WO2023175889A1 - 運転支援装置、運転支援方法、およびプログラム - Google Patents

運転支援装置、運転支援方法、およびプログラム Download PDF

Info

Publication number
WO2023175889A1
WO2023175889A1 PCT/JP2022/012578 JP2022012578W WO2023175889A1 WO 2023175889 A1 WO2023175889 A1 WO 2023175889A1 JP 2022012578 W JP2022012578 W JP 2022012578W WO 2023175889 A1 WO2023175889 A1 WO 2023175889A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
lane
condition
target object
degree
Prior art date
Application number
PCT/JP2022/012578
Other languages
English (en)
French (fr)
Inventor
雄司 金田
僚 牛木
拓弥 古川
潤 鈴木
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to PCT/JP2022/012578 priority Critical patent/WO2023175889A1/ja
Publication of WO2023175889A1 publication Critical patent/WO2023175889A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to a driving support device, a driving support method, and a program.
  • a vehicle that can perform automatic steering control in addition to automatic deceleration control has a high probability of being able to quickly respond to sudden changes in the surrounding environment of the vehicle, and has a relatively high margin of control.
  • the margin of control is the same as a vehicle that only performs automatic deceleration control.
  • the present invention has been made in consideration of such circumstances, and an object of the present invention is to provide a driving support device, a driving support method, and a program that can perform appropriate preparatory operations depending on the surrounding situation of the vehicle. be one of the.
  • a driving support device includes a marking line recognition unit that recognizes a marking line that divides a running route around a vehicle, and a detection device that detects the presence of an object that exists in front of the vehicle.
  • a brake control unit that instructs a braking device of the vehicle to stop the vehicle when the degree of approach between the target object and the vehicle among the objects satisfies a first condition;
  • a steering avoidance control unit that instructs a steering device of the vehicle to avoid contact with the vehicle by steering, and the braking control unit is configured to perform a first preliminary operation when the degree of approach satisfies a second condition.
  • the degree of approach satisfies a third condition, and at the time when the third condition is satisfied, the avoidance by the steering is performed on any of the paths to the sides of the target object.
  • a second preliminary operation control unit that performs a second preliminary operation when it is determined that there is no space in which the advance can proceed after performing the first condition, and the first condition is such that the degree of approach is higher than the second condition.
  • the second condition is a condition that is satisfied when the degree of approach is higher than the third condition
  • the second preparatory operation control section is a condition that is satisfied when the degree of approach is higher than the third condition.
  • the threshold value is a value that is set based on the width of the lane in which the vehicle travels.
  • the second preliminary operation control unit when the width of the lane defined by the two lane markings is less than a threshold value, Of the two marking lines, the marking line that is farther from the vehicle is deleted.
  • the second preliminary operation control unit when the width of the lane defined by the two lane markings is less than a threshold value, Of the two marking lines, the marking line recognized by the marking line recognition unit with a lower degree of recognition is deleted.
  • the second preliminary operation control unit when the width of the lane defined by the two lane markings is less than a threshold value, One of the partition lines is deleted based on the line type of the two partition lines.
  • the second preliminary operation is an operation that is started at an earlier timing than the first preliminary operation.
  • the brake control unit instructs the braking device to output. This is an operation that instructs the braking device to output a braking force smaller than the braking force.
  • At least one of the first preliminary operation and the second preliminary operation is performed by a display, an audio output, or a vibration for alerting. This is an operation that instructs the output device to perform output.
  • the driving support device recognizes a marking line that divides a running route around a vehicle, and detects the presence of an object in front of the vehicle. referring to the output of the device, instructing a braking device of the vehicle to stop the vehicle if the degree of approach between the vehicle and the target object among the objects satisfies a first condition; and instructing the steering device of the vehicle to avoid contact with the target object by steering, and when the degree of approach between the target object and the vehicle satisfies a second condition, a first preliminary When the degree of approach between the target object and the vehicle satisfies a third condition, and the third condition is satisfied, avoidance by the steering is performed on any of the lanes to the side of the target object.
  • a second preliminary operation is performed, and the first condition is a condition that is satisfied when the degree of approach is higher than the second condition, and the first condition is a condition that is satisfied when the degree of approach is higher than the second condition.
  • the second condition is a condition that is satisfied when the degree of approach is higher than the third condition, and is incorrectly recognized based on the width of the lane divided by two of the recognized lane lines.
  • a program causes a computer to recognize a marking line that divides a running route around a vehicle, and outputs an output of a detection device that detects the presence of an object in front of the vehicle. and instructing a braking device of the vehicle to stop the vehicle when the degree of approach between the target object and the vehicle among the objects satisfies a first condition; and steering the vehicle to avoid contact with the target object. and instructing a steering device of the vehicle to avoid the object, and perform a first preliminary operation when the degree of approach between the target object and the vehicle satisfies a second condition.
  • Condition 2 is a condition that is satisfied when the degree of approach is higher than the third condition, and is incorrectly recognized based on the width of the lane divided by two of the plurality of recognized lane lines.
  • FIG. 1 is a configuration diagram of a vehicle in which a driving support device according to an embodiment is installed.
  • FIG. 3 is a diagram showing an overview of the functions of the driving support device.
  • FIG. 3 is a diagram showing an example of an operation scene of a steering avoidance control section.
  • FIG. 3 is a diagram for explaining a preliminary operation. It is a flow chart which shows an example of the flow of processing performed by a driving support device.
  • FIG. 3 is a diagram for explaining a marking line recognition unit 140.
  • FIG. 3 is a diagram showing an example of a partition line recognized by a partition line recognition unit 140.
  • FIG. FIG. 3 is a diagram for explaining determination of misrecognition of lanes based on recognized lane markings.
  • 5 is a flowchart illustrating an example of control processing based on recognition results of lane markings around vehicle M.
  • FIG. 3 is a diagram showing an overview of the functions of the driving support device.
  • FIG. 3 is a diagram showing an example of an
  • FIG. 1 is a configuration diagram of a vehicle M in which a driving support device 100 according to an embodiment is mounted.
  • vehicle M is, for example, a two-wheeled, three-wheeled, or four-wheeled vehicle, and its driving source is an internal combustion engine such as a diesel engine or a gasoline engine, an electric motor, or a combination thereof.
  • the electric motor operates using electric power generated by a generator connected to an internal combustion engine, or electric power discharged from a secondary battery or a fuel cell.
  • the vehicle M includes, for example, a camera 10, a radar device 12, a LIDAR (Light Detection and Ranging) 14, an object recognition device 16, an HMI (Human Machine Interface) 30, a vehicle sensor 40, and a driving operator 80.
  • a driving support device 100, a driving force output device 200, a brake device 210, and a steering device 220 are installed. These devices and devices are connected to each other via multiplex communication lines such as CAN (Controller Area Network) communication lines, serial communication lines, wireless communication networks, and the like. Note that the configuration shown in FIG. 1 is just an example, and a part of the configuration may be omitted, or another configuration may be added.
  • the HMI 30 is an example of an "output device.”
  • Brake device 210 is an example of a "brake device.”
  • Steering device 220 is an example of a "steering device.”
  • the camera 10 is, for example, a digital camera that uses a solid-state imaging device such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • the camera 10 is attached to any location of a vehicle (hereinafter referred to as vehicle M) in which the vehicle system 1 is mounted.
  • vehicle M vehicle
  • the camera 10 When photographing the front, the camera 10 is attached to the upper part of the front windshield, the rear surface of the room mirror, or the like.
  • the camera 10 periodically and repeatedly images the surroundings of the vehicle M.
  • Camera 10 may be a stereo camera.
  • the radar device 12 emits radio waves such as millimeter waves around the vehicle M, and detects radio waves (reflected waves) reflected by an object to detect at least the position (distance and direction) of the object.
  • the radar device 12 is attached to an arbitrary location on the vehicle M.
  • the radar device 12 may detect the position and velocity of an object using a Frequency Modulated Continuous Wave (FM-CW) method.
  • FM-CW Frequency Modulated Continuous Wave
  • the LIDAR 14 irradiates light (or electromagnetic waves with a wavelength close to light) around the vehicle M and measures scattered light.
  • the LIDAR 14 detects the distance to the target based on the time from light emission to light reception.
  • the irradiated light is, for example, pulsed laser light.
  • LIDAR 14 is attached to any location on vehicle M.
  • the object recognition device 16 performs sensor fusion processing on detection results from some or all of the camera 10, radar device 12, and LIDAR 14 to recognize the position, type, speed, etc. of the object.
  • the object recognition device 16 outputs the recognition result to the driving support device 100.
  • the object recognition device 16 may output the detection results of the camera 10, radar device 12, and LIDAR 14 as they are to the driving support device 100.
  • the object recognition device 16 may be omitted from the vehicle system 1.
  • Some or all of the camera 10, radar device 12, LIDAR 14, and object recognition device 16 are examples of "detection devices.”
  • the HMI 30 presents various information to the occupants of the vehicle M, and also accepts input operations from the occupants.
  • the HMI 30 includes various display devices, speakers, buzzers, vibration generators (vibrators), touch panels, switches, keys, and the like.
  • the vehicle sensor 40 includes a vehicle speed sensor that detects the speed of the vehicle M, an acceleration sensor that detects acceleration, a yaw rate sensor that detects the angular velocity around the vertical axis, a direction sensor that detects the direction of the vehicle M, and the like.
  • the navigation device 50 includes, for example, a GNSS (Global Navigation Satellite System) receiver, a guidance control unit, a storage unit that stores map information, and the like.
  • the GNSS receiver identifies the position of vehicle M based on signals received from GNSS satellites.
  • the position of the vehicle M may be specified or complemented by an INS (Inertial Navigation System) using the output of the vehicle sensor 40.
  • the guidance control unit determines a route from the position of the vehicle M specified by the GNSS receiver (or any input position) to the destination input by the occupant, with reference to map information,
  • the HMI 30 is made to output guidance information so that the vehicle M travels along the route.
  • Map information is, for example, information in which a road shape is expressed by links indicating roads and nodes connected by the links.
  • the map information may include the number of lanes and curvature of the road, POI (Point Of Interest) information, information on road division lines (eg, shape, line type, color), and the like.
  • the navigation device 50 may transmit the current position and destination of the vehicle M to the navigation server via the communication device, and may acquire the route from the navigation server.
  • the driving controls 80 include, for example, an accelerator pedal, a brake pedal, a steering wheel, a shift lever, and other controls.
  • a sensor is attached to the driving operator 80 to detect the amount of operation or the presence or absence of the operation, and the detection result is transmitted to some or all of the driving force output device 200, the brake device 210, and the steering device 220. Output.
  • the driving force output device 200 outputs driving force (torque) for driving the vehicle to the driving wheels.
  • the traveling driving force output device 200 includes, for example, a combination of an internal combustion engine, an electric motor, a transmission, etc., and an ECU (Electronic Control Unit) that controls these.
  • the ECU controls the above configuration according to information input from the driving support device 100 or information input from the driving operator 80.
  • the brake device 210 includes, for example, a brake caliper, a cylinder that transmits hydraulic pressure to the brake caliper, an electric motor that generates hydraulic pressure in the cylinder, and an ECU.
  • the ECU controls the electric motor according to information input from the driving support device 100 or information input from the driving operator 80 so that brake torque corresponding to the braking operation is output to each wheel.
  • the brake device 210 may include, as a backup mechanism, a mechanism that transmits hydraulic pressure generated by operating a brake pedal included in the driving operator 80 to a cylinder via a master cylinder. Note that the brake device 210 is not limited to the configuration described above, and may be an electronically controlled hydraulic brake device that controls an actuator according to information input from the driving support device 100 and transmits the hydraulic pressure of the master cylinder to the cylinder. good.
  • the steering device 220 includes, for example, a steering ECU and an electric motor.
  • the electric motor applies force to a rack and pinion mechanism to change the direction of the steered wheels.
  • the steering ECU drives the electric motor to change the direction of the steered wheels according to information input from the driving support device 100 or information input from the driving operator 80.
  • the driving support device 100 includes, for example, a braking control section 110, a steering avoidance control section 120, a second preliminary operation control section 130, and a marking line recognition section 140.
  • the braking control section 110 includes a first preliminary operation control section 112
  • the second preliminary operation control section 130 includes a steering avoidance possibility determining section 132 .
  • These functional units are realized by, for example, a hardware processor such as a CPU (Central Processing Unit) executing a program (software).
  • a hardware processor such as a CPU (Central Processing Unit) executing a program (software).
  • some or all of these components are hardware (circuits) such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), and GPU (Graphics Processing Unit).
  • the program may be stored in advance in a storage device such as the HDD or flash memory (a storage device equipped with a non-transitory storage medium) of the driving support device 100, or may be stored in a removable storage device such as a DVD or CD-ROM.
  • the information may be stored in a medium, and may be installed in the HDD or flash memory of the driving support device 100 by attaching the storage medium (non-transitory storage medium) to the drive device.
  • the instructions from the driving support device 100 to the driving force output device 200, the brake device 210, and the steering device 220 are executed by the driving force output device 200 with priority over the detection results from the driving operator 80. , the brake device 210, and the steering device 220.
  • Regarding braking if the braking force based on the operation amount of the brake pedal is greater than the instruction from the driving support device 100, the latter may be set to be performed with priority.
  • communication priority in the in-vehicle LAN Local Area Network
  • FIG. 2 is a diagram showing an overview of the functions of the driving support device 100.
  • vehicle M is traveling on a three-lane road extending in the X-axis direction in the figure, and is in lane L2 in the center.
  • DM is the traveling direction of the vehicle M.
  • the Y-axis direction in the figure is the road width (lane width) direction.
  • the Z-axis direction in the figure is the vertical direction with respect to the vehicle M or the road surface (horizontal surface).
  • an XYZ coordinate system may be used as necessary.
  • the brake control unit 110 refers to the output of the detection device (described above) that detects the presence of an object in front of the vehicle M, and determines when the degree of approach between the target object TO and the vehicle M satisfies the first condition. Then, at least the brake device 210 of the brake device 210 and the driving force output device 200 is instructed to decelerate and stop the vehicle M.
  • the target object TO is an object that is on the same track as the vehicle M and in the direction of travel of the vehicle M, and is an object that the vehicle M should avoid contact with, excluding objects that can be climbed over such as manholes.
  • the brake control unit 110 extracts such an object and sets it as the target object TO. In the example of FIG.
  • the running route is, for example, a lane.
  • Lanes are defined by, for example, lane markings (for example, road marking lines) recognized by the marking line recognition unit 140. Further, the lane may be a virtual lane that is virtually set by the vehicle M on a road surface where there are no road markings. The same applies to the following description.
  • “Degree of approach” is expressed by various index values indicating the degree of approach between objects.
  • the "degree of approach” is TTC (Time To Collision), which is an index value obtained by dividing the distance by the relative speed (the direction in which they approach each other is positive). Note that when the relative speed is negative (in the direction of moving away from each other), TTC is temporarily set to infinity. TTC is an index value indicating that the smaller the value, the higher the "degree of approach.”
  • satisfying the "first condition” means that, for example, TTC is less than the first threshold Th1.
  • the first threshold Th1 is, for example, a value of about one comma [sec].
  • TTC an index value having similar properties, such as headway time, distance, or other index values, may be used as the "degree of approach.” Further, TTC adjusted by taking into account acceleration and jerk may be used as the "approach degree”. In the following description, it is assumed that the "degree of approach" is TTC.
  • the brake control unit 110 instructs the brake device 210 and/or the driving force output device 200 to output a braking force that decelerates the vehicle M at a first deceleration B1, for example. do.
  • the first deceleration B1 is, for example, a deceleration of about 0 tenths [G] (close to 1).
  • the brake control unit 110 quickly decelerates and stops the vehicle M to avoid contact with the target object TO.
  • the ECU of the brake device 210 and the driving force output device 200 has the function of determining the brake output, regeneration control amount, engine brake amount, etc. from the instructed deceleration. Each control amount is determined based on the speed of M. This is a known technique and detailed explanation will be omitted.
  • the operation of the first preliminary operation control section 112 will be described later, and the steering avoidance control section 120 will be explained first.
  • FIG. 3 is a diagram showing an example of an operation scene of the steering avoidance control section 120. If it is determined that it is difficult for the braking control unit 110 to stop the vehicle M in front of the target object TO, the steering avoidance control unit 120 controls the steering avoidance control unit 120 to move the vehicle M to the side of the target object TO (e.g. lanes L1, L3). If it is determined that there is a space, the steering device 220 generates an avoidance trajectory ET and causes the vehicle M to proceed along the avoidance trajectory ET. (avoid steering). For example, the steering avoidance control unit 120 determines whether an object exists in a side area extending from slightly in front of the target object TO to the rear thereof on both sides of the target object TO, such as areas A2L and A2R shown in FIG.
  • the steering avoidance control unit 120 determines whether an object exists in a side area extending from slightly in front of the target object TO to the rear thereof on both sides of the target object TO, such as areas A2L and A2R shown in FIG.
  • the determination as to whether it is difficult for the brake control unit 110 to stop the vehicle M in front of the target object TO may be performed by the brake control unit 110 or may be performed by the steering avoidance control unit 120. Good too.
  • the steering avoidance control unit 120 also recognizes the boundaries of the road by recognizing lane markings such as white lines and road shoulders in camera images, and in the first place, either the driveable areas A2L or A2R does not exist. In this case, for example, if either lane L1 or L3 does not exist, it may be determined that an object exists in the area.
  • Steering avoidance is performed, for example, when the target object TO decelerates unexpectedly, or when an object other than the recognized target object TO intervenes between the vehicle M and the target object TO, causing a new collision.
  • This is a scene where a sudden change in the surrounding environment of the vehicle occurs, such as when the vehicle is set as a target object TO.
  • it may not be possible to cope with the deceleration calculated in advance to stop the vehicle M in front of the target object TO, but by having a steering avoidance function, it can also cope with sudden changes in the surrounding environment of the vehicle M. You can increase your chances of success.
  • FIG. 4 is a diagram for explaining the preliminary operation.
  • the first preliminary operation control unit 112 controls the driver of the vehicle M when the degree of approach between the target object TO and the vehicle M satisfies the second condition (for example, when the TTC is less than the second threshold Th2).
  • a first preliminary operation is performed to notify the existence of the target object TO.
  • the first preliminary operation is, for example, outputting a braking force that decelerates the vehicle M at the second deceleration B2 from when the TTC becomes less than the second threshold Th2 until it becomes less than the first threshold Th1.
  • This is an operation instructing the brake device 210 and/or the traveling driving force output device 200.
  • the second deceleration B2 is a deceleration smaller (closer to zero) than the first deceleration B1.
  • the second threshold Th2 is a value larger than the first threshold Th1. Therefore, the first condition is a condition that is satisfied when the degree of approach is higher than the second condition.
  • the second preliminary operation control unit 130 controls the second preparatory operation control unit 130 when the degree of approach between the target object TO and the vehicle M satisfies the third condition (for example, TTC is less than the third threshold Th3), and at the time when the third condition is satisfied. , when it is determined that there is no space in which the vehicle M can proceed after steering avoidance on any of the lateral routes of the target object TO, the driver of the vehicle M is notified of the existence of the target object TO. 2 Perform preliminary movements. The determination regarding the space in which the vehicle can proceed is performed by the steering avoidance determination unit 132.
  • the third threshold Th3 is a value larger than the second threshold Th2. Therefore, the second condition is a condition that is satisfied when the degree of approach is higher than the third condition.
  • the steering avoidance determination unit 132 determines whether the steering is possible or not, from slightly in front of the target object TO to the rear thereof on both sides of the target object TO, as shown in areas A1L and A1R shown in FIG. It is determined whether or not an object exists within the extending side region, and if there is no object, it is determined that there is a space in which the vehicle M can proceed on the running path on the side of the target object TO.
  • Each of the areas A1L and A1R is set to be larger than each of the areas A2L and A2R, for example, in consideration of future uncertain factors.
  • the steering avoidance determination unit 132 also recognizes the boundaries of the road by recognizing, for example, lane markings such as white lines and road shoulders in camera images. If either lane L1 or L3 does not exist, for example, if either lane L1 or L3 does not exist, it may be determined that an object exists in the area. In the example of FIG. 4, since there is no object in the region A1R, the steering avoidance determination unit 132 determines that there is a space in which the vehicle M can proceed on the road on the side of the target object TO.
  • the second preliminary operation is, for example, to first output a braking force that decelerates the vehicle M at the third deceleration B3 from when the TTC becomes less than the third threshold Th3 until it becomes less than the first threshold Th1.
  • This is a commanding action.
  • the third deceleration B3 is, for example, a deceleration smaller than the second deceleration B2 (close to zero), and the fourth deceleration B4 is larger than or about the same as the second deceleration, and 1 deceleration B1.
  • the timing of switching from the third deceleration B3 to the fourth deceleration B4 may be set arbitrarily.
  • the second preliminary operation is started at an earlier timing than the first preliminary operation, and is performed in multiple stages.
  • the margin of control becomes relatively high.
  • the control margin can only be used to automatically stop. It will be no different from a vehicle. That is, in a situation where steering avoidance is difficult, it is preferable to alert the driver of vehicle M more quickly and effectively than in a situation where steering avoidance is possible.
  • the second preparatory motion is started at an earlier timing than the first preparatory motion and is performed in multiple stages, thereby making it possible to perform an appropriate preparatory motion according to the surrounding situation of the target object. It can be carried out.
  • the marking line recognition unit 140 recognizes marking lines that demarcate the running route around the vehicle M based on the detection results of the detection device.
  • the periphery of the vehicle M is a range within a predetermined distance from the vehicle M, and includes at least the sides of the target object. Details of the marking line recognition unit 140 will be described later.
  • FIG. 5 is a flowchart showing an example of the flow of processing executed by the driving support device 100.
  • the brake control unit 110 identifies the target object TO (step S1).
  • the second preliminary operation control unit 130 determines whether the TTC between the vehicle M and the target object TO is less than the third threshold Th3 (step S2). If the TTC between the vehicle M and the target object TO is greater than or equal to the third threshold Th3, the process returns to step S1.
  • the steering avoidance determination unit 132 of the second preliminary operation control unit 130 determines that the vehicle M is on the running path on the side of the target object TO. It is determined whether there is a space in which the vehicle can proceed (step S3).
  • the second preliminary operation control unit 130 executes the second preliminary operation (step S4).
  • the second preliminary operation control unit 130 determines whether the TTC between the vehicle M and the target object TO has increased to be equal to or greater than the third threshold Th3 (step S5). If it is determined that the TTC between the vehicle M and the target object TO has increased to be equal to or greater than the third threshold Th3, the process returns to step S1.
  • step S6 If it is determined that the TTC between the vehicle M and the target object TO has increased to be equal to or higher than the third threshold Th3, the brake control unit 110 determines that the TTC between the vehicle M and the target object TO is less than the first threshold Th1. It is determined whether or not (step S6). If it is determined that the TTC between the vehicle M and the target object TO is greater than or equal to the first threshold Th1, the process returns to step S3. If a positive determination is obtained in step S3, the second preliminary operation is stopped, and the processes from step S8 onwards are executed.
  • the braking control unit 110 applies a braking force to the brake device 210 and/or the travel drive to decelerate the vehicle M at the first deceleration B1.
  • the force output device 200 is caused to output to decelerate and stop the vehicle M (step S7).
  • steering avoidance may be performed instead of (or in addition to) decelerating and stopping the vehicle M.
  • step S3 If an affirmative determination is obtained in step S3, that is, the TTC between the vehicle M and the target object TO is less than the third threshold Th3, and there is a space on the running path to the side of the target object TO in which the vehicle M can proceed. If so, the first preliminary operation control unit 112 of the brake control unit 110 determines whether the TTC between the vehicle M and the target object TO is less than the second threshold Th2 (step S8). If it is determined that the TTC between the vehicle M and the target object TO is greater than or equal to the second threshold Th2, the process returns to step S1.
  • the first preliminary operation control unit 112 executes the first preliminary operation (step S9).
  • the first preliminary operation control unit 112 determines whether the TTC between the vehicle M and the target object TO has increased to be equal to or greater than the second threshold Th2 (step S10). If it is determined that the TTC between the vehicle M and the target object TO has increased to be equal to or greater than the second threshold Th2, the process returns to step S1.
  • step S11 If it is determined that the TTC between the vehicle M and the target object TO has increased to be equal to or higher than the second threshold Th2, the brake control unit 110 determines that the TTC between the vehicle M and the target object TO is less than the first threshold Th1. It is determined whether or not (step S11). If it is determined that the TTC between the vehicle M and the target object TO is greater than or equal to the first threshold Th1, the process returns to step S3. If a negative determination is obtained in step S3, the first preliminary operation is stopped, and the processes from step S4 onwards are executed.
  • the braking control unit 110 causes the brake device 210 and/or the traveling driving force output device 200 to output the first deceleration B1.
  • the vehicle M is decelerated and stopped (step S7).
  • FIG. 6 is a diagram for explaining the lane marking recognition unit 140.
  • a vehicle M is traveling in a traveling direction DM in a lane L1 of a road with three lanes (lanes L1 to L3) extending in the X-axis direction in the figure.
  • Lane L1 is divided by two road division lines S1 and S2
  • lane L2 is divided by two road division lines S2 and S3
  • lane L3 is divided by two road division lines S3 and S4. Further, in the example of FIG.
  • the curb CS is installed in the extending direction of the lane L1 at a distance from the road marking line S1 when viewed from the vehicle M.
  • the curb CS is an example of a road structure.
  • the road structures may include, for example, guardrails, fences, and the like.
  • the lane marking recognition unit 140 extracts and arranges edge points from the image captured by the camera 10, and recognizes them as the outline of the lane markings.
  • the line type for example, solid line, broken line
  • color for example, white, yellow
  • the marking line recognition unit 140 may recognize the marking line based on information about reflected light from the road detected by the LIDAR 14 (white lines have a high reflectance, so the area can be recognized). Further, the marking line recognition unit 140 recognizes the position of each recognized marking line (for example, the relative position from the vehicle M). Further, the lane marking recognition unit 140 may acquire the degree of recognition for each lane marking that has been recognized.
  • the degree of recognition is an index value indicating the probability (likelihood) that the line is a lane marking, and the higher the degree of recognition, the higher the possibility that it is a lane marking.
  • the degree of recognition is based on, for example, the degree of agreement between the marking line information (for example, shape, line type, color, length, and thickness) recognized from the image captured by the camera 10 and the standard marking line information. derived.
  • the degree of recognition may be the degree of matching between the lane marking information recognized from the image captured by the camera 10 and the lane marking information recognized by the LIDAR 14, or the degree of matching between the lane marking information recognized from the image captured by the camera 10 and the lane marking information recognized by the LIDAR 14, or It may be derived based on the degree of matching with the road division line information included in the map information of No. 50.
  • one road marking line may be mistakenly recognized as two or more marking lines.
  • FIG. 7 is a diagram showing an example of a partition line recognized by the partition line recognition unit 140.
  • FIG. 7 shows an example of recognition results by the marking line recognition unit 140 in the surrounding situation of the vehicle M shown in FIG. 6.
  • the lane marking recognition unit 140 recognizes lane markings RL1 to RL6 as lane markings, as shown in FIG.
  • the marking line recognition unit 140 may misrecognize a part of the curb CS as the marking line RL1 due to the shape of the actual curb CS, sunlight, shadow, etc., or may misrecognize a part of the curb CS as the marking line S2 actually drawn on the road.
  • one road marking line S2 may be mistakenly recognized as having two or more marking lines RL3 and RL4.
  • this erroneous recognition for example, when viewed from the vehicle M, it may be erroneously recognized that there is a lane divided by two lane markings RL1 and RL2 on the left side of the other vehicle m1, or when viewed from the vehicle M, the right side of the other vehicle m1 may be erroneously recognized. If there is a lane divided by two marking lines RL3 and RL4 on the other side, there is a possibility of misrecognition.
  • the steering avoidance determination unit 132 determines whether avoidance is possible, it may incorrectly recognize that there is a running road on the left side of the other vehicle m1, or it may actually determine that there is a lane L2 on the right side of the other vehicle m1 (own vehicle M Even though there is another vehicle m4 in the right adjacent lane of the driving lane L1, it may be mistakenly determined that the other vehicle does not exist (it exists in the right adjacent lane).
  • the above-mentioned erroneous recognition greatly affects the control by the steering avoidance control unit 120.
  • the steering avoidance determination unit 132 determines the width of a lane (driving road) divided by two lane markings among the plurality of lane markings recognized by the lane marking recognition unit 140 (in other words, the width of the lane (driving road) divided by two lane marking lines that are parallel to each other). Based on the distance (distance), it is determined whether there is a lane that is incorrectly recognized. When determining that there is a misrecognized lane, the steering avoidance determination unit 132 determines whether the other vehicle m1 (target object) If it is determined that the erroneously recognized lane does not exist, the side lane of the other vehicle is identified based on the information about the recognized lane.
  • FIG. 8 is a diagram for explaining determination of lane misrecognition based on recognized lane markings.
  • the steering avoidance determination unit 132 determines the width of the lane (in the Y-axis direction (road width direction, lateral direction ) to get the length of ).
  • the steering avoidance possibility determining unit 132 determines the width W1 of a lane defined by lane markings RL1 and RL2, the width W2 of a lane defined by marking lines RL2 and RL3, and the width W2 of a lane defined by marking lines RL2 and RL3.
  • a width W3 of a lane divided by RL4, a width W4 of a lane divided by lane lines RL4 and RL5, and a width W6 of a lane divided by lane lines RL5 and RL6 are recognized. Then, the steering avoidance determination unit 132 determines whether each of the widths W1 to W6 is less than a threshold value.
  • the threshold value is, for example, a value set based on the width of the lane in which the vehicle M is traveling (width W2 in the figure), and is, for example, a value about half of the lane width W2. Since the lane markings that define the lanes in which the vehicle travels are the closest marking lines on the left and right from the vehicle M, recognition accuracy is assumed to be higher than other marking lines. Therefore, by using the width W2 of the lane in which the vehicle M travels as a reference, a more accurate determination can be made. Further, the value of approximately half the width is a value at which it is predicted that the vehicle M can travel in the direction in which the lane extends.
  • the threshold value may be set to a predetermined fixed value (for example, a value about half of the minimum width under road regulations), and may be set to a predetermined fixed value (for example, a value of about half the minimum width under road regulations), and the width of the vehicle M (including a predetermined margin width that allows the vehicle to pass). ) may be set.
  • the steering avoidance determination unit 132 deletes one of the two marking lines that divide the lane corresponding to the lane width, recognizes the lane, and uses the lane based on the recognized lane. A running path to the side of the other vehicle m1 is identified and it is determined whether steering avoidance is possible. In the example of FIG. 8, it is assumed that the widths W1 and W3 are less than the threshold values. Therefore, the steering avoidance determination unit 132 deletes one of the marking lines RL1 and RL2, and deletes one of the marking lines RL3 and RL4.
  • the steering avoidance determination unit 132 deletes the marking line that is farther from the vehicle M among the two marking lines. do.
  • the partition line RL1 is deleted from the partition lines RL1 and RL2, and the partition line RL4 is deleted from the partition lines RL3 or RL4.
  • the steering avoidance determination unit 132 may delete the lane marking that is recognized by the marking line recognition unit 140 with a smaller degree of recognition among the two marking lines when the lane width is less than the threshold value. For example, when the degree of recognition of the lane marking RL4 is smaller than the degree of recognition of the lane marking RL3, the lane marking recognition unit 140 deletes the lane marking RL4. Thereby, the position and range of the lane can be acquired more accurately based on the marking line with a high degree of recognition.
  • the steering avoidance determination unit 132 may delete one of the lane markings based on the line type of the two lane markings when the width of the lane is less than the threshold value. In this case, there is a higher possibility that a broken line is misrecognized than a solid line, so if the line types of the two marking lines are a solid line and a broken line, the steering avoidance determination unit 132 deletes the broken line. do. Thereby, for example, when a deceleration broken line is drawn on a road, the deceleration broken line can be deleted.
  • a deceleration dashed line is a road marking used to make the width of the vehicle appear narrower to the driver, for example, in road sections where there are many collisions between vehicles. A deceleration effect on the vehicle can be expected.
  • the deceleration broken line is provided, for example, along a road marking line.
  • the steering avoidance determination unit 132 can correctly recognize lanes (recognize lanes other than those incorrectly recognized) based on the remaining lane markings RL2, RL3, RL5, and RL6. Therefore, for example, in the surrounding situation of the vehicle M shown in FIGS. 6 and 7, the steering avoidance possibility determination unit 132 determines that the left side road shoulder area (the area divided by the marking lines RL1 and RL2) of the other vehicle m1 is located adjacent to the road shoulder area on the left side of the other vehicle m1. It is possible to correctly recognize that the other vehicle m4 is present in the adjacent lane on the right side of the other vehicle m1 without recognizing it as a lane. Then, based on the recognized lane, the steering avoidance determination unit 132 can more accurately determine whether or not there is a space in which the vehicle M can proceed on the road to the side of the other vehicle m1.
  • the steering avoidance determination unit 132 uses two lane markings RL5 and RL6.
  • the lane defined by that is, the adjacent adjacent lane as seen from vehicle M or other vehicle m1 may be excluded from the above-mentioned misrecognition determination process.
  • FIG. 9 is a flowchart illustrating an example of control processing based on the recognition results of the marking lines around the vehicle M.
  • the process in FIG. 9 is, for example, a process corresponding to step S3 of the process shown in FIG. 5 described above.
  • the marking line recognition unit 140 recognizes marking lines around the vehicle M (step S31).
  • the steering avoidance determination unit 132 obtains the width of a lane divided by two lane markings among the plurality of recognized marking lines (step S32), and determines whether the width is less than a threshold value. Determination is made (step S33). If it is determined that the width is less than the threshold, the steering avoidance determination unit 132 deletes one of the two marking lines (step S34). Note that after the process in step S34, the steering avoidance determination unit 132 repeatedly executes the processes in steps S32 to S34 using the remaining marking lines that have not been deleted until the widths of all vehicles become equal to or greater than the threshold value. Good too.
  • the steering avoidance determination unit 132 determines whether the target object It is determined whether or not there is space in the side lane (for example, adjacent lane) for vehicle M to perform steering avoidance or the like (step S35). Thereby, the processing of this flowchart ends.
  • the steering avoidance determination unit 132 compares the number of lane markings recognized by the marking line recognition unit 140 with the number of lanes included in the map information of the navigation device 50, and if there is an unmatch, determines whether the vehicle It may be determined that steering avoidance of M is not possible. Furthermore, in the embodiment described above, the processing related to lane misrecognition determination in the steering avoidance determination unit 132 described above may be performed by the steering avoidance control unit 120 or may be performed by the marking line recognition unit 140.
  • the HMI 30 may perform a display, audio output, vibration output, etc. to alert the user.
  • the second preliminary operation is performed in multiple stages, instead of outputting the braking force in stages while changing the degree of deceleration as described above.
  • Different degrees of attention contrast, brightness, color, etc.
  • the lane change is forced during the preliminary operation. You may go. In this way, as a result, the vehicle M can be moved in a direction closer to the destination, and the vehicle M can be guided to a state where the target object is not near the vehicle M.
  • the driving support device 100 includes the marking line recognition unit 140 that recognizes the marking lines that partition the running route around the vehicle M, and the sensor that detects the presence of an object that exists in front of the vehicle M.
  • a brake control unit 110 that refers to the output of the device and instructs a braking device of the vehicle to stop the vehicle when the degree of proximity between the target object and the vehicle satisfies a first condition;
  • the braking control section 110 includes a steering avoidance control section 120 that instructs the steering device of the vehicle M to avoid contact with the vehicle M by steering, and a braking control section 110 that performs a first preliminary operation when the degree of approach satisfies the second condition.
  • the apparatus further includes a second preliminary operation control unit 130 that performs a second preliminary operation when it is determined that no space exists, and the first condition is a condition that is satisfied when the degree of approach is higher than the second condition.
  • the second condition is a condition that is satisfied when the degree of approach is higher than the third condition, and the second preliminary operation control unit 130 recognizes two of the plurality of lane markings recognized by the lane marking recognition unit 140.
  • the road to the side of the target object is identified based on information on lanes other than the incorrectly recognized lane. Accordingly, an appropriate preparatory operation can be performed according to the surrounding situation of the vehicle M.
  • the recognition results of lanes around the vehicle are checked, and if there is a contradiction in the check results (the lanes or lane markings are incorrectly recognized).
  • the recognition results of lanes around the vehicle are checked, and if there is a contradiction in the check results (the lanes or lane markings are incorrectly recognized).
  • the recognition results of lanes around the vehicle are checked, and if there is a contradiction in the check results (the lanes or lane markings are incorrectly recognized).
  • a storage medium for storing computer-readable instructions
  • a processor connected to the storage medium; the processor executing the computer-readable instructions to: Recognizes the marking lines that demarcate the route around the vehicle, Referring to the output of a detection device that detects the presence of an object in front of the vehicle, if the degree of approach between the target object and the vehicle satisfies a first condition, instructs the braking device of the vehicle.
  • the first condition is a condition that is satisfied when the degree of approach is higher than the second condition
  • the second condition is a condition that is satisfied when the degree of approach is higher than the third condition, If it is determined that there is a misrecognized lane based on the width of the lane divided by two of the recognized lane lines, the identifying a lateral trajectory of the target object; Driving support equipment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

運転支援装置は、車両の周辺の走路を区画する区画線を認識し、車両の前方に存在する物体のうち対象物体と車両との接近度合いが第1条件を満たす場合に、車両の制動装置に指示して車両を停止させることと、対象物体との接触を操舵により回避するように、車両の操舵装置に指示することとのうち一方または双方を行い、対象物体と車両との接近度合いが第2条件を満たす場合に第1予備動作を行い、対象物体と車両との接近度合いが第3条件を満たし、且つ、第3条件が満たされた時点において、対象物体の側方の走路のいずれにも操舵による回避を行った後に進行可能なスペースが存在しないと判定される場合に第2予備動作を行い、認識した複数の区画線のうち二つの区画線で区画される車線の幅員に基づいて誤認識している車線が存在すると判定した場合に、誤認識している車線以外の車線の情報に基づいて対象物体の側方の走路を特定する。

Description

運転支援装置、運転支援方法、およびプログラム
 本発明は、運転支援装置、運転支援方法、およびプログラムに関する。
 近年、自動減速制御と自動操舵制御を行う車両制御装置の発明が開示されている(例えば、特許文献1参照)。
特開2020-50010号公報
 自動減速制御に加えて自動操舵制御を行うことが可能な車両では、車両の周辺環境の急変にも迅速に対応できる確率が高くなり、制御の余裕度が比較的高くなる。一方で、対象物体の側方に回避スペースが無い場合は自動操舵制御が困難になるため、制御の余裕度は自動減速制御のみ行う車両と変わらないことになる。従来の技術では、このような環境の相違に応じた動作を行うことができない場合があった。
 本発明は、このような事情を考慮してなされたものであり、車両の周辺状況に応じた適切な予備動作を行うことができる運転支援装置、運転支援方法、およびプログラムを提供することを目的の一つとする。
 この発明に係る運転支援装置、運転支援方法、およびプログラムは、以下の構成を採用した。
 (1):この発明の一態様に係る運転支援装置は、車両の周辺の走路を区画する区画線を認識する区画線認識部と、前記車両の前方に存在する物体の存在を検知する検知デバイスの出力を参照し、前記物体のうち対象物体と前記車両との接近度合いが第1条件を満たす場合に、前記車両の制動装置に指示して前記車両を停止させる制動制御部と、前記対象物体との接触を操舵により回避するように、前記車両の操舵装置に指示する操舵回避制御部と、を備え、前記制動制御部は、前記接近度合いが第2条件を満たす場合に、第1予備動作を行う第1予備動作制御部を含み、前記接近度合いが第3条件を満たし、且つ、前記第3条件が満たされた時点において、前記対象物体の側方の走路のいずれにも前記操舵による回避を行った後に進行可能なスペースが存在しないと判定される場合に、第2予備動作を行う第2予備動作制御部を更に備え、前記第1条件は前記第2条件よりも、前記接近度合いが高い場合に満たされる条件であり、前記第2条件は前記第3条件よりも、前記接近度合いが高い場合に満たされる条件であり、前記第2予備動作制御部は、前記区画線認識部により認識される複数の区画線のうち二つの区画線で区画される車線の幅員に基づいて誤認識している車線が存在すると判定した場合に、誤認識している車線以外の車線の情報に基づいて前記対象物体の側方の走路を特定する、運転支援装置である。
 (2):上記(1)の態様において、前記区画線認識部により認識される複数の区画線のうち二つの区画線で区画される車線の幅員が閾値未満である場合に、前記二つの区画線のうち一方を削除して車線を認識し、認識した車線に基づいて前記対象物体の側方の走路を特定するものである。
 (3):上記(2)の態様において、前記閾値は、前記車両が走行する車線の幅員に基づいて設定される値である。
 (4):上記(1)~(3)のうち何れか一つの態様において、前記第2予備動作制御部は、前記二つの区画線で区画される車線の幅員が閾値未満である場合に、前記二つの区画線のうち前記車両から遠い方の区画線を削除するものである。
 (5):上記(1)~(3)のうち何れか一つの態様において、前記第2予備動作制御部は、前記二つの区画線で区画される車線の幅員が閾値未満である場合に、前記二つの区画線のうち前記区画線認識部による認識度合いが小さい方の区画線を削除するものである。
 (6):上記(1)~(5)のうち何れか一つの態様において、前記第2予備動作制御部は、前記二つの区画線で区画される車線の幅員が閾値未満である場合に、前記二つの区画線の線種に基づいて一方の区画線を削除するものである。
 (7):上記(1)~(6)のうち何れか一つの態様において、前記第2予備動作は、前記第1予備動作よりも早いタイミングで開始される動作である。
 (8):上記(1)~(7)のうち何れか一つの態様において、前記第1予備動作と前記第2予備動作のうち少なくとも一方は、前記制動制御部が前記制動装置に出力を指示する制動力よりも小さい制動力を出力するように、前記制動装置に指示する動作である。
 (9):上記(1)~(8)のうち何れか一つの態様において、前記第1予備動作と前記第2予備動作のうち少なくとも一方は、注意喚起のための表示、音声出力、または振動出力を行うように出力装置に指示する動作である。
 (10):本発明の他の態様に係る運転支援方法は、運転支援装置が、車両の周辺の走路を区画する区画線を認識し、前記車両の前方に存在する物体の存在を検知する検知デバイスの出力を参照し、前記物体のうち対象物体と前記車両との接近度合いが第1条件を満たす場合に、前記車両の制動装置に指示して前記車両を停止させることと、前記対象物体との接触を操舵により回避するように、前記車両の操舵装置に指示することとのうち一方または双方を行い、前記対象物体と前記車両との接近度合いが第2条件を満たす場合に、第1予備動作を行い、前記対象物体と前記車両との接近度合いが第3条件を満たし、且つ、前記第3条件が満たされた時点において、前記対象物体の側方の走路のいずれにも前記操舵による回避を行った後に進行可能なスペースが存在しないと判定される場合に、第2予備動作を行い、前記第1条件は前記第2条件よりも、接近度合いが高い場合に満たされる条件であり、前記第2条件は前記第3条件よりも、接近度合いが高い場合に満たされる条件であり、認識した複数の区画線のうち二つの区画線で区画される車線の幅員に基づいて誤認識している車線が存在すると判定した場合に、誤認識している車線以外の車線の情報に基づいて前記対象物体の側方の走路を特定する、運転支援方法である。
 (11):本発明の他の態様に係るプログラムは、コンピュータに、車両の周辺の走路を区画する区画線を認識させ、前記車両の前方に存在する物体の存在を検知する検知デバイスの出力を参照し、前記物体のうち対象物体と前記車両との接近度合いが第1条件を満たす場合に、前記車両の制動装置に指示して前記車両を停止させることと、前記対象物体との接触を操舵により回避するように、前記車両の操舵装置に指示することとのうち一方または双方を行わせ、前記対象物体と前記車両との接近度合いが第2条件を満たす場合に、第1予備動作を行わせ、前記対象物体と前記車両との接近度合いが第3条件を満たし、且つ、前記第3条件が満たされた時点において、前記対象物体の側方の走路のいずれにも前記操舵による回避を行った後に進行可能なスペースが存在しないと判定される場合に、第2予備動作を行わせ、前記第1条件は前記第2条件よりも、接近度合いが高い場合に満たされる条件であり、前記第2条件は前記第3条件よりも、接近度合いが高い場合に満たされる条件であり、認識された複数の区画線のうち二つの区画線で区画される車線の幅員に基づいて誤認識している車線が存在すると判定した場合に、誤認識している車線以外の車線の情報に基づいて前記対象物体の側方の走路を特定させる、プログラムである。
 上記(1)~(11)の態様によれば、車両の周辺状況に応じた適切な予備動作を行うことができる。
実施形態の運転支援装置が搭載される車両の構成図である。 運転支援装置の機能の概要を示す図である。 操舵回避制御部の作動場面の一例を示す図である。 予備動作について説明するための図である。 運転支援装置により実行される処理の流れの一例を示すフローチャートである。 区画線認識部140について説明するための図である。 区画線認識部140により認識された区画線の一例を示す図である。 認識した区画線に基づく車線の誤認識を判定することについて説明するための図である。 車両Mの周辺の区画線の認識結果に基づく制御処理の一例を示すフローチャートである。
 以下、図面を参照し、本発明の運転支援装置、運転支援方法、およびプログラムの実施形態について説明する。
 [全体構成]
 図1は、実施形態の運転支援装置100が搭載される車両Mの構成図である。車両Mは、例えば、二輪や三輪、四輪等の車両であり、その駆動源は、ディーゼルエンジンやガソリンエンジンなどの内燃機関、電動機、或いはこれらの組み合わせである。電動機は、内燃機関に連結された発電機による発電電力、或いは二次電池や燃料電池の放電電力を使用して動作する。
 車両Mには、例えば、カメラ10と、レーダ装置12と、LIDAR(Light Detection and Ranging)14と、物体認識装置16と、HMI(Human Machine Interface)30と、車両センサ40と、運転操作子80と、運転支援装置100と、走行駆動力出力装置200と、ブレーキ装置210と、ステアリング装置220とが搭載される。これらの装置や機器は、CAN(Controller Area Network)通信線等の多重通信線やシリアル通信線、無線通信網等によって互いに接続される。なお、図1に示す構成はあくまで一例であり、構成の一部が省略されてもよいし、更に別の構成が追加されてもよい。HMI30は、「出力装置」の一例である。ブレーキ装置210は、「制動装置」の一例である。ステアリング装置220は、「操舵装置」の一例である。
 カメラ10は、例えば、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の固体撮像素子を利用したデジタルカメラである。カメラ10は、車両システム1が搭載される車両(以下、車両M)の任意の箇所に取り付けられる。前方を撮像する場合、カメラ10は、フロントウインドシールド上部やルームミラー裏面等に取り付けられる。カメラ10は、例えば、周期的に繰り返し車両Mの周辺を撮像する。カメラ10は、ステレオカメラであってもよい。
 レーダ装置12は、車両Mの周辺にミリ波などの電波を放射すると共に、物体によって反射された電波(反射波)を検出して少なくとも物体の位置(距離および方位)を検出する。レーダ装置12は、車両Mの任意の箇所に取り付けられる。レーダ装置12は、FM-CW(Frequency Modulated Continuous Wave)方式によって物体の位置および速度を検出してもよい。
 LIDAR14は、車両Mの周辺に光(或いは光に近い波長の電磁波)を照射し、散乱光を測定する。LIDAR14は、発光から受光までの時間に基づいて、対象までの距離を検出する。照射される光は、例えば、パルス状のレーザー光である。LIDAR14は、車両Mの任意の箇所に取り付けられる。
 物体認識装置16は、カメラ10、レーダ装置12、およびLIDAR14のうち一部または全部による検出結果に対してセンサフュージョン処理を行って、物体の位置、種類、速度などを認識する。物体認識装置16は、認識結果を運転支援装置100に出力する。物体認識装置16は、カメラ10、レーダ装置12、およびLIDAR14の検出結果をそのまま運転支援装置100に出力してよい。車両システム1から物体認識装置16が省略されてもよい。カメラ10、レーダ装置12、LIDAR14、および物体認識装置16のうち一部または全部は、「検知デバイス」の一例である。
 HMI30は、車両Mの乗員に対して各種情報を提示すると共に、乗員による入力操作を受け付ける。HMI30は、各種表示装置、スピーカ、ブザー、振動発生装置(バイブレータ)、タッチパネル、スイッチ、キーなどを含む。
 車両センサ40は、車両Mの速度を検出する車速センサ、加速度を検出する加速度センサ、鉛直軸回りの角速度を検出するヨーレートセンサ、車両Mの向きを検出する方位センサ等を含む。
 ナビゲーション装置50は、例えば、GNSS(Global Navigation Satellite System)受信機や案内制御部、地図情報を記憶した記憶部等を有する。GNSS受信機は、GNSS衛星から受信した信号に基づいて、車両Mの位置を特定する。車両Mの位置は、車両センサ40の出力を利用したINS(Inertial Navigation System)によって特定または補完されてもよい。案内制御部は、例えば、GNSS受信機により特定された車両Mの位置(或いは入力された任意の位置)から、乗員により入力された目的地までの経路を、地図情報を参照して決定し、車両Mが経路に沿って走行するようにHMI30に案内情報を出力させる。地図情報は、例えば、道路を示すリンクと、リンクによって接続されたノードとによって道路形状が表現された情報である。地図情報は、道路の車線数や曲率、POI(Point Of Interest)情報、道路区画線の情報(例えば形状、線種、色)などを含んでもよい。ナビゲーション装置50は、通信装置を介してナビゲーションサーバに車両Mの現在位置と目的地を送信し、ナビゲーションサーバから経路を取得してもよい。
 運転操作子80は、例えば、アクセルペダル、ブレーキペダル、ステアリングホイール、シフトレバー、その他の操作子を含む。運転操作子80には、操作量あるいは操作の有無を検出するセンサが取り付けられており、その検出結果は、走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220のうち一部または全部に出力される。
 走行駆動力出力装置200は、車両が走行するための走行駆動力(トルク)を駆動輪に出力する。走行駆動力出力装置200は、例えば、内燃機関、電動機、および変速機などの組み合わせと、これらを制御するECU(Electronic Control Unit)とを備える。ECUは、運転支援装置100から入力される情報、或いは運転操作子80から入力される情報に従って、上記の構成を制御する。
 ブレーキ装置210は、例えば、ブレーキキャリパーと、ブレーキキャリパーに油圧を伝達するシリンダと、シリンダに油圧を発生させる電動モータと、ECUとを備える。ECUは、運転支援装置100から入力される情報、或いは運転操作子80から入力される情報に従って電動モータを制御し、制動操作に応じたブレーキトルクが各車輪に出力されるようにする。ブレーキ装置210は、運転操作子80に含まれるブレーキペダルの操作によって発生させた油圧を、マスターシリンダを介してシリンダに伝達する機構をバックアップとして備えてよい。なお、ブレーキ装置210は、上記説明した構成に限らず、運転支援装置100から入力される情報に従ってアクチュエータを制御して、マスターシリンダの油圧をシリンダに伝達する電子制御式油圧ブレーキ装置であってもよい。
 ステアリング装置220は、例えば、ステアリングECUと、電動モータとを備える。電動モータは、例えば、ラックアンドピニオン機構に力を作用させて転舵輪の向きを変更する。ステアリングECUは、運転支援装置100から入力される情報、或いは運転操作子80から入力される情報に従って、電動モータを駆動し、転舵輪の向きを変更させる。
 [運転支援装置]
 運転支援装置100は、例えば、制動制御部110と、操舵回避制御部120と、第2予備動作制御部130と、区画線認識部140とを備える。制動制御部110は、第1予備動作制御部112を含み、第2予備動作制御部130は、操舵回避可否判定部132を含む。これらの機能部は、例えば、CPU(Central Processing Unit)などのハードウェアプロセッサがプログラム(ソフトウェア)を実行することにより実現される。また、これらの構成要素のうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、GPU(Graphics Processing Unit)などのハードウェア(回路部;circuitryを含む)によって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。プログラムは、予め運転支援装置100のHDDやフラッシュメモリなどの記憶装置(非一過性の記憶媒体を備える記憶装置)に格納されていてもよいし、DVDやCD-ROMなどの着脱可能な記憶媒体に格納されており、記憶媒体(非一過性の記憶媒体)がドライブ装置に装着されることで運転支援装置100のHDDやフラッシュメモリにインストールされてもよい。
 運転支援装置100から走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220への指示は、運転操作子80からの検出結果よりも優先して実行されるように、走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220の内部において設定がなされている。なお、制動に関しては、運転支援装置100からの指示よりもブレーキペダルの操作量に基づく制動力の方が大きい場合は、後者を優先して実行するように設定されてもよい。また、運転支援装置100からの指示を優先して実行するための仕組みとして、車内LAN(Local Area Network)における通信優先度が用いられてもよい。
 図2は、運転支援装置100の機能の概要を示す図である。以下、本図と図1を参照しながら運転支援装置100の各部について説明する。図2において車両Mは、図中X軸方向に延伸する三車線の道路を走行しており、その中央にある車線L2に居る。Dは車両Mの進行方向である。図中Y軸方向は、道路幅(車線幅)方向である。図中Z軸方向は、車両Mまたは路面(水平面)に対する上下方向である。以下では、必要に応じてXYZ座標系を用いて説明する場合がある。
 制動制御部110は、車両Mの前方に存在する物体の存在を検知する検知デバイス(前述)の出力を参照し、物体のうち対象物体TOと車両Mとの接近度合いが第1条件を満たす場合に、ブレーキ装置210および走行駆動力出力装置200のうち少なくともブレーキ装置210に指示して車両Mを減速させ、停止させる。対象物体TOは、車両Mと同じ走路上にあり、且つ車両Mの進行方向側にある物体であって、マンホールなどの乗り越え可能な物体を除く、車両Mが接触を回避すべき物体である。制動制御部110は、そのような物体を抽出して対象物体TOに設定する。図2の例では、車両Mの前方であって、且つ車両Mと同じ車線L2を走行する複数の車両のうち最後尾にいる他車両(車両Mに最も近い他車両)が対象物体TOに設定されている。走路とは、例えば車線である。車線は、例えば、区画線認識部140により認識される区画線(例えば、道路区画線)によって区画される。また、車線は、道路区画線が存在しない路面において車両Mが仮想的に設定する仮想車線であってもよい。以下の説明においても同様である。
 「接近度合い」とは、物体間の接近度合いを示す各種の指標値で表されるものである。例えば、「接近度合い」は距離を相対速度(互いに接近する方向を正とする)で除算して求められる指標値であるTTC(Time To Collision)である。なお相対速度が負(互いに離れる方向)である場合、TTCは仮に無限大に設定される。TTCは、値が小さい程、「接近度合い」が高いことを表す指標値である。そして、「第1条件」を満たすとは、例えばTTCが第1閾値Th1未満であることである。第1閾値Th1は、例えば、1コンマ数[sec]程度の値である。TTCに代えて、同様の性質を有する指標値、例えば車頭時間や距離、その他の指標値が「接近度合い」として用いられてもよい。また、加速度やジャークを加味して調整されたTTCが「接近度合い」として用いられてもよい。以下の説明において、「接近度合い」はTTCであるものとして説明する。
 制動制御部110は、TTCが第1閾値Th1未満である場合、例えば車両Mを第1減速度B1で減速させる制動力を出力するようにブレーキ装置210および/または走行駆動力出力装置200に指示する。第1減速度B1は、例えば、0コンマ数[G](1に近い)程度の減速度である。これによって、制動制御部110は、車両Mを速やかに減速させて停止させ、対象物体TOとの接触を回避する。指示された減速度からブレーキ出力、回生制御量、エンジンブレーキ量などを求める機能は、ブレーキ装置210や走行駆動力出力装置200のECUが有しており、ECUは、指示された減速度と車両Mの速度とに基づいてそれぞれの制御量を決定する。これについては公知技術であり詳細な説明を省略する。
 第1予備動作制御部112の動作については後述するものとし、先に操舵回避制御部120について説明する。
 図3は、操舵回避制御部120の作動場面の一例を示す図である。操舵回避制御部120は、制動制御部110が対象物体TOよりも手前で車両Mを停止させることが困難であると判定された場合、対象物体TOの側方の走路(例えば車線L1、L3)に車両Mが進行可能なスペースが存在するか否かを判定し、スペースが存在すると判定した場合に、回避軌道ETを生成し、回避軌道ETに沿って車両Mが進行するようにステアリング装置220に指示する(操舵回避)。例えば、操舵回避制御部120は、図3に示す領域A2L、A2Rのように、対象物体TOの両側における対象物体TOの少し前から後方にかけて延在する側方領域内に物体が存在するか否かを判定し、存在しないと判定した場合に、対象物体TOの側方の走路に車両Mが進行可能なスペースが存在すると判定する。制動制御部110が対象物体TOよりも手前で車両Mを停止させることが困難であるか否かの判定は、制動制御部110によって行われてもよいし、操舵回避制御部120によって行われてもよい。操舵回避制御部120は、例えばカメラ画像の白線や路肩等の車線を区画する区画線を認識することで走路の境界も認識しており、そもそも走行可能な領域A2L、A2Rのいずれかが存在しない場合、例えば車線L1とL3のいずれかが存在しない場合は、当該領域に物体が存在すると判定してよい。
 操舵回避が行われるのは、例えば、対象物体TOが想定外の減速を行った場合や、認識されている対象物体TOとは別の物体が車両Mと対象物体TOの間に割り込んできて新たな対象物体TOとして設定された場合など、車両の周辺環境の急変が生じた場面である。このような場面において、予め対象物体TOの手前で停止するように計算された減速度では対応できない可能性があるが、操舵回避の機能を有することで、車両Mの周辺環境の急変にも対応できる確率を高めることができる。
 [予備動作]
 以下、第1予備動作制御部112および第2予備動作制御部130の処理について説明する。図4は、予備動作について説明するための図である。
 第1予備動作制御部112は、対象物体TOと車両Mとの接近度合いが第2条件を満たす場合に(例えば、TTCが、第2閾値Th2未満である場合に)、車両Mの運転者に対象物体TOの存在を伝えるための第1予備動作を行う。第1予備動作は、例えば、TTCが、第2閾値Th2未満となってから、第1閾値Th1未満となるまでの間、車両Mを第2減速度B2で減速させる制動力を出力するようにブレーキ装置210および/または走行駆動力出力装置200に指示する動作である。第2減速度B2は、第1減速度B1よりも小さい(ゼロに近い)減速度である。第2閾値Th2は第1閾値Th1よりも大きい値である。従って、第1条件は第2条件よりも、接近度合いが高い場合に満たされる条件である。
 第2予備動作制御部130は、対象物体TOと車両Mとの接近度合いが第3条件を満たし(例えば、TTCが第3閾値Th3未満であり)、且つ、第3条件が満たされた時点において、対象物体TOの側方の走路のいずれにも操舵による回避を行った後に進行可能なスペースが存在しないと判定される場合に、車両Mの運転者に対象物体TOの存在を伝えるための第2予備動作を行う。進行可能なスペースに関する判定は、操舵回避可否判定部132により行われる。第3閾値Th3は第2閾値Th2よりも大きい値である。従って、第2条件は第3条件よりも、接近度合いが高い場合に満たされる条件である。
 操舵回避可否判定部132は、例えば、TTCが第3閾値Th3未満となった時点で、図4に示す領域A1L、A1Rのように、対象物体TOの両側における対象物体TOの少し前から後方にかけて延在する側方領域内に物体が存在するか否かを判定し、存在しない場合に、対象物体TOの側方の走路に車両Mが進行可能なスペースが存在すると判定する。領域A1L、A1Rのそれぞれは、例えば、将来の不確定要因を考慮し、領域A2L、A2Rのそれぞれよりも大きい領域に設定される。操舵回避可否判定部132は、操舵回避制御部120と同様に、例えばカメラ画像の白線や路肩等の区画線を認識することで走路の境界も認識しており、そもそも走行可能な領域A1L、A1Rのいずれかが存在しない場合、例えば車線L1とL3のいずれかが存在しない場合は、当該領域に物体が存在すると判定してよい。図4の例では、領域A1Rに物体が存在しないため、操舵回避可否判定部132は、対象物体TOの側方の走路に車両Mが進行可能なスペースが存在すると判定する。
 第2予備動作は、例えば、TTCが、第3閾値Th3未満となってから、第1閾値Th1未満となるまでの間、まず車両Mを第3減速度B3で減速させる制動力を出力するようにブレーキ装置210および/または走行駆動力出力装置200に指示し、次いで、車両Mを第4減速度B4で減速させる制動力を出力するようにブレーキ装置210および/または走行駆動力出力装置200に指示する動作である。第3減速度B3は、例えば、第2減速度B2よりも小さい(ゼロに近い)減速度であり、第4減速度B4は、第2減速度よりも大きい、または同程度であり、且つ第1減速度B1よりも小さい減速度である。第3減速度B3から第4減速度B4に切り替えるタイミングについては任意に設定されてよい。
 このように、第2予備動作は、第1予備動作に比して、より早いタイミングで開始され、且つ多段階で行われる。前述したように、操舵回避が可能な状況では、車両の周辺環境の急変にも迅速に対応できる確率が高くなり、制御の余裕度が比較的高くなる。一方で、対象物体の側方に回避スペースが無い場合は操舵回避の機能を備えていたとしても、それを実行することが困難になるため、制御の余裕度は自動停止のみ行うことが可能な車両と変わらないことになる。つまり、操舵回避が困難な状況においては、操舵回避が可能な状況に比して、より早くかつ効果的に車両Mの運転者に注意喚起を与えることが好ましい。本実施形態によれば、第2予備動作を、第1予備動作に比して、より早いタイミングで開始し、且つ多段階で行うことにより、対象物体の周辺状況に応じた適切な予備動作を行うことができる。
 区画線認識部140は、検知デバイスの検知結果に基づいて、車両Mの周辺の走路を区画する区画線を認識する。車両Mの周辺とは、車両Mから所定距離以内の範囲であり、少なくとも対象物体の側方を含む。区画線認識部140の詳細については後述する。
 図5は、運転支援装置100により実行される処理の流れの一例を示すフローチャートである。
 まず、制動制御部110が、対象物体TOを特定する(ステップS1)。次に、第2予備動作制御部130が、車両Mと対象物体TOとのTTCが第3閾値Th3未満であるか否かを判定する(ステップS2)。車両Mと対象物体TOとのTTCが第3閾値Th3以上である場合、ステップS1に処理が戻される。
 車両Mと対象物体TOとのTTCが第3閾値Th3未満であると判定した場合、第2予備動作制御部130の操舵回避可否判定部132は、対象物体TOの側方の走路に車両Mが進行可能なスペースが存在するか否かを判定する(ステップS3)。
 対象物体TOの側方の走路に車両Mが進行可能なスペースが存在しないと判定された場合、第2予備動作制御部130は、第2予備動作を実行する(ステップS4)。次いで、第2予備動作制御部130は、車両Mと対象物体TOとのTTCが上昇して第3閾値Th3以上となったか否かを判定する(ステップS5)。車両Mと対象物体TOとのTTCが上昇して第3閾値Th3以上となったと判定された場合、ステップS1に処理が戻される。
 車両Mと対象物体TOとのTTCが上昇して第3閾値Th3以上となったと判定されなかった場合、制動制御部110が、車両Mと対象物体TOとのTTCが第1閾値Th1未満であるか否かを判定する(ステップS6)。車両Mと対象物体TOとのTTCが第1閾値Th1以上であると判定された場合、ステップS3に処理が戻される。ステップS3で肯定的な判定が得られた場合、第2予備動作が停止され、ステップS8以降の処理が実行される。車両Mと対象物体TOとのTTCが第1閾値Th1未満であると判定した場合、制動制御部110は、車両Mを第1減速度B1で減速させる制動力をブレーキ装置210および/または走行駆動力出力装置200に出力させて車両Mを減速させ、停止させる(ステップS7)。このとき、前述したように、車両Mを減速させて停止させることに代えて(または、加えて)操舵回避が行われる場合がある。
 ステップS3において肯定的な判定を得た場合、すなわち車両Mと対象物体TOとのTTCが第3閾値Th3未満であり、且つ対象物体TOの側方の走路に車両Mが進行可能なスペースが存在する場合、制動制御部110の第1予備動作制御部112が、車両Mと対象物体TOとのTTCが第2閾値Th2未満であるか否かを判定する(ステップS8)。車両Mと対象物体TOとのTTCが第2閾値Th2以上であると判定された場合、ステップS1に処理が戻される。
 車両Mと対象物体TOとのTTCが第2閾値Th2未満であると判定した場合、第1予備動作制御部112は、第1予備動作を実行する(ステップS9)。次いで、第1予備動作制御部112は、車両Mと対象物体TOとのTTCが上昇して第2閾値Th2以上となったか否かを判定する(ステップS10)。車両Mと対象物体TOとのTTCが上昇して第2閾値Th2以上となったと判定された場合、ステップS1に処理が戻される。
 車両Mと対象物体TOとのTTCが上昇して第2閾値Th2以上となったと判定されなかった場合、制動制御部110が、車両Mと対象物体TOとのTTCが第1閾値Th1未満であるか否かを判定する(ステップS11)。車両Mと対象物体TOとのTTCが第1閾値Th1以上であると判定された場合、ステップS3に処理が戻される。ステップS3で否定的な判定が得られた場合、第1予備動作が停止され、ステップS4以降の処理が実行される。車両Mと対象物体TOとのTTCが第1閾値Th1未満であると判定した場合、制動制御部110は、第1減速度B1をブレーキ装置210および/または走行駆動力出力装置200に出力させて車両Mを減速させ、停止させる(ステップS7)。
 [車両Mの周辺の区画線の認識結果に基づく制御]
 以下、区画線認識部140による車両Mの周辺の区画線の認識結果に基づく制御について説明する。図6は、区画線認識部140について説明するための図である。図6の例では、図中にX軸方向に延伸する三車線(車線L1~L3)の道路)のうち、車両Mが車線L1を進行方向Dに走行しているものとする。車線L1は二つの道路区画線S1、S2で区画され、車線L2は二つの道路区画線S2、S3で区画され、車線L3は二つの道路区画線S3、S4で区画されている。また、図6の例において、車両Mの前方には、車線L1を走行する他車両m1~m3と、車線L2を走行する他車両m4とが存在するものとする。他車両m1~m4は、検知デバイスにより検知される車両Mの前方に存在する物体に相当し、他車両m1は、上述の対象物体TOに相当する。また、図6の例では、車両Mから見て道路区画線S1よりも遠方に縁石CSが車線L1の延伸方向に設置されている。縁石CSは、道路構造物の一例である。道路構造物には、例えば、ガードレールやフェンス等が含まれてもよい。
 図6に示す状況下において、区画線認識部140は、例えばカメラ10の撮像した画像からエッジ点を抽出して並べたものを区画線の輪郭として認識する。輪郭から区画線の線種(例えば、実線、破線)や色(例えば、白色、黄色)等を認識してもよい。区画線認識部140は、LIDAR14によって検出される道路からの反射光の情報に基づいて区画線を認識してもよい(白線は反射率が高いためその領域が認識できる)。また、区画線認識部140は、認識した各区画線の位置(例えば、車両Mからの相対位置)を認識する。また、区画線認識部140は、認識した区画線ごとの認識度合いを取得してもよい。認識度合いとは、区画線であることの確度(確からしさ)を示す指標値であり、認識度合いが高いほど、道路区画線である可能性が高いことを示す。認識度合いは、例えば、カメラ10の撮像した画像から認識される区画線情報(例えば、形状、線種、色、長さ、太さ)と、基準となる区画線情報との合致度に基づいて導出される。また、認識度合いは、上記の合致度に代えて(または加えて)、カメラ10の撮像した画像から認識される区画線情報と、LIDAR14によって認識された区画線情報との合致度や、ナビゲーション装置50の地図情報に含まれる道路区画線の情報との合致度に基づいて導出されてよい。
 ここで、図6に示すような車両Mの周辺状況である場合、区画線認識部140は、縁石CSのエッジ部分を区画線として誤認識したり、道路区画線の太さや擦れ、汚れ等の影響で、一つの道路区画線を二以上の区画線と誤認識する場合がある。
 図7は、区画線認識部140により認識された区画線の一例を示す図である。図7では、図6に示す車両Mの周辺状況における区画線認識部140による認識結果の一例を示している。この場合、区画線認識部140は、図7に示すように区画線RL1~RL6を区画線として認識する。つまり、区画線認識部140は、実際の縁石CSの形状や陽射し、影等の影響で縁石CSの一部を区画線RL1として誤認識したり、実際に道路に描画された道路区画線S2の擦れや汚れ等の影響で一つの道路区画線S2から二以上の区画線RL3、RL4があると誤認識する場合があり得る。この誤認識により、例えば、車両Mから見て他車両m1の左側方にも二つの区画線RL1、RL2で区画された車線があると誤認識したり、車両Mから見て他車両m1の右側方に二つの区画線RL3、RL4で区画された車線があると誤認識する可能性がある。したがって、操舵回避可否判定部132による回避可否判定時に、他車両m1の左側方にも走路があると誤認識して判定したり、実際には他車両m1の右側方の車線L2(自車両Mの走行車線L1の右隣接車線)に他車両m4が存在するにも拘わらず、他車両が存在しない(右側の隣隣接車線に存在する)と誤認識して判定される場合がある。上記の誤認識は、操舵回避制御部120による制御にも大きな影響を及ぼす。
 そこで、操舵回避可否判定部132は、区画線認識部140により認識される複数の区画線のうち、二つの区画線で区画される車線(走路)の幅員(言い換えると並列する二つ区画線の距離)に基づいて、誤認識している車線が存在するか否かを判定する。操舵回避可否判定部132は、誤認識している車線が存在すると判定した場合、誤認識している車線以外の車線の情報(例えば、位置や範囲)に基づいて他車両m1(対象物体)の側方の走路を特定し、誤認識している車線が存在しないと判定した場合、認識した車線の情報に基づいて他車両の側方の走路を特定する。
 図8は、認識した区画線に基づく車線の誤認識を判定することについて説明するための図である。図8の例では、車両Mと、図7で示した区画線RL1~RL6とが示されている。操舵回避可否判定部132は、区画線RL1~RL6のうち、並列する最も近い二つの区画線(隣接する二つの区画線)により区画される車線の幅員(Y軸方向(道路幅方向、横方向)の長さ)を取得する。図8の例において、操舵回避可否判定部132は、区画線RL1とRL2とで区画される車線の幅員W1と、区画線RL2とRL3とで区画される車線の幅員W2と、区画線RL3とRL4とで区画される車線の幅員W3と、区画線RL4とRL5とで区画される車線の幅員W4と、区画線RL5とRL6とで区画される車線の幅員W6とを認識する。そして、操舵回避可否判定部132は、幅員W1~W6のそれぞれに対し閾値未満であるか否かを判定する。
 ここで、閾値は、例えば、車両Mが走行中の車線の幅員(図中の幅員W2)に基づいて設定される値であり、例えば幅員W2の約半分程度の値である。車両が走行する車線を区画する区画線は、車両Mから左右の最も近い区画線であるため、認識精度は他の区画線よりも高いことが想定される。したがって、車両Mが走行する車線の幅員W2を基準にすることで、より高精度な判定を行うことができる。また、幅員の約半分程度の値とは、車両Mが車線の延伸方向に走行できると予測される値である。なお、閾値は、予め決められた固定値(例えば、道路法規上の幅員最小幅の約半分程度の値)が設定されてもよく、車両Mの横幅(車両が通行可能な所定マージン幅も含む)に基づく値が設定されてもよい。
 操舵回避可否判定部132は、車線の幅員が閾値未満である場合に、その幅員に対応する車線を区画する二つの区画線のうち一方を削除して車線を認識し、認識した車線に基づいて他車両m1の側方の走路を特定して操舵回避の可否を判定する。図8の例では、幅員W1およびW3が閾値未満であるものとする。そのため、操舵回避可否判定部132は、区画線RL1およびRL2のうち一方を削除し、区画線RL3またはRL4のうち一方を削除する。例えば、車両Mからより近い区画線の方が、認識精度が高いことが想定されるため、操舵回避可否判定部132は、二つの区画線のうち車両Mから見て遠い方の区画線を削除する。図8の例では、区画線RL1およびRL2のうち区画線RL1を削除し、区画線RL3またはRL4のうち区画線RL4を削除する。
 また、操舵回避可否判定部132は、車線の幅員が閾値未満である場合に、二つの区画線のうち、区画線認識部140による認識度合いが小さい方の区画線を削除してもよい。例えば、区画線RL4の認識度合いが区画線RL3の認識度合いよりも小さい場合には、区画線認識部140は、区画線RL4を削除する。これにより、認識度合いが高い区画線に基づいて、より正確に車線の位置や範囲を取得することができる。
 また、操舵回避可否判定部132は、車線の幅員が閾値未満である場合に、二つの区画線の線種に基づいて一方の区画線を削除してもよい。この場合、実線よりも破線の方が誤認識している可能性が高いため、二つの区画線の線種が実線と破線である場合に、操舵回避可否判定部132は、破線の方を削除する。これにより、例えば、道路に減速破線が描画されている場合に、減速破線を削除することができる。減速破線とは、例えば、車両の接触等が多い道路区間等において、車両の運転者に幅員を狭く見せるための路面標示であり、減速破線により運転者に幅員を狭く見せることで手動運転中における車両の減速効果が期待できる。減速破線は、例えば、道路区画線に沿って設けられる。
 上述した処理により、操舵回避可否判定部132は、残りの区画線RL2、RL3、RL5、RL6に基づいて正しく車線を認識(誤認識以外の車線を認識)することができる。したがって、例えば、図6、図7に示す車両Mの周辺状況において、操舵回避可否判定部132は、他車両m1の左側方の路肩エリア(区画線RL1とRL2とで区画された領域)を隣接車線として認識することなく、他車両m1の右側方の隣接車線に他車両m4が存在することを正しく認識することができる。そして、操舵回避可否判定部132は、認識した車線によって、他車両m1の側方の走路に車両Mが進行可能なスペースがあるか否かなどの判定を、より正確に行うことができる。
 なお、操舵回避可否判定部132は、他車両m1の側方として、他車両m1走行する車線の隣接車線に対してスペースがあるか否かを判定する場合には、二つの区画線RL5およびRL6により区画される車線(つまり、車両Mまたは他車両m1から見た隣隣接車線)について上述の誤認識判定処理から除外してもよい。
 図9は、車両Mの周辺の区画線の認識結果に基づく制御処理の一例を示すフローチャートである。図9の処理は、例えば、上述した図5に示す処理のうちステップS3に相当する処理である。図9の例において、区画線認識部140は、車両Mの周辺の区画線を認識する(ステップS31)。次に、操舵回避可否判定部132は、認識された複数の区画線のうち、二つの区画線で区画される車線の幅員を取得し(ステップS32)、幅員が閾値未満であるか否かを判定する(ステップS33)。幅員が閾値未満であると判定した場合、操舵回避可否判定部132は、二つの区画線のうち一方を削除する(ステップS34)。なお、操舵回避可否判定部132は、ステップS34の処理後、削除していない残りの区画線を用いてステップS32~S34の処理を、全ての車両の幅員が閾値以上となるまで繰り返し実行してもよい。
 ステップS34の処理後、またはステップS33の処理において、幅員が閾値未満でないと判定した場合、操舵回避可否判定部132は、認識した車線(誤認識した車線以外の車線)に基づいて、対象物体の側方の車線(例えば、隣接車線)に車両Mが操舵回避等を行うスペースが有るか否かの判定を行う(ステップS35)。これにより、本フローチャートの処理は終了する。
 <変形例>
 上記実施形態において、操舵回避可否判定部132は、区画線認識部140に認識された区画線数と、ナビゲーション装置50の地図情報に含まれる車線数とを照合し、アンマッチである場合に、車両Mの操舵回避ができないと判定してもよい。また、上記実施形態において、上述した操舵回避可否判定部132における車線の誤認識判定に関する処理は、操舵回避制御部120で行ってもよく、区画線認識部140で行ってもよい。
 上記実施形態において、第1予備動作と第2予備動作のいずれかにおいて、制動力の出力に代えて、HMI30による注意喚起のための表示、音声出力、振動出力などが行われてもよい。この場合、第2予備動作が多段階で行われる例として、前述したように減速度合いを変えながら段階的に制動力を出力するのに代えて、最初の表示画面と二回目以降の表示画面の着目度(コントラスト、輝度、色彩等)を異ならせる、最初の音声出力と二回目以降の音声出力の内容またはボリュームを異ならせる、最初の振動出力よりも二回目以降の振動出力を大きくする、等が挙げられる。
 上記実施形態において、ナビゲーション装置50において設定されている目的地への分岐路が、車両Mが走行している車線の左右いずれかの側にある場合、予備動作の途中で強制的に車線変更を行ってもよい。こうすれば、結果的に、目的地に近づく方向に車両Mを移動させ、且つ対象物体がとなる物体が車両Mの近くにいない状態に誘導することができる。
 以上説明した実施形態によれば、運転支援装置100において、車両Mの周辺の走路を区画する区画線を認識する区画線認識部140と、車両Mの前方に存在する物体の存在を検知する検知デバイスの出力を参照し、物体のうち対象物体と車両との接近度合いが第1条件を満たす場合に、前記車両の制動装置に指示して前記車両を停止させる制動制御部110と、対象物体との接触を操舵により回避するように、車両Mの操舵装置に指示する操舵回避制御部120と備え、制動制御部110は、接近度合いが第2条件を満たす場合に、第1予備動作を行う第1予備動作制御部112を含み、接近度合いが第3条件を満たし、且つ、第3条件が満たされた時点において、対象物体の側方の走路のいずれにも操舵による回避を行った後に進行可能なスペースが存在しないと判定される場合に、第2予備動作を行う第2予備動作制御部130を更に備え、第1条件は第2条件よりも、接近度合いが高い場合に満たされる条件であり、第2条件は第3条件よりも、接近度合いが高い場合に満たされる条件であり、第2予備動作制御部130は、区画線認識部140により認識される複数の区画線のうち二つの区画線で区画される車線の幅員に基づいて誤認識している車線が存在すると判定した場合に、誤認識している車線以外の車線の情報に基づいて対象物体の側方の走路を特定することにより、車両Mの周辺状況に応じた適切な予備動作を行うことができる。
 具体的には、実施形態によれば、例えば、第2予備動作の実行時などに、車両の周辺の車線の認識結果をチェックし、チェック結果に矛盾がある場合(車線または区画線が誤認識であると判定される場合)には、誤認識の車線以外の車線に基づく制御を行うことで、操舵回避可否のご判断や誤ブレーキなどを抑制することができる。また、実施形態によれば、誤認識の車線以外の車線の情報に基づいて、隣接車両の正確な位置を取得することができる。したがって、車両Mの周辺状況に応じたより適切な運転支援を行うことができる。
 上記説明した実施形態は、以下のように表現することができる。
 コンピュータによって読み込み可能な命令(computer-readable instructions)を格納する記憶媒体(storage medium)と、
 前記記憶媒体に接続されたプロセッサと、を備え、
 前記プロセッサは、前記コンピュータによって読み込み可能な命令を実行することにより(the processor executing the computer-readable instructions to:)、
 車両の周辺の走路を区画する区画線を認識し、
 前記車両の前方に存在する物体の存在を検知する検知デバイスの出力を参照し、前記物体のうち対象物体と前記車両との接近度合いが第1条件を満たす場合に、前記車両の制動装置に指示して前記車両を停止させることと、前記対象物体との接触を操舵により回避するように、前記車両の操舵装置に指示することとのうち一方または双方を行い、
 前記対象物体と前記車両との接近度合いが第2条件を満たす場合に、第1予備動作を行い、
 前記対象物体と前記車両との接近度合いが第3条件を満たし、且つ、前記第3条件が満たされた時点において、前記対象物体の側方の走路のいずれにも前記操舵による回避を行った後に進行可能なスペースが存在しないと判定される場合に、第2予備動作を行い、
 前記第1条件は前記第2条件よりも、接近度合いが高い場合に満たされる条件であり、
 前記第2条件は前記第3条件よりも、接近度合いが高い場合に満たされる条件であり、
 認識した複数の区画線のうち二つの区画線で区画される車線の幅員に基づいて誤認識している車線が存在すると判定した場合に、誤認識している車線以外の車線の情報に基づいて前記対象物体の側方の走路を特定する、
 運転支援装置。
 以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形及び置換を加えることができる。
10 カメラ
12 レーダ装置
14 LIDAR
16 物体認識装置
80 運転操作子
100 運転支援装置
110 制動制御部
112 第1予備動作制御部
120 操舵回避制御部
130 第2予備動作制御部
132 操舵回避可否判定部
140 区画線認識部
200 走行駆動力出力装置
210 ブレーキ装置
220 ステアリング装置

Claims (11)

  1.  車両の周辺の走路を区画する区画線を認識する区画線認識部と、
     前記車両の前方に存在する物体の存在を検知する検知デバイスの出力を参照し、前記物体のうち対象物体と前記車両との接近度合いが第1条件を満たす場合に、前記車両の制動装置に指示して前記車両を停止させる制動制御部と、
     前記対象物体との接触を操舵により回避するように、前記車両の操舵装置に指示する操舵回避制御部と、
     を備え、
     前記制動制御部は、前記接近度合いが第2条件を満たす場合に、第1予備動作を行う第1予備動作制御部を含み、
     前記接近度合いが第3条件を満たし、且つ、前記第3条件が満たされた時点において、前記対象物体の側方の走路のいずれにも前記操舵による回避を行った後に進行可能なスペースが存在しないと判定される場合に、第2予備動作を行う第2予備動作制御部を更に備え、
     前記第1条件は前記第2条件よりも、前記接近度合いが高い場合に満たされる条件であり、
     前記第2条件は前記第3条件よりも、前記接近度合いが高い場合に満たされる条件であり、
     前記第2予備動作制御部は、前記区画線認識部により認識される複数の区画線のうち二つの区画線で区画される車線の幅員に基づいて誤認識している車線が存在すると判定した場合に、誤認識している車線以外の車線の情報に基づいて前記対象物体の側方の走路を特定する、
     運転支援装置。
  2.  前記区画線認識部により認識される複数の区画線のうち二つの区画線で区画される車線の幅員が閾値未満である場合に、前記二つの区画線のうち一方を削除して車線を認識し、認識した車線に基づいて前記対象物体の側方の走路を特定する、
     請求項1に記載の運転支援装置。
  3.  前記閾値は、前記車両が走行する車線の幅員に基づいて設定される値である、
     請求項2に記載の運転支援装置。
  4.  前記第2予備動作制御部は、前記二つの区画線で区画される車線の幅員が閾値未満である場合に、前記二つの区画線のうち前記車両から遠い方の区画線を削除する、
     請求項1から3のうち何れか1項に記載の運転支援装置。
  5.  前記第2予備動作制御部は、前記二つの区画線で区画される車線の幅員が閾値未満である場合に、前記二つの区画線のうち前記区画線認識部による認識度合いが小さい方の区画線を削除する、
     請求項1から3のうち何れか1項に記載の運転支援装置。
  6.  前記第2予備動作制御部は、前記二つの区画線で区画される車線の幅員が閾値未満である場合に、前記二つの区画線の線種に基づいて一方の区画線を削除する、
     請求項1から3のうち何れか1項に記載の運転支援装置。
  7.  前記第2予備動作は、前記第1予備動作よりも早いタイミングで開始される動作である、
     請求項1から6のうち何れか1項に記載の運転支援装置。
  8.  前記第1予備動作と前記第2予備動作のうち少なくとも一方は、前記制動制御部が前記制動装置に出力を指示する制動力よりも小さい制動力を出力するように、前記制動装置に指示する動作である、
     請求項1から7のうち何れか1項に記載の運転支援装置。
  9.  前記第1予備動作と前記第2予備動作のうち少なくとも一方は、注意喚起のための表示、音声出力、または振動出力を行うように出力装置に指示する動作である、
     請求項1から8のうち何れか1項に記載の運転支援装置。
  10.  運転支援装置が、
     車両の周辺の走路を区画する区画線を認識し、
     前記車両の前方に存在する物体の存在を検知する検知デバイスの出力を参照し、前記物体のうち対象物体と前記車両との接近度合いが第1条件を満たす場合に、前記車両の制動装置に指示して前記車両を停止させることと、前記対象物体との接触を操舵により回避するように、前記車両の操舵装置に指示することとのうち一方または双方を行い、
     前記対象物体と前記車両との接近度合いが第2条件を満たす場合に、第1予備動作を行い、
     前記対象物体と前記車両との接近度合いが第3条件を満たし、且つ、前記第3条件が満たされた時点において、前記対象物体の側方の走路のいずれにも前記操舵による回避を行った後に進行可能なスペースが存在しないと判定される場合に、第2予備動作を行い、
     前記第1条件は前記第2条件よりも、接近度合いが高い場合に満たされる条件であり、
     前記第2条件は前記第3条件よりも、接近度合いが高い場合に満たされる条件であり、
     認識した複数の区画線のうち二つの区画線で区画される車線の幅員に基づいて誤認識している車線が存在すると判定した場合に、誤認識している車線以外の車線の情報に基づいて前記対象物体の側方の走路を特定する、
     運転支援方法。
  11.  コンピュータに、
     車両の周辺の走路を区画する区画線を認識させ、
     前記車両の前方に存在する物体の存在を検知する検知デバイスの出力を参照し、前記物体のうち対象物体と前記車両との接近度合いが第1条件を満たす場合に、前記車両の制動装置に指示して前記車両を停止させることと、前記対象物体との接触を操舵により回避するように、前記車両の操舵装置に指示することとのうち一方または双方を行わせ、
     前記対象物体と前記車両との接近度合いが第2条件を満たす場合に、第1予備動作を行わせ、
     前記対象物体と前記車両との接近度合いが第3条件を満たし、且つ、前記第3条件が満たされた時点において、前記対象物体の側方の走路のいずれにも前記操舵による回避を行った後に進行可能なスペースが存在しないと判定される場合に、第2予備動作を行わせ、
     前記第1条件は前記第2条件よりも、接近度合いが高い場合に満たされる条件であり、
     前記第2条件は前記第3条件よりも、接近度合いが高い場合に満たされる条件であり、
     認識された複数の区画線のうち二つの区画線で区画される車線の幅員に基づいて誤認識している車線が存在すると判定した場合に、誤認識している車線以外の車線の情報に基づいて前記対象物体の側方の走路を特定させる、
     プログラム。
PCT/JP2022/012578 2022-03-18 2022-03-18 運転支援装置、運転支援方法、およびプログラム WO2023175889A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/012578 WO2023175889A1 (ja) 2022-03-18 2022-03-18 運転支援装置、運転支援方法、およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/012578 WO2023175889A1 (ja) 2022-03-18 2022-03-18 運転支援装置、運転支援方法、およびプログラム

Publications (1)

Publication Number Publication Date
WO2023175889A1 true WO2023175889A1 (ja) 2023-09-21

Family

ID=88022946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012578 WO2023175889A1 (ja) 2022-03-18 2022-03-18 運転支援装置、運転支援方法、およびプログラム

Country Status (1)

Country Link
WO (1) WO2023175889A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014168009A1 (ja) * 2013-04-09 2014-10-16 アイシン精機株式会社 車両挙動制御装置および車両挙動制御システム
WO2019102772A1 (ja) * 2017-11-24 2019-05-31 株式会社デンソー 車両の制動支援装置、制御装置及び制動支援方法
WO2021261304A1 (ja) * 2020-06-23 2021-12-30 株式会社Soken 自車位置推定装置、走行位置推定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014168009A1 (ja) * 2013-04-09 2014-10-16 アイシン精機株式会社 車両挙動制御装置および車両挙動制御システム
WO2019102772A1 (ja) * 2017-11-24 2019-05-31 株式会社デンソー 車両の制動支援装置、制御装置及び制動支援方法
WO2021261304A1 (ja) * 2020-06-23 2021-12-30 株式会社Soken 自車位置推定装置、走行位置推定方法

Similar Documents

Publication Publication Date Title
JP6931370B2 (ja) 車両制御装置、車両制御方法、及びプログラム
CN110949376B (zh) 车辆控制装置、车辆控制方法及存储介质
JP7112374B2 (ja) 車両制御装置、車両制御方法、およびプログラム
JP6913716B2 (ja) 車両制御装置、車両制御方法、及びプログラム
US20220080967A1 (en) Vehicle control device, vehicle control method, and non-transitory computer readable storage medium
US20220176956A1 (en) Vehicle control device, vehicle control method, and non-transitory computer-readable recording medium recording program
CN112429001B (zh) 车辆控制装置、车辆控制方法及存储介质
WO2023175889A1 (ja) 運転支援装置、運転支援方法、およびプログラム
CN113291297A (zh) 车辆控制装置、车辆控制方法及存储介质
JP7489418B2 (ja) 運転支援装置、運転支援方法、およびプログラム
WO2023175917A1 (ja) 運転支援装置、運転支援方法、およびプログラム
WO2023175884A1 (ja) 運転支援装置、運転支援方法、およびプログラム
JP7489419B2 (ja) 運転支援装置、運転支援方法、およびプログラム
WO2023175886A1 (ja) 運転支援装置、運転支援方法、およびプログラム
JP7489414B2 (ja) 運転支援装置、運転支援方法、およびプログラム
WO2023175911A1 (ja) 運転支援装置、運転支援方法、およびプログラム
JP7489420B2 (ja) 運転支援装置、運転支援方法、およびプログラム
JP7489417B2 (ja) 運転支援装置、運転支援方法、およびプログラム
JP7489415B2 (ja) 運転支援装置、運転支援方法、およびプログラム
US20230294679A1 (en) Driving assistance device, driving assistance method, and storage medium
JP7396906B2 (ja) 車両制御装置、車両制御方法、およびプログラム
JP2023137480A (ja) 運転支援装置、運転支援方法、およびプログラム
JP2023137481A (ja) 運転支援装置、運転支援方法、およびプログラム
JP2023137969A (ja) 運転支援装置、運転支援方法、およびプログラム
JP2023137894A (ja) 運転支援装置、運転支援方法、およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932162

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024507393

Country of ref document: JP

Kind code of ref document: A