WO2023174361A1 - 一种电动阀/门及其控制装置和控制方法 - Google Patents

一种电动阀/门及其控制装置和控制方法 Download PDF

Info

Publication number
WO2023174361A1
WO2023174361A1 PCT/CN2023/081810 CN2023081810W WO2023174361A1 WO 2023174361 A1 WO2023174361 A1 WO 2023174361A1 CN 2023081810 W CN2023081810 W CN 2023081810W WO 2023174361 A1 WO2023174361 A1 WO 2023174361A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
valve
door
real
asynchronous motor
Prior art date
Application number
PCT/CN2023/081810
Other languages
English (en)
French (fr)
Inventor
周文
赵战国
张大鹏
赵刚
朱涛
王泽平
Original Assignee
北京雷蒙赛博核装备技术研究有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京雷蒙赛博核装备技术研究有限公司 filed Critical 北京雷蒙赛博核装备技术研究有限公司
Publication of WO2023174361A1 publication Critical patent/WO2023174361A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • F16K37/0025Electrical or magnetic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • F16K37/0025Electrical or magnetic means
    • F16K37/0041Electrical or magnetic means for measuring valve parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K47/00Means in valves for absorbing fluid energy
    • F16K47/02Means in valves for absorbing fluid energy for preventing water-hammer or noise

Definitions

  • the present invention relates to valve/gate control technology, in particular to an electric valve/gate and its control device and control method.
  • valve/door electric devices in the existing technology use the power supply to directly start the AC asynchronous motor, and use the driver to control the motor to drive the mechanical transmission mechanism to drive the valve/door to open/close the valve.
  • AC asynchronous motors are widely used in valve/gate electric devices due to their simple structure, reliable operation, light weight, cheap price and large starting torque.
  • problems during use there are the following problems during use:
  • the stop method of valve opening/closing adopts point-type trigger stop, that is, a travel switch (or reed switch) is respectively set at the valve opening/closing stop point of the valve body.
  • a travel switch or reed switch
  • the valve/door is stopped by the in-position signal; due to the inherent mechanical gap of the contacts of the travel switch (or reed switch) and the large error in repetitive control accuracy, the valve/door is not stopped before it is closed tightly or the valve/door cannot be stopped after it is closed tightly, resulting in the valve /
  • the door leaks internally or the AC asynchronous motor cannot be stopped and burns out; and the point-type trigger stop method cannot achieve full-stroke high-precision position control, and the operator cannot obtain real-time position information of the valve / door;
  • the technical problem to be solved by the present invention is to provide an electric valve/door and its control device and control method in view of the above-mentioned defects of the prior art.
  • the present invention provides an electric valve/door control device, which includes an AC asynchronous motor, a transmission device and a valve driver.
  • the valve driver is connected to the AC asynchronous motor, and the AC asynchronous motor passes through the
  • the transmission device is connected to the valve/gate, wherein the valve driver collects real-time torque information of the AC asynchronous motor or valve/gate operation, and uses the set torque of the valve driver as input and the real-time torque as feedback , using a PID control algorithm to instantly correct the output torque or output torque limit of the valve driver to adjust the output torque of the AC asynchronous motor in real time to meet the response of the valve/door at each stage of the opening and closing process.
  • Speed and control accuracy requirements are examples of speed and control accuracy requirements.
  • valve driver includes a housing and a logic control module, a variable frequency control module and a variable frequency drive module installed in the housing, and the variable frequency drive module is asynchronous with the AC
  • the motor is connected, and the logic control module is connected to the variable frequency drive module through the frequency conversion control module.
  • the logic control module adjusts the output torque or output torque limit of the variable frequency drive module in real time through the frequency conversion control module, so
  • the above logic control module includes:
  • the torque setting unit sets the corresponding set torque according to the needs of each stage of the valve/door opening and closing process
  • the torque output unit sends the set torque to the variable frequency drive module, and the variable frequency drive module uses the set torque as the output torque or the output torque limit to drive the AC asynchronous motor to perform corresponding valve/door opening. or close action;
  • a real-time torque detection unit to obtain the real-time torque of the AC asynchronous motor or valve/gate operation
  • a torque correction unit that uses a PID control algorithm to correct the output torque or output torque limit based on the real-time torque and the set torque, and transmits the corrected output torque or output torque limit to the torque output unit,
  • the torque output unit transmits the corrected output torque to the variable frequency drive module through the variable frequency control module, and the variable frequency drive module drives the AC asynchronous motor to respond in real time.
  • the above electric valve/door control device wherein the logic control module further includes an output current detection unit connected to the real-time torque detection unit, the output current detection unit detects the AC
  • the physical parameters of the asynchronous motor are transmitted to the real-time torque detection unit.
  • the real-time torque detection unit calculates and obtains the real-time torque and transmits it to the torque correction unit.
  • the physical parameters include stator resistance, rotor resistance, and stator-rotor mutual inductance. , stator and rotor leakage inductance and/or no-load current.
  • the above-mentioned electric valve/door control device further includes a torque sensor for obtaining the real-time torque.
  • the torque sensor is installed on the output shaft of the AC asynchronous motor, the output shaft of the valve reduction transmission box or the valve drive. Mechanically, it is connected to the real-time torque detection unit or frequency conversion control module, and transmits the measured real-time torque signal to the real-time torque detection unit or frequency conversion control module.
  • the above-mentioned electric valve/door control device further includes a position sensor, and the logic control module also includes a speed control unit connected to the position sensor for collecting the feedback signal of the position sensor to obtain the current speed of the valve, The output speed of the AC asynchronous motor is corrected through the PID control algorithm, and the output torque is superimposed with the torque correction unit to correct the speed requirements at each stage of opening or closing of the valve/door.
  • the logic control module further includes a position control unit connected to the position sensor and used to determine whether the valve/door is opened or closed according to the feedback signal of the position sensor.
  • the position nodes of each stage of the closing process are closed, and the output torque is further adjusted according to the judgment results to meet the control logic and stop position accuracy requirements of the valve/gate opening or closing stages.
  • the above-mentioned electric valve/door control device wherein the position sensor is a full stroke sensor and/or a point sensor, and the position sensor is installed on the output shaft of the AC asynchronous motor and the reduction transmission box of the transmission device. On the output shaft or valve drive mechanism.
  • the above-mentioned electric valve/door control device further includes a torque calibration device, which is detachably connected to the AC asynchronous motor and connected to the logic control module for performing torque calibration on the AC asynchronous motor. Correct the output torque of the valve driver.
  • the present invention also provides a control method for an electric valve/door, in which the above-mentioned electric valve/door control device is used to collect real-time torque information of the AC asynchronous motor or valve/door operation. , and using the set torque of the valve driver as input and the real-time torque as feedback, the PID control algorithm is used to instantly correct the output torque of the valve driver to adjust the output torque of the AC asynchronous motor in real time to meet the requirements
  • the valve/gate performs the opening and closing requirements of the process control strategy.
  • the present invention also provides an electric valve/door, which includes the above The electric valve/door control device described above.
  • This invention takes the set torque as input, uses the detected real-time torque of the AC asynchronous motor or valve/door operation as feedback, uses the PID control algorithm to correct the output torque during the driving process, and adjusts the output torque instantly according to the real-time torque, realizing The torque closed-loop control of the electric valve/door opening and closing effectively improves the output torque response speed and control accuracy; in addition, the present invention can also use multiple PID nesting methods to establish torque loops (or current loops) from the inside out. ), speed loop and position loop control, and select the closed-loop level or nesting depth according to the needs of different stages of the valve/door execution process. It can realize the switch valve/door full-stroke load change by optimizing the matching parameters of speed and torque.
  • Figure 1 is a schematic structural diagram of an electric valve/door according to an embodiment of the present invention.
  • Figure 2 is a schematic structural diagram of an electric valve/door according to another embodiment of the present invention.
  • Figure 3 is a structural block diagram of an electric valve/door according to an embodiment of the present invention.
  • Figure 4 is a structural block diagram of a valve driver according to an embodiment of the present invention.
  • Figure 5 is a structural block diagram of a valve driver according to another embodiment of the present invention.
  • Figure 6 is a schematic diagram of a logic control module according to an embodiment of the present invention.
  • Figure 7 is a schematic diagram of a frequency conversion control module according to an embodiment of the present invention.
  • FIG. 8 is an equivalent circuit diagram of stator resistance identification according to an embodiment of the present invention.
  • FIG. 9 is an equivalent circuit diagram of the motor T according to an embodiment of the present invention.
  • Figure 10 is an equivalent circuit diagram of the motor inverse ⁇ according to an embodiment of the present invention.
  • FIG. 11 is a diagram showing the corresponding relationship between the set torque and the output torque in torque calibration according to an embodiment of the present invention.
  • Figure 1 is a schematic structural diagram of an electric valve/door according to one embodiment of the present invention.
  • Figure 2 is a schematic structural diagram of an electric valve/door according to another embodiment of the present invention.
  • Figure 3 is a schematic diagram of an electric valve/door according to one embodiment of the present invention.
  • Valve/gate structure block diagram In view of the problems that valves/doors in the prior art have "cannot be opened”, are not closed tightly, and “cannot be stopped accurately", the present invention matches different control strategies according to the various working conditions of the valve/door at the use site.
  • the efficiency (time) of the opening/closing valve is prioritized, the position accuracy of the opening/closing valve is prioritized, the torque accuracy of the opening/closing valve is prioritized, the valve safety of the opening/closing valve is prioritized, the pipeline safety of the opening/closing valve is prioritized, and the opening/closing valve is prioritized.
  • the stability of the valve's pipeline system is given priority, and electric valves/gates and their control devices and control methods that meet the above execution strategies are provided.
  • the electric valve or electric door of the present invention includes a valve/door 1 and a control device.
  • the control device includes a transmission device 2, an AC asynchronous motor 3 and a valve driver 4.
  • the AC asynchronous motor 3 communicates with the valve through the transmission device 2
  • the valve/door 1 is connected, and the valve driver 4 is connected to the power supply 8 and the AC asynchronous motor 3 respectively, and controls the opening and closing of the valve/door 1 through the AC asynchronous motor 3.
  • the transmission device 2 may include a reduction transmission box 21
  • the valve driving mechanism 22 and the reduction transmission box 21 are respectively connected to the output shaft of the AC asynchronous motor 3 and the input end of the valve driving mechanism 22.
  • the output end of the valve driving mechanism 22 is connected to the valve/door 1 to realize the driving of the valve/door 1.
  • valve driver 4 and the AC asynchronous motor 3 can be an integral connection piece (see Figure 1); or the valve driver 4 and the AC asynchronous motor 3 can be installed separately and connected through cables or wirelessly (see Figure 2 ), the mechanical drive and the electrical drive can be separated to meet the requirements of harsh application environments such as small installation space, high temperature, radiation, high humidity, strong magnetic interference, etc.
  • the composition, structure, mutual positional relationship, connection relationship and working principle of other components of the electric valve/door of the present invention are relatively mature existing technologies, so they will not be described in detail here. The following only describes the control device of the present invention and its working principle. The working principle is explained in detail.
  • the control device of the present invention collects the real-time torque information of the operation of the AC asynchronous motor 3 or the valve/door 1 through the valve driver 4, and uses the set torque of the valve driver 4 as input, and uses the real-time torque as feedback,
  • a PID control algorithm is used to instantly correct the output torque or output torque limit of the valve driver 4 to adjust the output torque of the AC asynchronous motor 3 in real time to meet the requirements of each stage of the opening and closing process of the valve/door 1 response speed and control accuracy requirements.
  • FIG. 4 is a structural block diagram of the valve driver 4 according to one embodiment of the present invention
  • Figure 5 is a structural block diagram of the valve driver 4 according to another embodiment of the present invention.
  • the valve driver 4 of the present invention includes a housing and a logic control module 41 installed in the housing, a variable frequency control module 42 and a variable frequency drive module 43.
  • the variable frequency drive module 43 is connected to the AC asynchronous motor 3, and the logic control module 43 is connected to the AC asynchronous motor 3.
  • the module 41 is connected to the variable frequency drive module 43 through the frequency conversion control module 42 , and the logic control module 41 adjusts the output torque or output torque limit of the variable frequency drive module 43 in real time through the frequency conversion control module 42 .
  • FIG. 6 is a schematic diagram of a logic control module according to an embodiment of the present invention.
  • the logic control module 41 of this embodiment can be used for logic control of the entire machine, and can store and execute control programs.
  • the logic control module 41 can use a microcontroller, DSP, PLC, etc., and can include a program memory, a data memory, and a central processing unit (CPU). , IO interface, internal bus, etc.
  • the logic control module 41 of this embodiment It mainly includes: a torque setting unit, used to set the corresponding setting torque according to the requirements of each stage of the opening and closing process of the valve/door 1; a torque output unit, respectively connected with the torque setting unit and the frequency conversion control module 42 is connected to send the set torque to the variable frequency drive module 43.
  • the variable frequency drive module 43 uses the set torque as the output torque or the output torque limit to drive the AC asynchronous motor 3 to execute the corresponding valve/ Door 1 opens or closes; a real-time torque detection unit is connected to the AC asynchronous motor 3 or the transmission device 2 of the valve/door 1, and is used to obtain the real-time torque of the AC asynchronous motor 3 or the valve/door 1 operation; and A torque correction unit is respectively connected to the torque setting unit, the real-time torque detection unit and the torque output unit, corrects the output torque according to the real-time torque and the set torque output by the torque setting unit, and outputs the corrected The torque is transmitted to the torque output unit; wherein the torque correction unit uses the set torque as input and the real-time torque as feedback according to the real-time torque and the set torque, and uses a PID control algorithm to adjust the output torque Or the output torque limit value is corrected, and the corrected output torque is transmitted to the torque output unit, and the torque output unit passes the corrected output torque or output torque limit value through the frequency conversion control module 42 It is sent
  • the control device also includes a position sensor 6, and the logic control module 41 also includes a speed control unit connected to the position sensor 6 for using an open-loop vector control method or collecting data.
  • the feedback signal of the position sensor 6 obtains the current speed of the valve, corrects the output speed of the AC asynchronous motor 3 through the PID control algorithm, and superimposes it with the torque correction unit to correct the output torque to satisfy the valve/ The speed requirements for each stage of door 1 opening or closing.
  • the logic control module 41 may also include a position control unit connected to the position sensor 6 for determining whether the valve/gate has been reached according to the feedback signal of the position sensor 6 1. Position nodes at each stage of the opening or closing process, and further adjust the output torque according to the judgment results to meet the control logic and stop position accuracy requirements of the valve/gate 1 at each stage of opening or closing.
  • This embodiment can monitor the position, speed, and torque of the valve/gate 1 in real time. According to the nesting relationship, a nested control mode of torque loop, speed loop, and position loop can be used from the inside out. The torque loop directly affects the torque.
  • the speed loop works on the basis of the torque loop, and obtains the current value of the valve/gate 1 from the feedback of the valve driver 4 or the position sensor 6 through the basic principle of open-loop vector control speed and exert influence through the torque ring to meet different The speed requirements of the stage;
  • the position loop works on the basis of the speed loop and the torque loop as an optional and supplementary item. It is the outermost adjustment. It judges and adjusts the output based on the feedback from the valve driver 4 or the position sensor 6 to meet the control logic. and stop position accuracy requirements.
  • the position sensor 6 may be a full-stroke sensor and/or a point sensor to achieve full-stroke high-precision position control.
  • the position sensor 6 can be installed on the output shaft of the AC asynchronous motor 3, the output shaft of the valve reduction transmission box 21 or the input shaft or output shaft of the valve driving mechanism 22, and is connected to the logic through the signal conversion module/IO module 45 Control module or frequency conversion control module connection.
  • the invention is compatible with full-stroke sensors and point-type sensors, and is suitable for combinations of full-stroke sensors, point-type sensors, full-stroke sensors and point-type sensors.
  • the selection of the position sensor 6 is related to the type of the valve/gate 1, the mechanical structural characteristics of the valve/gate 1, the use environment of the valve/gate 1, and the production technology level of the valve/gate 1.
  • valve driver 4 Change does not depend on the valve driver 4 Change according to needs.
  • the different stages of valve/door 1 execution are accurately divided according to continuous position signals (the present invention can include a starting stage, an acceleration stage, a uniform speed stage, a deceleration stage, a slow approach stage, and a torque control stage). and stop stage, etc.), reasonably control the starting position, end position, speed, torque, acceleration, deceleration and other parameters of each stage to achieve the expected execution effect.
  • the invention cooperates with different interface conversion hardware and can be adapted to various types of full-stroke sensors.
  • node-type sensors still occupy a certain proportion in valve actuator systems due to their low cost, easy installation, and strong environmental adaptability.
  • the different processes performed by the valve are limitedly identified and divided based on discrete node position signals, and the execution results of opening or closing are guaranteed while ensuring safety.
  • the point-type sensors are used as protection devices or safety redundant devices for safety protection at extreme or special locations, just like systems with only full-stroke sensors pre-installed.
  • the compatibility of the present invention in terms of sensor types and forms broadens its use scope and applicable environment, and also improves the safety of its applicable process.
  • FIG. 7 is a schematic diagram of a frequency conversion control module according to an embodiment of the present invention.
  • the frequency conversion control module 42 of this embodiment can be built by a microcontroller or a DSP chip and peripheral circuits, and can also be used to generate the motor's characteristic parameters and torque vector control algorithm, and drive the AC asynchronous motor 3 with the cooperation of the inverter circuit of the frequency conversion drive module 43.
  • the logic control module 41 and the frequency conversion control module 42 can be integrated into a core controller 44, and the variable frequency drive module 43 is connected to the core controller 44 and the AC asynchronous motor 3 respectively. connection, the core controller 44 and the variable frequency drive module 43 can also be integrated into a drive module.
  • the core controller 44 adjusts the output torque or output torque limit of the variable frequency drive module 43 in real time to meet the valve/gate 1 control strategy. requirements; or the logic control module 41, the frequency conversion control module 42 and the frequency conversion drive module 43 can also be integrated into one drive module. That is to say, the logic control, frequency conversion control and drive output functions of the valve driver 4 can be separately arranged on different modules, or can be combined and integrated into one module.
  • the core controller 44 serves as the signal judgment and logic control core, preferably a microcontroller and a DSP, and can be equipped with a logic processor, IO system, internal bus, etc.;
  • the variable frequency drive module 43 serves as the basic module of vector frequency conversion control and can be equipped with digital signals Processors, power conversion circuits, power drive circuits, etc.
  • the valve driver 4 can also include a wireless communication module, a detection and protection module 46, an IO module, a human-computer interaction module 48, a field bus module, a measurement conversion module, a temperature control module 47, and a power supply battery. and cable plug-ins, etc.
  • the wireless communication module is used for connection and information exchange with remote controls and external portable devices.
  • the detection and protection module 46 is used for rectification, filtering, inversion and other electric energy conversion when driving the AC asynchronous motor 3, Can include rectifier circuit, DC circuit, inverter circuit, detection circuit, etc.; IO module is used for connection, conversion and protection of input and output signals, and can include IO power supply circuit, digital input circuit, digital output circuit, analog input circuit , analog output circuit, etc.; the human-computer interaction module 48 is used to enter parameters and instructions and display operating status and alarm information, which can include a display screen and button panel, etc.; the field bus module is used to communicate with the host computer and external monitoring equipment.
  • the measurement conversion module is used to convert the sinusoidal voltage signal, TTL rectangular wave signal, HTL rectangular wave signal collected by the encoder to collect valve/door displacement information into an open collector signal and feed it back to the logic control
  • the module 41 may include a signal conversion circuit, a high-speed counting circuit, etc.
  • the temperature control module 47 is used to control the temperature of the entire machine and may include a temperature sensor, a cooling fan, an aluminum heat sink, etc.
  • the valve driver 4 can be used for all action control, information display, alarm and protection of the switch valve/door 1.
  • a torque sensor 7 may also be included for obtaining the real-time torque.
  • the real-time torque may be obtained directly through the torque sensor 7 , and the torque sensor 7 may be installed on the
  • the output shaft of the AC asynchronous motor 3, the output shaft of the valve reduction transmission box 21 or the valve driving mechanism 22 is connected to the real-time torque detection unit, and the measured real-time torque signal is transmitted to the real-time torque detection unit to
  • the torque correction unit uses a PID control algorithm to correct the output torque or the output torque limit.
  • the logic control module 41 also includes an output current detection unit connected to the real-time torque detection unit, that is, the real-time torque is preferably obtained through the output current detection result combined with the vector transformation method.
  • the output current detection unit detects the physical parameters of the AC asynchronous motor and transmits them to the real-time torque detection unit.
  • the real-time torque detection unit calculates and obtains the real-time torque and transmits it to the torque correction unit, for example, through a logic control module
  • the current detection circuit in the frequency conversion control module detects and obtains the physical parameters, which may include stator resistance, rotor resistance, stator and rotor mutual inductance, stator and rotor leakage inductance and/or no-load current.
  • the three-phase AC signal of the AC asynchronous motor 3 can be converted into the torque component i sT of the stator current and the excitation component i sM of the stator current through coordinate transformation, and the rotor magnetic field orientation vector control is adopted according to the different magnetic field orientations.
  • the output torque operates within the range of the set torque, which is the expected value.
  • the present invention can also use the valve driver 4 to identify the physical parameters of the AC asynchronous motor 3 in advance.
  • the stator resistance, rotor resistance, stator and rotor mutual inductance, and stator and rotor leakage inductance of the AC asynchronous motor 3 are Collect other parameters to ensure the accuracy of the basic parameters in torque vector control.
  • the logic control module 41 may also include a physical parameter identification unit for obtaining the physical parameters of the AC asynchronous motor 3 to perform more accurate torque vector control on the AC asynchronous motor 3 .
  • AC and DC excitation signals can be input to the AC asynchronous motor 3 and the stator current feedback can be monitored in real time, and the above-mentioned relevant parameters can be calculated and obtained based on the numerical values and phase relationships of voltage and current.
  • the no-load current is used to estimate the torque consumption (such as friction, ventilation, core loss, etc.) of the AC asynchronous motor 3 during operation and to compensate its output torque.
  • the no-load current is preferably 20% to 50% of the rated current of the motor. .
  • This embodiment uses an output current detection circuit for parameter detection, collects and calculates real-time torque (which can be calculated from the rotor equivalent self-inductance, rotor equivalent mutual inductance, rotor flux linkage, stator current torque component, etc. Obtained) as the feedback quantity, and use the PID control principle to perform closed-loop control and correction of the output torque, and finally realize torque vector control to ensure the torque response speed and control accuracy during the operation of the valve/gate 1.
  • the stator resistance of this embodiment can be obtained in the following way:
  • V ⁇ dc DC voltage
  • stator current stator resistance
  • stator resistance Due to the influence of the voltage drop of the switching tube, the actual voltage applied to the stator will produce a certain error. In order to eliminate the error, multiple different voltage signals can be applied, and the slope of the stator voltage and stator current is taken as the stator resistance.
  • the rotor resistance, stator and rotor mutual inductance, and stator and rotor leakage inductance in this embodiment can be obtained in the following ways:
  • the electromagnetic phenomena of the AC asynchronous motor 3 under the excitation of a single-phase sinusoidal signal are basically the same as those under the excitation of a three-phase sinusoidal signal. They can be identified by this method. At the same time, the motor torque is zero at this time and the motor remains stationary.
  • the motor equivalent circuit can be replaced by a three-phase equivalent circuit.
  • p is the differential operator
  • R 1 is the stator resistance
  • R r is the rotor resistance
  • L s ⁇ is the stator leakage inductance
  • L r ⁇ is the rotor leakage inductance
  • L m is the stator and rotor mutual inductance
  • is the rotor speed, cage rotor
  • the output W phase is disconnected, and the U phase and V phase control the on and off of the inverter according to the H-bridge sinusoidal voltage quenching and tempering signal, thereby generating a sinusoidal voltage excitation signal.
  • the sinusoidal voltages of the U phase and V phase are Then the phase voltage and phase current in the AC asynchronous motor 3 satisfy the following relationship:
  • V Un , V Vn , and V wn are the relative midpoint voltages of U-phase, V-phase, and W respectively.
  • FIG. 10 is an equivalent circuit diagram of the motor inverse ⁇ according to an embodiment of the present invention. It is the circuit after equivalent changes are made to T. The relationship between the circuit parameters obtained after the change and the T-type equivalent circuit parameters is:
  • the rotor magnetic field orientation vector control is preferably adopted, the magnetic field orientation is performed according to the direction of the rotor's full flux linkage vector, and the real-time torque Te is obtained using the following formula:
  • n p is the number of motor pole pairs of the AC asynchronous motor 3
  • L md is the equivalent mutual inductance of one phase winding when the stator and rotor of the AC asynchronous motor 3 are coaxial
  • L rd is the The equivalent self-inductance of the rotor one-phase winding
  • i sT is the torque component of the stator current of the AC asynchronous motor 3
  • ⁇ r is the rotor flux linkage of the AC asynchronous motor 3 .
  • ⁇ rM is the M-axis component of the rotor's full flux linkage
  • ⁇ rT is the T-axis component of the rotor's full flux linkage
  • i rM is the M-axis component of the rotor current
  • i rT is the T-axis component of the rotor current
  • n p is the number of pole pairs of the motor
  • i sT is the torque component of the stator current
  • ⁇ r is the rotor flux linkage
  • p is the differential operator
  • i sM is the excitation component of the stator current.
  • direct torque control can also be used, and the real-time torque Te is obtained using the following formula:
  • n p is the number of motor pole pairs of the AC asynchronous motor 3
  • L m is the stator and rotor mutual inductance
  • L s is, L r is, ⁇ s is the stator flux
  • ⁇ r is the rotor flux
  • ⁇ sr is the rotational speed.
  • the moment angle is the angle between the vectors ⁇ s and ⁇ r .
  • This direct torque control is based on the mathematical model of the stator shaft system and uses the space vector analysis method to achieve motor control. Its control principle is as follows:
  • u s is the stator shaft system voltage vector.
  • ⁇ sr is the torque angle, which is the angle between the vectors ⁇ s and ⁇ r .
  • slip frequency vector control can be used to orient the magnetic field according to the slip frequency vector, and obtain the real-time torque Tei using the following formula:
  • n p is the number of motor pole pairs of the AC asynchronous motor 3
  • T r is the rotor electromagnetic time constant.
  • L rd is the equivalent self-inductance of the rotor one-phase winding of the AC asynchronous motor 3
  • ⁇ r is the rotor flux
  • ⁇ s1 is the slip angular frequency.
  • Slip frequency vector control can be carried out based on the rotor magnetic field directional vector control. Its control principle is as follows:
  • ⁇ s1 is the slip angular frequency.
  • n p is the number of motor pole pairs of the AC asynchronous motor 3
  • ⁇ s is the stator flux linkage of the AC asynchronous motor 3
  • isT is the torque component of the stator current of the AC asynchronous motor 3 .
  • the magnetic field is oriented according to the direction of the stator flux vector.
  • ⁇ s is the stator flux
  • ⁇ sM is the M-axis component of the stator's full flux
  • ⁇ sT is the T-axis component of the stator's full flux
  • Equation (2-13) is the decoupler module algorithm, which can directly calculate the stator flux vector ⁇ s through the voltage and current detected on the stator side, thereby achieving decoupling.
  • n p is the number of motor pole pairs of the AC asynchronous motor 3
  • ⁇ m is the air gap flux linkage
  • isT is the torque component of the stator current.
  • the magnetic field is oriented according to the direction of the air gap flux linkage vector.
  • the control device also includes a torque calibration device 5, which is detachably connected to the AC asynchronous motor 3 and connected to the logic control module 41 for performing torque calibration on the AC asynchronous motor 3 to correct the torque.
  • the AC asynchronous motor 3 can be connected to the valve driver 4 Connect, after correctly setting the basic parameters of the system and performing parameter identification, select no less than 10 torque values evenly distributed within the range of 10% to 200% of the rated torque of the AC asynchronous motor as detection points, and the valve driver 4 follows the calibration logic Change the set torque of the AC asynchronous motor 3 point by point and drive the AC asynchronous motor 3 to load; then install and fix the torque calibration device 5 on the output shaft of the AC asynchronous motor 3, and connect it through a wired signal cable or wireless communication module Connected to the valve driver 4, use the torque calibration device 5 to detect the output torque of the AC asynchronous motor 3 corresponding to the set torque at each point and record it; repeat the above loading process for each detection point no less than 3 times and take the arithmetic average The value is used as the output torque detection result of this detection point; and the valve driver 4 counts and analyzes the above detection data, compares the deviation of the set torque with the corresponding output torque and generates a set of statistical data,
  • the valve driver 4 can perform corrections to obtain a more accurate output torque in the torque control stage.
  • This embodiment only takes the comparison between the set torque and the corresponding output torque as an example.
  • the following table is based on an AC asynchronous motor 3 with a rated power of 0.55kW, a rated speed of 1450rpm, and a rated torque of 3.6Nm.
  • controlling and correcting the low speed and locked-rotor torque of the AC asynchronous motor 3 can achieve accurate sealing pressure during the closing process of the valve/door 1.
  • the locked-rotor torque error of the AC asynchronous motor 3 is preferably controlled at ⁇ 10% of the rated torque ( Preferably within the range of ⁇ 4%) to stably and effectively control the sealing specific pressure of the valve/door 1 to close.
  • the discrete detection point data in the statistical table can also be integrated into a piecewise function that describes the relationship between the set torque and the corresponding output torque (as shown in Figure 11, it is a relatively continuous, first-order, connected, polyline segment with different slopes) , for query and use in the torque control process.
  • the above data describes the relationship between the set torque and the output torque of the AC asynchronous motor 3 with evenly distributed and sufficiently dense feature points.
  • the error between the set torque and the output torque is within the range of ⁇ 10% (preferably ⁇ 4%) of the rated torque.
  • ⁇ 10% preferably ⁇ 4%
  • the relationship between the set torque and the output torque can be expressed in the form of a piecewise straight line equation and used to correct the output torque. Since the test results in the correspondence table are discrete data, in actual use, the data between the test points is inserted and supplemented by the line segment equation between two adjacent points.
  • x is the set torque, and 0.5 ⁇ x ⁇ 1.0, and y is the measured torque.
  • piecewise equations can be used to correspond the set torque and the output torque, so as to achieve the purpose of correcting the output value and accurately controlling the torque.
  • the invention also provides a control method for the electric valve/door.
  • the control method adopts the above-mentioned control device and aims to ensure that the valve/door execution process can be "opened”, “closed tightly” and “stopped accurately”. It is a complete control device and method for a microprocessor software program to drive an AC asynchronous motor to drag a valve/gate through vector frequency conversion technology.
  • a microprocessor software program to drive an AC asynchronous motor to drag a valve/gate through vector frequency conversion technology.
  • the algorithm instantly corrects the output torque or output torque limit of the valve driver 4 to adjust the output torque of the AC asynchronous motor 3 in real time to meet the response speed of each stage of the opening and closing process of the valve/door 1 and control accuracy requirements.
  • This control method can use the logic control module to set the corresponding set torque according to the requirements of each stage of the opening and closing process of the valve/gate 1; the frequency conversion control module controls the frequency conversion drive module to use the set torque as the output torque or output torque limit.
  • the value drives the AC asynchronous motor 3 to perform the corresponding opening or closing action of the valve/door 1;
  • the real-time torque detection unit detects the real-time torque of the operation of the AC asynchronous motor 3 or the valve/door 1;
  • the torque correction unit operates according to the real-time torque and settings Torque, using the set torque as input and the real-time torque as feedback, uses a PID control algorithm to modify the output torque to instantly adjust the response speed and control accuracy of the output torque according to the real-time torque.
  • the opening or closing process of the valve/gate 1 repeat the above real-time torque detection and torque correction steps until the opening or closing of the valve/gate 1 is in place, so as to achieve the torque during the opening or closing operation of the valve/gate 1 Closed-loop control.
  • the invention can be applied to the opening and closing control of various valves/doors 1, and satisfies the control of different working conditions such as sliding doors, swing doors, revolving doors, louver doors, gate valves, globe valves, ball valves, butterfly valves, plug valves, air valves, etc. Require.
  • the regulating valve achieves control of different flow characteristics by accurately adjusting the opening of the valve/gate 1 or the process movement speed, such as equal percentage control characteristics, direct control characteristics, quick opening control characteristics, and parabolic control characteristics. For the positioning of any position in the middle of the regulating valve, each adjustment can be regarded as a complete working movement process.
  • the switching angle of a ball valve changes from 45° to 60° during flow adjustment
  • the working process it goes through is the starting stage, acceleration stage, uniform speed stage, deceleration stage, approach stage and stop stage.
  • the switching valve needs to realize the switching action at a certain speed and needs to ensure the sealing when closing. Therefore, compared with the regulating valve, it can increase the torque control process.
  • the closing process of the gate valve can be divided into starting stage, acceleration stage, uniform speed stage, and deceleration. phase, slow approach phase, torque control phase and stop phase.
  • the present invention can achieve dynamic control of the output torque and static correction of the set torque respectively; it is established from the inside out in a multiple PID nesting manner.
  • Torque loop, speed loop and position loop, and the closed-loop level or nesting depth is selected according to the needs of different stages of the valve/gate 1 execution process, realizing the three-closed-loop full-stroke quasi-servo control of the position, speed and torque of the ordinary AC asynchronous motor 3 , thereby ensuring that the execution process of the valve/gate 1 is rapid and precise, and the execution results are accurate and effective, that is, the method of using external nested speed closed loops and position closed loops to nest the torque closed loop (such as current closed loop) is improved.
  • phased combination control can be realized to meet the needs of Requirements for quick opening and closing, water hammer elimination, regulating valve working conditions, and fault response.
  • overfrequency overspeed
  • overcurrent overtorque

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

一种电动阀/门及其控制装置和控制方法,该电动阀/门(1)包括控制装置,该控制装置包括交流异步电动机(3)、传动装置(2)和阀门驱动器(4),阀门驱动器(4)与交流异步电动机(3)连接,交流异步电动机(3)通过传动装置(2)与电动阀/门(1)连接,阀门驱动器(4)采集交流异步电动机(3)或电动阀/门(1)运行的实时扭矩信息,并以阀门驱动器(4)的设定扭矩为输入,以实时扭矩为反馈,采用PID控制算法对阀门驱动器(4)的输出扭矩或输出扭矩限值进行即时修正,以实时调整驱动交流异步电动机(3)的输出扭矩,满足电动阀/门(1)执行开启和关闭过程各阶段的响应速度和控制精度要求。

Description

一种电动阀/门及其控制装置和控制方法 技术领域
本发明涉及阀/门控制技术,特别是一种电动阀/门及其控制装置和控制方法。
背景技术
现有技术的阀/门电动装置大多采用电源直接启动交流异步电动机,通过驱动器控制电动机带动机械传动机构驱动阀/门运行,实现开阀/关阀。交流异步电动机因结构简单、运行可靠、重量轻、价格便宜且启动扭矩较大等优点,在阀/门电动装置中获得较广泛应用,但在使用过程中存在如下问题:
1)交流异步电动机的扭矩控制精度低,扭矩和转速动态范围小(峰值扭矩和速度受限),加上介质温度、异物、锈蚀等因素影响,交流异步电动机的驱动扭矩无法克服阻力矩,导致开阀时阀/门打不开;阀/门在运行过程中交流异步电动机的转速固定,开阀/关阀速度不变,关阀到达止点时造成阀座的动载荷过载,导致阀/门关严后打不开;
2)开阀/关阀的停止方式采用点位式触发停止,即在阀体的开阀/关阀停止点分别设置一个行程开关(或干簧管),依据行程开关(或干簧管)到位信号停止阀/门;由于行程开关(或干簧管)固有的触点机械间隙和重复控制精度误差较大,造成阀/门未关严停止或阀/门关严后无法停止,导致阀/门内漏或交流异步电动机无法停止而烧毁;且采用点位式触发停止方式无法实现全行程高精度位置控制,同时操作者无法获得阀/门的实时位置信息;
3)无法控制关阀到位时的阀座的受力大小,易造成阀/门关不严,导致阀/门内漏;阀/门长期使用中磨损、老化、电参数漂移等导致的特性变化,导致理论输出值和实际输出值误差大,关阀到位时的阀座的受力大小不稳定;
4)未考虑交流异步电动机物理特性差异,导致扭矩、速度、位置控制精度差,扭矩和转速动态范围小,批量产品性能不一致。
发明内容
本发明所要解决的技术问题是针对现有技术的上述缺陷,提供一种电动阀/门及其控制装置和控制方法。
为了实现上述目的,本发明提供了一种电动阀/门的控制装置,包括交流异步电动机、传动装置和阀门驱动器,所述阀门驱动器与所述交流异步电动机连接,所述交流异步电动机通过所述传动装置与阀/门连接,其中,所述阀门驱动器采集所述交流异步电动机或阀/门运行的实时扭矩信息,并以所述阀门驱动器的设定扭矩为输入,以所述实时扭矩为反馈,采用PID控制算法对所述阀门驱动器的输出扭矩或输出扭矩限值进行即时修正,以实时调整驱动所述交流异步电动机的输出扭矩,满足所述阀/门执行开启和关闭过程各阶段的响应速度和控制精度要求。
上述的电动阀/门的控制装置,其中,所述阀门驱动器包括壳体和安装在所述壳体内的和逻辑控制模块、变频控制模块和变频驱动模块,所述变频驱动模块与所述交流异步电动机连接,所述逻辑控制模块通过所述变频控制模块与所述变频驱动模块连接,所述逻辑控制模块通过所述变频控制模块实时调整所述变频驱动模块的输出扭矩或输出扭矩限值,所述逻辑控制模块包括:
扭矩设定单元,根据阀/门执行开启和关闭过程各阶段的需求设定相应的所述设定扭矩;
扭矩输出单元,将所述设定扭矩发送至所述变频驱动模块,所述变频驱动模块以所述设定扭矩为输出扭矩或输出扭矩限值驱动所述交流异步电动机执行相应的阀/门开启或关闭动作;
实时扭矩检测单元,获取所述交流异步电动机或阀/门运行的所述实时扭矩;以及
扭矩修正单元,根据所述实时扭矩和设定扭矩采用PID控制算法修正所述输出扭矩或输出扭矩限值,并将修正后的所述输出扭矩或输出扭矩限值传送至所述扭矩输出单元,所述扭矩输出单元将修正后的所述输出扭矩通过所述变频控制模块传送至所述变频驱动模块,所述变频驱动模块驱动所述交流异步电动机实时响应。
上述的电动阀/门的控制装置,其中,所述逻辑控制模块还包括输出电流检测单元,与所述实时扭矩检测单元连接,所述输出电流检测单元检测所述交流 异步电动机的物理参数并传送至所述实时扭矩检测单元,所述实时扭矩检测单元计算获得所述实时扭矩并传送至所述扭矩修正单元,所述物理参数包括定子电阻、转子电阻、定转子互感、定转子漏感和/或空载电流。
上述的电动阀/门的控制装置,其中,还包括扭矩传感器,用于获取所述实时扭矩,所述扭矩传感器安装在所述交流异步电动机的输出轴、阀门减速传动箱的输出轴或阀门驱动机构上,并与所述实时扭矩检测单元或变频控制模块连接,将测得的实时扭矩信号传送至所述实时扭矩检测单元或变频控制模块。
上述的电动阀/门的控制装置,其中,还包括位置传感器,所述逻辑控制模块还包括速度控制单元,与所述位置传感器连接,用于采集所述位置传感器的反馈信号获取阀门当前速度,通过PID控制算法对所述交流异步电动机的输出速度进行修正,并与所述扭矩修正单元叠加修正所述输出扭矩,以满足所述阀/门开启或关闭各阶段的速度要求。
上述的电动阀/门的控制装置,其中,所述逻辑控制模块还包括位置控制单元,与所述位置传感器连接,用于根据所述位置传感器的反馈信号判断是否到达所述阀/门开启或关闭过程各阶段的位置节点,并根据判断结果进一步调整所述输出扭矩,以满足所述阀/门开启或关闭各阶段的控制逻辑和停止位置精度的要求。
上述的电动阀/门的控制装置,其中,所述位置传感器为全行程传感器和/或点位式传感器,所述位置传感器安装在所述交流异步电动机的输出轴、传动装置的减速传动箱的输出轴或阀门驱动机构上。
上述的电动阀/门的控制装置,其中,还包括扭矩标定装置,与所述交流异步电动机可拆卸连接,并与所述逻辑控制模块连接,用于对所述交流异步电动机进行扭矩标定,以修正所述阀门驱动器的输出扭矩。
为了更好地实现上述目的,本发明还提供了一种电动阀/门的控制方法,其中,采用上述的电动阀/门的控制装置,通过采集交流异步电动机或阀/门运行的实时扭矩信息,并以阀门驱动器的设定扭矩为输入,以所述实时扭矩为反馈,采用PID控制算法对所述阀门驱动器的输出扭矩进行即时修正,以实时调整驱动所述交流异步电动机的输出扭矩,满足所述阀/门执行开启和关闭过程控制策略的要求。
为了更好地实现上述目的,本发明还提供了一种电动阀/门,其中,包括上 述的电动阀/门的控制装置。
本发明的技术效果在于:
本发明以设定扭矩为输入,以检测的交流异步电动机或阀/门运行的实时扭矩为反馈,采用PID控制算法对驱动过程中的输出扭矩进行修正,根据实时扭矩即时调节输出扭矩,实现了电动阀/门开启和关闭的扭矩闭环控制,有效提高了输出扭矩响应速度和控制精度;另外,本发明还可采用多重PID嵌套的方式由内而外分别建立扭矩环(也可为电流环)、速度环和位置环控制,并根据阀/门执行过程不同阶段的需求选择闭环层级或嵌套深度,能够根据开关阀/门全行程负载变化,通过优化速度和扭矩的匹配参数,实现了对普通交流异步电动机扭矩、速度、位置的精准控制,从而保证阀/门“关得严”,“停得准”和“打得开”;同时基于阀/门运动的启动阶段、加速阶段、匀速阶段、减速阶段、慢速逼近阶段、扭矩控制阶段和停止阶段,可实现分阶段组合控制,满足了阀/门快开快关、水锤消除、调节阀工况、故障应对的要求;通过短时“超频”(超速)和“超电流”(超扭矩),较现有技术阀门驱动器可选用更小额定规格的交流异步电动机,进而可减小产品体积和重量并降低成本,改善管道系统的动态特性;提高普通交流异步电动机负载平滑性控制的同时,还可降低对电网的冲击。
以下结合附图和具体实施例对本发明进行详细描述,但不作为对本发明的限定。
附图说明
图1为本发明一实施例的电动阀/门结构示意图;
图2为本发明另一实施例的电动阀/门结构示意图;
图3为本发明一实施例的电动阀/门结构框图;
图4为本发明一实施例的阀门驱动器结构框图;
图5为本发明另一实施例的阀门驱动器结构框图;
图6为本发明一实施例的逻辑控制模块原理图;
图7为本发明一实施例的变频控制模块原理图;
图8为本发明一实施例的定子电阻识别等效电路图;
图9为本发明一实施例的电机T等效电路图;
图10为本发明一实施例的电机反Γ等效电路图;
图11为本发明一实施例的扭矩标定中设定扭矩与输出扭矩对应关系图。
其中,附图标记
1阀/门
2传动装置
21减速传动箱
22阀门驱动机构
3交流异步电动机
4阀门驱动器
41逻辑控制模块
42变频控制模块
43变频驱动模块
44核心控制器
45信号转换模块/IO模块
46检测和保护模块
47温度控制模块
48人机交互模块
5扭矩标定装置
6位置传感器
7扭矩传感器
8电源
具体实施方式
下面结合附图对本发明的结构原理和工作原理作具体的描述:
参见图1-图3,图1为本发明一实施例的电动阀/门结构示意图,图2为本发明另一实施例的电动阀/门结构示意图,图3为本发明一实施例的电动阀/门结构框图。针对现有技术中阀/门存在“打不开”、关不严”、“停不准”的问题,本发明根据阀/门在使用现场各种不同的工况要求匹配不同的控制策略,例如开/关阀门的效率(时间)优先、开/关阀门的位置精度优先、开/关阀门的扭矩精度优先、开/关阀门的阀门安全优先、开/关阀门的管线安全优先,开/关 阀门的管路系统平稳性优先等,并提供了满足以上执行策略的电动阀/门及其控制装置和控制方法。本发明的电动阀或电动门,包括阀/门1和控制装置,该控制装置包括传动装置2、交流异步电动机3和阀门驱动器4,所述交流异步电动机3通过所述传动装置2与所述阀/门1连接,所述阀门驱动器4分别与电源8和交流异步电动机3连接,并通过所述交流异步电动机3控制所述阀/门1的开闭,传动装置2可包括减速传动箱21和阀门驱动机构22,减速传动箱21分别与交流异步电动机3的输出轴及阀门驱动机构22的输入端连接,阀门驱动机构22输出端与阀/门1连接,实现阀/门1的驱动。所述阀门驱动器4与所述交流异步电动机3可为一体连接件(参见图1);或所述阀门驱动器4与所述交流异步电动机3分体设置,并通过电缆或无线连接(参见图2),即可将机械驱动和电气驱动分离设置,以满足安装空间狭小、高温、辐射、高湿、强磁干扰等苛刻应用环境的要求。本发明电动阀/门其他部件的组成、结构、相互位置关系、连接关系及其工作原理等,均为较成熟的现有技术,故在此不做赘述,下面仅对本发明的控制装置及其工作原理予以详细说明。
本发明的控制装置,通过阀门驱动器4采集所述交流异步电动机3或阀/门1运行的实时扭矩信息,并以所述阀门驱动器4的设定扭矩为输入,以所述实时扭矩为反馈,采用PID控制算法对所述阀门驱动器4的输出扭矩或输出扭矩限值进行即时修正,以实时调整驱动所述交流异步电动机3的输出扭矩,满足所述阀/门1执行开启和关闭过程各阶段的响应速度和控制精度要求。
参见图4及图5,图4为本发明一实施例的阀门驱动器4结构框图,图5为本发明另一实施例的阀门驱动器4结构框图。本发明的阀门驱动器4,包括壳体和安装在所述壳体内的逻辑控制模块41、变频控制模块42和变频驱动模块43,所述变频驱动模块43与交流异步电动机3连接,所述逻辑控制模块41通过所述变频控制模块42与所述变频驱动模块43连接,所述逻辑控制模块41通过所述变频控制模块42实时调整所述变频驱动模块43的输出扭矩或输出扭矩限值。
参见图6,图6为本发明一实施例的逻辑控制模块原理图。本实施例的逻辑控制模块41可用于整机逻辑控制,可以存储并执行控制程序,该逻辑控制模块41可采用单片机、DSP、PLC等,可包括程序存储器、数据存储器、中央处理器(CPU)、IO接口、内部总线等。本实施例的所述逻辑控制模块41 主要包括:扭矩设定单元,用于根据阀/门1执行开启和关闭过程各阶段的需求设定相应的设定扭矩;扭矩输出单元,分别与所述扭矩设定单元和所述变频控制模块42连接,将所述设定扭矩发送至所述变频驱动模块43,所述变频驱动模块43以所述设定扭矩为输出扭矩或输出扭矩限值驱动所述交流异步电动机3执行相应的阀/门1开启或关闭动作;实时扭矩检测单元,与所述交流异步电动机3或阀/门1的传动装置2连接,并用于获取所述交流异步电动机3或阀/门1运行的实时扭矩;以及扭矩修正单元,分别与所述扭矩设定单元、实时扭矩检测单元和扭矩输出单元连接,根据所述实时扭矩和扭矩设定单元输出的设定扭矩修正所述输出扭矩,并将修正后的输出扭矩传送至所述扭矩输出单元;其中,扭矩修正单元根据所述实时扭矩和设定扭矩,以所述设定扭矩为输入,以所述实时扭矩为反馈,采用PID控制算法对所述输出扭矩或输出扭矩限值进行修正,并将修正后的所述输出扭矩传送至所述扭矩输出单元,所述扭矩输出单元将修正后的所述输出扭矩或输出扭矩限值通过所述变频控制模块42传送至所述变频驱动模块43,所述变频驱动模块43驱动所述交流异步电动机3实时响应。
为了进一步提高控制精度,本实施例中,该控制装置还包括位置传感器6,所述逻辑控制模块41还包括速度控制单元,与所述位置传感器6连接,用于采用开环矢量控制方法或采集所述位置传感器6的反馈信号获取阀门当前速度,通过PID控制算法对所述交流异步电动机3的输出速度进行修正,并与所述扭矩修正单元叠加修正所述输出扭矩,以满足所述阀/门1开启或关闭各阶段的速度要求。
在本发明的另一实施例中,所述逻辑控制模块41还可包括位置控制单元,与所述位置传感器6连接,用于根据所述位置传感器6的反馈信号判断是否到达所述阀/门1开启或关闭过程各阶段的位置节点,并根据判断结果进一步调整所述输出扭矩,以满足所述阀/门1开启或关闭各阶段的控制逻辑和停止位置精度的要求。本实施例可对阀/门1的位置、速度、扭矩实时监控,按照嵌套关系由内而外可采用扭矩环、速度环、位置环的嵌套控制模式,其中,扭矩环直接影转矩,响应快精度高,可以满足实时控制电机输出扭矩的要求;速度环在扭矩环基础上工作,通过开环矢量控制的基本原理自阀门驱动器4或位置传感器6的反馈获取阀/门1的当前速度,并通过扭矩环施加影响,以满足不同 阶段对速度的要求;位置环作为可选和补充项在速度环和扭矩环基础上工作,是最外层调节,其根据阀门驱动器4或位置传感器6的反馈判断并调节输出,以满足控制逻辑和停止位置精度的要求。
其中,所述位置传感器6可为全行程传感器和/或点位式传感器,以实现全行程高精度位置控制。所述位置传感器6可安装在所述交流异步电动机3的输出轴、阀门减速传动箱21的输出轴或阀门驱动机构22的输入轴或输出轴上,并通过信号转换模块/IO模块45与逻辑控制模块或变频控制模块连接。本发明对全行程传感器和点位式传感器兼容,适用于全行程传感器、点位式传感器、全行程传感器和点位式传感器的组合。实践中,位置传感器6的选用与阀/门1的类别、阀/门1的机械结构特点、阀/门1的使用环境及阀/门1的生产技术水平等有关,一般不因阀门驱动器4需求而改变。在预装全行程传感器的系统中,根据连续的位置信号准确划分阀/门1执行的不同阶段(本发明可包括启动阶段、加速阶段、匀速阶段、减速阶段、慢速逼近阶段、扭矩控制阶段和停止阶段等),对每个阶段的开始位置、结束位置、速度、扭矩、加速度、减速度等参数进行合理控制以达到预期的执行效果。本发明配合不同的接口转换硬件,可适应各种类型的全行程传感器。
其中,节点点位式传感器因成本低廉、安装方便、环境适应性强,在阀门执行系统中仍占有一定的比例。在预装节点点位式传感器的系统中,根据离散的节点位置信号有限辨识和划分阀门执行的不同过程,并在确保安全的前提下确保开启或关闭的执行结果。在预装全行程传感器和点位式传感器的系统中,与仅预装全行程传感器的系统相同,点位式传感器作为保护器件或安全冗余器件进行极限或特殊位置的安全保护。本发明在传感器种类和形式方面的兼容性拓宽了其使用范围和适用环境,也提升了其适用过程的安全性。
参见图7,图7为本发明一实施例的变频控制模块原理图。本实施例的变频控制模块42可由单片机或DSP芯片和外围电路搭建,也可用于电机的特性参数和扭矩矢量控制算法生成,在变频驱动模块43的逆变电路的配合下驱动交流异步电动机3,可包括程序存储器、数据存储器、中央处理器(CPU)、IO接口和内部总线等。
如图5所示,所述逻辑控制模块41和变频控制模块42可集成在一核心控制器44内,变频驱动模块43分别与所述核心控制器44和交流异步电动机3 连接,该核心控制器44与变频驱动模块43也可一体集成为驱动模块,核心控制器44通过实时调整所述变频驱动模块43的输出扭矩或输出扭矩限值,以满足阀/门1控制策略的要求;或所述逻辑控制模块41、变频控制模块42和所述变频驱动模块43也可集成为一驱动模块。即该阀门驱动器4的逻辑控制、变频控制和驱动输出功能可以分离设置在不同的模块上,也可以合并集成在一个模块上,本发明对该阀门驱动器4内部的具体功能模块的结构、组成及集成方式不做限制,只要能实现实时调整变频驱动模块43的输出扭矩或输出扭矩限值,满足阀/门1控制策略的要求的功能即可。
其中,核心控制器44作为信号判断和逻辑控制核心,优选以单片机和DSP,具体可配备逻辑处理器、IO系统、内部总线等;变频驱动模块43作为矢量变频控制的基础模块,可配备数字信号处理器、电源转换电路、功率驱动电路等。如图4及图5所示,该阀门驱动器4还可包括无线通讯模块、检测和保护模块46、IO模块、人机交互模块48、现场总线模块、测量转换模块、温度控制模块47、供电电池和电缆连插件等,无线通讯模块用于与遥控器、外部便携式设备的连接和信息交换,可包括红外收发电路、蓝牙通讯电路等,及红外通讯、蓝牙通讯、串行总线通讯、以太网通讯等接口,可满足阀门驱动器4与扭矩标定装置5、上位机、云服务器等的有线或无线连接;检测和保护模块46用于驱动交流异步电动机3时的整流、滤波、逆变等电能变换,可包括整流电路、直流电路、逆变电路、检测电路等;IO模块用于输入输出信号的连接、转换和保护,可包括IO供电电路、数字量输入电路、数字量输出电路、模拟量输入电路、模拟量输出电路等;人机交互模块48用于参数和指令录入及运行状态、报警信息的显示,可包括显示屏和按钮面板等;现场总线模块用于与上位机、外部监控设备的信息交换,可包括Modbus总线、CAN总线等;测量转换模块用于将编码器采集阀/门位移信息的正弦电压信号、TTL矩形波信号、HTL矩形波信号转换为集电极开路信号并反馈给逻辑控制模块41,可包括信号转换电路、高速计数电路等;温度控制模块47用于整机温度控制,可包括温度传感器、冷却风扇、铝制散热片等。该阀门驱动器4可用于开关阀/门1所有动作控制、信息显示、报警和保护。
图5所示的实施例中,还可包括扭矩传感器7,用于获取所述实时扭矩,所述实时扭矩可通过扭矩传感器7直接获取,所述扭矩传感器7可安装在所述 交流异步电动机3的输出轴、阀门减速传动箱21的输出轴或阀门驱动机构22上,并与所述实时扭矩检测单元连接,将测得的实时扭矩信号传送至所述实时扭矩检测单元,以供扭矩修正单元采用PID控制算法对所述输出扭矩或输出扭矩限值进行修正。
图4所示的实施例中,所述逻辑控制模块41还包括输出电流检测单元,与所述实时扭矩检测单元连接,即所述实时扭矩优选通过输出电流检测结果结合矢量变换方法获取,所述输出电流检测单元检测所述交流异步电动机的物理参数并传送至所述实时扭矩检测单元,所述实时扭矩检测单元计算获得所述实时扭矩并传送至所述扭矩修正单元,例如可通过逻辑控制模块或变频控制模块内的电流检测电路检测获取所述物理参数,所述物理参数可包括定子电阻、转子电阻、定转子互感、定转子漏感和/或空载电流。
其中,可将所述交流异步电动机3的三相交流信号,经过坐标变换转换为定子电流的转矩分量isT和定子电流的励磁分量isM,并根据磁场定向不同分别采用转子磁场定向矢量控制、直接转矩控制、转差频率矢量控制、定子磁场定向矢量控制或气隙磁场定向矢量控制计算获得所述实时扭矩。也即以矢量扭矩控制为输出方法,以扭矩检测电路(本实施例优选为输出电流检测电路)的检测结果为反馈信号,通过PID闭环调整控制输出扭矩,以使驱动阀/门1实际运行的输出扭矩在设定扭矩即期望值的范围内运行。
为了更精准地实现矢量控制,本发明还可通过该阀门驱动器4对交流异步电动机3的物理参数先行进行辨识,首先对交流异步电动机3的定子电阻、转子电阻、定转子互感、定转子漏感等参数进行采集,以确保扭矩矢量控制中基本参数的准确。即该逻辑控制模块41还可包括物理参数辨识单元,用于获取所述交流异步电动机3的物理参数,以对交流异步电动机3进行更加准确的扭矩矢量控制。可对交流异步电动机3输入交、直流激励信号并实时监测定子电流反馈,根据电压、电流的数值和相位关系计算获得上述各相关参数。空载电流用于估算交流异步电动机3运行过程中的扭矩消耗(如摩擦、通风、铁芯损耗等)并对其输出扭矩加以补偿,该空载电流优选为电机额定电流的20%~50%。
本实施例采用输出电流检测电路进行参数检测,采集并计算获得实时扭矩(可由转子等效自感、转子等效互感、转子磁链、定子电流转矩分量等值计算 获得)作为反馈量,并使用PID控制原理对输出扭矩进行闭环控制和修正,最终实现扭矩矢量控制,确保阀/门1运行过程中的扭矩响应速度和控制精度。本实施例的定子电阻可采用如下方式获取:
控制逆变电源输出单相直流电压,此时可以将该情况下的电机电路图简化为如图8所示:
其中,V`dc=直流电压,=定子电流,R1=定子电阻。
由于开关管压降的影响,实际施加在定子的电压会产生一定的误差。为了消除误差可采用施加多次不同的电压信号,取定子电压与定子电流的斜率作为定子电阻。
本实施例的转子电阻、定转子互感和定转子漏感可采用如下方式获取:
交流异步电动机3在单相正弦信号激励下的电磁现象与三项正弦信号的激励下的电磁现象基本相同,通过此方法来识别,同时此时的电机转矩为零,电机保持静止,此时的电机等效电路可用三相等效电路来代替。
交流异步电动机3的定子转子的矢量方程为:
其中,p为微分算子,R1为定子电阻,Rr为转子电阻,L为定子漏感,L为转子漏感,Lm为定转子互感,ω为转子速度,笼型转子
将输出的W相断开,U相和V相按照H桥式正弦电压调质信号控制逆变器的通断,从而产生正弦电压激励信号,设U相、V相的正弦电压为 则交流异步电动机3中的相电压和相电流满足如下关系:

其中,VUn,VVn,Vwn分别为U相V相W相对中点电压。
此时电机转矩为0,电机此时的T型等效电路图如9所示,一般情况下定子漏感与转子漏感相同,即L=L。图10为本发明一实施例的电机反Γ等效电路图,是对T进行等效变化后的电路,变化后得电路参数T型等效电路参数件的关系为:


由图可得:

上式中是电压初始相位,是电流初始相位。
由式(1-6)~式(1-9)可以得到:
通过反Γ等效电路可以得出阻抗的表达式如下:
对交流异步电动机3分别施加频率为f1和f2的正弦电压信号进行电机单相试验,检测定子电流分子到的等效阻抗,并设R`(f)=R-R1,由式(1-12)可得到反Γ等效电路下电机参数的计算公式


根据T型等效电路和反Γ等效电路参数换算的关系式(1-5),可以分别得到电机转子电阻、定子转子互感、定子转子漏感的计算公式如下:


L=L=L`+L`m-Lm    (1-18)
本发明一实施例中,优选采用转子磁场定向矢量控制,根据转子全磁链矢量方向进行所述磁场定向,并用如下公式获得所述实时扭矩Tei
其中,np为所述交流异步电动机3的电机极对数,Lmd为所述交流异步电动机3的定转子同轴时一相绕组的等效互感,Lrd为所述交流异步电动机3的转子一相绕组的等效自感,isT为所述交流异步电动机3的定子电流的转矩分量,Ψr为所述交流异步电动机3的转子磁链。
其控制原理如下:


其中,ΨrM为转子全磁链M轴分量;ΨrT为转子全磁链T轴分量;irM为转子电流M轴分量;irT为转子电流T轴分量;np为电机极对数; 为转子一相绕组的等效自感;为定转子同轴时一相绕组的 等效互感;isT为定子电流的转矩分量;Ψr为转子磁链;为转子电磁时间常数;p为微分算子;isM为定子电流的励磁分量。
本发明另一实施例中,还可采用直接转矩控制,并用如下公式获得所述实时扭矩Tei
其中,np为所述交流异步电动机3的电机极对数,Lm为定转子互感,Ls为,Lr为,Ψs为定子磁链,Ψr为转子磁链,θsr为转矩角,是矢量Ψs和Ψr之间的夹角。
该直接转矩控制依据定子轴系的数学模型,并使用空间矢量分析方法实现电机控制,其控制原理如下:
定子磁链方程:
其中,us为定子轴系电压矢量。
忽略定子电阻电压降Rsis,有:
Ψ≈∫usdt       (2-18)
转矩方程为:
θsr为转矩角,是矢量Ψs和Ψr之间的夹角。
本发明第三实施例中,可采用转差频率矢量控制,根据转差频率矢量进行所述磁场定向,并用如下公式获得所述实时扭矩Tei
其中,np为所述交流异步电动机3的电机极对数,Tr为转子电磁时间常 数,Lrd为所述交流异步电动机3的转子一相绕组的等效自感,Ψr为转子磁链,ωs1为转差角频率。
转差频率矢量控制可在转子磁场定向量控制基础上进行,其控制原理如下:

其中,ωs1为转差角频率。
本发明第四实施例中,采用定子磁场定向矢量控制,根据定子磁链矢量方向进行所述磁场定向,并用如下公式获得所述实时扭矩Tei
Tei=npΨsisT
其中,np为所述交流异步电动机3的电机极对数,Ψs为所述交流异步电动机3的定子磁链,isT为所述交流异步电动机3的定子电流的转矩分量。
本实施例按照定子磁链矢量方向进行磁场定向,其控制原理如下:

Tei=npΨsisT      (2-7)
其中,Ψs为定子磁链;ΨsM为定子全磁链M轴分量;ΨsT为定子全磁链T轴分量;为漏磁系数;由式(2-8)可知,定子磁链Ψs是isT和isM的函数,彼此间存在耦合,需增加解耦控制器,其控制原理如下:

其中,为定子电流励磁分量给定;为定子磁链给定;iMT为解耦控 制信号;将式(2-9)代入到式(2-8)的第一式中可得:
为借助iMT实现Ψs的解耦控制,使:
(1+σTrp)LsdiMT-σLsdTrωs1isT=0     (2-12)
经变换可得:
式(2-13)是解耦器模块算法,可通过定子侧检测到的电压、电流直接计算定子磁链矢量Ψs,从而实现解耦。
本发明第五实施例中,采用气隙磁场定向矢量控制,根据扭矩气隙磁链矢量方向进行所述磁场定向,并用如下公式获得所述实时扭矩Tei
Tei=npΨmisT
其中,np为所述交流异步电动机3的电机极对数,Ψm为气隙磁链,isT为定子电流的转矩分量。
本实施例按照气隙磁链矢量方向进行磁场定向,其控制原理如下:

Tei=npΨmisT      (2-15)
上述矢量控制方法中决定扭矩控制精度的各物理参数会随着长时间运行而发生改变,且上述控制方法中电机输出扭矩的公式理论上也忽略了系统机械摩擦阻力等因素,因此本发明的一实施例中,该控制装置还包括扭矩标定装置5,与所述交流异步电动机3可拆卸连接,并与所述逻辑控制模块41连接,用于对所述交流异步电动机3进行扭矩标定,以修正所述阀门驱动器4的输出扭矩。即本发明可定期采用扭矩的现场标定以消除上述因素的不利影响,实现系统扭矩控制精度的长期稳定。使用时可将交流异步电动机3与阀门驱动器4连 接,正确设置系统基本参数并执行参数辨识后,在所述交流异步电动机额定扭矩的10%~200%范围内选择均匀分布得不少于10个扭矩值作为检测点,阀门驱动器4按照标定逻辑逐点改变所述交流异步电动机3的设定扭矩并驱动所述交流异步电动机3加载;然后将扭矩标定装置5安装固定在交流异步电动机3的输出轴上,并通过有线信号电缆或无线通讯模块与阀门驱动器4连接,采用扭矩标定装置5检测所述交流异步电动机3对应每点所述设定扭矩的输出扭矩并记录;重复以上每检测点的加载过程不少于3次并取其算数平均值作为此检测点的输出扭矩检测结果;以及由阀门驱动器4统计和分析以上检测数据,比较设定扭矩与相应的所述输出扭矩的偏差并生成成套统计数据,根据统计数据生成各级所述设定扭矩与相应的所述输出扭矩的对应关系图表显示或输出(显示结果可为图表及曲线,及必要的提示信息以供确认),用于修正针对交流异步电动机3的输出扭矩。相关对应图表经确认后,可由阀门驱动器4执行修正,以获得更准确的扭矩控制阶段的输出扭矩。本实施例仅以设定扭矩与相应的所述输出扭矩对比为例予以说明,具体可参见下表,下表是以额定功率0.55kW,额定转速1450rpm,额定扭矩3.6Nm的交流异步电动机3为例,其输出扭矩(即相应检测点的堵转扭矩)和设定扭矩关系。其中,控制和修正交流异步电动机3的低速和堵转扭矩,可使阀/门1关闭过程获得准确的密封比压,交流异步电动机3的堵转扭矩误差优选控制在额定扭矩的±10%(优选为±4%)范围内,以稳定有效地控制阀/门1关闭的密封比压。同时,还可将统计表中离散的检测点数据整合成描述设定扭矩与相应的输出扭矩关系的分段函数(如图11所示,为相对连续,首位相接,斜率不同的折线线段),供扭矩控制过程查询和使用。
表1设定扭矩与相应的输出扭矩对比表

以上数据以均匀分布的足够密集的特征点描述了交流异步电动机3的设定扭矩和输出扭矩的关系。本实施例中,当设定扭矩在额定扭矩范围内时(也是扭矩控制阶段需使用的扭矩范围),设定扭矩和输出扭矩的误差在额定扭矩的±10%(优选为±4%)范围内,有良好的线性关系;当设定扭矩超过额定扭矩时,误差增大。设定扭矩和输出扭矩的关系可以用分段直线方程的方式表示,并用于修正输出扭矩。因对应表中的测试结果是离散数据,实际使用中测试点间数据以相邻两点间线段方程进行插入和补充。如当设定扭矩在0.5至1.0Nm之间时,根据图11中最左侧线段的起点(0.5,0.47)和终点(1.0,0.88)可得其关系曲线方程为:
y=0.82x+0.06;
其中,x是设定扭矩,且0.5≤x≤1.0,y是实测扭矩。
由此可用分段方程将设定扭矩和输出扭矩对应起来,达到修正输出值精准控制扭矩的目的。
本发明还提供了一种电动阀/门的控制方法,该控制方法采用上述控制装置,目的是确保阀/门执行过程“打得开”、“关得严”、“停得准”,核心是微处理器软件程序通过矢量变频技术驱动交流异步电动机拖动阀/门的成套控制装置和方法,通过采集交流异步电动机3或阀/门1运行的实时扭矩信息,并以阀门驱动器4的设定扭矩为输入,以所述实时扭矩为反馈,采用PID控制 算法对所述阀门驱动器4的输出扭矩或输出扭矩限值进行即时修正,以实时调整驱动所述交流异步电动机3的输出扭矩,满足所述阀/门1执行开启和关闭过程各阶段的响应速度和控制精度要求。该控制方法可通过逻辑控制模块根据阀/门1执行开启和关闭过程各阶段的需求设定相应的设定扭矩;变频控制模块控制变频驱动模块以所述设定扭矩为输出扭矩或输出扭矩限值驱动交流异步电动机3执行相应的阀/门1开启或关闭动作;实时扭矩检测单元检测所述交流异步电动机3或阀/门1运行的实时扭矩;扭矩修正单元根据所述实时扭矩和设定扭矩,以所述设定扭矩为输入,以所述实时扭矩为反馈,采用PID控制算法对所述输出扭矩进行修正,以根据所述实时扭矩即时调节所述输出扭矩的响应速度和控制精度。在所述阀/门1执行开启或关闭过程中重复上述实时扭矩检测和扭矩修正步骤直至所述阀/门1的开启或关闭到位,以实现所述阀/门1开启或关闭运行过程的扭矩闭环控制。
本发明可适用于各种阀/门1的开闭控制,满足如滑动门、平开门,旋转门、百叶门、闸阀、截止阀、球阀、蝶阀、旋塞阀、风阀等不同工况的控制要求。其中,调节阀通过精确调整阀/门1的开度大小或过程运动速度,以实现不同流量特性的控制,比如等百分比控制特性、直接控制特性、快开控制特性和抛物线控制特性等。调节阀中间任意位置的定位,其每一次的调整均可视为一个完整的工作运动过程。例如球阀在流量调整时开关角度从45°至60°变化的过程中,经历的工作过程即是启动阶段、加速阶段、匀速阶段、减速阶段、逼近阶段和停止阶段。而开关阀因需要按一定速度实现开关动作,且需要保证关闭时的密封性,因此相比调节阀可增加扭矩控制过程,例如闸阀的关闭过程可分为启动阶段、加速阶段、匀速阶段、减速阶段、慢速逼近阶段、扭矩控制阶段和停止阶段。
本发明通过对交流异步电动机3进行扭矩矢量控制、扭矩现场标定及电动机参数辨识,可分别实现输出扭矩的动态控制和设定扭矩的静态修正;以多重PID嵌套的方式由内而外分别建立扭矩环、速度环和位置环,并根据阀/门1执行过程不同阶段的需求选择闭环层级或嵌套深度,实现了对普通交流异步电动机3的位置、速度、扭矩三闭环全行程准伺服控制,从而确保阀/门1执行过程的迅速、精确,及执行结果的准确、有效,即采用外部嵌套的速度闭环和位置闭环对扭矩闭环(如电流闭环)进行嵌套控制的方法,在提高输出扭矩的响 应速度和控制精度的同时,还在需要确保运行速度和定位精度的执行阶段进行速度和位置控制,进一步提升了执行过程的效率、稳定性、准确度和灵活性。可精确控制关阀密封比压,能够根据开关阀全行程负载变化,通过优化速度和扭矩的匹配参数,实现普通交流异步电动机3的功率精准控制,实现阀/门“关得严”,“停得准”和“打得开”;同时基于阀/门位移的启动阶段、加速阶段、匀速阶段、减速阶段、慢速逼近阶段、扭矩控制阶段和停止阶段,可实现分阶段组合控制,以满足快开快关、水锤消除、调节阀工况、故障应对的要求。通过短时“超频”(超速)和“超电流”(超扭矩),可选用更小额定规格的交流异步电动机3,进而可减小产品体积和重量及降低成本,改善管道系统的动态特性;实现普通交流异步电动机3拖动负载平滑性控制的同时,还可降低对电网的电流冲击。
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims (10)

  1. 一种电动阀/门的控制装置,包括交流异步电动机、传动装置和阀门驱动器,所述阀门驱动器与所述交流异步电动机连接,所述交流异步电动机通过所述传动装置与阀/门连接,其特征在于,所述阀门驱动器采集所述交流异步电动机或阀/门运行的实时扭矩信息,并以所述阀门驱动器的设定扭矩为输入,以所述实时扭矩为反馈,采用PID控制算法对所述阀门驱动器的输出扭矩或输出扭矩限值进行即时修正,以实时调整驱动所述交流异步电动机的输出扭矩,满足所述阀/门执行开启和关闭过程各阶段的响应速度和控制精度要求。
  2. 如权利要求1所述的电动阀/门的控制装置,其特征在于,所述阀门驱动器包括壳体和安装在所述壳体内的和逻辑控制模块、变频控制模块和变频驱动模块,所述变频驱动模块与所述交流异步电动机连接,所述逻辑控制模块通过所述变频控制模块与所述变频驱动模块连接,所述逻辑控制模块通过所述变频控制模块实时调整所述变频驱动模块的输出扭矩或输出扭矩限值,所述逻辑控制模块包括:
    扭矩设定单元,根据阀/门执行开启和关闭过程各阶段的需求设定相应的所述设定扭矩;
    扭矩输出单元,将所述设定扭矩发送至所述变频驱动模块,所述变频驱动模块以所述设定扭矩为输出扭矩或输出扭矩限值驱动所述交流异步电动机执行相应的阀/门开启或关闭动作;
    实时扭矩检测单元,获取所述交流异步电动机或阀/门运行的所述实时扭矩;以及
    扭矩修正单元,根据所述实时扭矩和设定扭矩采用PID控制算法修正所述输出扭矩或输出扭矩限值,并将修正后的所述输出扭矩或输出扭矩限值传送至所述扭矩输出单元,所述扭矩输出单元将修正后的所述输出扭矩通过所述变频控制模块传送至所述变频驱动模块,所述变频驱动模块驱动所述交流异步电动机实时响应。
  3. 如权利要求2所述的电动阀/门的控制装置,其特征在于,所述逻辑控制模块还包括输出电流检测单元,与所述实时扭矩检测单元连接,所述输出电流检测单元检测所述交流异步电动机的物理参数并传送至所述实时扭矩检测 单元,所述实时扭矩检测单元计算获得所述实时扭矩并传送至所述扭矩修正单元,所述物理参数包括定子电阻、转子电阻、定转子互感、定转子漏感和/或空载电流。
  4. 如权利要求2所述的电动阀/门的控制装置,其特征在于,还包括扭矩传感器,用于获取所述实时扭矩,所述扭矩传感器安装在所述交流异步电动机的输出轴、阀门减速传动箱的输出轴或阀门驱动机构上,并与所述实时扭矩检测单元或变频控制模块连接,将测得的实时扭矩信号传送至所述实时扭矩检测单元或变频控制模块。
  5. 如权利要求1-4中任意一项所述的电动阀/门的控制装置,其特征在于,还包括位置传感器,所述逻辑控制模块还包括速度控制单元,与所述位置传感器连接,用于采集所述位置传感器的反馈信号获取阀门当前速度,通过PID控制算法对所述交流异步电动机的输出速度进行修正,并叠加修正所述输出扭矩,以满足所述阀/门开启或关闭各阶段的速度要求。
  6. 如权利要求5所述的电动阀/门的控制装置,其特征在于,所述逻辑控制模块还包括位置控制单元,与所述位置传感器连接,用于根据所述位置传感器的反馈信号判断是否到达所述阀/门开启或关闭过程各阶段的位置节点,并根据判断结果进一步调整所述输出扭矩,以满足所述阀/门开启或关闭各阶段的控制逻辑和停止位置精度的要求。
  7. 如权利要求5所述的电动阀/门的控制装置,其特征在于,所述位置传感器为全行程传感器和/或点位式传感器,所述位置传感器安装在所述交流异步电动机的输出轴、传动装置的减速传动箱的输出轴或阀门驱动机构上。
  8. 如权利要求1、2、3、4、6或7所述的电动阀/门的控制装置,其特征在于,还包括扭矩标定装置,与所述交流异步电动机可拆卸连接,并与所述逻辑控制模块连接,用于对所述交流异步电动机进行扭矩标定,以修正所述阀门驱动器的输出扭矩。
  9. 一种电动阀/门的控制方法,其特征在于,采用上述权利要求1-8中任意一项所述的电动阀/门的控制装置,通过采集交流异步电动机或阀/门运行的实时扭矩信息,并以阀门驱动器的设定扭矩为输入,以所述实时扭矩为反馈,采用PID控制算法对所述阀门驱动器的输出扭矩或输出扭矩限值进行即时修正,以实时调整驱动所述交流异步电动机的输出扭矩,满足所述阀/门执行开 启和关闭过程各阶段的响应速度和控制精度要求。
  10. 一种电动阀/门,其特征在于,包括上述权利要求1-8中任意一项所述的电动阀/门的控制装置。
PCT/CN2023/081810 2022-03-17 2023-03-16 一种电动阀/门及其控制装置和控制方法 WO2023174361A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210261771.0A CN116804446A (zh) 2022-03-17 2022-03-17 一种电动阀/门及其控制装置和控制方法
CN202210261771.0 2022-03-17

Publications (1)

Publication Number Publication Date
WO2023174361A1 true WO2023174361A1 (zh) 2023-09-21

Family

ID=88022351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081810 WO2023174361A1 (zh) 2022-03-17 2023-03-16 一种电动阀/门及其控制装置和控制方法

Country Status (2)

Country Link
CN (1) CN116804446A (zh)
WO (1) WO2023174361A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009081935A (ja) * 2007-09-26 2009-04-16 Nippon Gear Co Ltd 電動アクチュエータ
CN102003563A (zh) * 2010-12-15 2011-04-06 天津埃柯特阀门控制设备有限公司 一种智能型阀门电动执行机构控制器
CN201876333U (zh) * 2010-12-02 2011-06-22 核动力运行研究所 一种阀门电动执行机构扭矩测试装置
CN104455641A (zh) * 2014-12-04 2015-03-25 天津埃柯特测控技术有限公司 检测级执行机构
US20180328097A1 (en) * 2015-11-13 2018-11-15 Multimatic, Inc. Electrical power assisted manually operated door
CN109782173A (zh) * 2019-03-25 2019-05-21 中车青岛四方车辆研究所有限公司 异步电机励磁互感曲线测量系统及其测量方法
CN111963747A (zh) * 2020-09-17 2020-11-20 北京雷蒙赛博机电技术有限公司 一种阀门执行器自动控制系统
CN112113019A (zh) * 2020-09-17 2020-12-22 北京雷蒙赛博机电技术有限公司 一种阀门执行器自动控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009081935A (ja) * 2007-09-26 2009-04-16 Nippon Gear Co Ltd 電動アクチュエータ
CN201876333U (zh) * 2010-12-02 2011-06-22 核动力运行研究所 一种阀门电动执行机构扭矩测试装置
CN102003563A (zh) * 2010-12-15 2011-04-06 天津埃柯特阀门控制设备有限公司 一种智能型阀门电动执行机构控制器
CN104455641A (zh) * 2014-12-04 2015-03-25 天津埃柯特测控技术有限公司 检测级执行机构
US20180328097A1 (en) * 2015-11-13 2018-11-15 Multimatic, Inc. Electrical power assisted manually operated door
CN109782173A (zh) * 2019-03-25 2019-05-21 中车青岛四方车辆研究所有限公司 异步电机励磁互感曲线测量系统及其测量方法
CN111963747A (zh) * 2020-09-17 2020-11-20 北京雷蒙赛博机电技术有限公司 一种阀门执行器自动控制系统
CN112113019A (zh) * 2020-09-17 2020-12-22 北京雷蒙赛博机电技术有限公司 一种阀门执行器自动控制方法

Also Published As

Publication number Publication date
CN116804446A (zh) 2023-09-26

Similar Documents

Publication Publication Date Title
CN109642536B (zh) 控制或处理系统和方法
KR102009450B1 (ko) Pm 모터의 직접 전력 제어에 의한 일정한 공기 볼륨 제어를 위한 방법 및 상기 방법을 적용하는 hvac 시스템
CN1273729C (zh) 兆瓦级风电机组变速、变距控制系统
CN104601075B (zh) 变频空调器的控制方法及其控制系统
CN202872721U (zh) 一种基于级联高压变频器无速度传感器矢量控制系统
CN104807152B (zh) Pm电机直接功率控制的恒风量控制方法及其应用的hvac系统
CN102497141A (zh) 大功率交流伺服驱动器大扭矩启动方法
CN106059419B (zh) 一种永磁同步电机并联矢量控制方案
CN108092567A (zh) 一种永磁同步电动机转速控制系统及方法
CN103916062A (zh) 一种基于dsp的矢量控制电动执行器
CN112217436B (zh) 一种抑制电流测量误差引起的永磁同步电机转速脉动方法
CN102497151B (zh) 一种智能重构柔性电机驱动控制器
CN106160590A (zh) 一种直流无刷风机盘管
CN104135199A (zh) 风机/泵恒流量电机驱动控制方法
CN111193448A (zh) 基于扩展卡尔曼滤波器的表贴式永磁同步电机负载转矩观测方法
CN103647493B (zh) 一种永磁同步电机的h无穷转速估计方法
CN202068373U (zh) 带参数在线辨识的无速度传感器永磁同步电机矢量控制装置
CN103414428B (zh) 无轴承同步磁阻电机转子偏心位移控制器及其构造方法
WO2023174361A1 (zh) 一种电动阀/门及其控制装置和控制方法
CN202094838U (zh) 带参数在线辨识的永磁同步电机伺服系统矢量控制装置
WO2023174357A1 (zh) 一种电动阀/门及其阀门驱动器
CN109639200A (zh) 一种基于电机负载转矩检测的转动惯量在线辨识方法
CN112695842B (zh) 一种无压力罐恒压供水控制方法
WO2023174362A1 (zh) 一种电动阀/门的控制方法和装置
CN105634367A (zh) 一种基于mras的高压异步电机控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23769863

Country of ref document: EP

Kind code of ref document: A1