WO2023175701A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2023175701A1
WO2023175701A1 PCT/JP2022/011488 JP2022011488W WO2023175701A1 WO 2023175701 A1 WO2023175701 A1 WO 2023175701A1 JP 2022011488 W JP2022011488 W JP 2022011488W WO 2023175701 A1 WO2023175701 A1 WO 2023175701A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating plate
electrode
semiconductor device
upper insulating
adhesive
Prior art date
Application number
PCT/JP2022/011488
Other languages
English (en)
French (fr)
Inventor
厚 山竹
裕基 塩田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/011488 priority Critical patent/WO2023175701A1/ja
Publication of WO2023175701A1 publication Critical patent/WO2023175701A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates

Definitions

  • This application relates to a semiconductor device.
  • Insulating material that has both high dielectric strength and high thermal conductivity is AlN ceramic, which is used as the main insulating part of semiconductor power modules.
  • An object of the present invention is to provide a semiconductor device in which deterioration in insulation properties can be suppressed.
  • the semiconductor device disclosed in the present application includes a lower electrode disposed on a base plate, a first upper electrode disposed on the lower electrode via an insulating plate, and a first upper electrode having a semiconductor chip, which is separated from the first upper electrode. a second upper electrode provided;
  • the insulating plate has a laminated structure in which a lower insulating plate having a second upper electrode on the surface opposite to the surface in contact with the lower electrode and an upper insulating plate having the first upper electrode are bonded with an adhesive. It is characterized by
  • the semiconductor device disclosed in the present application includes a lower electrode disposed on a base plate, a first upper electrode disposed on the lower electrode via an insulating plate, and separated from the first upper electrode having a semiconductor chip.
  • the second upper electrode is provided as a second upper electrode
  • the insulating plate forms a laminated structure in which an upper insulating plate and a lower insulating plate are bonded with an adhesive, and the upper insulating plate includes a first upper insulating plate having a first upper electrode and a second upper insulating plate.
  • a second upper insulating plate having The bond between the first upper insulating plate and the lower insulating plate is formed by a high thermal conductivity adhesive, and the bonding between the second upper insulating plate and the lower insulating plate is formed by a high volume resistivity adhesive. It is characterized by
  • the semiconductor device disclosed in the present application it is possible to suppress a decrease in heat dissipation performance and insulation properties due to an adhesive laminated structure of insulating plates.
  • FIG. 3 is a cross-sectional view showing the structure of a semiconductor device of Comparative Example 1.
  • FIG. 3 is a diagram showing a laminated structure of an insulating plate of a semiconductor device of Comparative Example 2.
  • FIG. 7 is a diagram illustrating an equivalent circuit of a laminated structure of insulating plates of a semiconductor device of Comparative Example 2 when DC power is applied.
  • FIG. FIG. 7 is a diagram showing an equivalent circuit of a laminated structure of insulating plates of a semiconductor device of Comparative Example 2 when AC power is applied.
  • 1 is a diagram showing a stacked structure of insulating plates of a semiconductor device according to a first embodiment; FIG. FIG.
  • FIG. 3 is a diagram showing an equivalent circuit of the laminated structure of insulating plates of the semiconductor device according to the first embodiment when DC power is applied.
  • FIG. 3 is a diagram showing a circuit of an IGBT module.
  • FIG. 3 is a diagram showing the structure of a semiconductor device according to a second embodiment.
  • FIG. 7 is a diagram showing an equivalent circuit of the laminated structure of insulating plates of the semiconductor device according to Embodiment 2 when DC power is applied.
  • FIG. 7 is a diagram showing a state in which the upper insulating plates of the semiconductor device according to Embodiment 3 are in contact with each other.
  • FIG. 7 is a diagram showing a state in which the upper insulating plate of the semiconductor device according to Embodiment 3 is integrated.
  • FIG. 9 is a diagram showing a state in which the adhesive application range of the semiconductor device according to Embodiment 3 has been changed;
  • FIG. 7 is a diagram showing a stacked structure of insulating plates of a semiconductor device according to a fourth embodiment.
  • FIG. 7 is a diagram showing a stacked structure of insulating plates of a semiconductor device according to a fifth embodiment.
  • FIG. 1 is a sectional view showing the structure of a semiconductor device of Comparative Example 1, in which an insulating plate 5 is bonded to a base plate 2 via solder 3 and a lower electrode 4, and a high voltage side electrode is placed on the insulating plate 5. 61 and the circuit electrode of the low voltage side electrode 62 are joined.
  • the semiconductor chip 7 is mounted on the high voltage side electrode 61 which has the same potential as the high voltage side input/output section 12 of the semiconductor device 1 .
  • the semiconductor chip 7 is connected by a wire 8 to a low voltage side electrode 62 which has the same potential as the low voltage side input/output section 13 .
  • the insulating plate 5 for example, an aluminum nitride (AlN) ceramic plate having high dielectric strength and high thermal conductivity is used, and for the insulating sealing material 10, silicone gel is used.
  • AlN aluminum nitride
  • FIG. 2 shows only the portion corresponding to the broken line portion in FIG. 1 regarding the laminated structure.
  • the lower insulating plate 51 and the upper insulating plate 52 are bonded together with adhesive 11, and are configured as one insulating plate.
  • the thermal conductivity of the adhesive 11 is low, the heat dissipation of the entire board will be reduced, so it is desirable that the thermal conductivity of the adhesive 11 is high.
  • the thermal conductivity of the adhesive 11 for example, if the resin contains a metal component or the like, the volume resistivity of the material itself decreases. In general, it is difficult to achieve both heat dissipation and insulation properties. For example, there are methods in which resin contains inorganic particles with high thermal conductivity, but there are many manufacturing and quality issues.
  • FIG. 2 shows an equivalent circuit when the adhesive 11 is considered as a conductor.
  • the resistance of the upper insulating plate 52 directly below the high voltage side electrode 61 and the resistance of the lower insulating plate 51 are equalized as a resistance value R 1
  • the resistance of the upper insulating plate 52 directly below the low voltage side electrode 62 is
  • the resistance of the upper insulating plate 52 and the lower insulating plate 51 in the lateral direction are made equal to the resistance value R2
  • the resistance of the lower insulating plate 51 is much higher than the resistance values R1 and R2 . , it is assumed that no current flows.
  • the high-voltage side electrode 61 and the low-voltage side electrode 62 have the same potential, the voltage will be shared almost equally between the upper insulating plate 52 and the lower insulating plate 51.
  • the high voltage side electrode 61 is set to the high voltage HV and the low voltage side electrode 62 is set to the ground potential GND, the shared voltage ratio of the voltage V 1 applied to the upper insulating plate 52 directly below the high voltage side electrode 61 (ratio to the applied voltage V 0 ) is expressed by equation (1).
  • V 1 /V 0 ⁇ 2(R 1 /R 2 )+1 ⁇ / ⁇ 2(R 1 /R 2 )+2 ⁇
  • the shared voltage ratio is 0.75, which is 1.5 times higher than when the voltages are divided equally between the top and bottom (shared voltage ratio 0.5). Furthermore, when the area of the low-voltage side electrode 62 is reduced, the resistance value R 2 increases, so the resistance ratio R 1 /R 2 decreases, and the shared voltage ratio decreases, but never becomes 0.5 or less.
  • V 1 /V 0 ⁇ 2(C 2 /C 1 )+1 ⁇ / ⁇ 2(C 2 /C 1 )+2 ⁇
  • the shared voltage ratio is 0.75.
  • the capacitance ratio C 2 /C 1 becomes smaller, and the shared voltage ratio becomes smaller, but never becomes 0.5 or less.
  • FIG. 5 shows a structure according to Embodiment 1 to solve the problems of Comparative Examples 1 and 2.
  • the upper insulating plate 52 adhered to the lower insulating plate 51 with the adhesive 11 is laminated only in the area where the high-voltage side electrode 61 is present, and the low-voltage side electrode 62 is directly joined to the lower insulating plate 51.
  • the equivalent circuit at this time is shown in FIG. With respect to the equivalent circuit of Comparative Example 1 in FIG.
  • An interfacial resistance (resistance value R 3 ) with 10 is added.
  • the shared voltage ratio (ratio to the applied voltage V 0 ) of the voltage V 1 applied to the upper insulating plate 52 directly below the high voltage side electrode 61 is expressed by equation (3).
  • V 1 /V 0 ⁇ (R 1 /R 3 )+1 ⁇ / ⁇ (R 1 /R 3 )+2 ⁇
  • the resistance value R 3 of the interface resistance is very large compared to the resistance values R 1 and R 2 , the current component flowing through the interface resistance can be ignored.
  • the voltage V1 applied to the upper insulating plate 52 directly under the high-voltage side electrode 61 becomes almost equal to the voltage applied to the lower insulating plate 51, and the adhesive Even if an adhesive with high thermal conductivity is used for 11, the problem of insulation deterioration does not occur.
  • the adhesive with high thermal conductivity used for the adhesive 11 is, for example, an epoxy resin-based or silicone rubber-based adhesive, and metal powder such as silver is mixed therein to increase the thermal conductivity.
  • the thermal conductivity is preferably 10 W/mK (meter Kelvin) or more.
  • the upper insulating plate 52 and the lower insulating plate 51 may be made of AlN ceramic, for example.
  • the volume resistivity of the adhesive 11 is low, even if a voltage is applied between the high voltage side electrode 61 and the low voltage side electrode 62, the shared voltage Since there is no bias, the problem of insulation deterioration does not occur.
  • Embodiment 2 In the structure according to the first embodiment, a high voltage equivalent to that applied to the high voltage side electrode 61 cannot be applied to the low voltage side electrode 62, and there is a problem that usage conditions are limited.
  • a circuit diagram of an IGBT (Insulated Gate Bipolar Transistor) module is shown in FIG.
  • the semiconductor device 1 has two stages, and by switching each IGBT on and off, a high voltage (HV) or a ground potential (GND) is output at an intermediate point connected to the two stages.
  • the IGBT module may be a semiconductor device including the circuit shown in FIG. 7 as one package. In the portion indicated by the broken line B in FIG.
  • the low-voltage side input/output section 13 is always at ground potential, but in the section indicated by the broken line A, the low-voltage side input/output section 13 may be at a high voltage. Therefore, the structure according to the first embodiment is applicable to the portion indicated by the broken line B in FIG. 7, but not applicable to the portion indicated by the broken line A.
  • FIG. 5 A structure according to a second embodiment for solving this problem is shown in FIG. Unlike the structure shown in FIG. 5, an insulating plate is also laminated in the region of the low voltage side electrode 62. That is, the high voltage side upper insulating plate 53 is bonded to the lower insulating plate 51 with the high voltage side adhesive 111 in the area where the high voltage side electrode 61 exists, and the low voltage side upper insulating plate 53 is bonded to the area where the low voltage side electrode 62 is present. The insulating plate 54 is bonded to the lower insulating plate 51 using the low-voltage adhesive 112. At this time, a material with high thermal conductivity is used for the high voltage side adhesive 111, and a material with high volume resistivity is used for the low voltage side adhesive 112.
  • the adhesive with high thermal conductivity used for the high-pressure side adhesive 111 is, for example, an epoxy resin type or silicone rubber type, and in order to increase the thermal conductivity, metal powder such as silver is mixed, and the thermal conductivity is 10 W/mk.
  • the above is desirable.
  • the high volume resistivity adhesive used for the low voltage side adhesive 112 is, for example, an epoxy resin type adhesive, and the volume resistivity is preferably 10 14 ⁇ cm or more.
  • the low voltage side upper insulating plate 54 is also laminated on the low voltage side electrode 62, the dielectric strength voltage can be maintained even if a high voltage is applied to the low voltage side electrode 62. Since no semiconductor chip is mounted on the low voltage side electrode 62, the low voltage side upper insulating plate 54 and the low voltage side adhesive 112 do not need heat dissipation. Therefore, the low voltage side upper insulating plate 54 may be made of ceramic or epoxy. Furthermore, the low-pressure side adhesive 112 does not need to be made of a material with high thermal conductivity. Note that the high voltage side upper insulating plate 53 and the lower insulating plate 51 may be made of AlN ceramic, for example.
  • the low-voltage adhesive 112 may have a low volume resistivity as long as it is separated from the high-voltage adhesive 111, but if the high-voltage adhesive 111 and the low-voltage adhesive 112 come into contact due to manufacturing reasons, There is a possibility that the problem of insulation deterioration may occur due to bias in the voltage ratio. On the other hand, if the volume resistivity of the low voltage side adhesive 112 is high, even if it comes into contact with the high voltage side adhesive 111, as shown in the equivalent circuit shown in FIG. Since there is a high-resistance component of No. 3 , the problem of deterioration of insulation does not occur.
  • the vertical resistance value of the low voltage side adhesive 112 is R4
  • the horizontal resistance R3 is connected to the center of R4 in the equivalent circuit
  • the low voltage side electrode 62 is In the case of the ground potential, the shared voltage ratio (ratio to the applied voltage V0 ) of the voltage V1 applied to the high voltage side upper insulating plate 53 is expressed by equation (4).
  • V 1 /V 0 (R 1 +R 2 /2+R 3 +R 4 /4)/(R 1 +R 2 +2R 3 +R 4 /2)
  • equation (4) can be expressed as equation (5).
  • V 1 /V 0 (3R 1 /2+R 3 )/(2R 1 +2R 2 )
  • equation (5) becomes approximately 0.75, and the conditions considered in FIG. An imbalance in voltage sharing equivalent to that occurs.
  • equation (5) becomes approximately 0.5, which eliminates bias in voltage sharing.
  • the cross-sectional area through which the current passes is much smaller in R3 than in R1 , so The resistance value is larger for R3 .
  • the insulation sealing material 10 is filled between the high-voltage side upper insulating plate 53 and the low-voltage side upper insulating plate 54 can be suppressed from remaining insulating defects.
  • a high voltage can also be applied to the low voltage side electrode 62, so that it can be applied to any semiconductor device connected in two stages shown in FIG. .
  • Embodiment 3 In the second embodiment, the high-voltage side upper insulating plate 53 (for example, AlN ceramic) and the low-voltage side upper insulating plate 54 (for example, epoxy or ceramic) are separated, but they may be brought into contact as shown in FIG. . However, if the contact surfaces 55 of the high-voltage side upper insulating plate 53 and the low-voltage side upper insulating plate 54 are not bonded together, this may cause a decrease in dielectric strength at the interface.
  • the high-voltage side upper insulating plate 53 for example, AlN ceramic
  • the low-voltage side upper insulating plate 54 for example, epoxy or ceramic
  • the upper insulating plates on the high voltage side and the low voltage side may be integrated, for example, by using AIN ceramic, to form a single upper insulating plate 52.
  • the process of separately bonding the two upper insulating plates as in Embodiment 2 is not necessary, but the application range of the high voltage side adhesive 111 and the low voltage side adhesive 112 is controlled during manufacturing to avoid voids. Care must be taken to ensure that this does not occur.
  • the application range of the high voltage side adhesive 111 and the low voltage side adhesive 112 is on the high voltage side upper insulating plate 53. This is the same range as the low voltage side upper insulating plate 54.
  • the application range of the high voltage side adhesive 111 and the low voltage side adhesive 112 is not limited by the shape of the upper insulating plate. Therefore, as shown in FIG. 12, the low voltage side adhesive 112 may be applied by penetrating into the area where the high voltage side electrode 61 is present.
  • the high-pressure side adhesive 111 with high thermal conductivity to at least the area where the semiconductor chip 7 is present.
  • the manufacturing process can be simplified because the process of separately bonding the two upper insulating plates is not necessary.
  • Embodiment 4 As shown in FIG. 13, on the insulating plate, an electric field concentration area 14 is generated at the end of the circuit electrode (high-voltage side electrode 61, low-voltage side electrode 62) and the contact area between the upper insulating plate 52, which becomes the starting point of dielectric breakdown. obtain.
  • the materials of the lower insulating plate 51 and the upper insulating plate 52 were not differentiated, but in the structure shown in this embodiment, the electrical characteristics of each insulating plate are differentiated. Accordingly, the electric field in the electric field concentration portion 14 can be reduced and the insulation properties can be improved.
  • the voltage applied to each of the lower insulating plate 51 and the upper insulating plate 52 is as follows. It will be divided almost equally. However, since the electric field concentration portion 14 is generated in the upper insulating plate 52, in order to reduce the electric field, it is necessary to lower the voltage sharing ratio applied to the upper insulating plate 52. In addition, an electric field concentration area 15 is generated at the contact point between the lower insulating plate 51 and the lower electrode 4, but the electric field concentration area 14 of the upper insulating plate 52 has a higher electric field, so it is necessary to improve insulation. Therefore, it is important to reduce the electric field in the electric field concentration portion 14 of the upper insulating plate 52.
  • the voltage sharing ratio of each insulating plate can be changed depending on the thickness of the insulating plate. For example, when the thickness of the upper insulating plate 52 is reduced, the insulation resistance of the upper insulating plate 52 decreases, and therefore the voltage shared by the upper insulating plate 52 decreases. However, since the effect of thinning the insulating plate is greater than that, the electric field in the electric field concentration section 14 increases. On the contrary, if the thickness of the upper insulating plate 52 is increased, the electric field in the electric field concentration portion 14 will be reduced, but since the thickness of the insulating plate is increased, the heat dissipation performance will be reduced. Therefore, in order to reduce the generated electric field without reducing heat dissipation, it is insufficient to simply change the thickness of the insulating plate.
  • the material of the insulating plate is selected so that ⁇ 1> ⁇ 2.
  • the resistance value of the insulation resistance of the upper insulating plate 52 becomes lower than the resistance value of the insulation resistance of the lower insulating plate 51, so when a DC voltage is applied, the shared voltage applied to the upper insulating plate 52 decreases. . As a result, the electric field generated in the electric field concentration section 14 decreases.
  • the electric field in the electric field concentration portion 14 of the upper insulating plate 52 can be reduced. Instead, the electric field in the electric field concentration portion 15 of the lower insulating plate 51 increases. Therefore, it is necessary to prevent the electric field in the electric field concentration part 15 of the lower insulating plate 51 from exceeding the electric field in the electric field concentration part 14 of the upper insulating plate 52 without making the difference in volume resistivity of each insulating plate too large. be.
  • FIG. 13 is one in which insulating plates are simply bonded and laminated, the same effect can be obtained when the volume resistivity of the adhesive 11 is low or when applied to the structures shown in Embodiments 1 to 3.
  • the electric field in the electric field concentration area can be reduced.
  • Embodiment 5 In the fourth embodiment, a structure that is effective when a DC voltage is applied is shown, but in this embodiment, a structure that is effective when an AC voltage is applied is shown. Even when AC voltage is applied, the voltage sharing ratio of each insulating plate can be changed depending on the thickness of the insulating plate. For example, when the thickness of the upper insulating plate 52 is reduced, the capacitance of the upper insulating plate 52 increases, and thus the voltage shared by the upper insulating plate 52 decreases. However, since the effect of the reduced thickness of the insulating plate is greater than that, the electric field in the electric field concentration section 14 increases.
  • the thickness of the upper insulating plate 52 is increased, the electric field in the electric field concentration portion 14 will be reduced, but since the thickness of the insulating plate is increased, the heat dissipation performance will be reduced. Therefore, in order to reduce the generated electric field without reducing heat dissipation, it is insufficient to simply change the thickness of the insulating plate.
  • the material of the insulating plate is adjusted such that ⁇ 1 ⁇ 2.
  • the material of the insulating plate is adjusted such that ⁇ 1 ⁇ 2.
  • Select. aluminum nitride (AlN) having a dielectric constant of 9 is selected for the upper insulating plate 52, and silicon nitride (Si 3 N 4 ) having a dielectric constant of 8 is selected for the lower insulating plate 51.
  • AlN aluminum nitride
  • Si 3 N 4 silicon nitride having a dielectric constant of 8
  • the electric field in the electric field concentration portion 14 of the upper insulating plate 52 can be reduced. Instead, the electric field in the electric field concentration portion 15 of the lower insulating plate 51 increases. Therefore, it is necessary to prevent the electric field in the electric field concentration part 15 of the lower insulating plate 51 from exceeding the electric field in the electric field concentration part 14 of the upper insulating plate 52 without making the difference in permittivity of each insulating plate too large. .
  • the structure shown in FIG. 14 is one in which insulating plates are simply bonded and laminated, but even when the volume resistivity of the adhesive 11 is low or when applied to the structures shown in Embodiments 1 to 3, The electric field can be reduced as well.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

ベース板(2)に配設された下部電極(4)、下部電極(4)に絶縁板(5)を介して配設され、半導体チップ(7)を有する第1の上部電極(61)、第1の上部電極(61)と分離して設けられた第2の上部電極(62)を備えた半導体装置であって、絶縁板(5)は、下部電極(4)と接する面と反対側の面に第2の上部電極(62)を有する下部絶縁板(51)と、第1の上部電極(61)を有する上部絶縁板(52)とが接着剤(11)にて接着された積層構造であり、第1の上部電極(61)に接続される第1の入出力部(12)、第2の上部電極(62)に接続される第2の入出力部(13)を備え、第1の入出力部(12)に印加される電圧は、第2の入出力部(13)に印加される電圧よりも高いことを特徴とする。

Description

半導体装置
 本願は、半導体装置に関するものである。
 電力変換装置等に用いられる半導体装置、特に半導体パワーモジュールには、高い絶縁信頼性が求められる。高電圧が印加される絶縁部には、半導体チップからの発熱があるため、高絶縁耐圧とともに高熱伝導率が要求される。高絶縁耐圧と高熱伝導率を両立する絶縁材料として、例えば、AlNセラミックが挙げられ、半導体パワーモジュールの主絶縁部として利用されている。
 また、放熱性を高めるため、主絶縁部の接着部の熱伝導率を高くする構造として、例えば、絶縁基板下に熱伝導性接着剤を用いる構造が提案されている(例えば、特許文献1参照)。
特開平7-74282号公報
 AlNセラミック等の絶縁板を高絶縁耐圧化するためには、絶縁板を厚くする必要があるが、セラミック板の厚板化には技術的およびコスト的な課題もある。その代替構造として、2枚の絶縁板を積層する構造がある。このとき、2枚の絶縁板を接着する接着剤の熱伝導率が低いと、基板全体の放熱性能が低下するため、接着剤の熱伝導率は高くすることが望ましい。一方、2枚の絶縁板を接着する接着剤の体積抵抗率が絶縁板に比べて大幅に低いと、電圧が印加された際に、絶縁板への電圧分担の偏りが生じる場合があり、絶縁性が低下することがある。しかし、材料の高熱伝導性と高絶縁抵抗を両立させることは難しいため、積層接着構造は放熱性および絶縁性のいずれかで課題がある。
 本願は、上記の課題を解決するための技術を開示するものであり、2枚の絶縁板を高熱伝導率の接着剤を用いて接着しても、絶縁板の接着積層構造化に伴う放熱性と絶縁性の低下が抑制できる半導体装置を提供することを目的とする。
 本願に開示される半導体装置は、ベース板に配設された下部電極、下部電極に絶縁板を介して配設され、半導体チップを有する第1の上部電極、第1の上部電極と分離して設けられた第2の上部電極を備えたものであって、
 絶縁板は、下部電極と接する面と反対側の面に第2の上部電極を有する下部絶縁板と、第1の上部電極を有する上部絶縁板とが接着剤にて接着された積層構造であることを特徴とする。
 また、本願に開示される半導体装置は、ベース板に配設された下部電極、下部電極に絶縁板を介して配設され、半導体チップを有する第1の上部電極、第1の上部電極と分離して設けられた第2の上部電極を備えたものであって、
 絶縁板は、上部絶縁板と下部絶縁板が接着剤にて接着された積層構造を形成し、上部絶縁板は、第1の上部電極を有する第1の上部絶縁板と、第2の上部電極を有する第2の上部絶縁板からなり、
第1の上部絶縁板と下部絶縁板との接着は、高熱伝導率接着剤により形成され、第2の上部絶縁板と下部絶縁板との接着は、高体積抵抗率接着剤により形成されていることを特徴とする。
 本願に開示される半導体装置によれば、絶縁板の接着積層構造化に伴う放熱性と絶縁性の低下が抑制できる。
比較例1の半導体装置の構造を示す断面図である。 比較例2の半導体装置の絶縁板の積層構造を示す図である。 比較例2の半導体装置の絶縁板の積層構造の直流課電時の等価回路を示す図である。 比較例2の半導体装置の絶縁板の積層構造の交流課電時の等価回路を示す図である。 実施の形態1に係る半導体装置の絶縁板の積層構造を示す図である。 実施の形態1に係る半導体装置の絶縁板の積層構造の直流課電時の等価回路を示す図である。 IGBTモジュールの回路を示す図である。 実施の形態2に係る半導体装置の構造を示す図である。 実施の形態2に係る半導体装置の絶縁板の積層構造の直流課電時の等価回路を示す図である。 実施の形態3に係る半導体装置の上部絶縁板が接触した状態を示す図である。 実施の形態3に係る半導体装置の上部絶縁板が一体化した状態を示す図である。 実施の形態3に係る半導体装置の接着剤の塗布範囲を変更した状態を示す図である。 実施の形態4に係る半導体装置の絶縁板の積層構造を示す図である。 実施の形態5に係る半導体装置の絶縁板の積層構造を示す図である。
 以下、本願に係る半導体装置の好適な実施の形態について、図面を参照して説明する。なお、同一内容および相当部については同一符号を配し、その詳しい説明は省略する。以後の実施形態も同様に、同一符号を付した構成について重複した説明は省略する。
実施の形態1.
[比較例の説明]
 図1は、比較例1の半導体装置の構造を示す断面図であり、ベース板2に、はんだ3および下部電極4を介して絶縁板5が接合され、絶縁板5の上に、高圧側電極61と低圧側電極62の回路電極が接合される。半導体装置1の高圧側入出力部12と同電位となる高圧側電極61上に半導体チップ7が搭載される。半導体チップ7はワイヤー8によって、低圧側入出力部13と同電位となる低圧側電極62と接続される。これらをケース9で覆い、絶縁封止材10で高電圧部を封止することで、高電圧課電時の絶縁破壊を抑制する。
 絶縁板5には、例えば、絶縁耐圧が高く、熱伝導率も高い窒化アルミニウム(AlN)のセラミック板が用いられ、絶縁封止材10にはシリコーンゲルが用いられる。
 さらに高絶縁耐圧化するためには、主絶縁部である絶縁板5の耐圧を高くする必要があり、そのため絶縁板5の厚さを大きくする必要がある。しかし、AlNセラミック板を厚く製造することは品質およびコスト上の課題がある。
 そのため、代替案の比較例2として図2に示すような2枚の絶縁板を接着して積層した構造が挙げられる。図2は、積層構造について、図1における破線部に相当する部分のみを示している。下部絶縁板51と上部絶縁板52とが接着剤11によって接着され、一つの絶縁板として構成される。このとき、接着剤11の熱伝導率が低いと、基板全体の放熱性が低下するため、接着剤11の熱伝導率は高い方が望ましい。しかし、接着剤11の熱伝導率を高めるために、例えば樹脂に金属成分などを含有させる等をすると、材料自体の体積抵抗率が低下する。一般的には放熱性と絶縁性を両立させることは困難であり、例えば高熱伝導率の無機粒子を樹脂に含有させる方法などもあるが、製造上および品質上の課題も多い。
 次に、図2に示す積層構造における接着剤11の体積抵抗率が低い場合の課題を説明する。接着剤11の体積抵抗率が、下部絶縁板51および上部絶縁板52の体積抵抗率に比べて大幅に低い場合、直流課電時に回路的には接着剤11は導体のように見なせる。図3に接着剤11を導体と見なした場合の等価回路を示す。ここでは計算を簡易にするため、高圧側電極61の直下の上部絶縁板52の抵抗と下部絶縁板51の抵抗を、抵抗値Rとして等しくし、低圧側電極62の直下の上部絶縁板52の抵抗と下部絶縁板51の抵抗を、抵抗値Rとして等しくし、上部絶縁板52および下部絶縁板51の横方向は、抵抗値R、Rに比べて非常に高抵抗となるため、電流は流れないものとした。
 ここで、高圧側電極61および低圧側電極62が同電位であれば、上部絶縁板52および下部絶縁板51に対して、ほぼ均等に電圧が分担される。しかし、高圧側電極61を高電圧HV、低圧側電極62を接地電位GNDとすると、高圧側電極61の直下の上部絶縁板52に加わる電圧Vの分担電圧比(印加電圧Vに対する比)は、式(1)で表される。
/V={2(R/R)+1}/{2(R/R)+2}  式(1)
 例えば、R=Rとした場合、分担電圧比は、0.75となり、上下均等に分圧される場合(分担電圧比0.5)に比べて1.5倍高くなる。また、低圧側電極62の面積を小さくすると、抵抗値Rは大きくなるため、抵抗比R/Rは小さくなり、分担電圧比は低くなるが、0.5以下になることはない。
 このように、高圧側電極61と低圧側電極62の間に電圧が加わると、高圧側電極61の直下の上部絶縁板52にかかる分担電圧比が高くなり、上部絶縁板52にかかる電界も高くなるため、絶縁耐圧の低下要因となる。なお、本特性は体積抵抗率に起因するものであるため、直流課電条件において顕著に現れるが、実際に接着剤11が導体に近い導電率を持つ場合、交流課電時においても同様の傾向となる。このとき、等価回路上では、図4に示すようになり、静電容量C、Cを用いて電圧V1の分担電圧比を計算すると、式(2)で表される。
/V={2(C/C)+1}/{2(C/C)+2}  式(2)
 例えば、C=Cとした場合、分担電圧比は0.75となる。また、低圧側電極62の面積を小さくすると、Cは小さくなるため、静電容量比C/Cは小さくなり、分担電圧比は小さくなるが、0.5以下になることはない。
 以上のように、図2に示すような積層構造において、接着剤11の熱伝導率を高くする代わりに体積抵抗率が低下するような場合、上部絶縁板52にかかる電圧分担率が高くなり、絶縁性が低下する要因となり得る。
[実施の形態1の説明]
 このような比較例1、2の課題に対し、実施の形態1に係る構造を図5に示す。下部絶縁板51の上に、接着剤11により接着する上部絶縁板52は、高圧側電極61の存在する領域のみに積層し、低圧側電極62は下部絶縁板51に直接接合される。このときの等価回路を図6に示す。図3の比較例1の等価回路に対し、低圧側電極62の直下の上部絶縁板52の抵抗が消え、接着剤11と低圧側電極62との間に、下部絶縁板51と絶縁封止材10との界面抵抗(抵抗値R)を追加される。この場合の、高圧側電極61の直下の上部絶縁板52に加わる電圧Vの分担電圧比(印加電圧Vに対する比)は、式(3)で表される。
/V={(R/R)+1}/{(R/R)+2}  式(3)
 界面抵抗の抵抗値Rは、抵抗値RおよびRと比較して非常に大きいため、界面抵抗を流れる電流成分は無視することが可能となる。その結果、高圧側電極61の直下の上部絶縁板52にかかる電圧V1は、下部絶縁板51にかかる電圧とほぼ均等となり、図2および図3の比較例の課題で説明したような、接着剤11に高熱伝導率の接着剤を使用しても、絶縁性低下の問題が発生しない。
 接着剤11に使用する高熱伝導率の接着剤は、例えばエポキシ樹脂系もしくはシリコーンゴム系であり、熱伝導率を高めるため銀などの金属粉末が混入されている。熱伝導率は、10W/mK(メートル・ケルビン)以上が望ましい。また、上部絶縁板52および下部絶縁板51は、例えば、AlNセラミックとしてもよい。
 以上のように、実施の形態1に係る半導体装置の構造では、接着剤11の体積抵抗率が低くても、高圧側電極61と低圧側電極62の間に電圧が印加されても、分担電圧の偏りがなくなるため、絶縁性低下の問題は起こらない。
実施の形態2.
 実施の形態1に係る構造では、低圧側電極62に対しては、高圧側電極61と同等の高電圧を印加することが出来ず、使用条件が限定的になる問題がある。例えば、IGBT(Insulated Gate Bipolar Transistor)モジュールの回路図を図7に示す。半導体装置1が2段となり、各IGBTのオンとオフを切り替えることで、2段に接続される中間点で高電圧(HV)あるいは接地電位(GND)が出力される。なお、IGBTモジュールは、図7の回路を一つのパッケージとして半導体装置としてもよい。図7の破線Bに示す部分について、低圧側入出力部13は常に接地電位となるが、破線Aに示す部分は低圧側入出力部13が高電圧となる状態がある。したがって、実施の形態1に係る構造は、図7の破線Bに示す部分に対しては適用可能だが、破線Aに対しては適用不可となる。
 これを解決するための実施の形態2に係る構造を図8に示す。図5の構造と異なり、低圧側電極62の領域に対しても絶縁板を積層する。すなわち、高圧側電極61の存在する領域に対して、高圧側上部絶縁板53を高圧側接着剤111により下部絶縁板51と接着させ、低圧側電極62の存在する領域に対して、低圧側上部絶縁板54を低圧側接着剤112により下部絶縁板51と接着させる。このとき、高圧側接着剤111には高熱伝導率の材料を用い、低圧側接着剤112には高体積抵抗率の材料を用いる。
 高圧側接着剤111に使用する高熱伝導率の接着剤は、例えばエポキシ樹脂系もしくはシリコーンゴム系であり、熱伝導率を高めるため、銀などの金属粉末が混入され、熱伝導率は10W/mk以上が望ましい。低圧側接着剤112に使用する高体積抵抗率の接着剤は、例えばエポキシ樹脂系とし、体積抵抗率は1014Ωcm以上が望ましい。
 本実施の形態に係る構造では、低圧側電極62にも低圧側上部絶縁板54が積層されているため、低圧側電極62に高電圧を印加しても絶縁耐圧を維持できる。低圧側電極62には、半導体チップは搭載されないため、低圧側上部絶縁板54および低圧側接着剤112には放熱性は不要となる。したがって、低圧側上部絶縁板54は、セラミックでもよいし、エポキシでもよい。また、低圧側接着剤112も高熱伝導率材料とする必要がない。なお、高圧側上部絶縁板53、下部絶縁板51は、例えば、AlNセラミックとしてもよい。
 低圧側接着剤112は、高圧側接着剤111と離間していれば体積抵抗率が低くてもよいが、製造上の都合により高圧側接着剤111と低圧側接着剤112が接触した場合、分担電圧比の偏りにより絶縁性低下の問題が起こる恐れがある。一方、低圧側接着剤112の体積抵抗率が高いと、仮に高圧側接着剤111と接触したとしても、図9に示す等価回路のように、低圧側接着剤112の横方向に、抵抗値Rの高抵抗の抵抗成分があるため、絶縁性低下の問題が起こらない。
 図9に示す等価回路にて、低圧側接着剤112の縦方向の抵抗値をR4とし、横方向の抵抗R3は、等価回路のR4の中央に接続されると仮定し、低圧側電極62が接地電位となる場合、高圧側上部絶縁板53にかかる電圧V1の分担電圧比(印加電圧Vに対する比)は、式(4)で表される。
/V=(R+R/2+R+R/4)/(R+R+2R+R/2)  式(4)
 計算を簡易にするため、R=Rと仮定し、R≫RであるためR=0と置くと、式(4)は式(5)で表される。
/V=(3R/2+R)/(2R+2R)  式(5)
 例えば低圧側接着剤112の体積抵抗率が低く、RがRに比べて大幅に低い場合(R≪R)、式(5)は約0.75となり、図3で検討した条件と同等の電圧分担の偏りが生じる。一方、低圧側接着剤112の体積抵抗率が高く、R≫Rとすると式(5)は約0.5となり、電圧分担の偏りがなくなる。以上のように、低圧側接着剤112に高抵抗成分があることにより、高圧側上部絶縁板53にかかる分担電圧比が低下し、絶縁性の低下が抑制される。また、仮に絶縁板(51、53)と低圧側接着剤112の体積抵抗率が同程度であったとしても、電流が通過する断面積はRよりもRの方が大幅に小さいため、抵抗値はRの方が大きくなる。
 また、高圧側上部絶縁板53と低圧側上部絶縁板54の間は離間させておくことにより、その間に絶縁封止材10が充填されるため、高圧側上部絶縁板53と低圧側上部絶縁板54の間に絶縁欠陥が残留することを抑制できる。
 以上のように、実施の形態2に係る半導体装置の構造では、低圧側電極62にも高電圧を印加できるため、図7に示す2段に接続されたいずれの半導体装置にも適用可能となる。
実施の形態3.
 実施の形態2では、高圧側上部絶縁板53(例えばAlNセラミック)と低圧側上部絶縁板54(例えば、エポキシまたはセラミック)とは離間させていたが、図10に示すように接触させてもよい。しかし、高圧側上部絶縁板53と低圧側上部絶縁板54の接触面55が接着されていなければ、界面での絶縁耐圧が低下する要因となり得る。
 このような接触界面での耐圧低下を抑制するため、図11に示すように、高圧側および低圧側の上部絶縁板を、例えばAINセラミックとして一体化し、1枚の上部絶縁板52としてもよい。この場合、実施の形態2のように2つの上部絶縁板を分けて接着する工程が不要となるが、製造時に高圧側接着剤111と低圧側接着剤112の塗布範囲を制御し、ボイドを残さないように注意が必要となる。
 実施の形態2で示した構造のように、上部絶縁板が高圧側および低圧側に分離している場合、高圧側接着剤111と低圧側接着剤112の塗布範囲は、高圧側上部絶縁板53と低圧側上部絶縁板54と同じ範囲となる。一方、上部絶縁板52が一体化された構造の場合、高圧側接着剤111および低圧側接着剤112の塗布範囲は、上部絶縁板の形状による制限がない。そのため、図12に示すように、低圧側接着剤112が、高圧側電極61の存在する範囲に浸入して塗布されていてもよい。ただし、半導体チップ7の存在する範囲は放熱性が必要となるため、少なくとも半導体チップ7のある範囲には高熱伝導率の高圧側接着剤111を塗布する必要がある。
 以上のように実施の形態3に係る半導体装置の構造では、2つの上部絶縁板を分けて接着する工程が不要となるため、製造工程を簡素化できる。
実施の形態4.
 絶縁板には、図13に示すように、回路電極(高圧側電極61、低圧側電極62)の端部と上部絶縁板52の接点部に電界集中部14が発生し、絶縁破壊の起点となり得る。実施の形態3までに示す構造では、下部絶縁板51と上部絶縁板52の材料の区別はしていなかったが、本実施の形態に示す構造では、各絶縁板の電気特性に差をつけることにより、電界集中部14の電界を低減させ、絶縁性を向上させることができる。
 高圧側電極61および低圧側電極62に高電圧が印加されると、下部絶縁板51と上部絶縁板52が同じ材料であれば、下部絶縁板51と上部絶縁板52のそれぞれに加わる電圧は、ほぼ均等に分担される。しかし、上部絶縁板52には電界集中部14が発生するため、その電界を低減させるためには、上部絶縁板52にかかる電圧分担率を下げる必要がある。また、下部絶縁板51と下部電極4の端部の接点部にも電界集中部15が発生するが、上部絶縁板52の電界集中部14の方が高電界となるため、絶縁性向上のためには、上部絶縁板52の電界集中部14の電界を低下させることが重要となる。
 各絶縁板の電圧分担率は、絶縁板の厚さによって変えることができる。例えば、上部絶縁板52の厚さを薄くすると、上部絶縁板52の絶縁抵抗は低下するため、上部絶縁板52に分担される電圧は低下する。しかし、それ以上に絶縁板の厚さが薄くなる影響が大きいため、電界集中部14の電界は増加する。反対に、上部絶縁板52の厚さを厚くすると、電界集中部14の電界は低下するが、絶縁板の厚さが増しているため、放熱性を低下させることになる。したがって、放熱性を低下させずに発生電界を低減させるためには、絶縁板の厚さを変えるだけでは不十分となる。
 本実施の形態に示す構造では、下部絶縁板51の体積抵抗率をρ1、上部絶縁板52の体積抵抗率をρ2としたとき、ρ1>ρ2となるように絶縁板の材料を選定する。例えば、同じAlNセラミック同士でも、種類によって電気特性に差異があるため、その中から選定する。これにより、上部絶縁板52の絶縁抵抗の抵抗値が、下部絶縁板51の絶縁抵抗の抵抗値よりも低くなるため、直流電圧が印加される場合、上部絶縁板52にかかる分担電圧が低下する。その結果、電界集中部14に発生する電界が低下する。
 以上のように、上部絶縁板52の電界集中部14の電界を低下させることができる。その代わりに下部絶縁板51の電界集中部15の電界が増加する。そのため、各絶縁板の体積抵抗率の差を大きくしすぎずに、下部絶縁板51の電界集中部15の電界が、上部絶縁板52の電界集中部14の電界を上回らないようにする必要がある。
 図13に示す構造は単純に絶縁板を接着して積層させたものであるが、接着剤11の体積抵抗率が低い場合、または実施の形態1~3に示す構造に適用しても、同様に電界集中部の電界を低減させることができる。
実施の形態5.
 実施の形態4では、直流電圧印加時に効果がある構造を示したが、本実施の形態では、交流電圧印加時に効果がある構造について示す。交流電圧印加時においても、各絶縁板の電圧分担率は、絶縁板の厚さによって変えることができる。例えば、上部絶縁板52の厚さを小さくすると、上部絶縁板52の静電容量が増加するため、上部絶縁板52に分担される電圧が低下する。しかし、それ以上に絶縁板の厚さが小さくなっている影響が大きいため、電界集中部14の電界は増加する。反対に、上部絶縁板52の厚さを大きくすると、電界集中部14の電界は低下するが、絶縁板の厚さが増しているため、放熱性を低下させることになる。したがって、放熱性を低下させずに発生電界を低減させるためには、絶縁板の厚さを変えるだけでは不十分となる。
 本実施の形態に示す構造では、図14に示すように、下部絶縁板51の誘電率をε1、上部絶縁板52の誘電率をε2としたとき、ε1<ε2となるように絶縁板の材料を選定する。例えば、上部絶縁板52に、誘電率が9の窒化アルミニウム(AlN)を選定し、下部絶縁板51に、誘電率が8の窒化珪素(Si)を選定する。このとき、上部絶縁板52の静電容量が、上部絶縁板52の静電容量よりも大きくなるため、AC電圧が印加される場合、上部絶縁板52にかかる分担電圧が低下する。その結果、電界集中部14に発生する電界が低下する。
 以上のように、上部絶縁板52の電界集中部14の電界を低下させることができる。その代わりに下部絶縁板51の電界集中部15の電界が増加する。そのため、各絶縁板の誘電率の差を大きくしすぎずに、下部絶縁板51の電界集中部15の電界が、上部絶縁板52の電界集中部14の電界を上回らないようにする必要がある。
 図14に示す構造は、単純に絶縁板を接着して積層させたものであるが、接着剤11の体積抵抗率が低い場合、または実施の形態1~3に示す構造に適用しても、同様に電界を低減させることができる。
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
 1:半導体装置、2:ベース板、3:はんだ、4:下部電極、5:絶縁板、7:半導体チップ、8:ワイヤー、9:ケース、10:絶縁封止材、11:接着剤、12:高圧側入出力部、13:低圧側入出力部、14、15:電界集中部、51:下部絶縁板、52:上部絶縁板、53:高圧側上部絶縁板、54:低圧側上部絶縁板、55:接触面、61:高圧側電極、62:低圧側電極、111:高圧側接着剤、112:低圧側接着剤。

Claims (11)

  1.  ベース板に配設された下部電極、前記下部電極に絶縁板を介して配設され、半導体チップを有する第1の上部電極および前記第1の上部電極と分離して設けられた第2の上部電極を備えた半導体装置において、
     前記絶縁板は、前記下部電極と接する面と反対側の面に前記第2の上部電極を有する下部絶縁板と、前記第1の上部電極を有する上部絶縁板とが接着剤にて接着された積層構造であることを特徴とする半導体装置。
  2.  前記第2の上部電極は接地されていることを特徴とする請求項1に記載の半導体装置。
  3.  前記上部絶縁板の体積抵抗率が、前記下部絶縁板の体積抵抗率よりも低いことを特徴とする請求項1に記載の半導体装置。
  4.  前記上部絶縁板の誘電率が、前記下部絶縁板の誘電率よりも高いことを特徴とする請求項1に記載の半導体装置。
  5.  ベース板に配設された下部電極、前記下部電極に絶縁板を介して配設され、半導体チップを有する第1の上部電極、前記第1の上部電極と分離して設けられた第2の上部電極を備えた半導体装置において、
     前記絶縁板は、上部絶縁板と下部絶縁板が接着剤にて接着された積層構造を形成し、前記上部絶縁板は、前記第1の上部電極を有する第1の上部絶縁板と、前記第2の上部電極を有する第2の上部絶縁板からなり、
    前記第1の上部絶縁板と前記下部絶縁板との接着は、高熱伝導率接着剤により形成され、前記第2の上部絶縁板と前記下部絶縁板との接着は、高体積抵抗率接着剤により形成されていることを特徴とする半導体装置。
  6.  前記第1の上部電極に接続される第1の入出力部、前記第2の上部電極に接続される第2の入出力部を有し、前記第1の入出力部に印加される電圧は、前記第2の入出力部に印加される電圧よりも高いことを特徴とする請求項5に記載の半導体装置。
  7.  前記第2の上部電極は接地されていることを特徴とする請求項6に記載の半導体装置。
  8.  前記第1の上部絶縁板と前記第2の上部絶縁板とは、互いに離間していることを特徴とする請求項5から7のいずれか1項に記載の半導体装置。
  9.  前記第1の上部絶縁板と前記第2の上部絶縁板とは、1枚の絶縁板であることを特徴とする請求項5から7のいずれか1項に記載の半導体装置。
  10.  前記第1の上部絶縁板と前記第2の上部絶縁板の体積抵抗率は、前記下部絶縁板の体積抵抗率よりも低いことを特徴とする請求項5から9のいずれか1項に記載の半導体装置。
  11.  前記第1の上部絶縁板と前記第2の上部絶縁板の誘電率は、前記下部絶縁板の誘電率よりも高いことを特徴とする請求項5から9のいずれか1項に記載の半導体装置。
PCT/JP2022/011488 2022-03-15 2022-03-15 半導体装置 WO2023175701A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/011488 WO2023175701A1 (ja) 2022-03-15 2022-03-15 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/011488 WO2023175701A1 (ja) 2022-03-15 2022-03-15 半導体装置

Publications (1)

Publication Number Publication Date
WO2023175701A1 true WO2023175701A1 (ja) 2023-09-21

Family

ID=88022875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011488 WO2023175701A1 (ja) 2022-03-15 2022-03-15 半導体装置

Country Status (1)

Country Link
WO (1) WO2023175701A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0563139A (ja) * 1991-09-03 1993-03-12 Fuji Electric Co Ltd 半導体装置
JPH0774282A (ja) * 1993-06-14 1995-03-17 Toshiba Corp 半導体装置
JP2019087586A (ja) * 2017-11-02 2019-06-06 三菱マテリアル株式会社 絶縁回路基板の製造方法、ヒートシンク付き絶縁回路基板の製造方法、及び、絶縁回路基板、ヒートシンク付き絶縁回路基板、並びに、絶縁回路基板の積層構造体の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0563139A (ja) * 1991-09-03 1993-03-12 Fuji Electric Co Ltd 半導体装置
JPH0774282A (ja) * 1993-06-14 1995-03-17 Toshiba Corp 半導体装置
JP2019087586A (ja) * 2017-11-02 2019-06-06 三菱マテリアル株式会社 絶縁回路基板の製造方法、ヒートシンク付き絶縁回路基板の製造方法、及び、絶縁回路基板、ヒートシンク付き絶縁回路基板、並びに、絶縁回路基板の積層構造体の製造方法

Similar Documents

Publication Publication Date Title
US8441128B2 (en) Semiconductor arrangement
US8018047B2 (en) Power semiconductor module including a multilayer substrate
CN110326073B (zh) 电容器
US11776936B2 (en) Semiconductor device
JP2019067949A (ja) 半導体装置
US9275966B2 (en) Semiconductor device apparatus and assembly with opposite die orientations
JP6053668B2 (ja) 半導体モジュールおよび電力変換装置
US20230187431A1 (en) Semiconductor module
JP2019067951A (ja) 半導体装置
US20220051960A1 (en) Power Semiconductor Module Arrangement and Method for Producing the Same
US11538725B2 (en) Semiconductor module arrangement
US11942449B2 (en) Semiconductor arrangement and method for producing the same
US11107739B2 (en) Power semiconductor module arrangement
WO2023175701A1 (ja) 半導体装置
WO2020262097A1 (ja) 半導体装置およびその製造方法
US20220139797A1 (en) Semiconductor module, power semiconductor module, and power electronic equipment using the semiconductor module or the power semiconductor module
JP6811580B2 (ja) パワー半導体モジュール
US10566295B2 (en) Semiconductor device
CN114080672A (zh) 半导体装置
WO2022124011A1 (ja) 積層型コンデンサおよび半導体装置
US20230146758A1 (en) Semiconductor device
US11211307B2 (en) Semiconductor substrate
WO2023243278A1 (ja) 半導体装置
CN111261625B (zh) 半导体装置
WO2023199808A1 (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931986

Country of ref document: EP

Kind code of ref document: A1