (Equations 25, From Equation 26), the meshing radius rs of the sun gear 81B and the meshing radius rr of the ring gear 81C are adjusted according to the torque that the first variator 33 can absorb and the maximum allowable rotational speed.
  • Kb in Equation 26 by setting the value of Kb in Equation 26 to an ideal value and setting the slope of the speed relationship line Y2 shown in FIG. It is possible to reduce both the maximum rotation speed and the maximum rotation speed.
  • the second embodiment has an arrangement of the planetary gear mechanism 81 in which both the absorbable torque and the allowable maximum rotational speed of the first variator 33 are optimized compared to the first embodiment. It may be disadvantageous in terms of providing That is, in the second embodiment, compared to the first embodiment, the first variator 33 tends to be more expensive, and the transmission efficiency of the planetary continuously variable transmission mechanism 24 may decrease. There is.
  • the size and price of the first variator 33 are proportional to the amount of torque that it can absorb. Therefore, it is desirable that the absorption torque of the first variator 33 be small.
  • a specific example will be described in the second embodiment (ie, No. 2-A in Table 6).
  • the value of Kb in Equation 26 be small.
  • the smaller the torque distributed to the first variator 33 the more the transmission efficiency of the planetary continuously variable transmission mechanism 24 can be improved. Therefore, it is convenient for the planetary continuously variable transmission mechanism 24 to reduce the value of Kb in Equation 26.
  • the planetary gear mechanism 81 which is composed of a sun gear, a ring gear, and a carrier, has a structural constraint that if the planetary gear mechanism 81 is designed to be small, the meshing radius rs of the sun gear 81B is significantly smaller than the meshing radius rr of the ring gear 81C. have. Therefore, if the planetary gear mechanism 81 is designed to be small, the value of Kb becomes too small.
  • the rotational speed of the first variator 33 becomes high, and there is a possibility that the rotational speed of the first variator 33 exceeds the allowable maximum rotational speed. Therefore, a planetary gear mechanism 81 that can be operated at high rotation speeds is required. That is, the first variator 33 becomes expensive and can handle high rotations, the planetary gear mechanism 81 becomes large, and the transmission efficiency of the planetary continuously variable transmission mechanism 24 may decrease.
  • the terminal 30 connected to the first variator 33 is connected to the sun gear 81B. From the equations 22, 23, and 24, by increasing the absorption torque of the first variator 33, the torque of the carrier 81A and the ring gear 81C is increased, and the terminal 32 connected to the idler gear 28B connected to the ring gear 81C. torque can be increased. Since the terminal 32 connected to the idler gear 28B is connected to the output shaft 23 via the idler gear 28B and the multi-stage transmission mechanism 26, the torque of the output shaft 23 can be increased.
  • the power absorption device 38 installed on the transmission element 35 absorbs (disposes or stores) excess power.
  • the transmission 21 can increase the output torque when the vehicle speed is 0 to 5 km/h, and the tractive force of the wheel loader 1 increases.
  • the terminal 30 connected to the first variator 33 is connected to the carrier 81A. From the equations 22, 23, and 24, by increasing the absorption torque of the first variator 33, the torque of the sun gear 81B and the ring gear 81C is increased, and the terminal 32 connected to the idler gear 28B connected to the sun gear 81B. torque can be increased. Since the terminal 32 connected to the idler gear 28B is connected to the output shaft 23 via the idler gear 28B and the multi-stage transmission mechanism 26, the torque of the output shaft 23 can be increased. On the other hand, by transforming the above equation 25, the following equation 27 is obtained.
  • Equation 26 since Kb>0, the intercept of Equation 27 is positive. This relationship is shown in FIG.
  • the rotational speed of ring gear 81C is constant, the rotational speed of sun gear 81B and the rotational speed of carrier 81A are proportional.
  • the carrier 81A is rotating, so while the first variator 33 is rotating, the second variator The rotation speed of 34 is 0. If the absorption torque of the first variator 33 is increased when the vehicle speed is 0, the first variator 33 will send more power to the transmission element 35 than the second variator 34 can receive.
  • the power absorption device 38 installed on the transmission element 35 absorbs (disposes or stores) excess power.
  • the transmission 21 can increase the output torque when the vehicle speed is 0 to 5 km/h, and the tractive force of the wheel loader 1 increases.
  • the terminal 30 connected to the first variator 33 is connected to the ring gear 81C.
  • the torque of the sun gear 81B and the carrier 81A is increased, and the terminal 32 connected to the idler gear 28B connected to the sun gear 81B torque can be increased. Since the terminal 32 connected to the idler gear 28B is connected to the output shaft 23 via the idler gear 28B and the multi-stage transmission mechanism 26, the torque of the output shaft 23 can be increased.
  • the following equation 28 is obtained.
  • Equation 26 since Kb>0, the slope of Equation 28 is negative. This relationship is shown in FIG.
  • the rotational speed of carrier 81A is constant
  • the rotational speed of sun gear 81B and the rotational speed of ring gear 81C are proportional.
  • the ring gear 81C is rotating, so while the first variator 33 is rotating, the second variator The rotation speed of 34 is 0. If the absorption torque of the first variator 33 is increased when the vehicle speed is 0, the first variator 33 will send more power to the transmission element 35 than the second variator 34 can receive.
  • the power absorption device 38 installed on the transmission element 35 absorbs (disposes or stores) excess power.
  • the transmission 21 can increase the output torque when the vehicle speed is 0 to 5 km/h, and the tractive force of the wheel loader 1 increases.
  • the terminal 30 connected to the first variator 33 is connected to the sun gear 81B.
  • Equations 22, 23, and 24 by increasing the absorption torque of the first variator 33, the torque of the ring gear 81C and the carrier 81A is increased, and the terminal 32 connected to the idler gear 28B connected to the carrier 81A. torque can be increased. Since the terminal 32 connected to the idler gear 28B is connected to the output shaft 23 via the idler gear 28B and the multi-stage transmission mechanism 26, the torque of the output shaft 23 can be increased.
  • the following equation 29 is obtained.
  • Equation 26 since Kb>0, the slope of Equation 29 is positive. This relationship is shown in FIG.
  • the rotational speed of ring gear 81C is constant, the rotational speed of sun gear 81B and the rotational speed of carrier 81A are proportional.
  • the sun gear 81B is rotating, so while the first variator 33 is rotating, the second variator The rotation speed of 34 is 0. Therefore, if the absorption torque of the first variator 33 is increased when the vehicle speed is 0, the first variator 33 will send more power to the transmission element 35 than the second variator 34 can receive.
  • the power absorption device 38 installed on the transmission element 35 absorbs (disposes or stores) excess power.
  • the transmission 21 can increase the output torque when the vehicle speed is 0 to 5 km/h, and the tractive force of the wheel loader 1 increases.
  • the terminal 30 connected to the first variator 33 is connected to the ring gear 81C. From Equations 22, 23, and 24, by increasing the absorption torque of the first variator 33, the torque of the sun gear 81B and the carrier 81A is increased, and the terminal 32 connected to the idler gear 28B connected to the carrier 81A. torque can be increased. Since the terminal 32 connected to the idler gear 28B is connected to the output shaft 23 via the idler gear 28B and the multi-stage transmission mechanism 26, the torque of the output shaft 23 can be increased. On the other hand, by transforming the above equation 25, the following equation 30 is obtained.
  • Equation 26 since Kb>0, the slope of Equation 30 is positive. This relationship is shown in FIG.
  • the rotational speed of sun gear 81B is constant
  • the rotational speed of ring gear 81C and the rotational speed of carrier 81A are proportional.
  • the ring gear 81C is rotating, so while the first variator 33 is rotating, the second variator The rotation speed of 34 is 0. Therefore, if the absorption torque of the first variator 33 is increased when the vehicle speed is 0, the first variator 33 will send more power to the transmission element 35 than the second variator 34 can receive.
  • the power absorption device 38 installed on the transmission element 35 absorbs (disposes or stores) excess power.
  • the transmission 21 can increase the output torque when the vehicle speed is 0 to 5 km/h, and the tractive force of the wheel loader 1 increases.
  • the terminal 30 connected to the first variator 33 is connected to the carrier 81A.
  • the torque of the ring gear 81C and the sun gear 81B is increased, and the terminal 32 connected to the idler gear 28B connected to the ring gear 81C torque can be increased.
  • the terminal 32 connected to the idler gear 28B is connected to the output shaft 23 via the idler gear 28B and the multi-stage transmission mechanism 26, the torque of the output shaft 23 can be increased.
  • the following equation 31 is obtained.
  • Equation 26 since Kb>0, the slope of Equation 31 is positive. This relationship is shown in FIG.
  • the rotational speed of sun gear 81B is constant
  • the rotational speed of ring gear 81C and the rotational speed of carrier 81A are proportional.
  • the carrier 81A is rotating, so while the first variator 33 is rotating, the second variator The rotation speed of 34 is 0. Therefore, if the absorption torque of the first variator 33 is increased when the vehicle speed is 0, the first variator 33 will send more power to the transmission element 35 than the second variator 34 can receive.
  • the power absorption device 38 installed on the transmission element 35 absorbs (disposes or stores) excess power.
  • the transmission 21 can increase the output torque when the vehicle speed is 0 to 5 km/h, and the tractive force of the wheel loader 1 increases.
  • the transmission 21 can increase the output torque when the vehicle speed is 0 to 5 km/h, and the tractive force of the wheel loader 1 increases.
  • the torque of the first variator 33 or the second variator 34 is at its maximum value, so the torque of the first variator 33 cannot be made higher than this. Therefore, by increasing the torque of the first variator 33 using the power absorption device 38 between the first variator 33 and the second variator 34, the torque of the sun gear 81B (the terminal 32 connected to the idler gear 28B) can be increased. Can be done. As a result, from Equation 13 above, it is possible to increase the torque of the idler gear 28B at a gear ratio of less than 0.5 (corresponding to a vehicle speed of 2 to 5 km/h).
  • the transmission 21 can increase the output torque when the vehicle speed is 0 to 5 km/h, and the tractive force of the wheel loader 1 increases.
  • the transmission 21 can increase the output torque when the vehicle speed is 0 to 5 km/h, and the tractive force of the wheel loader 1 increases.
  • the transmission 21 can increase the output torque when the vehicle speed is 0 to 5 km/h, and the tractive force of the wheel loader 1 increases.
  • the transmission 21 can increase the output torque when the vehicle speed is 0 to 5 km/h, and the tractive force of the wheel loader 1 increases.
  • the transmission 21 can increase the output torque when the vehicle speed is 0 to 5 km/h, and the tractive force of the wheel loader 1 increases.
  • the planetary gear mechanism 29 of the first embodiment and the planetary gear mechanism 81 of the second embodiment will be compared. That is, these two planetary gear mechanisms 29 and 81 each have their own characteristics, and it cannot be said with absolute certainty that one is better than the other. That is, if the torque that the first variator 33 can absorb and the maximum allowable rotational speed of the first variator 33 can be freely set, it is preferable to employ the planetary gear mechanism 81, which is structurally simple.
  • the first variator 33 in accordance with the structural constraints (value of Kb) of the meshing radius rs of the sun gear 81B and the meshing radius rr of the ring gear 81C of the planetary gear mechanism 81, a small and inexpensive first variator 33 can be designed.
  • a variator 33 can be used.
  • the planetary gear mechanism 81 can be simplified, and the transmission efficiency of the planetary continuously variable transmission mechanism 24 can be improved.
  • the torque that the first variator 33 can absorb and the maximum allowable rotation speed cannot be freely set, it is preferable to adopt the planetary gear mechanism 29 of the first embodiment.
  • the torque that the first variator 33 can absorb and the maximum allowable rotation speed It is desirable to be able to use both. Thereby, the small and inexpensive first variator 33 can be used, and the transmission efficiency of the planetary continuously variable transmission mechanism 24 can be improved.
  • the internal lockup gear ratio In of the planetary continuously variable transmission mechanism 24 will be explained.
  • the internal lock-up gear ratio In can be calculated by substituting the rotational speed of the first connecting member 30 connected to the first variator 33 as 0 into Equation 25 described above.
  • the rotation speed Vs of the sun gear 81B connected to the first connecting member 30 is set to 0 and substituted into Equation 25. That is, the internal lockup gear ratio In is expressed by the following equation 32.
  • Equation 25 is modified and the rotational speed Vc of the carrier 81A connected to the first connecting member 30 is set to 0 and substituted. That is, the internal lockup gear ratio In is expressed by the following equation 33.
  • Equation 25 is modified and the rotational speed Vc of the carrier 81A connected to the first connecting member 30 is set to 0 and substituted. That is, the internal lockup gear ratio In is expressed by the following equation 37.
  • the internal lockup gear ratio In of the planetary continuously variable transmission mechanism 24 according to the second embodiment depends on the combination of gears of the planetary gear mechanism 81 and Kb.
  • the transmission 21 includes the input shaft 22 (input member), the output shaft 23 (output member), the planetary gear mechanism 81 (planetary mechanism), and the first It includes a variator 33, a second variator 34, and a controller 25.
  • the planetary gear mechanism 81 includes a carrier 81A, a sun gear 81B (sun member) that rotates around the rotation center axis of the carrier 81A, and a sun gear 81B (sun member) that is located radially outward than the sun gear 81B and is centered around the rotation center axis of the carrier 81A. It is configured to include three members (rotating members), including a ring gear 81C (ring member) that rotates on its own axis.
  • the carrier 81A which is the first member of the three members, is connected to the input shaft 22 via the second connecting member 31 (another member).
  • a sun gear 81B which is a second member different from the carrier 81A, is connected to the first variator 33 via the first connecting member 30 and the second clutch 36 (all of which are other members).
  • a ring gear 81C which is a third member different from the carrier 81A and the sun gear 81B, is connected to the output shaft 23 via a third connecting member 32, an idler element 28, and a multi-stage transmission mechanism 26 (all of which are other members).
  • the carrier 81A first member
  • Sun gear 81B second member
  • the ring gear 81C third member
  • the carrier 81A supports a planet gear 81D (planet member) that rotates and transmits power to the sun gear 81B and the ring gear 81C while revolving around the rotation center axis S of the carrier 81A.
  • the planetary gear mechanism 81 then distributes the torque transmitted from the engine 9 to the carrier 81A (first member) of the planetary gear mechanism 81 to the sun gear 81B (second member) and the ring gear 81C (third member).
  • the planetary gear mechanism 81 rotates with two degrees of freedom between the carrier 81A, the sun gear 81B, and the ring gear 81C.
  • the second variator 34 transmits the power transmitted from the first variator 33 to a load (output shaft 23) or a power source (input shaft 22), or transmits power transmitted from the first variator 33 to a load (output shaft 23) or a power source (input shaft 22).
  • the power transmitted from the first variator 33 is transmitted to the first variator 33.
  • the controller 25 changes the rotational speed of the output shaft 23 relative to the rotational speed of the input shaft 22 by changing the rotational speed of the first variator 33 .
  • the transmission 21 of the second embodiment performs stepless speed change using the planetary gear mechanism 81, and transfers power from the power source (input shaft 22) to the load (output shaft 23) or to the load (output shaft 23). 23) is transmitted to the power source (input shaft 22).
  • the transmission 21 includes a planetary gear mechanism 81 provided between the input shaft 22 and the output shaft 23, a first variator 33 connected to the planetary gear mechanism 81, and a transmission from the first variator 33.
  • the second variator 34 transmits power to a load or a power source.
  • the planetary gear mechanism 81 is connected to a carrier 29A connected to the input shaft 22 and supporting a planet gear 81D, a sun gear 81B connected to the first variator 33, an idler element 28, and a multi-stage transmission mechanism 26.
  • a ring gear 81C connected to the output shaft 23 is provided.
  • the transmission 21 includes at least one of an internal lockup and an external lockup (directly coupled mechanism 27). The transmission 21 can switch between power transmission using the planetary continuously variable transmission mechanism 24 and power transmission using lockup.
  • a power absorption device 38 is provided between the second variator 34 and the first variator 33 to absorb power therebetween. It is provided.
  • the power absorption device 38 changes the absorption torque of the first variator 33 by the controller 25 and absorbs the power when more power than that which can be absorbed by the second variator 34 is generated. Increase the torque of 23. Therefore, the second embodiment can also have the same effects as the first embodiment.
  • the second variator 34 includes an idler element 28 (specifically, a rotating It is connected to the idler gear 28B). As shown in FIGS. 41 to 50, the second variator 34 is a rotating element provided between the input shaft 22 (input member) and the drive source (engine 9), and a rotating element that constitutes the multi-stage transmission mechanism 26. element, a rotating element provided between the multi-stage transmission mechanism 26 and the output shaft 23 (output member), an output shaft 23 (output member), or a rotating element provided between the output shaft 23 and the load. It is also possible to have a configuration in which
  • FIG. 41 shows a twelfth modification.
  • the second variator 34 is connected to an input gear 27A of a direct coupling mechanism 27 provided on the input shaft 22. That is, the second variator 34 is connected between the planetary gear mechanism 29 and the input shaft 22 (input member). In this way, the second variator 34 may be connected to the engine 9 side (drive source side) rather than the planetary gear mechanism 29.
  • the second variator 34 may be connected to the lock-up gear 27B of the direct coupling mechanism 27.
  • FIG. 42 shows a thirteenth modification.
  • the second variator 34 is connected to a third coupling member 32 that leads to the idler element 28 .
  • FIG. 43 shows a fourteenth modification. In the fourteenth modification, the second variator 34 is connected to the odd gear 55 of the multi-stage transmission mechanism 26. Although not shown, the second variator 34 may be connected to the even gear 62 of the multi-stage transmission mechanism 26.
  • FIG. 44 shows a fifteenth modification. In the fifteenth modification, the second variator 34 is connected to the first forward speed gear 56 of the multi-stage transmission mechanism 26.
  • FIG. 45 shows a sixteenth modification, in which the second variator 34 is connected to the third forward speed gear 57 of the multi-stage transmission mechanism 26.
  • FIG. 46 shows a seventeenth modification, in which the second variator 34 is connected to the second forward speed gear 63 of the multi-stage transmission mechanism 26.
  • FIG. 47 shows an eighteenth modification, in which the second variator 34 is connected to the fourth forward speed gear 64 of the multi-stage transmission mechanism 26.
  • FIG. 48 shows a nineteenth modification, in which the second variator 34 is connected to the first reverse gear 65 of the multi-stage transmission mechanism 26.
  • the second variator 34 may be connected to the counter gear 54 of the multi-stage transmission mechanism 26.
  • FIG. 49 shows a twentieth modification, in which the second variator 34 is connected to the output shaft 53 of the multi-stage transmission mechanism 26 (output shaft 23 of the transmission 21). Although not shown, the second variator 34 is connected to the first speed output gear 71, second speed output gear 72, third speed output gear 73, fourth speed output gear 74, or reverse first speed output gear 75 of the multi-stage transmission mechanism 26. You may.
  • FIG. 50 shows a twenty-first modification, in which the second variator 34 is connected to the load side (front axle 12 side, rear axle 13 side) of the output shaft 23 of the transmission 21. Although not shown, the second variator 34 may be connected to the front axle 12, the rear axle 13, the front propeller shaft 14, or the rear propeller shaft 15.
  • the 15th to 21st modifications shown in FIGS. 44 to 50 by connecting the second variator 34 to the output shaft 53 side rather than the idler gear 28B, 28B) and the multi-stage transmission mechanism 26 can be made smaller. Thereby, the transmission 21 can be manufactured at low cost.
  • the transmission device 21 including the multi-stage transmission mechanism 26 has been described as an example.
  • the present invention is not limited to this, and the transmission 21 may omit the multi-stage transmission mechanism 26.
  • the planetary gear mechanism 29 of the planetary continuously variable transmission mechanism 24 and the output shaft 23 (output member) can be connected by screwing the output gear of the output shaft 23 to the third connecting member 32.
  • the second variator 34 may be connected to the output shaft 23 side (output member side) than the planetary gear mechanism 29, or may be connected to the input shaft 22 side (input member side) than the planetary gear mechanism 29. May be connected to.
  • the transmission 21 including the direct coupling mechanism 27 as an external lockup mechanism has been described as an example, but the direct coupling mechanism 27 may be omitted. The same applies to the second embodiment and each modification.
  • the transmission 21 is mounted on the wheel loader 1 as an example.
  • the transmission device 21 is not limited thereto, and may be mounted on a work vehicle (construction machine) other than a wheel loader, such as a hydraulic excavator, a hydraulic crane, a dump truck, or a forklift.
  • a work vehicle construction machine
  • it can be widely applied not only to work vehicles but also as a transmission device incorporated in various vehicles such as automobiles and railway vehicles, or various industrial machines and general machines. This also applies to the second embodiment and each modification.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)
  • Structure Of Transmissions (AREA)

Abstract

変速装置(21)は、入力軸(22)と、出力軸(23)と、遊星歯車機構(29)と、第1バリエータ(33)と、第2バリエータ(34)と、コントローラ(25)とを備えている。第2バリエータ(34)は、第1バリエータ(33)から伝達された動力を出力軸(23)に伝達する。第2バリエータ(34)と第1バリエータ(33)との間には、動力吸収装置(38)が設けられている。コントローラ(25)は、第1バリエータ(33)の吸収トルクを変更して、第2バリエータ(34)で吸収できる以上の動力を発生させたときに、動力吸収装置(38)によって動力を吸収することにより、出力軸(23)のトルクを上昇させる。

Description

変速装置
 本開示は、ホイールローダ、ホイール式油圧ショベル等の車両に搭載される変速装置に関する。
 例えば、特許文献1には、動力源となる原動機(1)が発生した動力を、フローティングギヤ(11)を介して複合遊星歯車機構(13)に伝え、この複合遊星歯車機構(13)で動力を2方向に分配(分割)する動力分割変速機(トランスミッション)が記載されている。複合遊星歯車機構(13)で分割した一方の動力は、第1の無段階調整ユニット(18)および第2の無段階調整ユニット(21)を介して出力軸となる駆動部(23)または複合遊星歯車機構(13)に伝達される。複合遊星歯車機構(13)で分割した他方の動力は、歯車同士の噛み合いにより駆動部(23)に伝達される。
特表2010-540866号公報
 特許文献1に記載された技術の場合、出力軸となる駆動部(23)の出力トルクを十分に確保できるようにするためには、最大出力トルクが大きい第2の無段階調整ユニット(21)を採用し、駆動部(23)の不足するトルクを補う必要があると考えられる。しかし、この場合は、第2の無段階調整ユニット(21)が高価になることに加えて、第2の無段階調整ユニット(21)が大型化する可能性がある。
 本発明の目的は、最大出力トルクの小さい小型で廉価な第2の無段階調整ユニット(第2バリエータ)であっても十分なトルクを出力することができる変速装置を提供することにある。
 本発明の一実施形態による無段変速装置は、動力源に繋がる入力部材と、負荷に繋がる出力部材と、前記入力部材と前記出力部材との間に設けられた遊星機構と、前記遊星機構に接続された第1バリエータと、前記第1バリエータとは別に設けられた第2バリエータと、前記第1バリエータの回転速度を変更するコントローラとを備え、前記遊星機構は、キャリアと、前記キャリアの回転中心軸を中心として自転する第1サン部材と、前記キャリアの回転中心軸を中心として自転する第2サン部材とを含んで構成され、前記遊星機構を構成する部材のうちの第1部材は、前記入力部材に直接または他の部材を介して接続され、前記遊星機構を構成する部材のうちの前記第1部材とは別の第2部材は、前記第1バリエータに直接または他の部材を介して接続され、前記遊星機構を構成する部材のうちの前記第1部材および前記第2部材とは別の第3部材は、前記出力部材に直接または他の部材を介して接続され、前記遊星機構の前記キャリアには、前記キャリアの回転中心軸を中心に公転しつつ前記第1サン部材と前記第2サン部材と回転しながら動力伝達を行うプラネット部材およびバランス部材が支持され、前記遊星機構は、前記動力源から前記遊星機構に伝達されたトルクを前記第2部材と前記第3部材とに分配可能に構成され、前記第2バリエータは、前記第1バリエータから伝達された動力を前記負荷または前記動力源に伝達し、または、前記負荷または前記動力源から伝達された動力を前記第1バリエータに伝達可能に構成され、前記第2バリエータと前記第1バリエータとの間に動力を吸収する動力吸収装置が設けられ、前記コントローラは、前記第1バリエータの回転速度を変更することにより、前記入力部材の回転速度に対する前記出力部材の回転速度を変更し、前記第1バリエータの吸収トルクを変更して、前記第2バリエータで吸収できる以上の動力を発生させたときに、前記動力吸収装置によって前記動力を吸収することにより、前記出力部材のトルクを上昇させる。
 また、本発明の一実施形態による無段変速装置は、動力源に繋がる入力部材と、負荷に繋がる出力部材と、前記入力部材と前記出力部材との間に設けられた遊星機構と、前記遊星機構に接続された第1バリエータと、前記第1バリエータとは別に設けられた第2バリエータと、前記第1バリエータの回転速度を変更するコントローラとを備え、前記遊星機構は、キャリアと、前記キャリアの回転中心軸を中心として自転するサン部材と、前記サン部材よりも径方向外側に位置して前記キャリアの回転中心軸を中心として自転するリング部材との3つの部材を含んで構成され、前記遊星機構の前記3つの部材のうちの第1部材は、前記入力部材に直接または他の部材を介して接続され、前記遊星機構の前記3つの部材のうちの前記第1部材とは別の第2部材は、前記第1バリエータに直接または他の部材を介して接続され、前記遊星機構の前記3つの部材のうちの前記第1部材および前記第2部材とは別の第3部材は、前記出力部材に直接または他の部材を介して接続され、前記遊星機構の前記キャリアには、前記キャリアの回転中心軸を中心に公転しつつ前記サン部材と前記リング部材と回転しながら動力伝達を行うプラネット部材が支持され、前記遊星機構は、前記動力源から伝達されたトルクを前記第2部材と前記第3部材とに分配可能に構成され、前記第2バリエータは、前記第1バリエータから伝達された動力を前記負荷または前記動力源に伝達し、または、前記負荷または前記動力源から伝達された動力を前記第1バリエータに伝達可能に構成され、前記第2バリエータと前記第1バリエータとの間に動力を吸収する動力吸収装置が設けられ、前記コントローラは、前記第1バリエータの回転速度を変更することにより、前記入力部材の回転速度に対する前記出力部材の回転速度を変更し、前記第1バリエータの吸収トルクを変更して、前記第2バリエータで吸収できる以上の動力を発生させたときに、前記動力吸収装置によって前記動力を吸収することにより、前記出力部材のトルクを上昇させる。
 本発明の一実施形態によれば、最大出力トルクの小さい小型で廉価な第2バリエータであっても十分なトルクを出力することができる。
第1の実施の形態による変速装置を搭載したホイールローダを示す左側面図である。 図1中の変速装置を示す一部破断の側面図である。 第1の実施の形態による変速装置を示す構成図である。 図3中の変速装置を遊星機構の内部も一緒に示す構成図である。 図4中の(A)部の拡大図である。 図4中の遊星機構を動力源側からみた説明図である。 図4中の遊星機構(後述の表4の「No1-A」)の各部材の回転速度の関係を示す特性線図である。 後述の表4の「No1-B」の遊星機構の各部材の回転速度の関係を示す特性線図である。 後述の表4の「No1-C」の遊星機構の各部材の回転速度の関係を示す特性線図である。 速度比とトルクとの関係を示す特性線図である。 バリエータが電動モータ・ジェネレータの場合の動力吸収装置の一例を示す構成図である。 バリエータが油圧ポンプ・モータの場合の動力吸収装置の一例を示す構成図である。 リリーフバルブのリリーフ開始圧が固定の場合の圧力、容積の時間変化の一例を示す特性線図である。 リリーフバルブのリリーフ開始圧が変更可能な場合の圧力、容積の時間変化の一例を示す特性線図である。 バリエータが油圧ポンプ・モータの場合の動力吸収装置の別例を示す構成図である。 図4中の(B)部の拡大図である。 ホイールローダの車速とけん引力との理想的な関係を示す駆動力線図である。 第1の実施の形態によるホイールローダの車速とけん引力との関係を示す駆動力線図である。 第1の変形例(外部ロックアップなしの構成)を示す図3と同様の構成図である。 第2の変形例(内部ロックアップをブレーキにより行う構成)を示す図3と同様の構成図である。 第3の変形例(内部ロックアップをブレーキにより行い、かつ、アイドラ部材なしの構成)を示す図3と同様の構成図である。 外部ロックアップなしの変速装置が搭載されたホイールローダの車速とけん引力との関係を示す駆動力線図である。 内部ロックアップなしの変速装置が搭載されたホイールローダの車速とけん引力との関係を示す駆動力線図である。 第4の変形例(入力部材が第1サン部材に接続され、第1バリエータがキャリアに接続された構成)を示す図4と同様の構成図である。 第5の変形例(入力部材が第1サン部材に接続され、第1バリエータが第2サン部材に接続された構成)を示す図4と同様の構成図である。 第6の変形例(第2バリエータが出力部材に接続された構成)を示す図4と同様の構成図である。 第2の実施の形態を示す図4と同様の構成図である。 図27中の(C)部の拡大図である。 図27中の遊星機構を動力源側からみた説明図である。 図27中の遊星機構(後述の表6の「No2-A」)の3つの部材の回転速度の関係を示す特性線図である。 後述の表6の「No2-B」の遊星機構の各部材の回転速度の関係を示す特性線図である。 後述の表6の「No2-C」の遊星機構の各部材の回転速度の関係を示す特性線図である。 後述の表6の「No2-D」の遊星機構の各部材の回転速度の関係を示す特性線図である。 後述の表6の「No2-E」の遊星機構の各部材の回転速度の関係を示す特性線図である。 後述の表6の「No2-F」の遊星機構の各部材の回転速度の関係を示す特性線図である。 第7の変形例(入力部材がリング部材に接続され、第1バリエータがキャリアに接続された構成)を示す図27と同様の構成図である。 第8の変形例(入力部材がキャリアに接続され、第1バリエータがリング部材に接続された構成)を示す図27と同様の構成図である。 第9の変形例(入力部材がリング部材に接続され、第1バリエータがサン部材に接続された構成)を示す図27と同様の構成図である。 第10の変形例(入力部材がサン部材に接続され、第1バリエータがリング部材に接続された構成)を示す図27と同様の構成図である。 第11の変形例(入力部材がサン部材に接続され、第1バリエータがキャリアに接続された構成)を示す図27と同様の構成図である。 第12の変形例(第2バリエータが入力部材に接続された構成)を示す図3と同様の構成図である。 第13の変形例(第2バリエータがアイドラ要素に繋がる第3連結部材に接続された構成)を示す図3と同様の構成図である。 第14の変形例(第2バリエータが多段変速機構の奇数段ギヤに接続された構成)を示す図3と同様の構成図である。 第15の変形例(第2バリエータが多段変速機構の前進1速ギヤに接続された構成)を示す図3と同様の構成図である。 第16の変形例(第2バリエータが多段変速機構の前進3速ギヤに接続された構成)を示す図3と同様の構成図である。 第17の変形例(第2バリエータが多段変速機構の前進2速ギヤに接続された構成)を示す図3と同様の構成図である。 第18の変形例(第2バリエータが多段変速機構の前進4速ギヤに接続された構成)を示す図3と同様の構成図である。 第19の変形例(第2バリエータが多段変速機構の後進1速ギヤに接続された構成)を示す図3と同様の構成図である。 第20の変形例(第2バリエータが出力部材に接続された構成)を示す図3と同様の構成図である。 第21の変形例(第2バリエータが変速装置の出力部材よりも負荷側に接続された構成)を示す図3と同様の構成図である。
 以下、実施の形態による変速装置(トランスミッション)を、ホイールローダに適用した場合を例に挙げ、添付図面を参照しつつ詳細に説明する。
 図1ないし図18は、第1の実施の形態を示している。図1において、ホイールローダ1は、車両(作業車両)の代表例である。ホイールローダ1は、左,右の前車輪2が設けられた前部車体3と左,右の後車輪4が設けられた後部車体5とが左,右方向に屈曲可能に連結されたアーティキュレート式の作業車両として構成されている。即ち、前部車体3および後部車体5は、ホイールローダ1の車体を構成している。前部車体3と後部車体5との間には、センタヒンジ6、ステアリングシリンダ(図示せず)が設けられている。前部車体3と後部車体5は、ステアリングシリンダを伸長・縮小させることにより、センタヒンジ6を中心に左,右方向に屈曲する。これにより、ホイールローダ1は、走行時の操舵を行うことができる。
 ホイールローダ1の前部車体3には、作業装置とも呼ばれる荷役作業機7が俯仰の動作を可能に設けられている。荷役作業機7は、ローダバケット7Aを備えている。一方、ホイールローダ1の後部車体5には、内部が運転室となったキャブ8、エンジン9、油圧ポンプ10、トランスミッション(動力伝達装置)である変速装置21等が設けられている。エンジン9は、ホイールローダ1の動力源(原動機)である。動力源は、内燃機関となるエンジン9単体で構成できる他、例えば、エンジンと電動モータ、または、電動モータ単体により構成してもよい。油圧ポンプ10は、エンジン9と接続されている。油圧ポンプ10は、荷役作業機7を動作させるための油圧源である。後述の図3等に示すように、油圧ポンプ10は、エンジン9と歯車10A,10Bを介して接続されている。
 前部車体3の下側には、左,右方向に延びるフロントアクスル12が設けられている。フロントアクスル12の両端側には、左,右の前車輪2が取付けられている。一方、後部車体5の下側には、左,右方向に延びるリヤアクスル13が設けられている。リヤアクスル13の両端側には、左,右の後車輪4が取付けられている。
 フロントアクスル12は、前プロペラシャフト14を介して変速装置21に接続されている。リヤアクスル13は、後プロペラシャフト15を介して変速装置21に接続されている。変速装置21は、エンジン9の回転を増速および減速して前プロペラシャフト14および後プロペラシャフト15に伝達する。即ち、エンジン9からの動力は、エンジン9に結合された変速装置21に伝達される。
 エンジン9からの動力は、変速装置21で回転数と回転方向を調整された後、変速装置21の前,後の出力軸23A,23Bから前プロペラシャフト14および後プロペラシャフト15を介してフロントアクスル12およびリヤアクスル13に伝達される。即ち、図2に示すように、変速装置21は、エンジン9と接続される入力軸22と、前プロペラシャフト14に接続される前側の出力軸23Aと、後プロペラシャフト15に接続される後側の出力軸23Bとを備えている。変速装置21は、変速装置21内の動力伝達経路を切換えることにより、入力軸22と出力軸23A,23Bとの間で変速および正転・逆転の切換えを行う。
 次に、ホイールローダ1の動作について説明する。ホイールローダ1は、ダンプ積み作業を主体としたVサイクルやホッパ等への直接投入するロード&キャリーといった動作パターンを繰り返す。Vサイクルは、発進した後に土砂等を掘削し、ダンプに積込する動作パターンである。ロード&キャリーは、発進した後に土砂等を掘削し、運搬(高負荷走行)し、ダンプへ排土し、回送(低負荷走行)する動作パターンである。ホイールローダ1は、発進、掘削、運搬、積込、回送等の種々の作業状態に最適な走行速度と駆動力を得るために、変速装置21を頻繁に切換える必要がある。
 掘削および発進時において、変速装置21は、高い牽引力が要求される。このため、変速装置21は、減速比を上昇させて出力軸23A,23Bの出力トルクを上昇させる必要がある。さらに、ホイールローダ1の車速が0km/h(出力軸23A,23Bの回転速度が0)であっても、動力源であるエンジン9が停止しないように、入力軸22の回転速度を所定以上に保つ必要があり、変速装置21の変速比は無限大となる構造である必要がある。なお、ホイールローダ1の掘削時の車速は、例えば0~4km/hである。
 運搬時において、変速装置21は、省燃費のために高い伝達効率で、入力軸22から出力軸23A,23Bに動力伝達を行う必要がある。運搬時の車速は、例えば0~13km/hである。一方、ダンプへ排土する場合、ホイールローダ1は、運搬しながら荷役作業機7を上昇させる。このため、荷役作業機7の上昇速度が急に遅くなると、ダンプへ荷役作業機7を衝突させてしまう可能性がある。このため、ダンプに接近する際は、油圧ポンプ10の吐出流量の急激な変化を抑制できることが望ましい。そして、このためには、エンジン9の回転速度が急変しないように変速装置21を制御する必要がある。ダンプへ排土するときに、ダンプへ接近するための車速は、例えば0~7km/hである。この車速では、エンジン9の急激な回転速度の変動を抑制できることが望ましい。 
 一般道または作業現場内を積荷がない状態で走行する回送時において、変速装置21は、省燃費のために、高い伝達効率で入力軸22から出力軸23A,23Bに動力伝達を行う必要がある。回送時の車速は、例えば0~40km/hである。回送時には、荷役作業機7の高い操作性が要求されない。このため、エンジン9の回転速度の急変は許容できる。ただし、省燃費のために、運搬時よりも高い伝達効率で入力軸22から出力軸23A,23Bに動力伝達を行う必要がある。
 図17は、ホイールローダ1の理想的な駆動力線図を示している。図17中には、前進方向の理想的な駆動力線Lfと、後進方向(後退方向)の理想的な駆動力線Lrとを示している。前進のときは、掘削時に高い牽引力が求められ、回送時に高い車速(0~40km/h)での走行が求められる。また、ホイールローダ1は、採石場等に設けられた多様な勾配の上り坂を安定して登坂する必要がある。このため、例えば、時速3km/h以上では、車速によらず等馬力の牽引力であることが望ましい。
 図17中の範囲Aは、掘削をするために高い牽引力が求められる範囲、即ち、掘削時の駆動力線の範囲Aを示している。図17中の範囲Bは、車速によらず等馬力の牽引力が求められる範囲、即ち、前進方向の等馬力の駆動力線の範囲Bを示している。図17中、範囲Cは、車速によらず等馬力の牽引力が求められる範囲、即ち、後進方向の等馬力の駆動力線の範囲Cを示している。前進方向の等馬力の駆動力線の範囲Bおよび後進方向の等馬力の駆動力線の範囲Cは、下記の数1式が成立する。
Figure JPOXMLDOC01-appb-M000001
 なお、ホイールローダ1は、後進方向に掘削しない。このため、後進方向の理想的な駆動力線Lrの最大牽引力は、前進時と比べて低くなっている。
 ところで、ホイールローダ1等の作業車両に用いる変速装置21は、無段変速機構による動力伝達とロックアップ機構による動力伝達との切換えが可能であることが好ましい。この場合、変速装置21は、無段変速機構の増速の変速範囲を有効に使うことができることが好ましい。これに加えて、無段変速機構による動力伝達からロックアップ機構による動力伝達に切換えるときに、車両の加減速度の変化を少なくできることが好ましい。また、バリエータの回転速度の上限値と発生(吸収)可能トルクの上限値とが限られている場合に、遊星機構(遊星歯車機構)の変速比(ギヤ比)が最適な値となる配列(歯車配列)を提供ができ、無段変速機構の伝達効率を向上できることが好ましい。
 また、前述の特許文献1には、動力源となる原動機(1)が発生した動力を、フローティングギヤ(11)を介して複合遊星歯車機構(13)に伝え、この複合遊星歯車機構(13)で動力を2方向に分配(分割)する動力分割変速機(トランスミッション)が記載されている。複合遊星歯車機構(13)で分割した一方の動力は、第1の無段階調整ユニット(18)および第2の無段階調整ユニット(21)を介して出力軸となる駆動部(23)または複合遊星歯車機構(13)に伝達される。複合遊星歯車機構(13)で分割した他方の動力は、歯車同士の噛み合いにより駆動部(23)に伝達される。
 特許文献1のトランスミッションは、第1の走行領域のときに、クラッチ(4)またはクラッチ(8)のいずれか一方を締結し、他方を開放すると共に、クラッチ(26)を締結し、クラッチ(29)を開放する。第1の走行領域は、車両が発進から加速するまでの動力伝達の接続状態であり、前後進で0~20km/h程度の範囲に対応する。特許文献1によれば、この状態において、動力源となる原動機(1)が発生した動力は、複合遊星歯車機構(13)を介して第1の無段階調整ユニット(18)とリングギヤ(15)に分割される。第1の無段階調整ユニット(18)に伝達された動力は、第2の無段階調整ユニット(21)を介して出力軸となる駆動部(23)に伝達され、リングギヤ(15)に伝達された歯車同士の噛み合いにより駆動部(23)に伝達される。第1の無段階調整ユニット(18)および第2の無段階調整ユニット(21)は、油圧ポンプ・モータであり、両者間を無段変速しながら動力の伝達を行うことができる。
 第1の走行領域において、原動機(1)が発生したトルクは、複合遊星歯車機構(13)により一定の比率で第1の無段階調整ユニット(18)とリングギヤ(15)に伝達される。トルクの伝達の比率は、複合遊星歯車機構(13)の第1のサンギヤ(16)、リングギヤ(15)、二重遊星歯車機構(14)の歯車の歯数比によって決定される。これにより、下記の数2式、数3式、数4式が成立する。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 従って、駆動部(23)の出力トルクを上昇させるためには、第1の無段階調整ユニット(18)の負荷トルクを上昇させることで、リングギヤ(15)のトルクを上昇させる必要がある。しかし、第1の無段階調整ユニット(18)は、第2の無段階調整ユニット(21)が受け止め切れる以上の動力を送ることができないため、第1の無段階調整ユニット(18)の負荷トルクは制限を受ける。このため、リングギヤ(15)のトルクが低下することで、出力軸となる駆動部(23)のトルクが低下してしまう問題がある。この問題は、第2の無段階調整ユニット(21)の回転速度が小さいために受け止め切れる動力が少ない、低い車速で走行している場合に発生する。
 ここで、ホイールローダは、掘削や積込みを行う車両であるため、車速が低いときに、出力軸となる駆動部(23)のトルクを上昇させる必要がある。このため、特許文献1のトランスミッションをホイールローダに用いると、掘削時に、出力軸となる駆動部(23)の出力トルクが不足するおそれがある。これを解決するために、例えば、最大出力トルクが大きい第2の無段階調整ユニット(21)を採用し、出力軸となる駆動部(23)の不足するトルクを補うことが考えられる。しかし、この場合は、第2の無段階調整ユニット(21)が高価になることに加えて、第2の無段階調整ユニット(21)が大型化する可能性がある。
 これに対して、図3および図4に示すように、実施の形態による変速装置21は、遊星式無段変速機構24を備えている。遊星式無段変速機構24は、遊星歯車機構29と、第1バリエータ33と、第2バリエータ34とを備えている。第1バリエータ33は、第2バリエータ34が受け止めきれる以上の動力を吸収することで、第1バリエータ33に繋がる端子(第1連結部材30)のトルクを上昇させ、アイドラギヤ28Bに繋がる端子(第3連結部材32)のトルクを上昇させることで、出力軸23(23A,23B)のトルクを上昇させることが可能となっている。この場合、第1バリエータ33と第2バリエータ34との間には、動力を吸収する動力吸収装置38が設けられている。
 動力吸収装置38は、動力を処分する装置(動力処分装置)、および/または、動力を貯蓄(貯蔵)する装置(動力貯蓄装置、動力貯蔵装置、動力貯蔵源)である。動力吸収装置38は、第1バリエータ33が発生した動力のうち、第2バリエータ34が受け止めきれる以上の動力を吸収(処分または貯蓄)する。以下、このような動力を吸収(処分または貯蓄)する制御をトルクブースト制御という。実施の形態では、このようなトルクブースト制御を可能とすることにより、小型で廉価な最大出力トルクの小さい第2バリエータ34であっても、低い車速で走行している場合に出力軸23(23A,23B)で十分なトルクを出力できる。この結果、ホイールローダ1の掘削に必要な牽引力を十分に高めることができ、掘削を効率的に行うことができる。
 また、図3および図4に示すように、第1の実施の形態による変速装置21は、遊星式無段変速機構24を無段階変速させながら動力を伝達するモードと、遊星式無段変速機構24を内部ロックアップさせて動力を伝達するモードと、遊星歯車機構29を経由しない外部ロックアップ機構(直結機構27)により動力を伝達するモードとを備えている。内部ロックアップによる動力伝達は、遊星歯車機構29の3つの回転部材(例えば、キャリア、第1サンギヤ、第2サンギヤ)のうちの第1バリエータ33に繋がる回転部材(例えば、第1サンギヤ)の回転を停止させることにより行う。これにより、遊星式無段変速機構24の増速の変速範囲を有効に使うことができる。
 一方、外部ロックアップによる動力伝達は、遊星式無段変速機構24の外部に取付けられた外部ロックアップ機構(直結機構27)を経由して行う。この場合、外部ロックアップによる動力伝達は、遊星式無段変速機構24による動力伝達を停止した状態で行う。この停止は、遊星歯車機構29の3つの回転部材(例えば、キャリア、第1サンギヤ、第2サンギヤ)のうちの第1バリエータ33に繋がる回転部材(例えば、第1サンギヤ)を解放させる(またはトルクを低減させる)ことにより行う。これにより、内部ロックアップより高い伝達効率で動力を伝達することができると共に、遊星式無段変速機構24の増速の変速範囲をさらに増速して動力伝達を行うことができる。
 さらに、第1の実施の形態によれば、図4ないし図6に示すように、遊星歯車機構29は、2つのサンギヤ29B,29Cと、これら2つのサンギヤ29B,29Cの中心軸S(図6)を中心として公転しなら自転するプラネットギヤ29Dおよびバランスギヤ29Eと、プラネットギヤ29Dおよびバランスギヤ29Eを回転可能に支持すると共に2つのサンギヤ29B,29Cの中心軸Sを中心として自転する1つのキャリア29Aとを備えている。これにより、遊星歯車機構29は、ギヤ比が最適な値となる歯車配列とすることができる。即ち、この配列の遊星歯車機構29を用いることにより、回転速度の上限値と発生(吸収)可能トルクの上限値とが限られた廉価で小型の第1バリエータ33を用いた場合でも、遊星式無段変速機構24の伝達効率を向上できる。
 以下、第1の実施の形態による変速装置21について詳細に説明する。なお、図3では、変速装置21の遊星歯車機構29をボックスで示しているのに対して、図4では、遊星歯車機構29の内部、即ち、遊星歯車機構29の具体的な歯車配列についても示している。また、図3および図4では、図面が複雑になることを避けるために、変速装置21の出力軸23を、フロントアクスル12およびリヤアクスル13との両方に動力を伝達する共通の出力軸23(=出力軸23A,23B)として簡略的に表している。即ち、図3および図4では、例えばセンタディファレンシャル機構等を介して前側の出力軸23Aと後側の出力軸23Bとに動力を分割する構成に関しては省略している。
 図3および図4は、第1の実施の形態による変速装置21、より具体的には、内部ロックアップと外部ロックアップの両方を備えた変速装置21の機構図である。変速装置21は、入力部材としての入力軸22と、出力部材としての出力軸23と、無段変速機構(主変速機構)としての遊星式無段変速機構24と、コントローラ25とを備えている。また、より好ましくは、変速装置21は、有段変速機構(副変速機構)としての多段変速機構26と、外部ロックアップ機構としての直結機構27とを備えている。直結機構27は、直結機構27を通じて動力の伝達を行うときに接続される第1クラッチ27Cを備えている。また、変速装置21は、遊星式無段変速機構24と多段変速機構26と直結機構27とを機械的に結合するアイドラ要素28(アイドラ軸28A、アイドラギヤ28B)を備えている。遊星式無段変速機構24は、第1動力伝達経路を構成している。直結機構27は、第2動力伝達経路を構成している。
 変速装置21の入力軸22には、エンジン9が接続されている。入力軸22には、油圧ポンプ10に動力を伝達するための歯車10Bが設けられている。また、入力軸22には、直結機構27のインプットギヤ27Aが設けられている。入力軸22は、後述の第2連結部材31を介して遊星式無段変速機構24(より具体的には、遊星歯車機構29)と接続されている。一方、変速装置21の出力軸23からは、動力が出力される。変速装置21の出力軸23は、後述の多段変速機構26の出力軸53を兼ねている。入力軸22から入力された動力は、遊星式無段変速機構24または直結機構27を経由して、アイドラ要素28に伝達される。アイドラ要素28に伝達された動力は多段変速機構26を通じて出力軸23から出力される。
 なお、遊星式無段変速機構24は、遊星歯車機構29(例えば、第1サンギヤ29B)と第1バリエータ33とを接続する第1連結部材30を停止させることにより、内部ロックアップの状態を形成される。この内部ロックアップの状態は、例えば、第1バリエータ33をブレーキ操作させて第1連結部材30を停止させることにより形成される。遊星式無段変速機構24が内部ロックアップしている状態では、入力軸22から入力された動力は、「遊星歯車機構29(例えば、キャリア29A)と入力軸22とを接続する第2連結部材31」、「遊星歯車機構29」、「遊星歯車機構29(例えば、第2サンギヤ29C)とアイドラ要素28とを接続する第3連結部材32」を通じて、アイドラ要素28に伝達される。このような内部ロックアップについては、後述する。
 第1の実施の形態では、エンジン9から入力軸22に入力された動力を多段変速機構26に伝達する動力伝達経路を、次の(A)、(B)、(C)の3つの経路のうちから任意に選択することができる。
(A)エンジン9から入力軸22に入力された動力を、遊星式無段変速機構24を無段階変速させた状態で多段変速機構26に伝達する無段階変速経路(遊星式無段変速機構24を経由する第1動力伝達経路)。このとき、第1クラッチ27Cは解放され、第2クラッチ36および第3クラッチ37は接続(締結)される。
(B)エンジン9から入力軸22に入力された動力を、遊星式無段変速機構24を内部ロックアップさせた状態で多段変速機構26に伝達する内部ロックアップ経路(遊星式無段変速機構24を経由する第1動力伝達経路)。このとき、第1クラッチ27Cは解放され、第2クラッチ36は接続(締結)される。第3クラッチ37は必要に応じて接続(締結)される。
(C)エンジン9から入力軸22に入力された動力を、直結機構27を経由して多段変速機構26に伝達する外部ロックアップ経路(遊星式無段変速機構24を経由せずに直結機構27を経由する第2動力伝達経路)。このとき、第1クラッチ27Cは接続(締結)され、第2クラッチ36と第3クラッチ37は必要に応じて解放される。
 これにより、遊星式無段変速機構24を無段階変速させることが適しているときは、遊星式無段変速機構24を無段階変速させて動力伝達を行うことができる。遊星式無段変速機構24を内部ロックアップさせることが適しているときは、遊星式無段変速機構24を内部ロックアップさせて動力伝達を行うことができる。直結機構27を経由して動力伝達を行うことが適しているときは、直結機構27を経由して動力伝達を行うことができる。
 遊星式無段変速機構24を無段階変速させて動力の伝達を行うことが適しているときは、掘削中および運搬中で、かつ、車速が0~7km/hの範囲である。この理由は、次の(a)~(c)の通りである。
(a)車両の発進時および掘削時の伝達効率が高い。
(b)変速比を無限大にすることが可能である。即ち、エンジン9が回転している場合であっても、出力軸23の回転を停止しながら出力軸23にトルクを伝達することが可能である。このため、掘削作業に適している。
(c)エンジン9が発生した動力のうち変速装置21を通じて出力軸23に伝達するトルクを制御可能である。即ち、荷役作業機7を動かす油圧ポンプ10と変速装置21との間で、動力の分配が可能である。
 遊星式無段変速機構24を内部ロックアップさせて動力の伝達を行うことが適しているときは、運搬中および回送中で、かつ、車速が7~9km/hの範囲である。この理由は、次の(d)~(e)の通りである。
(d)車速が高くなると、遊星式無段変速機構24を無段階変速させるよりも、遊星式無段変速機構24を内部ロックアップさせて動力伝達を行った方が、伝達効率が高い。
(e)無段階変速から内部ロックアップへは、機構的に切換えが可能である。このため、無段階変速から内部ロックアップへの切換え時に、エンジン9の急激な回転変動を抑制できる。これにより、油圧ポンプ10の吐出流量の急激な変動を抑制でき、荷役作業機7の操作性を向上できる。これと共に、切換え時の出力軸23のトルクの変動を小さくでき、ホイールローダ1の乗り心地を向上できる。
 直結機構27を経由して動力の伝達を行うことが適しているときは、運搬中で、かつ、車速が9~13km/hの範囲である。また、回送中で、かつ、車速が9~40km/hの範囲である。この理由は、次の通りである。即ち、直結機構27を経由して動力の伝達を行う外部ロックアップは、動力の伝達効率が最も高い。即ち、外部ロックアップは、一対の歯車27A,27B同士の噛み合いで動力を伝達するため、遊星歯車機構29を介して動力伝達を行う内部ロックアップと比較して伝達効率が高い。なお、車速が9km/h以下は、回送の途中または運搬の途中で急に掘削が開始される可能性がある。一方、直結機構27(外部ロックアップ)から遊星式無段変速機構24に動力伝達経路を切換える場合、この切換えに時間を要する可能性がある。このため、車速が9km/h以下では、直結機構27を使用しないことが望ましい。
 下記の表1は、内部ロックアップと外部ロックアップとの両方を備えた変速装置21の動力伝達経路の組み合わせを示している。この場合、多段変速機構26は、前進4段と後進1段の変速段を備えている。このため、直結機構27(外部ロックアップ機構)を経由して動力伝達を行う場合、多段変速機構26は、前進1速、前進2速、前進3速、前進4速、後進1速の変速段を選択できる。
Figure JPOXMLDOC01-appb-T000005
 なお、多段変速機構26の速度段が、前進2速、前進3速、前進4速のいずれかの場合であっても、直結機構27を経由せずに遊星式無段変速機構24を経由して動力伝達を行ってもよい。このときの遊星式無段変速機構24の動作は、無段階変速動作であってもよいし、内部ロックアップさせた状態であってもよい。しかし、遊星式無段変速機構24を無段階変速動作させると、内部ロックアップおよび外部ロックアップと比較して伝達効率が低くなる。これにより、変速装置21の伝達効率が低下するため、好適には上記表1に示す動力伝達経路の組み合わせを選択することが好ましい。
 図18は、内部ロックアップと外部ロックアップとの両方が存在する変速装置21の駆動力線図を示している。図18に示すように、前進は、前進1速無段階変速Lf1、前進1速内部ロックアップLf2、前進1速外部ロックアップLf3、前進2速外部ロックアップLf4、前進3速外部ロックアップLf5、前進4速外部ロックアップLf6の6段階に変速が可能となっている。これにより、前進方向の理想的な駆動力線Lfに限りなく近付けることができる。しかし、前進1速無段階変速Lf1は、車速が0~4km/hのときに牽引力が低下し、掘削に必要な牽引力を十分に確保できない可能性がある。実施の形態では、牽引力を確保するために、前進1速無段階変速Lf1で走行している場合に、後述のトルクブースト制御を行うことにより、理想的な駆動力線Lfに限りなく近付けることができる。
 一方、後進は、後進1速無段階変速Lr1、後進1速内部ロックアップLr2、後進1速外部ロックアップLr3の3段階に変速が可能となっている。これにより、後進方向の理想的な駆動力線Lrに限りなく近付けることができる。これらにより、掘削時に高い牽引力を得ることができ、回送時に高い車速(0~40km/h)を得ることができ、かつ、多様な勾配の上り坂を安定して登坂することができる。しかし、後進1速無段階変速Lr1は、車速が0~5km/hのときに牽引力が低下し、路面の凹みに車輪2,4が落ちた状態等から抜け出すための牽引力を十分に確保できない可能性がある。実施の形態では、牽引力を確保するために、後進1速無段階変速Lr1で走行している場合に、後述のトルクブースト制御を行うことにより、理想的な駆動力線Lrに限りなく近付けることができる。
 なお、広い変速比幅を実現するためには、「遊星式無段変速機構24の内部ロックアップ」と「直結機構27による外部ロックアップ」との両方を備えた構成が好ましい。しかし、「遊星式無段変速機構24の増速の変速範囲を有効に使いつつ、無段階変速からロックアップ状態への動力伝達の切換え時に車両の加減速度の変化を抑制すること」を達成するためには、内部ロックアップと外部ロックアップとのうちのいずれか一方のみを備えた構成でもよい。
 図19は、ロックアップを実現する手段として、遊星式無段変速機構24の内部ロックアップのみを備えた第1の変形例による変速装置21Aを示している。この第1の変形例による変速装置21Aは、遊星式無段変速機構24の内部ロックアップ動作が可能であるが、外部ロックアップ機構(直結機構27)を備えていない。下記の表2は、内部ロックアップのみを備えた変速装置21Aの動力伝達経路の組み合わせを示している。
Figure JPOXMLDOC01-appb-T000006
 第1の変形例では、直結機構27(外部ロックアップ)による変速段が1つ少なくなる。このため、内部ロックアップと外部ロックアップとの両方が存在する変速装置21と同等の変速比を得るために、第1の変形例では、多段変速機構26Aは、前進5段と後進2段の変速段を備えている。また、第1の変形例では、後述するように内部ロックアップを実現するためのブロック機構40を備えている。ブロック機構40は、後述の動力吸収装置38を兼ねる構成としてもよいし、動力吸収装置38とは別々に設ける構成としてもよい。なお、図20は、第2の変形例による変速装置21Bを示している。第2の変形例による変速装置21Bも、第1の変形例のように外部ロックアップ機構を省略している。また、第2の変形例では、後述するように内部ロックアップを実現するためのブレーキ機構41を備えている。さらに、図21は、第3の変形例による変速装置21Cを示している。第3の変形例による変速装置21Cは、外部ロックアップ機構を省略し、かつ、ブレーキ機構41を備えていることに加えて、アイドラ要素28を省略している。即ち、直結機構27(外部ロックアップ)を省略する構成の場合は、アイドラ要素28も省略できる。
 図22は、遊星式無段変速機構24(内部ロックアップ)を備えているが直結機構27(外部ロックアップ)を備えていない変速装置21A,21B,21C(図19,図20,図21)の駆動力線図を示している。図22に示すように、前進は、前進1速無段階変速Lf1、前進1速内部ロックアップLf2、前進2速内部ロックアップLf3、前進3速内部ロックアップLf4、前進4速内部ロックアップLf5、前進5速内部ロックアップLf6の6段階に変速が可能となっている。一方、後進は、後進1速無段階変速Lr1、後進1速内部ロックアップLr2、後進2速内部ロックアップLr3の3段階に変速が可能となっている。
 これに対して、外部ロックアップのみを備えた構成は、例えば、第1の実施の形態の変速装置21(図3、図4)で内部ロックアップ動作を行わないことにより実現できる。下記の表3は、外部ロックアップ(直結機構27)を備えているが内部ロックアップ動作を行わない変速装置21の動力伝達経路の組み合わせを示している。
Figure JPOXMLDOC01-appb-T000007
 図23は、内部ロックアップ動作を行わない変速装置21の駆動力線図を示している。図23に示すように、前進は、前進1速無段階変速Lf1、前進1速外部ロックアップLf2、前進2速外部ロックアップLf3、前進3速外部ロックアップLf4、前進4速外部ロックアップLf5の5段階に変速が可能となっている。一方、後進は、後進1速無段階変速Lr1、後進1速外部ロックアップLr2の2段階に変速が可能となっている。
 次に、遊星式無段変速機構24について、図3を参照しつつ説明する。遊星式無段変速機構24は、遊星歯車機構29と、第1バリエータ33と、第2バリエータ34と、伝達要素35と、第2クラッチ36と、第3クラッチ37とを備えている。遊星歯車機構29は、第1連結部材30を介して第1出力側(第1バリエータ33側)に接続されている。遊星歯車機構29は、第2連結部材31を介して入力側(エンジン9側)に接続されている。遊星歯車機構29は、第3連結部材32を介して第2出力側(アイドラ要素28側)に接続されている。
 第1バリエータ33および第2バリエータ34は、電動モータ・ジェネレータ(電動モータ、電動ジェネレータ)または油圧ポンプ・モータ(油圧ポンプ、油圧モータ)等により構成されている。具体的には、第1バリエータ33が電動モータにより構成される場合には、第2バリエータ34は電動ジェネレータにより構成され、第1バリエータ33が油圧ポンプにより構成される場合には、第2バリエータ34は油圧モータにより構成されるといった関係となる。第1バリエータ33および第2バリエータ34は、第1バリエータ33の回転速度と第2バリエータ34の回転速度とが異なる場合に、無段階に変速を行いつつ両者間で動力伝達を行うことが可能に構成されている。このために、第1バリエータ33と第2バリエータ34との間には、両者間で動力を伝達するための伝達要素35が設けられている。伝達要素35は、例えば、電気配線または油圧配管により構成されている。伝達要素35の途中には、動力貯蔵源(動力貯蔵装置)として構成された動力吸収装置38が取り付けられている。動力吸収装置38は、例えば、油圧アキュームレータまたは蓄電池により構成することができる。動力吸収装置38については後述する。また、第1バリエータ33と第2バリエータ34と伝達要素35の機能は、変速比無限大変速機(IVT)により構成してもよい。
 遊星歯車機構29と第1バリエータ33との間、即ち、第1連結部材30と第1バリエータ33との間には、第2クラッチ36が設けられている。第2クラッチ36は、例えば、摩擦接合によるクラッチ(摩擦板)、ドグクラッチまたはシンクロメッシュ付ドグクラッチにより構成されている。第2クラッチ36は、第1連結部材30と第1バリエータ33との間で両者の機械的な結合(接続)と解放とを行う。即ち、第2クラッチ36は、遊星歯車機構29と第1バリエータ33との間で、これら遊星歯車機構29と第1バリエータ33との間の動力の伝達と解放とを切換える。
 コントローラ25は、例えば、演算回路(CPU)、メモリ等を備えたマイクロコンピュータを含んで構成されている。コントローラ25は、第1クラッチ27Cの締結と解放、第2クラッチ36の締結と解放、第3クラッチ37の締結と解放とを制御する。コントローラ25は、第1バリエータ33の回転速度を制御する。コントローラ25は、必要に応じて第2バリエータ34の回転速度を制御する。コントローラ25は、必要に応じて伝達要素35、動力吸収装置38を制御する。コントローラ25は、必要に応じて、後述するブロック機構40(図19)、ブレーキ機構41(図20,図21)を制御する。さらに、コントローラ25は、後述する多段変速機構26のクラッチ58,59,60,66,67,68,69の締結と解放とを制御する。
 ここで、コントローラ25は、第2クラッチ36の締結と解放とを制御する。例えば、遊星式無段変速機構24による動力伝達が不要なときは、コントローラ25は、第2クラッチ36を解放する信号を出力し、第2クラッチ36を解放する。これにより、第1バリエータ33の回転を停止(または低下させる)ことができ、第1バリエータ33の回転による動力損失を低減できる。
 第2バリエータ34は、第3クラッチ37を介してアイドラ要素28と接続されている。第3クラッチ37は、第2バリエータ34とアイドラ要素28との間で、これら第2バリエータ34とアイドラ要素28との間の動力の伝達と解放とを切換える。即ち、第3クラッチ37は、第2バリエータ34とアイドラ要素28との間に設けられている。アイドラ要素28は、アイドラ軸28Aと、アイドラ軸28Aに設けられたアイドラギヤ28Bとを備えている。アイドラ軸28Aは、第1クラッチ27Cを介して直結機構27のロックアップギヤ27B(より具体的には、ロックアップギヤ27Bの回転軸27B1)に接続される。
 また、アイドラ軸28Aは、変速機39および第3クラッチ37を介して第2バリエータ34に接続される。アイドラギヤ28Bは、第3連結部材32と噛合しており、第3連結部材32を介して遊星歯車機構29と接続されている。第2バリエータ34とアイドラ要素28との間には、第2バリエータ34とアイドラ要素28との間で変速を行う変速機39が設けられている。この変速機39は、省略してもよい。この場合には、アイドラ要素28のアイドラ軸28Aと第2バリエータ34の回転軸との間に第3クラッチ37を設け、第3クラッチ37によりアイドラ軸28Aと第2バリエータ34の回転軸との接続(締結)と解放とを行うことができる。
 第3クラッチ37は、例えば、摩擦接合によるクラッチ(摩擦板)、ドグクラッチまたはシンクロメッシュ付ドグクラッチにより構成されている。第3クラッチ37は、第2バリエータ34とアイドラ要素28との間で両者の機械的な結合(接続)と解放とを行う。コントローラ25は、第3クラッチ37の締結と解放とを制御する。例えば、第2バリエータ34による動力伝達が不要なときは、コントローラ25は、第3クラッチ37を解放する信号を出力し、第3クラッチ37を解放する。これにより、第2バリエータ34の回転を停止(または低下)させることができ、第2バリエータ34の回転による動力損失を低減できる。ただし、これらの条件の下で、必ずしも第3クラッチ37を解放しなくてもよい。
 なお、第2バリエータ34による動力伝達が不要なとき、および、遊星式無段変速機構24による動力伝達が不要なときは、例えば、次の(f)~(i)通りである。ただし、これら(f)~(i)の条件の下で必ずしも第2クラッチ36または第3クラッチ37を解放しなくてもよい。
(f)入力軸22から入力された動力が、直結機構27を介してアイドラ要素28へ伝達されるとき。
(g)第1連結部材30の回転が第1バリエータ33以外の別の手段(例えばブレーキ機構41)によって固定されることにより、遊星式無段変速機構24が内部ロックアップ状態になっているとき。
(h)車両が停止しているとき。
(i)車両が滑走(慣性走行)しているとき。
 エンジン9から第2連結部材31に伝達された動力は、遊星歯車機構29により、第1バリエータ33に繋がる第1連結部材30とアイドラ要素28に繋がる第3連結部材32とに分配される。第1連結部材30に分配された動力は、第2クラッチ36、第1バリエータ33、伝達要素35、第2バリエータ34、第3クラッチ37、変速機39を通じ、アイドラ要素28に伝達される。第3連結部材32に分配された動力は、アイドラ要素28に伝達される。第1連結部材30と第3連結部材32とのトルクの分配比率は、常に一定であり、遊星歯車機構29の形式と歯車の噛み合い半径に依存する。
 ただし、第1連結部材30と第3連結部材32とのトルクの分配比率は、一定となる。このため、常に第1バリエータ33から第2バリエータ34に動力が伝達されるわけではなく、第2バリエータ34から第1バリエータ33へ動力伝達される場合がある。第3連結部材32からアイドラ要素28に伝達される動力は、第1連結部材30から第1バリエータ33および第2バリエータ34を経由する動力より損失が小さい。このため、バリエータ33,34と遊星歯車機構29とを組み合わせた遊星式無段変速機構24は、バリエータのみで動力伝達を行う無段階変速装置に比べて動力伝達効率が高い。
 次に、遊星歯車機構29について説明する。図3では、遊星歯車機構29を四角(ブロック)で示している。ここで、遊星歯車機構29は、動力源であるエンジン9に繋がる第1部材と、第1バリエータ33に繋がる第2部材と、出力軸23側となるアイドラ要素28に繋がる第3部材との3つの部材(回転部材)を有している。ここで、第1の実施形態では、遊星歯車機構29は、キャリアと2つのサンギヤ(第1サンギヤ、第2サンギヤ)とにより構成されている。下記の表4は、遊星歯車機構29の構成要素(キャリア、第1サンギヤ、第2サンギヤ)の組み合わせを示している。表4中の「No1-A」は、遊星式無段変速機構24の伝達効率を向上させつつ遊星歯車機構29を小型で軽量に構成する面から最も好適である。
Figure JPOXMLDOC01-appb-T000008
 図4ないし図6に示すように、第1の実施形態(即ち、表4のNo1-A)では、遊星歯車機構29は、第1部材に対応するキャリア29Aと、第2部材に対応する第1サンギヤ29Bと、第3部材に対応する第2サンギヤ29Cと、プラネットギヤ29Dと、バランスギヤ29Eとを備えている。なお、第1サンギヤ29B、第2サンギヤ29C、プラネットギヤ29Dおよびバランスギヤ29Eは、ギヤ(歯車)の噛み合いによる動力伝達でなくてもよく、例えば、ローラ(外周面)の摩擦による動力伝達であってもよい。
 エンジン9は、第2連結部材31を介してキャリア29Aに結合されている。第1サンギヤ29Bは、第1連結部材30を介して第1バリエータ33に接続されている。第2サンギヤ29Cは、第3連結部材32を介してアイドラ要素28(アイドラギヤ28B)に接続されている。第1サンギヤ29Bは、プラネットギヤ29Dと噛み合っている。第2サンギヤ29Cは、バランスギヤ29Eと噛み合っている。バランスギヤ29Eは、プラネットギヤ29Dと噛み合っている。
 プラネットギヤ29Dの自転軸Sp(図6)およびバランスギヤ29Eの自転軸Sb(図6)は、キャリア29Aに支持されている。このため、プラネットギヤ29Dおよびバランスギヤ29Eは、遊星歯車機構29の中心軸S(図6)を中心に公転しながら自転する。プラネットギヤ29Dは、第1サンギヤ29Bと噛み合うギヤ部29D1と、バランスギヤ29Eと噛み合うギヤ部29D2とを備えている。遊星歯車機構29の成立の制約条件は、第1サンギヤ29Bの中心軸Sとプラネットギヤ29Dの自転軸Spとの間の距離と、第2サンギヤ29Cの中心軸Sとプラネットギヤ29Dの自転軸Spとの間の距離とが一致することである。このため、第1サンギヤ29B、プラネットギヤ29D、第1サンギヤ29Bと噛み合うギヤ部29D1、第2サンギヤ29C、バランスギヤ29E、および、バランスギヤ29Eと噛み合うギヤ部29D2のそれぞれの歯数、歯車のモジュール、歯車の転位、バランスギヤ29Eの自転中心位置を調整し、前記距離を一致させることが必要である。即ち、前記距離を一致させることができればよく、例えば、第1サンギヤ29Bと第2サンギヤ29Cの歯数の差を小さくすること、または、同じ歯数にすることが可能である。このため、遊星歯車機構29の減速比を自由に設定できる。
 なお、第1の実施の形態によれば、バランスギヤ29Eは、第2サンギヤ29Cとプラネットギヤ29Dとの間に設けられているが、第1サンギヤ29Bとプラネットギヤ29Dとの間に設けてもよい。ただし、「第2サンギヤ29Cとプラネットギヤ29Dとの間」と「第1サンギヤ29Bとプラネットギヤ29Dとの間」との両方にバランスギヤ29Eを設ける場合、または、両方にバランスギヤ29Eを設けない場合でも、動力伝達を行うことが可能である。ただし、好適には、いずれか一方にバランスギヤを設ける。
 次に、キャリア29Aと2つのサンギヤ29B,29Cとにより構成される遊星歯車機構29の動作を説明する。以下は、表4の「No1-A」、「No1-B」、「No1-C」の全ての条件で成立する。
 まず、遊星歯車機構29の3つの部材(キャリア29Aと2つのサンギヤ29B,29C)のトルクの分配について説明する。図6は、遊星歯車機構29を動力源側からみた断面図である。キャリア29A、第1サンギヤ29Bおよび第2サンギヤ29Cは、同心に配置されている。即ち、キャリア29A、第1サンギヤ29Bおよび第2サンギヤ29Cの中心軸S(回転中心軸)は一致している。第1サンギヤ29Bは、プラネットギヤ29Dのギヤ部29D1と噛み合う。第2サンギヤ29Cは、バランスギヤ29Eと噛み合う。バランスギヤ29Eは、プラネットギヤ29Dのギヤ部29D2と噛み合う。バランスギヤ29Eとプラネットギヤ29Dは、それぞれの歯車の噛み合いが成立するように、キャリア29Aによって自転方向に自由に回転し、かつ、中心軸Sに対して公転方向に拘束されている。このため、プラネットギヤ29Dは、プラネットギヤ29Dの中心軸である自転軸Spを中心に自転し、かつ、キャリア29Aの中心軸Sを中心に公転する。このため、プラネットギヤ29Dの中心軸(自転軸Sp)の軌跡Cpは、キャリア29Aの中心軸Sを中心とした円となる。バランスギヤ29Eは、バランスギヤ29Eの中心軸である自転軸Sbを中心に自転し、かつ、キャリア29Aの中心軸Sを中心に公転する。このため、バランスギヤ29Eの中心軸(自転軸Sb)の軌跡Cbは、キャリア29Aの中心軸Sを中心とした円となる。
 第1サンギヤ29Bの噛み合い半径rs1は、第1サンギヤ29Bとプラネットギヤ29Dとが噛み合うときの第1サンギヤ29B側の噛み合い半径である。プラネットギヤ29Dのギヤ部29D1の噛み合い半径rp1は、第1サンギヤ29Bとプラネットギヤ29Dとが噛み合うときのギヤ部29D1側の噛み合い半径である。第2サンギヤ29Cの噛み合い半径rs2は、第2サンギヤ29Cとバランスギヤ29Eとが噛み合うときの第2サンギヤ29C側の噛み合い半径である。プラネットギヤ29Dのギヤ部29D2の噛み合い半径rp2は、バランスギヤ29Eとプラネットギヤ29Dとが噛み合うときプラネットギヤ29D側の噛み合い半径である。
 第1の実施の形態(表4のNo1-A)では、キャリア29Aは、エンジン9に繋がる部材(端子)、即ち、第2連結部材31に接続されているため、キャリア29AのトルクTcは、エンジン9が発生することができるトルクである。第1サンギヤ29Bは、第1バリエータ33に繋がる部材(端子)、即ち、第1連結部材30に接続されているため、第1サンギヤ29BのトルクTs1は、第1バリエータ33が発生することができるトルクである。第2サンギヤ29Cは、アイドラ要素28に繋がる部材(端子)、即ち、第3連結部材32に接続されているため、第2サンギヤ29CのトルクTs2は、アイドラギヤ28Bから受けるトルク反力である。
 図24に示す第4の変形例(即ち、表4のNo1-B)の変速装置21Dでは、第1サンギヤ29Bは、エンジン9に繋がる部材、即ち、第2連結部材31に接続されているため、第1サンギヤ29BのトルクTs1は、エンジン9が発生することができるトルクである。キャリア29Aは、第1バリエータ33に繋がる部材、即ち、第1連結部材30に接続されているため、キャリア29AのトルクTcは、第1バリエータ33が発生することができるトルクである。第2サンギヤ29Cは、アイドラ要素28に繋がる部材、即ち、第3連結部材32に接続されているため、第2サンギヤ29CのトルクTs2は、アイドラギヤ28Bから受けるトルク反力である。
 図25に示す第5の変形例(即ち、表4のNo1-C)の変速装置21Eでは、第1サンギヤ29Bは、エンジン9に繋がる部材、即ち、第2連結部材31に接続されているため、第1サンギヤ29BのトルクTs1は、エンジン9が発生することができるトルクである。第2サンギヤ29Cは、第1バリエータ33に繋がる部材、即ち、第1連結部材30に接続されているため、第2サンギヤ29CのトルクTs2は、第1バリエータ33が発生することができるトルクである。キャリア29Aは、アイドラ要素28に繋がる部材、即ち、第3連結部材32に接続されているため、キャリア29AのトルクTcは、アイドラギヤ28Bから受けるトルク反力である。
 次に、第1サンギヤ29BのトルクTs1、第2サンギヤ29CのトルクTs2およびキャリア29AのトルクTcの関係性を説明する。まず、第1サンギヤ29Bと第2サンギヤ29Cは、プラネットギヤ29Dとバランスギヤ29Eとを介して噛み合っている。また、バランスギヤ29Eとプラネットギヤ29Dは、キャリア29Aによって自転方向に自由に回転し、かつ、キャリア29Aの中心軸Sに対して公転方向に拘束されている。これらから、作用反作用の関係を求めると、下記の数5式、数6式、数7式が成立する。
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
 これらの式より、第1サンギヤ29BのトルクTs1、第2サンギヤ29CのトルクTs2およびキャリア29AのトルクTcは、ギヤ部29D2の噛み合い半径rp2、第2サンギヤ29Cの噛み合い半径rs2、ギヤ部29D1の噛み合い半径rp1および第1サンギヤ29Bの噛み合い半径rs1から計算することができる。ギヤ部29D2の噛み合い半径rp2、第2サンギヤ29Cの噛み合い半径rs2、ギヤ部29D1の噛み合い半径rp1、第1サンギヤ29Bの噛み合い半径rs1は、それぞれの歯車の噛み合い半径で決まるため、遊星式無段変速機構24が動力伝達している間に変更できない。このため、第1サンギヤ29BのトルクTs1、第2サンギヤ29CのトルクTs2およびキャリア29AのトルクTcの比率は、遊星式無段変速機構24が動力伝達している間は不変である。
 コントローラ25は、この法則に基づいて、第1バリエータ33を制御する信号を出力し、第1バリエータ33に繋がる第1連結部材30(例えば、第1サンギヤ29B)のトルクを制御する。即ち、コントローラ25は、第1バリエータ33を制御することにより第1連結部材30(例えば、第1サンギヤ29B)のトルクを制御する。これにより、コントローラ25は、エンジン9に繋がる第2連結部材31(例えば、キャリア29A)のトルクとアイドラ要素28に繋がる第3連結部材32(例えば、第2サンギヤ29C)のトルクとを間接的に制御する。この結果、エンジン9に繋がる第2連結部材31(例えば、キャリア29A)とアイドラ要素28に繋がる第3連結部材32(例えば、第2サンギヤ29C)との間で、伝達トルクを制御することができる。
 次に、第1サンギヤ29Bの自転速度、第2サンギヤ29Cの自転速度およびキャリア29Aの自転速度の関係性を説明する。まず、第1サンギヤ29Bと第2サンギヤ29Cは、プラネットギヤ29Dとバランスギヤ29Eとを介して噛み合っている。また、バランスギヤ29Eとプラネットギヤ29Dは、キャリア29Aによって自転方向に自由に回転し、かつ、キャリア29Aの中心軸Sに対して公転方向に拘束されている。これらから、回転速度の関係を求めると、下記の数8式が成立する。なお、数8式中の「Ka」は、数9式の通りである。なお、キャリア29Aの自転速度を「Vc」とし、第1サンギヤ29Bの自転速度を「Vs1」とし、第2サンギヤ29Cの自転速度を「Vs2」とする。
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
 図7は、遊星歯車機構29の回転速度の関係を示している。図7中の速度関係線Y1は、数8式を線図で表している。キャリア29Aの自転速度が一定と仮定する。この場合、第2サンギヤ29Cの自転速度を高くすると、第1サンギヤ29Bの自転速度が低くなる。反対に、第2サンギヤ29Cの自転速度を低くすると、第1サンギヤ29Bの自転速度が高くなる。コントローラ25は、この法則に基づいて、第1バリエータ33を制御する信号を出力し、第1バリエータ33に繋がる第1連結部材30(例えば、第1サンギヤ29B)の回転速度を制御する。即ち、コントローラ25は、第1バリエータ33を制御することにより第1連結部材30(例えば、第1サンギヤ29B)の回転速度を制御する。これにより、コントローラ25は、エンジン9に繋がる第2連結部材31(例えば、キャリア29A)の回転速度とアイドラ要素28に繋がる第3連結部材32(例えば、第2サンギヤ29C)の回転速度とを間接的に制御する。この結果、エンジン9に繋がる第2連結部材31(例えば、キャリア29A)とアイドラ要素28に繋がる第3連結部材32(例えば、第2サンギヤ29C)との間で、変速比を制御することができる。
 前述したように、遊星歯車機構29は、第1サンギヤ29Bの中心軸Sとプラネットギヤ29Dの自転軸Spとの間の距離と、第2サンギヤ29Cの中心軸Sとプラネットギヤ29Dの自転軸Spとの間の距離とを一致させる必要がある。即ち、これらの距離を一致させることができればよく、例えば、第1サンギヤ29Bの噛み合い半径rs1とギヤ部29D1の噛み合い半径rp1と第2サンギヤ29Cの噛み合い半径rs2とギヤ部29D2の噛み合い半径rp2を自由に設定することができる。従って、遊星歯車機構29は、トルクTc,Ts1,Ts2の関係式(数5式、数6式、数7式)および自転速度Vs1,Vs2,Vcの関係式(数8式、数9式)から、第1バリエータ33が吸収できるトルクと許容可能な最高回転速度とに応じて、第1サンギヤ29Bの噛み合い半径rs1とギヤ部29D1の噛み合い半径rp1と第2サンギヤ29Cの噛み合い半径rs2とギヤ部29D2の噛み合い半径rp2とを調整する。これにより、数9式のKaの値を理想的な値に設定し、図7に示す速度関係線Y1の傾きを理想的な値とすることにより、第1バリエータ33が吸収できるトルクと許容可能な最高回転速度との両方に、遊星歯車機構29のトルクと回転速度を合せることが可能となる。この結果、小型で廉価な第1バリエータ33を用いることができ、かつ、遊星式無段変速機構24の伝達効率を向上できる。
 なお、第1バリエータ33の大きさおよび価格は、第1バリエータ33が吸収できるトルクの大きさと比例する。このため、第1バリエータ33の吸収トルクは、小さい方が望ましい。第1の実施の形態(即ち、表4のNo1-A)で具体例を挙げて説明する。まず、数9式のKaの値は、小さくすることが望ましい。さらに、遊星歯車機構29とアイドラ要素28との間の動力の伝達効率を検討する。この場合、第1連結部材30、第1バリエータ33、伝達要素35、第2バリエータ34、変速機39および第3クラッチ37を経由する動力伝達経路の伝達効率は、70~80%程度である。一方、第3連結部材32を経由する動力伝達経路の伝達効率は、99%程度である。このため、第1バリエータ33に分配されるトルクは小さい方が、遊星式無段変速機構24の伝達効率を向上できる。このため、数9式のKaの値を小さくすることは遊星式無段変速機構24にとって好都合である。
 一方で、図7に示す速度関係線Y1から、Kaの値を小さくすると、「第2サンギヤの回転速度/キャリア回転速度(縦軸)」が小さいときの「第1サンギヤの回転速度/キャリアの回転速度(横軸)」が大きくなる。第2サンギヤ29Cは、アイドラ要素28、多段変速機構26を介して出力軸23に繋がっているので、「第2サンギヤの回転速度/キャリア回転速度」が小さいときは、動力源(エンジン9)が回転しており車速が低速である状態である。即ち、キャリア29Aの回転速度(動力源の回転速度)が一定のもとで、Kaを小さくすると、車両が低速のときの第1バリエータ33の回転速度が上昇してしまう。一例として、具体的な例を挙げると、「第2サンギヤの回転速度/キャリア回転速度」が0の時、第2サンギヤ29Cは0回転である。第2サンギヤ29Cは、アイドラ要素28、多段変速機構26を介して出力軸23に繋がっているため、第2サンギヤ29Cが0min-1の場合、車速は0km/hである。つまり、遊星式無段変速機構24の変速比は無限大である。第1サンギヤ29Bの回転速度の制限は、6000min-1程度であり、動力源(エンジン9)をディーゼルエンジンとすると、キャリア29Aの回転速度の制限は、2000min-1程度であるため、「第1サンギヤの回転速度/キャリアの回転速度」は、3.0となる。数8式に、「第2サンギヤの回転速度/キャリア回転速度=0」、「第1サンギヤの回転速度/キャリアの回転速度=3」を代入すると、Ka=0.5となる。つまり、Ka=0.5前後がKaの下限値となる。以上のように、Kaの値は、第1バリエータ33の許容可能な最高回転速度を越えない範囲で小さくすることが望ましい。そして、キャリアと2つのサンギヤとから構成される遊星歯車機構29は、第1サンギヤ29Bの噛み合い半径rs1とギヤ部29D1の噛み合い半径rp1と第2サンギヤ29Cの噛み合い半径rs2とギヤ部29D2の噛み合い半径rp2とを自由に設定できることから、Kaの値を自由に決めることができる。このため、第1バリエータ33の許容可能な最高回転速度まで運転することができる。これにより、小型で廉価な第1バリエータ33を用いることができ、かつ、遊星式無段変速機構24の伝達効率を80~93%まで向上できる。
 このためKaの値は、第1バリエータ33の許容可能な最高回転速度を越えない範囲で大きくすることが望ましい。そして、上述のようにKaの値を自由に決めることができるため、第1バリエータ33の許容可能な最高回転速度まで運転することができる。これにより、小型で廉価な第1バリエータ33を用いることができ、かつ、遊星式無段変速機構24の伝達効率を80~93%まで向上できる。
 そして、上述のようにKaの値を自由に決めることができるため、第1バリエータ33に繋がる第1連結部材30の許容可能な最高回転速度まで運転することができる。これにより、第1バリエータ33の伝達トルクが小さくなり、小型で廉価な第1バリエータ33を用いることができる。
 図4に示す第1の実施の形態(表4のNo1-A)では、第1バリエータ33に繋がる端子(第1連結部材30、端子30ともいう)は、第1サンギヤ29Bに接続されている。前記数5式、数6式、数7式より、第1バリエータ33の吸収トルクを上昇させることで、第1サンギヤ29Bおよびキャリア29Aのトルクを上昇させ、第2サンギヤ29Cに接続されたアイドラギヤ28Bへ繋がる端子(第3連結部材32、端子32ともいう)のトルクを上昇させることができる。アイドラギヤ28Bへ繋がる端子32は、アイドラギヤ28Bおよび多段変速機構26を介して出力軸23に接続されているので、出力軸23のトルクを上昇させることができる。一方、前記数8式、数9式の関係性を、図7に示す。キャリア29Aの回転速度を一定とした場合、第2サンギヤ29Cの自転速度が低いとき(即ち、車速が低いとき)は、第1サンギヤ29Bの自転速度(回転速度)が高くなる。車速が低いときは、第2バリエータ34の回転速度が小さいため、第1バリエータ33の吸収トルクを上昇させると、第2バリエータ34が受け止められる以上の動力を、第1バリエータ33は伝達要素35に送ってしまう。このため、車両の速度が所定以下の場合、伝達要素35上に設置された動力吸収装置38は、余剰な動力を吸収(処分または貯蔵)する。これにより、変速装置21は、車速が0~5km/hのときの出力トルクを上昇させることができ、ホイールローダ1の牽引力が上昇する。
 図24に示す第4の変形例(表4のNo1-B)では、第1バリエータ33に繋がる端子30は、キャリア29Aに接続されている。前記数5式、数6式、数7式より、第1バリエータ33の吸収トルクを上昇させることで、第1サンギヤ29Bおよび第2サンギヤ29Cのトルクを上昇させ、第2サンギヤ29Cに接続されたアイドラギヤ28Bへ繋がる端子32のトルクを上昇させることができる。アイドラギヤ28Bへ繋がる端子32は、アイドラギヤ28Bおよび多段変速機構26を介して出力軸23に接続されているので、出力軸23のトルクを上昇させることができる。一方、前記数8式を変形させると、下記の数10式が得られる。
Figure JPOXMLDOC01-appb-M000014
 また、数9式より、Ka>0であるので、数10式の切片は、負となる。この関係を、図8に示す。第1サンギヤ29Bの回転速度を一定とした場合、キャリア29Aの自転速度と第2サンギヤ29Cの自転速度は、比例する。例えば、車両の車速が0である場合(第2サンギヤ29Cの自転速度が0である場合)、キャリア29Aは回転をしているため、第1バリエータ33が回転しているのに対して、第2バリエータ34の回転速度が0である。車両の車速が0のときに、第1バリエータ33の吸収トルクを上昇させると、第2バリエータ34が受け止められる以上の動力を、第1バリエータ33は伝達要素35に送ってしまう。このため、車両の速度が所定以下の場合、伝達要素35上に設置された動力吸収装置38は、余剰な動力を吸収(処分または貯蔵)する。これにより、変速装置21Dは、車速が0~5km/hのときの出力トルクを上昇させることができ、ホイールローダ1の牽引力が上昇する。
 図25に示す第5の変形例(表4のNo1-C)では、第1バリエータ33に繋がる端子30は、第2サンギヤ29Cに接続されている。前記数5式、数6式、数7式より、第1バリエータ33の吸収トルクを上昇させることで、第2サンギヤ29Cおよびキャリア29Aのトルクを上昇させ、キャリア29Aに接続されたアイドラギヤ28Bへ繋がる端子32のトルクを上昇させることができる。アイドラギヤ28Bへ繋がる端子32は、アイドラギヤ28Bおよび多段変速機構26を介して出力軸23に接続されているので、出力軸23のトルクを上昇させることができる。一方、前記数8式を変形させると、下記の数11式が得られる。
Figure JPOXMLDOC01-appb-M000015
 また、数9式より、Ka>0であるので、数11式の切片は、正となる。この関係を、図9に示す。第1サンギヤ29Bの回転速度を一定とした場合、キャリア29Aの自転速度が低いとき(即ち、車速が低いとき)は、キャリア29Aの自転速度と第2サンギヤ29Cの自転速度は、比例する。例えば、車両の車速が0である場合(キャリア29Aの自転速度が0である場合)、第2サンギヤ29Cは回転をしているため、第1バリエータ33が回転しているのに対して、第2バリエータ34の回転速度が0である。車両の車速が0のときに、第1バリエータ33の吸収トルクを上昇させると、第2バリエータ34が受け止められる以上の動力を、第1バリエータ33は伝達要素35に送ってしまう。このため、車両の速度が所定以下の場合、伝達要素35上に設置された動力吸収装置38は、余剰な動力を吸収(処分または貯蔵)する。これにより、変速装置21Eは、車速が0~5km/hのときの出力トルクを上昇させることができ、ホイールローダ1の牽引力が上昇する。このため、廉価で小さな出力トルクの小さい第2バリエータ34を用いても、牽引力が高く掘削性能が高いホイールローダ1を提供することができる。
 次に、図10に示すトルク線図を用いて、トルクブーストの効果をより詳しく説明する。以下、表4の「No1-A」~「No1-C」および後述する表6の「No2-A」~「No2-F」で共通している。図10中の横軸は、遊星式無段変速機構24の変速比であり、縦軸は、遊星歯車機構29に接続される回転要素のトルク(アイドラギヤ28Bのトルク)である。遊星式無段変速機構24の変速比Ipは、アイドラギヤ28Bに繋がる端子32の回転速度を「Va」とし、動力源(エンジン9)の回転速度を「Vb」とした場合、次の数12式となる。
Figure JPOXMLDOC01-appb-M000016
 アイドラギヤ28BのトルクTiは、第2バリエータ34のトルクを「Tv」とし、変速機39の変速比を「Ia」とし、アイドラギヤ28Bに繋がる端子32のトルクを「Ta」とし、第1バリエータ33に繋がる端子30とアイドラギヤ28Bに繋がる端子32との間の減速比を「Ra」とした場合、次の数13式となる。
Figure JPOXMLDOC01-appb-M000017
 「変速機39の変速比Ia」および「第1バリエータ33に繋がる端子30とアイドラギヤ28Bに繋がる端子32との間の減速比Ra」は、歯車の噛合等による動力伝達における減速比である。前記数5式、数6式、数7式、および、表4の組み合わせにより、アイドラギヤ28Bに繋がる端子32のトルクTaは、第1バリエータ33に繋がる端子30のトルクと比例する。このため、第1バリエータ33に繋がる端子30のトルクを上昇させれば、アイドラギヤ28Bに繋がる端子32のトルクTaを上昇させることができる。しかし、第1バリエータ33と第2バリエータ34は、互いに動力を伝達し合う。このため、後述のトルクブースト制御を行わない場合、「一方が他方に送る動力」と「他方が一方から受け取る動力」は、同じである必要がある。第2バリエータ34の回転速度は、アイドラギヤ28Bに繋がる端子32と第1バリエータ33に繋がる端子30との間の減速比で同期しており、変速比が低い場合は、第2バリエータ34の回転速度も低下する。このため、変速比が低い場合(0.5未満の場合)に、第1バリエータ33が発生する動力として、第2バリエータ34が受け止めきれる動力を供給するように制御すると、図10に特性線101で示すように、第1バリエータ33のトルクが低下する。特性線101は、トルクブーストを行わない場合の第1バリエータ33のトルクに対応する。
 第1バリエータ33のトルク(特性線101)が低下すると、前記数5式、数6式、数7式、および、表4の組み合わせにより、アイドラギヤ28Bに繋がる端子32のトルク(特性線104)も低下する。特性線104は、トルクブーストを行わない場合のアイドラギヤ28Bに繋がる端子32のトルクに対応する。アイドラギヤ28Bに繋がる端子32のトルク(特性線104)が低下すると、前記数13式より、アイドラギヤ28Bのトルク(特性線105)も低下する。特性線105は、トルクブーストを行わない場合のアイドラギヤ28Bのトルクに対応する。以上の作用により、変速比が低い場合(0.5未満の場合)は、アイドラギヤ28Bのトルクが低下する。アイドラギヤ28Bに繋がる端子32は、アイドラギヤ28Bおよび多段変速機構26を介して出力軸23に接続されているので、出力軸23のトルクが低下してしまう。これにより、トルクブーストを行わない場合、変速装置21は、車速が0~5km/hのときの出力トルクが低下し、ホイールローダ1の牽引力、掘削能力が低下する。
 これに対して、トルクブースト制御を行う場合は、第1バリエータ33と第2バリエータ34との間に動力吸収装置38が設けられているため、「一方が他方に送る動力」と「他方が一方から受け取る動力」とが同じである必要性がない。第2バリエータ34の回転速度は、アイドラギヤ28Bに繋がる端子32と第1バリエータ33に繋がる端子30との間の減速比で同期しており、変速比が低い場合は、第2バリエータ34の回転速度も低下する。変速比が低い場合(0.5未満の場合)に、第1バリエータ33が発生する動力として、第2バリエータ34が受け止めきれる以上の動力を供給しても、動力吸収装置38が設けられているため、図10中に特性線103で示すように、第1バリエータ33のトルクの低下を抑制できる。特性線103は、トルクブースト時の第1バリエータ33のトルクに対応する。
 第1バリエータ33のトルク(特性線103)の低下を抑制できるので、前記数5式、数6式、数7式、および、表4の組み合わせにより、アイドラギヤ28Bに繋がる端子32のトルク(特性線106)の低下も抑制できる。特性線106は、トルクブースト時のアイドラギヤ28Bに繋がる端子32のトルクに対応する。アイドラギヤ28Bに繋がる端子32のトルク(特性線106)の低下を抑制できるので、前記数13式より、アイドラギヤ28Bのトルク(特性線107)の低下も抑制できる。特性線107は、トルクブースト時のアイドラギヤ28Bのトルクに対応する。以上の作用により、変速比が低い場合(0.5未満の場合)であっても、トルクブースト制御を行うことにより、アイドラギヤ28Bのトルクが低下することを抑制できる。アイドラギヤ28Bに繋がる端子32は、アイドラギヤ28Bおよび多段変速機構26を介して出力軸23に接続されているので、出力軸23のトルクが低下することを抑制できる。これにより、変速装置21は、車速が0~5km/hのときであっても、ホイールローダ1の牽引力の低下を抑制でき、掘削能力を向上できる。
 なお、図10では、変速比0.5以上では、第1バリエータ33のトルクは、一定値としている。これは、第1バリエータ33のトルク制限、または、動力源(エンジン9)から供給されるトルクの制限によって一定値となっているためである。動力源が供給可能なトルクは、動力源の回転速度および荷役作業機7を動かすための負荷によって変化するので、第1バリエータ33のトルクは、必ずしも一定である必要はない。
 また、トルクブースト制御が介入する変速比は、第1バリエータ33が発生する動力を第2バリエータ34が受け止めきれない場合であり、第1バリエータ33および第1バリエータ33のトルク容量、遊星歯車機構29の歯車の速比、第1バリエータ33に繋がる端子30とアイドラギヤ28Bに繋がる端子32との間の減速比、変速機39の変速比によって変化する。即ち、変速比は、0.5であるとは限らず、0.1~2.0の範囲となる。
 図4に示す第1の実施の形態(表4のNo1-A)では、第1バリエータ33のトルクを上昇させると、第1バリエータ33に繋がる端子30のトルクが上昇し、第1サンギヤ29Bのトルクが上昇する。第1サンギヤ29Bのトルクに比例して、第2サンギヤ29C(アイドラギヤ28Bに繋がる端子32)のトルクと、キャリア29A(エンジン9に繋がる第2連結部材31、動力源に繋がる端子31ともいう)のトルクが上昇する。例えば、変速比0.5(車速2~5km/hに相当)において、第1バリエータ33が第2バリエータ34に対して、第2バリエータ34が受け止められるだけの動力を考慮し動力吸収装置38を構成する。
 変速比0.5未満では、第1バリエータ33のトルクを所定以上に上昇させると、第2バリエータ34の出力トルクが最大値であるため、第1バリエータ33が出力した動力を、第2バリエータ34が全て受け止めることができない。このため、第1バリエータ33と第2バリエータ34との間に動力吸収装置38を設け、第1バリエータ33のトルクを上昇させられるように動力吸収分を考慮し動力吸収装置38の容量や仕様を設定することで、第2サンギヤ29C(アイドラギヤ28Bに繋がる端子32)のトルクを上昇させることができるようになる。これにより、前記数13式より、変速比0.5未満(車速2~5km/hに相当)におけるアイドラギヤ28Bのトルクを上昇することができる。アイドラギヤ28Bへ繋がる端子32は、アイドラギヤ28Bおよび多段変速機構26を介して出力軸23に接続されているので、出力軸23のトルクを上昇させることができる。これにより、変速装置21は、車速が0~5km/hのときの出力トルクを上昇させることができ、ホイールローダ1の牽引力を上昇することができる。
 図24に示す第4の変形例(表4のNo1-B)では、第1バリエータ33のトルクを上昇させると、第1バリエータ33に繋がる端子30のトルクが上昇し、キャリア29Aのトルクが上昇する。キャリア29Aのトルクに比例して、第2サンギヤ29C(アイドラギヤ28Bに繋がる端子32)のトルクと、第1サンギヤ29B(エンジン9に繋がる端子31)のトルクが上昇する。例えば、変速比0.5(車速2~5km/hに相当)において、第1バリエータ33と第2バリエータ34のいずれか一方のトルクが、吸収可能または出力可能な最大値に基づいて動力吸収装置38を構成する。
 変速比0.5未満では、第1バリエータ33または第2バリエータ34のトルクが最大値であるため、これ以上に第1バリエータ33のトルクを高くすることができない。このため、第1バリエータ33と第2バリエータ34との間に動力吸収装置38を設け、第1バリエータ33のトルクを高くさせられるようにすることで、第2サンギヤ29C(アイドラギヤ28Bに繋がる端子32)のトルクを上昇させることができる。これにより、前記数13式より、変速比0.5未満(車速2~5km/hに相当)におけるアイドラギヤ28Bのトルクを上昇することができる。アイドラギヤ28Bへ繋がる端子32は、アイドラギヤ28Bおよび多段変速機構26を介して出力軸23に接続されているので、出力軸23のトルクを上昇させることができる。これにより、変速装置21は、車速が0~5km/hのときの出力トルクを上昇させることができ、ホイールローダ1の牽引力が上昇する。
 図25に示す第5の変形例(表4のNo1-C)では、第1バリエータ33のトルクを上昇させると、第1バリエータ33に繋がる端子30のトルクが上昇し、第2サンギヤ29Cのトルクが上昇する。第2サンギヤ29Cのトルクに比例して、キャリア29A(アイドラギヤ28Bに繋がる端子32)のトルクと、第1サンギヤ29B(エンジン9に繋がる端子31)のトルクが上昇する。例えば、変速比0.5(車速2~5km/hに相当)において、第1バリエータ33が第2バリエータ34に対して、第2バリエータ34が受け止められるだけの動力を考慮し動力吸収装置38を構成する。
 変速比0.5未満では、第1バリエータ33のトルクを所定以上に上昇させると、第2バリエータ34の出力トルクが最大値であるため、第1バリエータ33が送った動力を、第2バリエータ34が全て受け止めることができない。このため、第1バリエータ33と第2バリエータ34との間の動力吸収装置38により、第1バリエータ33のトルクを上昇させることで、キャリア29A(アイドラギヤ28Bに繋がる端子32)のトルクを上昇させることができる。これにより、前記数13式より、変速比0.5未満(車速2~5km/hに相当)におけるアイドラギヤ28Bのトルクを上昇することができる。アイドラギヤ28Bへ繋がる端子32は、アイドラギヤ28Bおよび多段変速機構26を介して出力軸23に接続されているので、出力軸23のトルクを上昇させることができる。これにより、変速装置21は、車速が0~5km/hのときの出力トルクを上昇させることができ、ホイールローダ1の牽引力が上昇する。
 次に、動力貯蔵源(動力貯蔵装置)および/または動力処分装置となる動力吸収装置38について説明する。以下、表4の「No1-A」、「No1-B」、「No1-C」、後述する表6の「No2-A」、「No2-B」、「No2-C」、「No2-D」、「No2-E」、「No2-F」で共通する。即ち、動力吸収装置38の構成については、後述する第2の実施の形態、各変形例の場合も同様である。
 第1バリエータ33および第2バリエータ34が電動モータ・ジェネレータ(電動モータ、電動ジェネレータ)である場合、動力吸収装置38は、蓄電装置と電力制御装置とにより構成できる。図11は、その概要を示している。第1バリエータ33と第2バリエータ34は、電気配線となる伝達要素35により接続されている。第1バリエータ33と第2バリエータ34との間には、動力吸収装置38が設けられている。動力吸収装置38は、電力制御装置38Aおよび蓄電装置38Bを備えている。電力制御装置38Aは、第1バリエータ33と第2バリエータ34との間で電力を双方向に伝達する。第1バリエータ33から電力制御装置38Aに送られた電力が、第2バリエータ34が吸収可能な電力より大きい場合、電力制御装置38Aは、電力の一部を蓄電装置38Bに供給する。なお、動力吸収装置38は、蓄電装置38Bに代えて抵抗装置(電気抵抗)を備える構成、または、蓄電装置38Bと抵抗装置(電気抵抗)との両方を備える構成としてもよい。
 第1バリエータ33および第2バリエータ34が油圧ポンプ・モータ(油圧ポンプ、油圧モータ)である場合、動力吸収装置38は、リリーフバルブまたはアキュームレータにより構成できる。図12は、動力吸収装置38をリリーフバルブ38C,38Dにより構成した場合を示している。第1バリエータ33と第2バリエータ34は、伝達要素35となる一対の主管路35A,35Bにより接続されている。一対のリリーフバルブ38C,38Dは、第1バリエータ33と第2バリエータ34との間を接続する一対の主管路35A,35Bを接続する位置に設けられている。即ち、一方の主管路35Aと他方の主管路35Bとの間は、接続管路35Cにより接続されており、リリーフバルブ38C,38Dは、接続管路35Cに逆止弁35D,35Eと共に設けられている。リリーフバルブ38C,38Dと逆止弁35D,35Eは、主管路35A,35B間で双方向にリリーフが可能となるように、互いに対向して2つ設けられている。一方の主管路35A側のリリーフバルブ38Cがリリーフすると、対向する逆止弁35Eを通り、反対側となる他方の主管路35Bに作動油が流れる。リリーフバルブ38C,38Dのリリーフ圧は、固定またはコントローラ25からの信号により変更が可能である。リリーフバルブ38C,38Dのリリーフ開始圧が変更可能な構成の場合の効果について説明をする。
 先ず、図13は、リリーフバルブ38C,38Dのリリーフ開始圧を固定とした場合における、高圧側の主管路35Aの圧力(特性線111)と、リリーフバルブ38Cのリリーフ開始圧(特性線112)と、第1バリエータ33、第2バリエータ34または主管路35A,35Bの耐圧(特性線113)の関係を示している。また、図13中、特性線114は、第1バリエータ33(油圧ポンプ・モータ)の理論吐出容積に対応し、特性線115は、第2バリエータ34(油圧ポンプ・モータ)の理論吐出容積に対応する。コントローラ25は、第1バリエータ33の吐出容積を上昇させ、第1バリエータ33によって第2バリエータ34が受け止められる以上の流量を供給すると、一方の主管路35Aがリリーフ開始圧力以上に上昇し、リリーフバルブ38Cが動作する。これにより、他方の主管路35Bに作動油が流れる。このとき、一方の主管路35Aの圧力は、リリーフ開始圧力以上に一時的に上昇(サージ)してしまう。これは、リリーフバルブ38Cの動作応答に所定の時間がかるためである。第1バリエータ33、第2バリエータ34または主管路35A,35Bの耐圧には上限があるため、リリーフバルブ38C,38Dのリリーフ開始圧は、サージを見込んで低めに設定する必要がある。このため、耐圧上限の80%~85%程度にリリーフバルブ38C,38Dのリリーフ開始圧を設定する必要があり、第2バリエータ34の最大出力トルクが低下する可能性がある。
 そこで、実施形態では、リリーフバルブ38C,38Dのリリーフ開始圧を変更可能に構成している。図14は、リリーフバルブ38C,38Dのリリーフ開始圧が変更可能な場合における、高圧側の主管路35Aの圧力(特性線116)と、リリーフバルブ38C,38Dのリリーフ開始圧(特性線117)と、第1バリエータ33、第2バリエータ34または主管路35A,35Bの耐圧(特性線113)の関係を示している。コントローラ25は、リリーフバルブ38C,38Dが動作する前に、リリーフバルブ38C,38Dのリリーフ開始圧力を、耐圧の80%~85%程度に設定しておく。このリリーフ開始圧力を、第1リリーフ開始圧力とする。その後、第1バリエータ33の吐出容積を上昇させ、第1バリエータ33によって第2バリエータ34が受け止められる以上の流量を供給すると、一方の主管路35Aが第1リリーフ開始圧力以上に上昇し、リリーフバルブ38Cが動作することで、他方の主管路35Bに作動油が流れる。このとき、一方の主管路35Aの圧力は、第1リリーフ開始圧力以上に一時的に上昇(サージ)するが、リリーフバルブ38Cの第1リリーフ開始圧力は耐圧上限の80%~85%程度に低く抑えられているため、耐圧を超えることがないように制御することができる。
 コントローラ25は、リリーフバルブ38Cのリリーフ開始後に、リリーフバルブ38Cの設定圧が高くなるように、リリーフバルブ38Cにリリーフ開始圧力を上昇させる信号を送る。このリリーフ開始圧力を、第2リリーフ開始圧力とする。コントローラ25は、リリーフバルブ38Cのリリーフ開始を、主管路35A,35Bの液圧(圧力)を検出する圧力検出器35F,35G(以下、圧力センサ35F,35Gという)の値(検出値)、または、第1バリエータ33と第2バリエータ34の理論吐出容積と回転速度との関係から検出する。即ち、コントローラ25は、掘削等による負荷が上昇し(変速装置21の出力トルクが上昇し)、主管路35Aの圧力が上昇することにより、リリーフバルブ38Cがリリーフ動作を開始したことを、圧力センサ35Fの検出値等から検出する。
 また、コントローラ25は、掘削等による負荷が低下し(変速装置21の出力トルクが低下し)、主管路35Aの圧力が低下することにより、リリーフバルブ38Cのリリーフが停止したことを、圧力センサ35Fの検出値等から検出する。コントローラ25は、リリーフバルブ38Cのリリーフ動作終了を検出した後は、リリーフバルブ38Cのリリーフ設定圧を第2リリーフ開始圧力から直ちに低下させる。これにより、変速装置21の出力トルクが変動した場合であっても、耐圧の範囲内で変速装置21の出力トルクの最大値を高めることができる。以上の制御により、第2バリエータ34を耐圧の限界内で使用することが可能となり、第2バリエータ34の出力トルクを上昇させることで、ホイールローダ1の牽引力を上昇させることができる。
 次に、図15は、動力吸収装置38をアキュームレータ38E,38Fにより構成した場合を示している。動力吸収装置38は、2つアキュームレータ38E,38F、即ち、高圧側アキュームレータ38Eと、低圧側アキュームレータ38Fとを備えている。各アキュームレータ38E,38Fと各主管路35A,35Bとの間には、それぞれの主管路35A,35Bとの間で接続(連通)と遮断(切断)とを切換える蓄圧用の切換弁38G,38Hが設けられている。高圧側アキュームレータ38Eは、動力を吸収する側のアキュームレータである。高圧側アキュームレータ38Eは、動力を貯蔵し、かつ、貯蔵した動力を放出する。高圧側アキュームレータ38Eの蓄圧開始圧力は、例えば、25MPaから45MPaの範囲である。
 低圧側アキュームレータ38Fは、高圧側アキュームレータ38Eに出し入れを行う作動液のリザーバの役割をもっている。低圧側アキュームレータ38Fの蓄圧開始圧力は、例えば、2.0MPaから3.0MPaの範囲である。高圧側アキュームレータ38Eに蓄圧をする際は、低圧側アキュームレータ38Fより主管路35A(35B)に作動油が供給されるので、第1バリエータ33を通過する作動油の流量は、第2バリエータ34を通過する作動油に比べて小さくなる。
 図15において、一対の主管路35A,35Bのうち、一方(図15で上方)の主管路35Aの動力を貯蔵する際は、一方(図15で上方)の切換弁38Gのスプールを左側に動かし、高圧側アキュームレータ38Eと一方の主管路35Aとを連通させる。これにより、一方の主管路35Aから高圧側アキュームレータ38Eに作動油が流れる。その間、他方(図15で下方)の切換弁38Hは、スプールが左側に動くことにより、低圧側アキュームレータ38Fと他方(図15で下方)の主管路35Bとが連通する。これにより、一方の切換弁38Gを介して一方の主管路35Aから高圧側アキュームレータ38Eに作動油が流れ、低圧側アキュームレータ38Fからは他方の切換弁38Hを介して、他方の主管路35Bに作動油が供給される。
 高圧側アキュームレータ38Eが蓄圧した圧力を一方の主管路35Aに放出する場合は、一方の切換弁38Gのスプールを左側に動かし、高圧側アキュームレータ38Eと一方の主管路35Aとを連通させる。これにより、高圧側アキュームレータ38Eから一方の主管路35Aに作動油が流れる。その間、他方の切換弁38Hは、スプールが左側に動くことにより、低圧側アキュームレータ38Fと他方の主管路35Bとを連通する。これにより、低圧側アキュームレータ38Fには、他方の切換弁38Hを介して、他方の主管路35Bより作動油が供給される。
 他方の主管路35Bの動力を貯蔵する際は、一方の切換弁38Gのスプールを右側に動かし、高圧側アキュームレータ38Eと他方の主管路35Bとを連通させる。これにより、他方の主管路35Bから高圧側アキュームレータ38Eに作動油が流れる。その間、他方の切換弁38Hは、スプールが右側に動くことにより、低圧側アキュームレータ38Fと一方の主管路35Aとが連通する。これにより、一方の切換弁38Gを介して他方の主管路35Bから高圧側アキュームレータ38Eに作動油が流れ、低圧側アキュームレータ38Fからは他方の切換弁38Hを介して、一方の主管路35Aに作動油が供給される。
 高圧側アキュームレータ38Eが蓄圧した圧力を他方の主管路35Bに放出する場合は、一方の切換弁38Gのスプールを右側に動かし、高圧側アキュームレータ38Eと他方の主管路35Bとを連通させる。これにより、高圧側アキュームレータ38Eから他方の主管路35Bに作動油が流れる。その間、他方の切換弁38Hは、スプールが右側に動くことにより、低圧側アキュームレータ38Fと一方の主管路35Aとを連通する。これにより、低圧側アキュームレータ38Fには、他方の切換弁38Hを介して、一方の主管路35Aより作動油が供給される。これらの動作により、第1バリエータ33および第2バリエータ34の間において、動力の貯蔵と放出が可能となる。
 次に、遊星式無段変速機構24の内部ロックアップ動作について説明する。遊星式無段変速機構24は、動力伝達効率が80~93%であり、無段階変速機としては伝達効率が高い。これに対して、例えば、一対の歯車同士の噛み合いによる歯車変速機の動力伝達効率は、99%程度である。このため、遊星式無段変速機構24は、一対の歯車同士の噛み合いによる変速機よりも動力伝達効率が低い。この理由を、図3を参照しつつ説明する。
 即ち、遊星歯車機構29とアイドラ要素28(アイドラギヤ28B)との間の動力の伝達効率を考える。ここで、第1連結部材30、第1バリエータ33、伝達要素35、第2バリエータ34、変速機39および第3クラッチ37を経由する動力伝達経路の伝達効率は、70~80%程度である。これに対して、第3連結部材32を経由する動力伝達経路の伝達効率は、99%程度である。このため、伝達効率を高めるためには、第1バリエータ33に繋がる第1連結部材30の回転を停止させ、第1バリエータ33と第2バリエータ34との間で動力伝達を行なわないようにすればよい。これにより、エンジン9から第2連結部材31を通じて遊星歯車機構29に供給された動力は、第1バリエータ33に繋がる第1連結部材30に分配されずに、アイドラ要素28(アイドラギヤ28B)に繋がる第3連結部材32に全て伝達される。
 第3連結部材32とアイドラギヤ28Bは、歯車同士の噛み合いで動力が伝達されるため、エンジン9から第2連結部材31を通じて遊星歯車機構29に供給された動力は、高い効率でアイドラギヤ28Bに伝達できる。これにより、遊星式無段変速機構24の動力伝達効率が97%程度まで向上し、変速装置21の伝達効率を向上できる。この結果、ホイールローダ1を省燃費にできる。
 遊星式無段変速機構24が内部ロックアップ動作している場合、遊星式無段変速機構24は固定変速比となる。ここで内部ロックアップ変速比をInとすると、内部ロックアップ変速比Inは、次の数14式で表すことができる。なお、第3連結部材32の回転速度を「V32」とし、第2連結部材31の回転速度を「V31」とし、第1連結部材30の回転速度を「V30」とする。
Figure JPOXMLDOC01-appb-M000018
 内部ロックアップ動作時においても、前述の数8式は成立する。このため、数8式に第1バリエータ33に繋がる第1連結部材30の回転速度を0として代入することにより、内部ロックアップ変速比Inを計算できる。例えば、第1の実施の形態(表4のNo1-A)では、数8式に、第1連結部材30に接続された第1サンギヤ29Bの自転速度Vs1を0として代入する。即ち、内部ロックアップ変速比Inは、次の数15式となる。
Figure JPOXMLDOC01-appb-M000019
 図24に示す第4の変形例(表4のNo1-B)では、数8式を変形すると共に、第1連結部材30に接続されたキャリア29Aの自転速度Vcを0として代入する。即ち、内部ロックアップ変速比Inは、次の数16式となる。
Figure JPOXMLDOC01-appb-M000020
 図25に示す第5の変形例(表4のNo1-C)では、数8式に、第1連結部材30に接続された第2サンギヤ29Cの自転速度Vs2を0として代入する。即ち、内部ロックアップ変速比Inは、次の数17式となる。
Figure JPOXMLDOC01-appb-M000021
 このように、内部ロックアップ変速比Inは、遊星歯車機構29の歯車の組み合わせと、Kaに依存する。遊星式無段変速機構24を内部ロックアップの状態とするためには、遊星歯車機構29に繋がる3つの連結部材30,31,32のうちの第1バリエータ33に繋がる第1連結部材30の回転を停止させればよい。第1バリエータ33および第2バリエータ34が油圧ポンプ・モータである場合、コントローラ25は、第1バリエータ33の油圧ポンプ・モータの容積を所定以上(好適には最大容積の10%以上)に保持し、第2バリエータ34の油圧ポンプ・モータの容積を0に制御する。
 また、第1連結部材30の回転を停止させるために、例えば、図19に示す第1の変形例のように、第1バリエータ33と第2バリエータ34との間で動力伝達を行う伝達要素35にブロック機構40を設ける構成を採用してもよい。ブロック機構40は、コントローラ25によって制御されることにより、第1バリエータ33と第2バリエータ34との間の動力伝達を遮断する。
 例えば、伝達要素35の動力伝達が油圧によって行われる場合、ブロック機構40は、油圧バルブにより構成できる。コントローラ25は、ブロック機構40に信号を送り、第1バリエータ33と第2バリエータ34と間の油の流れを遮断する。また、第1バリエータ33と第2バリエータ34間の動力伝達が電力で行われる場合、ブロック機構40は、インバータ・コンバータにより構成できる。この場合、インバータ・コンバータは、電力線間に擬似的な抵抗を与え、電力線間の電圧を上昇させる。また、ブロック機構40としては、マグネットコンタクタにより電力の流れを遮断る構成、抵抗器で電力線間に抵抗を与える構成を採用してもよい。いずれの場合も、コントローラ25は、ブロック機構40に動力の伝達と遮断の信号を送り、ブロック機構40を制御する。
 また、内部ロックアップ状態は、第1バリエータ33の回転軸を非回転部に固定し、第1バリエータ33の回転を止めることにより実現してもよい。例えば、図20に示す第2の変形例および図21に示す第3の変形例のように、第1連結部材30を非回転部(例えば、変速装置21のケース)にブレーキ機構41で固定することにより、内部ロックアップ状態を実現してもよい。ブレーキ機構41は、摩擦結合または機械的な噛み合い結合により、第1バリエータ33に繋がる第1連結部材30を非回転部に固定する構成を採用できる。特に、第1バリエータ33が発電機である場合には、内部ロックアップの動作時であっても第1バリエータ33(発電機)に電流を流す必要がある。このため、動力損出の観点からは、第1連結部材30を非回転部にブレーキ機構41で固定することが望ましい。即ち、第1バリエータ33が発電機である場合には、動力損出の観点から、第1連結部材30を非回転部にブレーキ機構41で固定することが望ましい。これにより、内部ロックアップ時の遊星式無段変速機構24の動力伝達を向上でき、ホイールローダ1を省燃費にできる。
 なお、図19ないし図21に示す第1ないし第3の変形例の変速装置21A,21B,21Cは、遊星式無段変速機構24の内部ロックアップ動作を行うことができるが、外部ロックアップ機構(直結機構27)を備えていない。このような変速装置21A,21B,21Cの場合、発進時および掘削時は、遊星式無段変速機構24を無段階変速させて動力伝達を行い、運搬時および回送時は、遊星式無段変速機構24を内部ロックアップさせて動力伝達を行う。これにより、無段階変速が必要な発進時および掘削時(車速0~7km/h)は、遊星式無段変速機構24による無段階変動で動力伝達効率を高めることができる。一方、無段階変速が必要ない運搬時および回送時(車速7km/h以上)は、遊星式無段変速機構24を内部ロックアップ動作させ、無段階変速よりもさらに伝達効率を高めることができる。これにより、ホイールローダ1を省燃費にできる。
 次に、外部ロックアップ機構である直結機構27について、図3を参照しつつ説明する。直結機構27は、エンジン9から供給された動力を、遊星式無段変速機構24を介さずに歯車同士の噛み合いによりアイドラギヤ28Bに伝達する。直結機構27の動力伝達効率は、99%程度であるため、変速装置21の伝達効率が向上し、ホイールローダ1を省燃費にできる。直結機構27は、入力軸22に設けられたインプットギヤ27Aと、インプットギヤ27Aと噛合するロックアップギヤ27Bと、第1クラッチ27Cとを備えている。ロックアップギヤ27Bが設けられた回転軸27B1は、第1クラッチ27Cを介してアイドラ要素28のアイドラ軸28Aと接続される。第1クラッチ27Cは、例えば、摩擦接合によるクラッチ(摩擦板)、ドグクラッチまたはシンクロメッシュ付ドグクラッチにより構成されている。第1クラッチ27Cは、ロックアップギヤ27Bとアイドラギヤ28Bとの間の機械的な結合(接続)と解放とを行うものである。第2クラッチ36を解放し、第1クラッチ27Cを結合することより、入力軸22から入力された動力は、インプットギヤ27A、ロックアップギヤ27B、第1クラッチ27Cを経由し、アイドラギヤ28Bに伝達される。これにより、エンジン9から供給された動力は、遊星式無段変速機構24を経由せずに、外部ロックアップ機構である直結機構27を経由してアイドラギヤ28Bに伝達できる。
 遊星式無段変速機構24は、図7に示す速度関係線Y1の遊星歯車機構29の特性により、動力源(エンジン9)に繋がる第2連結部材31に対してアイドラギヤ28Bに繋がる第3連結部材32を増速できる。遊星式無段変速機構24の増速の範囲を有効に使うために、直結機構27を経由する動力伝達は、増速した方が好ましい。ここで、遊星歯車機構29に繋がる3つの連結部材30,31,32のうち、第1バリエータ33に繋がる第1連結部材30とアイドラギヤ28Bに繋がる第3連結部材32との回転速度が同じとき、エンジン9に繋がる第2連結部材31とアイドラギヤ28Bに繋がる第3連結部材32との回転速度が同じになる。
 このときのアイドラギヤ28Bの回転速度は、次の数18式となる。なお、アイドラギヤ28Bの回転速度を「V28B」とし、エンジン9に繋がる第2連結部材31の回転速度を「V31」とし、アイドラギヤ28Bに繋がる第3連結部材32の歯数を「N32」とし、アイドラギヤ28Bの歯数を「N28B」とする。
Figure JPOXMLDOC01-appb-M000022
 ここで、同期回転速度比Idを次の数19式のように定義する。なお、第3連結部材32の歯数を「N32」とし、アイドラギヤ28Bの歯数を「N28B」とする。
Figure JPOXMLDOC01-appb-M000023
 また、外部ロックアップ回転速度比Irを次の数20式のように定義する。なお、インプットギヤ27Aの歯数を「N27A」とし、ロックアップギヤ27Bの歯数を「N27B」とする。
Figure JPOXMLDOC01-appb-M000024
 この場合、外部ロックアップ回転速度比Irを、同期回転速度比Idより大きくすることにより、遊星式無段変速機構24の増速範囲を有効に使うことができる。例えば、外部ロックアップを備えるが内部ロックアップ動作を行わない変速装置21の場合は、次のように動力伝達を行う。即ち、無段階変速が必要な発進時および掘削時(車速0~7km/h)は、遊星式無段変速機構24を経由して動力伝達を行う。無段階変速が必要ない運搬時および回送時(車速7km/h以上)は、外部ロックアップ機構(直結機構27)を経由して動力伝達を行う。
 一方、外部ロックアップ機構(直結機構27)を備え、かつ、内部ロックアップ動作を行う変速装置21の場合は、外部ロックアップ回転速度比Irが下記の数21式の関係を満たすことが好ましい。
Figure JPOXMLDOC01-appb-M000025
 これにより、無段階変速が必要な発進時および掘削時(車速0~7km/h)は、遊星式無段変速機構24を経由して無段変速をさせながら動力伝達を行う。無段階変速が必要ない運搬時および回送時(車速7km/h以上)は、遊星式無段変速機構24を経由して内部ロックアップを動作させながら動力伝達を行う。無段階変速が必要ない運搬時および回送時(車速10km/h以上)は、外部ロックアップ機構(直結機構27)を経由して動力伝達を行う。これにより、変速装置21は、掘削、発進、運搬、回送の全ての動作時に、最も動力伝達効率の高い動力伝達経路を選択することができる。この結果、ホイールローダ1を省燃費にできる。
 次に、多段変速機構26について説明する。多段変速機構26は、歯車の噛み合い、クラッチの切換え、および、ブレーキの切換えにより変速する変速機構である。多段変速機構26は、例えば、遊星変速機、カウンターシャフト型変速機、マニュアルトランスミッション、オートメーティッドマニュアルトランスミッション、デュアルクラッチトランスミッション等に相当する。第1の実施形態では、多段変速機構26は、前進4段変速、後進1段変速のデュアルクラッチトランスミッションにより構成されている。これに対して、図19に示す第1の変形例、図20に示す第2の変形例、図21に示す第3変形例では、多段変速機構26Aは、前進5段変速、後進2段変速のデュアルクラッチトランスミッションにより構成されている。なお、多段変速機構26,26Aは、これらの構成に限定されず、例えば、前進は1段変速から16段変速まで想定でき、後進は1段変速から8段変速まで想定できる。
 デュアルクラッチトランスミッションである多段変速機構26について、図16を参照しつつ説明する。多段変速機構26は、奇数軸51と、偶数軸52と、出力軸53と、カウンタギヤ54とを備えている。多段変速機構26の出力軸53は、変速装置21の出力軸23にも対応する。奇数軸51は、奇数段ギヤ55と、前進1速ギヤ56と、前進3速ギヤ57と、第1出力クラッチとしての第4クラッチ58と、第6クラッチ59と、第8クラッチ60と、奇数段シャフト61とを含んで構成されている。偶数軸52は、偶数段ギヤ62と、前進2速ギヤ63と、前進4速ギヤ64と、後進1速ギヤ65と、第2出力クラッチとしての第5クラッチ66と、第7クラッチ67と、第10クラッチ68と、第9クラッチ69と、偶数段シャフト70とを含んで構成されている。
 カウンタギヤ54は、出力軸53の回転方向を逆転させるためのギヤである。出力軸53は、前進1速出力ギヤ71と、前進2速出力ギヤ72と、前進3速出力ギヤ73と、前進4速出力ギヤ74と、後進1速出力ギヤ75とを含んで構成されている。偶数段ギヤ62および奇数段ギヤ55は、アイドラギヤ28Bと常時噛合しており、アイドラギヤ28Bと共に回転する。また、前進1速ギヤ56と前進1速出力ギヤ71、前進2速ギヤ63と前進2速出力ギヤ72、前進3速ギヤ57と前進3速出力ギヤ73、前進4速ギヤ64と前進4速出力ギヤ74は、それぞれ常時噛合している。また、後進1速ギヤ65とカウンタギヤ54と後進1速出力ギヤ75も、常時噛合している。第4クラッチ58は、奇数段ギヤ55と奇数段シャフト61との結合(締結)と解放とを行う。第4クラッチ58により、奇数段ギヤ55と奇数段シャフト61とが結合されることで、アイドラギヤ28Bと奇数段シャフト61との間で動力伝達が可能となる。第5クラッチ66は、偶数段ギヤ62と偶数段シャフト70との結合(締結)と解放とを行う。第5クラッチ66により、偶数段ギヤ62と偶数段シャフト70とが結合されることで、アイドラギヤ28Bと偶数段シャフト70との間で動力伝達が可能となる。
 第6クラッチ59は、前進1速ギヤ56と奇数段シャフト61との結合(締結)と解放とを行う。第6クラッチ59により、前進1速ギヤ56と奇数段シャフト61とが結合されることで、出力軸53と奇数段シャフト61との間で動力伝達が可能となる。第8クラッチ60により、前進3速ギヤ57と奇数段シャフト61とが結合されることで、出力軸53と奇数段シャフト61との間で動力伝達が可能となる。第7クラッチ67により、前進2速ギヤ63と偶数段シャフト70とが結合されることで、出力軸53と偶数段シャフト70との間で動力伝達が可能となる。第10クラッチ68により、前進4速ギヤ64と偶数段シャフト70とが結合されることで、出力軸53と偶数段シャフト70との間で動力伝達が可能となる。第9クラッチ69により、後進1速ギヤ65と偶数段シャフト70とが結合されることで、出力軸53と偶数段シャフト70との間で動力伝達が可能となる。なお、第6クラッチ59、第7クラッチ67、第8クラッチ60、第9クラッチ69、第10クラッチ68は、ドグクラッチまたはシンクロメッシュ付ドグクラッチにより構成されている。
 次に、多段変速機構26の動作を説明する。アイドラギヤ28Bに入力された動力を前進1速で出力軸53に伝達するためには、第4クラッチ58を結合し、第5クラッチ66を解放し、第6クラッチ59を結合し、第8クラッチ60を解放する。この状態で、第7クラッチ67と第10クラッチ68と第9クラッチ69とのうちのいずれか2つ以上のクラッチを解放する。前進1速は、後述の表5のNo1からNo4に相当する。
 前進2速で出力軸53に動力伝達するためには、第5クラッチ66および第7クラッチ67を結合し、第4クラッチ58、第10クラッチ68および第9クラッチ69を解放する。この状態で、第6クラッチ59と第8クラッチ60とのうちのいずれか一方または両方を解放する。前進2速は、後述の表5のNo9からNo11に相当する。
 前進3速で出力軸53に動力伝達するためには、第4クラッチ58および第8クラッチ60を結合し、第5クラッチ66および第6クラッチ59を解放する。この状態で、第7クラッチ67と第10クラッチ68と第9クラッチ69とのうちのいずれか2つ以上を解放する。前進3速は、後述の表5のNo5からNo8に相当する。
 前進4速で出力軸53に動力伝達するためには、第5クラッチ66および第10クラッチ68を結合し、第4クラッチ58、第7クラッチ67および第9クラッチ69を解放する。この状態で、第6クラッチ59と第8クラッチ60とのうちのいずれか一方または両方を解放する。前進4速は、後述の表5のNo12からNo14に相当する。
 後進1速で出力軸53に動力伝達するためには、第5クラッチ66および第9クラッチ69を結合し、第4クラッチ58、第7クラッチ67および第10クラッチ68を解放する。この状態で、第6クラッチ59と第8クラッチ60とのうちのいずれか一方または両方を解放する。後進1速は、後述の表5のNo15からNo17に相当する。
 アイドラギヤ28Bから奇数軸51を通じで出力軸53に動力を伝達しているときは、第7クラッチ67、第10クラッチ68および第9クラッチ69の結合と解放との切換えを行うことができる。これにより、前進2速ギヤ63、前進4速ギヤ64または後進1速ギヤ65のいずれかを、偶数段シャフト70に予め結合しておくことができる。同様に、アイドラギヤ28Bから偶数軸52を通じて出力軸53に動力を伝達しているときは、第6クラッチ59および第8クラッチ60の結合と解放との切換えを行うことができる。これにより、前進1速ギヤ56または前進3速ギヤ57のいずれかを、奇数段シャフト61と予め結合しておくことができる。
 アイドラギヤ28Bから出力軸53への動力伝達は、第4クラッチ58を結合して第5クラッチ66を解放している状態から第4クラッチ58を解放して第5クラッチ66を結合することにより、奇数段シャフト61経由から偶数段シャフト70経由に切換えることができる。同様に、アイドラギヤ28Bから出力軸53への動力伝達は、第4クラッチ58を解放して第5クラッチ66を結合している状態から第4クラッチ58を結合して第5クラッチ66を解放することにより、偶数段シャフト70経由から奇数段シャフト61経由に切換えることができる。
 ただし、第4クラッチ58と第5クラッチ66との結合の切換えは、必ずしも交互に行う必要はない。例えば、下記の表5中に示す、No1~4からNo5~8への切換え、No5~8からNo1~4への切換えがある。この場合、第4クラッチ58を解放した後に、第6クラッチ59と第8クラッチ60とを結合または解放する。その後、解放している第4クラッチ58を結合させる。また、No9~11からNo12~14への切換え、No12~14からNo9~11への切換え、No9~11からNo15~17への切換え、No15~17からNo9~11への切換え、No12~14からNo15~17への切換え、No15~17からNo12~14への切換えがある。この場合、第5クラッチ66を解放した後に、第7クラッチ67と第10クラッチ68と第9クラッチ69とを結合または解放する。その後、解放している第5クラッチ66を結合させる。
Figure JPOXMLDOC01-appb-T000026
 なお、ホイールローダ1が砂利等のダンプ積み作業を主体としたVサイクルを行う場合、車両を前進させて砂利等の掘削を行い、その後、車両を後退させてダンプに向けて移動する。このとき、第1の実施の形態(即ち、表4のNo1-A)での具体例を挙げて説明する。遊星式無段変速機構24は、図7に示す遊星歯車機構29の速度関係線Y1の関係より、第1バリエータ33に繋がる第1連結部材30の回転速度を制御することで、アイドラギヤ28Bに繋がる第3連結部材32の回転方向を反転することができる。しかし、第1サンギヤ29Bの回転方向に対して第2サンギヤ29Cの回転方向を逆転させようとした場合(即ち、図7の右下の方向に制御する場合)、第1サンギヤ29Bの回転速度が高くなる。同様に、第2サンギヤ29Cの回転方向に対して第1サンギヤ29Bの回転方向を逆転させようとした場合(図7の左上の方向に制御する場合)、第2サンギヤ29Cの回転速度が高くなる。
 このような場合、第1連結部材30に接続される第1バリエータ33は、最高回転速度の制限がより高いものを採用しなければならなくなる。このため、第1バリエータ33に繋がる第1連結部材30を高速に回転させ、アイドラギヤ28Bに繋がる第3連結部材32の回転方向を正転から逆転することは、最高回転速度の高い高価な第1バリエータ33を採用することになる。これにより、遊星式無段変速機構24の原価が増大する可能性がある。このため、ホイールローダ1が後進するときは、多段変速機構26を用い、出力軸53(出力軸23)の回転方向を前進方向から後進方向に逆転をさせることが望ましい。これにより、逆転時に接続される第1バリエータ33の回転速度を低下させることが可能となり、廉価な第1バリエータ33を用いることができる。なお、第1の実施の形態(即ち、表4のNo1-A)を例に挙げたが、第4の変形例(即ち、表4のNo1-B)、第5の変形例(即ち、表4のNo1-C)の場合は、同様に、多段変速機構26を用い、出力軸53の回転方向を切換えることで、前進方向と後進方向を切換えた方が、逆転時に接続される第1バリエータ33の回転速度を低下させることが可能となり、廉価な第1バリエータ33を用いることができる。
 以上のように、第1の実施の形態によれば、変速装置21は、動力源(エンジン9)に繋がる入力軸22(入力部材)と、負荷(フロントアクスル12、リヤアクスル13)に繋がる出力軸23(出力部材)と、入力軸22と出力軸23との間に設けられた遊星歯車機構29(遊星機構)と、遊星歯車機構29に接続された第1バリエータ33と、第1バリエータ33とは別に設けられた第2バリエータ34と、第1バリエータ33の回転速度を変更するコントローラ25とを備えている。そして、遊星歯車機構29は、キャリア29Aと、キャリア29Aの回転中心軸を中心として自転する第1サンギヤ29B(第1サン部材)と、キャリア29Aの回転中心軸を中心として自転する第2サンギヤ29C(第2サン部材)との3つの部材(回転部材)を含んで構成されている。
 この場合、例えば、図4および図5に示すように、3つの部材のうちの第1部材となるキャリア29Aは、入力軸22に第2連結部材31(他の部材)を介して接続されている。キャリア29Aとは別の第2部材となる第1サンギヤ29Bは、第1バリエータ33に第1連結部材30、第2クラッチ36(いずれも他の部材)を介して接続されている。キャリア29Aおよび第1サンギヤ29Bとは別の第3部材となる第2サンギヤ29Cは、出力軸23に第3連結部材32、アイドラ要素28、多段変速機構26(いずれも他の部材)を介して接続されている。なお、キャリア29A(第1部材)は、入力軸22に直接接続してもよい。第1サンギヤ29B(第2部材)は、第1バリエータ33に直接接続してもよい。第2サンギヤ29C(第3部材)は、出力軸23に直接接続してもよい。
 ここで、キャリア29Aには、キャリア29Aの回転中心軸Sを中心に公転しつつ第1サンギヤ29Bと第2サンギヤ29Cと回転しながら動力伝達を行うプラネットギヤ29D(プラネット部材)およびカウンタギヤとなるバランスギヤ29E(バランス部材)が支持されている。そして、遊星歯車機構29は、エンジン9から遊星歯車機構29のキャリア29A(第1部材)に伝達されたトルクを第1サンギヤ29B(第2部材)と第2サンギヤ29C(第3部材)とに分配する。遊星歯車機構29は、キャリア29Aと第1サンギヤ29Bと第2サンギヤ29Cとの間で2自由度の回転運動をする。第2バリエータ34は、第1バリエータ33から伝達された動力を負荷(出力軸23)または動力源(入力軸22)に伝達し、または、負荷(出力軸23)または動力源(入力軸22)から伝達された動力を第1バリエータ33に伝達する。そして、コントローラ25は、第1バリエータ33の回転速度を変更することにより、入力軸22の回転速度に対する出力軸23の回転速度を変更する。
 即ち、第1の実施形態の変速装置21は、遊星歯車機構29により無段階に変速を行い、動力源(入力軸22)からの動力を負荷(出力軸23)に、または、負荷(出力軸23)からの動力を動力源(入力軸22)に伝達する。この場合、変速装置21は、入力軸22と出力軸23との間に設けられた遊星歯車機構29と、遊星歯車機構29に接続された第1バリエータ33と、第1バリエータ33から伝達された動力を負荷または動力源に伝達する第2バリエータ34とを備えている。そして、遊星歯車機構29は、入力軸22に接続されると共にプラネットギヤ29Dおよびバランスギヤ29Eが支持されたキャリア29Aと、第1バリエータ33に接続された第1サンギヤ29Bと、アイドラ要素28および多段変速機構26を介して出力軸23に接続された第2サンギヤ29Cとを備えている。さらに、変速装置21は、内部ロックアップと外部ロックアップ(直結機構27)とのうちの少なくとも一方のロックアップを備えている。そして、変速装置21は、遊星式無段変速機構24による動力伝達とロックアップによる動力伝達との切換えを行うことができる。
 さらに、第1の実施形態の変速装置21は、第2バリエータ34と第1バリエータ33との間には、これらの間で動力を吸収する動力吸収装置38が設けられている。動力吸収装置38は、コントローラ25によって第1バリエータ33の吸収トルクを変更し、第2バリエータ34で吸収できる以上の動力を発生させたときに、動力を吸収することにより、出力部材となる出力軸23のトルクを上昇させる。このため、第1バリエータ33が発生した動力のうち、第2バリエータ34で受け止めきれる以上の動力を動力吸収装置38で吸収(処分または貯蓄)することにより、出力軸23のトルクを上昇させるトルクブースト制御を行うことができる。これにより、最大出力トルクの小さい小型で廉価な第2バリエータ34を用いても、出力軸23から十分なトルクを出力することができる。即ち、第2バリエータ34が最大出力トルクの小さい小型で廉価なものであっても、低い車速で走行している場合に、出力軸23から十分なトルクを出力することができる。この結果、ホイールローダ1の掘削に必要な牽引力を十分に高めることができ、掘削を効率的に行うことができる。
 第1の実施形態によれば、第1バリエータ33と第2バリエータ34は、油圧ポンプ・モータにより構成されている。また、動力吸収装置38は、リリーフバルブ38C,38Dとアキュームレータ38E,38Fとのうちの少なくとも一方により構成されている。なお、第1バリエータ33と第2バリエータ34を電動モータ・ジェネレータにより構成した場合には、バッテリ等の蓄電装置38Bと、抵抗器等の電気抵抗装置とのうちの少なくとも一方により動力吸収装置38を構成してもよい。いずれの場合も、第1バリエータ33が発生した動力のうち、第2バリエータ34で受け止めきれる以上の動力を動力吸収装置38で吸収(処分または貯蓄)することにより、出力軸23のトルクを上昇させることができる。
 第1の実施形態によれば、リリーフバルブ38C,38Dは、コントローラ25からの信号により、リリーフ開始圧力を可変可能となっている。そして、コントローラ25は、第2バリエータ34が吸収できる以上の動力の発生の司令を第1バリエータ33に送る前に、第1リリーフ開始圧の信号をリリーフバルブ38Cに送る。この場合、第1リリーフ開始圧は、耐圧上限に対して余裕をもった値(例えば、耐圧上限の80%~85%程度の値)に低く抑えている。このため、第2バリエータ34が吸収できる以上の動力の発生の司令を第1バリエータ33に送ったときに、リリーフバルブ38Cが動作することにより第1リリーフ開始圧力以上に圧力が一時的に上昇(サージ)しても、この圧力が耐圧を超えることを抑制できる。
 第1の実施形態によれば、コントローラ25は、第2バリエータ34が吸収できる以上の動力の発生の司令を第1バリエータ33に送った後に、第1リリーフ開始圧より高圧な第2リリーフ開始圧の信号をリリーフバルブ38Cに送る。これにより、第2バリエータ34の最大出力トルクが低下することを抑制できる。さらに、コントローラ25は、第2バリエータ34が第1バリエータ33に送る動力が低下した際に、リーフ開始圧の信号を第2リリーフ圧以下(または、第1リリーフ圧以下)に低下させる。これにより、変速装置21の出力トルクが変動した場合であっても、耐圧の範囲内で変速装置21の出力トルクの最大値を高めることができる。
 第1の実施形態によれば、変速装置21には、副変速機構である多段変速機構26が設けられている。そして、第2バリエータ34は、遊星歯車機構29と多段変速機構26との間に設けられたアイドラ要素(具体的には、回転要素となるアイドラギヤ28B)に接続されている。なお、図26に示す第6の変形例のように、第2バリエータ34は、出力軸23(出力部材)に接続してもよい。即ち、後述する図41ないし図50に示すように、第2バリエータ34は、入力軸22(入力部材)と駆動源(エンジン9)との間に設けられた回転要素、多段変速機構26を構成する回転要素、多段変速機構26と出力軸23(出力部材)との間に設けられた回転要素、出力軸23(出力部材)、または、出力軸23と負荷との間に設けられた回転要素に接続する構成としてもよい。
 次に、図27ないし図30は、第2の実施の形態を示している。第2の実施の形態の特徴は、遊星歯車機構をキャリアとサンギヤとリングギヤとにより構成したことにある。なお、第2の実施形態では、第1の実施形態と同一の構成要素に同一の符号を付し、その説明を省略する。
 第1の実施の形態では、遊星式無段変速機構24の遊星歯車機構29をキャリアと2つのサンギヤとにより構成した場合を例に挙げて説明した。これに対して、第2の実施の形態では、遊星式無段変速機構24の遊星歯車機構81を、キャリア81Aと、サンギヤ81Bと、リングギヤ81Cとにより構成している。下記の表6は、遊星歯車機構81の構成要素(キャリア、サンギヤ、リングギヤ)の組み合わせを示している。いずれの場合も、動力伝達が可能である。表6中の「No2-A」は、遊星式無段変速機構24の伝達効率を向上でき、第1バリエータ33の最大吸収トルクを小さくでき、かつ、遊星式無段変速機構24全体を小型で軽量に構成できる面から最も好適である。
Figure JPOXMLDOC01-appb-T000027
 図27および図28に示すように、第2の実施形態(即ち、表6のNo2-A)では、遊星歯車機構81は、第1部材に対応するキャリア81Aと、第2部材に対応するサンギヤ81Bと、第3部材に対応するリングギヤ81Cと、プラネットギヤ81Dとを備えている。なお、サンギヤ81B、リングギヤ81C、プラネットギヤ81Dは、ギヤ(歯車)の噛み合いによる動力伝達でなくてもよく、例えば、ローラ(外周面)の摩擦による動力伝達であってもよい。
 エンジン9は、第2連結部材31を介してキャリア81Aに結合されている。サンギヤ81Bは、第1連結部材30を介して第1バリエータ33に接続されている。リングギヤ81Cは、第3連結部材32を介してアイドラ要素28(アイドラギヤ28B)に接続されている。サンギヤ81Bは、プラネットギヤ81Dと噛み合っている。また、プラネットギヤ81Dは、リングギヤ81Cと噛み合っている。プラネットギヤ81Dの自転軸Sp(図29)は、キャリア81Aに支持されている。このため、プラネットギヤ81Dは、遊星歯車機構81の中心軸S(図29)を中心に公転しながら自転する。
 次に、キャリア81Aとサンギヤ81Bとリングギヤ81Cとにより構成される遊星歯車機構81の動作を説明する。以下は、表6の「No2-A」、「No2-B」、「No2-C」、「No2-D」、「No2-E」、「No2-F」の全ての条件で成立する。
 まず、遊星歯車機構81の3つの部材(キャリア81A、サンギヤ81B、リングギヤ81C)のトルクの分配について説明する。図29は、遊星歯車機構81を動力源側からみた断面図である。キャリア81A、サンギヤ81Bおよびリングギヤ81Cは、同心に配置されている。即ち、キャリア81A、サンギヤ81Bおよびリングギヤ81Cの中心軸S(回転中心軸)は一致している。プラネットギヤ81Dは、サンギヤ81Bの外周とリングギヤ81Cの内周に接するように配置されている。プラネットギヤ81Dは、サンギヤ81Bおよびリングギヤ81Cと噛み合う。キャリア81A、サンギヤ81Bおよびリングギヤ81Cは、それぞれの歯車の噛み合いが成立するように、中心軸Sを中心に自転可能に、かつ、他方向に動けないように、遊星式無段変速機構24のケーシングによって支持されている。プラネットギヤ81Dは、プラネットギヤ81Dの中心軸である自転軸Spを中心に自転可能に、かつ、他方向に動けないように、キャリア81Aによって支持されている。プラネットギヤ81Dは、キャリア81Aの中心軸Sを中心に公転しながらプラネットギヤ81Dの中心軸Spを中心に自転する。
 遊星歯車機構81の制約条件は、図29に示すように、サンギヤ81Bとリングギヤ81Cとプラネットギヤ81Dとが噛み合う必要があることである。また、歯車の強度を確保するためには、プラネットギヤ81Dの直径を大きくする必要がある。即ち、遊星歯車機構81の制約条件は、サンギヤ81Bの噛み合い半径rsは、リングギヤ81Cの噛み合い半径rrより大幅に小さくなることである。
 表6の「No2-A」の構成は、キャリア81Aがエンジン9(動力源)に繋がる第2連結部材31に接続されている。このため、キャリア81AのトルクTcは、エンジン9が発生できるトルクである。サンギヤ81Bは、第1バリエータ33に繋がる第1連結部材30に接続されている。このため、サンギヤ81BのトルクTsは、第1バリエータ33が発生できるトルクである。リングギヤ81Cは、アイドラ要素28に繋がる第3連結部材32に接続されている。このため、リングギヤ81CのトルクTrは、アイドラギヤ28Bから受けるトルク反力である。
 表6の「No2-B」の構成は、リングギヤ81Cが第2連結部材31に接続されている。このため、リングギヤ81CのトルクTrは、エンジン9が発生できるトルクである。キャリア81Aは、第1連結部材30に接続されている。このため、キャリア81AのトルクTcは、第1バリエータ33が発生できるトルクである。サンギヤ81Bは、第3連結部材32に接続されている。このため、サンギヤ81BのトルクTsは、アイドラギヤ28Bから受けるトルク反力である。
 表6の「No2-C」の構成は、キャリア81Aが第2連結部材31に接続されており、リングギヤ81Cが第1連結部材30に接続されており、サンギヤ81Bが第3連結部材32に接続されている。表6の「No2-D」の構成は、リングギヤ81Cが第2連結部材31に接続されており、サンギヤ81Bが第1連結部材30に接続されており、キャリア81Aが第3連結部材32に接続されている。表6の「No2-E」の構成は、サンギヤ81Bが第2連結部材31に接続されており、リングギヤ81Cが第1連結部材30に接続されており、キャリア81Aが第3連結部材32に接続されている。表6の「No2-F」の構成は、サンギヤ81Bが第2連結部材31に接続されており、キャリア81Aが第1連結部材30に接続されており、リングギヤ81Cが第3連結部材32に接続されている。
 次に、サンギヤ81BのトルクTs、リングギヤ81CのトルクTrおよびキャリア81AのトルクTcの関係性を説明する。サンギヤ81Bとリングギヤ81Cは、プラネットギヤ81Dを介して噛み合っている。このため、サンギヤ81Bとプラネットギヤ81Dの噛み合い接線力と、プラネットギヤ81Dとリングギヤ81Cの噛み合い接線力は等しい。即ち、下記の数22式および数23式が得られる。
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000029
 作用反作用の関係により、下記の数24式が得られる。
Figure JPOXMLDOC01-appb-M000030
 これら数22式、数23式、数24式より、サンギヤ81BのトルクTs、リングギヤ81CのトルクTrおよびキャリア81AのトルクTcは、リングギヤ81Cの噛み合い半径rrおよびサンギヤ81Bの噛み合い半径rsより計算できる。リングギヤ81Cの噛み合い半径rrおよびサンギヤ81Bの噛み合い半径rsは、それぞれの歯車の噛み合い半径で決まるため、遊星式無段変速機構24が動力伝達している間に変更できない。このため、サンギヤ81BのトルクTs、リングギヤ81CのトルクTrおよびキャリア81AのトルクTcの比率は、遊星式無段変速機構24が動力伝達している間は不変である。
 コントローラ25は、この法則に基づいて、第1バリエータ33を制御する信号を出力し、第1バリエータ33に繋がる第1連結部材30(例えば、サンギヤ81B)のトルクを制御する。即ち、コントローラ25は、第1バリエータ33を制御することにより第1連結部材30(例えば、サンギヤ81B)のトルクを制御する。これにより、コントローラ25は、エンジン9に繋がる第2連結部材31(例えば、キャリア81A)のトルクとアイドラ要素28に繋がる第3連結部材32(例えば、リングギヤ81C)のトルクとを間接的に制御する。この結果、エンジン9に繋がる第2連結部材31(例えば、キャリア81A)とアイドラ要素28に繋がる第3連結部材32(例えば、リングギヤ81C)との間で、伝達トルクを制御することができる。
 次に、サンギヤ81Bの自転速度、リングギヤ81Cの自転速度およびキャリア81Aの自転速度の関係性を説明する。まず、サンギヤ81Bとリングギヤ81Cは、プラネットギヤ81Dを介して噛み合っている。サンギヤ81Bとリングギヤ81Cは、中心軸Sを中心に自転する。プラネットギヤ81Dは、キャリア81Aによって自転方向に自由に回転し、かつ、キャリア29Aの中心軸Sに対して公転方向に拘束されている。これらから、回転速度の関係を求めると、下記の数25式が成立する。なお、数25式中の「Kb」は、数26式の通りである。なお、キャリア81Aの自転速度を「Vc」とし、サンギヤ81Bの自転速度を「Vs」とし、リングギヤ81Cの自転速度を「Vr」とする。
Figure JPOXMLDOC01-appb-M000031
Figure JPOXMLDOC01-appb-M000032
 図30は、遊星歯車機構81の回転速度の関係を示している。図30中の速度関係線Y2は、数25式を線図で表している。キャリア81Aの自転速度が一定と仮定する。この場合、リングギヤ81Cの自転速度を高くすると、サンギヤ81Bの自転速度が低くなる。反対に、リングギヤ81Cの自転速度を低くすると、サンギヤ81Bの自転速度が高くなる。コントローラ25は、この法則に基づいて、第1バリエータ33を制御する信号を出力し、第1バリエータ33に繋がる第1連結部材30(例えば、サンギヤ81B)の回転速度を制御する。即ち、コントローラ25は、第1バリエータ33を制御することにより第1連結部材30(例えば、サンギヤ81B)の回転速度を制御する。これにより、コントローラ25は、エンジン9に繋がる第2連結部材31(例えば、キャリア81A)の回転速度とアイドラ要素28に繋がる第3連結部材32(例えば、リングギヤ81C)の回転速度とを間接的に制御する。この結果、エンジン9に繋がる第2連結部材31(例えば、キャリア81A)とアイドラ要素28に繋がる第3連結部材32(例えば、リングギヤ81C)との間で、変速比を制御することができる。
 前述したように、遊星歯車機構81は、サンギヤ81Bとリングギヤ81Cとプラネットギヤ81Dとが噛み合う必要がある。また、歯車の強度を確保するために、プラネットギヤ81Dの直径を大きくする必要がある。しかし、プラネットギヤ81Dの直径を大きくすると、遊星歯車機構81が大型化する。即ち、遊星歯車機構81の構造的制約は、遊星歯車機構81を小型に設計しようとすると、サンギヤ81Bの噛み合い半径rsはリングギヤ81Cの噛み合い半径rrより大幅に小さくなることである。このため、遊星歯車機構81は、Kbの値を0.3よりも大きくすることが難しく、理想的なKbの値よりも小さくなり過ぎる可能性がある。
 この構造的制約より、遊星歯車機構81は、トルクTc,Ts,Trの関係式(数22式、数23式、数24式)および自転速度Vs,Vr,Vcの関係式(数25式、数26式)から、第1バリエータ33が吸収できるトルクと許容可能な最高回転速度とに応じて、サンギヤ81Bの噛み合い半径rsとリングギヤ81Cの噛み合い半径rrとを調整する。これにより、数26式のKbの値を理想的な値に設定し、図30に示す速度関係線Y2の傾きを理想的な値とすることにより、第1バリエータ33が吸収できるトルクと許容可能な最高回転速度との両方を低減できるようにする。しかし、このようにすると、Kbの値が小さくなり過ぎ、両立することが難しい。即ち、第2の実施の形態は、第1の実施の形態と比較して、第1バリエータ33の吸収できるトルクと許容可能な最高回転速度との両方が最適化された遊星歯車機構81の配列を提供する点で不利になる可能性がある。即ち、第2の実施の形態は、第1の実施の形態と比較して、第1バリエータ33が高価になる傾向があり、かつ、遊星式無段変速機構24の伝達効率が低下する可能性がある。
 なお、第1バリエータ33の大きさおよび価格は、吸収できるトルクの大きさに比例する。このため、第1バリエータ33の吸収トルクは、小さい方が望ましい。第2の実施の形態(即ち、表6のNo2-A)で具体例を挙げて説明する。まず、数26式のKbの値は、小さくすることが望ましい。また、第1バリエータ33に分配されるトルクは小さい方が、遊星式無段変速機構24の伝達効率を向上できる。このため、数26式のKbの値を小さくすることは遊星式無段変速機構24にとって好都合である。
 一方で、図30に示す速度関係線Y2から、Kbの値を小さくすると、第1バリエータ33の回転速度が上昇してしまう。このため、Kbの値は、第1バリエータ33の許容可能な最高回転速度を越えない範囲で小さくすることが望ましい。サンギヤとリングギヤとキャリアとから構成される遊星歯車機構81は、遊星歯車機構81を小型に設計しようとすると、サンギヤ81Bの噛み合い半径rsは、リングギヤ81Cの噛み合い半径rrより大幅に小さくなる構造的制約を持っている。このため、遊星歯車機構81を小型に設計しようとすると、Kbの値が小さくなり過ぎる。この結果、第1バリエータ33の回転速度が高くなり、第1バリエータ33の許容可能な最高回転速度を超える可能性がある。このため、高回転で運転可能な遊星歯車機構81が必要になる。即ち、第1バリエータ33は、高回転に対応できる高価なものになり、遊星歯車機構81は大型のものとなり、かつ、遊星式無段変速機構24の伝達効率が低下する可能性がある。
 第2の実施の形態(表6のNo2-A)では、第1バリエータ33に繋がる端子30は、サンギヤ81Bに接続されている。前記数22式、数23式、数24式より、第1バリエータ33の吸収トルクを上昇させることで、キャリア81Aおよびリングギヤ81Cのトルクを上昇させ、リングギヤ81Cに接続されたアイドラギヤ28Bへ繋がる端子32のトルクを上昇させることができる。アイドラギヤ28Bへ繋がる端子32は、アイドラギヤ28Bおよび多段変速機構26を介して出力軸23に接続されているので、出力軸23のトルクを上昇させることができる。
 また、前記数26式より、Kb>0であるので、数25式の切片は、正となる。この関係性を、図30に示す。キャリア81Aの回転速度を一定とした場合、リングギヤ81Cの自転速度が低いとき(即ち、車速が低いとき)は、サンギヤ81Bの自転速度(回転速度)が高くなる。例えば、車両の車速が0である場合(リングギヤ81Cの自転速度が0である場合)、サンギヤ81Bは回転をしているため、第1バリエータ33が回転しているのに対して、第2バリエータ34の回転速度が0である。車両の車速が0のときに、第1バリエータ33の吸収トルクを上昇させると、第2バリエータ34が受け止められる以上の動力を、第1バリエータ33は伝達要素35に送ってしまう。このため、車両の速度が所定以下の場合、伝達要素35上に設置された動力吸収装置38は、余剰な動力を吸収(処分または貯蔵)する。これにより、変速装置21は、車速が0~5km/hのときの出力トルクを上昇させることができ、ホイールローダ1の牽引力が上昇する。
 図36に示す第7の変形例(表6のNo2-B)では、第1バリエータ33に繋がる端子30は、キャリア81Aに接続されている。前記数22式、数23式、数24式より、第1バリエータ33の吸収トルクを上昇させることで、サンギヤ81Bおよびリングギヤ81Cのトルクを上昇させ、サンギヤ81Bに接続されたアイドラギヤ28Bへ繋がる端子32のトルクを上昇させることができる。アイドラギヤ28Bへ繋がる端子32は、アイドラギヤ28Bおよび多段変速機構26を介して出力軸23に接続されているので、出力軸23のトルクを上昇させることができる。一方、前記数25式を変形させると、下記の数27式が得られる。
Figure JPOXMLDOC01-appb-M000033
 また、数26式より、Kb>0であるので、数27式の切片は、正となる。この関係を、図31に示す。リングギヤ81Cの回転速度を一定とした場合、サンギヤ81Bの自転速度とキャリア81Aの自転速度は、比例する。例えば、車両の車速が0である場合(サンギヤ81Bの自転速度が0である場合)、キャリア81Aは回転をしているため、第1バリエータ33が回転しているのに対して、第2バリエータ34の回転速度が0である。車両の車速が0のときに、第1バリエータ33の吸収トルクを上昇させると、第2バリエータ34が受け止められる以上の動力を、第1バリエータ33は伝達要素35に送ってしまう。このため、車両の速度が所定以下の場合、伝達要素35上に設置された動力吸収装置38は、余剰な動力を吸収(処分または貯蔵)する。これにより、変速装置21は、車速が0~5km/hのときの出力トルクを上昇させることができ、ホイールローダ1の牽引力が上昇する。
 図37に示す第8の変形例(表6のNo2-C)では、第1バリエータ33に繋がる端子30は、リングギヤ81Cに接続されている。前記数22式、数23式、数24式より、第1バリエータ33の吸収トルクを上昇させることで、サンギヤ81Bおよびキャリア81Aのトルクを上昇させ、サンギヤ81Bに接続されたアイドラギヤ28Bへ繋がる端子32のトルクを上昇させることができる。アイドラギヤ28Bへ繋がる端子32は、アイドラギヤ28Bおよび多段変速機構26を介して出力軸23に接続されているので、出力軸23のトルクを上昇させることができる。一方、前記数25式を変形させると、下記の数28式が得られる。
Figure JPOXMLDOC01-appb-M000034
 また、数26式より、Kb>0であるので、数28式の傾きは負となる。この関係を、図32に示す。キャリア81Aの回転速度を一定とした場合、サンギヤ81Bの自転速度とリングギヤ81Cの自転速度は、比例する。例えば、車両の車速が0である場合(サンギヤ81Bの自転速度が0である場合)、リングギヤ81Cは回転をしているため、第1バリエータ33が回転しているのに対して、第2バリエータ34の回転速度が0である。車両の車速が0のときに、第1バリエータ33の吸収トルクを上昇させると、第2バリエータ34が受け止められる以上の動力を、第1バリエータ33は伝達要素35に送ってしまう。このため、車両の速度が所定以下の場合、伝達要素35上に設置された動力吸収装置38は、余剰な動力を吸収(処分または貯蔵)する。これにより、変速装置21は、車速が0~5km/hのときの出力トルクを上昇させることができ、ホイールローダ1の牽引力が上昇する。
 図38に示す第9の変形例(表6のNo2-D)では、第1バリエータ33に繋がる端子30は、サンギヤ81Bに接続されている。前記数22式、数23式、数24式より、第1バリエータ33の吸収トルクを上昇させることで、リングギヤ81Cおよびキャリア81Aのトルクを上昇させ、キャリア81Aに接続されたアイドラギヤ28Bへ繋がる端子32のトルクを上昇させることができる。アイドラギヤ28Bへ繋がる端子32は、アイドラギヤ28Bおよび多段変速機構26を介して出力軸23に接続されているので、出力軸23のトルクを上昇させることができる。一方、前記数25式を変形させると、下記の数29式が得られる。
Figure JPOXMLDOC01-appb-M000035
 また、数26式より、Kb>0であるので、数29式の傾きは正となる。この関係を、図33に示す。リングギヤ81Cの回転速度を一定とした場合、サンギヤ81Bの自転速度とキャリア81Aの自転速度は、比例する。例えば、車両の車速が0である場合(キャリア81Aの自転速度が0である場合)、サンギヤ81Bは回転をしているため、第1バリエータ33が回転しているのに対して、第2バリエータ34の回転速度が0である。このため、車両の車速が0のときに、第1バリエータ33の吸収トルクを上昇させると、第2バリエータ34が受け止められる以上の動力を、第1バリエータ33は伝達要素35に送ってしまう。このため、車両の速度が所定以下の場合、伝達要素35上に設置された動力吸収装置38は、余剰な動力を吸収(処分または貯蔵)する。これにより、変速装置21は、車速が0~5km/hのときの出力トルクを上昇させることができ、ホイールローダ1の牽引力が上昇する。
 図39に示す第10の変形例(表6のNo2-E)では、第1バリエータ33に繋がる端子30は、リングギヤ81Cに接続されている。前記数22式、数23式、数24式より、第1バリエータ33の吸収トルクを上昇させることで、サンギヤ81Bおよびキャリア81Aのトルクを上昇させ、キャリア81Aに接続されたアイドラギヤ28Bへ繋がる端子32のトルクを上昇させることができる。アイドラギヤ28Bへ繋がる端子32は、アイドラギヤ28Bおよび多段変速機構26を介して出力軸23に接続されているので、出力軸23のトルクを上昇させることができる。一方、前記数25式を変形させると、下記の数30式が得られる。
Figure JPOXMLDOC01-appb-M000036
 また、数26式より、Kb>0であるので、数30式の傾きは正となる。この関係を、図34に示す。サンギヤ81Bの回転速度を一定とした場合、リングギヤ81Cの自転速度とキャリア81Aの自転速度は、比例する。例えば、車両の車速が0である場合(キャリア81Aの自転速度が0である場合)、リングギヤ81Cは回転をしているため、第1バリエータ33が回転しているのに対して、第2バリエータ34の回転速度が0である。このため、車両の車速が0のときに、第1バリエータ33の吸収トルクを上昇させると、第2バリエータ34が受け止められる以上の動力を、第1バリエータ33は伝達要素35に送ってしまう。このため、車両の速度が所定以下の場合、伝達要素35上に設置された動力吸収装置38は、余剰な動力を吸収(処分または貯蔵)する。これにより、変速装置21は、車速が0~5km/hのときの出力トルクを上昇させることができ、ホイールローダ1の牽引力が上昇する。
 図40に示す第11の変形例(表6のNo2-F)では、第1バリエータ33に繋がる端子30は、キャリア81Aに接続されている。前記数22式、数23式、数24式より、第1バリエータ33の吸収トルクを上昇させることで、リングギヤ81Cおよびサンギヤ81Bのトルクを上昇させ、リングギヤ81Cに接続されたアイドラギヤ28Bへ繋がる端子32のトルクを上昇させることができる。アイドラギヤ28Bへ繋がる端子32は、アイドラギヤ28Bおよび多段変速機構26を介して出力軸23に接続されているので、出力軸23のトルクを上昇させることができる。一方、前記数25式を変形させると、下記の数31式が得られる。
Figure JPOXMLDOC01-appb-M000037
 また、数26式より、Kb>0であるので、数31式の傾きは正となる。この関係を、図35に示す。サンギヤ81Bの回転速度を一定とした場合、リングギヤ81Cの自転速度とキャリア81Aの自転速度は、比例する。例えば、車両の車速が0である場合(リングギヤ81Cの自転速度が0である場合)、キャリア81Aは回転をしているため、第1バリエータ33が回転しているのに対して、第2バリエータ34の回転速度が0である。このため、車両の車速が0のときに、第1バリエータ33の吸収トルクを上昇させると、第2バリエータ34が受け止められる以上の動力を、第1バリエータ33は伝達要素35に送ってしまう。このため、車両の速度が所定以下の場合、伝達要素35上に設置された動力吸収装置38は、余剰な動力を吸収(処分または貯蔵)する。これにより、変速装置21は、車速が0~5km/hのときの出力トルクを上昇させることができ、ホイールローダ1の牽引力が上昇する。
 図27の第2の実施の形態(表6のNo2-A)では、第1バリエータ33のトルクを上昇させると、第1バリエータ33に繋がる端子30のトルクが上昇し、サンギヤ81Bのトルクが上昇する。サンギヤ81Bのトルクに比例して、リングギヤ81C(アイドラギヤ28Bに繋がる端子32)のトルクと、キャリア81A(動力源に繋がる端子31)のトルクが上昇する。例えば、変速比0.5(車速2~5km/hに相当)において、第1バリエータ33が第2バリエータ34に対して、第2バリエータ34が受け止められるだけの動力を考慮し動力吸収装置38を構成する。
 変速比0.5未満では、第1バリエータ33のトルクを所定以上に上昇させると、第2バリエータ34の出力トルクが最大値であるため、第1バリエータ33が送った動力を、第2バリエータ34が全て受け止めることができない。このため、第1バリエータ33と第2バリエータ34との間の動力吸収装置38により、第1バリエータ33のトルクを上昇させることで、リングギヤ81C(アイドラギヤ28Bに繋がる端子32)のトルクを上昇させることができる。これにより、前記数13式より、変速比0.5未満(車速2~5km/hに相当)におけるアイドラギヤ28Bのトルクを上昇することができる。アイドラギヤ28Bへ繋がる端子32は、アイドラギヤ28Bおよび多段変速機構26を介して出力軸23に接続されているので、出力軸23のトルクを上昇させることができる。これにより、変速装置21は、車速が0~5km/hのときの出力トルクを上昇させることができ、ホイールローダ1の牽引力が上昇する。
 図36の第7の変形例(表6のNo2-B)では、第1バリエータ33のトルクを上昇させると、第1バリエータ33に繋がる端子30のトルクが上昇し、キャリア81Aのトルクが上昇する。キャリア81Aのトルクに比例して、サンギヤ81B(アイドラギヤ28Bに繋がる端子32)のトルクと、リングギヤ81C(動力源に繋がる端子31)のトルクが上昇する。例えば、変速比0.5(車速2~5km/hに相当)において、第1バリエータ33と第2バリエータ34のいずれか一方のトルクが、吸収可能または出力可能な最大値に基づいて動力吸収装置38を構成する。
 変速比0.5未満では、第1バリエータ33または第2バリエータ34のトルクが最大値であるため、これ以上に第1バリエータ33のトルクを高くすることができない。このため、第1バリエータ33と第2バリエータ34との間の動力吸収装置38により、第1バリエータ33のトルクを高くすることで、サンギヤ81B(アイドラギヤ28Bに繋がる端子32)のトルクを上昇させることができる。これにより、前記数13式より、変速比0.5未満(車速2~5km/hに相当)におけるアイドラギヤ28Bのトルクを上昇することができる。アイドラギヤ28Bへ繋がる端子32は、アイドラギヤ28Bおよび多段変速機構26を介して出力軸23に接続されているので、出力軸23のトルクを上昇させることができる。これにより、変速装置21は、車速が0~5km/hのときの出力トルクを上昇させることができ、ホイールローダ1の牽引力が上昇する。
 図37の第8の変形例(表6のNo2-C)では、第1バリエータ33のトルクを上昇させると、第1バリエータ33に繋がる端子30のトルクが上昇し、リングギヤ81Cのトルクが上昇する。リングギヤ81Cのトルクに比例して、サンギヤ81B(アイドラギヤ28Bに繋がる端子32)のトルクと、キャリア81A(動力源に繋がる端子31)のトルクが上昇する。例えば、変速比0.5(車速2~5km/hに相当)において、第1バリエータ33が第2バリエータ34に対して、第2バリエータ34が受け止められるだけの動力を考慮し動力吸収装置38を構成する。
 変速比0.5未満では、第1バリエータ33のトルクを所定以上に上昇させると、第2バリエータ34の出力トルクが最大値であるため、第1バリエータ33が送った動力を、第2バリエータ34が全て受け止めることができない。このため、第1バリエータ33と第2バリエータ34との間の動力吸収装置38により、第1バリエータ33のトルクを上昇させることで、サンギヤ81B(アイドラギヤ28Bに繋がる端子32)のトルクを上昇させることができる。これにより、前記数13式より、変速比0.5未満(車速2~5km/hに相当)におけるアイドラギヤ28Bのトルクを上昇することができる。アイドラギヤ28Bへ繋がる端子32は、アイドラギヤ28Bおよび多段変速機構26を介して出力軸23に接続されているので、出力軸23のトルクを上昇させることができる。これにより、変速装置21は、車速が0~5km/hのときの出力トルクを上昇させることができ、ホイールローダ1の牽引力が上昇する。
 図38の第9の変形例(表6のNo2-D)では、第1バリエータ33のトルクを上昇させると、第1バリエータ33に繋がる端子30のトルクが上昇し、サンギヤ81Bのトルクが上昇する。サンギヤ81Bのトルクに比例して、キャリア81A(アイドラギヤ28Bに繋がる端子32)のトルクと、リングギヤ81C(動力源に繋がる端子31)のトルクが上昇する。例えば、変速比0.5(車速2~5km/hに相当)において、第1バリエータ33が第2バリエータ34に対して、第2バリエータ34が受け止められるだけの動力を考慮し動力吸収装置38を構成する。
 変速比0.5未満では、第1バリエータ33のトルクを所定以上に上昇させると、第2バリエータ34の出力トルクが最大値であるため、第1バリエータ33が送った動力を、第2バリエータ34が全て受け止めることができない。このため、第1バリエータ33と第2バリエータ34との間の動力吸収装置38により、第1バリエータ33のトルクを上昇させることで、キャリア81A(アイドラギヤ28Bに繋がる端子32)のトルクを上昇させることができる。これにより、前記数13式より、変速比0.5未満(車速2~5km/hに相当)におけるアイドラギヤ28Bのトルクを上昇することができる。アイドラギヤ28Bへ繋がる端子32は、アイドラギヤ28Bおよび多段変速機構26を介して出力軸23に接続されているので、出力軸23のトルクを上昇させることができる。これにより、変速装置21は、車速が0~5km/hのときの出力トルクを上昇させることができ、ホイールローダ1の牽引力が上昇する。
 図39の第10の変形例(表6のNo2-E)では、第1バリエータ33のトルクを上昇させると、第1バリエータ33に繋がる端子30のトルクが上昇し、リングギヤ81Cのトルクが上昇する。リングギヤ81Cのトルクに比例して、キャリア81A(アイドラギヤ28Bに繋がる端子32)のトルクと、サンギヤ81B(動力源に繋がる端子31)のトルクが上昇する。例えば、変速比0.5(車速2~5km/hに相当)において、第1バリエータ33が第2バリエータ34に対して、第2バリエータ34が受け止められるだけの動力を考慮し動力吸収装置38を構成する。
 変速比0.5未満では、第1バリエータ33のトルクを所定以上に上昇させると、第2バリエータ34の出力トルクが最大値であるため、第1バリエータ33が送った動力を、第2バリエータ34が全て受け止めることができない。このため、第1バリエータ33と第2バリエータ34との間の動力吸収装置38により、第1バリエータ33のトルクを上昇させることで、キャリア81A(アイドラギヤ28Bに繋がる端子32)のトルクを上昇させることができる。これにより、前記数13式より、変速比0.5未満(車速2~5km/hに相当)におけるアイドラギヤ28Bのトルクを上昇することができる。アイドラギヤ28Bへ繋がる端子32は、アイドラギヤ28Bおよび多段変速機構26を介して出力軸23に接続されているので、出力軸23のトルクを上昇させることができる。これにより、変速装置21は、車速が0~5km/hのときの出力トルクを上昇させることができ、ホイールローダ1の牽引力が上昇する。
 図40の第11の変形例(表6のNo2-F)では、第1バリエータ33のトルクを上昇させると、第1バリエータ33に繋がる端子30のトルクが上昇し、キャリア81Aのトルクが上昇する。キャリア81Aのトルクに比例して、リングギヤ81C(アイドラギヤ28Bに繋がる端子32)のトルクと、サンギヤ81B(動力源に繋がる端子31)のトルクが上昇する。例えば、変速比0.5(車速2~5km/hに相当)において、第1バリエータ33が第2バリエータ34に対して、第2バリエータ34が受け止められるだけの動力を考慮し動力吸収装置38を構成する。
 変速比0.5未満では、第1バリエータ33のトルクを所定以上に上昇させると、第2バリエータ34の出力トルクが最大値であるため、第1バリエータ33が送った動力を、第2バリエータ34が全て受け止めることができない。このため、第1バリエータ33と第2バリエータ34との間の動力吸収装置38により、第1バリエータ33のトルクを上昇させることで、リングギヤ81C(アイドラギヤ28Bに繋がる端子32)のトルクを上昇させることができる。これにより、前記数13式より、変速比0.5未満(車速2~5km/hに相当)におけるアイドラギヤ28Bのトルクを上昇することができる。アイドラギヤ28Bへ繋がる端子32は、アイドラギヤ28Bおよび多段変速機構26を介して出力軸23に接続されているので、出力軸23のトルクを上昇させることができる。これにより、変速装置21は、車速が0~5km/hのときの出力トルクを上昇させることができ、ホイールローダ1の牽引力が上昇する。
 次に、第1の実施の形態の遊星歯車機構29と第2の実施の形態の遊星歯車機構81とを比較する。即ち、これらの2つの遊星歯車機構29,81は、それぞれ特徴があり、一概にどちらが優れているとは断言できない。即ち、第1バリエータ33が吸収できるトルクと第1バリエータ33の許容可能な最高回転速度とを自由に設定できる場合は、構造的に簡易な遊星歯車機構81を採用することが好ましい。これにより、遊星歯車機構81のサンギヤ81Bの噛み合い半径rsとリングギヤ81Cの噛み合い半径rrの構造的制約(Kbの値)に合わせて、第1バリエータ33を設計することにより、小型で廉価な第1バリエータ33を用いることができる。この結果、遊星歯車機構81を簡易にでき、かつ、遊星式無段変速機構24の伝達効率を向上させることができる。
 一方で、第1バリエータ33が吸収できるトルクと許容可能な最高回転速度を自由に設定できない場合には、第1の実施の形態の遊星歯車機構29を採用することが好ましい。この場合、Kaの値を理想的な値に設定し、図7に示す速度関係線Y1の傾きを理想的な値とすることにより、第1バリエータ33が吸収できるトルクと許容可能な最高回転速度とを全て使用できるようにすることが望ましい。これにより、小型で廉価な第1バリエータ33を用いることができ、かつ、遊星式無段変速機構24の伝達効率を向上できる。
 次に、第2の実施の形態による遊星式無段変速機構24の内部ロックアップ変速比Inについて説明する。内部ロックアップ動作時は、前述の数25式に第1バリエータ33に繋がる第1連結部材30の回転速度を0として代入することにより、内部ロックアップ変速比Inを計算できる。例えば、第2の実施の形態(表6のNo2-A)では、数25式に、第1連結部材30と接続されたサンギヤ81Bの自転速度Vsを0として代入する。即ち、内部ロックアップ変速比Inは、次の数32式となる。
Figure JPOXMLDOC01-appb-M000038
 図36に示す第7の変形例(表6のNo2-B)では、数25式を変形すると共に、第1連結部材30に接続されたキャリア81Aの自転速度Vcを0として代入する。即ち、内部ロックアップ変速比Inは、次の数33式となる。
Figure JPOXMLDOC01-appb-M000039
 図37に示す第8の変形例(表6のNo2-C)では、数25式に、第1連結部材30に接続されたリングギヤ81Cの自転速度Vrを0として代入する。即ち、内部ロックアップ変速比Inは、次の数34式となる。
Figure JPOXMLDOC01-appb-M000040
 図38に示す第9の変形例(表6のNo2-D)では、数25式に、第1連結部材30に接続されたサンギヤ81Bの自転速度Vsを0として代入する。即ち、内部ロックアップ変速比Inは、次の数35式となる。
Figure JPOXMLDOC01-appb-M000041
 図39に示す第10の変形例(表6のNo2-E)では、数25式に、第1連結部材30に接続されたリングギヤ81Cの自転速度Vrを0として代入する。即ち、内部ロックアップ変速比Inは、次の数36式となる。
Figure JPOXMLDOC01-appb-M000042
 図40に示す第11の変形例(表6のNo2-F)では、数25式を変形し、第1連結部材30に接続されたキャリア81Aの自転速度Vcを0として代入する。即ち、内部ロックアップ変速比Inは、次の数37式となる。
Figure JPOXMLDOC01-appb-M000043
 このように、第2の実施の形態による遊星式無段変速機構24の内部ロックアップ変速比Inは、遊星歯車機構81の歯車の組み合わせと、Kbに依存する。
 以上のように、第2の実施の形態によれば、変速装置21は、入力軸22(入力部材)と、出力軸23(出力部材)と、遊星歯車機構81(遊星機構)と、第1バリエータ33と、第2バリエータ34と、コントローラ25とを備えている。そして、遊星歯車機構81は、キャリア81Aと、キャリア81Aの回転中心軸を中心として自転するサンギヤ81B(サン部材)と、サンギヤ81Bよりも径方向外側に位置してキャリア81Aの回転中心軸を中心として自転するリングギヤ81C(リング部材)との3つの部材(回転部材)を含んで構成されている。
 この場合、例えば、図27および図28に示すように、3つの部材のうちの第1部材となるキャリア81Aは、入力軸22に第2連結部材31(他の部材)を介して接続されている。キャリア81Aとは別の第2部材となるサンギヤ81Bは、第1バリエータ33に第1連結部材30、第2クラッチ36(いずれも他の部材)を介して接続されている。キャリア81Aおよびサンギヤ81Bとは別の第3部材となるリングギヤ81Cは、出力軸23に第3連結部材32、アイドラ要素28、多段変速機構26(いずれも他の部材)を介して接続されている。なお、キャリア81A(第1部材)は、入力軸22に直接接続してもよい。サンギヤ81B(第2部材)は、第1バリエータ33に直接接続してもよい。リングギヤ81C(第3部材)は、出力軸23に直接接続してもよい。
 ここで、キャリア81Aには、キャリア81Aの回転中心軸Sを中心に公転しつつサンギヤ81Bとリングギヤ81Cと回転しながら動力伝達を行うプラネットギヤ81D(プラネット部材)が支持されている。そして、遊星歯車機構81は、エンジン9から遊星歯車機構81のキャリア81A(第1部材)に伝達されたトルクをサンギヤ81B(第2部材)とリングギヤ81C(第3部材)とに分配する。遊星歯車機構81は、キャリア81Aとサンギヤ81Bとリングギヤ81Cとの間で2自由度の回転運動をする。第2バリエータ34は、第1バリエータ33から伝達された動力を負荷(出力軸23)または動力源(入力軸22)に伝達し、または、負荷(出力軸23)または動力源(入力軸22)から伝達された動力を第1バリエータ33に伝達する。そして、コントローラ25は、第1バリエータ33の回転速度を変更することにより、入力軸22の回転速度に対する出力軸23の回転速度を変更する。
 即ち、第2の実施形態の変速装置21は、遊星歯車機構81により無段階に変速を行い、動力源(入力軸22)からの動力を負荷(出力軸23)に、または、負荷(出力軸23)からの動力を動力源(入力軸22)に伝達する。この場合、変速装置21は、入力軸22と出力軸23との間に設けられた遊星歯車機構81と、遊星歯車機構81に接続された第1バリエータ33と、第1バリエータ33から伝達された動力を負荷または動力源に伝達する第2バリエータ34とを備えている。そして、遊星歯車機構81は、入力軸22に接続されると共にプラネットギヤ81Dが支持されたキャリア29Aと、第1バリエータ33に接続されたサンギヤ81Bと、アイドラ要素28および多段変速機構26を介して出力軸23に接続されたリングギヤ81Cとを備えている。さらに、変速装置21は、内部ロックアップと外部ロックアップ(直結機構27)とのうちの少なくとも一方のロックアップを備えている。そして、変速装置21は、遊星式無段変速機構24による動力伝達とロックアップによる動力伝達との切換えを行うことができる。
 さらに、第2の実施形態の変速装置21は、第1の実施形態と同様に、第2バリエータ34と第1バリエータ33との間には、これらの間で動力を吸収する動力吸収装置38が設けられている。動力吸収装置38は、コントローラ25によって第1バリエータ33の吸収トルクを変更し、第2バリエータ34で吸収できる以上の動力を発生させたときに、動力を吸収することにより、出力部材となる出力軸23のトルクを上昇させる。このため、第2の実施の形態も第1の実施の形態と同様の作用効果を奏することができる。
 第2の実施形態によれば、第1の実施形態と同様に、第2バリエータ34は、遊星歯車機構81と多段変速機構26との間に設けられたアイドラ要素28(具体的には、回転要素となるアイドラギヤ28B)に接続されている。なお、図41ないし図50に示すように、第2バリエータ34は、入力軸22(入力部材)と駆動源(エンジン9)との間に設けられた回転要素、多段変速機構26を構成する回転要素、多段変速機構26と出力軸23(出力部材)との間に設けられた回転要素、出力軸23(出力部材)、または、出力軸23と負荷との間に設けられた回転要素に接続する構成としてもよい。
 即ち、第1の実施形態および第2の実施形態では、第2バリエータ34を遊星歯車機構29よりも出力軸23(出力部材)側に接続する構成、即ち、第2バリエータ34を遊星歯車機構29と出力軸23との間に接続する構成としている。これに対して、図41は、第12の変形例を示している。第12の変形例では、第2バリエータ34は、入力軸22に設けられた直結機構27のインプットギヤ27Aに接続されている。即ち、第2バリエータ34は、遊星歯車機構29と入力軸22(入力部材)との間に接続されている。このように、第2バリエータ34は、遊星歯車機構29よりもエンジン9側(駆動源側)に接続する構成としてもよい。なお、図示は省略するが、第2バリエータ34を直結機構27のロックアップギヤ27Bに接続してもよい。
 図42は、第13の変形例を示している。第13の変形例では、第2バリエータ34は、アイドラ要素28に繋がる第3連結部材32に接続されている。図43は、第14の変形例を示している。第14の変形例では、第2バリエータ34は、多段変速機構26の奇数段ギヤ55に接続されている。なお、図示は省略するが、第2バリエータ34を多段変速機構26の偶数段ギヤ62に接続してもよい。図44は、第15の変形例を示している。第15の変形例では、第2バリエータ34は、多段変速機構26の前進1速ギヤ56に接続されている。図45は、第16の変形例を示しており、第2バリエータ34は、多段変速機構26の前進3速ギヤ57に接続されている。図46は、第17の変形例を示しており、第2バリエータ34は、多段変速機構26の前進2速ギヤ63に接続されている。図47は、第18の変形例を示しており、第2バリエータ34は、多段変速機構26の前進4速ギヤ64に接続されている。図48は、第19の変形例を示しており、第2バリエータ34は、多段変速機構26の後進1速ギヤ65に接続されている。なお、図示は省略するが、第2バリエータ34を多段変速機構26のカウンタギヤ54に接続してもよい。
 図49は、第20の変形例を示しており、第2バリエータ34は、多段変速機構26の出力軸53(変速装置21の出力軸23)に接続されている。なお、図示は省略するが、第2バリエータ34を多段変速機構26の1速出力ギヤ71、2速出力ギヤ72、3速出力ギヤ73、4速出力ギヤ74または後進1速出力ギヤ75に接続してもよい。図50は、第21の変形例を示しており、第2バリエータ34は、変速装置21の出力軸23よりも負荷側(フロントアクスル12側、リヤアクスル13側)に接続されている。なお、図示は省略するが、第2バリエータ34をフロントアクスル12、リヤアクスル13、前プロペラシャフト14または後プロペラシャフト15に接続してもよい。これらの変形例、例えば、図44ないし図50に示す第15ないし第21の変形例によれば、第2バリエータ34をアイドラギヤ28Bよりも出力軸53側に接続することにより、アイドラ要素28(アイドラギヤ28B)および多段変速機構26を小型にできる。これにより、変速装置21を廉価に製造できる。
 なお、第1の実施の形態では、多段変速機構26を備えた変速装置21を例に挙げて説明した。しかし、これに限らず、変速装置21は、多段変速機構26を省略してもよい。この場合、例えば、第3連結部材32に出力軸23の出力ギヤを螺合することにより、遊星式無段変速機構24の遊星歯車機構29と出力軸23(出力部材)とを接続することができる。また、この場合に、第2バリエータ34は、遊星歯車機構29よりも出力軸23側(出力部材側)に接続してもよいし、遊星歯車機構29よりも入力軸22側(入力部材側)に接続してもよい。さらに、第1の実施の形態では、外部ロックアップ機構としての直結機構27を備えた変速装置21を例に挙げて説明したが、直結機構27を省略してもよい。これらのことは、第2の実施の形態および各変形例についても同様である。
 第1の実施の形態では、変速装置21をホイールローダ1に搭載した場合を例に挙げて説明した。しかし、これに限らず、変速装置21は、例えば、油圧ショベル、油圧クレーン、ダンプトラック、フォークリフト等のホイールローダ以外の作業車両(建設機械)に搭載してもよい。また、作業車両に限らず、自動車、鉄道車両等の各種の車両、または、各種の産業機械、一般機械に組み込まれる変速装置として、広く適用することができる。このことは、第2の実施の形態および各変形例についても同様である。
 また、上述した各実施の形態および各変形例は例示であり、異なる実施の形態および変形例で示した構成の部分的な置換または組み合わせが可能であることは言うまでもない。
 1 ホイールローダ(作業車両)
 21,21A,21B,21C,21D,21E 変速装置
 22 入力軸(入力部材)
 23,23A,23B 出力軸(出力部材)
 24 遊星式無段変速機構(第1動力伝達経路)
 25 コントローラ
 26 多段変速機構(副変速機構)
 27 直結機構(外部ロックアップ機構、第2動力伝達経路)
 27C 第1クラッチ
 28 アイドラ要素
 29 遊星歯車機構(遊星機構)
 29A キャリア(第1部材、第2部材、第3部材)
 29B 第1サンギヤ(第1サン部材、第1部材、第2部材、第3部材)
 29C 第2サンギヤ(第2サン部材、第1部材、第2部材、第3部材)
 33 第1バリエータ
 34 第2バリエータ
 36 第2クラッチ
 38 動力吸収装置
 58 第4クラッチ(第1出力クラッチ)
 66 第5クラッチ(第2出力クラッチ)
 69 第9クラッチ(第2出力クラッチ)
 81 遊星歯車機構(遊星機構)
 81A キャリア(第1部材、第2部材、第3部材)
 81B サンギヤ(サン部材、第1部材、第2部材、第3部材)
 81C リングギヤ(リング部材、第1部材、第2部材、第3部材)

Claims (6)

  1.  動力源に繋がる入力部材と、負荷に繋がる出力部材と、前記入力部材と前記出力部材との間に設けられた遊星機構と、前記遊星機構に接続された第1バリエータと、前記第1バリエータとは別に設けられた第2バリエータと、前記第1バリエータの回転速度を変更するコントローラとを備え、
     前記遊星機構は、キャリアと、前記キャリアの回転中心軸を中心として自転する第1サン部材と、前記キャリアの回転中心軸を中心として自転する第2サン部材とを含んで構成され、
     前記遊星機構を構成する部材のうちの第1部材は、前記入力部材に直接または他の部材を介して接続され、
     前記遊星機構を構成する部材のうちの前記第1部材とは別の第2部材は、前記第1バリエータに直接または他の部材を介して接続され、
     前記遊星機構を構成する部材のうちの前記第1部材および前記第2部材とは別の第3部材は、前記出力部材に直接または他の部材を介して接続され、
     前記遊星機構の前記キャリアには、前記キャリアの回転中心軸を中心に公転しつつ前記第1サン部材と前記第2サン部材と回転しながら動力伝達を行うプラネット部材およびバランス部材が支持され、
     前記遊星機構は、前記動力源から前記遊星機構に伝達されたトルクを前記第2部材と前記第3部材とに分配可能に構成され、
     前記第2バリエータは、前記第1バリエータから伝達された動力を前記負荷または前記動力源に伝達し、または、前記負荷または前記動力源から伝達された動力を前記第1バリエータに伝達可能に構成され、
     前記第2バリエータと前記第1バリエータとの間に動力を吸収する動力吸収装置が設けられ、
     前記コントローラは、前記第1バリエータの回転速度を変更することにより、前記入力部材の回転速度に対する前記出力部材の回転速度を変更し、
     前記第1バリエータの吸収トルクを変更して、前記第2バリエータで吸収できる以上の動力を発生させたときに、前記動力吸収装置によって前記動力を吸収することにより、前記出力部材のトルクを上昇させることを特徴とする変速装置。
  2.  動力源に繋がる入力部材と、負荷に繋がる出力部材と、前記入力部材と前記出力部材との間に設けられた遊星機構と、前記遊星機構に接続された第1バリエータと、前記第1バリエータとは別に設けられた第2バリエータと、前記第1バリエータの回転速度を変更するコントローラとを備え、
     前記遊星機構は、キャリアと、前記キャリアの回転中心軸を中心として自転するサン部材と、前記サン部材よりも径方向外側に位置して前記キャリアの回転中心軸を中心として自転するリング部材との3つの部材を含んで構成され、
     前記遊星機構の前記3つの部材のうちの第1部材は、前記入力部材に直接または他の部材を介して接続され、
     前記遊星機構の前記3つの部材のうちの前記第1部材とは別の第2部材は、前記第1バリエータに直接または他の部材を介して接続され、
     前記遊星機構の前記3つの部材のうちの前記第1部材および前記第2部材とは別の第3部材は、前記出力部材に直接または他の部材を介して接続され、
     前記遊星機構の前記キャリアには、前記キャリアの回転中心軸を中心に公転しつつ前記サン部材と前記リング部材と回転しながら動力伝達を行うプラネット部材が支持され、
     前記遊星機構は、前記動力源から伝達されたトルクを前記第2部材と前記第3部材とに分配可能に構成され、
     前記第2バリエータは、前記第1バリエータから伝達された動力を前記負荷または前記動力源に伝達し、または、前記負荷または前記動力源から伝達された動力を前記第1バリエータに伝達可能に構成され、
     前記第2バリエータと前記第1バリエータとの間に動力を吸収する動力吸収装置が設けられ、
     前記コントローラは、前記第1バリエータの回転速度を変更することにより、前記入力部材の回転速度に対する前記出力部材の回転速度を変更し、
     前記第1バリエータの吸収トルクを変更して、前記第2バリエータで吸収できる以上の動力を発生させたときに、前記動力吸収装置によって前記動力を吸収することにより、前記出力部材のトルクを上昇させることを特徴とする変速装置。
  3.  請求項1に記載の変速装置において、
     前記第1バリエータと前記第2バリエータは、油圧ポンプ・モータであり、
     前記動力吸収装置は、リリーフバルブとアキュームレータとのうちの少なくとも一方であることを特徴とする変速装置。
  4.  請求項2に記載の変速装置において、
     前記第1バリエータと前記第2バリエータは、油圧ポンプ・モータであり、
     前記動力吸収装置は、リリーフバルブとアキュームレータとのうちの少なくとも一方であることを特徴とする変速装置。
  5.  請求項1に記載の変速装置において、
     前記第1バリエータと前記第2バリエータは、電動モータ・ジェネレータであり、
     前記動力吸収装置は、電気抵抗装置と蓄電装置とのうちの少なくとも一方であることを特徴とする変速装置。
  6.  請求項2に記載の変速装置において、
     前記第1バリエータと前記第2バリエータは、電動モータ・ジェネレータであり、
     前記動力吸収装置は、電気抵抗装置と蓄電装置とのうちの少なくとも一方であることを特徴とする変速装置。
PCT/JP2022/012641 2022-03-18 2022-03-18 変速装置 WO2023175912A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020247020630A KR20240105485A (ko) 2022-03-18 2022-03-18 변속 장치
PCT/JP2022/012641 WO2023175912A1 (ja) 2022-03-18 2022-03-18 変速装置
JP2024507415A JPWO2023175912A1 (ja) 2022-03-18 2022-03-18
CN202280086561.0A CN118489041A (zh) 2022-03-18 2022-03-18 变速装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/012641 WO2023175912A1 (ja) 2022-03-18 2022-03-18 変速装置

Publications (1)

Publication Number Publication Date
WO2023175912A1 true WO2023175912A1 (ja) 2023-09-21

Family

ID=88022641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012641 WO2023175912A1 (ja) 2022-03-18 2022-03-18 変速装置

Country Status (4)

Country Link
JP (1) JPWO2023175912A1 (ja)
KR (1) KR20240105485A (ja)
CN (1) CN118489041A (ja)
WO (1) WO2023175912A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010540866A (ja) 2007-10-02 2010-12-24 ツェットエフ フリードリヒスハーフェン アクチエンゲゼルシャフト 動力分割変速機
JP2019074166A (ja) * 2017-10-18 2019-05-16 トヨタ自動車株式会社 複合遊星歯車装置
JP2020204351A (ja) * 2019-06-14 2020-12-24 株式会社小松製作所 動力伝達装置の制御装置、動力伝達装置および動力伝達装置の制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010540866A (ja) 2007-10-02 2010-12-24 ツェットエフ フリードリヒスハーフェン アクチエンゲゼルシャフト 動力分割変速機
JP2019074166A (ja) * 2017-10-18 2019-05-16 トヨタ自動車株式会社 複合遊星歯車装置
JP2020204351A (ja) * 2019-06-14 2020-12-24 株式会社小松製作所 動力伝達装置の制御装置、動力伝達装置および動力伝達装置の制御方法

Also Published As

Publication number Publication date
KR20240105485A (ko) 2024-07-05
JPWO2023175912A1 (ja) 2023-09-21
CN118489041A (zh) 2024-08-13

Similar Documents

Publication Publication Date Title
US8241162B2 (en) Transmission system
US8622859B2 (en) Systems and methods for hybridization of a motor vehicle using hydraulic components
CN109094354B (zh) 提供无缝切换的多模式无限可变传动装置
JP5248896B2 (ja) 走行作業車両
US20150322645A1 (en) Work vehicle and control method for same
KR20150100742A (ko) 연속 가변 변속기 및 연속 가변 변속기를 포함하는 작업 기계
EP4075021B1 (en) A transmission arrangement
JP5248895B2 (ja) 走行作業車両
WO2023175912A1 (ja) 変速装置
JP5123024B2 (ja) 走行作業車両
KR102654177B1 (ko) 변속 장치
WO2022070744A1 (ja) 車両用動力伝達装置
US11994206B2 (en) Dual planetary gear transmission controlled by combined parking and service brakes
EP4282684A1 (en) A driveline arrangement
US11267330B2 (en) Hybrid system for a vehicle and vehicle comprising the same
EP4343171A1 (en) A transmission arrangement
CN117098935A (zh) 车辆用动力传递装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932185

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020247020630

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202280086561.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2024507415

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022932185

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022932185

Country of ref document: EP

Effective date: 20241018