WO2023174264A1 - 一种新型屏蔽材料的连接器总成及一种车辆 - Google Patents

一种新型屏蔽材料的连接器总成及一种车辆 Download PDF

Info

Publication number
WO2023174264A1
WO2023174264A1 PCT/CN2023/081328 CN2023081328W WO2023174264A1 WO 2023174264 A1 WO2023174264 A1 WO 2023174264A1 CN 2023081328 W CN2023081328 W CN 2023081328W WO 2023174264 A1 WO2023174264 A1 WO 2023174264A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
connector assembly
electrical connection
shielding material
rubber
Prior art date
Application number
PCT/CN2023/081328
Other languages
English (en)
French (fr)
Inventor
王超
Original Assignee
吉林省中赢高科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吉林省中赢高科技有限公司 filed Critical 吉林省中赢高科技有限公司
Publication of WO2023174264A1 publication Critical patent/WO2023174264A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R31/00Coupling parts supported only by co-operation with counterpart
    • H01R31/06Intermediate parts for linking two coupling parts, e.g. adapter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/18Cables specially adapted for charging electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/40Insulated conductors or cables characterised by their form with arrangements for facilitating mounting or securing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/02Power cables with screens or conductive layers, e.g. for avoiding large potential gradients
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/648Protective earth or shield arrangements on coupling devices, e.g. anti-static shielding  
    • H01R13/658High frequency shielding arrangements, e.g. against EMI [Electro-Magnetic Interference] or EMP [Electro-Magnetic Pulse]
    • H01R13/6581Shield structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/648Protective earth or shield arrangements on coupling devices, e.g. anti-static shielding  
    • H01R13/658High frequency shielding arrangements, e.g. against EMI [Electro-Magnetic Interference] or EMP [Electro-Magnetic Pulse]
    • H01R13/6591Specific features or arrangements of connection of shield to conductive members
    • H01R13/6592Specific features or arrangements of connection of shield to conductive members the conductive member being a shielded cable

Definitions

  • the present invention relates to the technical field of automotive electrical appliances, and more specifically, to a connector assembly of a new shielding material and a vehicle.
  • shielding nets In order to reduce the impact of electromagnetic interference, conductive cables usually use shielding nets to shield electromagnetic interference.
  • the commonly used shielding nets are made of metal wires. It is necessary to add a shielding braiding machine to the cable production equipment. The equipment is expensive and accounts for The large ground area causes the price of shielded cables for connectors to remain high.
  • the automotive electrical technology field is in urgent need of a low-price, long-life connector cable and a new cable shielding structure.
  • the purpose of the present invention is to use an electrical connection skeleton to replace multi-core copper cables, reduce the diameter of the cable, lighten the weight of the cable, make the cable installation convenient, reduce friction with the car shell, and extend the service life of the connector assembly.
  • Using conductive plastic or conductive paint instead of weaving shielding nets reduces the use of shielding net weaving equipment, occupies a small area, reduces cable processing costs, and reduces the production costs of connector assemblies.
  • a connector assembly of a new type of shielding material which includes an electrical connection frame and connectors connected to both ends of the electrical connection frame, wherein the connector includes connection terminals and The inner shell has shielding effect. Both ends of the electrical connection frame are electrically connected to the connection terminals respectively.
  • the outer periphery of the electrical connection frame is covered with an insulating layer and a conductive dielectric layer from the inside to the outside.
  • the conductive dielectric layer is connected to the inner shell. shell is electrically connected to the conductive dielectric layer
  • the material is conductive polymer material.
  • connection terminal is made of copper or copper alloy
  • electrical connection frame is made of aluminum or aluminum alloy
  • the electrical connection frame is electrically connected to the connection terminal by welding or crimping.
  • the electrical connection skeleton is a rigid body, and the tensile strength of the electrical connection skeleton is greater than 75 MPa.
  • the conductive polymer material is a conductive paint
  • the conductive paint is a paint containing conductive particles
  • the conductive particles are made of one or more of metal, conductive ceramics, carbon-containing conductors, solid electrolytes, and mixed conductors. kind.
  • the volume proportion of the conductive particles in the conductive coating is 3%-95%.
  • the conductive polymer material is conductive plastic
  • the conductive plastic is a polymer material containing conductive particles.
  • the conductive particle material contains one of metals, conductive ceramics, carbon-containing conductors, solid electrolytes, and mixed conductors.
  • the polymer materials include tetrastyrene, polyvinyl chloride, polyethylene, polyamide, polytetrafluoroethylene, tetrafluoroethylene/hexafluoropropylene copolymer, ethylene/tetrafluoroethylene copolymer, poly Propylene, polyvinylidene fluoride, polyurethane, polyterephthalic acid, polyurethane elastomer, styrene block copolymer, perfluoroalkoxyalkane, chlorinated polyethylene, polyphenylene sulfide, polystyrene, cross Polyolefin, ethylene-propylene rubber, ethylene/vinyl acetate copolymer, chloroprene rubber, natural rubber, styrene-butadiene rubber, nitrile rubber, silicone rubber, butadiene rubber, isoprene rubber, ethylene-propylene rubber, butyl rubber, fluorine Rubber, polyurethan
  • the volume proportion of the conductive particles in the conductive plastic is 3%-95%.
  • the metal material includes gold, silver, copper, nickel, titanium, tin, aluminum, cadmium, zirconium, chromium, cobalt, manganese, zinc, phosphorus, tellurium, beryllium, tin-lead alloy, silver-antimony alloy, One or more of palladium, palladium-nickel alloy or silver-gold-zirconium alloy.
  • the carbon-containing conductor contains one or more of graphite silver, graphene silver, graphite powder, carbon nanotube material, and graphene material.
  • the conductive paint is applied to the outer periphery of the insulating layer by brushing, dipping or spraying.
  • the conductive plastic is formed on the periphery of the insulating layer through a process of extrusion, injection molding, dip molding, blow molding, foaming or 3D printing.
  • the inner shell and the conductive medium layer are electrically connected by conductive adhesive bonding, welding, screwing, crimping or snapping.
  • the conductivity of the conductive medium layer is greater than 4.8 ⁇ 10 6 S/m.
  • the impedance between the conductive medium layer and the inner shell is less than 80 m ⁇ .
  • the transfer resistance of the conductive medium layer is less than 100 m ⁇ .
  • the transfer impedance of the inner shell is less than 100 m ⁇ .
  • a shielding device is provided between the inner shell and the conductive medium layer, and the shielding device is electrically connected to the inner shell and the conductive medium layer respectively.
  • the impedance between the conductive medium layer and the shielding device is less than 80 m ⁇ , and the impedance between the shielding device and the inner shell is less than 80 m ⁇ .
  • the cross-sectional shape of the electrical connection skeleton is circular, elliptical, rectangular, polygonal, A-shaped, B-shaped, D-shaped, M-shaped, N-shaped, O-shaped, S-shaped, E-shaped, F-shaped, One or more of H-shaped, K-shaped, L-shaped, P-shaped, T-shaped, U-shaped, V-shaped, W-shaped, X-shaped, Y-shaped, Z-shaped, semi-arc shape, arc shape, and wavy shape.
  • the cross-section of the electrical connection skeleton is a polygon, and the corners of the polygon are rounded or chamfered.
  • At least part of the electrical connection skeleton is a flexible body.
  • the electrical connection skeleton includes at least one bend.
  • the outer periphery of the conductive dielectric layer is also wrapped with an outer insulating layer.
  • the thickness of the conductive medium layer is 0.5mm-2.8mm.
  • the cross-sectional area of the electrical connection skeleton is 3.5mm 2 -240mm 2 .
  • one of the connectors is a charging stand.
  • the present invention also provides a vehicle, in which a connector assembly and a body including the novel shielding material as described above are included.
  • the distance between the electrical connection frame and the vehicle body is greater than or equal to 4 mm.
  • the metal particles are combined with polymer materials or coatings to ensure the conductive properties of the conductive medium layer. They are produced by brushing, dipping or extrusion. There is no need to add more equipment and the production efficiency is improved.
  • a shielding device is provided between the inner shell and the conductive medium layer.
  • the conductive medium layer and the shielding device can be fixed and electrically connected first. During assembly, the shielding device contacts the inner shell and is electrically connected. This improves the stability of the shielding connection and reduces Processing difficulty.
  • Figure 1 is a schematic structural diagram of a connector assembly of a new type of shielding material according to the present invention.
  • Figure 2 is a cross-sectional view of the inner shell of a connector assembly made of a new type of shielding material according to the present invention.
  • Figure 3 is a schematic structural diagram of a shielding device of a connector assembly made of a new type of shielding material according to the present invention.
  • Figure 4 is a schematic structural diagram of another shielding device of a connector assembly made of a new type of shielding material according to the present invention.
  • any specific values are to be construed as illustrative only and not as limiting. Accordingly, other examples of the exemplary embodiments may have different values.
  • a new type of shielding material connector assembly including an electrical connection frame 1 and a connector 2 connected to both ends of the electrical connection frame 1.
  • the connector 2 contains connection terminals 5 and an inner shell 4 with shielding effect. Both ends of the electrical connection frame 1 are electrically connected to the connection terminals 5 respectively.
  • the outer periphery of the electrical connection frame 1 is covered with an insulating layer 11 and a conductive dielectric layer 12 from the inside out, so The conductive medium layer 12 is electrically connected to the inner shell 4, and the conductive medium layer 12 is made of conductive polymer material.
  • the present invention uses the cable form of the electrical connection frame 1 to replace the multi-core cable structure, so that the cable can be fixed on the car shell and will not rub with the car shell along with the vibration of the car, extending the service life of the connector 2 and reducing accidents. incidence.
  • the electrical connection frame 1 can be a single-core copper rod or aluminum rod.
  • shielding nets In order to reduce the impact of electromagnetic interference, conductive cables usually use shielding nets to shield electromagnetic interference.
  • the commonly used shielding nets are made of metal wires. It is necessary to add a shielding braiding machine to the cable production equipment. The equipment is expensive and accounts for The large ground area causes the price of the shielded cable of connector 2 to remain high.
  • the electrical connection skeleton 1 is mostly used to transmit large currents in the car. When the current passes through, a large electromagnetic field will be generated. In order to prevent the electromagnetic field generated by the large current from causing electromagnetic interference to the electrical appliances in the car and affecting the normal operation of other electrical appliances, it is necessary to The electromagnetic field generated by large current is electromagnetic shielded. Data communication cables, on the contrary, transmit electromagnetic signals internally. This electromagnetic signal will be interfered by external electromagnetic fields, resulting in electromagnetic signal distortion and inability to effectively transmit signals. Therefore, electromagnetic shielding is required to shield external electromagnetic field interference.
  • Electromagnetic shielding mainly uses shielding bodies to prevent the influence of high-frequency electromagnetic fields, thereby effectively controlling the radiation propagation of electromagnetic waves from one area to another.
  • the basic principle is to use conductor materials with low resistance values to make shielding bodies, and use the reflection of electromagnetic waves on the surface of the shielding body, absorption inside the shielding body, and loss during transmission to produce a shielding effect.
  • its connection with the connector 2 and the connection terminal 5 also requires special electromagnetic shielding.
  • the two ends of the electrical connection frame 1 of the present invention are respectively connected to the connection terminal 5 of the connector 2.
  • these connections are arranged in the inner shell 4, and the inner shell 4 is electrically connected to the conductive dielectric layer 12 outside the electrical connection skeleton 1, thereby achieving a complete shielding effect.
  • An insulating layer 11 is provided between the conductive medium layer 12 and the electrical connection skeleton 1 to prevent the two from being electrically connected.
  • the present invention uses the electrical connection skeleton 1 to replace the multi-core copper cable, thereby reducing the cable diameter and weight, making the cable installation convenient, reducing friction with the car shell, and extending the service life of the connector assembly.
  • Using conductive polymer materials instead of weaving shielding nets reduces the use of shielding net weaving equipment, occupies a small area, reduces cable processing costs, and reduces the production costs of connector assemblies.
  • connection terminal 5 is made of copper or copper alloy
  • the electrical connection frame 1 is made of aluminum or aluminum alloy.
  • the electrical connection frame 1 is connected to the connection terminal by welding or crimping. 5 electrical connections.
  • the electrical connection frame 1 is electrically connected to the connection terminal 5 by welding. Copper or copper alloys have high electrical conductivity and can be widely used in the field of electrical transmission.
  • the electrical connection skeleton 1 is connected to the connection terminal 5 by welding or crimping, and the welding method used includes resistance welding, friction welding, ultrasonic welding, arc welding, laser welding, electron beam welding, pressure diffusion welding, and magnetic induction welding. Or several, welding uses concentrated heat energy or pressure to create a molten connection at the contact position between the connection terminal 5 and the electrical connection skeleton 1.
  • the welding method has a stable connection and can realize the connection of dissimilar materials. Since the contact positions are fused, the conductive effect is better.
  • Resistance welding refers to a method that uses strong current to pass through the contact point between the electrode and the workpiece, and generates heat due to the contact resistance to achieve welding.
  • Friction welding method refers to using the heat generated by friction on the contact surface of the workpiece as a heat source to cause the workpiece to produce products under pressure. A method of welding due to plastic deformation.
  • Ultrasonic welding uses high-frequency vibration waves to transmit to the surfaces of two objects to be welded. Under pressure, the surfaces of the two objects rub against each other to form fusion between the molecular layers.
  • the arc welding method refers to using the arc as a heat source and utilizing the physical phenomenon of air discharge to convert electrical energy into the thermal energy and mechanical energy required for welding, thereby achieving the purpose of joining metals.
  • the main methods include electrode arc welding, submerged arc welding, and gas shielding. Welding etc.
  • Laser welding is an efficient and precise welding method that uses high-energy-density laser beams as heat sources.
  • Friction welding refers to a method that uses the heat generated by friction on the contact surface of the workpiece as a heat source to cause plastic deformation of the workpiece under pressure for welding.
  • Electron beam welding refers to the use of accelerated and focused electron beams to bombard the welding surface placed in a vacuum or non-vacuum, so that the workpiece to be welded melts to achieve welding.
  • Pressure welding is a method of applying pressure to the weldment to bring the joint surfaces into close contact to produce a certain degree of plastic deformation to complete the welding.
  • Crimping is a production process in which the electrical connection frame 1 and the connection terminal 5 are assembled, and then the two are stamped into one body using a crimping machine.
  • the advantage of crimping is mass production. By using an automatic crimping machine, products of stable quality can be manufactured quickly and in large quantities.
  • the electrical connection skeleton 1 is a rigid body, and the tensile strength of the electrical connection skeleton 1 is greater than 75 MPa.
  • a rigid body is an object whose shape and size remain unchanged during motion and after being subjected to force, and the relative positions of internal points remain unchanged.
  • absolutely rigid bodies do not actually exist. They are just an ideal model, because any object will deform more or less after being subjected to force. If the degree of deformation is extremely small relative to the geometric size of the object itself, it is difficult to study The deformation of the object during motion is negligible. Therefore, during use, the amount of deformation produced by the electrical connection skeleton 1 made of rigid body material is negligible. The greater the tensile strength of the rigid body, the smaller the deformation amount.
  • the inventor selected electrical connection frame 1 of the same size and specifications but with different tensile strengths. The prototype is used to test the torque during bending of the electrical connection frame 1 and the abnormal sound during the vibration process.
  • Test method for the tensile force value of the electrical connection frame 1 Use a universal tensile testing machine to connect the two ends of the electrical connection frame 1 They were respectively fixed on the tensile fixture of the universal tensile testing machine, and stretched at a speed of 50 mm/min, and the tensile force value at the final break was recorded. In this embodiment, a tensile force value greater than 1600N is considered a qualified value.
  • Torque test method of electrical connection skeleton 1 Use a torque tester to bend the electrical connection skeleton 1 at 90° with the same radius and the same speed, and test the torque value of the deformation of the electrical connection skeleton 1 during the bending process.
  • a torque value less than 60 N ⁇ m is a preferred value.
  • the test method is to select electrical connection skeleton 1 samples of the same size and specifications and different tensile strengths, assemble the connectors 2 of the same specifications together, and fix them on the vibration test bench. During the vibration test, observe whether there is any abnormal sound in the electrical connection frame 1.
  • the tensile force value when the electrical connection skeleton 1 is broken is less than 1600N.
  • the strength of the electrical connection skeleton 1 itself is not high, and it is subject to a smaller It is easily broken by external force, causing the function of the electrical connection skeleton 1 to fail, thereby failing to achieve the purpose of transmitting electric energy.
  • the greater the tensile strength value of the electrical connection skeleton 1 the less likely the electrical connection skeleton 1 is to deform. Therefore, during the vibration test, the less likely the electrical connection skeleton 1 is to vibrate relative to the connector 2 connected at both ends. Abnormal noise.
  • the tensile strength of the electrical connection frame 1 is less than or equal to 75MPa, the electrical connection frame 1 will produce abnormal noise during the vibration test. Therefore, the inventors prefer that the tensile strength be greater than 75 MPa.
  • the torque value when the electrical connection frame 1 is bent at 90° is greater than 60N ⁇ m. At this time, the electrical connection frame 1 cannot be bent. Therefore, the inventor further prefers the electrical connection frame 1 to be bent.
  • the tensile strength of the connecting frame 1 is greater than 75MPa and less than or equal to 480MPa.
  • the conductive polymer material is a conductive paint
  • the conductive paint is a paint containing conductive particles
  • the conductive particles are made of metal, conductive ceramics, carbon-containing conductors, solid electrolytes, and mixed conductors. Or several.
  • Conductive paint is a kind of chemical solvent mixed with conductive particles and can be sprayed on non-metallic materials. Functional coating that shields electromagnetic waves. It has the advantages of room temperature curing and strong adhesion.
  • the coating containing conductive particles has conductive properties, that is, it has a shielding function. The biggest advantage is low cost, simple and practical, and wide application. The most used silver conductive coating is also the earliest developed. One of the varieties.
  • mixed conductors refer to a type of conductor in which ionic conductivity and electronic conductivity coexist. Also called mixed ion-electron conductor, it is a type of solid material between ionic conductors and electronic conductors. It has both ionic conductivity and electronic conductivity. Practical mixed conductors have fairly high ionic and electronic conductivities.
  • the volume proportion of the conductive particles in the conductive coating is 3%-95%. If the volume proportion of conductive particles is too small, the conductivity will be insufficient and the ideal shielding effect will not be achieved. Therefore, the inventor tested conductive coatings with different volume ratios of conductive particles. If the conductivity of the conductive coating is less than 99%, it is considered unqualified. The test results are shown in Table 2.
  • the conductive polymer material is conductive plastic.
  • the conductive plastic is a polymer material containing conductive particles, including conductive plastic and conductive rubber.
  • the conductive particles are made of metal, conductive ceramics, carbon-containing conductors, solid electrolytes, mixed One or more conductors;
  • the polymer material includes tetrastyrene, polyvinyl chloride, polyethylene, polyamide, polytetrafluoroethylene, tetrafluoroethylene/hexafluoropropylene copolymer, ethylene/tetrafluoroethylene Copolymer, polypropylene, polyvinylidene fluoride, polyurethane, polyterephthalic acid, polyurethane elastomer, styrene block copolymer, perfluoroalkoxyalkane, chlorinated polyethylene, polyphenylene sulfide, poly Styrene, cross-linked polyolefin, ethylene-propylene rubber, ethylene/viny
  • the volume proportion of the conductive particles in the conductive plastic is 3%-95%. If the volume ratio of conductive particles is too small, the conductivity of the conductive plastic is insufficient and the ideal shielding effect cannot be achieved. Therefore, the inventor tested conductive plastics with different volume ratios of conductive particles. If the conductivity of the conductive plastic is less than 99%, it is unqualified. The test results are shown in Table 3.
  • the metal material includes gold, silver, copper, nickel, titanium, tin, aluminum, cadmium, zirconium, chromium, cobalt, manganese, zinc, phosphorus, tellurium, beryllium, tin-lead alloy, silver antimony One or more of palladium, palladium-nickel alloy or silver-gold-zirconium alloy.
  • conductive plastics As an example to conduct experiments. Metal particles of the same size and different materials were used to make conductive plastic samples, and the conductive plastics were tested separately. The conductivity of the conductive plastic is shown in Table 4 below. In this embodiment, the conductivity of the conductive plastic is greater than 99%, which is an ideal value.
  • the conductivity of conductive plastics made of different metal particles is within the ideal range.
  • phosphorus is a non-metallic material and cannot be directly used as a material for conductive plating, but it can be added to other metals to form Alloys improve the electrical conductivity and mechanical properties of the metal itself. Therefore, the inventor set the material of the metal particles to be gold, One or more of silver, copper, nickel, titanium, tin, aluminum, cadmium, zirconium, chromium, cobalt, manganese, zinc, tin-lead alloy, silver-antimony alloy, palladium, palladium-nickel alloy or silver-gold-zirconium alloy.
  • the carbon-containing conductor contains one or more of graphite silver, graphene silver, graphite powder, carbon nanotube materials, and graphene materials.
  • Graphite powder is a mineral powder, the main component is carbon, soft, black gray; graphite powder is a good non-metallic conductive substance.
  • Carbon nanotubes have good electrical conductivity. Since the structure of carbon nanotubes is the same as the lamellar structure of graphite, they have good electrical properties. Graphene has extremely high electrical properties. Carbon-containing conductors containing these three materials have high conductivity and good shielding properties, and can effectively achieve electromagnetic shielding of the electrical connection skeleton 1.
  • the conductive paint is applied to the outer periphery of the insulating layer 11 by brushing, dipping, or spraying.
  • Brushing is a method that uses various paint brushes and brushes dipped in paint to apply paint on the surface of the product and form a uniform coating. It is the earliest and most common coating method.
  • the advantage of the brush coating method is that it requires almost no investment in equipment and fixtures, saves coating materials, and generally does not require a covering process. Dip coating is to immerse the object to be coated in a tank containing paint. After a short period of time, it is taken out of the tank and the excess coating fluid is returned to the tank. Dip coating is characterized by high production efficiency, simple operation and low coating loss.
  • Spraying is a coating method that uses a spray gun or a disc atomizer to disperse the mist into uniform and fine droplets with the help of pressure or centrifugal force, and then applies it to the surface of the insulation layer 11 . It can be divided into air spraying, airless spraying, electrostatic spraying and various derivatives of the above basic spraying forms, such as large flow low pressure atomized spraying, thermal spraying, automatic spraying, multi-group spraying, etc.
  • the conductive plastic is formed on the periphery of the insulating layer 11 through a process of extrusion, injection molding, dip molding, blow molding, foaming, or 3D printing.
  • the extrusion process is also called extrusion in plastic processing. It is an efficient, continuous and low-cost molding processing method. It is an early technology in polymer material processing. Extrusion molding is one of the most important technologies in the field of polymer processing. The molding processing method has the most varieties, the most changes, high productivity, strong adaptability, wide range of uses, and the largest proportion of output. In the layout of production equipment, a metal wire braiding machine that occupies a large area can no longer be used.
  • the three extruders of the insulation layer 11, the conductive medium layer 12 and the outer insulation layer 13 can be placed side by side and electrically connected to the skeleton 1 Pass through each extruder and cover the insulating layer 11, the conductive dielectric layer 12 and the outer insulating layer 13 in sequence. In order to make the outer insulating layer 13 easier to detach from the conductive dielectric layer 12, you can also add layers between the conductive dielectric layer 12 and the outer insulating layer 13. Lubricant is added between the insulating layers 13 .
  • Injection molding process refers to the process of making semi-finished parts of a certain shape from molten raw materials through operations such as pressurization, injection, cooling, and separation.
  • the dip molding process refers to a process in which the workpiece is electrically heated to reach a certain temperature, and then immersed in the dip molding liquid to allow the dip molding liquid to solidify on the workpiece.
  • the blow molding process is to use an extruder to extrude a tubular parison, put it into the mold while it is hot, and blow it with compressed air. Make it reach the shape of the mold cavity, and then the product is obtained after cooling and shaping.
  • the advantages are: suitable for a variety of plastics, capable of producing large-scale products, high production efficiency, more uniform parison temperature and less equipment investment.
  • the foaming process refers to the formation of a honeycomb or porous structure through the addition and reaction of physical foaming agents or chemical foaming agents in the foaming molding process or foamed polymer materials.
  • the basic steps of foam molding are the formation of bubble cores, the growth or expansion of bubble cores, and the stabilization of bubble cores. Under given temperature and pressure conditions, the solubility of the gas decreases until it reaches a saturated state, allowing excess gas to be eliminated and bubbles formed, thereby achieving nucleation.
  • the 3D printing process is a type of rapid prototyping technology, also known as additive manufacturing. It is a technology that uses adhesive materials such as powdered metal or plastic to construct objects through layer-by-layer printing based on digital model files. .
  • the inner shell 4 and the conductive medium layer 12 are electrically connected by conductive adhesive bonding or welding or crimping or snapping.
  • Conductive adhesive is an adhesive that has certain conductivity after curing or drying. It can connect a variety of conductive materials together to form an electrical path between the connected materials. In the electronics industry, conductive adhesive has become an essential new material. The connection through conductive adhesive can ensure the conductivity between the inner shell 4 and the conductive medium layer 12 and achieve a better shielding effect.
  • Welding is to provide a welding surface on the inner shell 4 and the conductive medium layer 12, and use a welding machine to melt and connect the welding surfaces together, so that the inner shell 4 and the conductive medium layer 12 are stably connected together.
  • Welding machines include hot melt welding machines and ultrasonic welding machines.
  • Crimping is a production process in which after assembling the inner shell 4 and the conductive dielectric layer 12, a crimping machine is used to stamp the two into one body.
  • the advantage of crimping is mass production. By using an automatic crimping machine, products of stable quality can be manufactured quickly and in large quantities.
  • Snapping means that corresponding claws or grooves are provided on the inner shell 4 and the conductive medium layer 12 respectively, and they are assembled through the grooves and claws to connect them together.
  • the advantage of the snap-on method is that it is quick to connect and detachable.
  • conductive dielectric layer 12 has a conductivity greater than 4.8 ⁇ 10 6 S/m.
  • the conductivity of the conductive medium layer 12 should be as large as possible, so that the eddy current generated by the conductive medium layer 12 can flow back to the energy source or the grounding position without any hindrance. If the conductivity of the conductive medium layer 12 is small, then in the conductive medium layer 12 The current generated by 12 is too small, and it is difficult to derive eddy current, thereby affecting the shielding effect of the conductive dielectric layer 12 .
  • the inventor selected the same specifications of the electrical connection skeleton 1 and the insulating layer 11 and the same specifications of the conductive medium layer 12 made of different conductivity materials, and produced a series of Samples were used to test the shielding effect respectively.
  • the experimental results are shown in Table 5 below.
  • a shielding performance value greater than 40dB is an ideal value.
  • the shielding performance value is less than 40dB, which does not meet the ideal value requirements, while the conductivity of the conductive medium layer 12 is greater than or equal to 4.8 ⁇ 10 At 6 S/m, the shielding performance values all meet the ideal value requirements, and the trend is getting better and better. Therefore, the inventor sets the conductivity of the conductive medium layer 12 to be greater than or equal to 4.8 ⁇ 10 6 S/m.
  • the impedance between the conductive medium layer 12 and the inner shell 4 is less than 80 m ⁇ .
  • the impedance between the conductive medium layer 12 and the inner shell 4 should be as small as possible, so that the current generated by the inner shell 4 can flow back to the energy source or the ground position without hindrance. If the impedance between the conductive medium layer 12 and the inner shell 4 If it is larger, a larger current will be generated between the conductive medium layer 12 and the inner shell 4, resulting in larger radiation at the cable connection.
  • the inventor selected the same specifications of the electrical connection skeleton 1, the connector 2, and the connection terminal 5, and selected different conductive medium layers 12 and inner shells. To measure the impedance between the shells 4, a series of samples were produced to test the shielding effect respectively. The experimental results are shown in Table 6 below. In this embodiment, a shielding performance value greater than 40dB is an ideal value.
  • the shielding performance value is less than 40dB, which does not meet the ideal value requirements, while the impedance between the conductive medium layer 22 and the inner shell 4
  • the shielding performance values all meet the ideal value requirements, and the trend is getting better and better. Therefore, the inventor sets the impedance between the conductive medium layer 12 and the inner shell 4 to be less than 80 m ⁇ .
  • the transfer resistance of the conductive dielectric layer 12 is less than 100 m ⁇ .
  • Shielding materials usually use transfer impedance to characterize the shielding effect of the conductive dielectric layer 12. The smaller the transfer impedance, the better the shielding effect.
  • the transfer impedance of the conductive dielectric layer 12 is defined as the differential mode voltage U induced by the shield per unit length and the current Is passing through the surface of the shield. The ratio is:
  • the inventor selected the same specifications of the electrical connection skeleton 1, the connector 2 and the connecting terminal 5, and used the conductive medium layer 12 with different transfer impedance values to create a A series of samples were tested for shielding effect respectively.
  • the experimental results are shown in Table 7 below.
  • a shielding performance value greater than 40dB is an ideal value.
  • the transfer impedance of the inner shell 4 is less than 100 m ⁇ .
  • the inventor selected the same specifications of electrical connection skeleton 1, connector 2 and connection terminal 5, and used inner shells 4 with different transfer impedance values to produce a series of Samples were used to test the shielding effect respectively.
  • the experimental results are shown in Table 8 below. In this embodiment, a shielding performance value greater than 40dB is an ideal value.
  • Table 8 Effect of transfer impedance of inner shell 4 on shielding performance
  • the shielding performance value of the inner shell 4 is less than 40dB, which does not meet the ideal value requirements.
  • shell 4 screen The shielding performance values all meet the ideal value requirements, and the trend is getting better and better. Therefore, the inventor sets the transfer impedance of the inner shell 4 to be less than 100m ⁇ .
  • a shielding device 6 is provided between the inner shell 4 and the conductive medium layer 12. As shown in Figure 3, the shielding device 6 is connected to the inner shell 4 and the conductive medium layer 12 respectively. Electrical connection.
  • the inner shell 4 is generally installed inside the connector 2 and formed integrally.
  • the inner shell 4 can be made of conductive plastic material and injection molded together with the outer shell of the connector 2 .
  • the welding of the inner shell 4 and the conductive medium layer 12 is difficult to achieve. If the inner shell 4 is only contacted with the conductive medium layer 12, both the inner shell 4 and the conductive medium layer 12 will be rigid. , there will be a gap on the joint surface, which will increase the contact resistance and affect the shielding effect of the inner shell 4 and the conductive dielectric layer 12 .
  • the shielding device 6 can make the inner shell 4 and the conductive medium layer 12 more fully in contact, so that the shielding function of the connector 2 is more complete and the shielding effect is better.
  • the shielding device 6 can be a metal sleeve. Before the connector harness is assembled, it is first sleeved on the conductive medium layer 12 of the electrical connection skeleton 1, and is pressed or welded to make the shielding device 6 and the conductive medium layer 12 closely connected. of connected together. When the connector 2 is assembled, the shielding device 6 is in direct contact with the inner shell 4. Since the shielding device 6 is made of metal and has better conductivity, the contact resistance between the inner shell 4 and the conductive medium layer 12 is reduced, making the connector 2 The shielding function is more complete and the shielding effect is better.
  • the shielding device 6 is a conductive elastic piece.
  • the conductive elastic piece is at least partially elastic.
  • the conductive elastic piece is electrically connected to the inner shell 4 and the conductive medium layer 12 at the same time, thereby forming a complete shielding. structure.
  • One way is that the conductive elastic piece is fixed and electrically connected to the conductive medium layer 12, and the other end is in contact with the inner shell 4 and electrically connected.
  • Another way is that both ends of the conductive spring piece are fixed and electrically connected to the conductive medium layer 12, and the middle position is raised and contacts the inner shell 4 and is electrically connected.
  • the conductive elastic piece is at least partially elastic, and the outer diameter of the protruding position of the conductive elastic piece is larger than the inner diameter of the connection position of the inner shell 4. In this way, after the connector 2 is assembled, the conductive elastic piece is tightly connected to the inner shell 4 by elastic force.
  • the impedance between the conductive dielectric layer 12 and the shielding device 6 is less than 80 m ⁇ , and the impedance between the shielding device 6 and the inner shell 4 is less than 80 m ⁇ .
  • the inventor used a similar method to optimize the impedance between the shielding device 6 and the inner shell 4 to be less than 80 m ⁇ .
  • the cross-sectional shape of the electrical connection skeleton 1 is circular, oval, rectangular, polygonal, A-shaped, B-shaped, D-shaped, M-shaped, N-shaped, O-shaped, S-shaped, E-shaped, F-shaped , H-shaped, K-shaped, L-shaped, T-shaped, P-shaped, U-shaped, V-shaped, W-shaped, X-shaped, Y-shaped, Z-shaped, semi-arc, arc, wavy, one or more .
  • electrical connection skeletons 1 of different cross-sections can be used as needed.
  • the cross-sectional shape of the electrical connection skeleton 1 is a polygon, and the corners of the polygon are all rounded or chamfered.
  • the edges can be rounded or chamfered to prevent the sharp parts from causing damage to the insulation layer 11 .
  • At least part of the electrical connection skeleton 1 is a flexible body.
  • the flexible body can ensure that the electrical connection frame 1 can make a larger bending angle to facilitate installation in a car body with a relatively large corner.
  • the electrical connection skeleton 1 includes at least one bend. To meet the needs of vehicle interior body installation.
  • the outer periphery of the conductive dielectric layer 12 is also wrapped with an outer insulating layer 13 .
  • the outer insulating layer 13 is used to insulate the conductive medium layer 12 from external equipment to prevent short circuits that may occur when the conductive medium layer 12 is connected to the vehicle body.
  • the thickness of the conductive medium layer 12 is 0.5mm-2.8mm. If the thickness of the conductive dielectric layer 12 is too small, the conductivity is insufficient and the shielding effect cannot meet the requirements. If the thickness of the conductive dielectric layer 12 is too large, material will be wasted and the weight of the vehicle body will be increased.
  • the inventor used materials of the same different thicknesses and the same material to make conductive dielectric layer 12 samples, and tested the conductivity respectively. The experimental results are shown in Table 10 , in this embodiment, the conductivity of the conductive medium layer 12 is greater than 99%, which is an ideal value.
  • the thickness of the conductive medium layer 12 is less than 0.5mm, the conductivity is less than 99%, which is unqualified; when the thickness of the conductive medium layer 12 is greater than 2.8mm, the conductivity does not increase. And a thicker conductive medium layer 12 will increase the cost and weight of the vehicle body, so the inventor prefers that the thickness of the conductive medium layer 12 is 0.5mm-2.8mm.
  • the cross-sectional area of the electrical connection skeleton 1 is 3.5mm 2 -240mm 2 .
  • the cross-sectional area of the electrical connection skeleton 1 determines the current that the electrical connection skeleton 1 can conduct.
  • the electrical connection skeleton 1 that realizes signal conduction has a smaller current and the cross-sectional area of the electrical connection skeleton 1 is also smaller.
  • the minimum cross-sectional area of the electrical connection skeleton 1 for transmitting signals can reach 3.5mm 2
  • the electrical connection skeleton 1 for realizing power conduction has a large current
  • the cross-sectional area of the electrical connection skeleton 1 is also large.
  • the automobile battery wiring harness has a maximum conductor cross-sectional area The area reaches 240mm 2 .
  • one of the connectors 2 is a charging dock.
  • a charging stand which is connected to the charging gun, and the connector 2 at the other end is a high-voltage connector, which is connected to the rechargeable battery to achieve the purpose of charging the rechargeable battery.
  • the invention discloses a vehicle, which includes a connector assembly and a body of the new shielding material as mentioned above.
  • the distance between the electrical connection frame 1 and the vehicle body is greater than or equal to 4 mm.
  • the electrical connection frame 1 can easily interfere with the vehicle body and make abnormal noises. Tests by the inventor have shown that when the distance between the electrical connection frame 1 and the vehicle body is greater than or equal to 4mm, the occurrence of abnormal noises can be effectively eliminated.
  • the electrical connection frame 1 extends along the direction of the vehicle body and can be as close to the body as possible, greatly saving the use of the electrical connection frame 1 and reducing the cost of the connector assembly.

Abstract

本发明公开了一种新型屏蔽材料的连接器总成及一种车辆,涉及汽车电器技术领域。包括电连接骨架和连接器,所述连接器中包含连接端子和内壳,所述电连接骨架两端分别与连接端子电连接,所述电连接骨架外周从内向外包覆绝缘层和导电介质层,所述导电介质层与所述内壳电连接,所述导电介质层材质为导电塑料或导电涂料。本发明使用电连接骨架代替多芯铜线缆,减小线缆直径,减轻线缆重量,使线缆安装方便,减少与车壳的摩擦,延长了连接器的使用寿命。使用导电塑料或导电涂料代替编制屏蔽网,减少屏蔽网编制设备的使用,占地面积小,降低了线缆的加工成本,同时降低了连接器的生产成本。

Description

一种新型屏蔽材料的连接器总成及一种车辆
交叉引用信息
本申请要求于2022年03月14日提交中国专利局、申请号为CN 202210250040.6、发明名称为“一种新型屏蔽材料的连接器总成及一种车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及汽车电器技术领域,更具体地,涉及一种新型屏蔽材料的连接器总成及一种车辆。
背景技术
随着新能源汽车的越来越普及,为新能源汽车电器的设备和设施也随之发展起来,新能源汽车上的连接器总成由于要达到大电流的要求,导电电流都比较大,连接器总成上的线缆的直径也随之增大。目前大部分连接器总成上的线缆都使用多芯的铜线缆,重量大,价格高,成为限制新能源汽车普及的障碍。另外,多芯的线缆虽然较柔软,能够方便加工和布线,但是由于线径过粗,重量较大,在汽车行驶过程中线缆会频繁摩擦车壳,导致线缆的绝缘层破损,造成高压放电,轻则损坏车辆,重则会造成严重的交通事故。
为了降低电磁干扰的影响,导电线缆通常采用屏蔽网进行电磁干扰的屏蔽,目前常用的屏蔽网是采用金属丝编制而成,需要在线缆生产设备中增加屏蔽编织机,设备价格高,占地面积大,导致连接器的屏蔽线缆价格居高不下。
因此,汽车电器技术领域急需一种价格低,寿命长的连接器线缆及新型的线缆屏蔽结构。
发明内容
本发明的目的是使用电连接骨架代替多芯铜线缆,减小线缆直径,减轻线缆重量,使线缆安装方便,减少与车壳的摩擦,延长了连接器总成的使用寿命。使用导电塑料或导电涂料代替编制屏蔽网,减少屏蔽网编制设备的使用,占地面积小,降低了线缆的加工成本,同时降低了连接器总成的生产成本。
根据本发明的第一方面,提供了一种新型屏蔽材料的连接器总成,包括电连接骨架及与所述电连接骨架两端连接的连接器,其中,所述连接器中包含连接端子和具有屏蔽效能的内壳,所述电连接骨架两端分别与所述连接端子电连接,所述电连接骨架外周从内向外包覆绝缘层和导电介质层,所述导电介质层与所述内壳电连接,所述导电介质层 材质为导电高分子材料。
可选地,所述连接端子的材质为铜或铜合金,所述电连接骨架材质为铝或铝合金,所述电连接骨架通过焊接或压接的方式与所述连接端子电连接。
可选地,所述电连接骨架为刚性体,所述电连接骨架的抗拉强度大于75MPa。
可选地,所述导电高分子材料为导电涂料,所述导电涂料为包含导电颗粒的涂料,所述导电颗粒材质为金属、导电陶瓷、含碳导体、固体电解质、混合导体的一种或几种。
可选地,所述导电涂料中所述导电颗粒的体积占比为3%-95%。
可选地,所述导电高分子材料为导电塑胶,所述导电塑胶为包含导电颗粒的高分子材料,所述导电颗粒材质含有金属、导电陶瓷、含碳导体、固体电解质、混合导体的一种或几种;所述高分子材料的材质含有四苯乙烯、聚氯乙烯、聚乙烯、聚酰胺、聚四氟乙烯、四氟乙烯/六氟丙烯共聚物、乙烯/四氟乙烯共聚物、聚丙烯、聚偏氟乙烯、聚氨酯、聚对苯二甲酸、聚氨酯弹性体、苯乙烯嵌段共聚物、全氟烷氧基烷烃、氯化聚乙烯、聚亚苯基硫醚、聚苯乙烯、交联聚烯烃、乙丙橡胶、乙烯/醋酸乙烯共聚物、氯丁橡胶、天然橡胶、丁苯橡胶、丁腈橡胶、硅橡胶、顺丁橡胶、异戊橡胶、乙丙橡胶、丁基橡胶、氟橡胶、聚氨酯橡胶、聚丙烯酸酯橡胶、氯磺化聚乙烯橡胶、氯醚橡胶、氯化聚乙烯橡胶、氯硫橡胶、苯乙烯丁二烯橡胶、丁二烯橡胶、氢化丁腈橡胶、聚硫橡胶、交联聚乙烯、聚碳酸酯、聚砜、聚苯醚、聚酯、酚醛树脂、脲甲醛、苯乙烯-丙烯腈共聚物、聚甲基丙烯酸酯、聚甲醛树酯中的一种或几种。
可选地,所述导电塑胶中所述导电颗粒的体积占比为3%-95%。
可选地,所述金属的材质含有金、银、铜、镍、钛、锡、铝、镉、锆、铬、钴、锰、锌、磷、碲、铍、锡铅合金、银锑合金、钯、钯镍合金或银金锆合金中的一种或几种。
可选地,所述含碳导体含有石墨银、石墨烯银、石墨粉、碳纳米管材料、石墨烯材料中的一种或多种。
可选地,所述导电涂料采用刷涂或浸涂或喷涂的方式,附着在所述绝缘层的外周。
可选地,所述导电塑胶通过挤出或注塑或浸塑或吹塑或发泡或3D打印的工艺,在所述绝缘层的外周成型。
可选地,所述内壳与所述导电介质层采用导电胶粘接或焊接或螺接或压接或卡接的方式电连接。
可选地,所述导电介质层的电导率大于4.8×106S/m。
可选地,所述导电介质层与所述内壳之间的阻抗小于80mΩ。
可选地,所述导电介质层的转移阻抗为小于100mΩ。
可选地,所述内壳的转移阻抗为小于100mΩ。
可选地,所述内壳与所述导电介质层之间设置屏蔽装置,所述屏蔽装置分别与所述内壳和所述导电介质层电连接。
可选地,所述导电介质层与所述屏蔽装置之间的阻抗小于80mΩ,所述屏蔽装置与所述内壳之间的阻抗小于80mΩ。
可选地,所述电连接骨架横截面形状为圆形、椭圆形、矩形、多边形、A形、B形、D形、M形、N形、O形、S形、E形、F形、H形、K形、L形、P形、T形、U形、V形、W形、X形、Y形、Z形、半弧形、弧形、波浪形中的一种或几种。
可选地,所述电连接骨架的横截面为多边形,所述多边形的角为倒圆或倒角。
可选地,所述电连接骨架的至少部分区域为柔性体。
可选地,所述电连接骨架包括至少一个弯曲部。
可选地,所述导电介质层外周还包裹外绝缘层。
可选地,所述导电介质层的厚度为0.5mm-2.8mm。
可选地,所述电连接骨架的横截面积为3.5mm2-240mm2
可选地,其中一个所述连接器为充电座。
本发明还提供了一种车辆,其中,包含如上所述的新型屏蔽材料的连接器总成和车身。
可选地,所述电连接骨架与所述车身的距离大于等于4mm。
本发明的有益效果是:
1、使用电连接骨架代替多芯铜线缆,减小线缆直径,减轻线缆重量,使线缆安装方便,减少与车壳的摩擦,延长了连接器总成的使用寿命。
2、使用导电塑料或导电涂料代替编制屏蔽网,减少屏蔽网编制设备的使用,占地面积小,降低了线缆的加工成本,同时降低了连接器总成的生产成本。
3、采用金属颗粒和高分子材料或涂料结合,保证导电介质层的导电性能,采用刷涂或浸涂或挤出的方式生产,不需要增加较多的设备,并且提高生产效率。
4、在内壳和导电介质层之间设置屏蔽装置,能够先将导电介质层与屏蔽装置固定并电连接,在组装时屏蔽装置与内壳接触并电连接,提高屏蔽连接的稳定性,降低加工难度。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
图1为本发明一种新型屏蔽材料的连接器总成的结构示意图。
图2为本发明一种新型屏蔽材料的连接器总成的内壳的剖视图。
图3为本发明一种新型屏蔽材料的连接器总成的一种屏蔽装置的结构示意图。
图4为本发明一种新型屏蔽材料的连接器总成的另一种屏蔽装置的结构示意图。
图中标示如下:
1-电连接骨架、11-绝缘层、12-导电介质层、13-外绝缘层、2-连接器、4-内壳、5-
连接端子、6-屏蔽装置。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
一种新型屏蔽材料的连接器总成,包括电连接骨架1及与所述电连接骨架1两端连接的连接器2,如图1和图2所示,所述连接器2中包含连接端子5和具有屏蔽效能的内壳4,所述电连接骨架1两端分别与所述连接端子5电连接,所述电连接骨架1外周从内向外包覆绝缘层11和导电介质层12,所述导电介质层12与所述内壳4电连接,所述导电介质层12材质为导电高分子材料。
目前大部分连接器2总成上的充电线缆都使用多芯的铜线缆,重量大,价格高,成为限制新能源汽车普及的障碍。另外,多芯的线缆虽然较柔软,能够方便加工和布线,都是由于线径过粗,重量较大,在汽车行驶过程中线缆会频繁摩擦车壳,导致线缆的绝缘层破损,造成高压放电,轻则损坏车辆,重则会造成严重的交通事故。因此本发明使用电连接骨架1的线缆形式替代多芯线缆结构,使线缆能够固定在车壳上,不会随着汽车振动与车壳摩擦,延长连接器2的使用寿命,减少事故发生率。电连接骨架1可以为单芯的铜棒或铝棒。
为了降低电磁干扰的影响,导电线缆通常采用屏蔽网进行电磁干扰的屏蔽,目前常用的屏蔽网是采用金属丝编制而成,需要在线缆生产设备中增加屏蔽编织机,设备价格高,占地面积大,导致连接器2的屏蔽线缆价格居高不下。
电连接骨架1多用于在车内传输大电流,在电流经过时会产生较大的电磁场,为了防止大电流产生的电磁场对汽车中的电器进行电磁干扰,影响其他电器的正常工作,因此需要将大电流产生的电磁场进行电磁屏蔽。数据通信线缆则相反,其内部传输电磁信号,这个电磁信号会被外界的电磁场干扰,从而导致电磁信号失真,无法有效的传递信号,因此需要电磁屏蔽来屏蔽外界的电磁场干扰。
电磁屏蔽主要是使用屏蔽体来防止高频电磁场的影响,从而有效地控制电磁波从某一区域向另一区域进行辐射传播。基本原理是采用低电阻值的导体材料制作屏蔽体,利用电磁波在屏蔽体表面的反射,在屏蔽体内部的被吸收以及在传输过程中的被损耗而产生屏蔽作用。除了电连接骨架1需要进行电磁屏蔽,其与连接器2及连接端子5的连接处也需要特别进行电磁屏蔽的地方,本发明的电连接骨架1的两端分别和连接器2的连接端子5连接,将这些连接处设置在内壳4内,内壳4与电连接骨架1外的导电介质层12电性连接,从而达到完整屏蔽的效果。导电介质层12与电连接骨架1之间设置绝缘层11,防止两者电连接。
本发明使用电连接骨架1代替多芯铜线缆,减小线缆直径,减轻线缆重量,使线缆安装方便,减少与车壳的摩擦,延长了连接器总成的使用寿命。使用导电高分子材料代替编制屏蔽网,减少屏蔽网编制设备的使用,占地面积小,降低了线缆的加工成本,同时降低了连接器总成的生产成本。
在一些实施例中,所述连接端子5的材质为铜或铜合金,所述电连接骨架1材质为铝或铝合金,所述电连接骨架1通过焊接或压接的方式与所述连接端子5电连接。所述电连接骨架1通过焊接的方式与所述连接端子5电连接。铜或铜合金的导电率高,可以广泛用于电传输领域。电连接骨架1通过焊接或压接与连接端子5连接,所采用的焊接方式,包括电阻焊接、摩擦焊接、超声波焊接、弧焊、激光焊接、电子束焊接、压力扩散焊接、磁感应焊接的一种或几种,焊接是采用集中热能或压力,使连接端子5和电连接骨架1接触位置产生熔融连接,焊接方式连接稳固,可以实现异种材料的连接,由于接触位置相融,导电效果更好。
电阻焊接方式,是指一种利用强大电流通过电极和工件间的接触点,由接触电阻产生热量而实现焊接的一种方法。
摩擦焊方式,是指利用工件接触面摩擦产生的热量为热源,使工件在压力作用下产 生塑性变形而进行焊接的方法。
超声波焊接方式,是利用高频振动波传递到两个需焊接的物体表面,在加压的情况下,使两个物体表面相互摩擦而形成分子层之间的熔合。
弧焊方式,是指以电弧作为热源,利用空气放电的物理现象,将电能转换为焊接所需的热能和机械能,从而达到连接金属的目的,主要方法有焊条电弧焊、埋弧焊、气体保护焊等。
激光焊接方式,是利用高能量密度的激光束作为热源的一种高效精密焊接方法。
摩擦焊接方式,是指利用工件接触面摩擦产生的热量为热源,使工件在压力作用下产生塑性变形而进行焊接的方法。
电子束焊接方式,是指利用加速和聚焦的电子束轰击置于真空或非真空中的焊接面,使被焊工件熔化实现焊接。
压力焊接方式,是对焊件施加压力,使接合面紧密地接触产生一定的塑性变形而完成焊接的方法。
磁感应焊接方式,是两个被焊工件在强脉冲磁场作用下,产生瞬间高速碰撞,材料表层在很高的压力波作用下,使两种材料的原子在原子间距离内相遇,从而在界面上形成稳定的冶金结合。是固态冷焊的一种,可以将属性相似或不相似的传导金属焊接在一起。
压接方式,压接是将电连接骨架1和连接端子5装配后,使用压接机,将两者冲压为一体的生产工艺。压接的优点是量产性,通过采用自动压接机能够迅速大量的制造稳定品质的产品。
在一些实施例中,所述电连接骨架1为刚性体,所述电连接骨架1的抗拉强度大于75MPa。刚性体是指在运动中和受力作用后,形状和大小不变,而且内部各点的相对位置不变的物体。绝对刚性体实际上是不存在的,只是一种理想模型,因为任何物体在受力作用后,都或多或少地变形,如果变形的程度相对于物体本身几何尺寸来说极为微小,在研究物体运动时变形就可以忽略不计。所以,由刚性体材料制成的电连接骨架1在使用过程中,产生的形变量微乎其微,可忽略不计,刚性体的抗拉强度越大,其变形量越小。
为了验证电连接骨架1的抗拉强度,对电连接骨架1折弯的扭矩以及振动过程中是否发生异响的影响,发明人选用了相同尺寸规格的,使用不同抗拉强度的电连接骨架1样件,对电连接骨架1折弯时的扭矩和振动过程中的异响进行测试。
电连接骨架1的拉力值的测试方法:使用万能拉力测试机,将电连接骨架1,两端 分别固定在万能拉力测试机的拉伸治具上,并以50mm/min的速度进行拉伸,记录最终拉断时的拉力值,在本实施例中,拉力值大于1600N为合格值。
电连接骨架1的扭矩测试方法:使用扭矩测试仪,将电连接骨架1以相同的半径,相同的速度弯折90°的时候,测试弯折过程中电连接骨架1变形的扭矩值,在本实施例中,扭矩值小于60N·m为优选值。
电连接骨架1是否会出现异响,试验方法为选择相同尺寸规格的,使用不同抗拉强度的电连接骨架1样件,相同规格的连接器2组装在一起,固定在振动试验台上,在振动试验过程中,观察电连接骨架1是否会出现异响。
表1:不同的抗拉强度对电连接骨架1的扭矩值和异响的影响
从上表1中可以看出,当电连接骨架1抗拉强度为小于75MPa时,电连接骨架1拉断时的拉力值小于1600N,此时电连接骨架1本身的强度不高,受到较小外力时容易拉断,造成电连接骨架1功能失效,从而无法起到电能传输的目的。另一方面,由于电连接骨架1的抗拉强度值越大,电连接骨架1越不易发生形变,所以振动试验过程中,电连接骨架1越不容易相对两端连接的连接器2振动而产生异响,相反,电连接骨架1的抗拉强度值越小,电连接骨架1越容易发生形变,所以振动试验过程中,电连接骨架1越容易相对两端连接的连接器2振动而产生异响。从上表1中可以看出,当电连接骨架1抗拉强度为小于等于75MPa时,电连接骨架1在振动试验过程中会产生异响。因此,发明人优选抗拉强度为大于75MPa。同时,当电连接骨架1抗拉强度为大于480MPa时,电连接骨架1折弯90°时的扭矩值大于60N·m,此时电连接骨架1不容置折弯,因此,发明人进一步优选电连接骨架1抗拉强度为大于75MPa且小于等于480MPa。
在一些实施例中,所述导电高分子材料为导电涂料、所述导电涂料为包含导电颗粒的涂料,所述导电颗粒材质为金属、导电陶瓷、含碳导体、固体电解质、混合导体的一种或几种。导电涂料是一种在化学溶剂中掺入导电颗粒,并能喷涂于非金属材料上,对 电磁波进行屏蔽的功能性涂料。具有室温固化、附着力强的优点,含有导电颗粒的涂料具有导电性能,即具有屏蔽功能,最大优点是成本低,简单实用且适用面广,使用最多的是银系导电涂料,也是开发最早的品种之一。其中,混合导体是指离子导电和电子导电同时存在的一类导体。又叫混合离子-电子导体,是介于离子导体和电子导体之间的一类固体材料,它同时兼有离子导电性和电子导电性。有实用价值的混合导体的离子电导率和电子电导率都相当高。
进一步的,所述导电涂料中所述导电颗粒的体积占比为3%-95%。如果导电颗粒的体积占比过小,则导电率不足,达不到理想的屏蔽效果。因此发明人对不同导电颗粒的体积占比的导电涂料进行了测试,如果导电涂料的导电率小于99%为不合格,测试结果如表2所示。
表2:不同导电颗粒的体积占比的导电涂料对导电涂层导电率的影响
从表2可知,当导电涂料的导电颗粒的体积占比小于3%时,导电涂料的导电率小于99%,不能够满足需要,而当导电涂料的导电颗粒的体积占比大于95%后导电率并无增加,且所需工艺要求也越来越高,因此发明人优选所述导电涂料中所述导电颗粒的体积占比为3%-95%。
在一些实施例中,导电高分子材料为导电塑胶,导电塑胶为包含导电颗粒的高分子材料,包括导电塑料和导电橡胶,导电颗粒的材质含有金属、导电陶瓷、含碳导体、固体电解质、混合导体的一种或几种;所述高分子材料的材质含有四苯乙烯、聚氯乙烯、聚乙烯、聚酰胺、聚四氟乙烯、四氟乙烯/六氟丙烯共聚物、乙烯/四氟乙烯共聚物、聚丙烯、聚偏氟乙烯、聚氨酯、聚对苯二甲酸、聚氨酯弹性体、苯乙烯嵌段共聚物、全氟烷氧基烷烃、氯化聚乙烯、聚亚苯基硫醚、聚苯乙烯、交联聚烯烃、乙丙橡胶、乙烯/醋酸乙烯共聚物、氯丁橡胶、天然橡胶、丁苯橡胶、丁腈橡胶、硅橡胶、顺丁橡胶、异戊橡胶、乙丙橡胶、氯丁橡胶、丁基橡胶、氟橡胶、聚氨酯橡胶、聚丙烯酸酯橡胶、氯磺化聚乙烯橡胶、氯醚橡胶、氯化聚乙烯橡胶、氯硫橡胶、苯乙烯丁二烯橡胶、丁二烯橡胶、氢化丁腈橡胶、聚硫橡胶、交联聚乙烯、聚碳酸酯、聚砜、聚苯醚、聚酯、酚醛树脂、脲甲醛、苯乙烯-丙烯腈共聚物、聚甲基丙烯酸酯、聚甲醛树酯中的一种或几种。可以根据需要选择含有不同颗粒的导电塑料或导电橡胶。
进一步的,所述导电塑料中所述导电颗粒的体积占比为3%-95%。如果导电颗粒的体积占比过小,则导电塑料的导电率不足,达不到理想的屏蔽效果。因此发明人对不同导电颗粒的体积占比的导电塑料进行了测试,如果导电塑料的导电率小于99%为不合格,测试结果如表3所示。
表3:不同导电颗粒的体积占比的导电涂料对导电涂层导电率的影响
从表3可知,当导电涂料的导电颗粒的体积占比小于3%时,导电塑料的导电率小于99%,不能够满足需要,而当导电塑料的导电颗粒的体积占比大于95%后导电率并无增加,且所需工艺也越来越高,因此发明人优选所述导电塑料中所述导电颗粒的体积占比为3%-95%。
在一些实施例中,所述金属的材质含有金、银、铜、镍、钛、锡、铝、镉、锆、铬、钴、锰、锌、磷、碲、铍、锡铅合金、银锑合金、钯、钯镍合金或银金锆合金中的一种或几种。为了论证不同金属的材质对导电涂料和导电塑料的导电率的影响,发明人采用导电塑料为例进行了试验,使用相同规格尺寸、不同材质的金属颗粒制作导电塑料的样件,分别测试导电塑料的导电率,实验结果如下表4所示,在本实施例中,导电塑料的导电率大于99%为理想值。
表4:不同材质的金属颗粒对导电塑料的导电率的影响
从上表4可以看出,选用的不同金属颗粒制作的导电塑料,导电率都在理想值范围内,另外,磷是非金属材料,不能直接作为导电镀层的材质,但是可以添加到其他金属中形成合金,提高金属本身的导电和机械性能。因此,发明人设定金属颗粒的材质为金、 银、铜、镍、钛、锡、铝、镉、锆、铬、钴、锰、锌、锡铅合金、银锑合金、钯、钯镍合金或银金锆合金中的一种或几种。
在一些实施例中,所述含碳导体含有石墨银、石墨烯银、石墨粉、碳纳米管材料、石墨烯材料中的一种或多种。石墨粉是一种矿物粉末,主要成分为碳单质,质软,黑灰色;石墨粉是很好的非金属导电物质。碳纳米管具有良好的导电性能,由于碳纳米管的结构与石墨的片层结构相同,所以具有很好的电学性能。石墨烯更是具有极高的电学性能,含有这三种材料的含碳导体导电率高,屏蔽性能好,能够很好的实现对电连接骨架1的电磁屏蔽。
在一些实施例中,所述导电涂料采用刷涂或浸涂或喷涂的方式,附着在所述绝缘层11的外周。刷涂是利用各种漆刷和排笔蘸涂料在制品表面进行涂刷,并形成均匀涂层的一种方法,是一种应用最早、最普遍的涂装方法。刷涂法的优点是几乎不需设备夹具投资,节省涂覆材料,一般不需要遮盖工序。浸涂是将被涂物体全部浸没在盛有涂料的槽中,经过很短的时间,再从槽中取出,并将多余的涂液重新流回槽内。浸涂的特点是生产效率高,操作简单,涂料损失少。喷涂是通过喷枪或碟式雾化器,借助于压力或离心力,分散成均匀而微细的雾滴,施涂于绝缘层11表面的涂装方法。可分为空气喷涂、无空气喷涂、静电喷涂以及上述基本喷涂形式的各种派生的方式,如大流量低压力雾化喷涂、热喷涂、自动喷涂、多组喷涂等。
在一些实施例中,所述导电塑胶通过挤出或注塑或浸塑或吹塑或发泡或3D打印的工艺,在所述绝缘层11的外周成型。
挤出工艺在塑胶加工中又称为挤塑,是一种高效、连续、低成本的成型加工方法,是高分子材料加工中出现较早的一门技术,挤出成型是聚合物加工领域中生产品种最多、变化最多、生产率高、适应性强、用途广泛、产量所占比重最大的成型加工方法。在生产设备的布局中,可以不再使用占地面积较大的金属丝编织机,可以将绝缘层11、导电介质层12和外绝缘层13的三台挤出机并排放置,电连接骨架1从各个挤出机中穿过,依次覆盖绝缘层11、导电介质层12和外绝缘层13,为了使外绝缘层13从导电介质层12上比较容易脱离,还可以在导电介质层12和外绝缘层13之间添加润滑剂。
注塑工艺是指将熔融的原料通过加压、注入、冷却、脱离等操作制作一定形状的半成品件的工艺过程。
浸塑工艺是指通过工件电加热后,达到一定的温度,然后浸到浸塑液里面去,让浸塑液固化在工件上的工艺过程。
吹塑工艺是用挤出机挤出管状型坯,趁热放入模具中,并通入压缩空气进行吹胀以 使其达到模腔形样,冷却定型后即得制品。优点是:适用于多种塑料,能生产大型制品、生产效率高,型坯温度较均匀和设备投资较少等。
发泡工艺是指在发泡成型过程或发泡聚合物材料中,通过物理发泡剂或化学发泡剂的添加与反应,形成了蜂窝状或多孔状结构。发泡成型的基本步骤是形成泡核、泡核生长或扩大以及泡核的稳定。在给定的温度与压力条件下,气体的溶解度下降,以致达到饱和状态,使多余的气体排除并形成气泡,从而实现成核。
3D打印工艺是快速成型技术的一种,又称增材制造,是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术。
在一些实施例中,所述内壳4与所述导电介质层12采用导电胶粘接或焊接或压接或卡接的方式电连接。导电胶是一种固化或干燥后具有一定导电性的胶粘剂。它可以将多种导电材料连接在一起,使被连接材料间形成电的通路。在电子工业中,导电胶已成为一种必不可少的新材料。通过导电胶粘的方式连接,能够保证内壳4与导电介质层12之间的导电率,起到更好的屏蔽效果。
焊接是在内壳4和导电介质层12上设置焊接面,使用焊接机,将焊接面熔化并连接在一起,使内壳4和导电介质层12稳定的连接在一起。焊接机包括热熔焊接机和超声波焊接机等。
压接是将内壳4和导电介质层12装配后,使用压接机,将两者冲压为一体的生产工艺。压接的优点是量产性,通过采用自动压接机能够迅速大量的制造稳定品质的产品。
卡接是指在内壳4和导电介质层12上分别设置对应的卡爪或卡槽,通过卡槽和卡爪进行装配,使其连接在一起。卡接的方式优点是连接快速,可拆卸。
在一些实施例中,导电介质层12的电导率大于4.8×106S/m。
导电介质层12的电导率要尽可能大,这样导电介质层12产生的涡流电流才会无阻碍的流回能量源或接地位置,如果导电介质层12的电导率较小,则在导电介质层12产生的电流过小,不容易导出涡流电流,从而,影响导电介质层12的屏蔽效果。
为了验证导电介质层12的电导率对屏蔽效果的影响,发明人选用相同规格的电连接骨架1和绝缘层11和不同导电率材质制成的相同规格的导电介质层12,制作了一系列的样件,分别测试屏蔽效果,实验结果如下表5所示,在本实施例中,屏蔽性能值大于40dB为理想值。
屏蔽性能值测试方法为:测试仪器对电连接骨架1输出一个信号值(此数值为测试值2),在绝缘层11外侧设置探测装置,此探测装置探测到一个信号值(此数值为测试值1)。屏蔽性能值=测试值2-测试值1。
表5:导电介质层12的电导率对屏蔽性能的影响
从表5可以看出,当导电介质层12的电导率小于4.8×106S/m时,屏蔽性能值小于40dB,不符合理想值要求,而导电介质层12的电导率大于等于4.8×106S/m时,屏蔽性能值全部符合理想值要求,而且趋势越来越好,因此,发明人设定导电介质层12的电导率大于等于4.8×106S/m。
在一些实施例中,所述导电介质层12与所述内壳4之间的阻抗小于80mΩ。
导电介质层12与内壳4之间的阻抗要尽可能小,这样内壳4产生的电流才会无阻碍的流回能量源或接地位置,如果导电介质层12与内壳4之间的阻抗较大,则会在导电介质层12与内壳4之间产生较大的电流,从而使线缆连接处产生较大的辐射。
为了验证导电介质层12与内壳4之间的阻抗值对屏蔽效果的影响,发明人选用相同规格的电连接骨架1、连接器2、和连接端子5,选用不同的导电介质层12与内壳4之间的阻抗,制作了一系列的样件,分别测试屏蔽效果,实验结果如下表6所示,在本实施例中,屏蔽性能值大于40dB为理想值。
屏蔽性能值测试方法为:测试仪器对电连接骨架1输出一个信号值(此数值为测试值2),在电连接骨架1外侧设置探测装置,此探测装置探测到一个信号值(此数值为测试值1)。屏蔽性能值=测试值2-测试值1。
表6:导电介质层12与内壳4之间的阻抗对屏蔽性能的影响
从表6可以看出,当导电介质层12与内壳4之间的阻抗值大于80mΩ时,屏蔽性能值小于40dB,不符合理想值要求,而导电介质层22与内壳4之间的阻抗值为小于80mΩ时,屏蔽性能值全部符合理想值要求,而且趋势越来越好,因此,发明人设定导电介质层12与内壳4之间的阻抗为小于80mΩ。
在一些实施例中,所述导电介质层12的转移阻抗为小于100mΩ。屏蔽材料通常用转移阻抗来表征导电介质层12的屏蔽效果,转移阻抗越小,屏蔽效果越好。导电介质层12的转移阻抗定义为单位长度屏蔽体感应的差模电压U与屏蔽体表面通过的电流Is 之比,即:
ZT=U/IS,所以可以理解为,导电介质层12的转移阻抗将导电介质层12电流转换成差模干扰。转移阻抗越小越好,即减小差模干扰转换,可以得到较好的屏蔽性能。
为了验证不同转移阻抗值的导电介质层12对屏蔽效果的影响,发明人选用相同规格的电连接骨架1、连接器2和连接端子5,采用不同转移阻抗值的导电介质层12,制作了一系列的样件,分别测试屏蔽效果,实验结果如下表7所示,在本实施例中,屏蔽性能值大于40dB为理想值。
屏蔽性能值测试方法为:测试仪器对电连接骨架1输出一个信号值(此数值为测试值2),在电连接骨架1外侧设置探测装置,此探测装置探测到一个信号值(此数值为测试值1)。屏蔽性能值=测试值2-测试值1。
表7:导电介质层12的转移阻抗对屏蔽性能的影响
从上表7可以看出,当导电介质层12的转移阻抗值大于100mΩ时,导电介质层12的屏蔽性能值小于40dB,不符合理想值要求,而导电介质层12的转移阻抗值为小于100mΩ时,导电介质层12的屏蔽性能值全部符合理想值要求,而且趋势越来越好,因此,发明人设定导电介质层12的转移阻抗为小于100mΩ。
在一些实施例中,所述内壳4的转移阻抗为小于100mΩ。为了验证不同转移阻抗值的内壳4对屏蔽效果的影响,发明人选用相同规格的电连接骨架1、连接器2和连接端子5,采用不同转移阻抗值的内壳4,制作了一系列的样件,分别测试屏蔽效果,实验结果如下表8所示,在本实施例中,屏蔽性能值大于40dB为理想值。
屏蔽性能值测试方法为:测试仪器对电连接骨架1输出一个信号值(此数值为测试值2),在内壳4外侧设置探测装置,此探测装置探测到一个信号值(此数值为测试值1)。屏蔽性能值=测试值2-测试值1。
表8:内壳4的转移阻抗对屏蔽性能的影响
从上表8可以看出,当内壳4的转移阻抗值大于100mΩ时,内壳4的屏蔽性能值小于40dB,不符合理想值要求,而内壳4的转移阻抗值为小于100mΩ时,内壳4的屏 蔽性能值全部符合理想值要求,而且趋势越来越好,因此,发明人设定内壳4的转移阻抗为小于100mΩ。
在一些实施例中,所述内壳4与所述导电介质层12之间设置屏蔽装置6,如图3所示,所述屏蔽装置6分别与所述内壳4和所述导电介质层12电连接。
内壳4一般是安装在连接器2内部并形成一体,在一种实施方式中,内壳4可以采用导电塑料材质,与连接器2的外壳一起注塑成型。电连接骨架1与连接器2装配时,内壳4与导电介质层12的焊接较难实现,如果只是将内壳4与导电介质层12接触,内壳4与导电介质层12都是刚性的,结合面会存在间隙,导致接触电阻增大,影响内壳4与导电介质层12的屏蔽效果。
屏蔽装置6能够使内壳4与导电介质层12接触更加充分,连接器2的屏蔽功能更完整,屏蔽效果更好。屏蔽装置6可以是金属套筒,在连接器线束组装之前,先套接在电连接骨架1的导电介质层12上,并采用压接或焊接的方式,使屏蔽装置6与导电介质层12紧密的连接在一起。连接器2组装时,屏蔽装置6直接与内壳4接触,由于屏蔽装置6材质为金属,导电性更佳,因此降低了内壳4与导电介质层12之间的接触电阻,使连接器2的屏蔽功能更完整,屏蔽效果更好。
在另一实施方式中,屏蔽装置6为导电弹片,如图3和图4所示,导电弹片至少部分具有弹性,导电弹片同时与内壳4和导电介质层12电连接,从而形成完整的屏蔽结构。一种方式为导电弹片固定并电连接在导电介质层12,另一端与内壳4接触并电连接。另一种方式为导电弹片两端固定并电连接在导电介质层12,中间位置凸起并与内壳4接触并电连接。导电弹片至少部分具有弹性,导电弹片凸出位置的外径,要大于内壳4连接位置的内径,这样在连接器2组装之后,导电弹片依靠弹力与内壳4紧密的连接在一起。
在一些实施例中,所述导电介质层12与所述屏蔽装置6之间的阻抗小于80mΩ,所述屏蔽装置6与所述内壳4之间的阻抗小于80mΩ。
为了验证导电介质层12与屏蔽装置6之间的阻抗值对屏蔽效果的影响,发明人选用相同规格的电连接骨架1、连接器2、内壳4和连接端子5,选用不同的导电介质层12与屏蔽装置6之间的阻抗,制作了一系列的样件,分别测试屏蔽效果,实验结果如下表9所示,在本实施例中,屏蔽性能值大于40dB为理想值。
屏蔽性能值测试方法为:测试仪器对电连接骨架1输出一个信号值(此数值为测试值2),在屏蔽装置6外侧设置探测装置,此探测装置探测到一个信号值(此数值为测试值1)。屏蔽性能值=测试值2-测试值1。
表9:导电介质层12与屏蔽装置6之间的阻抗对屏蔽性能的影响
从表9可以看出,当导电介质层12与屏蔽装置6之间的阻抗值大于80mΩ时,屏蔽性能值小于40dB,不符合理想值要求,而导电介质层12与屏蔽装置6之间的阻抗值为小于80mΩ时,屏蔽性能值全部符合理想值要求,而且趋势越来越好,因此,发明人设定导电介质层12与屏蔽装置6之间的阻抗为小于80mΩ。
发明人用类似的方法优选了屏蔽装置6与所述内壳4之间的阻抗小于80mΩ。
在一些实施例中,电连接骨架1的截面形状为圆形、椭圆形、矩形、多边形、A形、B形、D形、M形、N形、O形、S形、E形、F形、H形、K形、L形、T形、P形、U形、V形、W形、X形、Y形、Z形、半弧形、弧形、波浪形中的一种或几种。在实际使用中可以根据需要采用不同截面的电连接骨架1。
在一些实施例中,所述电连接骨架1截面形状为多边形,所述多边形的角全部倒圆或倒角。当电连接骨架1的截面具有棱角时,可以对棱角进行倒圆或者倒角,防止其尖锐的部分对绝缘层11造成损伤。
在一些实施例中,在一些实施例中,所述电连接骨架1的至少部分区域为柔性体。柔性体能够保证电连接骨架1上能够做出较大的折弯角度,以方便设置在拐角比较大的车体内。
在一些实施例中,所述电连接骨架1包括至少一个弯曲部。以满足车内体安装的需要。
在一些实施例中,所述导电介质层12外周还包裹外绝缘层13。外绝缘层13用于导电介质层12与外部设备的绝缘,防止导电介质层12与车体连接可能会出现短路的情况。
在一些实施例中,所述导电介质层12的厚度为0.5mm-2.8mm。如果导电介质层12的厚度太小,导电率则不足,屏蔽效果不能够满足要求。如果导电介质层12的厚度太大,则会浪费材料增加车身重量。为了论证不同厚度的导电介质层12对导电介质层12导电率的影响,发明人使用相同不同厚度、相同材质的材料制作导电介质层12样件,分别测试导电率,实验结果如表10所示,在本实施例中,导电介质层12的导电率大于99%为理想值。
表10:导电介质层12的厚度对导电率的影响

从表10可以看出,当导电介质层12的厚度小于0.5mm后,导电率小于99%,为不合格;当导电介质层12的厚度大于2.8mm后,导电率也没有增长。且更厚的导电介质层12会增加成本和车体重量,因此发明人优选导电介质层12的厚度为0.5mm-2.8mm。
在一些实施例中,所述电连接骨架1的横截面积为3.5mm2-240mm2。电连接骨架1的截面积决定电连接骨架1所能导通的电流,一般情况下,实现信号导通的电连接骨架1,电流较小,电连接骨架1截面积也较小,例如用于传输信号的线电连接骨架1最小截面积可达到3.5mm2,而实现电源导通的电连接骨架1,电流较大,电连接骨架1截面积也较大,例如汽车蓄电池线束,导体最大截面积达到240mm2
在一些实施例中,其中一个所述连接器2为充电座。随着新能源汽车的越来越普及,为新能源汽车充电的设备和设施也随之发展起来,新能源汽车上的充电电池由于要达到快充的要求,需要用到充电座总成,本发明中其中一个连接器2为充电座,连接充电枪,另一端的连接器2为高压连接器,连接充电电池,实现为充电电池充电的目的。
本发明公开了一种车辆,包含如上所述的新型屏蔽材料的连接器总成和车身。
进一步的,电连接骨架1与车身的距离大于等于4mm。在汽车运动中,电连接骨架1很容易和车身干涉发出异响,经发明人测试,当电连接骨架1与车身的距离大于等于4mm时,能够有效杜绝异响的出现。电连接骨架1沿车身方向延伸,能够尽可能的贴近车身,极大程度的节省了电连接骨架1的使用,降低了连接器总成的成本。
虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

Claims (28)

  1. 一种新型屏蔽材料的连接器总成,包括电连接骨架及与所述电连接骨架两端连接的连接器,其特征在于,所述连接器中包含连接端子和具有屏蔽效能的内壳,所述电连接骨架两端分别与所述连接端子电连接,所述电连接骨架外周从内向外包覆绝缘层和导电介质层,所述导电介质层与所述内壳电连接,所述导电介质层材质为导电高分子材料。
  2. 根据权利要求1所述的新型屏蔽材料的连接器总成,其特征在于,所述连接端子的材质为铜或铜合金,所述电连接骨架材质为铝或铝合金,所述电连接骨架通过焊接或压接的方式与所述连接端子电连接。
  3. 根据权利要求1所述的新型屏蔽材料的连接器总成,其特征在于,所述电连接骨架为刚性体,所述电连接骨架的抗拉强度大于75MPa。
  4. 根据权利要求1所述的新型屏蔽材料的连接器总成,其特征在于,所述导电高分子材料为导电涂料,所述导电涂料为包含导电颗粒的涂料,所述导电颗粒材质为金属、导电陶瓷、含碳导体、固体电解质、混合导体的一种或几种。
  5. 根据权利要求4所述的新型屏蔽材料的连接器总成,其特征在于,所述导电涂料中所述导电颗粒的体积占比为3%-95%。
  6. 根据权利要求1所述的新型屏蔽材料的连接器总成,其特征在于,所述导电高分子材料为导电塑胶,所述导电塑胶为包含导电颗粒的高分子材料,所述导电颗粒材质含有金属、导电陶瓷、含碳导体、固体电解质、混合导体的一种或几种;所述高分子材料的材质含有四苯乙烯、聚氯乙烯、聚乙烯、聚酰胺、聚四氟乙烯、四氟乙烯/六氟丙烯共聚物、乙烯/四氟乙烯共聚物、聚丙烯、聚偏氟乙烯、聚氨酯、聚对苯二甲酸、聚氨酯弹性体、苯乙烯嵌段共聚物、全氟烷氧基烷烃、氯化聚乙烯、聚亚苯基硫醚、聚苯乙烯、交联聚烯烃、乙丙橡胶、乙烯/醋酸乙烯共聚物、氯丁橡胶、天然橡胶、丁苯橡胶、丁腈橡胶、硅橡胶、顺丁橡胶、异戊橡胶、乙丙橡胶、丁基橡胶、氟橡胶、聚氨酯橡胶、聚丙烯酸酯橡胶、氯磺化聚乙烯橡胶、氯醚橡胶、氯化聚乙烯橡胶、氯硫橡胶、苯乙烯丁二烯橡胶、丁二烯橡胶、氢化丁腈橡胶、聚硫橡胶、交联聚乙烯、聚碳酸酯、聚砜、聚苯醚、聚酯、酚醛树脂、脲甲醛、苯乙烯-丙烯腈共聚物、聚甲基丙烯酸酯、聚甲醛树酯中的一种或几种。
  7. 根据权利要求6所述的新型屏蔽材料的连接器总成,其特征在于,所述导电塑胶中所述导电颗粒的体积占比为3%-95%。
  8. 根据权利要求4或6任一项所述的新型屏蔽材料的连接器总成,其特征在于,所述金属的材质含有金、银、铜、镍、钛、锡、铝、镉、锆、铬、钴、锰、锌、磷、碲、 铍、锡铅合金、银锑合金、钯、钯镍合金或银金锆合金中的一种或几种。
  9. 根据权利要求4或6任一项所述的新型屏蔽材料的连接器总成,其特征在于,所述含碳导体含有石墨银、石墨烯银、石墨粉、碳纳米管材料、石墨烯材料中的一种或多种。
  10. 根据权利要求4所述的新型屏蔽材料的连接器总成,其特征在于,所述导电涂料采用刷涂或浸涂或喷涂的方式,附着在所述绝缘层的外周。
  11. 根据权利要求6所述的新型屏蔽材料的连接器总成,其特征在于,所述导电塑胶通过挤出或注塑或浸塑或吹塑或发泡或3D打印的工艺,在所述绝缘层的外周成型。
  12. 根据权利要求1所述的新型屏蔽材料的连接器总成,其特征在于,所述内壳与所述导电介质层采用导电胶粘接或焊接或螺接或压接或卡接的方式电连接。
  13. 根据权利要求1所述的新型屏蔽材料的连接器总成,其特征在于,所述导电介质层的电导率大于4.8×106S/m。
  14. 根据权利要求1所述的新型屏蔽材料的连接器总成,其特征在于,所述导电介质层与所述内壳之间的阻抗小于80mΩ。
  15. 根据权利要求1所述的新型屏蔽材料的连接器总成,其特征在于,所述导电介质层的转移阻抗为小于100mΩ。
  16. 根据权利要求1所述的新型屏蔽材料的连接器总成,其特征在于,所述内壳的转移阻抗为小于100mΩ。
  17. 根据权利要求1所述的新型屏蔽材料的连接器总成,其特征在于,所述内壳与所述导电介质层之间设置屏蔽装置,所述屏蔽装置分别与所述内壳和所述导电介质层电连接。
  18. 根据权利要求17所述的新型屏蔽材料的连接器总成,其特征在于,所述导电介质层与所述屏蔽装置之间的阻抗小于80mΩ,所述屏蔽装置与所述内壳之间的阻抗小于80mΩ。
  19. 根据权利要求1所述的新型屏蔽材料的连接器总成,其特征在于,所述电连接骨架横截面形状为圆形、椭圆形、矩形、多边形、A形、B形、D形、M形、N形、O形、S形、E形、F形、H形、K形、L形、T形、P形、U形、V形、W形、X形、Y形、Z形、半弧形、弧形、波浪形中的一种或几种。
  20. 根据权利要求1所述的新型屏蔽材料的连接器总成,其特征在于,所述电连接骨架的横截面为多边形,所述多边形的角为倒圆或倒角。
  21. 根据权利要求1所述的新型屏蔽材料的连接器总成,其特征在于,所述电连接 骨架的至少部分区域为柔性体。
  22. 根据权利要求1所述的新型屏蔽材料的连接器总成,其特征在于,所述电连接骨架包括至少一个弯曲部。
  23. 根据权利要求1所述的新型屏蔽材料的连接器总成,其特征在于,所述导电介质层外周还包裹外绝缘层。
  24. 根据权利要求1所述的新型屏蔽材料的连接器总成,其特征在于,所述导电介质层的厚度为0.5mm-2.8mm。
  25. 根据权利要求1所述的新型屏蔽材料的连接器总成,其特征在于,所述电连接骨架的横截面积为3.5mm2-240mm2
  26. 根据权利要求1所述的新型屏蔽材料的连接器总成,其特征在于,其中一个所述连接器为充电座。
  27. 一种车辆,其特征在于,包含如权利要求1-26任一项所述的新型屏蔽材料的连接器总成和车身。
  28. 根据权利要求27所述的一种车辆,其特征在于,所述电连接骨架与所述车身的距离大于等于4mm。
PCT/CN2023/081328 2022-03-14 2023-03-14 一种新型屏蔽材料的连接器总成及一种车辆 WO2023174264A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210250040.6A CN114709682A (zh) 2022-03-14 2022-03-14 一种新型屏蔽材料的连接器总成及一种车辆
CN202210250040.6 2022-03-14

Publications (1)

Publication Number Publication Date
WO2023174264A1 true WO2023174264A1 (zh) 2023-09-21

Family

ID=82168998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081328 WO2023174264A1 (zh) 2022-03-14 2023-03-14 一种新型屏蔽材料的连接器总成及一种车辆

Country Status (2)

Country Link
CN (1) CN114709682A (zh)
WO (1) WO2023174264A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114709682A (zh) * 2022-03-14 2022-07-05 吉林省中赢高科技有限公司 一种新型屏蔽材料的连接器总成及一种车辆
CN218826261U (zh) * 2022-10-14 2023-04-07 长春捷翼汽车科技股份有限公司 一种新型屏蔽结构线缆

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017062995A (ja) * 2015-09-25 2017-03-30 株式会社オートネットワーク技術研究所 ワイヤーハーネス
CN206225039U (zh) * 2016-11-29 2017-06-06 河南天海电器有限公司 一种电动车高压铝或铝合金线束
CN108682497A (zh) * 2018-05-28 2018-10-19 长春捷翼汽车零部件有限公司 一种高压导线
CN214899244U (zh) * 2021-06-03 2021-11-26 乐清市八达光电科技股份有限公司 一种快充线束
CN113708159A (zh) * 2021-08-21 2021-11-26 长春捷翼汽车零部件有限公司 一种屏蔽线缆连接结构
CN215183246U (zh) * 2021-05-25 2021-12-14 浙江万马股份有限公司 一种轻量化超导铝合金芯车内高压电缆
CN114709682A (zh) * 2022-03-14 2022-07-05 吉林省中赢高科技有限公司 一种新型屏蔽材料的连接器总成及一种车辆
CN217984006U (zh) * 2022-03-14 2022-12-06 吉林省中赢高科技有限公司 一种新型屏蔽材料的连接器总成及一种车辆

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017062995A (ja) * 2015-09-25 2017-03-30 株式会社オートネットワーク技術研究所 ワイヤーハーネス
CN206225039U (zh) * 2016-11-29 2017-06-06 河南天海电器有限公司 一种电动车高压铝或铝合金线束
CN108682497A (zh) * 2018-05-28 2018-10-19 长春捷翼汽车零部件有限公司 一种高压导线
CN215183246U (zh) * 2021-05-25 2021-12-14 浙江万马股份有限公司 一种轻量化超导铝合金芯车内高压电缆
CN214899244U (zh) * 2021-06-03 2021-11-26 乐清市八达光电科技股份有限公司 一种快充线束
CN113708159A (zh) * 2021-08-21 2021-11-26 长春捷翼汽车零部件有限公司 一种屏蔽线缆连接结构
CN114709682A (zh) * 2022-03-14 2022-07-05 吉林省中赢高科技有限公司 一种新型屏蔽材料的连接器总成及一种车辆
CN217984006U (zh) * 2022-03-14 2022-12-06 吉林省中赢高科技有限公司 一种新型屏蔽材料的连接器总成及一种车辆

Also Published As

Publication number Publication date
CN114709682A (zh) 2022-07-05

Similar Documents

Publication Publication Date Title
WO2023174264A1 (zh) 一种新型屏蔽材料的连接器总成及一种车辆
CN113708159A (zh) 一种屏蔽线缆连接结构
WO2023174260A1 (zh) 一种具有液冷功能的连接器总成及一种车辆
WO2023174276A1 (zh) 一种具有液冷功能的连接器总成及一种车辆
WO2023174293A1 (zh) 一种具有固态冷却介质的连接器总成及一种车辆
WO2023174275A1 (zh) 一种具有固态冷却介质的连接器总成及一种车辆
CN218334622U (zh) 一种具有液冷功能的连接器总成及一种车辆
CN113922137A (zh) 一种带屏蔽的连接机构、电能传输装置及机动车辆
WO2023174261A1 (zh) 新型屏蔽阻燃连接器总成及车辆
CN217984006U (zh) 一种新型屏蔽材料的连接器总成及一种车辆
WO2023213250A1 (zh) 一种充电接口接地结构及车辆
CN216388788U (zh) 集成线束组件、汽车及交通工具
CN217215235U (zh) 一种带屏蔽的连接机构、电能传输装置及机动车辆
CN215989507U (zh) 屏蔽线缆连接结构
WO2023174257A1 (zh) 一种连接器总成及加工方法
WO2023174281A1 (zh) 一种电能传输总成及车辆
WO2023174258A1 (zh) 一种连接器总成及充电座及车辆
WO2023174282A1 (zh) 一种液冷连接器总成及一种车辆
WO2023174246A1 (zh) 新型屏蔽材料的连接器总成及车辆
WO2023174259A1 (zh) 一种具有固态冷却介质的连接器总成及一种车辆
WO2023174245A1 (zh) 一种具有液冷功能的连接器总成及一种车辆
WO2023174263A1 (zh) 一种连接器总成及一种车辆
CN216085570U (zh) 一种充电连接器
WO2023174290A1 (zh) 一种连接器柔性连接结构及一种车辆
WO2023174247A1 (zh) 一种电能传输连接装置及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23769766

Country of ref document: EP

Kind code of ref document: A1