WO2023174362A1 - 一种电动阀/门的控制方法和装置 - Google Patents

一种电动阀/门的控制方法和装置 Download PDF

Info

Publication number
WO2023174362A1
WO2023174362A1 PCT/CN2023/081811 CN2023081811W WO2023174362A1 WO 2023174362 A1 WO2023174362 A1 WO 2023174362A1 CN 2023081811 W CN2023081811 W CN 2023081811W WO 2023174362 A1 WO2023174362 A1 WO 2023174362A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
valve
asynchronous motor
control
door
Prior art date
Application number
PCT/CN2023/081811
Other languages
English (en)
French (fr)
Inventor
周文
赵战国
张大鹏
郝云轩
赵刚
王泽平
朱涛
王晓轩
杨汝贞
Original Assignee
北京雷蒙赛博核装备技术研究有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京雷蒙赛博核装备技术研究有限公司 filed Critical 北京雷蒙赛博核装备技术研究有限公司
Publication of WO2023174362A1 publication Critical patent/WO2023174362A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given

Definitions

  • the present invention relates to valve driving technology, in particular to a control method and device for controlling an AC asynchronous motor to drive an electric valve/door through vector frequency conversion technology.
  • the stop method of valve opening/closing adopts point-type trigger stop, that is, a travel switch (or reed switch) is respectively set at the valve opening/closing stop point of the valve body.
  • a travel switch or reed switch
  • the valve/door is stopped by the in-position signal; due to the inherent mechanical gap of the contacts of the travel switch (or reed switch) and the large error in repetitive control accuracy, the valve/door is not stopped before it is closed tightly or the valve/door cannot be stopped after it is closed tightly, resulting in the valve /
  • the door leaks internally or the AC asynchronous motor cannot be stopped and burns out; and the point-type trigger stop method cannot achieve full-stroke high-precision position control, and the operator cannot obtain real-time position information of the valve / door;
  • the technical problem to be solved by the present invention is to provide a control method and device for an electric valve/door in view of the above-mentioned defects of the prior art.
  • the present invention provides a control method for an electric valve/door, which includes the following steps:
  • S500 Repeat steps S300-S400 during the opening and closing process of the valve/gate until the opening or closing of the valve/gate is completed, so as to realize the torque closed-loop control of the opening or closing operation of the valve/gate.
  • step S300 the real-time torque of the AC asynchronous motor or valve/gate operation is obtained using current detection combined with the vector transformation method, or a torque sensor is used to directly obtain the torque from the AC asynchronous motor.
  • the output shaft, the output shaft of the valve/gate reduction transmission box or the valve/gate drive device is obtained.
  • the above electric valve/door control method wherein the current detection combined with vector transformation method includes using the output current detection circuit in the valve/door driver to detect the physical parameters of the AC asynchronous motor and calculate and obtain the real-time torque , the physical parameters include stator resistance, rotor resistance, stator and rotor mutual inductance, stator and rotor leakage inductance and no-load current.
  • the above-mentioned electric valve/door control method wherein the three-phase AC signal of the AC asynchronous motor is converted into the torque component i sT of the stator current and the excitation component i sM of the stator current through coordinate transformation, and is oriented according to the magnetic field
  • the real-time torque is calculated using rotor magnetic field oriented vector control, direct torque control, slip frequency vector control, stator magnetic field oriented vector control or air gap magnetic field oriented vector control respectively;
  • the rotor magnetic field orientation vector control performs the magnetic field orientation according to the direction of the rotor full flux vector, and uses the following formula to obtain the real-time torque Tei :
  • n p is the number of motor pole pairs of the AC asynchronous motor
  • L md is the equivalent mutual inductance of one phase winding when the stator and rotor of the AC asynchronous motor are coaxial
  • L rd is one phase of the rotor of the AC asynchronous motor.
  • the equivalent self-inductance of the winding, i sT is the torque component of the stator current of the AC asynchronous motor
  • ⁇ r is the rotor flux linkage of the AC asynchronous motor
  • the direct torque control uses the following formula to obtain the real-time torque Tei :
  • n p is the number of motor pole pairs of the AC asynchronous motor
  • L m is the stator and rotor mutual inductance
  • L s is the self-inductance of the stator one-phase winding
  • L r is the self-inductance of the rotor one-phase winding
  • ⁇ s is the stator magnetic field.
  • ⁇ r is the rotor flux linkage
  • ⁇ sr is the torque angle, which is the angle between the vectors ⁇ s and ⁇ r ;
  • the slip frequency vector control orients the magnetic field according to the slip frequency vector, and uses the following formula to obtain the real-time torque Tei :
  • n p is the number of motor pole pairs of the AC asynchronous motor
  • T r is the rotor electromagnetic time constant
  • L rd is the equivalent self-inductance of the rotor one-phase winding of the AC asynchronous motor
  • ⁇ r is the AC asynchronous motor
  • ⁇ s1 is the slip angular frequency
  • n p is the number of motor pole pairs of the AC asynchronous motor
  • ⁇ s is the stator flux linkage of the AC asynchronous motor
  • i sT is the torque component of the stator current
  • n p is the number of motor pole pairs of the AC asynchronous motor
  • ⁇ m is the air gap flux linkage
  • i sT is the torque component of the stator current.
  • the locked-rotor torque error of the AC asynchronous motor is controlled within the range of ⁇ 10% of the rated torque to stably and effectively control the sealing pressure of the valve/door closing.
  • the above-mentioned electric valve/door control method also includes:
  • the current speed of the valve is obtained by using current detection combined with the vector transformation method or the feedback signal of the position sensor. According to the deviation between the set speed and the current speed, the output speed of the AC asynchronous motor is corrected through the PID control algorithm, and the above correction is further superimposed. Output torque to meet the speed requirements of each stage of opening or closing of the valve/gate.
  • the above-mentioned electric valve/door control method also includes:
  • the feedback signal of the position sensor it is judged whether the position node of each stage of the valve/door opening or closing process has been reached, and the output torque is further adjusted according to the judgment result to meet the requirements of each stage of the valve/door opening or closing. Control strategy and position accuracy requirements.
  • the position sensor is a full-stroke sensor and/or a point sensor to achieve full-stroke high-precision position control and/or accurate node position control.
  • the above-mentioned electric valve/door control method which also includes torque calibration of the AC asynchronous motor, further includes:
  • the valve driver changes the set torque of the AC asynchronous motor point by point and drives the AC asynchronous motor to load;
  • a corresponding relationship chart between the set torque at each detection point and the corresponding output torque or internal torque feedback value is generated for correcting the output torque of the AC asynchronous motor.
  • the present invention also provides an electric valve/door control device, in which the above-mentioned electric valve/door control method is used to adjust the output torque of the AC asynchronous motor in real time to meet the above requirements.
  • the response speed and control accuracy requirements of each stage of the opening and closing process of electric valves/doors are required.
  • the invention takes the set torque as input, uses the detected real-time torque of the AC asynchronous motor or valve/door operation as feedback, uses the PID control algorithm to correct the actual output torque during the driving process, and adjusts the output torque instantly according to the real-time torque to achieve It provides closed-loop torque control for the opening and closing of the electric valve/door, effectively improving the response speed and control accuracy, so that the electric valve/door can be "opened”, “closed tightly” and “stopped accurately”; in addition, the invention also Multiple PID nesting methods can be used to establish torque loop (or current loop), speed loop and position loop control from the inside out, and according to the needs of different stages of the valve/gate execution process Please choose the closed-loop level or nesting depth to ensure that the valve/gate execution process is fast, accurate and effective.
  • Figure 1 is a schematic diagram of a control method according to an embodiment of the present invention.
  • FIG. 2 is an equivalent circuit diagram of stator resistance identification according to an embodiment of the present invention.
  • Figure 3 is an equivalent circuit of motor T according to an embodiment of the present invention.
  • Figure 4 is a motor inverse ⁇ equivalent circuit according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a control device according to an embodiment of the present invention.
  • FIG. 6 is a diagram illustrating the corresponding relationship between the set torque and the output torque in torque calibration according to an embodiment of the present invention.
  • FIG 1 is a schematic diagram of a control method according to an embodiment of the present invention.
  • the purpose of the electric valve/door control method of the present invention is to ensure that the valve/door execution process can be "opened”, “closed tightly”, and “stopped accurately”. Its core is to drive the AC asynchronous motor drag through vector frequency conversion technology.
  • the valve/door opening and closing process control strategy the valve/door opening and closing processes are divided into necessary stages. For example, the valve/door opening process can be divided into start-up stage, acceleration stage, and uniform speed stage.
  • the valve/gate closing process can be divided into starting stage, acceleration stage, uniform speed stage, deceleration stage, approach stage, torque control stage and stop stage; the valve/gate intermediate valve position execution process is divided into It is the starting phase, acceleration phase, uniform speed phase, deceleration phase, approach phase and stop phase, etc.
  • the control method includes the following steps:
  • Step S100 Select the corresponding control strategy according to the valve/gate execution requirements; divide the execution stages of valve/gate opening or closing according to the control strategy; set the corresponding setting torque according to the needs of each stage;
  • Step S200 Use the set torque as the output torque or output torque limit to drive the AC asynchronous motor to perform the corresponding valve/door opening or closing action;
  • Step S300 Measure the real-time torque of the AC asynchronous motor or valve/gate operation
  • Step S400 According to the real-time torque and the set torque, the set torque is used as input, and the real-time torque is used as feedback, and a PID control algorithm is used to correct the output torque to adjust the output torque according to the real-time torque adjustment of the response speed and control accuracy of the output torque; and
  • Step S500 Repeat steps S300-S400 during the opening or closing process of the valve/door until the opening or closing of the valve/door is in place, so as to realize the torque closed-loop control of the valve/door opening or closing operation process.
  • the real-time torque of the AC asynchronous motor or valve/gate operation can be obtained using current detection combined with a vector transformation method, or a torque sensor can be used to directly obtain the output shaft of the AC asynchronous motor or the valve/gate deceleration transmission box. of the output shaft or valve/gate drive.
  • a torque sensor can be used to directly obtain the output shaft of the AC asynchronous motor or the valve/gate deceleration transmission box. of the output shaft or valve/gate drive.
  • the torque sensor can be installed on the output shaft of the AC asynchronous motor, the output shaft of the valve/gate reduction transmission box, or the input shaft or output shaft of the valve/gate drive device, and the torque sensor It is connected to the valve driver or control module, and the measured real-time torque signal is transmitted to the valve driver or control module, and the PID control algorithm is used to correct the output torque.
  • the built-in calculation and control of the valve driver can be directly used.
  • the control module can also be integrated into the valve driver, or the control module can be integrated into the control
  • the output current detection circuit in the valve/door driver is preferably used to detect the three-phase AC signal of the AC asynchronous motor, combined with the physical parameters of the AC asynchronous motor (so The above physical parameters can include stator resistance, rotor resistance, stator and rotor mutual inductance, stator and rotor leakage inductance, no-load current, etc.).
  • the three-phase AC signal is converted into the torque component i sT of the stator current and the excitation component of the stator current.
  • the real-time torque is obtained by methods such as rotor magnetic field oriented vector control, direct torque control, slip frequency vector control, stator magnetic field oriented vector control or air gap magnetic field oriented vector control calculation. That is to say, vector torque control is used as the output method, the detection result of the torque detection circuit (for example, it can be a current detection circuit) is used as the feedback signal, and the output torque is controlled through PID closed-loop adjustment, so that the output torque of the actual operation of the drive valve/door is within the set value. Operate within the range of the fixed torque, that is, the expected value.
  • the present invention can also include the physical parameter identification step of the AC asynchronous motor, and collect the stator resistance, rotor resistance, stator and rotor mutual inductance, stator and rotor leakage inductance and other parameters of the AC asynchronous motor to ensure the torque vector
  • the basic parameters in the control are more accurate, specifically including: obtaining the physical parameters of the AC asynchronous motor to perform more accurate torque vector control of the AC asynchronous motor. It can input AC and DC excitation signals to the AC asynchronous motor and monitor the stator current feedback in real time.
  • the above related parameters can be calculated and obtained based on the numerical values and phase relationships of voltage and current.
  • No-load current is used to estimate the torque consumption of AC asynchronous motors during operation (such as friction, ventilation, Core loss, etc.) and to compensate its output torque, the no-load current is preferably 20% to 50% of the rated current of the motor.
  • This embodiment uses the output current detection circuit in the valve intelligent driver for parameter detection, and collects real-time torque (which can be calculated from the equivalent self-inductance of the rotor, the equivalent mutual inductance of the rotor, the rotor flux linkage, the stator current torque component, etc.) as the feedback quantity. And use the PID control principle to perform closed-loop control and correction of the output torque, and finally realize torque vector control to ensure the torque response speed and control accuracy during the operation of the valve/gate.
  • the stator resistance of this embodiment can be obtained in the following way:
  • V ⁇ dc DC voltage
  • stator current stator resistance
  • stator resistance Due to the influence of the voltage drop of the switching tube, the actual voltage applied to the stator will produce a certain error. In order to eliminate the error, multiple different voltage signals can be applied, and the slope of the stator voltage and stator current is taken as the stator resistance.
  • the rotor resistance, stator and rotor mutual inductance, and stator and rotor leakage inductance in this embodiment can be obtained in the following ways:
  • the electromagnetic phenomenon of an AC asynchronous motor under the excitation of a single-phase sinusoidal signal is basically the same as the electromagnetic phenomenon under the excitation of a three-phase sinusoidal signal. It can be identified by this method.
  • the motor torque at this time is zero and the motor remains stationary.
  • the motor equivalent circuit can be replaced by a three-phase equivalent circuit.
  • p is the differential operator
  • R 1 is the stator resistance
  • R r is the rotor resistance
  • L s ⁇ is the stator leakage inductance
  • L r ⁇ is the rotor leakage inductance
  • L m is the stator and rotor mutual inductance
  • is the rotor speed, cage rotor
  • the output W phase is disconnected, and the U phase and V phase control the on and off of the inverter according to the H-bridge sinusoidal voltage quenching and tempering signal, thereby generating a sinusoidal voltage excitation signal.
  • the sinusoidal voltages of the U phase and V phase are Then the phase voltage and phase current in the AC asynchronous motor satisfy the following relationship:
  • V Un , V Vn , and V wn are the relative midpoint voltages of U-phase, V-phase, and W respectively.
  • FIG. 4 is an equivalent circuit diagram of the motor inverse ⁇ according to an embodiment of the present invention. It is a circuit after equivalent changes are made to T. The relationship between the circuit parameters obtained after the change and the T-shaped equivalent circuit parameters is:
  • the rotor magnetic field orientation vector control is preferably adopted, the magnetic field orientation is performed according to the direction of the rotor's full flux linkage vector, and the real-time torque Te is obtained using the following formula:
  • n p is the number of motor pole pairs of the AC asynchronous motor
  • L md is the equivalent mutual inductance of one phase winding when the stator and rotor of the AC asynchronous motor are coaxial
  • L rd is one phase of the rotor of the AC asynchronous motor.
  • the equivalent self-inductance of the winding, i sT is the torque component of the stator current of the AC asynchronous motor
  • ⁇ r is the rotor flux linkage of the AC asynchronous motor.
  • ⁇ rM is the M-axis component of the rotor's full flux linkage
  • ⁇ rT is the T-axis component of the rotor's full flux linkage
  • i rM is the M-axis component of the rotor current
  • i rT is the T-axis component of the rotor current
  • n p is the number of pole pairs of the motor
  • i rT is the equivalent mutual inductance of one phase winding when the stator and rotor are coaxial
  • i sT is the torque component of the stator current
  • ⁇ r is the rotor flux linkage
  • p is the differential operator
  • i sM is the excitation component of the stator current.
  • direct torque control can also be used, and the real-time torque Te is obtained using the following formula:
  • n p is the number of motor pole pairs of the AC asynchronous motor
  • L m is the stator and rotor mutual inductance
  • L s is the self-inductance of the stator one-phase winding
  • L r is the self-inductance of the rotor one-phase winding
  • ⁇ s is the stator magnetic field. chain
  • ⁇ r is the rotor flux linkage
  • ⁇ sr is the torque angle, which is the angle between the vectors ⁇ s and ⁇ r .
  • This direct torque control is based on the mathematical model of the stator shaft system and uses the space vector analysis method to achieve motor control. Its control principle is as follows:
  • u s is the stator shaft system voltage vector.
  • ⁇ sr is the torque angle, which is the angle between the vectors ⁇ s and ⁇ r .
  • slip frequency vector control can be used, and the control is performed according to the slip frequency vector.
  • n p is the number of motor pole pairs of the AC asynchronous motor
  • T r is the rotor electromagnetic time constant
  • L rd is the equivalent self-inductance of the rotor one-phase winding of the AC asynchronous motor
  • ⁇ r is the rotor flux linkage
  • ⁇ s1 is the slip angular frequency.
  • Slip frequency vector control can be carried out based on the rotor magnetic field directional vector control. Its control principle is as follows:
  • ⁇ s1 is the slip angular frequency.
  • n p is the number of motor pole pairs of the AC asynchronous motor
  • ⁇ s is the stator flux linkage of the AC asynchronous motor
  • isT is the torque component of the stator current of the AC asynchronous motor.
  • the magnetic field is oriented according to the direction of the stator flux vector.
  • ⁇ s is the stator flux
  • ⁇ sM is the M-axis component of the stator's full flux
  • ⁇ sT is the T-axis component of the stator's full flux
  • Equation (2-13) is the decoupler module algorithm, which can directly calculate the stator flux vector ⁇ s through the voltage and current detected on the stator side, thereby achieving decoupling.
  • n p is the number of motor pole pairs of the AC asynchronous motor
  • ⁇ m is the air gap flux linkage
  • i sT is the torque component of the stator current.
  • the magnetic field is oriented according to the direction of the air gap flux linkage vector.
  • torque calibration can also be performed regularly to eliminate the adverse effects of the above factors and achieve long-term stability of the system torque control accuracy. That is, the present invention may also include the following steps: calibrating the output torque of the AC asynchronous motor to correct the output torque of the AC asynchronous motor. The output torque of the machine can effectively improve the torque control accuracy and achieve precise control of the output torque. This step can further include:
  • the torque calibration device is installed and fixed on the output shaft of the AC asynchronous motor, and connected to the valve driver or control module through a wired signal cable or wireless communication module; the valve driver sequentially changes the settings of the AC asynchronous motor according to the torque value of each detection point.
  • the torque is determined and the AC asynchronous motor is driven to load and detect the corresponding output torque.
  • the number of detections for each detection point is no less than 3 times and the arithmetic average is taken as the output torque detection result of this detection point; and
  • the valve driver or control module counts and analyzes the above detection data, compares the set torque and the corresponding output torque deviation and generates a set of statistical data, and generates the corresponding relationship between the set torque and the corresponding output torque at each detection point based on the statistical data.
  • Graph display or output the display results can be graphs and curves, and necessary prompt information for confirmation), used to correct the output torque of the AC asynchronous motor. Once the relevant correspondence diagram has been confirmed, corrections can be carried out by the valve driver or control module.
  • the actual output torque of the AC asynchronous motor under the set torque is measured and the output torque is corrected according to the real-time torque to obtain a more accurate output torque in the torque control stage.
  • This embodiment only takes the comparison between the set torque and the corresponding output torque as an example.
  • the following table takes an AC asynchronous motor with a rated power of 0.55kW, a rated speed of 1450rpm, and a rated torque of 3.6Nm as an example.
  • the relationship between the output torque that is, the locked-rotor torque at the corresponding detection point
  • controlling and correcting the low speed and locked-rotor torque of the AC asynchronous motor can achieve accurate sealing pressure during the valve/door closing process.
  • the locked-rotor torque error of the AC asynchronous motor is preferably controlled at ⁇ 10% of the rated torque (preferably ⁇ 4%) to stably and effectively control the sealing pressure of the valve/door closing.
  • the discrete detection point data in the statistical table can also be integrated into a piecewise function that describes the relationship between the set torque and the corresponding output torque (as shown in Figure 6, it is a relatively continuous, first-order polyline segment with different slopes) , for query and use in the torque control process.
  • the above data describes the relationship between the set torque and output torque of the AC asynchronous motor with evenly distributed and sufficiently dense feature points.
  • the error between the set torque and the output torque is within the range of ⁇ 10% (preferably ⁇ 4%) of the rated torque.
  • ⁇ 10% preferably ⁇ 4%
  • the relationship between the set torque and the output torque can be expressed in the form of a piecewise straight line equation and used to correct the output torque. Since the test results in the correspondence table are discrete data, in actual use, the data between the detection points is inserted and supplemented by the line segment equation between two adjacent points.
  • x is the set torque
  • y is the output torque
  • piecewise equations can be used to correspond the set torque and the output torque, so as to achieve the purpose of correcting the output value and accurately controlling the torque.
  • an embodiment of the present invention may also include: using current detection combined with the vector transformation method or the feedback signal of the position sensor to calculate the current speed of the valve, and using the PID control algorithm to calculate the output speed of the AC asynchronous motor. Correct, and further superimpose and correct the output torque to meet the speed requirements of each stage of opening or closing of the valve/gate.
  • it may further include: judging whether the position node of each stage of the valve/door opening or closing process is reached according to the feedback signal of the position sensor, and further adjusting the output according to the judgment result.
  • the position, speed, and torque of the valve/door can be monitored in real time. According to the nesting relationship, a nested control mode of torque loop, speed loop, and position loop can be used from the inside out. Among them, the torque loop directly affects the rotation speed.
  • the speed loop works on the basis of the torque loop, and obtains the current speed of the valve/gate through current detection combined with the basic principle of vector transformation or feedback calculation from the valve/gate position sensor , and exert influence through the torque loop to meet the speed requirements at different stages;
  • the position loop as an optional and supplementary item, works on the basis of the speed loop and the torque loop, and is the outermost adjustment. It judges and adjusts based on the feedback of the position sensor. Output to meet the requirements of control strategy and stop position accuracy.
  • FIG. 5 is a schematic structural diagram of a control device according to an embodiment of the present invention.
  • the control device of the electric valve/door of the present invention adopts the above control method and adjusts the output torque of the AC asynchronous motor in real time to meet the control strategy requirements of each stage of the opening and closing process of the electric valve/door.
  • the position sensor can be a full-stroke sensor and/or a point sensor to achieve full-stroke high-precision position control. That is, the present invention is compatible with full-stroke sensors and point-type sensors, and is suitable for combinations of full-stroke sensors, point-type sensors, full-stroke sensors and point position sensors.
  • the selection of position sensors is related to the valve/gate type, valve/gate mechanical structural characteristics, valve/gate usage environment, valve/gate production technology level, etc., and generally does not change due to valve driver requirements during use.
  • the different stages of valve/gate execution are accurately divided according to continuous position signals (the present invention can include a starting stage, an acceleration stage, a uniform speed stage, a deceleration stage, an approach stage, a torque control stage and a stop stage). etc.), reasonably control the starting position, end position, speed, torque, acceleration, deceleration and other parameters of each stage to achieve the expected execution effect.
  • the invention cooperates with different interface conversion hardware and can be adapted to various types of full-stroke position sensors.
  • node-type sensors Due to their low cost, easy installation, and strong environmental adaptability, node-type sensors occupy a certain proportion in the valve actuator system and are of great significance to the upgrade and modification of existing electric valves.
  • node position sensors In a system pre-installed with node position sensors, the different stages of valve execution are limitedly identified and divided based on discrete node position signals, and the opening or closing execution results are guaranteed while ensuring safety.
  • the control method is the same as a system with only a pre-installed full-stroke sensor.
  • the point-type sensor is used as a protection device or safety redundant device for extreme or special position safety. Protect.
  • the compatibility of the present invention in terms of sensor types and forms broadens its use scope and applicable environment, and also improves the safety of its applicable process.
  • the invention can be applied to the opening and closing control of various valves/doors, and meets the control requirements of different working conditions such as sliding doors, swing doors, revolving doors, louver doors, gate valves, globe valves, ball valves, butterfly valves, plug valves, air valves, etc. .
  • the regulating valve accurately adjusts the opening size or stage movement speed of the valve/door to achieve control of different flow characteristics, such as percentage control characteristics, direct control characteristics, quick opening control characteristics, and parabolic control characteristics. For the positioning of any position in the middle of the regulating valve, each adjustment can be regarded as a complete working movement process.
  • the switching valve needs to realize the switching action at a certain speed and needs to ensure the sealing when closing. Therefore, compared with the regulating valve, it can add a torque control stage.
  • the closing stage of the gate valve can be divided into a starting stage, an acceleration stage, a uniform stage, and a deceleration stage. phase, approach phase, torque control phase and stop phase.
  • This invention is based on the AC asynchronous motor torque vector control method, torque calibration method and motor parameter identification method, respectively realizing the dynamic control of the output torque and the static correction of the set torque; using multiple PID nesting methods from the inside to the outside.
  • the method of using externally nested speed closed loops and position closed loops to control torque closed loops not only improves the response speed and control accuracy of the output torque, but also ensures the execution stage of running speed and positioning accuracy.
  • Speed and position control further improves the efficiency, stability, accuracy and flexibility of the execution process.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

一种电动阀/门的控制方法和装置,该控制方法包括如下步骤:根据阀/门执行开启和关闭过程各阶段的需求设定相应的设定扭矩;以该设定扭矩为输出扭矩或输出扭矩限值驱动交流异步电动机执行相应的阀/门开启或关闭动作;测量该交流异步电动机或阀/门运行的实时扭矩;以该设定扭矩为输入,以该实时扭矩为反馈,采用PID控制算法对该输出扭矩进行修正,以根据该实时扭矩调节该输出扭矩的响应速度和控制精度;以及在该阀/门执行开启和关闭过程中重复测量和修正步骤直至完成阀/门开启或关闭,以实现该阀/门开启或关闭运行的扭矩闭环控制。还包括采用该方法实现电动阀/门开启或关闭的电动阀/门的控制装置。

Description

一种电动阀/门的控制方法和装置 技术领域
本发明涉及阀门驱动技术,特别是一种通过矢量变频技术控制交流异步电动机驱动电动阀/门的控制方法和装置。
背景技术
目前大量阀/门电动装置采用交流电源直接启动交流异步电动机,通过交流异步电动机带动机械传动机构驱动阀/门运行,实现开阀/关阀。交流异步电动机因结构简单、运行可靠、重量轻、价格便宜且启动扭矩较大等优点,在电动装置中应用比较广泛,但在使用过程中存在如下“打不开”、“关不严”、“停不准”等问题:
1)交流异步电动机的扭矩控制精度低,扭矩和转速动态范围小(峰值扭矩和速度受限),加上介质温度、异物、锈蚀等因素影响,交流异步电动机的驱动扭矩无法克服阻力矩,导致开阀时阀/门打不开;阀/门在运行过程中交流异步电动机的转速固定,开阀/关阀速度不变,关阀到达止点时造成阀座的动载荷过载,导致阀/门关严后打不开;
2)开阀/关阀的停止方式采用点位式触发停止,即在阀体的开阀/关阀停止点分别设置一个行程开关(或干簧管),依据行程开关(或干簧管)到位信号停止阀/门;由于行程开关(或干簧管)固有的触点机械间隙和重复控制精度误差较大,造成阀/门未关严停止或阀/门关严后无法停止,导致阀/门内漏或交流异步电动机无法停止而烧毁;且采用点位式触发停止方式无法实现全行程高精度位置控制,同时操作者无法获得阀/门的实时位置信息;
3)无法控制关阀到位时的阀座的受力大小,易造成阀/门关不严,导致阀/门内漏;阀/门长期使用中磨损、老化、电参数漂移等导致的特性变化,导致理论输出值和实际输出值误差大,关阀到位时的阀座的受力大小不稳定;
4)未考虑交流异步电动机物理特性差异,导致控制精度差,扭矩和转速动态范围小,批量产品性能不一致。
发明内容
本发明所要解决的技术问题是针对现有技术的上述缺陷,提供一种电动阀/门的控制方法和装置。
为了实现上述目的,本发明提供了一种电动阀/门的控制方法,其中,包括如下步骤:
S100、根据阀/门执行开启和关闭过程各阶段的需求设定相应的设定扭矩;
S200、以所述设定扭矩为输出扭矩或输出扭矩限值驱动交流异步电动机执行相应的阀/门开启或关闭动作;
S300、测量所述交流异步电动机或阀/门运行的实时扭矩;
S400、根据所述实时扭矩和设定扭矩,以所述设定扭矩为输入,以所述实时扭矩为反馈,采用PID控制算法对所述输出扭矩进行修正,以根据所述实时扭矩调节所述输出扭矩的响应速度和控制精度;以及
S500、在所述阀/门执行开启和关闭过程中重复步骤S300-S400直至完成所述阀/门开启或关闭,以实现所述阀/门开启或关闭运行的扭矩闭环控制。
上述的电动阀/门的控制方法,其中,步骤S300中,所述交流异步电动机或阀/门运行的实时扭矩采用电流检测结合矢量变换方法获得,或采用扭矩传感器直接自所述交流异步电动机的输出轴、阀/门减速传动箱的输出轴或阀/门驱动装置获得。
上述的电动阀/门的控制方法,其中,所述电流检测结合矢量变换方法包括,采用阀/门驱动器中的输出电流检测电路检测所述交流异步电动机的物理参数并计算获得所述实时转矩,所述物理参数包括定子电阻、转子电阻、定转子互感、定转子漏感和空载电流。
上述的电动阀/门的控制方法,其中,将所述交流异步电动机的三相交流信号,经过坐标变换转换为定子电流的转矩分量isT和定子电流的励磁分量isM,并根据磁场定向不同分别采用转子磁场定向矢量控制、直接转矩控制、转差频率矢量控制、定子磁场定向矢量控制或气隙磁场定向矢量控制计算获得所述实时扭矩;
其中,所述转子磁场定向矢量控制,根据转子全磁链矢量方向进行所述磁场定向,并采用如下公式获得所述实时扭矩Tei
其中,np为所述交流异步电动机的电机极对数,Lmd为所述交流异步电动机的定转子同轴时一相绕组的等效互感,Lrd为所述交流异步电动机的转子一相绕组的等效自感,isT为所述交流异步电动机的定子电流的转矩分量,Ψr为所述交流异步电动机的转子磁链;
所述直接转矩控制采用如下公式获得所述实时扭矩Tei
其中,np为所述交流异步电动机的电机极对数,Lm为定转子互感,Ls为定子一相绕组的自感,Lr为转子一相绕组的自感,Ψs为定子磁链,Ψr为转子磁链,θsr为转矩角,是矢量Ψs和Ψr之间的夹角;
所述转差频率矢量控制,根据转差频率矢量进行所述磁场定向,并采用如下公式获得所述实时扭矩Tei
其中,np为所述交流异步电动机的电机极对数,Tr为转子电磁时间常数,Lrd为所述交流异步电动机的转子一相绕组的等效自感,Ψr为所述交流异步电动机的转子磁链,ωs1为转差角频率;
所述定子磁场定向矢量控制,根据定子磁链矢量方向进行所述磁场定向,并采用如下公式获得所述实时扭矩Tei
Tei=npΨsisT
其中,np为所述交流异步电动机的电机极对数,Ψs为所述交流异步电动机的定子磁链,isT为定子电流的转矩分量;
所述气隙磁场定向矢量控制,根据扭矩气隙磁链矢量方向进行所述磁场定向,并采用如下公式获得所述实时扭矩Tei
Tei=npΨmisT
其中,np为所述交流异步电动机的电机极对数,Ψm为气隙磁链,isT为定子电流的转矩分量。
上述的电动阀/门的控制方法,其中,所述交流异步电动机的堵转扭矩误差控制在±10%额定扭矩的范围内,以稳定有效地控制所述阀/门关闭的密封比压。
上述的电动阀/门的控制方法,其中,还包括:
采用电流检测结合矢量变换方法或位置传感器的反馈信号获取阀门当前速度,根据设定速度和当前速度的偏差,通过PID控制算法对所述交流异步电动机的输出速度进行修正,并进一步叠加修正所述输出扭矩,以满足所述阀/门开启或关闭各阶段的速度要求。
上述的电动阀/门的控制方法,其中,还包括:
根据所述位置传感器的反馈信号判断是否到达所述阀/门开启或关闭过程各阶段的位置节点,并根据判断结果进一步调整所述输出扭矩,以满足所述阀/门开启或关闭各阶段的控制策略和位置精度的要求。
上述的电动阀/门的控制方法,其中,所述位置传感器为全行程传感器和/或点位式传感器,以实现全行程高精度位置控制和/或准确的节点位置控制。
上述的电动阀/门的控制方法,其中,还包括对所述交流异步电动机进行扭矩标定,进一步包括:
阀门驱动器逐点改变所述交流异步电动机的设定扭矩并驱动所述交流异步电动机加载;
采用扭矩标定装置检测所述交流异步电动机对应检测点的所述设定扭矩的输出扭矩,或采集阀门驱动器对应检测点的所述设定扭矩的内部扭矩反馈值;以及
生成各所述检测点的设定扭矩与相应的输出扭矩或内部扭矩反馈值的对应关系图表,用于修正所述交流异步电动机的输出扭矩。
为了更好地实现上述目的,本发明还提供了一种电动阀/门的控制装置,其中,采用上述的电动阀/门的控制方法,通过实时调整驱动交流异步电动机的输出扭矩,满足所述电动阀/门执行开启和关闭过程各阶段的响应速度和控制精度要求。
本发明的技术效果在于:
本发明以设定扭矩为输入,以检测的交流异步电动机或阀/门运行的实时扭矩为反馈,采用PID控制算法对驱动过程中的实际输出扭矩进行修正,根据实时扭矩即时调节输出扭矩,实现了电动阀/门开启和关闭的扭矩闭环控制,有效提高了响应速度和控制精度,使电动阀/门“打得开”、“关得严”、“停得准”;另外,本发明还可采用多重PID嵌套的方式由内而外分别建立扭矩环(也可为电流环)、速度环和位置环控制,并根据阀/门执行过程不同阶段的需 求选择闭环层级或嵌套深度,从而确保了阀/门执行过程的迅速、精确、有效。
以下结合附图和具体实施例对本发明进行详细描述,但不作为对本发明的限定。
附图说明
图1为本发明一实施例的控制方法原理图;
图2为本发明一实施例的定子电阻识别等效电路图;
图3为本发明一实施例的电机T等效电路;
图4为本发明一实施例的电机反Γ等效电路;
图5为本发明一实施例的控制装置结构示意图;
图6为本发明一实施例的扭矩标定中设定扭矩与输出扭矩对应关系图。
具体实施方式
下面结合附图对本发明的结构原理和工作原理作具体的描述:
参见图1,图1为本发明一实施例的控制方法原理图。本发明的电动阀/门的控制方法,其目的是确保阀/门执行过程“打得开”、“关得严”、“停得准”,其核心是通过矢量变频技术驱动交流异步电动机拖动阀/门的成套控制方法,根据阀/门开启和关闭过程控制策略,将阀/门开启和关闭过程划分成必要的阶段,如阀/门开启过程可分为启动阶段、加速阶段、匀速阶段、减速阶段、逼近阶段和停止阶段;阀/门关闭过程可分为启动阶段、加速阶段、匀速阶段、减速阶段、逼近阶段、扭矩控制阶段和停止阶段;阀/门中间阀位执行过程分为启动阶段、加速阶段、匀速阶段、减速阶段、逼近阶段和停止阶段等。该控制方法包括如下步骤:
步骤S100、根据阀/门执行要求选取对应的控制策略;根据控制策略划分阀/门开启或关闭的执行阶段;根据各阶段的需求设定相应的设定扭矩;
步骤S200、以所述设定扭矩为输出扭矩或输出扭矩限值驱动交流异步电动机执行相应的阀/门开启或关闭动作;
步骤S300、测量所述交流异步电动机或阀/门运行的实时扭矩;
步骤S400、根据所述实时扭矩和设定扭矩,以所述设定扭矩为输入,以所述实时扭矩为反馈,采用PID控制算法对所述输出扭矩进行修正,以根据所述 实时扭矩调节所述输出扭矩的响应速度和控制精度;以及
步骤S500、在所述阀/门执行开启或关闭过程中重复步骤S300-S400直至所述阀/门的开启或关闭到位,以实现所述阀/门开启或关闭运行过程的扭矩闭环控制。
其中,步骤S300中,所述交流异步电动机或阀/门运行的实时扭矩可采用电流检测结合矢量变换方法获得,或采用扭矩传感器直接自所述交流异步电动机的输出轴、阀/门减速传动箱的输出轴或阀/门驱动装置获得。采用扭矩传感器获得实时扭矩时,可将该扭矩传感器安装在交流异步电动机的输出轴、阀/门减速传动箱的输出轴或阀/门驱动装置的输入轴或输出轴上,并将该扭矩传感器与阀门驱动器或控制模块连接,将其测得的实时扭矩信号传递至该阀门驱动器或控制模块后,采用PID控制算法对所述输出扭矩进行修正,实践中可直接利用阀门驱动器内置的计算及控制功能,也可将该控制模块集成在阀门驱动器中,或者将该控制模块集成在控制装置或控制器中均可。
本实施例中,采用电流检测结合矢量变换方法获取该实时扭矩时,优选采用阀/门驱动器中的输出电流检测电路检测所述交流异步电动机三相交流信号,结合交流异步电动机的物理参数(所述物理参数可包括定子电阻、转子电阻、定转子互感、定转子漏感和空载电流等),经过坐标变换将三相交流信号转换为定子电流的转矩分量isT和定子电流的励磁分量isM,并根据磁场定向不同分别采用转子磁场定向矢量控制、直接转矩控制、转差频率矢量控制、定子磁场定向矢量控制或气隙磁场定向矢量控制计算等方法获得所述实时扭矩。也即以矢量扭矩控制为输出方法,以扭矩检测电路(例如可以是电流检测电路)的检测结果为反馈信号,通过PID闭环调整控制输出扭矩,以使驱动阀/门实际运行的输出扭矩在设定扭矩即期望值的范围内运行。
为了更精准地实现矢量控制,本发明还可包括交流异步电动机的物理参数辨识步骤,对交流异步电动机的定子电阻、转子电阻、定转子互感、定转子漏感等参数进行采集,以确保扭矩矢量控制中基本参数更准确,具体包括:获取所述交流异步电动机的物理参数,以对交流异步电动机进行更加准确的扭矩矢量控制。可对交流异步电动机输入交、直流激励信号并实时监测定子电流反馈,根据电压、电流的数值和相位关系计算获得上述相关参数。空载电流用于估算交流异步电动机运行过程中的扭矩消耗(如摩擦、通风、 铁芯损耗等)并对其输出扭矩加以补偿,该空载电流优选为电机额定电流的20%~50%。
本实施例采用阀门智能驱动器中输出电流检测电路进行参数检测,采集实时扭矩(可由转子等效自感、转子等效互感、转子磁链、定子电流转矩分量等值计算获得)作为反馈量,并使用PID控制原理对输出扭矩进行闭环控制和修正,最终实现扭矩矢量控制,确保阀/门运行过程中的扭矩响应速度和控制精度。本实施例的定子电阻可采用如下方式获取:
控制逆变电源输出单相直流电压,此时可以将该情况下的电机电路图简化为如图2所示:
其中,V`dc=直流电压,=定子电流,R1=定子电阻。
由于开关管压降的影响,实际施加在定子的电压会产生一定的误差。为了消除误差可采用施加多次不同的电压信号,取定子电压与定子电流的斜率作为定子电阻。
本实施例的转子电阻、定转子互感和定转子漏感可采用如下方式获取:
交流异步电动机在单相正弦信号激励下的电磁现象与三项正弦信号的激励下的电磁现象基本相同,通过此方法来识别,同时此时的电机转矩为零,电机保持静止,此时的电机等效电路可用三相等效电路来代替。
交流异步电动机的定子转子的矢量方程为:
其中,p为微分算子,R1为定子电阻,Rr为转子电阻,L为定子漏感,L为转子漏感,Lm为定转子互感,ω为转子速度,笼型转子
将输出的W相断开,U相和V相按照H桥式正弦电压调质信号控制逆变器的通断,从而产生正弦电压激励信号,设U相、V相的正弦电压为 则交流异步电动机中的相电压和相电流满足如下关系:

其中,VUn,VVn,Vwn分别为U相V相W相对中点电压。
此时电机转矩为0,电机此时的T型等效电路图如3所示,一般情况下定子漏感与转子漏感相同,即L=L。图4为本发明一实施例的电机反Γ等效电路图,是对T进行等效变化后的电路,变化后得电路参数T型等效电路参数件的关系为:


由图可得:

上式中是电压初始相位,是电流初始相位。
由式(1-6)~式(1-9)可以得到:
通过反Γ等效电路可以得出阻抗的表达式如下:
对交流异步电动机分别施加频率为f1和f2的正弦电压信号进行电机单相试验,检测定子电流分子到的等效阻抗,并设R`(f)=R-R1,由式(1-12)可得到反Γ等效电路下电机参数的计算公式


根据T型等效电路和反Γ等效电路参数换算的关系式(1-5),可以得到电机转子电阻、定子转子互感、定子转子漏感的计算公式如下:


L=L=L`+L`m-Lm     (1-18)
本发明一实施例中,优选采用转子磁场定向矢量控制,根据转子全磁链矢量方向进行所述磁场定向,并用如下公式获得所述实时扭矩Tei
其中,np为所述交流异步电动机的电机极对数,Lmd为所述交流异步电动机的定转子同轴时一相绕组的等效互感,Lrd为所述交流异步电动机的转子一相绕组的等效自感,isT为所述交流异步电动机的定子电流的转矩分量,Ψr为所述交流异步电动机的转子磁链。
其控制原理如下:


其中,ΨrM为转子全磁链M轴分量;ΨrT为转子全磁链T轴分量;irM为转子电流M轴分量;irT为转子电流T轴分量;np为电机极对数; 为转子一相绕组的等效自感;为定转子同轴时一相绕组的等效互感;isT为定子电流的转矩分量;Ψr为转子磁链;为转子电磁时间常数;p为微分算子;isM为定子电流的励磁分量。
本发明另一实施例中,还可采用直接转矩控制,并用如下公式获得所述实时扭矩Tei
其中,np为所述交流异步电动机的电机极对数,Lm为定转子互感,Ls为定子一相绕组的自感,Lr为转子一相绕组的自感,Ψs为定子磁链,Ψr为转子磁链,θsr为转矩角,是矢量Ψs和Ψr之间的夹角。
该直接转矩控制依据定子轴系的数学模型,并使用空间矢量分析方法实现电机控制,其控制原理如下:
定子磁链方程:
其中,us为定子轴系电压矢量。
忽略定子电阻电压降Rsis,有:
Ψ≈∫usdt      (2-18)
转矩方程为:
θsr为转矩角,是矢量Ψs和Ψr之间的夹角。
本发明第三实施例中,可采用转差频率矢量控制,根据转差频率矢量进 行所述磁场定向,并用如下公式获得所述实时扭矩Tei
其中,np为所述交流异步电动机的电机极对数,Tr为转子电磁时间常数,Lrd为所述交流异步电动机的转子一相绕组的等效自感,Ψr为转子磁链,ωs1为转差角频率。
转差频率矢量控制可在转子磁场定向量控制基础上进行,其控制原理如下:

其中,ωs1为转差角频率。
本发明第四实施例中,采用定子磁场定向矢量控制,根据定子磁链矢量方向进行所述磁场定向,并用如下公式获得所述实时扭矩Tei
Tei=npΨsisT
其中,np为所述交流异步电动机的电机极对数,Ψs为所述交流异步电动机的定子磁链,isT为所述交流异步电动机的定子电流的转矩分量。
本实施例按照定子磁链矢量方向进行磁场定向,其控制原理如下:

Tei=npΨsisT       (2-7)
其中,Ψs为定子磁链;ΨsM为定子全磁链M轴分量;ΨsT为定子全磁链T轴分量;为漏磁系数;由式(2-8)可知,定子磁链Ψs是isT和isM的函数,彼此间存在耦合,需增加解耦控制器,其控制原理如下:

其中,为定子电流励磁分量给定;为定子磁链给定;iMT为解耦控制信号;将式(2-9)代入到式(2-8)的第一式中可得:
为借助iMT实现Ψs的解耦控制,使:
(1+σTrp)LsdiMT-σLsdTrωs1isT=0      (2-12)
经变换可得:
式(2-13)是解耦器模块算法,可通过定子侧检测到的电压、电流直接计算定子磁链矢量Ψs,从而实现解耦。
本发明第五实施例中,采用气隙磁场定向矢量控制,根据扭矩气隙磁链矢量方向进行所述磁场定向,并用如下公式获得所述实时扭矩Tei
Tei=npΨmisT
其中,np为所述交流异步电动机的电机极对数,Ψm为气隙磁链,isT为定子电流的转矩分量。
本实施例按照气隙磁链矢量方向进行磁场定向,其控制原理如下:

Tei=npΨmisT      (2-15)
上述矢量控制方法中决定扭矩控制精度的各物理参数会随着长时间运行而发生漂移,且上述控制方法中电机输出扭矩的公式理论上也忽略了系统机械摩擦阻力等因素,因此本发明的一实施例中,还可定期进行扭矩标定以消除上述因素的不利影响,实现系统扭矩控制精度的长期稳定。即本发明还可包括如下步骤:对交流异步电动机的输出扭矩进行标定,用于修正交流交流异步电动 机的输出扭矩,有效提高扭矩控制精度,实现输出扭矩的精准控制,该步骤可进一步包括:
将交流异步电动机与阀门驱动器或控制模块连接,正确设置系统基本参数并执行参数辨识;在交流异步电动机额定扭矩的10%~200%范围内选择不少于10个扭矩值作为检测点,各检测点均匀分布;
将扭矩标定装置安装固定在交流异步电动机的输出轴上,并通过有线信号电缆或无线通讯模块与阀门驱动器或控制模块连接;阀门驱动器按照每个检测点扭矩值依次改变所述交流异步电动机的设定扭矩并驱动所述交流异步电动机加载并检测相应的输出扭矩,每个检测点检测次数不少于3次并取其算数平均值作为此检测点的输出扭矩检测结果;以及
由阀门驱动器或控制模块统计和分析以上检测数据,比较设定扭矩与对应的输出扭矩偏差并生成成套统计数据,根据统计数据生成各检测点所述设定扭矩与相应的所述输出扭矩对应关系图表显示或输出(显示结果可为图表及曲线,及必要的提示信息以供确认),用于修正所述交流异步电动机的输出扭矩。相关对应图表经确认后,可由阀门驱动器或控制模块执行修正。
其中,测量交流异步电动机设定扭矩下的实际输出扭矩并依照实时扭矩对输出扭矩予以修正,以获得更准确的扭矩控制阶段的输出扭矩。本实施例仅以设定扭矩与相应的输出扭矩对比为例予以说明,具体可参见下表,下表是以额定功率0.55kW,额定转速1450rpm,额定扭矩3.6Nm的交流异步电动机为例,其输出扭矩(即相应检测点的堵转扭矩)和设定扭矩关系。其中,控制和修正交流异步电动机的低速和堵转扭矩,可使阀/门关闭过程获得准确的密封比压,交流异步电动机的堵转扭矩误差优选控制在额定扭矩的±10%(优选为±4%)范围内,以稳定有效地控制阀/门关闭的密封比压。同时,还可将统计表中离散的检测点数据整合成描述设定扭矩与相应的输出扭矩关系的分段函数(如图6所示,为相对连续,首位相接,斜率不同的折线线段),供扭矩控制过程查询和使用。
表1设定扭矩与相应的输出扭矩对比表

以上数据以均匀分布的足够密集的特征点描述了交流异步电动机的设定扭矩和输出扭矩的关系。本实施例中,当设定扭矩在额定扭矩范围内时(也是扭矩控制阶段需使用的扭矩范围),设定扭矩和输出扭矩的误差在额定扭矩的±10%(优选为±4%)范围内,有良好的线性关系;当设定扭矩超过额定扭矩时,误差增大。设定扭矩和输出扭矩的关系可以用分段直线方程的方式表示,并用于修正输出扭矩。因对应表中的测试结果是离散数据,实际使用中检测点间数据以相邻两点间线段方程进行插入和补充。如当设定扭矩在0.5至1.0Nm之间时,根据图6中最左侧线段的起点(0.5,0.47)和终点(1.0,0.88)可得其关系曲线方程为:
y=0.82x+0.06;
其中,x是设定扭矩,且0.5≤x≤1.0,y是输出扭矩。
由此可用分段方程将设定扭矩和输出扭矩对应起来,达到修正输出值精准控制扭矩的目的。
为了进一步提高控制精度,本发明一实施例中,还可包括:采用电流检测结合矢量变换方法或位置传感器的反馈信号计算获得阀门当前速度,通过PID控制算法对所述交流异步电动机的输出速度进行修正,并进一步叠加修正所述输出扭矩,以满足所述阀/门开启或关闭各阶段的速度要求。
在本发明的另一实施例中,还可进一步包括:根据所述位置传感器的反馈信号判断是否到达所述阀/门开启或关闭过程各阶段的位置节点,并根据判断结果进一步调整所述输出扭矩,以满足所述阀/门开启或关闭各阶段的控制策略和停止位置精度的要求。本实施例中,可对阀/门的位置、速度、扭矩实时监控,按照嵌套关系由内而外可采用扭矩环、速度环、位置环的嵌套控制模式,其中,扭矩环直接影响转矩,响应快精度高,以满足实时控制电机输出扭矩的要求;速度环在扭矩环基础上工作,通过电流检测结合矢量变换的基本原理或阀/门位置传感器的反馈计算获取阀/门当前速度,并通过扭矩环施加影响,以满足不同阶段对速度的要求;位置环作为可选和补充项在速度环和扭矩环基础上工作,是最外层调节,其根据位置传感器的反馈判断并调节输出,以满足控制策略和停止位置精度的要求。
参见图5,图5为本发明一实施例的控制装置结构示意图。本发明的电动阀/门的控制装置采用上述的控制方法,通过实时调整驱动交流异步电动机的输出扭矩,满足所述电动阀/门执行开启和关闭过程各阶段的控制策略要求。其中,位置传感器可为全行程传感器和/或点位式传感器,以实现全行程高精度位置控制。即本发明对全行程传感器和点位式传感器兼容,适用于全行程传感器、点位式传感器、全行程传感器和点位置传感器的组合。实践中,位置传感器的选用与阀/门类别、阀/门机械结构特点、阀/门使用环境、阀/门生产技术水平等有关,使用中一般不因阀门驱动器需求而改变。在预装全行程传感器的系统中,根据连续的位置信号准确划分阀/门执行的不同阶段(本发明可包括启动阶段、加速阶段、匀速阶段、减速阶段、逼近阶段、扭矩控制阶段和停止阶段等),对每个阶段的开始位置、结束位置、速度、扭矩、加速度、减速度等参数进行合理控制以达到预期的执行效果。本发明配合不同的接口转换硬件,可适应各种类型的全行程位置传感器。
节点点位式传感器因成本低廉、安装方便、环境适应性强,在阀门执行系统中占有一定的比例,对现有存量电动阀门的升级改装具有重要意义。在预装节点点位式传感器的系统中,根据离散的节点位置信号有限辨识和划分阀门执行的不同阶段,并在确保安全的前提下确保开启或关闭的执行结果。在预装全行程传感器或点位置传感器的系统中,控制方法与仅预装全行程传感器的系统相同,点位式传感器作为保护器件或安全冗余器件进行极限或特殊位置的安全 保护。本发明在传感器种类和形式方面的兼容性拓宽了其使用范围和适用环境,也提升了其适用过程的安全性。
本发明可适用于各种阀/门的开闭控制,满足如滑动门、平开门,旋转门、百叶门、闸阀、截止阀、球阀、蝶阀、旋塞阀、风阀等不同工况的控制要求。其中,调节阀通过精确调整阀/门的开度大小或阶段运动速度,以实现不同流量特性的控制,比如百分比控制特性、直接控制特性、快开控制特性和抛物线控制特性等。调节阀中间任意位置的定位,其每一次的调整均可视为一个完整的工作运动过程。例如球阀在流量调整时开关角度从45°至60°变化的阶段中,经历的工作阶段即是启动阶段、加速阶段、匀速阶段、减速阶段、逼近阶段、停止阶段。而开关阀因需要按一定速度实现开关动作,且需要保证关闭时的密封性,因此相比调节阀可增加扭矩控制阶段,例如闸阀的关闭阶段可分为启动阶段、加速阶段、匀速阶段、减速阶段、逼近阶段、扭矩控制阶段和停止阶段。
本发明以交流异步电动机扭矩矢量控制方法、扭矩标定方法及电动机参数辨识方法为基础,分别实现了输出扭矩的动态控制和设定扭矩的静态修正;以多重PID嵌套的方式由内而外分别建立扭矩环、速度环和位置环,并根据阀/门执行过程不同阶段的需求选择闭环层级或嵌套深度,从而确保阀/门执行过程的迅速、精确,及执行结果的准确、有效,即采用外部嵌套的速度闭环和位置闭环对扭矩闭环(如电流闭环)进行嵌套控制的方法,在提高输出扭矩的响应速度和控制精度的同时,还在需要确保运行速度和定位精度的执行阶段进行速度和位置控制,进一步提升了执行过程的效率、稳定性、准确度和灵活性。
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims (10)

  1. 一种电动阀/门的控制方法,其特征在于,包括如下步骤:
    S100、根据阀/门执行开启和关闭过程各阶段的需求设定相应的设定扭矩;
    S200、以所述设定扭矩为输出扭矩或输出扭矩限值驱动交流异步电动机执行相应的阀/门开启或关闭动作;
    S300、测量所述交流异步电动机或阀/门运行的实时扭矩;
    S400、根据所述实时扭矩和设定扭矩,以所述设定扭矩为输入,以所述实时扭矩为反馈,采用PID控制算法对所述输出扭矩进行修正,以根据所述实时扭矩调节所述输出扭矩的响应速度和控制精度;以及
    S500、在所述阀/门执行开启和关闭过程中重复步骤S300-S400直至所述阀/门开启或关闭到位,以实现所述阀/门开启或关闭运行的扭矩闭环控制。
  2. 如权利要求1所述的电动阀/门的控制方法,其特征在于,步骤S300中,所述交流异步电动机或阀/门运行的实时扭矩采用电流检测结合矢量变换方法获得,或采用扭矩传感器直接自所述交流异步电动机的输出轴、阀/门减速传动箱的输出轴或阀/门驱动装置获得。
  3. 如权利要求2所述的电动阀/门的控制方法,其特征在于,所述电流检测结合矢量变换方法包括,采用阀/门驱动器中的输出电流检测电路检测所述交流异步电动机的物理参数并计算获得所述实时转矩,所述物理参数包括定子电阻、转子电阻、定转子互感、定转子漏感和空载电流。
  4. 如权利要求3所述的电动阀/门的控制方法,其特征在于,将所述交流异步电动机的三相交流信号,经过坐标变换转换为定子电流的转矩分量isT和定子电流的励磁分量isM,并根据磁场定向不同分别采用转子磁场定向矢量控制、直接转矩控制、转差频率矢量控制、定子磁场定向矢量控制或气隙磁场定向矢量控制计算获得所述实时扭矩;
    其中,所述转子磁场定向矢量控制,根据转子全磁链矢量方向进行所述磁场定向,并采用如下公式获得所述实时扭矩Tei
    其中,np为所述交流异步电动机的电机极对数,Lmd为所述交流异步电动机的定转子同轴时一相绕组的等效互感,Lrd为所述交流异步电动机的转子 一相绕组的等效自感,isT为所述交流异步电动机的定子电流的转矩分量,Ψr为所述交流异步电动机的转子磁链;
    所述直接转矩控制采用如下公式获得所述实时扭矩Tei
    其中,np为所述交流异步电动机的电机极对数,Lm为定转子互感,Ls为定子一相绕组的自感,Lr为转子一相绕组的自感,Ψs为定子磁链,Ψr为转子磁链,θsr为转矩角,是矢量Ψs和Ψr之间的夹角;
    所述转差频率矢量控制,根据转差频率矢量进行所述磁场定向,并采用如下公式获得所述实时扭矩:
    其中,np为所述交流异步电动机的电机极对数,Tr为转子电磁时间常数,Lrd为所述交流异步电动机的转子一相绕组的等效自感,Ψr为所述交流异步电动机的转子磁链,ωs1为转差角频率;
    所述定子磁场定向矢量控制,根据定子磁链矢量方向进行所述磁场定向,并采用如下公式获得所述实时扭矩Tei
    Tei=npΨsisT
    其中,np为所述交流异步电动机的电机极对数,Ψs为所述交流异步电动机的定子磁链,isT为定子电流的转矩分量;
    所述气隙磁场定向矢量控制,根据扭矩气隙磁链矢量方向进行所述磁场定向,并采用如下公式获得所述实时扭矩Tei
    Tei=npΨmisT
    其中,npp为所述交流异步电动机的电机极对数,Ψm为气隙磁链,isT为定子电流的转矩分量。
  5. 如权利要求3所述的电动阀/门的控制方法,其特征在于,所述交流异步电动机的堵转扭矩误差控制在±10%额定扭矩的范围内,以稳定有效地控制所述阀/门关闭的密封比压。
  6. 如权利要求1-5中任意一项所述的电动阀/门的控制方法,其特征在于,还包括:
    采用电流检测结合矢量变换方法或位置传感器的反馈信号获取阀门当前 速度,根据设定速度和所述阀门当前速度的偏差,通过PID控制算法对所述交流异步电动机的输出速度进行修正,并进一步叠加修正所述输出扭矩,以满足所述阀/门开启或关闭各阶段的速度要求。
  7. 如权利要求6所述的电动阀/门的控制方法,其特征在于,还包括:
    根据所述位置传感器的反馈信号判断是否到达所述阀/门开启或关闭过程各阶段的位置节点,并根据判断结果进一步调整所述输出扭矩,以满足所述阀/门开启或关闭各阶段的控制策略和位置精度的要求。
  8. 如权利要求7所述的电动阀/门的控制方法,其特征在于,所述位置传感器为全行程传感器和/或点位式传感器,以实现全行程高精度位置控制和/或准确的节点位置控制。
  9. 如权利要求1、2、3、4、5、7或8所述的电动阀/门的控制方法,其特征在于,还包括对所述交流异步电动机进行扭矩标定,进一步包括:
    阀门驱动器逐点改变所述交流异步电动机的设定扭矩并驱动所述交流异步电动机加载;
    采用扭矩标定装置检测所述交流异步电动机对应检测点的所述设定扭矩的输出扭矩,或采集阀门驱动器对应检测点的所述设定扭矩的内部扭矩反馈值;以及
    生成各所述检测点的设定扭矩与相应的输出扭矩或内部扭矩反馈值的对应关系图表,用于修正所述交流异步电动机的输出扭矩。
  10. 一种电动阀/门的控制装置,其特征在于,采用上述权利要求1-9中任意一项所述的电动阀/门的控制方法,通过实时调整驱动交流异步电动机的输出扭矩,满足所述电动阀/门执行开启和关闭过程各阶段的响应速度和控制精度要求。
PCT/CN2023/081811 2022-03-17 2023-03-16 一种电动阀/门的控制方法和装置 WO2023174362A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210277225.6 2022-03-17
CN202210277225.6A CN116792551A (zh) 2022-03-17 2022-03-17 一种电动阀/门的控制方法和装置

Publications (1)

Publication Number Publication Date
WO2023174362A1 true WO2023174362A1 (zh) 2023-09-21

Family

ID=88022363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081811 WO2023174362A1 (zh) 2022-03-17 2023-03-16 一种电动阀/门的控制方法和装置

Country Status (2)

Country Link
CN (1) CN116792551A (zh)
WO (1) WO2023174362A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117970971A (zh) * 2024-04-01 2024-05-03 上海海维工业控制有限公司 一种基于状态识别的阀口独立式电动阀控制方法及系统
CN117970971B (zh) * 2024-04-01 2024-05-31 上海海维工业控制有限公司 一种基于状态识别的阀口独立式电动阀控制方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10323097A (ja) * 1997-05-14 1998-12-04 Yaskawa Electric Corp 誘導電動機のベクトル制御方法
DE19756955A1 (de) * 1997-12-20 1999-07-01 Inst Automation Und Kommunikat Verfahren zur modellgestützten Berechnung des Drehmoments von Drehstromasynchronmotoren mit Hilfe des Statorstroms, der Statorspannung und der mechanischen Drehzahl
RU2402147C1 (ru) * 2009-09-04 2010-10-20 Общество с ограниченной ответственностью "Русэлпром-Электропривод" Способ оптимального векторного управления асинхронным двигателем
CN112113019A (zh) * 2020-09-17 2020-12-22 北京雷蒙赛博机电技术有限公司 一种阀门执行器自动控制方法
CN113406895A (zh) * 2020-02-28 2021-09-17 南京理工大学 一种智能阀门电动执行机构的控制系统构建方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10323097A (ja) * 1997-05-14 1998-12-04 Yaskawa Electric Corp 誘導電動機のベクトル制御方法
DE19756955A1 (de) * 1997-12-20 1999-07-01 Inst Automation Und Kommunikat Verfahren zur modellgestützten Berechnung des Drehmoments von Drehstromasynchronmotoren mit Hilfe des Statorstroms, der Statorspannung und der mechanischen Drehzahl
RU2402147C1 (ru) * 2009-09-04 2010-10-20 Общество с ограниченной ответственностью "Русэлпром-Электропривод" Способ оптимального векторного управления асинхронным двигателем
CN113406895A (zh) * 2020-02-28 2021-09-17 南京理工大学 一种智能阀门电动执行机构的控制系统构建方法
CN112113019A (zh) * 2020-09-17 2020-12-22 北京雷蒙赛博机电技术有限公司 一种阀门执行器自动控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117970971A (zh) * 2024-04-01 2024-05-03 上海海维工业控制有限公司 一种基于状态识别的阀口独立式电动阀控制方法及系统
CN117970971B (zh) * 2024-04-01 2024-05-31 上海海维工业控制有限公司 一种基于状态识别的阀口独立式电动阀控制方法及系统

Also Published As

Publication number Publication date
CN116792551A (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
CN108551287B (zh) 车用内置式永磁同步电机驱动系统转矩闭环控制方法
CN102420561B (zh) 基于级联高压变频器无速度传感器矢量控制方法
US10066631B2 (en) Direct power control for constant airflow control
CN106059419B (zh) 一种永磁同步电机并联矢量控制方案
CN103931096A (zh) 用温度补偿控制电动机的方法和系统
CN104201962A (zh) 一种高速列车牵引感应电机参数辨识方法
CN106788072B (zh) 永磁同步电机转子初始角度修正方法及修正系统
CN111342719B (zh) 一种无速度传感器驱动的异步电机控制方法
US10644627B2 (en) Control device of synchronous electric motor, integrated motor system, pump system, and positioning system
CN104158457A (zh) 一种电动车交流感应电机转矩校准方法
CN108448965A (zh) 两相混合式步进电机的重载闭环驱动系统及方法
CN107294459B (zh) 永磁同步电机转子初始角度修正方法及修正系统
CN111030535B (zh) 一种异步电机电感参数在线辨识方法
US20140103841A1 (en) Controlling Method of Synchronous Motor
CN103986392B (zh) 一种低速直驱式交流伺服系统的控制方法
CN109889119B (zh) 一种感应电机定子电阻与转速并行解耦辨识方法
CN103326656B (zh) 异步电机转子磁场定向角度修正系统及方法
WO2023174362A1 (zh) 一种电动阀/门的控制方法和装置
CN107482986B (zh) 一种电机的参数标定和控制方法
CN106130429A (zh) 无轴承永磁同步电机预测控制器及构造方法
KR20150083760A (ko) 전기 구동의 제어를 최적화하는 방법
CN106685295B (zh) 一种伺服系统摩擦的处理方法
WO2023174363A1 (zh) 一种交流异步电动机的控制方法和装置
WO2023174357A1 (zh) 一种电动阀/门及其阀门驱动器
WO2023174361A1 (zh) 一种电动阀/门及其控制装置和控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23769864

Country of ref document: EP

Kind code of ref document: A1